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Abstract 

New quantitative muscle quality assessment tools are needed 

to improve the diagnosis, treatment and study of the lumbar 

spine muscles. Quantitative magnetic resonance imaging 

(MRI) has become an important and increasingly relevant 

technique for diagnosing muscular diseases, tracking their 

progression, and measuring muscle composition. The Dixon 

sequence provides fat-only and water-only images, which 

allows the evaluation of muscle composition and size. 

Nevertheless, to discriminate a single muscle, a health 

professional has to manually segment the muscle from the 

MRI image, which is a slow and impractical process. In this 

study, we introduce a deep learning-based solution to 

automatically segment the lower spine muscles from Dixon 

MRI scans. To achieve that, we trained and validated a U-Net 

model using 26 manually segmented MRI images of the lower 

back muscles that was capable of automatically segmenting 

this muscle group, achieving a mean Dice score of 0.88 in the 

validation set. This high level of accuracy could allow the 



 

 

execution of new research looking at the size and composition 

of this muscle group and may also serve as a valuable tool for 

enhancing the diagnosis and treatment of lower back issues. 

 

Keywords: MRI · Lumbar Spine · Muscle Health · Deep 

Learning · U-Net 

Introduction 

Fat infiltration and atrophy of the lumbar spine muscles is 

linked to spinal degenerative conditions and can lead to 

functional impairments in the affected muscles. This 

infiltration negatively affects muscle strength as muscle fibers 

are replaced by noncontractile tissue [1, 2]. Since the function 

of the spinal and lumbar muscles is to provide standing 

stability and strength, these conditions can derive into 

everyday illnesses or even disabilities. Consequently, new 

quantitative muscle quality assessment tools are needed to 



  

 

improve the diagnosis, treatment, and study of the lumbar 

spine muscles. 

Magnetic resonance imaging (MRI) is the best imaging 

modality to study muscle health thanks to its great soft tissue 

contrast. To be more specific, the Dixon sequence is the 

standard for measuring muscle fat fraction, a quantitative 

metric of muscle composition. This technique involves 

capturing two distinct images, the first is a conventional spin 

echo image where the water and fat signals are in-phase, the 

other is acquired with the water and fat signals out-of-phase 

[3]. This acquisition allows the creation of water and fat 

images, and finally a fat fraction image. 

Although the fat fraction image provides powerful visual and 

quantitative information at a voxel level, achieving 

quantitative assessment of an individual muscle requires the 



 

 

segmentation of the region of interest that delimits the muscle 

in a 3D image. While this task would be manageable with a 

single slice (i.e., a 2D image), assessing the entire muscle 

volume and composition presents a daunting challenge, 

consuming an impractical amount of time from a skilled 

professional and, thus, becomes infeasible 

[4]. 

For this reason, the development of new automated tools for 

the segmentation of the lumbar spine muscles is an unmet need 

in the study of this muscle group. Semantic segmentation 

convolutional neural networks (CNN) are a branch of deep 

learning algorithms that have shown good results in 

segmenting objects in any kind of image. More specifically, 

the U-Netnetwork has become the new standard for 

biomedical image segmentation [5, 6]. 



  

 

The aim of this work is to develop a tool that automatically 

segments the lumbar spine muscles, namely the psoas (P), 

iliacus (I), quadratus lumborum (QL), erector spinae (ES) and 

multifidus (M) from Dixon MR images to obtain quantitative 

muscle health metrics. The latter two muscles will be 

considered as a group (ES + M) since both provide motion and 

stability of the spine, are surrounded by the thoracolumbar 

fascia and are prone to intramuscular fat infiltration [7–9]. To 

achieve this, we implemented, trained, and evaluated a U-Net 

neural network with manually segmented MRI data from a 

group of amateur cyclists and sedentary subjects. 

Materials and Methods 

A 3D U-Net neural network was trained to perform automated 

segmentations of the lumbar spine muscles using MRI images 

of recreational cyclists and sedentary subjects. The training 



 

 

and validation sets were created by manually segmenting the 

left and right P, I, QL and ES + M muscles of 26 Dixon MRI 

images, and then performing data augmentation to obtain a 

total of 116 images. The performance of the model was 

measured using the Dice-Sorensen score. In the following 

sections, the data and methods are fully described. 

Data 

The Dixon MRI images used in this work belong to a cross-

sectional study looking at the muscle health of middle-aged 

individuals that included sedentary and recreational cyclist 

groups. The images were acquired in a 3T scanner (Siemens 

Magneton Vida, Erlangen, Germany) using a body coil. The 

scanning protocol consisted of an axial TSE Dixon sequence 

(slice thickness 1.5 mm, spacing between slices 1.95 mm, 

repetition time (TR) 4570 ms, echo time (TE) 45 ms, number 



  

 

of excitations 1, number of echoes 14, flip angle 120°), with a 

field of view (FOV) that covered axially from 1 cm below the 

lesser trochanter to the origin of the psoas muscle at the level 

of the L1 vertebra. The voxel size was 0.47 × 0.47 × 1.95 mm3. 

The 26 MRI scans correspond to 14 women and 12 men with 

mean(std) age of 45.8(13.6) years and mean(std) BMI of 

26.8(6.0). 

 

DataSet 

The 26 MRI scans were manually segmented by a trained 

operator using Simpleware ScanIP software (Version 2021.3; 

Synopsys, Inc., Mountain View, USA). Figure1shows an 

example of a manually segmented image. 

To homogenize the dataset, every Dixon image and its labels 

were registered to a reference image using Simple ITK. In this 



 

 

process, a rigid registration with the normalized cross 

correlation as the similarity metric was used. As a result, all 

the images had a size of 800 × 640 × 145 voxels and had the 

same geometrical space. 

Furthermore, all images were down sampled to half the size in 

the trans-axial plane to reduce the memory requirements of the 

model. The resulting image had 400 × 320 × 145 voxels and a 

voxel size of 0.94 × 0.94 × 1.95 mm3, which translated into a 

four-fold reduction in its memory size with respect to the 

original images, without a significant loss in image quality. 

The registered and downsampled data set of 26 segmented 

images was split into training and validation sets using a 70/30 

ratio. For the 18 images of the training set, data augmentation 

was implemented using linear transformations that consisted 

of a two step process. The first consisted of applying a 



  

 

reflection transform in the x axis to each intensity and label 

images. Then, a clockwise and anticlockwise 5-degree 

rotation was performed to each of them, making up a dataset 

with a total of 108 images. In Fig. 2, a flow diagram of the 

preprocessing and data augmentation process is shown. The 

validation set consisted of only 8 images. 

 

U-Net 

A 3D U-Net that receives the in-phase Dixon image as input 

and delivers a multi-label mask in its output was implemented. 

Different from the original architecture, the number of initial 

filters was reduced from 64 to 16, to reduce the memory 

requirements of the model. Regarding the loss function and 

optimizer, we chose the Binary cross entropy, widely used in 

semantic segmentation applications, and the ADAM optimizer 



 

 

with a learning rate of 10–4 respectively. Finally, the model’s 

performance was evaluated using the Sorensen-Dice 

coefficient. 

Training 

The 3D U-Net was implemented and trained in Pytorch on a 

workstation with a 24 GB Nvidia 3090 GPU. Due to video 

RAM constraints, the training batch size was of a single 

image. The training took 20 h and completed 200 epochs. The 

best model was extracted at epoch 178 where the validation 

loss values started to diverge from training ones. 

 

Results 

The proposed method successfully segmented the lumbar 

spine muscles for most of the subjects. The Dice scores for the 

automated segmentations of the validation set can be seen in 

Fig. 3. 

 



  

 

The boxplot shows the scores for each muscle, where the 

median value was 0.92, 0.88, 0.84 and 0.93 for the left P, I, QL 

and Es + M respectively, and 0.92, 0.89, 0.86 and 0.92 for the 

right counterpart. Figure 4 shows an accurate segmentation, 

while Fig. 5 depicts a suboptimal segmentation that 

corresponds to image number 4 in Table 1. 

 

Table1. Validation Set dice scores for 3D Unet Model 

Image LP LI LQL LES + 

M 

RP RI RQL RES + 

M 

1 0.942 0.892 0.802 0.915 0.919 0.869 0.856 0.919 

2 0.921 0.859 0.825 0.926 0.916 0.869 0.855 0.922 

3 0.923 0.92 0.844 0.93 0.937 0.913 0.88 0.936 

4 0.92 0.84 0.806 0.832 0.881 0.904 0.377 0.766 

5 0.905 0.88 0.849 0.927 0.891 0.898 0.83 0.938 

6 0.941 0.866 0.836 0.927 0.934 0.868 0.896 0.925 

7 0.947 0.903 0.876 0.926 0.937 0.898 0.891 0.911 

8 0.92 0.878 0.865 0.927 0.902 0.882 0.822 0.931 

Median 

(iqr) 

0.921 

(.021) 

0.878 

(.031) 

0.844 

(.033) 

0.927 

(.004) 

0.916 

(.036) 

0.898 

(.031) 

0.855 

(.055) 

0.925 

(.015) 

Mean 

(std) 

0.925 

(.014) 

0.878 

(.025) 

0.843 

(.026) 

0.914 

(.033) 

0.914 

(.022) 

0.890 

(.018) 

0.793 

(.173) 

0.904 

(.057) 

 

1 Discussion 

An automated segmentation tool for left and right lumbar 

spine muscles that uses a U-Net architecture neural network 



 

 

model is presented in this work. The segmentation 

performance was measured with the Dice-Sorensen 

coefficient and averaged 0.88 in the validation set for the four 

muscles. This value is substantially affected by one of the 8 

validation images that has shown poor results, particularly for 

the QL muscle (Image number4ofTable1). This is a small 

muscle, and therefore its Dice score is more sensitive 

 

Fig. 5. 3D model (right) and axial slice (left) at the height of 

the iliac crest of an inaccurate segmentation. The shading 

represents the manual segmentation while the outline is the 

model’s prediction. It can be seen in the axial slice that the 

model could not segment the right QL. 

to segmentation inaccuracies. To illustrate this issue, the mean 

Dice scores were 0.84 and 0.80 for QL (the smallest muscle in 

this group), while the best segmentation performance was 0.93 

for the ES + M group. 

Every deep learning model performance is tied to the size of 

the training set, which in this case is considerably low because 



  

 

there are no public datasets of manually segmented images of 

the lumbar spine muscles. In addition, the GPU memory 

limitations restricted the number of filters used in the U-Net 

architecture, consequently reducing the number of parameters. 

These two factors could have affected the performance of our 

model. 

Despite the reduced amount of manually segmented data 

available, the model has shown excellent results in larger 

muscles like the Psoas and the Erector Spinae and Multifidus 

group. As expected, the performance was not as good when 

the muscles were small. 

2 Conclusion 

In this work, we trained a volumetric semantic segmentation 

model based on the U-Net architecture capable of 

automatically segmenting the psoas, iliacus, quadratus 

lumborum, and the joined erector spinae and multifidus 

muscles. The good accuracy of the proposed method could 

allow the execution of new research studying the size and 

composition of this muscle group and may also serve as a 



 

 

valuable tool for enhancing the diagnosis and treatment of 

lower back issues. 
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Figure legends 

 

Fig. 1. On the left, segmented slices at the level of the L2 

vertebra (top) and the iliac crest (bottom) are shown. On the 

right, a 3D render of the manual segmentation is presented. 

 

Fig. 2. Schematic of the data augmentation process. First, the 

26 manually segmented data are registered to a reference 

image. The registered images are down sampled four-fold in 

the transaxial images and then flipped creating 52 different 

images. Finally, anti-andclockwise5degreerotations were 

applied resulting in a total of 156 augmented images and 

labels. 
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Fig. 3. Validation Dice score for the segmentation of every 

muscle. 

 

Fig. 4. 3D model(right) and axial slice (left) at the height of 

the iliac crest of an accurate segmentation. The shading 

represents the manual segmentation while the outline is the 

model’s prediction. 
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