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High Probability Bounds for Stochastic Subgradient Schemes
with Heavy Tailed Noise\ast 
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Abstract. In this work we study high-probability bounds for stochastic subgradient methods under heavy tailed
noise in Hilbert spaces. In this setting the noise is only assumed to have finite variance as opposed
to a sub-Gaussian distribution for which it is known that standard subgradient methods enjoy
high-probability bounds. We analyzed a clipped version of the projected stochastic subgradient
method, where subgradient estimates are truncated whenever they have large norms. We show
that this clipping strategy leads both to optimal anytime and finite horizon bounds for general
averaging schemes of the iterates. We also show an application of our proposal to the case of kernel
methods which gives an efficient and fully implementable algorithm for statistical supervised learning
problems. Preliminary experiments are shown to support the validity of the method.
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1. Introduction. The subgradient method was introduced in the 1960s by the Russian
school of optimization as the natural generalization of the gradient descent method to non-
smooth functions. It was first devised by Shor in 1962, and later studied by Polyak, Demyanov,
and Ermoliev [21, 20, 24, 1]. The stochastic version of this algorithm was considered by
Ermoliev in 1969 [6], who focused on the convergence of the iterates. Later on, such a method
was extensively studied, with most existing results providing upper bounds on the expected
optimization error in function values. Indeed, state-of-the-art convergence results ensure the
optimal rate of \scrO (1/

\surd 
k) for convex Lipschitz functions [19, 23]. On the other hand, high-

probability bounds have proved harder to obtain. Differently from bounds in expectation,
most high probability bounds have been derived under light tails assumptions, meaning with
sub-Gaussian noise [11, 12, 14]. Recently, motivated by the fact that real world datasets are
abundant but of poor quality, a line of research has started investigating high-probability
bounds with heavy-tails assumptions, that is, with uniformly bounded variance noise. High-
probability bounds in this setting have been proved in [18, 10]. Despite obtaining near-optimal
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rates, both works suffer from either unpractical parameter settings or unrealistic assumptions.
Moreover, differently from most results obtained in the light tailed case, in [18, 10] the analy-
sis is confined to a finite horizon, which is a limitation in many practical scenarios. Indeed,
finite horizon methods cannot cope with online settings in which data arrives continuously in
a potentially infinite stream of batches and the predictive model is updated accordingly.

In this work we address the following optimization problem:

minimize
x\in X

f(x),(1.1)

where X \subset H is a nonempty, closed, convex, and bounded set in a Hilbert space H with
diameter D \geq 0, and f : H \rightarrow \BbbR is a convex Lipschitz continuous function with Lipschitz
constant L > 0. We assume that the projection onto X can be computed explicitly but only
a stochastic subgradient of f is available, that is, that for all x\in X, we have the following:

1. û(x, \xi )\in H and \xi is a random variable such that \BbbE [û(x, \xi )]\in \partial f(x).
2. \BbbE [\| û(x, \xi )  - \BbbE [û(x, \xi )]\| 2] \leq \sigma 2.

We stress that the only assumption made on the stochastic subgradient is that it has uniformly
bounded variance, while no additional information on its distribution is available.

Contributions. In relation to problem (1.1), we study a projected clipped stochastic sub-
gradient method for which we provide high-probability convergence rates under heavy tailed
noise. The main contributions of this work are as follows.

\bullet We made a new analysis of the clipped subgradient method which relies on a new
decomposition of the error and different statistical properties which contrasts our
analysis with that of [9, 10, 18, 13]. This allows one to obtain a first bound on the
objective values which is valid for arbitrary stepsizes, weights, and clipping levels,
making their role more transparent in the study of the convergence. See Theorem 2.2
and Remark 2.3.

\bullet We provide a general convergence result when the algorithm parameters obey polyno-
mial laws. This makes clear the setting of the stepsizes, weights, and clipping levels
so to have the optimal convergence rate of \scrO (1/

\surd 
k). See Theorem 2.4.

\bullet The analysis covers both the finite-horizon and the infinite-horizon settings, general
averaging schemes, and can reveal sub-Gaussian tail behavior \scrO (

\sqrt{} 
log(\delta  - 1)/

\surd 
k) of

the function values. See Corollary 2.6.
\bullet We provide an application of the proposed method to the important case of statistical

learning with kernels. Notably, the resulting algorithm is fully practicable and achieves
the optimal \scrO (1/

\surd 
k) rate of convergence in high probability for the excess risk.

1.1. Related work. In this section we discuss the current literature on high-probability
bounds for the stochastic nonsmooth convex setting. A summary of the state of the art is
given in Table 1.1

Light tails. Convergence rates in high probability for light tails noise have been derived in
[11, 12, 14]. In particular, in [11], under sub-Gaussian hypothesis, the last iterate of Stochastic
Gradient Descent (SGD) was shown to achieve a convergence rate of \scrO ((logk/

\surd 
k) log(1/\delta )),

1The rate anytime on the average iterate follows easily from [15, Proposizion 4.1]. For the readers' conve-
nience we derive this rate in section SM3 of the supplementary material.
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SSG SCHEMES WITH HEAVY TAILED NOISE 955

Table 1
Comparison of known high-probability convergence rate for nonsmooth problems. ``Noise"" refers to the

type of oracle noise with ``LT"" and ``HT"" standing for Light Tails and Heavy Tails, respectively. ``Any-Time""
refers to any-time convergence guarantees. ``Function Type"" refers to the smoothness assumptions on f , with
``Lipschitz"" denoting the case of a convex Lipschitz objective, and ``Composite"" referring to a composite objective
f + h where f is convex and smooth and h is a given (nonstochastic) convex function. ``Constraints"" refers to
the constrain set, ``Bounded"" refers to the optimization over a convex bounded subset of an Hilbert space.

Method Rate Noise Any-Time Function Type Constraints Ref.

SGD \mathrm{l}\mathrm{o}\mathrm{g}k\surd 
k
log (1/\delta ) LT \ding{51} Lipschitz \ding{51} (Bounded) [11]

SGD
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g} (1/\delta )
k

LT \ding{51} Lipschitz \ding{51} (Bounded) [14]

RSMD
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g}(1/\delta )
k

HT \ding{55} Composite \ding{51} (Bounded) [18]

ClippedSGD
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g} (k/\delta )
k

HT \ding{55} Lipschitz \ding{55} [10]

ClippedSGD
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g}(1/\delta )
k

HT \ding{51} Lipschitz \ding{51} (Bounded) This work

even with infinite horizon. The authors also state, without proof, that the average iterate
obtains the improved rate of \scrO ( log(1/\delta )/

\surd 
k), essentially matching the analogue bound in

expectation. For strongly convex functions, they show that the last iterate achieves the rate
\scrO ((logk/k) log(1/\delta )), while the suffix average improves to \scrO (1/k log(1/\delta )). Unfortunately,
the suffix average can be tricky to implement in an infinite-horizon setting. Therefore, in [12]
a simpler-to-implement weighted averaging scheme is shown to obtain the same rate. In [14]
the previous results on the last iterate are improved to the optimal rate, but only when the
time horizon is known in advance and the noise is bounded almost surely.

Heavy tails. High-probability bounds in this context have been derived for some special
settings in [4, 18]. The work [4] considers a class of nonsmooth composite functions, where
the objective is the sum of a smooth, strongly convex function and a general closed convex
term. The authors propose an elegant and neat method, ProxBoost, that combines a
robust statistical estimation procedure with the proximal point method to boost any bound
in expectation into a high-probability guarantee. When used to boost the optimal method of
[8], ProxBoost achieves the optimal rate of \scrO ((1/k)

\sqrt{} 
log (1/\delta )). Unfortunately, this method

has some practical shortcomings. First, the stochastic oracle is supposed to be available only
for the smooth term of the objective function, which, in addition, is essentially limited to
quadratics. Second, the proposed method requires at least three nested loops, the outer of
which being the proximal point algorithm. This leads to an overall procedure which is rather
convoluted and raise concerns about its practicability.

The previous composite objective structure is also analyzed in [18]. The authors remove
the strong convexity assumption on the smooth part, but requires the minimization to be
performed over a convex bounded domain. They develop Robust Stochastic Mirror Descent
(RSMD), a robust version of stochastic mirror descent enjoying several desirable properties
such as a near-optimal rate of \scrO ((1/

\surd 
k) log(1/\delta )), the absence of a batch-size and a simple

constant step-size. On the other hand, the algorithm relies on the following gradient estimator:
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956 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

ũk :=

\left\{   û(xk, \chi 
k) if \| û(xk, \xi 

k)  - ḡ\| \leq L\| xk  - x̄\| + \lambda + \nu \sigma ,

ḡ otherwise.

where ḡ is a gradient estimate which is close enough to the true gradient of the smooth part
of the objective at a given point x̄. This estimator is problematic, since it is not clear how
to obtain (ḡ, x̄) in practice. The authors suggest generating (with high probability) ḡ by
first sampling enough oracle estimates at x̄ and then by computing their geometric median; a
fact that reduces the overall confidence of the procedure. However, computing such a mean
estimator in high dimensions is a challenging task. Furthermore, the truncation parameter \lambda 
has to be set to

\lambda = \sigma 

\sqrt{} 
k

log (1/\delta )
+ \nu \sigma ,

which requires the knowledge of the time horizon k and does not allow for any-time guarantees.
A follow-up study is [13], where the author modifies the any-time to batch conversion from
[3] so to extend the guarantees of RSMD from the last average iterate to all the averages
generated till the given time horizon. We note that the resulting algorithm is not fully any-
time, since the initial truncation level needs to be set according to the time horizon. Differently
from [18], it is assumed that the objective is smooth, while the nonsmooth case is left as an
open problem. Moreover, since the gradient estimator is the same as in [18], it suffers from
the same practicability issues we discussed above and the author leaves as an open problem
that of identifying a more practical estimator.

Clipping strategies have already been used in [9, 10], which provide convergence rates in
high probability for a fixed-horizon setting. In contrast to our work, they cover the uncon-
strained minimization of convex Lipschitz smooth functions and convex Lipschitz continuous
functions, respectively. The authors analyze a clipped version of SGD, but the resulting
bounds and the algorithm’s parameters are subject to some limitations. In particular, the
work [10], which addresses our setting, requires the algorithm parameters to be set as follows:

\gamma \leq min

\biggl\{ 
\varepsilon 

8L2
,

D\surd 
2kL

,
D

2L log (4k/\delta )

\biggr\} 
step-size(1.2)

m\geq max

\biggl\{ 
1,

81k\sigma 2

\lambda 2 log (4k/\delta )

\biggr\} 
batch-size(1.3)

\lambda =
D

\gamma log (4k/\delta )
clipping-level,(1.4)

where k is the fixed-horizon and \varepsilon > 0 a free parameter. We note the restrictions in the range
of the step-size \gamma and the batch-size m. In addition, they are coupled together. Indeed, in [10,
Corollary 5.1] they show that it is possible to use m = 1 but at the expense of shrinking the
step-size \gamma to \scrO (1/

\sqrt{} 
k log(k)), so that the final rate reduces to the order of \scrO (

\sqrt{} 
log(k/\delta )/k),

which is not optimal in this setting. Moreover, all the parameters depend on the time horizon
k, so that the convergence guarantees are not any-time. On the other hand, [9, 10] consider
the minimization on unbounded domains, which is possibly more challenging than our setting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

1/
25

 to
 1

44
.8

2.
11

4.
25

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SSG SCHEMES WITH HEAVY TAILED NOISE 957

Finally, we note that stochastic gradient methods have also been studied in conjunction
with biased compressor (nonlinear) operators. See, e.g., [22] and reference therein. In this
respect, we note that the clipping operator, being a projection onto a ball, is not a compressor
and, moreover, it is invoked dynamically with time-varying radii.

1.2. Notation and basic facts. We set \BbbN = \{ 1,2, . . . ,\} the set of natural numbers starting
from 1. We set \BbbR + = [0,+\infty [ and \BbbR ++ = ]0,+\infty [ the sets of positive and strictly positive
real numbers, respectively. For any p, q \in \BbbR we set p \vee q = max\{ p, q\} , p \wedge q = min\{ p, q\} , and
p+ = p \vee 0. We denote by log the natural logarithm function. A sequence of real numbers
(\chi k)k\in \BbbN is called increasing if, for every k \in \BbbN , \chi k \leq \chi k+1. In the following, H will be a
real Hilbert space and \langle \cdot , \cdot \rangle and \| \cdot \| will denote its scalar product and associated norm. For a
convex function f : H \rightarrow \BbbR , the subdifferential of f at a point x\in H is defined as

\partial f(x) = \{ u\in H | \forall y \in H : f(y)\geq f(x) + \langle y - x,u\rangle \} .

For a closed convex set X \subset H we denote by PX the orthogonal projection operator onto X.
We recall the following Bernstein’s inequality for martingales [7].

Fact 1 (Freedman's inequality for martingales). Let (Xk)k\in \BbbN be a martingale difference
sequence such that for all k,

(i) | Xk| \leq c a.s.,
(ii) \sigma 2

k :=\BbbE [X2
k | X1, . . . ,Xk - 1]<\infty .

Let k \in \BbbN and set Vk =
\sum k

i=1 \sigma 
2
i . Then for every \eta and F in \BbbR ++,

\BbbP 

\Biggl( 
n\sum 

i=1

Xi > \eta ,Vk \leq F

\Biggr) 
\leq exp

\Biggl( 
 - 1

2

\eta 2

F + 1
3\eta c

\Biggr) 
.(1.5)

2. The algorithm and the main results. In this section we detail the algorithm and
describe the main results of this paper.

Since we are in a heavy-tails regime we consider to clip the stochastic subgradient oracle
to a given level. We therefore define the following clipping operation, which corresponds to a
projection onto the closed ball with radius \lambda :

(\forall u\in H)(\forall \lambda \in \BbbR ++) CLIP(u,\lambda ) = min

\biggl\{ 
\lambda 

\| u\| 
,1

\biggr\} 
u=

\Biggl\{ 
u if \| u\| \leq \lambda ,
\lambda 

\| u\| u if \| u\| >\lambda .

The algorithm is detailed below.

Remark 2.1. In addition to the sequence xk, Algorithm 2.1 requires keeping track of the
sequences Wk :=

\sum k
i=1wi and x̄k, which can be updated recursively, as Wk+1 = Wk + wk+1

and x̄k+1 =W - 1
k+1(Wkx̄k +wk+1xk+1).

We will establish high-probability convergence rates in several situations depending on the
choices of the weights wk’s, the stepsizes \gamma k’s, and the clipping levels \lambda k’s.

Now we are ready to provide the first main result of this paper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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958 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

Algorithm 2.1. Clipped stochastic subgradient method (C-SsGM).

Given the stepsizes (\gamma k)k\in \BbbN \in \BbbR \BbbN 
++, the weights (wk)k\in \BbbN \in \BbbR \BbbN 

++, the clipping levels (\lambda k)k\in \BbbN \in 
\BbbR \BbbN 
++, the batch size m\in \BbbN , m\geq 1, and an initial point x1 \in X,

for k = 1, . . .          

draw \bfitxi k = (\xi kj )1\leq j\leq m m independent copies of \xi ,

ūk =
1

m

m\sum 
j=1

û(xk, \xi 
k
j ),

ũk = CLIP(ūk, \lambda k),

xk+1 = PX(xk  - \gamma kũk).

(2.1)

From the sequence (xk)k\in \BbbN one also defines

(\forall k \in \BbbN ) x̄k =

\Biggl( 
k\sum 

i=1

wi

\Biggr)  - 1 k\sum 
i=1

wixi.(2.2)

Theorem 2.2 (main result 1). Suppose that, for every k \in \BbbN , \lambda k \geq (1 + \varepsilon )L with \varepsilon > 0
and that the sequence (wk/\gamma k)k\in \BbbN is increasing. Let (x̄k)k\in \BbbN be the sequence generated by
Algorithm 2.1. Then for every k \in \BbbN and \delta \in ]0,2/e], the following holds with probability at
least 1  - \delta :

f(x̄k) - min
X

f \leq 1\sum k
i=1wi

\Biggl[ 
D2

2

wk

\gamma k
+

2

3

\biggl( 
2D \cdot max

1\leq i\leq k
wi\lambda i + max

1\leq i\leq k
wi\gamma i\lambda 

2
i

\biggr) 
\cdot log

\biggl( 
2

\delta 

\biggr) 

+
1\surd 
2

\Biggl( 
4

\biggl( 
1 +

1

\varepsilon 

\biggr) 
D\sigma \surd 
m

\sqrt{}    k\sum 
i=1

w2
i +

\sqrt{}    \biggl( \sigma 2

m
+L2

\biggr) k\sum 
i=1

w2
i \gamma 

2
i \lambda 

2
i

\Biggr) \sqrt{} 
log

\biggl( 
2

\delta 

\biggr) 

+
D\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) k\sum 
i=1

wi

\lambda i
+

1

2

\biggl( 
\sigma 2

m
+L2

\biggr) k\sum 
i=1

wi\gamma i

\Biggr] 
.

Remark 2.3. Due the above result, it is clear that in order to ensure convergence of
Algorithm 2.1 we need to control the following quantities:

wk/\gamma k\sum k
i=1wi\underbrace{}  \underbrace{}  
1

,
max1\leq i\leq kwi\lambda i\sum k

i=1wi\underbrace{}  \underbrace{}  
2

,
max1\leq i\leq kwi\gamma i\lambda 

2
i\sum k

i=1wi\underbrace{}  \underbrace{}  
3

(2.3)

\sqrt{} \sum k
i=1w

2
i\sum k

i=1wi\underbrace{}  \underbrace{}  
4

,

\sqrt{} \sum k
i=1w

2
i \gamma 

2
i \lambda 

2
i\sum k

i=1wi\underbrace{}  \underbrace{}  
5

,

\sum k
i=1wi/\lambda i\sum k
i=1wi\underbrace{}  \underbrace{}  
6

,

\sum k
i=1wi\gamma i\sum k
i=1wi\underbrace{}  \underbrace{}  
7

.(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SSG SCHEMES WITH HEAVY TAILED NOISE 959

With the exception of term 1 which is standard in the analysis of SsGM, the rest of the
quantities are related to the bias (2,4,6) and the variance (3,5,7) of the subgradient estimator.

In the rest of the section we will assume that the constants wk, \lambda k, \gamma k are set as follows:

wk = kp, \gamma k =
\gamma 

kr
, \lambda k = max\{ \beta kq, (1 + \varepsilon )L\} (p, r, q \in \BbbR , \gamma , \beta , \varepsilon > 0)(2.5)

and we will show conditions on the exponents so to make the quantities in (2.3) and (2.4)
converging to zero. The related result is given below.

Theorem 2.4 (main result 2). Let (wk)k\in \BbbN , (\gamma k)k\in \BbbN , and (\lambda k)k\in \BbbN be defined as in (2.5) with
p, r, q \in \BbbR and \beta , \varepsilon > 0. Let \delta \in ]0,2/e]. Then Algorithm 2.1 converges in high probability
provided that the following conditions are satisfied:

p > - r, r \in ]0,1[ , q \in ]0,1[ , and q <
r + 1

2
,(2.6)

and in such case, with probability greater then 1 - \delta , the following (infinite-horizon) rate holds:

f(x̄k)  - min
X

f =\scrO 
\biggl( 

1

k1 - r
+

1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,1 - q\} +
1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,r+1 - 2q\} 

+
1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1, 1
2
\} +

1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,r+ 1

2
 - q\} +

1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,q\} +
1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,r\} 

\biggr) 
.

Moreover, the optimal choices, in terms of convergence rates, for the parameters r and q are
r = 1/2 and q = 1/2, and in such case the following hold.

(i) Suppose that p >  - 1/2 and set L\varepsilon = (1 + \varepsilon )L. Then for every k \in \BbbN , with probability
at least 1  - \delta , we have

f(x̄k)  - min
X

f \leq (p + 1) \vee 1\surd 
k

\biggl[ 
D2

2\gamma 

+
2

3

\biggl( 
2Dmax

\biggl\{ 
\beta ,

L\varepsilon 

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+ 1

2
, 1
2
\} 

\biggr\} 
+ \gamma max

\biggl\{ 
\beta 2,

L2
\varepsilon 

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+ 1

2
,1\} 

\biggr\} \biggr) 
log

2

\delta 

+
1\surd 
2

\biggl( 
4

\biggl( 
1 +

1

\varepsilon 

\biggr) 
D\sigma \surd 
m

1

((2p + 1) \wedge 1)
+ \gamma vp(k)

\sqrt{} 
\sigma 2

m
+L2

\biggr) \sqrt{} 
log

2

\delta 

+
1

(p + 1/2) \wedge 1

\biggl( 
D\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) 
1

\beta 
+

\gamma 

2

\biggl( 
\sigma 2

m
+L2

\biggr) \biggr) \biggr] 
,

where

vp(k) =

\left\{                         

\sqrt{} 
2

(2p) \wedge 1
max

\Bigl\{ 
\beta ,

L\varepsilon \surd 
k

\Bigr\} 
if p > 0,\left\{     

L\varepsilon if k <L2
\varepsilon /\beta 

2,

\beta 

\biggl( 
L2
\varepsilon /\beta 

2

\surd 
k

+ 1

\biggr) 
if k\geq L2

\varepsilon /\beta 
2

if p = 0,

L\varepsilon 

kp+
1

2

\sqrt{} 
1  - 1

2p
+

max\{ \beta ,L\varepsilon /
\surd 
k\} \sqrt{} 

(2p + 1) \wedge 1
if  - 1

2 < p< 0.
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960 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

(ii) Suppose that p =  - 1/2 and set L\varepsilon = (1 + \varepsilon )L. Then for every k \in \BbbN , with probability
at least 1  - \delta , we have

f(x̄k)  - min
X

f \leq 3

2

1\surd 
k

\biggl[ 
D2

2\gamma 

+
2

3

\biggl( 
2Dmax\{ \beta ,L\varepsilon \} + \gamma max\{ \beta 2,L2

\varepsilon \} 
\biggr) 

log
2

\delta 

+
1\surd 
2

\biggl( 
4

\biggl( 
1 +

1

\varepsilon 

\biggr) 
D\sigma \surd 
m

(1 + logk) + \gamma u(k)

\sqrt{} 
\sigma 2

m
+L2

\biggr) \sqrt{} 
log

2

\delta 

+

\biggl( 
D\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) 
1

\beta 
+

\gamma 

2

\biggl( 
\sigma 2

m
+L2

\biggr) \biggr) 
(1 + logk)

\biggr] 
,

where u(k) =
\surd 

2L\varepsilon + \beta (1 + logk).
(iii) (finite-horizon) Let k \in \BbbN and set (\gamma i)1\leq i\leq k \equiv \gamma /

\surd 
k, (\lambda i)1\leq i\leq k \equiv (max\{ \beta 

\surd 
i, (1 +

\varepsilon )L\} )1\leq i\leq k, and (wi)1\leq i\leq k \equiv (ip)1\leq i\leq k with p\geq 0. Then with probability at least 1 - \delta ,
we have

f(x̄k) - min
X

f \leq p + 1\surd 
k

\biggl[ 
D2

2\gamma 

+
2

3

\biggl( 
2Dmax

\Bigl\{ 
\beta ,

L\varepsilon \surd 
k

\Bigr\} 
+ \gamma max

\Bigl\{ 
\beta 2,

L2
\varepsilon 

k

\Bigr\} \biggr) 
log

2

\delta 

+
1\surd 
2

\biggl( 
4

\biggl( 
1 +

1

\varepsilon 

\biggr) 
D\sigma \surd 
m

+ \gamma yp(k)

\sqrt{} 
\sigma 2

m
+L2

\biggr) \sqrt{} 
log

2

\delta 

+
1

(p + 1/2)\wedge 1

D\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) 
1

\beta 
+

\gamma 

2

\biggl( 
\sigma 2

m
+L2

\biggr) \biggr] 
,

where yp(k) =
\surd 

2 max\{ \beta ,L\varepsilon /
\surd 
k\} .

Remark 2.5.
(i) The previous theorem always provides convergence (not necessarily optimal) for gen-

eral parameter settings. In literature it is common to assume from the beginning that
r = q = 1/2 [18, 10, 13]. In contrast our analysis shows a posteriori that those choices
are optimal.

(ii) The previous theorem shows that for p >  - 1/2 we have an asymptotic (any time)
convergence rate of \scrO (1/

\surd 
k) (note that vp(k) is bounded from above) and that for

p = - 1/2 the rate degrades to (1 + logk)/
\surd 
k.

(iii) Point (iii) of Theorem 2.4 provides rate in the finite horizon setting in which k
(the time horizon) is fixed a priori and the stepsize is constant, set according to that
time horizon. Moreover, the form of the bound allows one to optimize the stepsize.
Indeed, if k\geq (L\varepsilon /\beta )2, the best stepsize (minimizing the bound) is

\gamma \surd 
k

=
D\surd 
k

\biggl( 
4

3
\beta 2 log

2

\delta 
+ 2

\sqrt{} 
\sigma 2

m
+L2

\sqrt{} 
log

2

\delta 
+
\Bigl( \sigma 2

m
+L2

\Bigr) \biggr)  - 1/2

.
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SSG SCHEMES WITH HEAVY TAILED NOISE 961

Compared to (1.2)–(1.4) (obtained in [9, 10]), we see that in our case the batchsize m
and the parameter \beta of the clipping levels are completely free and the rate of \scrO (1/

\surd 
k)

is always guaranteed. Note also that here the clipping level is not constant within the
time horizon k, but it follows the policy \lambda i = max\{ \beta 

\surd 
i, (1 + \varepsilon )L\} .

From Theorem 2.4(i)–(iii) it is easy to derive the following result which essentially removes
the log factor in the bound.

Corollary 2.6. Let \delta \in ]0,2/e] and set \beta = \beta /
\sqrt{} 

log(2/\delta ), with \beta > 0. Let (wk)k\in \BbbN , (\gamma k)k\in \BbbN 
and (\lambda k)k\in \BbbN be defined as in (2.5) with q = r = 1/2, p >  - 1/2, and \varepsilon > 0. Let (x̄k)k\in \BbbN be

the sequence generated by Algorithm 2.1. Then, for every k\geq (L\varepsilon /\beta )\mathrm{m}\mathrm{a}\mathrm{x}\{ 2

2p+1
,2\} , if p \not = 0, and

every k\geq (L\varepsilon /\beta )4, if p = 0, and with probability at least 1  - \delta , we have

f(x̄k) - min
X

f \leq (p+ 1) \vee 1\surd 
k

\biggl[ 
D2

2\gamma 
+ \gamma 

\biggl( 
2

3
\beta 2 +

ap\beta \surd 
2

\sqrt{} 
\sigma 2

m
+L2 +

\sigma 2/m+L2

2((p + 1/2)\wedge 1)

\biggr) 
+D

\biggl( 
4

3
\beta +

\biggl( 
1 +

1

\varepsilon 

\biggr) \biggl( 
1

(2p + 1) \wedge 1

4\sigma \surd 
2m

+
1

(p + 1/2)\wedge 1

\sigma 2

m\beta 

\biggr) \biggr) \sqrt{} 
log

2

\delta 

\biggr] 
,

where

ap =

\left\{       
\sqrt{} 

2((2p) \wedge 1) - 1 if p > 0,

2 if p= 0,\sqrt{} 
1  - (2p) - 1 +

\sqrt{} 
((2p + 1) \wedge 1) - 1 if  - 1/2 < p< 0.

Moreover, for finite horizon setting, with (\gamma i)1\leq i\leq k \equiv \gamma /
\surd 
k, q = 1/2, and p \geq 0, we have

exactly the same bound except for k that should be taken larger than (L\varepsilon /\beta )2, the constant
(p + 1/2) \wedge 1 at the denominator of the last term in the first line which is replaced by 1, and
the constant ap which now is equal to

\surd 
2.

Remark 2.7.
(i) Corollary 2.6 shows that for k large enough the variable f(x̄k) - minX f shows a sub-

Gaussian tail behavior. In this respect we note that with p\geq 1/2 this behavior occurs
earlier (with k\geq (L\varepsilon /\beta )2). This same condition on k (k\gtrsim log \delta  - 1) occurs also in other
works [18, 10, 13].

(ii) The above bound allows one to optimize the initial stepsize \gamma , which reaches the
minimum at

\gamma = D

\biggl( 
4

3
\beta 2 +

\surd 
2ap\beta 

\sqrt{} 
\sigma 2

m
+L2 +

\sigma 2/m+L2

((p + 1/2) \wedge 1)

\biggr)  - 1/2

making the final bound equal to

f(x̄k) - min
X

f \leq D
(p+1)\vee 1\surd 

k

\biggl[ \biggl( 
4

3
\beta 2+

\surd 
2ap\beta 

\sqrt{} 
\sigma 2

m
+L2+

\sigma 2/m+L2

((p+1/2)\wedge 1)

\biggr) 
+

\biggl( 
4

3
\beta +

\biggl( 
1+

1

\varepsilon 

\biggr) \biggl( 
1

((2p+1)\wedge 1)

4\sigma \surd 
2m

+
1

(p+1/2)\wedge 1

\sigma 2

\beta m

\biggr) \biggr) \sqrt{} 
log

2

\delta 

\biggr] 
.
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962 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

Again, also here the advantage of our results is clear compared to [9, 10], since the dependence
on the confidence level is

\sqrt{} 
log(2/\delta ).

Remark 2.8 (on the expected optimization error). Clipping is unnecessary under our noise
assumptions when in-expectation rates are in order, since the average iterate of SsGM already
enjoys the optimal convergence rate

\BbbE [f(x̄k)  - f\ast ] \leq 
\sqrt{} 

D2(\sigma 2/m+L2)

k
,(2.7)

which is achieved with step-size \gamma i = \gamma /
\surd 
i and \gamma =

\sqrt{} 
D2/(\sigma 2/m+L2). On the other hand, in

section SM3 we could easily derive from our analysis the following in-expectation bound for
the clipped-SsGM:

\BbbE [f(x̄k)  - f\ast ] \leq 
\sqrt{} 

D2(\sigma 2/m+L2)

k
+

\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) \sqrt{} 
D2

\beta 2k
.(2.8)

We make the following comments: (1) SsGM and C-SsGM share the same optimal step-size;
(2) the rate in (2.8) is worse than that of (2.7), since it exhibits an additional term due to
the bias in the subgradient estimators, a fact that we also noted in the experiments under
light-tails noise; (3) finally, when \sigma = 0, clipping never occurs regardless of \beta , and C-SsGM
behaves exactly as the deterministic sugradient method and the above bound reduces to

f(x̄k)  - f\ast \leq DL\surd 
k
,(2.9)

which is the same rate featured by the deterministic subgradient method.

Remark 2.9 (behavior under sub-Gaussian noise). When the noise is sub-Gaussian, clipping
is not necessary, and the classical SsGM method already enjoys the optimal high probability
convergence rate. For example, an adaptation of the proof (reported in section SM3) of
Proposition 4.1. in [15], along with the choice of \gamma i = \gamma /

\surd 
i where

\gamma =

\sqrt{} 
D2

4(\eta 2(1 + ln(2/\delta )) + L2)

leads to the following high-probability convergence rate:

f(x̄k) - f\ast \leq 2D\surd 
k

\Biggl( 
L+ \eta 

\sqrt{} 
log

\biggl( 
2e

\delta 

\biggr) \Biggr) 
,(2.10)

where \eta > 0 is the variance proxy parameter of the sub-Gaussian noise. Concerning the
comparison with our bounds in Corollary 2.6, the following considerations are in order:

(i) Our bound in Corollary 2.6 (which does not take advantage of the sub-Gaussian as-
sumption), after the optimization of the stepsize \gamma , shows a worse dependence on
the algorithm parameters with respect to (2.10). Furthermore, (2.10) features a sub-
Gaussian behavior for all k, while in the case of clipping this is only obtained for
k\gtrsim ln(\delta  - 1).
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SSG SCHEMES WITH HEAVY TAILED NOISE 963

(ii) Our bound depends directly on the variance \sigma 2, as opposed to (2.10) which depends
on the variance proxy parameter \eta , which, in general, is larger than \sigma .

(iii) Clipped SsGM requires a larger number of parameters to be set with respect to SsGM.
Our results provide theoretical recipes for tuning \gamma i and \lambda i, but, in practice, to obtain
the optimal performances one has to resort to trial-and-error procedures to optimize
such parameters.

(iv) In spite of the worse theoretical bounds, our experiments show that clipping SsGM
may perform well even under sub-Gaussian noise, especially when the noise level is
large compared to the true subgradients. See section 5.1.

3. Convergence analysis. In this section we provide the fundamental steps of the proof
of the main results of the paper. Additional details are given in sections SM1 and SM2 of the
supplementary material.

3.1. Part 1. In this section we address the proof of Theorem 2.2. We start by gathering
the main statistical properties of the clipped subgradient estimator.

Lemma 3.1. Let x\in X, \lambda >L and define

ū=
1

m

m\sum 
j=1

û(x, \xi j) and ũ= min

\biggl\{ 
\lambda 

\| ū\| 
,1

\biggr\} 
ū=

\Biggl\{ 
ū if \| ū\| \leq \lambda 
\lambda 

\| \=u\| ū if \| ū\| >\lambda .

Set u=\BbbE [û(x, \xi j)] =\BbbE [ū] and suppose that \BbbE [\| û(x, \xi j)  - u\| 2]\leq \sigma 2. Then, the following hold:

(i) \BbbE \| ũ\| 2 \leq \BbbE \| ū\| 2 \leq \sigma 2

m +L2 (second moment).

(ii) \| \BbbE ũ - u\| \leq \sigma 2

m(\lambda  - L) (bias).

(iii) \BbbE \| ũ - u\| 2 \leq \sigma 2

m [1 + (\lambda +L
\lambda  - L)2] (MSE).

(iv) \BbbE \| ũ - \BbbE ũ\| 2 \leq \sigma 2

m [1 + (\lambda +L
\lambda  - L)2] (variance).

Remark 3.2. The previous bounds assume that \lambda >L. We can restate bounds (ii) and (iv)
in different way. Let \varepsilon > 0 and suppose that \lambda \geq L\varepsilon . Then we have

\| \BbbE ũ - u\| \leq \sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) 
1

\lambda 
and \BbbE \| ũ - \BbbE ũ\| 2 \leq \sigma 2

m

\biggl[ 
1 +

\biggl( 
2 + \varepsilon 

\varepsilon 

\biggr) 2\biggr] 
\leq 4

\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) 2

.

Now, we are ready to tackle the proof of Theorem 2.2. We start by decomposing the error
in several possibly simpler terms.

Lemma 3.3 (decomposition of the error). Let (xk)k\in \BbbN and (x̄k)k\in \BbbN be generated by Algo-
rithm 2.1. Suppose that the sequence (wk/\gamma k)k\in \BbbN is increasing. Then, for all k \in \BbbN and x\in X,
we have

f(x̄k)  - f(x) \leq 1\sum k
i=1wi

\left[      D
2

2

wk

\gamma k
+

k\sum 
i=1

\theta vi\underbrace{}  \underbrace{}  
\bfA 

+

k\sum 
i=1

\theta bi\underbrace{}  \underbrace{}  
\bfB 

+
1

2

k\sum 
i=1

\zeta i\underbrace{}  \underbrace{}  
\bfC 

+
1

2

k\sum 
i=1

\nu i\underbrace{}  \underbrace{}  
\bfD 

\right]      a.s.,(3.1)
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964 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

where
\bullet ui =\BbbE [ūi | xi] =\BbbE [û(xi, \xi 

i
j) | xi] (for 1\leq j \leq m),

\bullet \theta vi := wi\langle ũi  - \BbbE [ũi | x1, . . . , xi], x - xi\rangle ,
\bullet \theta bi := wi\langle \BbbE [ũi | x1, . . . , xi] - ui, x - xi\rangle ,
\bullet \zeta i := wi\gamma i(\| ũi\| 2  - \BbbE [\| ũi\| 2 | x1, . . . , xi]),
\bullet \nu i := wi\gamma i\BbbE [\| ũi\| 2 | x1, . . . , xi].

From Lemma 3.3 it is clear that we have to bound with high probability the four sum-
mations we named A, B, C, and D, by applying a Bernstein’s type concentration inequality.
So, the proof of Theorem 2.2 goes through the following steps that we collect in separate
propositions.

Remark 3.4 (on the choice of the concentration inequality). Two popular tools to con-
trol bounded sums of martingale difference sequences, such as terms A and C, are Azuma–
Hoeffding’s and Freedman’s inequalities. The former can be used to derive tight high-
probability bounds for SsGM under bounded noise (and even sub-Gaussian noise). Indeed,
suppose di is a martingale difference sequence with | di| \leq bi almost surely. Then, Azuma–
Hoeffding’s inequality states that, with probability at least 1  - \delta ,

k\sum 
i=1

di \lesssim 

\sqrt{}    k\sum 
i=1

b2i \cdot log

\biggl( 
2

\delta 

\biggr) 
.(3.2)

This method works well when bi \leq constant as in the case of SsGM, where either di =
\langle ûi - u,x - xi\rangle or di = \| ûi\| 2 - \BbbE [\| ûi\| 2| x1, . . . , xi]. On the other hand, in the case of the clipped
SsGM, where either di = \theta vi , or di = \zeta i, we have bi \sim wi

\surd 
i. As a result, the RHS of Azuma–

Hoeffding’s inequality cannot be compensated by the sum of the weights Wk =
\sum k

i=1wi. By
contrast, Freedman’s inequality provides the following bound:

k\sum 
i=1

di \lesssim max
1\leq i\leq k

bi \cdot log

\biggl( 
2

\delta 

\biggr) 
+

\sqrt{} 
F \cdot log

\biggl( 
2

\delta 

\biggr) 
,(3.3)

where F is the total conditional variance of the di’s. Note that, differently from (3.2), the
RHS of (3.3) only depends on the largest bi and this ultimately can be compensated by Wk

as long as F =\scrO (Wk).

Proposition 3.5 (Freedman's bound). Under the same assumptions of Fact 1, let \delta \in ]0,2/e],
k \in \BbbN , and let F \geq 0 be s.t. Vk \leq F a.s. Then, with probability at least than 1  - \delta /2 we have

k\sum 
i=1

Xi \leq 
2

3
c log

\biggl( 
2

\delta 

\biggr) 
+

\sqrt{} 
2F log

\biggl( 
2

\delta 

\biggr) 
.

Proposition 3.6 (analysis of the term A). Let k \in \BbbN and \varepsilon > 0 and suppose that, for every
i= 1, . . . , k, \lambda i \geq (1 + \varepsilon )L. Then, with probability at least 1  - \delta /2, we have

k\sum 
i=1

\theta vi \leq 
4

3
D \cdot max

1\leq i\leq k
wi\lambda i \cdot log

\biggl( 
2

\delta 

\biggr) 
+ 2

\biggl( 
1 +

1

\varepsilon 

\biggr) 
D\sigma \surd 
m

\sqrt{}    2

k\sum 
i=1

w2
i \cdot 

\sqrt{} 
log

\biggl( 
2

\delta 

\biggr) 
.(3.4)
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SSG SCHEMES WITH HEAVY TAILED NOISE 965

Proposition 3.7 (analysis of the term B). Let k \in \BbbN . The following hold:

k\sum 
i=1

\theta bi \leq 
D\sigma 2

m

\biggl( 
1 +

1

\varepsilon 

\biggr) k\sum 
i=1

wi

\lambda i
a.s.(3.5)

Proposition 3.8 (analysis of the term C). Let k \in \BbbN . Then, with probability at least 1 - \delta /2,

k\sum 
i=1

\zeta i \leq 
4

3
\cdot max
1\leq i\leq k

wi\gamma i\lambda 
2
i \cdot log

\biggl( 
2

\delta 

\biggr) 
+

\sqrt{}    2

\biggl( 
\sigma 2

m
+L2

\biggr) k\sum 
i=1

w2
i \gamma 

2
i \lambda 

2
i \cdot 

\sqrt{} 
log

\biggl( 
2

\delta 

\biggr) 
.

The proof of the previous propositions are given in section SM1 of the supplementary
material. The next one is a direct consequence of the definition of \nu i and the bound in
Lemma 3.1(i).

Proposition 3.9 (analysis of the term D). Let k \in \BbbN . Then we have

k\sum 
i=1

\nu i \leq 
\biggl( 
\sigma 2

m
+L2

\biggr) k\sum 
i=1

wi\gamma i a.s.

Proof of Theorem 2.2. By a simple union bound, it follows from Propositions 3.6 and 3.8
that with probability at least 1 - \delta we have

k\sum 
i=1

\theta vi +
1

2

k\sum 
i=1

\zeta i \leq 
2

3

\biggl( 
2D \cdot max

1\leq i\leq k
wi\lambda i + max

1\leq i\leq k
wi\gamma i\lambda 

2
i

\biggr) 
log

\biggl( 
2

\delta 

\biggr) 

+
1\surd 
2

\biggl( 
4

\biggl( 
1 +

1

\varepsilon 

\biggr) \biggr) 
D\sigma \surd 
m

\sqrt{}    k\sum 
i=1

w2
i +

\sqrt{}    \biggl( \sigma 2

m
+L2

\biggr) k\sum 
i=1

w2
i \gamma 

2
i \lambda 

2
i

\biggr) \sqrt{} 
log

\biggl( 
2

\delta 

\biggr) 
.

Since the bounds on the terms B and D hold almost surely, the statement follows directly by
plugging the above bound, and those given in Propositions 3.7 and 3.9 into the inequality of
Lemma 3.3.

3.2. Part 2. In this section we provide the proof of Theorem 2.4. We start with the
following lemmas whose proofs are provided in the section SM2 of the supplementary material.

Lemma 3.10. Let p\in \BbbR . Then\left\{                       

kp+1

(p + 1) \vee 1
\leq 

k\sum 
i=1

ip \leq kp+1

(p + 1) \wedge 1
if p > - 1.

1

2
+ logk\leq 

k\sum 
i=1

ip \leq 1 + logk if p = - 1.

1 \leq 
k\sum 

i=1

ip \leq p

p+ 1
if p < - 1.

Lemma 3.11. Let b, c > 0 and t, s\in \BbbR . Then, for every integer k\geq 1, we have

max
1\leq i\leq k

max\{ b it, c is\} = max\{ bkt+ , c ks+\} .
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966 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

Lemma 3.12. Let b, c > 0 and t, s\in \BbbR with t > s. Then, for every integer k\geq 1, we have

k\sum 
i=1

max\{ b it, c is\} \leq 

\left\{                                   

\biggl( 
1

(s + 1) \wedge 1
+

1

(t+ 1) \wedge 1

\biggr) 
max

\biggl\{ 
b,

c

kt - s

\biggr\} 
\cdot kt+1 if  - 1 < s< t,

kt+1

(t+ 1) \wedge 1
\cdot 

\left\{     
c if k <

\bigl( 
c
b

\bigr) 1

t - s ,

b

\biggl( 
(c/b)2

kt - s + 1

\biggr) 
if k\geq 

\bigl( 
c
b

\bigr) 1

t - s

if  - 1 = s < t,

c s

s + 1
+ max

\biggl\{ 
b,

c

kt - s

\biggr\} 
kt+1

(t+ 1) \wedge 1
if s < - 1 < t,

c s

s + 1
+ b(1 + logk) if s < t= - 1,

c s

s + 1
+

b t

t + 1
if s < t < 1.

With the help of the above results it is easy to conduct the analysis of the terms in (2.3) and
(2.4). First, according to Theorem 2.2, in order to ensure that (wk/\gamma k)k\in \BbbN is increasing, we
have p + r\geq 0. Concerning the first quantity in (2.4), it follows from Lemma 3.10 that

4 =

\sqrt{} \sum k
i=1w

2
i\sum k

i=1wi

\leq 

\left\{                               

(p + 1) \vee 1

(2p + 1) \wedge 1
\cdot 1\surd 

k
if  - 1/2< p,

((p + 1) \vee 1) \cdot 
\surd 

1 + logk\surd 
k

if p = - 1/2,\sqrt{} 
2p

2p + 1
\cdot 1

kp+1
if  - 1 < p< - 1/2,

\surd 
2

logk + 1/2
if p = - 1,

2p

2p + 1
if p < - 1.

(3.6)

This implies that the left-hand side will converge to zero provided that p\geq  - 1. In particular,
if p >  - 1/2, we have the best possible rate of O(1/

\surd 
k). In the following we will assume

p > - 1 (since for p = 1 we have a slow rate, not even polynomial).
Next, we address the last two terms in (2.4). We have

7 =

\sum k
i=1wi\gamma i\sum k
i=1wi

\leq \gamma ((p + 1) \vee 1) \cdot 

\left\{             

1

(p - r + 1) \wedge 1
\cdot 1

kr
if p - r > - 1,

1 + logk

kr
if p - r = - 1,

p - r

p - r + 1
\cdot 1

kp+1
if p - r < - 1

(3.7)

and

6 =

\sum k
i=1wi/\lambda i\sum k
i=1wi

\leq (p + 1) \vee 1

\beta 
\cdot 

\left\{             

1

(p - q + 1) \wedge 1
\cdot 1

kq
if p - q > - 1,

1 + logk

kq
if p - q = - 1,

p - q

p - q + 1
\cdot 1

kq+1
if p - q < - 1.

(3.8)
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SSG SCHEMES WITH HEAVY TAILED NOISE 967

Since we assumed p >  - 1, from the previous bounds, it is easy to see that, in order to have
both terms converging to zero we should require in every cases that r > 0 and q > 0. Now we
consider the three terms in (2.3). Concerning the first one we have

1 =
wk/\gamma k\sum k
i=1wi

\leq (p + 1) \vee 1

\gamma 
\cdot 1

k1 - r
.(3.9)

This shows that necessarily r < 1. Instead, for the other two quantities, recalling Lemma 3.11,
we have

2 =
max1\leq i\leq kwi\lambda i\sum k

i=1wi

\leq (p + 1) \vee 1

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,1 - q\} \cdot max

\biggl\{ 
\beta ,

(1 + \varepsilon )L

k\mathrm{m}\mathrm{i}\mathrm{n}\{ (p+q)+,q\} 

\biggr\} 
(3.10)

and

3 =
max1\leq i\leq kwi\gamma i\lambda 

2
i\sum k

i=1wi

\leq \gamma ((p + 1) \vee 1)

k\mathrm{m}\mathrm{i}\mathrm{n}\{ p+1,r+1 - 2q\} \cdot max

\biggl\{ 
\beta 2,

L2
\varepsilon 

k\mathrm{m}\mathrm{i}\mathrm{n}\{ (2q+p - r)+,2q\} 

\biggr\} 
.(3.11)

From the above bounds, since p + 1 > 0, it is clear that in order to have convergence to zero
we should impose that

1 - q > 0 and r + 1  - 2q > 0.

Overall, up to now, the convergence of the considered terms is ensured if

p > - r, r \in ]0,1[ , q \in ]0,1[ , and q <
r + 1

2
.

Moreover, from (3.7) and (3.9) it follows that the optimal choice of r in term of rate of
convergence is r = 1/2. Finally, we consider the second term in (2.4). Recalling Lemma 3.12,
and setting for the sake of brevity,

L\varepsilon =L\varepsilon , A\varepsilon ,\beta =
L\varepsilon 

\beta 
, and Bp,r =

(2p - 2r)

2p - 2r + 1
,

we have

k\sum 
i=1

w2
i \gamma 

2
i \lambda 

2
i \leq \gamma 2 \cdot 

\left\{                                       

2

(2p - 2r + 1) \wedge 1
max

\biggl\{ 
\beta ,

L\varepsilon 

kq

\biggr\} 2

\cdot k2p - 2r+2q+1 if  - 1
2 < p - r,

k2q

(2p - 2r+2q+ 1) \wedge 1
\cdot 

\left\{     
L2
\varepsilon if k <A

1/q
\varepsilon ,\beta ,

\beta 2

\biggl( 
A4

\varepsilon ,\beta 

k2q + 1

\biggr) 
if k\geq A

1/q
\varepsilon ,\beta 

if  - 1
2 = p - r,

L2
\varepsilon Bp,r + max

\biggl\{ 
\beta ,

L\varepsilon 

kq

\biggr\} 2 k2p - 2r+2q+1

(2p - 2r + 2q + 1) \wedge 1
if

p - r < - 1

2
< p - r + q,

L2
\varepsilon Bp,r + \beta 2(1 + logk) if p - r + q = - 1

2 ,

L2
\varepsilon Bp,r +

\beta 2(2p - 2r + 2q)

2p - 2r + 2q + 1
if p - r + q < - 1

2 ,

(3.12)
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968 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

and hence

5 =

\sqrt{} \sum k
i=1w

2
i \gamma 

2
i \lambda 

2
i\sum k

i=1wi

\leq \gamma \cdot ((p + 1) \vee 1)

\times 

\left\{                                           

\sqrt{} 
2

(2p - 2r + 1) \wedge 1
max

\biggl\{ 
\beta ,

L\varepsilon 

kq

\biggr\} 
\cdot 1

kr+
1

2
 - q

if  - 1
2 < p - r,

1\sqrt{} 
(2q) \wedge 1

\cdot 1

kr+
1

2
 - q

\cdot 

\left\{     
(1 + \varepsilon )L if k <A

1/q
\varepsilon ,\beta ,

\beta 

\biggl[ 
A2

\varepsilon ,\beta 

kq + 1

\biggr] 
if k\geq A

1/q
\varepsilon ,\beta 

if  - 1
2 = p - r,

\biggl( 
L\varepsilon 

\sqrt{} 
Bp,r

kp+q - r+ 1

2

+ max

\biggl\{ 
\beta ,

L\varepsilon 

kq

\biggr\} 
1\sqrt{} 

(2p - 2r + 2q + 1) \wedge 1

\biggr) 
1

kr+
1

2
 - q

if
p - r < - 1

2
< p - r + q,

(L\varepsilon 

\sqrt{} 
Bp,r + \beta 

\sqrt{} 
1 + logk) \cdot 1

kr+
1

2
 - q

if p - r + q = - 1
2 ,\biggl( 

L\varepsilon 

\sqrt{} 
Bp,r + \beta 

\sqrt{} 
2p - 2r + 2q

2p - 2r + 2q + 1

\biggr) 
\cdot 1

kp+1
if p - r + q < - 1

2 .

This bound shows that convergence is guaranteed if r + 1/2 - q > 0, that is q < r + 1/2. Taking
into account that r > 0, this provide a weaker condition than the condition q < (r + 1)/2
already obtained. Moreover, with the optimal choice of r = 1/2, 5 features a rate of 1/k1 - q,
which, considering that q > 0, is optimaized when q = 1/2. In the end, Theorem 2.4(i)(ii)
follows by simply plugging the above bounds with q = r = 1/2 in Theorem 2.2. Finally,
concerning Theorem 2.4(iii), we note that if we take the stepsizes constant till k, that is
(\gamma i)1\leq i\leq k \equiv \gamma (so that r = 0), then we should ask for p\geq 0 and the bounds for 1 , 3 , 5 , and
7 (with q = 1/2) become

1 \leq p+ 1

\gamma 
\cdot 1

k
, 3 \leq \gamma (p + 1) \cdot max

\biggl\{ 
\beta 2,

L2
\varepsilon 

k

\biggr\} 
5 \leq \gamma (p+ 1)

\surd 
2 max

\biggl\{ 
\beta ,

L\varepsilon \surd 
k

\biggr\} 
1\surd 
k
, 7 \leq \gamma (p + 1).

Thus, if we choose (\gamma i)1\leq i\leq k \equiv \gamma /
\surd 
k and substitute the bounds in Theorem 2.2, the statement

of Theorem 2.4(iii) follows.

4. Application to kernel methods. In this section we present an application of Algorithm
2.1 to the case of kernel methods and show that the clipping strategy can be implemented in
this setting by updating finite-dimensional variables. This resembles the classical kernel trick
which is common in empirical risk minimization [25] and in SGD as well [5, 17, 16], Here we
adjust the method so to handle the nonlinearity of the clipping operation. In passing, we note
that our weak assumption on the noise allows to treat unbounded kernels as the polynomial
kernel and contrasts with the common bounded kernel assumption [2, 26].

The problem we address is formulated as follows:

min
x\in Br

R(x) :=\BbbE [\ell (\langle x,Φ(Z)\rangle , Y )],
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SSG SCHEMES WITH HEAVY TAILED NOISE 969

where Z and Y are random variables with values in the measurable spaces \scrZ and \scrY , respec-
tively, with joint distribution \mu ; H is a Hilbert space with scalar product \langle \cdot , \cdot \rangle and Br is the
ball of radius r > 0 centered at the origin of H. We assume the loss function \ell : \BbbR \times \scrY \rightarrow \BbbR +

to be convex and L-Lipschitz in the first argument (for every fixed value of the second argu-
ment) and we assume that \BbbE [\ell (0, Y )] < +\infty . The function Φ : \scrZ \rightarrow H is the feature map and
K(\cdot , \cdot ) = \langle Φ(\cdot ),Φ(\cdot )\rangle is the corresponding kernel. We further assume that \BbbE [\| Φ(Z)\| 2] < +\infty .
The goal is to find a function \scrZ \ni z \mapsto \rightarrow \langle x,Φ(z)\rangle \in \BbbR , with x\in H, which minimizes the expected
risk above over the ball Br, based on the possibility of sampling from the distribution \mu .

Derivation. Assume x0 = 0 and recall that, for each k \geq 0, the main update in Algorithm
2.1 is defined by the following:

xk+1 = PBr
(xk  - \gamma kũk),(4.1)

where ũk = CLIP(ūk, \lambda k), ūk = 1
m

\sum m
j=1 û(xk, (Z

k
j , Y

k
j )), û(x, (Z,Y )) = \ell \prime (\langle x,Φ(Z)\rangle , Y )Φ(Z),

where, for all (t, y) \in \BbbR \times \scrY , \ell \prime (t, y) is a subgradient of \ell (\cdot , y) at t, that is, \ell \prime (t, y) \in \partial \ell (t, y).
Since H may be infinite dimensional, computing ũk with a straightforward application of its
definition may be problematic.

In order to solve the aforementioned issue, the algorithm will keep an implicit represen-
tation of the iterates xk’s in terms of the kernels. To obtain this representation, we start by
noticing that since PBr

is the projection in the ball centered at the origin, then

xk+1 = min

\biggl\{ 
r

\| xk  - \gamma kũk\| 
,1

\biggr\} 
(xk  - \gamma kũk) = \delta k(xk  - \gamma kũk),(4.2)

where we set \delta k = min\{ r
\| xk - \gamma k\~uk\| ,1\} . Similarly, by using the definitions of clipping and

û(x, (Z,Y )) it holds that

ũk = min

\biggl\{ 
\lambda k

\| ūk\| 
,1

\biggr\} 
ūk =

\rho k
m

m\sum 
j=1

û(xk, (Z
k
j , Y

k
j )) =

\rho k
m

m\sum 
j=1

\alpha k
jΦ(Zk

j ),(4.3)

where we set \rho k = min\{ \lambda k

\| \=uk\| ,1\} and \alpha k
j = \ell \prime (\langle xk,Zk

j \rangle , Y k
j ). From (4.3) we have that

\| ūk\| 2 =
1

m2

m\sum 
j,j\prime =1

\alpha k
j\alpha 

k
j\prime K(Zk

j ,Z
k
j\prime ).(4.4)

The above equation allows for the computation of \rho k once the \alpha k
j s are known. Furthermore,

combing (4.3) and (4.2) we obtain that

xk+1 = \delta k(xk  - \gamma kũk) = \delta k

\left(  xk  - \gamma k
\rho k
n

n\sum 
j=1

\alpha k
jΦ(Zk

j )

\right)  = \delta kxk  - 
\delta k\gamma k\rho k

n

n\sum 
j=1

\alpha k
jΦ(Zk

j )

= \delta kxk +

n\sum 
j=1

\biggl( 
 - \delta k\gamma k\rho k

n

\biggr) 
\alpha k
jΦ(Zk

j ) =

k\sum 
i=0

n\sum 
j=1

akijΦ(Zi
j) ,(4.5)
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970 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

where we set

akij =

\left\{   \delta ka
k - 1
ij if i\leq k - 1,

 - \delta k\gamma k\rho k

n \alpha k
j if i= k.

(4.6)

As a consequence,

\| xk  - \gamma kũk\| 2 = \| xk\| 2 + \gamma 2k\| ũk\| 2  - 2\gamma k\langle xk, ũk\rangle 

= \| xk\| 2 + \gamma 2k\rho 
2
k\| ūk\| 2  - 2\gamma k\rho k\langle xk, ūk\rangle 

= \| xk\| 2 + \gamma 2k\rho 
2
k\| ūk\| 2  - 2

\gamma k\rho k
n

\biggl\langle 
xk,

n\sum 
j\prime =1

\alpha k
j\prime Φ(Zk

j\prime )

\biggr\rangle 

= \| xk\| 2 + \gamma 2k\rho 
2
k\| ūk\| 2  - 2

\gamma k\rho k
n

k - 1\sum 
i=0

n\sum 
j=0

n\sum 
j\prime =1

ak - 1
ij \alpha k

j\prime K(Zi
j ,Z

k
j\prime ).

Note that the above equation allows for the computation of \delta k once the \alpha k
j s (and then the

akijs) are known. Replacing the expression of xk from (4.5) in the definition of \alpha k
j leads to

\alpha k
j = \ell \prime (\langle xk,Φ(Zk

j )\rangle , Y k
j ) = \ell \prime 

\left(  k - 1\sum 
i=0

m\sum 
j\prime =1

ak - 1
ij\prime K(Zi

j\prime ,Z
k
j ), Y k

j

\right)  ,(4.7)

which can be computed directly using the kernels.
Algorithm. As mentioned in the previous paragraph, the algorithm keeps an implicit repre-

sentation for the iterates xk which is computed as follows. This is enough to make predictions
on new points as we are going to show in the following. We notice that, at any time k, it is
possible to make a prediction for an instance Z using the kth iterate as follows:

\langle xk+1,Φ(Z)\rangle = \delta k\langle xk,Φ(Z)\rangle  - \delta k\gamma k\rho k
m

m\sum 
j=1

\alpha k
jK(Zk

j ,Z).(4.8)

This prediction requires nothing but the prediction made with the previous iterate, \delta k, \rho k, \alpha 
k
j s

and the values of the kernels K(Zk
j ,Z). It is easy to observe that, by recursion, there is no need

to have an explicit expression for the xk; instead it is enough to compute, along the iterations,
only \delta k, \rho k, a

k
ij , and \alpha k

j . The algorithm to compute the iterates xk in the implicit form is given
in Algorithm 4.1 (along with the initialization procedure described in Algorithm 4.2). Now,
since we have developed the theory for weighted average schemes, let (wk)k\in \BbbN be a sequence
of nonnegative weight, and define

Wk+1 =

\Biggl\{ 
w1 if k = 0,

Wk +wk+1 otherwise.
(4.9)

Then, by considering x̄k as defined in Algorithm 2.1, the prediction can be computed as

\langle x̄k+1,Φ(Z)\rangle =
1

Wk+1
(Wk\langle x̄k,Φ(Z)\rangle + \langle xk+1,Φ(Z)\rangle ) .(4.10)
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SSG SCHEMES WITH HEAVY TAILED NOISE 971

Algorithm 4.1. Kernel C-SsGM.

Given the step-sizes (\gamma k)k\in \BbbN \in \BbbR \BbbN 
++, the weights (wk)k\in \BbbN \in \BbbR \BbbN 

++, the clipping levels (\lambda k)k\in \BbbN \in 
\BbbR \BbbN 
++, the batch size m\in \BbbN , m\geq 1, and an initial point x0 = 0, do the following:

I\mathrm{N}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{A}\mathrm{L}\mathrm{I}\mathrm{Z}\mathrm{A}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N} (\gamma 0, \lambda 0,m)
for k = 1, . . .                                   

draw (Zk
j , Y

k
j )1\leq j\leq m m independent copies of (Z,Y ),

pick \alpha k
j = \ell \prime 

\left(  k - 1\sum 
i=0

m\sum 
j\prime =1

ak - 1
ij\prime K(Zi

j\prime ,Z
k
j ), Y k

j

\right)  , for each 1\leq j \leq m,

compute                       

\| ūk\| 2 =
1

n2

m\sum 
j,j\prime =1

\alpha k
j\alpha 

k
j\prime K(Zk

j ,Z
k
j\prime ),

\rho k = min
\Bigl\{ 

\lambda k

\| \=uk\| ,1
\Bigr\} 
,

\| xk  - \gamma kũk\| 2 = \| xk\| 2 + \gamma 2k\rho 
2
k\| ūk\| 2  - 2

\gamma k\rho k
m

k - 1\sum 
i=0

m\sum 
j,j\prime =1

ak - 1
ij \alpha k

j\prime K(Zi
j ,Z

k
j\prime ),

\delta k = min

\biggl\{ 
r

\gamma k\rho k\| xk  - \gamma kũk\| 
,1

\biggr\} 
,

akij =

\Biggl\{ 
\delta ka

k - 1
ij , if i\leq k - 1,

 - \delta k\gamma k\rho k

m \alpha k
j otherwise,

1 \leq j \leq m,

\| xk+1\| = \delta k\| xk  - \gamma kũk\| .

From the sequence (xk)k\in \BbbN one also defines

(\forall k \in \BbbN ) x̄k =

\Biggl( 
k\sum 

i=1

wi

\Biggr)  - 1 k\sum 
i=1

wixi.(4.11)

Remark 4.1. Notice that the prediction made with the k + 1th iterate in (4.8) can be
computed recursively from the prediction made by the kth iterate. Similarly, the prediction
made by the k + 1th weighted average in (4.10) can be computed by the prediction made
by the previous weighted average. Both there recursion allows for significant computational
saving, as at each step it only necessary to compute the kernels among Z and the instances
of the kth batch.

Remark 4.2. We note that in this setting

\BbbE [\| û(x, (Z,Y )) - \BbbE [û(x, (Z,Y ))]\| 2]\leq \BbbE [\| û(x, (Z,Y ))\| 2]
=\BbbE [| \ell \prime (\langle x,Z\rangle , Y )| 2\| Φ(Z)\| 2]
\leq L2\scrK (4.12)
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972 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

Algorithm 4.2. Initialization.

Given the step-size \gamma , clipping level \lambda and the batch size m\in \BbbN , m\geq 1,

draw (Z0
j , Y

0
j )1\leq j\leq m m independent copies of (Z,Y ),

pick \alpha 0
j = \ell \prime (0, Y 0

j ), for each 1\leq j \leq m,

compute                

\| ū0\| 2 =
1

n2

m\sum 
j,j\prime =1

\alpha 0
j\alpha 

0
j\prime K(Z0

j ,Z
0
j\prime ),

\rho 0 = min

\biggl\{ 
\lambda 0

\| ū0\| 
,1

\biggr\} 
,

\delta 0 = min

\biggl\{ 
r

\gamma 0\rho 0\| ū0\| 
,1

\biggr\} 
,

a00,j = - \delta 0\gamma 0\rho 0
m

\alpha 0
j ,1 \leq j \leq m,

\| x1\| = \gamma 0\delta 0\rho 0\| ū0\| .

(4.13)

where, \scrK := \BbbE [K(Z,Z)] and the last line follows from the Lipschitzness of the loss. The
important consequence of Equation (4.12) is that in order to obtain a convergence rate it is
enough to assume that the expected value of the kernel is bounded.

5. Numerical experiments. In this section we present four experiments on synthetic prob-
lems, in order as follows:

\bullet a comparison between C-SsGM and standard SsGM under heavy-tailed and light-tailed
noise;

\bullet a comparison between different averaging schemes in infinite- and finite-horizon set-
tings for C-SsGM;

\bullet the advantages and practicability of our fully flexible parameter setting over those
prescribed in [10];

\bullet a preliminary experiment on the kernel-based method to learn a nonlinear classifier.

5.1. Comparison with standard SsGM under light and heavy tails noise. The goal of
this experiment is to compare the performance of C-SsGM against the standard SsGM, under
different noise regimes.

We consider the minimization of f(x) = | x| over [ - 1/2,1/2]. The subgradient oracle
returns sign(x) + n where sign(x) = 1 for x \leq 0 and  - 1 otherwise, and n is either a Pareto
random variable with shape parameter 2.1, or a Gaussian random variables, both with zero-
mean and unit variance. Note that the considered Pareto noise has no moment of order
greater than 2.1 and thus fits well our heavy-tailed noise assumption. We run SsGM and
C-SsGM for 1000 iterations. We set the clipping level parameters \beta and \epsilon to 0.01 and 0.001,
respectively. As for the step-size, we set \gamma k = \gamma /

\surd 
k, where \gamma is computed via a grid search over

\{ 0.01,0.05,0.1,0.2,0.3,0.5,0.6,1\} . We note that among the previous values we have included
the optimal values of \gamma for the in-expectation and the high-probability bounds as discussed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 1. SsGM versus C-SsGM under different types of noise: Pareto noise (left), Gaussian noise with
\sigma = 1 (center) and \sigma = 0.1 (right). The curves show the 99th percentile and the average of the optimization
error over 1000 repetitions.

in Remarks 2.8 and 2.9, and item (ii) in Remark 2.7. For both algorithms we consider the
standard weights wk = 1 and batch size m = 1. We ran both methods 1000 times and collected
the average and the 99th percentile of the optimization error. The results, reported in Figure
1, show that, under Pareto noise, the clipping strategy provides a notable acceleration of
the convergence, and at the same time a significant reduction of the upper deviations from
the mean (note that the y axis is in log scale). We note that this acceleration occurs even
in expectation, which is not quite aligned with the theoretical bounds given in Remark 2.8.
Moreover, under Gaussian noise with large variance (Figure 1, center), C-SsGM still performs
well against the standard SsGM, despite the fact that the clipping is, in principle, not needed
for the convergence in high probability (see Remark 2.9) and ultimately introduces bias. We
believe that, since in the above cases the standard deviation of the noise is large compared to
the true subgradients, the reduction of the variance obtained by the clipping strategy helps
and may compensate the inherent distortion. We also tested the algorithms under a Gaussian
noise with smaller variance, i.e., with \sigma = 0.1. In this case SsGM performs better than
C-SsGM as we may expect from the theory. Finally, we note that our choice of \beta corresponds
to a clipping level of (1+\varepsilon )L across all the iterations. We checked that this aggressive schedule
leads to the best performances.

5.2. Comparison of iteration averaging schemes. The goal of this experiment is to com-
pare the performances of the different C-SsGM schemes discussed in section 2.

We consider the minimization of f(x) = \| x\| 1 over the \ell 2 ball of radius 1 in \BbbR d, with
d = 100, which contains the global minimum 0 corresponding to f\ast = 0. Notice that the
objective is Lipschitz continuous with L = 10. At each x, the oracle’s answer is built by
first computing a subgradient of f and then adding a zero mean noise vector n \in \BbbR d with
variance \sigma 2 = 100. The noise vector is generated by independently sampling its components
from a Pareto distribution with shape parameter 2.1 with zero mean and unit variance. We
test several average schemes for the iterates with p =  - 1/2, p = 0, and p = 1/2 in the infinite
horizon setting. We also consider the finite horizon setting and the coordinatewise variant of
clipping described in [27] with p= 0. We set the step-size schedule as \gamma i = \gamma /

\surd 
i, the clipping-

level as \lambda i = max\{ \beta 
\surd 
i, (1 + \varepsilon )L\} , and \varepsilon = 0.001. We perform a grid search for the parameters

\gamma and \beta in \{ 0.01,0.02,0.03,0.05,0.06,0.1,0.2,0.3\} and \{ 0.32,0.64,1.28\} , respectively. In the
case of coordinatewise clipping, the value of \beta is further divided by the Lipschitz constant 10.
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Figure 2. Comparison of different averaging schemes for the iterations in infinite and finite-horizon settings
with batch sizes m= 1 (left) and m= \sigma (right). The curves show the 99th percentile of the optimization error
over 100 repetitions.

We run 100 times all the algorithms with batch sizes m = 1 and m = \sigma ,2 till k = 1000
iterations and measure the 99th percentile of the optimization error. Results are shown in
Figure 2 where it is possible to see that: (1) the averaging scheme with p = 1/2 performs the
best, while that with p =  - 1/2 is the worst (see also Remark 2.5(ii)); (2) the three schemes
with p = 0 performs similarly, with the coordinatewise variant doing slightly better than the
others.

5.3. Comparison with [10]. Here we make a comparison with the clipped-SGD algorithm
from [10] on the same problem considered in section 5.2. The algorithm is essentially the same
as C-SsGM except for the projection step and the different parameter setting. In this respect
we note that although, in general, clipped-SGD cannot handle constraints, it can be used to
solve the specific problem at hand, since in this case the constrained and the unconstrained
problems share the same solution. Moreover, we consider the finite-horizon scenario with
wk = 1 which is the same studied in [10]. For the sake of a fair comparison we run the
algorithms with the same batchsize. As for clipped-SGD in [10], due to the restrictions on
the algorithm’s parameters recalled in (1.2)–(1.4), by varying \varepsilon one can obtain the following
explicit range for the stepsize:

\gamma \leq \gamma \mathrm{m}\mathrm{a}\mathrm{x} :=D \cdot min

\Biggl\{ \surd 
m

9\sigma 
\sqrt{} 

k log(4k/\delta )
,

1\surd 
2kL

,
1

2L log(4k/\delta )

\Biggr\} 
.(5.1)

We perform a grid search on \gamma in \{ \gamma \mathrm{m}\mathrm{a}\mathrm{x}/4, \gamma \mathrm{m}\mathrm{a}\mathrm{x}/2, \gamma \mathrm{m}\mathrm{a}\mathrm{x}\} . Whereas, for our clipped-SGM
the grid search is done on the parameters (\gamma ,\beta ) \in \{ 0.1,0.2,0.3\} \times \{ 0.32,0.64,1.28\} . Note
that in our algorithm with finite horizon setting the stepsize is constant and equal to \gamma /

\surd 
k,

while the clipping level is possibly varying as max\{ \beta 
\surd 
i, (1 + \varepsilon )L\} = max\{ \beta 

\surd 
i,10.01\} . See

Theorem 2.4(iii).
We report in Table 2 the 99th percentile of the optimization error over 100 repetitions of

the algorithms. We also indicate the best parameters chosen via the greed search procedure.
As it is possible to see the parameter setting in [10] gives tiny values of the stepsizes and quite
large values of the clipping levels, which ultimately leads to a noticeable worst performance.

2We also test the algorithms with batchsize m= \sigma 2 but the results are pretty similar to those with m= \sigma .
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SSG SCHEMES WITH HEAVY TAILED NOISE 975

Table 2
Comparison of C-SsGM with clipped-SGD from [10] in the finite-horizon scenario. The parameter m

denotes the batchsize. C  - SsGM We report the 99th-percentile of the optimization error over 100 runs of the
experiment.

Method m Stepsize Clipping level 99th-percentile of
the opt. error

C-SsGM
1
10
100

10 - 2

10 - 2

10 - 2

10.01
10.01

10.01 - 20.02

0.124
0.108
0.113

clipped-SGD [10]
1
10
100

10 - 4

3\times 10 - 4

10 - 3

792.4
250.6
79.2

4.720
1.570
0.463

Figure 3. Decision boundary of the classifier learned by Algorithm 4.1 with Gaussian kernel along with the
negative (red squares) and the positive (blue squares) training examples.

We make a final comment on this comparison. In the numerical section of [10], in order
to overcome the narrow range of values allowed by the theory, the authors perform a grid-
search on the stepsize without the limitation given in (5.1). However, in doing so there is no
mathematical guarantee that the selected stepsize leads to a convergent algorithm (according
to Theorem 5.1 in [10]).

5.4. Nonlinear classification. We aim at learning a classifier with a low expected classi-
fication error when the data generating distribution is a bivariate standard normal and the
target function is the indicator of the first and the third orthants. As a convex surrogate for the
classification error we consider the hinge loss \ell (t, y) := max\{ 0,1 - ty\} , where y \in \{  - 1,1\} , and
we adopt the Gaussian kernel with scale parameter equal to 10 to cope with the nonlinearity of
the problem, and let r = 1; we notice that this results in L= 1 and \sigma 2 = 1. We run Algorithm
4.1 with wk =

\surd 
k for 100 iterations. The classifier’s decision boundary is reported in Figure 3

while its estimated expected classification error, and a test set of 1000 examples, is about 0.1.

6. Conclusion. In this work we established high probability convergence rates for the
projected stochastic subgradient method under heavy-tailed noise, that is, under the sole as-
sumption that the stochastic subgradient oracle has uniformly bounded variance. We provide
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976 D. A. PARLETTA, A. PAUDICE, M. PONTIL, AND S. SALZO

a unified analysis which simultaneously cover general averaging schemes, stepsizes, and clip-
ping levels, while avoiding large numerical constants in the statistical bounds and algorithm
parameters. Moreover, we provided an application to the case of statistical learning with ker-
nels which obtains near-optimal performances in a fully practicable fashion. Future interesting
directions include avoiding the boundedness assumption on the constraint set and analyzing
the last iterates, while keeping the simplicity and practicability of our parameter settings.
Yet another valuable future research direction would be to extend our analysis to zero-order
optimization settings.
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