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Abstract

New quantitative muscle quality assessment tools are needed
to improve the diagnosis, treatment and study of the lumbar
spine muscles. Quantitative magnetic resonance imaging
(MRI) has become an important and increasingly relevant
technique for diagnosing muscular diseases, tracking their
progression, and measuring muscle composition. The Dixon
sequence provides fat-only and water-only images, which
allows the evaluation of muscle \composition and size.
Nevertheless, to discriminate a single muscle, a health
professional has to manually segment the muscle from the
MRI image, which'is a slow and impractical process. In this
study, we introduce a deep learning-based solution to
automatically segment the lower spine muscles from Dixon
MRI scans. To achieve that, we trained and validated a U-Net
model using 26 manually segmented MRI images of the lower
back muscles that was capable of automatically segmenting
this muscle group, achieving a mean Dice score of 0.88 in the

validation set. This high level of accuracy could allow the



execution of new research looking at the size and composition
of this muscle group and may also serve as a valuable tool for

enhancing the diagnosis and treatment of lower back issues.
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Introduction

Fat infiltration and atrophy of the lumbar spine muscles is

linked to spinal degenerative conditions and can lead to

functional impairments <in  the affected muscles. This

infiltration negatively affects muscle strength as muscle fibers

are replaced by noncontractile tissue [1, 2]. Since the function

of the spinal and lumbar muscles is to provide standing

stability and strength, these conditions can derive into

everyday illnesses or even disabilities. Consequently, new

quantitative muscle quality assessment tools are needed to



improve the diagnosis, treatment, and study of the lumbar

spine muscles.

Magnetic resonance imaging (MRI) is the best imaging

modality to study muscle health thanks to its great soft tissue

contrast. To be more specific, the Dixon sequence‘is the

standard for measuring muscle fat fraction, a quantitative

metric of muscle composition. This' technique involves

capturing two distinct images, the first is a conventional spin

echo image where the water-and fat signals are in-phase, the

other is acquired with the water and fat signals out-of-phase

[3]..This ‘acquisition allows the creation of water and fat

images;-and finally a fat fraction image.

Although the fat fraction image provides powerful visual and

quantitative information at a voxel level, achieving

quantitative assessment of an individual muscle requires the



segmentation of the region of interest that delimits the muscle

in a 3D image. While this task would be manageable with a

single slice (i.e., a 2D image), assessing the entire muscle

volume and composition presents a daunting challenge,

consuming an impractical amount of time from..a skilled

professional and, thus, becomes infeasible

[4].

For this reason, the development of new automated tools for

the segmentation of the lumbar spine muscles is an unmet need

in the study of this muscle group. Semantic segmentation

convolutional neural networks (CNN) are a branch of deep

learning algorithms that have shown good results in

segmenting objects in any kind of image. More specifically,

the U-Netnetwork has become the new standard for

biomedical image segmentation [5, 6].



The aim of this work is to develop a tool that automatically

segments the lumbar spine muscles, namely the psoas (P),

iliacus (I), quadratus lumborum (QL), erector spinae (ES) and

multifidus (M) from Dixon MR images to obtain quantitative

muscle health metrics. The latter two muscles. will “be

considered as a group (ES + M) since both provide motion and

stability of the spine, are surrounded by the thoracolumbar

fascia and are prone to intramuscular fat infiltration [7-9]. To

achieve this, we implemented, trained, and evaluated a U-Net

neural network with manually segmented MRI data from a

group of amateur cyclists and sedentary subjects.

Materials and Methods

A 3D U-Net neural network was trained to perform automated

segmentations of the lumbar spine muscles using MRI images

of recreational cyclists and sedentary subjects. The training



and validation sets were created by manually segmenting the

left and right P, I, QL and ES + M muscles of 26 Dixon MRI

images, and then performing data augmentation to obtain a

total of 116 images. The performance of the model was

measured using the Dice-Sorensen score. In the-following

sections, the data and methods are fully described.

Data

The Dixon MRI images used in this work belong to a cross-

sectional study looking at.the muscle health of middle-aged

individuals that included sedentary and recreational cyclist

groups. The images were acquired in a 3T scanner (Siemens

Magneton Vida, Erlangen, Germany) using a body coil. The

scanning protocol consisted of an axial TSE Dixon sequence

(slice thickness 1.5 mm, spacing between slices 1.95 mm,

repetition time (TR) 4570 ms, echo time (TE) 45 ms, number



of excitations 1, number of echoes 14, flip angle 120°), with a
field of view (FOV) that covered axially from 1 cm below the
lesser trochanter to the origin of the psoas muscle at the level
of the L1 vertebra. The voxel size was 0.47 x 0.47 x 1.95 mm?,
The 26 MRI scans correspond to 14 women and 12.men with
mean(std) age of 45.8(13.6) years and mean(std) BMI of

26.8(6.0).

DataSet

The 26 MRI scans \were manually segmented by a trained
operator using Simpleware ScanlP software (Version 2021.3;
Synopsys, Inc., Mountain View, USA). Figurelshows an
example of a manually segmented image.

To homogenize the dataset, every Dixon image and its labels

were registered to a reference image using Simple ITK. In this



process, a rigid registration with the normalized cross
correlation as the similarity metric was used. As a result, all
the images had a size of 800 x 640 x 145 voxels and had the
same geometrical space.

Furthermore, all images were down sampled to halfthesize in
the trans-axial plane to reduce the memory requirements of the
model. The resulting image had 400 x 320 x 145 voxels and a
voxel size of 0.94 x 0.94 x 1.95 mm?, which translated into a
four-fold reduction in‘itssmemory size with respect to the
original images, without a significant loss in image quality.
The registered and downsampled data set of 26 segmented
images was split into training and validation sets using a 70/30
ratio. For the 18 images of the training set, data augmentation
was implemented using linear transformations that consisted

of a two step process. The first consisted of applying a



reflection transform in the x axis to each intensity and label

images. Then, a clockwise and anticlockwise 5-degree

rotation was performed to each of them, making up a dataset

with a total of 108 images. In Fig. 2, a flow diagram of the

preprocessing and data augmentation process is shown. The

validation set consisted of only 8 images.

U-Net

A 3D U-Net that receives the in-phase Dixon image as input

and delivers a multi-label mask in its output was implemented.

Different from the original architecture, the number of initial

filters was reduced from 64 to 16, to reduce the memory

requirements of the model. Regarding the loss function and

optimizer, we chose the Binary cross entropy, widely used in

semantic segmentation applications, and the ADAM optimizer



with a learning rate of 10~ respectively. Finally, the model’s
performance was evaluated using the Sorensen-Dice
coefticient.

Training

The 3D U-Net was implemented and trained in Pytorch on a
workstation with a 24 GB Nvidia 3090 GPU..Due to video
RAM constraints, the training batch size was of a single
image. The training took 20 h-and completed 200 epochs. The
best model was extracted at-epoch 178 where the validation

loss values started to diverge from training ones.

Results

The proposed method successfully segmented the lumbar
spine muscles for most of the subjects. The Dice scores for the
automated segmentations of the validation set can be seen in

Fig. 3.



The boxplot shows the scores for each muscle, where the
median value was 0.92, 0.88, 0.84 and 0.93 for the left P, I, QL
and Es + M respectively, and 0.92, 0.89, 0.86 and 0.92 for the
right counterpart. Figure 4 shows an accurate segmentation,
while Fig. 5 depicts a suboptimal segmentation that

corresponds to image number 4 in Table 1.

Tablel. Validation Set dice scores for 3D/ Unet.Model

Image  LP LI LQL | LES+“\RP RI RQL  RES+
M M
1 0942 0892 |0.802 4 0915 0919 0869 0856 |0.919
2 0921 0859 |0.825 (0926 0916 0869 | 0.855 |0.922
3 0923 092 0844 093 0937 0913 088 | 0936
4 092 084 ...0806, 0832 0881 0904 0377 |0.766
5 0905 | 0.88 .| 0.849 0927 0891 0898 083 |0.938
6 0.941 #0866 | 0.836 0927 0934 0868 0896 | 0.925
7 0947 \0.503 0.876 0926 0937 | 0.898  0.891 0911
8 092+ 0878 0865 0927 0902 0882 082 0931
Median'’ 0921 0878 | 0.844 0927 0916 0898 0855 | 0.925
(iqr) (021) | (031) | (.033) | (.004) | (036) | (.031) | (.055) | (.015)
Mean 0925 0878 |0.843 0914 0914  0.890 | 0.793 | 0.904
(std) (014) | (025 | (026) | (033) | (022) | (.018) | (.173) | (.057)

1 Discussion

An automated segmentation tool for left and right lumbar

spine muscles that uses a U-Net architecture neural network



model is presented in this work. The segmentation
performance was measured with the Dice-Sorensen
coefficient and averaged 0.88 in the validation set for the four
muscles. This value is substantially affected by one of the 8
validation images that has shown poor results, particularly for
the QL muscle (Image numberdofTablel). This is a small

muscle, and therefore its Dice score is more sensitive

Fig. 5. 3D model (right) and axial'slice (left) at the height of
the iliac crest of an inaccurate segmentation. The shading
represents the manual segmentation while the outline is the
model’s prediction. It can be seen in the axial slice that the
model could not segment the right QL.

to segmentation inaccuracies. To illustrate this issue, the mean
Dice scores were 0.84 and 0.80 for QL (the smallest muscle in
this group), while the best segmentation performance was 0.93
for the ES + M group.

Every deep learning model performance is tied to the size of

the training set, which in this case is considerably low because



there are no public datasets of manually segmented images of
the lumbar spine muscles. In addition, the GPU memory
limitations restricted the number of filters used in the U-Net
architecture, consequently reducing the number of parameters.
These two factors could have affected the performance of our
model.

Despite the reduced amount of manually .segmented data
available, the model has shown excellent results in larger
muscles like the Psoas and the Erector Spinae and Multifidus
group. As expected, the performance was not as good when
the muscles were small.

2 Conclusion

In this work, we trained a volumetric semantic segmentation
model 'based on the U-Net architecture capable of
automatically segmenting the psoas, iliacus, quadratus
lumborum, and the joined erector spinae and multifidus
muscles. The good accuracy of the proposed method could
allow the execution of new research studying the size and

composition of this muscle group and may also serve as a



valuable tool for enhancing the diagnosis and treatment of

lower back issues.
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Figure legends

Fig. 1. On theleft, segmented slices at the level of the L2
vertebra (top)and the iliac crest (bottom) are shown. On the
right,.a 3D render of the manual segmentation is presented.

Fig. 2. Schematic of the data augmentation process. First, the
26 manually segmented data are registered to a reference
image. The registered images are down sampled four-fold in
the transaxial images and then flipped creating 52 different
images. Finally, anti-andclockwiseSdegreerotations were
applied resulting in a total of 156 augmented images and
labels.


https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.1016/j.compmedimag.2020.101835
https://doi.org/10.5535/arm.2012.36.2.173
https://doi.org/10.5535/arm.2012.36.2.173
https://doi.org/10.5535/arm.2012.36.2.173
https://doi.org/10.5535/arm.2012.36.2.173
https://doi.org/10.5535/arm.2012.36.2.173
https://doi.org/10.1007/s00586-012-2286-z
https://doi.org/10.1007/s00586-012-2286-z
https://doi.org/10.1111/j.1469-7580.2012.01511.x
https://doi.org/10.1111/j.1469-7580.2012.01511.x
https://doi.org/10.1111/j.1469-7580.2012.01511.x
https://doi.org/10.1111/j.1469-7580.2012.01511.x
https://doi.org/10.1111/j.1469-7580.2012.01511.x

Fig. 3. Validation Dice score for the segmentation of every
muscle.

Fig. 4. 3D model(right) and axial slice (left) at the height of
the iliac crest of an accurate segmentation. The shading
represents the manual segmentation while the outline is the
model’s prediction.
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