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Abstract

Spectroscopy is essential for understanding a wide range of scientific phenomena,
making the production of accurate spectroscopic data crucial. The demand for such
data has grown significantly, particularly in astrophysics, where the recent deploy-
ment of the James Webb Space Telescope requires accurate and comprehensive line
lists for effective data analysis. To meet this need, the thesis introduces SOLIS,
an infrared and visible line list for the sulfur monoxide (SO) radical. Generated
using variational calculations and refined with empirically determined energy lev-
els and experimental uncertainties, SOLIS is expected to be valuable for studying
exoplanetary atmospheres, stellar formation regions, the interstellar medium, and
shock zones. Notably, it has already been applied in the analysis of JWST data,
with the results discussed in this thesis.

The ultraviolet spectra of molecules are especially important for studying as-
trophysical environments like planetary atmospheres. Accurately describing the
highly excited electronic states of molecules is vital. However, many molecules
exhibit complex electronic structures due to non-adiabatic interactions from the
breakdown of the Born-Oppenheimer approximation. The limitations of this ap-
proximation are evident in an increasing number of molecules, where non-adiabatic
effects play a significant role.

To address this challenge, this thesis reformulates existing diabatisation theory
in a rovibronic context, implementing non-adiabatic modules within the variational
rovibronic code Duo. This allows the full incorporation of non-adiabatic effects in
generating molecular line lists. Additionally, novel diabatisation methodologies are
developed to construct accurate and practical diabatic spectroscopic representations,
where non-adiabatic couplings vanish, facilitating the construction of accurate con-
tracted vibronic basis sets.

This thesis also presents the first demonstration of adiabatic-diabatic rovi-
bronic equivalence for an arbitrary number of coupled electronic states, applied
to YO, CH, N», and a synthetic 10-state system. Duo serves as a powerful tool
to benchmark the importance of different non-adiabatic effects on computed spec-
troscopy.



Impact Statement

The reformulation of existing diabatisation theory within the rovibronic context will
greatly benefit future rovibronic studies aiming to incorporate non-adiabatic effects
in computed diatomic spectroscopy. All important aspects of the theory are dis-
cussed, with useful relations, functional forms, and benchmarks relevant to solving
the rovibronic problem. The development of our novel diabatisation method, HyAP,
developed in this thesis, allows for the construction of accurate and practical dia-
batic representations for contracted vibronic basis sets in general N-electronic state
systems. This improvement of the molecular spectroscopic model directly enhances
the final computed line list/spectra, which is essential to the ExoMol project’s pro-
duction of high-accuracy line lists for high-resolution spectroscopy. This is espe-
cially true for the UV description of molecules, where non-adiabatic effects are
increasingly relevant, as seen in molecules like C,, CN, N, SiC, Sip, CO, SO, and
YO.

This thesis demonstrates that a diabatic model can be crucial in obtaining ac-
curate diatomic spectroscopy, as applied to the YO and CO molecules. With the
full adiabatic and diabatic modules in our rovibronic code Duo, it now serves as a
unique and powerful tool to benchmark the effect of different non-adiabatic terms in
the nuclear kinetic energy, providing a novel and powerful tool for model selection
before computing molecular spectroscopy.

The high-resolution IR/vis sulfur monoxide (SO) line list, SOLIS, presented
here is essential to support future spectroscopic studies of SO in various astrophysi-
cal environments, particularly the interstellar medium, exoplanets, atmospheric and
environmental chemistry, industry, and stars. The SOLIS line list has already been
used in analysis of James Webb Space Telescope (JWST) spectral data. Notably,
the SOLIS line list has contributed to the detection of sulfur dioxide (SO;) in the
exoplanet WASP-39b, marking a major milestone as the first clear observation of
UV-driven sulfur photochemistry in a hot exoplanet atmosphere. Furthermore, the
mid-infrared fundamental band feature of SO was identified in WASP-39b, and it
has been recognised as a prominent molecular species in the oxygen/silicon/sulfur
neon-burning zones within supernova. The abundance of SO has also been shown
to be sensitive to the interstellar medium cosmic ray ionization rate, which can then
be subsequently constrained.
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This is a list of frequently used abbreviations and their meanings, provided for the
reader’s quick reference.

Note:

NAC: Non-Adiabatic Coupling.

DDR: nuclear coordinate derivative coupling terms which act on the elec-
tronic wavefunctions. DDR is also the name of the procedure in MOLPRO
which computes NACs from transition densities. DDR means d

m.
DBOC: Diagonal Born-Oppenheimer Correction.
AtDT: Adiabatic to Diabatic Transformation.

DC: Diabatic Coupling, also known as an off-diagonal diabatic potential cou-
pling.

HyAP: Hybrid Asymptotic Property based diabatisation procedure.

BOA: Born-Oppenheimer Approximation.

HFT: Hellmann-Feynman Theorem.

DoF: Degree of Freedom.

CASSCF: Complete Active Space Self-Consistent Field.

MRCI: Multi-Reference Configuration Interaction.

CCSD(T): Coupled Cluster with Singles, Doubles, and perturbative Triples.
DVR: Discrete Variable Representation.
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Chapter 1

Introduction

The Born-Oppenheimer (BO) approximation and, later, the related adiabatic ap-
proximation have been pivotal to the treatment of photodynamical processes since
the 1927 seminal paper by Born and Oppenheimer?. The BO approximation dis-
tinguishes between fast moving electrons and slowly moving nuclei, where cou-
pling between the electronic and nuclear degrees of freedom through the nuclear
kinetic energy operator, called non-adiabatic couplings (NACs) or derivative cou-
plings (DDRs), are neglected. Within the BO approximation, electronic adiabatic
states are realised where their associated potential energy curves ! (PECs) have no
mass dependence, and evolve on single decoupled curves. These electronic eigen-
states effectively diagonalise the electronic Hamiltonian and are approximate solu-
tions to the stationary Schrodinger equation for atomistic systems. Their existence
has been both paramount to the understanding of many aspects of chemistry and
physics and unanimous to a wide range of experimental studies; such as in chemi-
cal reactions where bonding is understood by electronic configurations gluing nuclei
together?; in photodynamics where photodissociation can be understood by a radia-
tive transition from a single bound electronic state potential to a repulsive PEC3~;
and in astronomy and atmospheric chemistry where collisionally induced dynamics
of atoms and molecules are governed by the electronic states involved®~!?. The adi-
abatic approximation then introduces mass-dependence into the PECs by inclusion
of the well-known diagonal BO correction (DBOC, the diagonal second DDRs).
Generally, BO-PECs are good for predicting near-equilibrium properties for many
molecules!!, but become increasingly less accurate upon approach of (degenerate)
electronic states of the same-symmetry, which cannot cross, and exhibit so-called

avoided crossings (first established by Neumann and Wigner '?) where the DDRs

'Here the Born-Oppenheimer approximation is discussed in the context of diatomic molecules,
and so this thesis refers to molecular properties as curves as opposed to surfaces for the polyatomic
case.
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become singular and therefore must not be neglected. Figure 1.1 illustrates an ex-
ample avoided crossing between two adiabatic 'TT states of sulfur monoxide and
their corresponding NAC ' (see Chapter 4 for details). In cases of electronically
degenerate states, molecular (photo)dynamics occurs on multiple adiabatic poten-
tial surfaces opposed to just one, where introduction of these DDR coupling terms

brings the treatment of molecular systems beyond BO.
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Figure 1.1: Tllustration of the avoided crossing adiabatic PECs of the e 'TT and (3) ' states
of sulfur monoxide and the corresponding NAC (left panels). The right panels
show their diabatisation, producing a set of smooth diabatic PECs which cross
and are coupled by the diabatic coupling (bottom right). The NAC is strongest
at the avoided crossing geometry, showing cusp-like behaviour.

Because the realisation of BO-PECs has been useful in explaining numerous
chemophysical processes, it is expected that non-adiabatic interactions should also
play a significant role in their understanding. Indeed, proper treatment of non-

adiabatic interactions has been shown to be important for numerous photochem-
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14-18.1L19 where the electronic structure of molecules, and conse-

ical processes
quentially nuclear motion, is altered. Furthermore, non-adiabatic interactions are
important in astronomy and atmospheric chemistry where collisions of free radi-
cals and open shell molecules with degenerate electronic states are often seen?-2%,
Modelling electronically non-adiabatic processes has also been effective in explain-
ing the bonding in dications such as BF?* 23 and strongly ionic molecules, such as
LiF2® and NaCl?’, whose !X " states show non-adiabatic behaviour.

The primary focus of non-adiabatic interactions in this thesis concerns nuclear
motion calculations. As such, this work will predominantly centre on the treatment
and exploration of these processes, emphasising their role in molecular dynamics
and spectroscopy. The importance of DDR couplings are expected to be crucial
for the accurate calculation of molecular rovibronic energies. Many studies have
investigated this importance for small hydrogen bearing molecules because of the
cheap computational cost within quantum chemistry calculations due to few cor-
relating electrons. For example, a series of papers by Wolniewicz, Dressler, and
co-workers283* investigated the excited electronic states of molecular hydrogen.
Early studies used the adiabatic approximation, but NACs were progressively intro-
duced for more excited states, proving essential for accurately reproducing rovi-
bronic energies and spectra, as confirmed by experiment. Similarly, Ralph Ja-
quet showed that including DDRs are critical for accurate spectroscopy of small
hydrogen-bearing molecules such as Hi, DI, HY, and H,>. Pachucki and Ko-
masa>®37 further demonstrated the importance of NACs through a nonadiabatic
perturbation theory for Hj, achieving accurate rovibronic energies via perturbative
corrections. It is expected for small molecules that kinetic energy coupling (DDRs)
to be important since the 2 /2y factor in the nuclear kinetic energy is large, where
u is the reduced mass of the diatom. However, more recently we showed>® (for the
first time in nuclear motion calculations) that omission of any DDR terms lead to
significant changes in the molecular spectral properties, even for heavier molecules,
where we study the YO (B 2X*, D 22%) and CH (C 2X*, 2 L) diatomic systems,
where inclusion of all DDRs is shown to be crucial for high-resolution applications.
Even the DBOC, often omitted in practical applications, was shown to be of cen-
tral importance in the adiabatic rovibronic solution. Like the previously mentioned
studies, as more molecular systems are investigated experimentally and by ab initio
treatments, it is clear that the BO approximation cannot be satisfied in most regions
of the molecular configuration space.

In an attempt to simplify the problem of treating nuclear motion non-BO, in

1960 Hober and Weber?? first discussed a transformation which removes com-
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pletely the DDR couplings from the nuclear kinetic energy. As a fortunate con-
sequence, nuclear motion can be calculated either in the adiabatic representation,
consisting of BO-PECs, DBOCs, and off-diagonal NAC:s, or a diabatic representa-
tion consisting of a diagonal kinetic energy matrix (no DDRs) and crossing PECs
coupled by off-diagonal potential couplings called diabatic couplings (DCs)*0—42,
The diabatic representation is recovered through a unitary transformation of the
adiabatic electronic wavefunctions*320:424041.51 (herein the adiabatic to diabatic
transformation; AtDT), and has the property that the diagonal and off-diagonal
DDRs are simultaneously removed (see, e.g. Mead and Truhlar*’) at the cost of
introducing a DC within the potential matrix, allowing the PECs to cross. Whilst
the adiabatic representation diagonalises the electronic Hamiltonian, the diabatic
representation diagonalises instead the nuclear kinetic energy. Figure 1.1 illustrates
the diabatisation of the e 'TI and (3) ' states of sulfur monoxide. The main reason
that one would choose the diabatic representation is because of the smooth molecu-
lar property curves such as potentials and dipole moments !> (see also Figure 1.1),
allowing for a simpler spectroscopic model — by which analytical forms can be eas-
ily utilised — which is crucial if one wants to refine these curves to better match
experimental data (see, e.g. the works by the ExoMol project3=>). In the adiabatic
representation, the cusp-like behaviour of the PECs and the singular nature of the

DDRs in the region of degeneracy*0:41:20-6

can make integrating, fitting with ana-
lytical forms, and thus the production of both a physically meaningful and accurate
spectroscopic model for the desired system, very difficult. Because of the complex
adiabatic topology in this representation the physics of the desired system will be
sensitive to small changes in the property curves near the avoided crossing geome-
tries, which is undesirable for theoretical models. The diabatic representation then
provides a simple and stable model which does not influence the physics strongly
with small variations in the topology of its property curves, and can be effectively
parameterised by simple analytical functions. Equivalency between the two-state
adiabatic and diabatic representations has only been shown recently by us>® for the
computed rovibronic energies of the B 2L* and D 2L states of YO and the C 2L
and 22X+ states of CH. This equivalence has also been extended to the general N-
state case in our recent work> 78, which includes the 1 12;;, 2 12;, and 3 12; states
of Ny; the C2xt, 225+, 325+, and 425" states of CH; and an artificial 10-state
model system. Therefore, the diabatic representation is desirable choice for many
molecules, especially when the NACs are strong.

A multitude of methods can be employed to compute the AtDT and

are typically categorised into one of a few classifications, indirect diabatisa-
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tion2039-68  direct diabatisation

82-86,68,87,88

26,69—75,61,49,43—48,50,42,40,41,76—81’ or ansatz dia-

batisation This thesis incorporates relevant diabatisation literature
throughout, aiming to provide context for the presented work wherever possible.
For additional context and detailed discussions, readers are directed to the reviews
by Yarkony !, Shu et al.3°, Domcke et al. °°, Koppel et al.”!, Baer*, Dobbyn and
Knowles %3, O’ Malley °2.

Indirect diabatisation, known as a property-based diabatisation, optimises an
AtDT by maximizing the smoothness of diabatic molecular properties, such as
the diabatic PECs, dipole moment curves (DMCs), or wavefunctions. Usually, the
AtDT is constrained by forcing the diabatic molecular properties to coincide with
the adiabatic curves either side of an avoided crossing and vary smoothly across
this region. Property-based diabatisation is desirable due to its simplicity and abil-
ity to use any Hermitian operator to construct a diabatisation. Prototypical examples

92,93

include the ionic and covalent structures of alkali hydrides which can be distin-

guished by the dipole moment>®

and represent natural diabatic states. For example,
Werner and Meyer 2® form diabatic states of LiH by computing mixing angles which
ensure the (linear) ionic component of the dipole moment passes smoothly through
the adiabatic DMCs.

Direct diabatisation instead diabatises each point in the molecular configura-
tion space independently of the surrounding points either directly from the adi-
abatic electronic wavefunctions without NACs, calculation of diabatic molecular
orbitals in which the molecular properties are computed, or via solution of matrix-
differential equations involving the NAC matrix 7®~’°. The NAC matrix is then often
obtained ab initio through the DDR procedure of MOLPRO®*. Diabatisations in-
volving molecular orbitals, on the other hand, are sometimes referred to as orbital-
dependent diabatisations%°~74. The direct diabatisation scheme is typically the most
accurate diabatisation method since it aims to exactly remove NACs obtained from
ab initio electronic structure methods. The drawback of this method (which is dis-
cussed extensively in this thesis) is that the resulting diabatisation is not guaranteed
to yield a simple or useful representation.

Ansatz diabatisation is widely used in block-diagonalization schemes 838%-82.87.88.81
and involves fitting the eigenvalues of a predetermined diabatic model to adiabatic
electronic structure data. This ansatz-block-diagonalization method has proven to
reproduce well the dynamics of ultrafast nonadiabatic processes, but struggles to
represent all regions of the adiabatic PECs accurately®. This thesis explores the
ansatz diabatisation scheme mostly for two-state systems, but also provides insight

and formulae for the N-state case.
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In this thesis, I develop a novel hybrid property-based and direct orbital-
independent diabatisation approach for general N-state coupled diatomic systems.
As demonstrated in this thesis and previous works %7097 solving the AtDT di-
rectly from the NACs of systems with three or more coupled states is inherently
non-local, requiring knowledge of diabatisation at surrounding points. This is typi-
cally addressed using an evolution method. However, even with a numerically exact
solver, diabatisation remains non-trivial because the AtDT solution depends on the
choice of initial boundary conditions. As a result, the AtDT is unique only up to its
boundary value, leading to an infinite set of AtDT solutions and, consequently, an
infinite set of diabatic representations all of which are equivalent to a given adiabatic
representation. The AtDT solution does not inherently guarantee the simultaneous
satisfaction of multiple boundary conditions for a given set of NACs. Furthermore,
inconsistencies between the NACs and other adiabatic properties (e.g., potentials or
dipoles) can hinder the construction of a physically meaningful diabatisation that
is exactly equivalent to the adiabatic representation, often resulting in undesirable
asymptotic behaviour and irregular topologies of the diabatic properties. This then
complicates the interpretation and application of these diabatic states.

A limitation of these direct diabatisation methods is that they — often relying
solely on NACs — exclude molecular properties such as potentials and dipoles. A
primary motivation in this thesis is to bridge this gap by achieving the accuracy
characteristic of direct methods while yielding physical diabatic states consistent
with property-based approaches. By doing so, it becomes possible to test on the
importance of different DDR terms on the computed rovibronic spectroscopy as in
the method of Brady et al. 3, but for N-state systems. Furthermore, I also aim to
construct diabatic representations which allow for the construction of efficient and
accurate contracted vibronic basis sets, which will motivate the development of my
novel diabatisation method.

Diabatisation is routinely used to treat the avoided crossings of molecular PECs
for the aforementioned reasons, but it is rarely discussed in the literature the numer-
ical equivalence of adiabatic and diabatic energy level terms. Equivalence implies
that two representations, like coordinate frames, should yield identical observables
such as energy eigenvalues. Establishing this (rovibronic) equivalence would bene-
fit researchers aiming to benchmark their nuclear motion codes and provide deeper
insights into the roles of various terms in both the adiabatic and diabatic Hamil-
tonians such that appropriate approximations can be made. Therefore, adiabatic
and diabatic solutions of the nuclear motion Schrodinger equation should coin-

cide*® with suitable accuracy of the calculation, e.g by using increasingly larger
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basis sizes. While equivalence is frequently assumed, it is rarely demonstrated, and
only a few studies have thoroughly investigated the convergence between adiabatic
and diabatic states. For example, Shi et al.?8 used a sinc-DVR method to evalu-
ate numerical convergence rates of adiabatic and diabatic energy eigenvalues and
demonstrated equivalency. This required using a complete adiabatic model and a
conical intersection (avoided crossing) at high energy. Zimmerman and George *°
investigated the numerical convergence of transition probability amplitudes for adi-
abatic and diabatic states in collisions involving collinear atom—diatom systems.
Their findings confirmed the convergence to equivalence of the states in question,
illustrating that the diabatic representation converges significantly faster than its
adiabatic counterpart. However, our recent study>® showed that for systems where
NACs are weak, at least for the isolated two state case (where DCs are large), then
the adiabatic representation showed faster convergence of the rovibronic energies
than in the diabatic representation. Therefore, it is not immediately clear whether
the adiabatic or diabatic representation is more suitable for the target diatomic sys-
tem. Moreover, it remains uncertain whether approximation by neglecting various
DDR couplings or DCs will yield meaningful spectroscopic results. Thus, a theo-
retical and algorithmic framework where one can test the importance of different
coupling terms in the adiabatic and diabatic representation of nuclear motion would
be powerful tool. In this thesis I layout the theory and technical details involved
in the adiabatic to diabatic transformation, where derivations are presented and dis-
cussed. I do not claim to invent the wheel, but rather provide a collation of theory,
make clear my own contributions, and provide a consistent and complete framework
tailored for use in nuclear motion codes such as Duo.

An additional context in which the equivalence between adiabatic and dia-
batic representations is applied, beyond nuclear motion calculations, is in scattering
calculations, where this equivalence is often assumed’®. For example, Little and

100 study the dissociative recombination of NEL 101" and partially model

Tennyson
the electronic structure of N, diabatically for their multichannel quantum defect
theory calculations. It was shown by Volkov et al.!%? that both adiabatic and dia-
batic representations of multichannel coulomb scattering calculations for the mutual
neutralisation reaction H"+ H~ — H} — H(1) + H(n) produced equivalent results.
Relevant to this thesis, the second DDR term was demonstrated to be important for
producing accurate cross-sections, an interesting result which showcases the need
for accurate representation of non-adiabatic dynamics.

As part of the ExoMol group, my PhD research contributes to the production

of diatomic molecular “line lists”, a (often semi-empirical) spectroscopic dataset
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which is essential in the analysis of exoplanet atmospheres. To fully recover the
information embedded in the transit spectrum of an exoplanet one must have a
solid foundation of spectroscopic characterisation for many molecules which are
expected to be present in such environments. In particular, spectroscopic character-
isation over a wide range of conditions, such as temperature and pressure. It is the
aim of the ExoMol project>3~>> to provide such data, where the core methodology
is in the variational calculation of molecular rovibronic energy terms and transition
strengths — the “line list” — from which a spectrum can be simulated for different
temperatures and pressures. As previously discussed, the accurate treatment of non-
adiabatic interactions within nuclear motion calculations, particularly in rovibronic
energy levels, plays a crucial role in improving the precision of these line lists,
aiding applications ranging from exoplanet atmospheres to cool stars and beyond.
This thesis is structured as follows. Chapter 2 presents the theory and method-
ology used to develop a diatomic line list, with a particular focus on incorporating
non-adiabatic effects in the calculation of diatomic spectra. Beginning with the
Born-Oppenheimer approximation, the chapter builds a theoretical framework for
treating non-adiabatic couplings arising from the decoupling of electronic and nu-
clear motions. It then introduces different approaches for handling these NACs in
the generation of an AtDT for systems with different numbers of coupled states. Our
novel regularization method, Hy AP, is also described, which aims to construct accu-
rate and practical diabatic representations for the development of efficient vibronic
basis sets through correction to the NACs. The chapter also includes a discussion
of the variational treatment of nuclear motion, implemented in the Duo program.
Chapter 3 applies the diabatisation theory outlined in Chapter 2 to several systems:
the two-state YO and CH molecules, the three-state N, system, the four-state CH
system, and an artificial 10-state system. It demonstrates, for the first time, numer-
ical rovibronic equivalence between adiabatic and diabatic representations in both
two-state and general N-state cases. Chapter 3 also showcases the application of
diabatic spectroscopic models to the YO and CO molecules, resulting in the gener-
ation of accurate line lists. Chapter 4 describes the creation of an accurate IR/Vis
line list for the SO radical, covering ab initio calculations of molecular property
curves, inversion and validation of experimental transition frequencies, the devel-
opment of a spectroscopic network for rovibronic energies and uncertainties, and
refinement of the ab initio model based on the aforementioned empirical energy
levels. Chapter 5 highlights additional research activities, collaborative projects,
and unpublished preliminary results. While these do not constitute the core focus

of the thesis, they represent significant contributions and offer potential avenues
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for future exploration. Finally, Chapter 6 summarises the results of this thesis and

outlines directions for future work.



Chapter 2

Theory & Methodology

The basis of this thesis lies primarily in the production of diatomic molecular line
lists. A line list contains a set of molecular energy levels with corresponding quan-
tum number assignments, their transitions, and associated transition strengths from
which a spectrum can be simulated. The production of a line list requires quan-
tum mechanical calculations of first the electronic structure (often in the Born-
Oppenheimer approximation) a priori to nuclear motion calculations yielding rovi-
bronic energy terms, wavefunctions, and transition strengths (see Section 2.3 for de-
tails). This thesis heavily uses the general purpose variational (open access') code
Duo '? that solves the rovibronic Schrodinger equation for diatomic molecules us-
ing a detailed spectroscopic model as input. The model contains potential energy
curves, couplings (e.g. spin-orbit, electronic angular momenta, e.t.c.), (transition)
dipole moments, and higher order moments.

Initially, the molecular property curves input to nuclear motion codes are often
obtained from ab initio using quantum chemistry programs such as MOLPRO ',
ORCA!% and Psi4 %, The ab initio spectroscopic model often serves as a base-
line for refinement to empirical energy levels — determined from experimental tran-
sition data — and intensities. The refinement process involves iteratively adjusting
the property curves until the computed rovibronic energies have the best agreement
to the empirical energies. This approach underpins the ExoMol project’s production
of high-accuracy line lists for applications in high-resolution spectroscopy. There-
fore, any work that attempts to improve the description of the molecular spectro-
scopic model is directly aiming to improve the final computed line list/spectra. This
thesis aims to do this by incorporating non-adiabatic effects which are becoming
more and more relevant for different molecular systems, especially in their UV de-

scription. Key theoretical aspects of Duo’s methodology are summarised in Section

lgithub.com/Exomol
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2.3, with non-adiabatic coupling theory and related methods covered in Sections 2.1
through 2.8.

As part of my PhD research, I reformulated existing diabatisation theory to
enable systematic benchmarking of non-adiabatic effects within the nuclear motion
code Duo. Throughout this chapter, I will clearly distinguish my original contribu-

tions from established theory, citing relevant sources where appropriate.

2.1 The Born-Oppenheimer Approximation

The non-relativistic Hamiltonian for the diatomic molecule is first considered,

which reads in the body-fixed center of mass frame !%7-112

[Ayib + Hroo+ Hy + He | |¥) = |¥)E, (2.1)

where |W) is the total electronic + nuclear wavefunction and E is the associated

rovibronic energy eigenvalue. H, is the electronic Hamiltonian given by

Ne ﬁ2
h- 50

H—/
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2 4LV(E ), 22)

where the sum is over all n, electrons, m; are the electron masses, Vl-2 is the Lapla-
cian for the i electron, 7, is the electronic kinetic energy operator, and V(&,r)
is the total Coulomb electrostatic potential between all particles (electron-electron,
electron-nuclei, nuclei-nuclei) and is a function of the electron and nuclear coordi-

nates & and r, respectively, given by

ne 2 1 ZIZQE g Zie?
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Here, Z; is the atomic number of the ith nuclei, e is the electron charge, & is the
permittivity of free space, |F; —7;| is the internuclear separation, |7; — 5 ;| is the elec-
tron nuclei separation, and \E, — E ;| are the inter-electron distances. Vi is then the
electron-electron repulsion potential, Vxn 1s the nuclei-nuclei repulsion potential,
and V. is the electron-nuclei attraction potential. The mass polarization term, I:Iu,
arises when separating the center-of-mass (COM) motion from the internal motion
of the particles'!3. It originates from the correlated motion of electrons and nuclei.

In many cases, the COM is approximated as the COM of the nuclei, neglecting the



2.1. The Born-Oppenheimer Approximation 26

small electronic contribution, which results in the appearance of the mass polariza-
tion term as a correction. I:Iu is not a physical effect, but rather an artifact of the
choice of coordinates. In all practical applications it is negligible since it depends
on the inverse of the total molecular mass, and will not be explored in this thesis.

A

H,jy is the nuclear vibrational kinetic energy Hamiltonian given by
Hyp = —>—— (2.4)

where u =M ! +M, !'is the reduced mass of the two nuclei and r is the internuclear
separation, or bond length. H, is the nuclear rotational kinetic energy Hamiltonian
and can be expressed in terms of the body-fixed rotational angular momentum op-

erator R as
. P,
Ho = R-.
rot 2‘u r2

(2.5)

It is clear that analytically solving Eq.(2.1) for the total wavefunction |¥) and en-
ergy E is impossible beyond the simplest system, the Hydrogen atom, because of
the coupling between the electronic and nuclear motion. Consequently, this equa-
tion is not separable into electronic and nuclear degrees of freedom, if it was then
one may solve it. It is exactly this thought upon which the Born-Oppenheimer ap-
proximation is built, and goes as follows: consider the electron nuclear mass ratio
me/my, < 1, which is very small even for the hydrogen atom (m,/m, ~ 1/1837),
this means the electrons are assumed to move very quickly compared to the slowly
moving nuclei. As a result, when solving for the electronic motion, one can ignore
the nuclear kinetic energy H,ip, + Hyor because of the 1 /i term. This can be under-
stood in two ways: (1) electrons effectively have time to relax as the nuclei move;
(2) the uncertainty in the nuclei positions can be ignored and assumed fixed as the
electrons move. Thus, under the Born-Oppenheimer approximation, the nuclear
positions are treated as fixed parameters when solving the electronic Schrodinger
equation (discussed below). As a result, in the molecule fixed frame, the electronic
wavefunctions can be expressed as depending parametrically on the nuclear coordi-

nate as

o) = |p(&;r)), (2.6)

where |@) are the electronic wavefunctions and r represents the internuclear dis-
tance. Thus, for each fixed r, a different electronic eigenfunction is obtained. Dur-
ing these electronic structure calculations, the molecule is placed in a fixed orien-

tation, typically with the internuclear axis aligned along the z-axis in the molecular
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(body-fixed) frame. Rotational degrees of freedom are therefore excluded from the
electronic problem and are treated separately at the nuclear motion stage (see Sec-
tion 2.3). As a result, the rotational degrees of freedom are ‘frozen’ during the
electronic step, similarly to the vibrational coordinates, where we assume the elec-
tronic energies are not altered by the slow molecular rotations.

The total wavefunction can then be expressed by the Born-Huang expansion
114,2
as’ '™

W(E,r,6,9)) Zm ") | xi(r,60,0)) 2.7)

where |xi(r,0,¢)) are the nuclear wavefunctions, with {6,¢} denoting the Euler
angles that describe the molecular orientation. In our nuclear motion code Duo, the
total nuclear wavefunction is represented in a product basis comprising vibrational,
spin, and rotational components. The rotational part depends implicitly on the Euler
angles and is constructed using eigenfunctions of the molecular-fixed rotational an-
gular momentum operators (see Section 2.3). This expansion is exact if all possible
adiabatic states are included. However, practical calculations require truncating the
sum, limiting it to a finite number of terms. This truncation of the electronic Hilbert
space introduces an approximation error (associated with the Born-Oppenheimer
approximation), as higher energy states, which contribute marginally to the ground
state energy, are neglected in practice. The Born-Oppenheimer approximation then
assumes the electronic Hamiltonian only acts on |¢;) and the nuclear part on |y;),
yielding a static description of the electronic structure. From this, the electronic
Hamiltonian eigenvalue equation is obtained, and the electronic motion computed

by clamping the nuclei

(To+ V] 19a(&;r) = |@u(E:r)) EG(r), 2.8)

Here it is realised that the Eg term is the BO-PEC for the o electronic state and
is a function of the internuclear separation r. Thus, for each nuclear configuration
the electronic motion can be solved, producing a set of PECs over an entire grid of
internuclear separations. E€(r) and the corresponding electronic wavefunctions are

k115,116

commonly solved using ab initio methods, such as Hartree-Foc , complete

active space self-consistent field (CASSCF) 7118 multi-reference configuration

121,122

interaction (MRCI) ''%120 or coupled cluster theories.

Currently, only electronic motion has been considered, which alone will not
yield accurate molecular energy terms. The remaining task is to solve the following

nuclear Hamiltonian where the final molecular energies are computed incorporating
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both nuclear and electronic motion

[I:IVib +ﬂr0t+Eé(”)} |Xi(r767¢)> = |Xi(r7 67¢)>E;’W’7 (29)

where E;*' are the rovibronic energies. The BO-PEC for the o electronic state
approximates the nuclear motion extremely well for many molecules, especially
near the equilibrium geometry!!. As discussed in the introduction, the BO-
approximation has been highly successful in many areas of photochemistry and
molecular physics. In particular, BO-PECs often reproduce molecular dynam-
ics/spectroscopy with high accuracy and are supported by a (i.e., energy levels com-
puted from PECs correspond to observable transitions in molecular spectra). For
many physical processes, nuclear motion occurs on energy scales approximately 3-
4 orders of magnitude lower than electronic excitations, making the use of a single,

uncoupled PEC a very effective approximation for many systems.

2.2 Beyond Born-Oppenheimer: Non-Adiabatic
Couplings

Despite the successes of the BO-approximation (see Sections 1 and 2.1) it cannot
be satisfied in all regions of the molecular configuration space for many molecules.
When same symmetry electronic eigenvalues — Eg, (r) of Eq.(2.9) — become degen-
erate, non-adiabatic couplings become singular and the PECs exhibit an avoided
crossing such as in Figure 1.1. The non-adiabatic couplings are commonly ne-
glected under the BO-approximation, which assumes the nuclear kinetic energy
operator H,;, does not act on the electronic wavefunctions. More precisely, the
electronic wavefunctions are assumed to vary smoothly with nuclear coordinates,

so that the derivative couplings (DDRs) vanish, i.e.

N =0, Born-Oppenheimer approximation
Hyip |@) (2.10)
=# (0, beyond Born-Oppenheimer.

Consequently, the BO approximation treats nuclear motion as evolving indepen-
dently on single, uncoupled potential energy curves given by the electronic eigen-
values E§ (r) of Eq.(2.9). Technically, it is the Born—Oppenheimer framework itself
that gives rise to nonadiabatic couplings, as they emerge from retaining the nuclear
kinetic energy operator acting on the total wavefunction. However, in the standard
BO treatment of molecular dynamics, these couplings are assumed to be negligible

and are therefore typically omitted.
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123,49.48.41,47 are now de-

The DDR terms as presented in many other works
rived, providing a complete derivation of all terms for the general N-state case,
explaining their significance. A quick note, from herein the term ‘adiabatic’ refers
to the representation where all DDR couplings are included in the nuclear kinetic
energy, where the electronic Hamiltonian is diagonalised with eigenvalues being
the avoided crossing potentials. Furthermore, the work during my PhD and there-
fore in this thesis concerns removal of the radial DDR coupling terms, where the
angular part is ignored. Angular DDRs arise from the dynamical electron nuclear
coupling as the molecule rotates, and couples states of different angular-momenta

projections**47 (AA = £1).

The adiabatic nuclear kinetic energy Hamiltonian is now derived. The operator
H.;, is first left- and right-multiplied by the Born—Huang wavefunction element (see
Eq. (2.7)), |‘Pl tOt) ](pl.(a)> | xi(a)>, yielding the kinetic energy elements

2 2
@), @@ @@ @, (@), 47 () (@)
(o (9a [ Hip 1957) 12570 = =5 Otec” [ @l 77519570 1257)
— —
@ |, @ 4 @) @ d @ d @ @ 4
:—ﬂ@a [1{9a| 5 10p7) +2(0a”| - l9g7) -+ (@a [ ) 32 |%5 )
2.11)

where in the second line the Laplacian identity for the product \(péa)> |x éa)> was used,
the direction of the derivative is specified — to explicitly show they act on the nuclear
wavefunctions — and will be important for our algorithmic formulation later, and the
superscript ‘(a)’ means properties are taken in the adiabatic representation. Terms
appear where the derivative in the nuclear coordinates act on the electronic wave-
function, these are exactly the DDR (derivative) coupling terms and when assumed
zero brings the Hamiltonian into the BO-approximation where adiabatic potentials
are realised and assumed to evolve on single uncoupled surfaces. The above equa-

tion can be simplified by introducing matrix notation for the electronic properties

—
@ o _ 7w [y ownd P
(Xa |<§Da| 1b|‘Pﬁ>| ﬁ>—__‘u<7(oc| + ar dr |Xﬁ )5

(2.12)

where the orthogonality in the electronic wavefunctions is used to introduce the

identity matrix I. The different DDR terms are now examined. First, the second



2.2. Beyond Born-Oppenheimer: Non-Adiabatic Couplings 30

derivative coupling is considered.

2 L dr
Wo(c[)i = (P4 272 |§Dﬁ>, (2.13)

where |¢?) are the adiabatic electronic basis wavefunctions and Wcizl)s are the second
DDR derivative coupling elements. The NAC, or first DDR term, is well known and

defined as the matrix elements of the first derivative operator

(98] 4 |98) = — (04| & |p8) i
0 ifo=p

() _
Wop =

(2.14)
where the NAC matrix W) is anti-Hermitian. Multiple studies #1254 have used
the following identity to relate the first and second DDR coupling elements via
(1)
dog d? aw
B 2 _ Wa B
— )+ (06l 5 0f) = Wip = — 22— Ko,
(2.15)

da
< L5 < o) = (s

where the diagonal elements of the K matrix, when multiplied by the kinetic energy
factor, —%prp, are the well-known DBOCs. The off-diagonal elements of K form
further second DDR couplings for systems with N > 3 coupled adiabatic states. The
DBOC:s can then be added to the BO-PECs to describe non-adiabatic perturbation
in the potential energies (or the contribution to electronic structure due to nuclear
motion) in the region of avoided crossing. Historically, the use of the above identity
was to avoid the cumbersome computation of w® by only having to evaluate w
and its derivative, and is identical to the g-, h-, and k- notation by Lengfield &
Yarkony '?* and Saxe & Yarkony'?® with i = 9¢ — k. The above relation shows
W® to have both diagonal and off-diagonal components. But first, Eq.(2.15) is

further simplified by introducing a resolution of the identity between the bra and

ket of the K, 3 element within the adiabatic basis, yielding
4 Y (1) (1
B>:—Zmﬂwg (2.16)
K

Kap = <d% d(pﬁ> §<d% ><""<da

where the summation, in principle, should be over all adiabatic states (N = o) — an-

other source of error from the BO-approximation which strictly requires all infinite

states to be treated. It turns out that the K matrix can be computed simply via the
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squared NAC matrix as
K=-wl.wb, (2.17)

and that all DDRs are completely defined in terms of the NAC only. In conjunc-
tion of Eqs.(2.15-2.17) and other theoretical results*6~%47a simple and powerful

expression for the matrix element of the second DDR term W@ is obtained

(1) 2
w — d‘;vr + (w“)) . (2.18)

Since the derivative of W) is skew-symmetric, it is useful to reformulate Eq.(2.18)
such that the final rovibronic Schrédinger equation is Hermitian (therefore produc-
ing real valued energy eigenvalues). This is not the first time it has been done '%%,
but I continue the derivation for clarity using the defined symbols from this section.
First, the derivative of w) is re-expressed in terms of directional derivatives. This

can be done by considering the following matrix-operator
d
(E»W(”(r)) 2(r) (2.19)

— —

where % means the derivative acts on the ket state (and dir on the bra state), and
|xi(r)) is a column vector of nuclear wavefunctions in which the NAC matrix w)
acts on. Using the chain rule of differentiation, the following is obtained in operator
form,

— —

d dWU (r d

(d—rw“)m) 200)) = (—dr( )+w<1><r>5) %) @20

Eq.(2.20) shows that the differentiation operator does not commute with w,
yielding the commutator relation
_>
[ d dW (r)

Z w _ 2\
W (r)] = . (2.21)

dr
Now, using the anti-Hermiticity of the first derivative operator, inversion of the
derivative direction on the left hand side of Eq.(2.20) is possible assuming the left

multiplication of a bra state (to induce an integral in r), introducing a minus sign.
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Rearranging for the derivative of W) gives, again in operator form

AW ‘¢ i
( p )Ixi(r)>=—<aw<1>+w<l)5> % (r)) - (2.22)

Inserting this into eq.(2.18) yields the symmetric, Hermitian reformulation of the
second DDR term

d d 2
w® — — [ Zw w2 w
(dr + dr) + ( ) . (2.23)

Inserting W@ above into Eq.(2.12) yields the adiabatic nuclear kinetic energy ma-

trix elements

@) 1@ @ o @y P ([ d ?
a a) 77(a) H(a Ay 7 S () (D) L (1)
(Xa' | (Pa ’Hv1b’(pﬁ H%ﬁ ) 2 (Xa ‘( [drw W dr +<W ) +
In matrix-operator form, the adiabatic nuclear kinetic energy (vibrational) Hamilto-
nian reads
— — —
2 2
q@ — P4 wm) ) w4
T < S (WO W owh S ) 224

This concludes the extension of the Born-Oppenheimer (BO) approximation
considered in this thesis and establishes the adiabatic (vibrational) nuclear kinetic
energy Hamiltonian used throughout my nuclear motion calculations. This formula-
tion is fundamental to the rovibronic treatment, as it allows all non-adiabatic effects
to be defined solely in terms of the NAC matrix WO This significantly simpli-
fies ab initio DDR calculations (see Section 2.2.2 for more details), as only the
first derivative of the electronic wavefunctions is required, eliminating the need for

second derivative DDR couplings.

Moreover, in this symmetric representation, the nuclear kinetic energy remains
Hermitian even when truncating the electronic Hilbert space, in contrast to the
conventional formulation in Eq.(2.12) where such truncations can introduce anti-
Hermitian terms'?®. This means it is safe to extend the non-adiabatic rovibronic
treatment to any number of coupled states, and will be explored extensively through-
out this thesis. The directional derivatives also emphasise their direct implementa-
tion within our nuclear motion code Duo ', The NAC term W) thus fully governs

the non-adiabatic dynamics that arise when relaxing the BO approximation, rein-
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forcing the practical and theoretical advantages of this formulation in rovibronic
modelling. In Chapter 3, I demonstrate that benchmarking the effects of different
DDR terms in Eq. (2.24) is now straightforward. This formulation ensures that Her-

miticity is preserved even when selectively deactivating individual coupling terms.

2.2.1 Hellmann-Feynman Formalism of the NAC

To better understand the NAC, many studies have used Hellmann-Feynman theorem
(HFT) 127128 to evaluate the NAC terms'?*~13? via the Hamiltonian gradient, or
“force”. For completeness I will re-derive the HFT form of the NAC and discuss its

implications. To this end, consider the following eigenvalue equation

1 195 = E50(r) o) (2.25)

where I:Iéa) is the adiabatic electronic Hamiltonian and Elga)(r) are the adiabatic
PECs. Enclosing by a bra (electronic) state (¢4 | (omitting the r dependence in the

potential energy term) yields

(8| B |0y) = B (951 05) = E5 80 p, (2.26)

where J, g is the Kroncker delta since |@“) form an orthonormal basis. Considering
the off-diagonal terms, or Born-Oppenheimer corrections (DDR couplings), and

differentiating with respect to internuclear separation
d 00 A® 00y —
E <(Poc|He |§0ﬁ> =0

dog,
- (e

o5) + (o] 2"
dog

— Eﬁ< R ¢§>+<<P3 ahe! <P,§’>+Ea<fp3

e
dr

Where the product rule was used in the second line and the Hermiticity of the Hamil-

(a)

tonian was used in the last line to act H,” on the bra state yielding the E, term.
d a
% > as the NAC element W(ill)g, rearranging for the NAC, the

dr
off-diagonal HFT emerges,

05 )+ oa| Al
d%f}> —0, (2.27)

)

ry(a)
H,
¢ dr

Recognising <(p3

7 (a)
m__ 1 a|@He” |
Waﬁ_Eﬁ—Ea@“ - (pﬁ>. (2.28)

This shows that the NAC depends on the inverse energy gap between the cou-

pled electronic states. When the states @ and 8 are sufficiently well separated —
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|[Eg — Eq| > 1 — then the NAC between these states is small WO(:[); < 1. In con-

trast, when the energy gap is small, the NAC grows large. Interestingly, the term
a|an
Qo dr
motion in the diatomic molecule. This force plays a critical role in time-dependent
133,134,130,135

(pg> corresponds to a “force” on the electronic structure due to nuclear
non-adiabatic molecular dynamics , where transitions between differ-
ent potential energy surfaces (quantum states) are allowed through the NAC and
therefore become more probable when the NAC is large. As the energy gap between
surfaces narrows, these transitions (or “surface hops”) become more likely, allowing
the molecule to evolve on multiple potential energy surfaces. This dynamic behav-
ior, enabled by the NAC, goes beyond the scope of the Born-Oppenheimer approx-
imation, which assumes separation of nuclear and electronic motion (see Chapter 1
and Section 2.1 for details). HFT then plays an important role in understanding how
the NACs influence the complex nuclear dynamics of molecules through the forces
and energy separation in the BO-PECs.

Importantly, the Hellmann-Feynman Theorem justifies the truncation of the
number of (BO) adiabatic states considered, as the coupling between states dimin-
ishes significantly when their energy separation is large. As a result, transitions
between well-separated states become negligible, allowing the focus to remain on a
smaller region of the total molecular electronic Hilbert space covering energetically
relevant states. Furthermore, the truncated molecular wavefunction approximates

well the full Born-Huang expansion in Eq.(2.7).

2.2.2 The DDR Procedure

As will be used extensively throughout this thesis, a computational method for cal-
culating non-adiabatic coupling (NAC) terms from electronic structure quantum
chemistry calculations is essential. One such method is implemented in the quantum
chemistry package MOLPRO 3¢, known as the DDR procedure.?> This procedure
approximates the NAC terms (y;|d/dr|y;) (see Eq.(2.14)) using a finite-difference
approach to estimate the derivative of the electronic wavefunction with respect to

the nuclear coordinate.

The NAC terms are computed from the electronic wavefunctions |y;(r)) using

ZFor further details on the DDR procedure, please refer to the MOLPRO manual.


https://www.molpro.net/manual/doku.php?id=non_adiabatic_coupling_matrix_elements&s[]=ddr
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Figure 2.1: Tllustration of our computed ab initio radial NACs for the X+ manifold of

the NeH" cation. The DDR procedure was used with the MOLPRO quantum
chemistry package.

the central three-point finite difference formula

Wig'l) - <‘Vi<’")|%|ll/j(r)> ~ (y;(r)| ‘wf(r+A")>2;lll/j(r—Ar))

(wi(r) |y (r + Ar)) — (yi(r) [y (r — Ar))
2Ar

(PJ - pg) : (2.29)

Q

N 1
“2Ar

Here, p; are the transition densities (i.e., overlaps) between the i™ and j™ electronic
states, evaluated at nuclear geometries displaced positively or negatively by Ar.
These overlaps can be directly computed using MOLPRO, enabling straightforward
evaluation of the NAC terms. Typically, we have seen a value of 0.01 A to be

suitable for the geometry displacement.

An example application of the DDR procedure can be found in our recent the-
oretical study of the NeH™ cation'3”. Figure 2.1 shows the ab initio radial NACs
computed for NeH™" using this approach.
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2.3 Variational Calculations: Nuclear Motion

Having established the Born-Oppenheimer theory of electronic states, potential en-
ergy curves, and the nuclear Schrodinger equation in both adiabatic and diabatic
representations, this section will summarise the general theory of nuclear motion
calculations for determining rovibronic energy terms and wavefunctions. In partic-
ular, the Duo solution of the nuclear motion Schrodinger equation will be discussed.

The variational principle '

states that an upper bound for the energy eigen-
value of a Hamiltonian can be calculated by optimisation of the corresponding
wavefunction. It was first demonstrated by Frank Boys!*® that molecular energy
terms and wavefunctions could be evaluated using the variational method, and so
begun the development of what is now an extremely powerful tool in the calcula-
tion of a molecules spectroscopy. Unlike in effective Hamiltonian methods (see,
e.g. Martin-Drumel et al. 139 Heays et al. 140 Burkholder et al. 14') whereby en-
ergy functionals are parameterised in terms of quantum numbers and fit to exper-
imentally measured spectra 3, variational methods rely on use of the potential en-
ergy curves/surfaces and associated couplings arising from the BO-approximation
to compute energy levels and transition strengths 4. For example, the early series
of papers Tennyson and Sutcliffe 42,143 144 Miller and Tennyson '+> showed that
indeed a variational approach to the calculation of the H;“ spectroscopy led to its

detection in Jupiter’s atmosphere 4.

More recently the variational treatment of
the diatomic sulfur-monoxide (SO)!3 (see Chapter 4 ) led to its detection in the
exoplanet WASP-39b 47 and aided in the detection of SO, in the same object 43,
There are a wealth of example use-cases of the variational method for molecular

t149

spectroscopy, in particular the work by the MoLLIST projec implements an in-

teresting hybrid effective Hamiltonian variational approach, and the ever increasing
line list productions by the ExoMol project®3=>.

Duo computes diatomic rovibronic energy terms, wavefunctions, and transition
strengths from a set of property curves defined on a grid of internuclear seperations,
r. Initially, the molecular property curves (potentials and couplings) input to nuclear
motion codes are often obtained ab initio using quantum chemistry programs such
as MOLPRO %4, orca 105 ,and Psi4 106 These curves can be defined with analyt-
ical forms (see Chapter 4 for examples of functional forms used to model different
property curves), which are then computed on the sinc-DVR grid °%150-151 (see Sec-

tion 2.3.1 for details) in which the fully coupled rovibronic Schrédinger equation

3Whereby a highly accurate but local description of the molecular spectroscopy is determined.
4Whereby a complete spectroscopy is determined, and can be made accurate through refinement
of the spectroscopic model to empirical energy levels.
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is solved. Alternatively, the property curves can be represented in a grid format,
which are mapped onto the sinc-DVR grid r via cubic splines. To then compute
rovibronic energies and wavefunctions one requires a set of boundary conditions
upon which the nuclear motion Schrodinger equation is solved, usually the setting
of eigenstate wavefunctions and their derivative with bond length, r, to zero at the
“simulation border”. This is achieved in Duo by introducing a potential barrier of
infinite height at the ‘right hand’ side of the simulation region at bond length r, —
the so-called particle in a box problem. Whilst this methodology is fully defined for
solving bound rovibronic states which come as solutions to the nuclear motion in-
side potential wells, it does not provide a complete solution to the continuum region
where states are unbound (such as those for electronic states which are repulsive).
Since a finite simulation box size is utilised, the continuum is truncated to the so-
lutions which satisfy the boundary conditions and consequently the continuum is
effectively discretised. If one could solve the nuclear motion for an infinite simula-
tion box size, i.e. r. — oo, then the infinite rovibronic solutions are reconstructed for
the unbound problem. A description of this discretisation method of solving nuclear
motion can be found in the works Hazi and Taylor 152 Mandelshtam et al. '3, and
Bacic and Simons 1°#, which discuss its implementations for stabilisation methods.

The strengths of the variational method is that, provided one has defined po-
tentials and couplings which cover the spectroscopic region of interest, a complete
description of the molecular energy levels, and therefore a complete spectroscopy, is
easily achieved. For example, rovibronic terms can be computed up to dissociation
including all the relevant effects such as level splitting and resonances. However,
the quality of the computed spectroscopy relies on the accuracy of the property
curves input to nuclear motion, which are often not to high-resolution standard be-
fore refinement of the curves to data. For example, errors in the vibrational band
heads computed from ab initio curves at the MRCI level of theory can be as high as
tens, or even hundreds, of wavenumbers. Of course, depending on the system, the
accuracy of the ab initio calculations depends particularly on the number electrons
to be treated. Regardless, the potentials and various coupling curves can be fitted
iteratively such that the computed rovibronic energies agree with empirically deter-
mined ones. Empirical energy levels can be computed from experimentally derived
spectroscopic constants using programs like PGOPHER !>, or directly through in-
version of experimental transition frequencies via the MARVEL method >® (see
Chapter 4 for details). As a result, the fitted spectroscopic model can be made to
reproduce the molecular spectroscopy to near-experimental accuracy. However, due

to limitations in experimental technique, every rovibronic line, and therefore every
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energy level, for the system of interest can not be feasibly measured. Consequently,
refinement of the spectroscopic model is limited to the experimental coverage of the
system and only parts of the model are refined. Typically only transitions involving
the lowest lying rovibronic levels and (vertical) states in the Frank-Condon region
of the ground state are measured, and so the potential minima are often fitted. The
quality of high lying rovibronic energy levels, which are not experimentally char-
acterised, are determined by the unrefined parts of the property curves. One then
hopes extrapolation of their spectroscopic model beyond the refined region is sen-
sible. An attempt to preserve the physics of the system in these unrefined regions
is to weight the property curves to the ab initio forms during refinement. This then
minimises the deviation of the fitted property curves from the quantum chemical

predictions.

2.3.1 The Duo Solution to the Nuclear Motion Schrodinger
Equation

The nuclear motion code Duo solves the following total® non-relativistic molecular
rovibronic Schrodinger equation in the body-fixed COM frame, with Hamiltonian
given by Eq.(2.1) (see Section 2.1 for details), which reads in the adiabatic repre-

sentation

[I:Ivib + I:Irot +V+ I:Ic} Z

ﬁ2 7 . /‘,Z2 . R
=|~5; | 72 +Hw +WR2+V+HC X =EiX, (2.30)

where E; is the i rovibronic energy eigenvalue and ¥ is a vector of rovibronic wave-
functions (vectorised by the electronic labelling). The first term is the vibrational
Hamiltonian studied in Sections 2.2 and 2.4, ﬁw 18 the Hamiltonian associated with

non-adiabatic interactions and is given by (see Eq.(2.24))

— —
0 — (WY _ | 4w w4
HW_(W ) — W W= 2.31)

with W(1) being the NAC matrix. The non-adiabatic kinetic energy couplings in
Hyy are now fully implemented in a new module in Duo. We discuss the usage, un-
derlying theory, adiabatic/diabatic equivalence, and convergence tests in our recent

publications 383738 Chapter 3 reports on the results of this work and its importance

>We ignore the mass-polarisation term. See Section 2.1 for details.
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in spectroscopic modelling.

The second term of Eq.(2.30) is the rotational Hamiltonian associated with the
body-fixed rotational angular momentum (AM) operator R. In general, R can be
expressed in terms of the total AM J , the electron orbital AM I:, and the electron
spin angular AM SasR=J—-L-8. Its eigenvalues for a ' state are BJ(J + 1)
where B is the rotational constant and therefore corresponds to rotational levels
with total AM quantum number J. Introducing the ladder operators J+ = J, £ iJ Vs
I:i = ﬂx + iﬁy, and Si = Sx + iSy, the rotational Hamiltonian becomes

. P O A A
By = 32 (P =30+ (L2 L) + (8 -85
@S- -T S+l T L)+ S LS. Ly)]. (232

Strictly speaking, the rotational Hamiltonian operator in Eq.(2.32) is defined prior
to the integration over electronic coordinates; however, once this integration is per-

formed, the resulting operator matrix is incorporated into Eq.(2.30).

Lastly, V in Eq.(2.30) is the adiabatic (diagonal) potential energy matrix
with diagonal elements being the electronic energy eigenvalues solved in the BO-
approximation a priori to nuclear motion (see Section 2.1). The nomenclature here

e

corresponds to that in Section 2.1 via Ve = Eg (), where ‘state’ counts over dif-

ferent electronic states.

The H, term in Eq.(2.30) is a Hamiltonian containing additional coupling op-
erators to be added in construction of the fully coupled Hamiltonian matrix (see
discussion below). For example, the Breit-Pauli spin-orbit (SO) operator 37,138,108
gives rise to the fine structure of rovibronic energy levels. SO terms can couple
electronic states of the same spatial symmetry A (diagonal terms) or different A
(off-diagonal) provided the total AM projection |Q| is the same for both bra and ket
states. One can see that for states of large total AM €, then a given rovibronic level
may be split into many sub-levels. For example, a 311 state has 6 spin-orbit compo-
nents, since computing the total AM projection gives Q = 0,41, £2, where Q =0
is twice degenerate. Additional operator terms include the phenomenological spin-
spin (SS) couplings and the empirical spin-rotation (SR) couplings °*!%7. The SS
couplings have the same effect as the SO couplings, which also give rise to €2 split-
ting and are usually used as empirical terms of the Hamiltonian. The SR couplings
instead give rise to an empirical energy correction linear in the total AM quan-
tum number J. Lastly, for non ¥ states with |A| > 1, asymmetrical perturbations

of different parity states are induced because of off-diagonal elements of the rota-
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tional and spin-orbit Hamiltonian’s, known as A-doubling. Empirical A-doubling
couplings can be employed in Duo, and come in three flavours ‘opq’, ‘p2q’, and

<

g’ %0 A detailed discussion of the different coupling terms, corresponding matrix

elements, and examples are provided by Kato 07,

A complete description of the Duo methodology can be found in Yurchenko
et al. !9% but a brief description is provided here for reference in following sections.
Duo begins to solve the total rovibronic Schrodinger equation of Eq.(2.30) by first
solving the pure (uncoupled) vibronic part ﬁvib 4V (in the case of the diabatic
representation, without the DCs) using the numerical sinc-DVR method 150,150,151
yielding a set of vibronic energies E, and wavefunctions [state,v) with vibrational
quantum number v = 0,1,2,3,.... The vibrational wavefunctions are optimised on
the PECs, and so it is to be expected that different representations of the electronic
states (and therefore potentials) will influence the character, physicality, and con-
vergence properties of the contracted vibronic basis in solution to the fully coupled
problem (see discussion in Section 2.5.2). The vibronic wavefunctions are then

used to construct the full rovibronic basis set |n) given by
|n) = |state,J, Q, A, S, X, v) = |state, A, S, X) [state,v) |/, Q, M]) , (2.33)

where the electronic states are labeled by the [state,A,S,X) basis with A =
0,+1,£2,... and X =0,41/2,41,... being the projections of L and S on the inter-
nuclear axis, S = 0,1/2,1,... is the total electronic spin, and the ‘state’ label counts
over different electronic curves. Q = A = X is the total AM projection onto the in-
ternuclear axis, whereas Mj is the projection of total AM on the space-fixed Z-axis
which is important when considering external fields. In the representation of angu-
lar momentum operators, the basis set |J,Q, M) implicitly contains the dependence
on the Euler angles describing the molecular orientation and thus fully describes the
rotational motion of the molecule. Moreover, the |J,Q, M) basis can be used to re-
construct spherical harmonics, explicitly capturing the wavefunction’s dependence

on these Euler angles.

The rovibrational basis set in Eq.(2.33) are used to solve the fully coupled
rovibronic Schrodinger equation Eq.(2.30) to compute a full set of rovibronic en-
ergy terms and wavefunctions for the electronic states of interest. Particularly, the
basis set in Eq.(2.33) correspond to Hund’s case (a) functions 161,162 T4 construct
the full Hamiltonian matrix in the basis of Eq.(2.33), one can add any number of
different coupling terms such as the aforementioned DDR, SO, SS, SR, and A-
doubling coupling terms in the H. Hamiltonian of Eq.(2.30). Diagonalisation of
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the final Hamiltonian then yields the rovibronic energy terms E; and wavefunctions
for the good quantum numbers J (total AM), and 7 (parity) given by the following
expansion in the basis set of Eq.(2.33)

¢ =Y., (2.34)

where i is the energy enumeration counting number and CZ-J’T are the expansion coef-
ficients. As stated, only J and 7 are good quantum numbers; other quantum numbers
QA X Q v, and ‘state’ are assigned on the basis of the largest coefficient Cl.J’T in
the basis set. A complete spectroscopy for the system in question is then obtained
by use of the eigenfunctions to compute transition line strengths and Einstein A co-
efficients from (transition) moment couplings. All computed rovibronic states are
outputted into a .STATES file which contains the enumerator, i, quantum numbers,
and energy. The computed transitions are provided as a .TRANS file which contains
the upper and lower states of the transition given by enumerators 1 (initial) and f

(final), the Einstein A coefficient, and transition frequency V.

2.4 Conditions for a Strictly Diabatic Representation

I begin with the strict diabatic basis, a framework in which both the off-diagonal

DDR and DBOC couplings vanish simultaneously 63

. In this diabatic represen-
tation, the diatomic molecular Hamiltonian consists of a purely diagonal kinetic
energy operator and an electronic potential matrix with non-zero off-diagonal ele-

ments, known as diabatic couplings (DCs)*04!,

While the diabatic representation introduces coupling within the electronic po-
tential, the adiabatic representation places coupling within the kinetic energy. In
the diabatic framework, potential energy curves (PECs) are allowed to cross and
property operator curves, such as dipoles, are smooth functions of the nuclear coor-
dinates. My goal is to explore the diabatic and adiabatic Hamiltonians similarly to

the work of Koppel et. al.”!

who developed a Hamiltonian for the two-coupled elec-
tronic state problem. The nuclear vibronic diatomic molecular Schrodinger equa-
tion in the diabatic representation, neglecting spin and rotational angular momenta,
is given by

(A + V) 2(r) = B2, (235)

where r is the internuclear distance and ¥ (r) is a N-dimensional vector of nuclear

vibronic wavefunctions. The Born-Huang N x N nuclear (vibrational) kinetic en-
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ergy Hamiltonian reads

d? d
0 V V
A9 4 y(d) 2o d? Vcll Vléiz
Hjp, + =75 0 gz [+|Vi2 V2 ], (2.36)

where the superscript ‘d” denotes operators/matrices in the diabatic representation,
H‘(,?g is the diagonal nuclear kinetic energy matrix, and V) is the non-diagonal
diabatic electronic potential matrix with elements Vl‘;é i being the DC between states
i and j. The diabatic pure vibronic Hamiltonian is notably much simpler compared

to its adiabatic representation in Eq.(2.24).

It has been shown by Mead and Truhlar®° that transformation to diabatic rep-
resentation, whereby the first and second DDR couplings and the DBOC term are
reduced simultaneously, is possible through the action of a unitary transformation
U on the adiabatic Hamiltonian matrix. This r-dependent unitary transformation

effectively rotates the adiabatic electronic wavefunctions to yield diabatic states via
(d) 5 _ U:: (a) g 2.37
Y; ( ’r)—z (w7 (85r), (2.37)

where € are the electronic coordinates. Then, one requires the derivatives of the
diabatic electronic states with respect to the nuclear coordinate, r, to be zero (or
negligible). After performing this transformation, one finds to completely remove
the radial DDR terms, diagonalising the nuclear kinetic energy. To determine the
condition required to achieve this strict diabatic basis, Eq.(2.36) is transformed back
to the adiabatic representation via the inverse unitary transformation U", the adia-
batic to diabatic transformation (AtDT)>!1:43-46:40.48.89 "Thjg change of basis to the
diabatic representation can be thought to mix the electronic basis functions through
a rotation by the mixing angle(s) 04-166.20.89.48 j ¢ P — ytP@) . For the two

state cases, the AtDT takes the form of a simple rotation matrix

U (cos(ﬁ(r)) —sin(B(r))) 238)

sin(B(r)) ~ cos(B(r))

where f(r) is the scalar mixing angle. A detailed discussion on two-state diabati-

sation is given in Sections 2.5.1 and 2.5.2.

(@)

The diabatic nuclear kinetic energy Hamiltonian matrix UH VibUT 1S now trans-
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formed to obtain the adiabatic matrix elements, yielding

Ii
(e [HGQU' 157) = 5 (e v UTIxﬁ ). (2.39)

Before evaluating the above matrix elements, a minus sign and change in the direc-
tion of one of the first derivative components of the second derivative is introduced
via a Hermitian conjugation under integration of nuclear coordinates. This is shown

below explicitly via the following integration by parts in wavefunction notation,

2w g @)
__‘uOCoc U—— |Xﬁ / dr Xoc U U B
P |1 @ d g "0) 4V
=—3 (X U Uxﬁ /d o
(2.40)
Since the wavefunction vanishes for » — 0 and r — oo, then [x&a)*UdirUT xéa)] i
0, simplifying the above expression to be
(a)
"2 (a) d> s (a)y _ R d%&a)U dUT%B
o WU = =50 —(Fa=| ) (2.41)

As noticed by Rémelt in 198312, the Hermitian conjugation of the first derivatives
will lead to an adiabatic Hamiltonian being in its obviously Hermitian/symmetric
form, where the conditions for a strict diabatic representation are obvious. Eval-
uating the derivatives using the product rule and expanding Eq.(2.41) leads to the
following adiabatic matrix elements,

(@)
dUT @) | |9
W‘xﬁ >+U ‘ dr >

(00 e (422 o

(a)
(a), dUdUT (@), dU . 19%g
o1 S g+ (1 U =) 24

dr dr dr dr

() i s

Currently, the above equation looks complicated and dissimilar to the adiabatic nu-
clear kinetic energy in Eq.(2.24). Instead, the symmetries of the matrix products

can be used whereby the diagonal and off-diagonal terms are recognised. To this
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) .. ) t
end, consider the derivative matrix product %

7101 LI/ 0] dUT
= —_— T —_—
dr drU +U dr 0,

since UUT is the identity its derivative is the zero matrix. This infers that the prod-
i L .
ucts %UT and U% are skew-symmetric since the product of a skew-symmetric

matrix and its Hermitian conjugate is zero (i.e S +S™ = 0). Hence,

dUu
—yut=¢f — =S'u
dr d
dU’ dU’
vV g L WU _yis (2.43)
dr dr

o . P :
Therefore, the derivative matrix product ‘é—lrjddlr is given in terms of the skew-

symmetric matrix S via

dU dU"

= sfuu's = —§2. (2.44)

In fact, the matrix product Udd—U: being skew-symmetric highlights an important
connection to the properties of rotation matrices. Similar to classical mechanics,
where the angular frequency matrix € is related to a time-dependent rotation matrix
R via R% = Q, here the skew-symmetric matrix encodes information about how
two coordinate systems are related through a dynamic rotation. Additionally, the
skew-symmetric matrix is the matrix operator of the cross-product, highlighting
the connection to the rotational dynamics between different coordinate systems.
Finally, inserting Eqs.(2.43,2.44) into the adiabatic kinetic energy matrix elements
of Eq.(2.42) yields

— — —
P @@ @y P @ dd o\ @y @ | 4 o
—ﬂUCa \UWU % >__ﬂ (Xo'| _Eld_r+s 25 ) — (Xa'| d—rS+S —
(2.45)

I is the identity matrix and the directions of derivatives have been specified — which
is how we program the adiabatic nuclear kinetic energy coupling elements in our nu-
clear motion code Duo- concluding the transformation of the kinetic energy Hamil-

tonian to the adiabatic representation.

The transformation of the diabatic potential matrix via action of the AtDT sim-

ply diagonalises it, yielding a set of adiabatic electronic eigenvalues which are the

|xl§a)>] :
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avoided crossing potentials (such as those in Figure 1.1)
v — vy, (2.46)

Figalll; performing another Hermitian conjugation on the left acting derivative
of the dirl% term in Eq.(2.45), then combining with the adiabatic potential matrix

yields, in matrix form, the adiabatic vibronic diatomic Hamiltonian

— — —

R B ( d? d d
AY = (- 48— |=—S—S— V@ 247
2u (a’r2 + [dr dr > + ( )

Comparing the above adiabatic vibronic Hamiltonian to the one derived from elec-
tronic structure in Eq.(2.24), the condition for a strict diabatic representation is eas-

ily identified as
s— vV _wo, (2.48)
dr
Therefore, if the AtDT is chosen to satisfy the above condition, then it is guaranteed
that all radial DDR coupling terms will vanish in the diabatic Hilbert space. Indeed,
S is skew-symmetric as is the NAC matrix W(l), and S? contains the DBOCs and

further second DDR coupling terms.

2.5 Computing the AtDT

Section 2.4 established that a strictly diabatic representation, in which the (radial)
DBOCs and DDR couplings vanish simultaneously, is achievable for diatomic sys-
tems whereby solution of the following first-order, ordinary, linear differential equa-

tion is required in determination of the AtDT

% = -wlu. (2.49)
Since Eq.(2.49) is a linear differential equation, any linear combination of the
columns of U is also a solution, i.e. making any r-independent unitary transfor-
mation of U also satisfy Eq.(2.49). This will be used later in the treatment of N > 2
coupled electronic states.

As briefly discussed in Section 2.4, equations of this form highlight the con-
nections between rotational dynamics and coordinate system transformations. Such
equations appear in various fields, including computer graphics, robotics, and kine-

167-169

matics , Where the NAC matrix is analogous to an angular frequency matrix,

and the AtDT represents a time-varying rotation matrix that describes a particle’s
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motion. In this context, W(!) can be interpreted as the r—dependent “angular fre-
quency” matrix of the diabatic frame’s motion within the electronic Hilbert space
relative to the adiabatic frame as the diatomic molecule stretches. Thus, the diabatic
frame effectively operates as a quasi-inertial ® frame where radial non-adiabatic

couplings — or electron-nuclear momentum coupling — are eliminated.

The angle-axis representation of this abstract rotation of the electronic Hilbert
space can be derived from the eigenvalues and eigenvectors of W(!). For skew-
symmetric matrices, eigenvalues come in imaginary pairs +iA, and or are zero if
the dimension of the matrix is odd. The eigenvector corresponding to the zero
eigenvalue identifies the axis of rotation, while the eigenvalue pair A, is the angular
frequency about that axis. In higher-dimensional systems, each unique eigenvalue

pair characterises rotations within orthogonal planes.

For a three-state system, w s represented as a 3 X 3 matrix with the fol-

lowing instantaneous axis of rotation 7 and angular frequency @ are expressed as

follows
(1)
) | —Wy3'(r) 3 X 2
A(r) = o(r) Wl((%))((r)) s KZ}<W’S )(r)) ' 2.50)
Wi r

If 7 is not constant, direct integration to obtain the angular position as a function of
bond length is not feasible because of the non-commutativity of rotations (angles
do not form a vector space). This implies W) does not commute with its inte-
gral, rendering solution to Eq.(2.49) non-local and non-analytic generally. While
the angle-axis representation of the NACs and AtDT highlights the complexities as-
sociated with solving Eq.(2.49), it is important to note it does not universally imply
that all solutions will be non-analytic. Rather, it illustrates the inherent difficulties in
addressing such differential equations. Nevertheless, the solutions presented in the
subsequent sections are well-established in the literature, making them a reasonable

choice for representation in this context.

This thesis first demonstrates the simpler 2-state solution before discussing the

details of treating N-state systems in Section 2.6.

6 Although electronic angular momentum and molecular rotation still introduce non-inertial ef-
fects in the total molecular Hilbert space, ignoring these, it is nice to conceptualise the strict diabatic
electronic Hilbert space as an inertial frame with respect to radial electron-nuclear momentum cou-

pling.
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2.5.1 The 2-State Problem

In the special case where one deals with an isolated 2-state system’, WO and U are
represented by 2 X 2 matrices, where an analytical solution to Eq.(2.49) exists. Since
for a 2 dimensional system the axis of rotation remains fixed (always points orthog-
onal to the plane of rotation), then direct integration of the NAC gives exactly the
mixing angle of the adiabatic to diabatic basis. Therefore, the 2-state problem will
serve as a simple introduction to the AtDT and the generation of diabatic molecular
properties before progressing to the general N-state case.

The AtDT is conveniently represented by the following exponential matrix

(which will be useful in later sections)

: B (U B Br2(r)
el [ )

where B € s50(2) is the so-called generator (Lie algebra) of the AtDT (Lie group)
and linearizes U € SO(2) in the tangent space of rotation matrices (see Appendix B
for details on generators). Equivalently, the 2-state AtDT can be written as a rotation
matrix in the Euler angle B, as in Eq.(2.38). Inserting Eq.(2.51) into Eq.(2.49)
yields the following solution to the AtDT

dUt dp dp
v —yput?E P _wO) 2.52
dr dr dr ’ ( )
where B12(r) is the mixing angle and is therefore related to the NAC via 164-166.20
dpPia(r 1 "
ﬁdr( ) _ Wl(z) = Pia(r) = Pi2(ro) +/0 Wl(z)dr7 (2.53)

where rq is a reference geometry and is usually chosen as such that one can define
the physical condition which ensures the mixing angle is equal to 7 /4 at the diabatic
crossing point (r.). Then, in the 2-state case, the NACs can be interpreted as an
angular velocity of the diabatic frame in the electronic Hilbert space with respect to

the molecular stretching coordinate. Thus, the solution of the 2-state AtDT is

S —exo [ By [T whgy) — (cosBrz(r)) —sin(Bia(r))
uln p( B(ro) /ow d) (sin(Blz(r)) cos(ﬁlz(r))>' (2.54)

70f course this is an approximation, where treatment of all infinite adiabatic states is required for
the Born-Huang expansion of the wavefunction in Eq.(2.7) to be exact. However, if the two states
are energetically well separated from the rest of the electronic state manifold, it is often argued using
HFT (see Section 2.2.1) that the two states are effectively isolated.
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If one chooses to model the NACs with analytical integrals, then the AtDT
can be found analytically. It has been shown that the Lorentzian provides a good

description of the NAC around the crossing point ! 70:171,163.166 "and is given by

Y

w1
12 2'}’24—(1’—1”6)27

(2.55)
where 7 is the FWHM, r. is the peak position (crossing point geometry), has total
area of 7r/2, and is illustrated in Figure 2.2. Then, the mixing angle can be obtained
via Eq.(2.53) as

Bi2 = % + % arctan (r —yi’c) € [O, q . (2.56)
When the mixing angle equals zero (r < r,) the adiabatic and diabatic frames co-
incide with zero mixing, at the crossing point (r = r.) the mixing angle equals /4
meaning equal mixture of the two adiabatic states, and at large stretches (r > r.) the
mixing angle equals 7 /2 meaning a complete swap of the adiabatic states. This is il-
lustrated in figure 2.2, where a mixing angle computed via Eq.(2.56) corresponding
to a Lorentzian NAC with FWHM ¥ = 0.019 and centroid ry = 1.95 A is plotted. As
a result, the diabatic PECs will cross. This is, of course, an idealised approximation
of the NAC, ensuring a well-behaved mixing angle and, consequently, a meaningful
diabatic representation. In general, the NAC is not strictly required to satisfy the

proposed normalisation, as discussed in detail in Sections 2.5.2 and 2.7.

As used in our spectroscopic works on sulfur monoxide '%172

id652’38

, yittrium ox-

, and carbon monohydride38, a powerful theoretical tool can be obtained for

modelling complex adiabatic potentials and NACs for the 2-state system by first

transforming the adiabatic potential matrix. The diabatic potential energy functions

V3(r) and V§(r) and the DC function V{,(r) are then given by

V() = VAU = <v§<r> v%m)
Via(r) V3 (r)

B [vla cos? Bia+Visin®(Bra) A (VA—V#)sin(2B2)

T L -vRsin2Bi)  Visin® (Bi) + VicosX(Br) |

(2.57)

The adiabatic representation of an isolated two-electronic state diatomic system is
fully defined by the three functions V(r), V4 (r) and Wl(zl) (r), and, in turn, the dia-
batic representation is fully defined by the three functions V{(r), V(r) and VS (r).
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Figure 2.2: Illustration of the diabatising mixing angle computed via Eq.(2.56) (right panel)
corresponding to a Lorentzian NAC with FWHM 7y = 0.019 and centroid
ro = 1.95 A (left panel). The grey lines indicate regions of interest, where
the numbers by the vertical lines in the NAC plot indicate the mixing angle at
that geometry, and the bond lengths by the horizontal lines in the mixing angle
plot.

In fact, both representations can be fully described by a combination of any three
functions from the set VX(r), Vi'(r), Wl(zl)(r), Va(r), Vi(r) and VS (r)*®. For mod-
elling of the spectroscopic models, we showed that it is convenient to choose Vld(r),
Vi(r) and Wl(zl) (r). This is because the diabatic PECs V{(r), V5 (r) are expected to
have smooth shapes by construction and are easy to parameterize, which explains
our choice, while W1(21 )(r) has also a rather simple, easy-to-parameterize cusp-like

shape 26,40,41,20,56

, often modelled using a Lorentzian in Eq.(4.5). I repeat Figure 1.1
in Figure 2.3 here for ease of the reader, which shows that indeed the diabatic PECs
are simple functions of bond length, representing a Morse-Oscillator like bound
state and a standard repulsive hyperbolic curve while the NAC is seen to show
Lorentzian character. The other three functions are constructed from V{(r), V{(r)

and Wl(zl) (r) as follows.

The diabatising mixing angle B (r) is first computed via Eq.(2.53) to generate
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Figure 2.3: Tllustration of the avoided crossing adiabatic PECs of the e 'TT and (3) 1 states
of sulfur monoxide and the corresponding NAC (left panels). The right panels
show their diabatisation, producing a set of smooth diabatic PECs which cross
and are coupled by the diabatic coupling (bottom right). The NAC is strongest
at the avoided crossing geometry, showing cusp-like behaviour.

the AtDT. Then, by transforming the diabatic potential matrix V() in Eq.(4.4)
back to the adiabatic representation via action of the inverse transformation U™, the
DC can be determined from the following condition on the off-diagonal elements

of the adiabatic potential matrix

sin B(r) cos B (r) (Vf‘ - v;‘) + (cos B(r)* —sinB (r)2> Ve =0, (2.58)

which is required to be zero since V3(r) = UVY(r)UT in Eq.(2.24) is diagonal by

definition. Hence, rearranging for the DC gives (similarly to the work by Macias
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and Riera %)

Ve — %tan (2B(r)) (vzd . vf‘) . (2.59)

The adiabatic functions V(r) are V;'(r) can be then constructed as eigenvalues

of the diabatic potential energy matrix (second term in Eq.(2.36)):

d r d r

Vi(r) = W—%\/[Vld(r)—Vzd(r)]2—|—4V122(r), (2.60)
d r d r

vy = WO L i - vieprawde. @6

or, equivalently, via the inverse unitary transformation U:

Vi) — UVt = (VI0) 0 ) [Vieos® B4 vilsin B 0 |
0 Vi) 0 Vidsin? B + Vg cos? B
(2.62)

We have seen that transformation of the PECs to the diabatic representation is
desirable due to its smooth and simplified nature, essential for accurate modelling.
However, diabatisation applies not only to the PECs but also to the entire molecu-
lar Hamiltonian, which includes other properties like dipoles, spin-orbit couplings,
and angular momenta which are also transformed by the AtDT. In the adiabatic rep-
resentation, like the potentials, steep gradients in the properties around the region

of avoided crossing are also seen!3-33

, and so diabatisation should be expected to
make them smooth also. Figure 2.4 illustrates the diabatisation of the spin-orbit
couplings connecting the e 'TT and (3) ' states in Figure 2.3 to the X °£~ ground
state of sulfur monoxide '3, where the diabatic curves are seen to be smooth and
simple functions of the nuclear geometry, which is ideal for modelling and param-
eterisation. The adiabatic SOCs, however, are seen to have steep gradients around
the avoided crossing region r., corresponding to the avoided crossing position in
the PECs of Figure 2.3. Furthermore, since diabatic property curves vary smoothly
without abrupt topological changes, the spectroscopy of the studied system is less
sensitive to variations in the diabatic spectroscopic model. In contrast, the adiabatic
representation is highly sensitive to small changes in model topology, requiring
strict consistency in the non-adiabatic region across all curves—an inherently dif-
ficult task. This sensitivity extends to the accuracy of ab initio calculations, where
even slight shifts in crossing positions can induce significant topological changes
in the resulting couplings. Consequently, for diatomic systems exhibiting strong
non-adiabatic interactions, the diabatic representation provides a more robust and

practical choice.
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Figure 2.4: Example diabatisation of the adiabatic (e'TT|SO4|X3L~) (red) and
((3)'T1|SO4|X*Z~) (blue) SOCs which are seen to have steep topology
at the region of avoided crossing r. highlighted by the vertical line. The
corresponding diabatic SOCs (black and green dotted lines) are seen to
have smooth topology, and are simple curves of nuclear geometry, ideal for
modelling.

2.5.2 Optimal Diabatisation for Efficient Rovibronic Basis Con-
struction

Constructing a contracted rovibronic basis typically involves two steps (see Section
2.3 for details): (1) calculating bound state energies and wavefunctions from indi-
vidual electronic potentials (e.g., using a DVR method !°%) in the construction of a
contracted vibrational basis, and (2) using this uncoupled solution as a basis to solve
the fully coupled problem. The shapes of the PECs are then expected to influence
the efficiency of the contracted basis in describing the fully coupled rovibronic solu-
tion. Thus, adiabatic and diabatic representations are likely to converge with the size
of the contracted basis differently within rovibronic calculations®, as demonstrated
in Chapter 3. This section extends this by considering optimal diabatic representa-
tions for constructing efficient representations of a molecule’s spectroscopy, where
the ideal case features diagonal diabatic potentials that are clearly either bound or
repulsive.

As used in discussion of the two-state problem in Section 2.5.1, an ideal di-



2.5. Computing the AtDT 53

abatic potential set — smoothly crossing the avoided crossing region while align-
ing with adiabatic curves at both the united atom and dissociation limits — can be
achieved by constraining the mixing angle B(r) to transition smoothly from 0 at
short bond lengths to /2 at dissociation. This ensures the AtDT evolves from the
identity matrix I at short bond lengths to a permutation matrix P at large stretches,
allowing diabatic PECs to coincide with adiabatic PECs outside of the avoided
crossing (see, e.g. Figure 2.3). Property-based diabatisation methods enforce this
by parameterizing the NAC (e.g., with a Lorentzian function) to optimise the mixing
angle B(r) via Eq.(2.53), yielding smooth, Morse-like or repulsive diabats suitable
for efficient contracted vibronic basis construction.

Ensuring diabatic PECs coincide with adiabatic PECs near equilibrium im-
proves control over spectroscopically relevant regions. Since adiabatic curves, com-
puted ab initio within the Born-Oppenheimer approximation, accurately describe

equilibrium properties'!

, maintaining this structure in the diagonal diabatic elec-
tronic Hamiltonian naturally preserves spectroscopic control in rovibronic calcula-
tions.

Equilibrium electronic structure is central to theoretical spectroscopy meth-
ods (e.g., variational approaches, effective Hamiltonians) as it dictates key rovi-
bronic dynamics — electronic transitions depend on the minimum energy, rotational
transitions on equillibrium bond length, and vibrational transitions on well width.
Thus, well-behaved diabatic potentials in this regime are desirable. For example,
Morse oscillator functions effectively model adiabatic PECs, with parameters di-
rectly linked to spectroscopic properties. This approach, widely used in the ExoMol
project®3~*173 refines spectroscopic models against experimental data for accurate
rovibronic computations.

Constructing smooth diabatic PECs with an AtDT evolving from I to P enables
simple analytical modelling and minimises DCs, thereby improving the diagonal
diabatic PECs as initial approximations for the coupled rovibronic problem and fa-
cilitating efficient contracted vibronic basis sets. Conversely, large DCs degrade
these approximations. Empirically, aligning diabatic and adiabatic PECs at disso-
ciation is beneficial since dissociation energies are well defined. Together, these
AtDT conditions support efficient and practical spectroscopic computations.

While rovibronic calculations using adiabatic PECs with optimised NACs and
their corresponding (equivalent) diabatic representations yield identical rovibronic
energies>®, NACs derived from these property-based methods remain approximate.
In contrast, integration of ab initio NACs (computed with, e.g., the DDR proce-

dure, see Section 2.2.2) enable an exactly equivalent diabatic representation but
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Figure 2.5: diabatisation of the two-state YO system (left) and CH system (right) presented
in Brady et al.*® (and Chapter 3), where the grey lines indicate their diabatisa-
tion, and the solid coloured lines the corresponding diabatisation when modi-
fying their NACs (see text for details). The bottom panels plot the DCs derived
in both diabatisations.

does not necessarily produce desirable diabatic properties. Furthermore, inconsis-
tencies arise if NACs and adiabatic PECs are computed using different ab initio
methods, as their predicted crossing points may not align, leading to nonphysical
oscillations in the diabatic PECs and DCs. This effect is illustrated in the left panel
of Figure 2.5, where shifting the NAC by 0.02 A in the two-state YO model of
Brady et al.>® yields undesirable diabatic curves (solid colored lines) compared to
the original diabatisation (grey lines). Additionally, if the NAC integral fails to
reach /2 as r — o, meaning the AtDT does not converge to a permutation matrix,
the diabatic potentials correlate to different dissociation asymptotes with large DCs.
This is shown in the right panel of Figure 2.5, where scaling the NAC in the two-
state CH model of Brady et al. *® by 2/3 causes the mixing angle to approach 7 /3 at
dissociation. As a result, the bound diabatic potential well is shallower, supporting

fewer bound states in the contracted vibronic basis set.

Detailed discussion on the motivations behind enforcing the AtDT to evolve
from the identity to a (signed) permutation matrix P can be found in Section 2.7.
While this is trivial to enforce for two-state systems, extension to the general N-
state case is not obvious and is the main motivation behind the development of my

novel diabatisation method in Section 2.6.4.
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2.6 The N-State Diabatisation Problem

In the general case where W) does not commute with its integral (i.e., when the
number of electronic states is greater than two), an analytic solution to Eq.(2.49) —
and thus the AtDT — appears intractable within the current theoretical framework
detailed in this thesis. Instead, a non-local solver can be employed, i.e. the AtDT at
one point on the bond length grid depends on knowledge of neighboring points, and
the solution is constructed from an accumulated rotation starting from a boundary
point. These types of solutions are known as evolution-type methods, with Euler
integration being one of the earliest examples. However, because U is not a linear
object (its elements do not form a flat vector space), standard numerical integra-
tion methods cannot be directly applied to solve Eq.(2.49). Doing so would yield
an innaccurate solution that deviates from unitarity (see Section 2.8). Many stud-
ies*04997 have utilised evolution methods to solve Eq.(2.49), often referred to as
the line-integral approach. For completeness, the formal exponential line-integral

propagator is derived below.

Starting with the definition of the derivative, Eq.(2.49) becomes, at some point
r+Ar,
U'(r+Ar) —UT(r)

li A WA 2.
ArlgloU(r+ r) A WY (r+Ar), (2.63)

which holds in the limit Ar — 0 since unitary matrices/rotations become linearised

operations in this limit. Rearranging yields

lim (U(r+Ar)UT(r) - I—Ar-w<1>(r+Ar)) , (2.64)
Ar—0

where the unitarity of U allows use of U(r + Ar)U'(r + Ar) = I. The right hand
side of the equation corresponds to the first-order Taylor expansion of the following

matrix exponential,
exp (—Ar-W(l)> ~I—Ar-W. (2.65)

In the limit of small changes in bond length, Ar — 0, the exponent approximates

the integral of the NAC matrix (endpoint approximation using Riemann sums),
r+Ar
exp (— W(l)dr> ~ exp (—Ar-W(1)> . (2.66)

Substituting Eqs.(2.65,2.66) into Eq.(2.64) and solving for the AtDT U(r + Ar)
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gives the formal exponential line-integral propagator

Ar—0

r+Ar
U(r+Ar) = lim exp (— W(l)dr> U(r). (2.67)

where U(r + Ar) is the AtDT matrix to be solved at the current grid point, U(r)

r

is the AtDT at the previous point, and — [’ AW dr is the exponential mapping
representing the change in AtDT over the interval [r, 7 + Ar|. Thus, definition of an

initial matrix M at a point ry in the nuclear configuration space
U(rg) =M, (2.68)

determines the full solution of U from Eq.(2.67). Notably, now that the evolution
of the AtDT through bond length is done via many infinitesimal rotations as op-
posed to linear transformations, the unitarity of the final solution is maintained.
The choice of the initial unitary matrix M is not unique and depends on the phys-
ical or computational context. Typically, M is chosen to diagonalise the electronic
Hamiltonian at ry, thereby aligning the adiabatic basis with the diabatic one at that
point. This choice and its implications are discussed in detail throughout this thesis,
particularly in Section 2.7.

The challenges with this solution are: (1) finding the integral of W), which
can be analytic for some NAC models or done numerically; (2) computing the ex-
ponential matrix (see discussion in Appendix A.1); (3) ensuring asymptotic solu-
tions at multiple points in the nuclear configuration space (see discussion in Section
2.6.1).

Appendix A summarises the technical aspects of the programmatic implemen-
tation of the two- and N-state diabatisation methods presented in this thesis. This
includes, for example, the construction of an efficient adaptive geometry grid for
evolving the AtDT in Eq.(2.67), the matrix exponentiation techniques employed,

and relevant Lie theory which is discussed further in Appendix B.

2.6.1 The Asymptotic Solutions of Evolution

A novel contribution of this thesis is the establishment of a connection between in-
consistent/improper non-adiabatic couplings (NACs) and nonphysical diabatic rep-
resentations. After establishing the problem, I present a novel methodology for reg-
ularising the NACs such that a physically-meaningful diabatic representation that
is exactly equivalent to the N-state adiabatic representation can be generated. A

central aim to this method is to bridge the gap between accurate direct-diabatisation
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methods and practical property-based diabatisation schemes without additional ab
initio calculations or repeated evaluations of the AtDT evolution Eq.(2.67). Con-
sequently, this method aims to enhance the accuracy, practicality, and efficiency of
diabatic models in quantum dynamics calculations of diatomic nuclear motion with
N-coupled states, particularly in the construction of contracted vibronic basis sets
(see discussion in Section 2.5.2). The results presented in the remainder of this
Section and Section 2.7 are adapted from our recent publication”’.

A challenge with evolution solutions to linear differential equations, like
Eq.(2.67), is in satisfying multiple boundary conditions simultaneously. Since the
solution is uniquely determined by its initial value, U(rp) = M, and the NACs along
its trajectory, enforcing a second boundary condition, U(r;) = N, at a different bond
length is not guaranteed. This follows from the invariance of the solution, U, to lin-
ear combinations in its columns, where the following r-independent unitary trans-

formation also satisfies Eq.(2.49)
U (r) =U(r)UT(r)N. (2.69)

Thus, unless U(r;) =N (i.e. % (r) = U(r)) then a unitary matrix which simultane-
ously satisfies the conditions U(rg) = M and U(r;) = N is not related by a constant
unitary transformation and is therefore not a solution to Eq.(2.49), i.e. is not con-
sistent with the defined NAC matrix W(!). This has some consequences on the
computed AtDT:

1. Due to the arbitrary choice in the boundary value of evolution, there exists
infinitely many solutions to Eq.(2.49) which are related by a single constant
unitary transformation. Therefore, an infinite number of diabatic representa-

tions exist which are equivalent to the adiabatic representation.

2. The AtDT solution is fixed once the initial boundary condition is specified,
with its trajectory dictated solely by the NACs. As a result, satisfying a sec-

ondary boundary condition at a different point is not guaranteed.

3. Diabatisation depends on both the chosen boundary condition and NAC topol-
ogy. A sensible choice in the boundary condition and a specific set of NACs
should yield a physically-meaningful diabatic representation with smooth di-
abatic properties (e.g. potentials and dipoles), desirable asymptotic behavior,
and allows the construction of a contracted rovibronic basis that accurately
describes the spectroscopy near equilibrium (see discussion in Sections 2.5.2,

2.6.2, and 2.7). However, since molecular property curves do not enter the
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AtDT evolution, inconsistencies between NACs and adiabatic property curves
can hinder the construction of this physical diabatic representation that is ex-

actly equivalent to the adiabatic representation.

The first challenge in solving Eq.(2.49) is selecting appropriate boundary con-
ditions for the AtDT. As noted in point 1, any boundary condition can, in principle,
be used with my diabatisation method (see Section 2.6.4). Here, I choose boundary
conditions that serve a pragmatic goal: constructing a practical diabatic representa-
tion that ensures efficient contracted rovibronic basis sets while remaining exactly
equivalent to the adiabatic representation. The rationale behind these choices is de-
tailed in Sections 2.5.2 and 2.7. With an equivalent set of adiabatic and diabatic
spectroscopic models established, one can systematically test the impact of non-
adiabatic effects on rovibronic solutions, extending the approach of our two-state

paper Brady et al.*® to general N-state coupled systems.

Forward Evolution Backward Evolution
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Figure 2.6: Illustration of the diabatic PECs and DCs resulting from a forwards (left) or
backwards (right) evolution of the AtDT. It is clear that the diabatic represen-
tations, although rovibronically equivalent, are very different in nature. Curves
of the same colour correspond to the same matrix element of the electronic
Hamiltonian, where only the d; > DC component (coupling the black and or-
ange diabats) is highlighted for clarity.

2.6.2 Enforcing Multiple Boundary Conditions on the AtDT

To fulfill my pragmatic goal, I aim to enforce the short- and long-stretch AtDT
boundary conditions discussed in Sections 2.5.2, 2.7.3, and 2.7.1. The boundary
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conditions are defined as:

I, r=rp (left-boundary, short stretches)
U= (2.70)
P, r=rg (right-boundary, long stretches)

where I is the identity matrix and P is a signed permutation matrix.

The AtDT can be easily constrained to satisfy one of the boundary conditions
in Eq.(2.70) by evolution from the boundary using Eq.(2.49). I define forward evo-
lution (rp, — rr) as propagation from the identity matrix at short bond lengths, while
backward evolution (7, <— rr) refers to propagation from a signed permutation ma-
trix at large bond lengths. Both solutions are exact and equivalent, since they re-
move the same set of NACs, and so are conveniently related by a single constant
unitary transformation via Eq.(2.69). This means both solutions can be constructed
via a single evolution of the AtDT through Eq.(2.67). In all subsequent compu-
tations, I perform forward evolution to fix the AtDT solution Ug(r), to which a

backward evolution is immediately constructed via
Uy (r) = Ug(r)U (rr)P, (2.71)

and is still referred to as a backward evolution solution herein.

Extensive testing shows that forward and backward evolution solutions do
not necessarily coincide and are related by a non-identity unitary transformation,
U;(rR)P, in general. This leads to topologically different yet equivalent diabatic
representations. Figure 2.6 illustrates this for a four-state CH (carbon monohydride)
system coupled by six NACs (see Section 3.6.2), where only the DC component
dy»(r) is highlighted for clarity.

As shown in Figure 2.6, these differences result in distinct diabatic PECs and
DCs, confirming the non-uniqueness of AtDT solutions (see point 1 in Section
2.6.1). The forward-evolved AtDT produces a diabatic representation with unde-
sirable dissociation, where PECs deviate from adiabatic atomic limits and DCs ap-
proach a constant as r — oo. However, it accurately captures the electronic structure
near equilibrium, making it suitable for constructing a contracted vibronic basis for
spectroscopy calculations, except near dissociation where the DCs are large (see
Sections 2.5.2 and 2.7).

Conversely, the backward-evolved AtDT coincides with the adiabatic disso-
ciation limits with minimised DCs but exhibits strong mixing (large DC) at short

and intermediate bond lengths, potentially leading to poor control over equilibrium
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structure and spectroscopy. As discussed in Section 2.5.2, the diagonal diabatic po-
tentials will be a worse first-order approximations to the dominant rovibronic spec-
troscopy near equilibrium. Thus, the two diabatic representations, while exactly
equivalent, differ topologically, each with distinct advantages and disadvantages for

rovibronic calculations.

To confidently attribute the discrepancy between the forward and backward
evolved AtDT to the ambiguities of Eq.(2.67) and the NACs, it is crucial to demon-
strate the accuracy of the evolution solver and rule out the influence of accumulated
numerical error. To rigorously assess the accuracy of the numerically solved AtDT,
the residual kinetic energy matrix is computed by transforming the adiabatic kinetic
energy Hamiltonian of Eq.(2.24) through left- and right-multiplying by U’ and U,
respectively, yielding

dU

;
Tres=—5 _AULAU gy - |9 W<1>U—UTW“>—D, (2.72)
K dr

K2 dU" dU du’
dr dr dr

where the subscript ‘res’ denotes the residual matrix. For an exact AtDT solution,
T s would equal the zero matrix, indicating complete removal of all radial DDR
couplings. Then, the matrix (Frobenius) norm can be used to reduce the dimension-

ality of the kinetic energy error matrix above via

||Tres||F = Z|Tres,ij |27 (2-73)
V ij

computed at each grid point. As shown in Figure 2.7, the error in the computed
AtDT matrix, in terms of DDR coupling, is numerically eliminated to within 10~!!

cm~!. Further refinement of the grid spacing can reduce this residual even further.

Since the solver in Eq.(2.67) is numerically exact with appropriate grid spac-
ing, the observed differences between forward and backward evolutions cannot
arise from numerical errors. Instead, adopting the approximate solution whereby
all boundary conditions are fullfilled reveals internal inconsistencies between the
NACs and adiabatic property curves — obscured in the adiabatic picture but evident
in the diabatic representation — that prevent the desired AtDT from being obtained
through a single evolution. These inconsistencies, arising from improper NACs in-
put to the solver, lead to asymptotic misbehavior, topological non-smoothness of
diabatic properties (see Sections 2.5.2 and 2.7.4), and non-coincidence of AtDT
boundary conditions. Possible sources of these NAC inconsistencies are discussed
in Section 2.6.3.
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Figure 2.7: The Frobenius norm of the residual (radial) kinetic energy coupling matrix after
transformation by the AtDT as a function of bond length. It is clear that all
radial DDR couplings have been numerically removed exactly.

As seen in the two-state example (Section 2.5.2), modifying the NACs allows
the AtDT to connect both boundary conditions and yield a practical diabatic repre-
sentation. While I do not claim fundamental correctness, if these modified NACs
closely match the ab initio curves, they provide a pragmatic solution for construct-
ing a physically meaningful diabatic representation and an efficient contracted vi-

bronic basis.

2.6.3 Sources of Inconsistency within NACs

A possible source of inconsistency is at the ab initio calculation stage, where NACs
are usually computed at a lower level of theory, typically CASSCF 3%, than the cor-
responding adiabatic properties which can be as high as coupled cluster. The NACs
will therefore not be positioned at the correct avoided crossing position relative to
the adiabatic potentials, and will contain errors in their magnitude. It is therefore
expected that if one wants to use a diabatised spectroscopic model computed ab ini-
tio at a high level of theory, then the NACs must be modified to avoid non-physical

features in the resulting diabatic representation !’>.

The relative phase of electronic eigenstates must be carefully considered when
constructing a set of ab initio NACs for subsequent diabatisation. In quantum chem-
istry calculations, the phase of electronic eigenfunctions is arbitrary and can vary

across different nuclear geometries, leading to apparent random sign changes in
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NACs. To address this, a common approach ensures phase consistency by select-
ing a reference point, fixing the NAC signs at that point, and then smoothing the
NACs as functions of nuclear geometry. In this thesis, phase consistency in the
NAC models are ensured wherever possible.

Another source of inconsistency can occur at the post-processing stage of the
ab initio calculations. Adjustments made to the NACs and other property curves
will introduce further inconsistencies. Such adjustments include the fitting of func-
tional forms or interpolation/extrapolation over non-converged grid points. One can
argue that if there is spectroscopic data to fit the spectroscopic model to, then one
may absorb these errors in reproduction of the experiment. However, maintain-
ing consistency between the NACs and model is typically very difficult because of
the cusp-like nature of the NACs, making them sensitive to small variations in the
spectroscopic model.

A permanent source of error in the computed NACs comes from the funda-
mental Born Oppenheimer approximation of ab initio electronic structure. In order
to achieve an exact calculation of the electronic wavefunction, all infinite adiabatic
states must be treated in the BO approximation. However, the infinite series is
truncated to energetically important regions of the molecular Hilbert space in all
practical applications. The resulting truncation errors are therefore always present,
despite the level of theory used to compute electronic structure, and consequently
NACs. However, Hellmann-Feynman theorem !7#175 _ which states NACs are in-
versely proportional to the potential energy difference of the coupled states (see
Section 2.2.1) — is usually used to argue for this truncation. Not only will this influ-
ence the accuracy of the NACs, but incompleteness of the coupled system, leading
to fewer coupled states, will also directly influence the solved AtDT and diabatisa-

tion.

2.6.4 A Hybrid Asymptotic Property Based diabatisation

I present a method for regularising NACs outside both ab initio quantum-chemistry
calculations and evolution of the AtDT, ensuring internal consistency with a given
set of adiabatic property curves (such as PECs or dipoles; see section 2.6.1). The
presented method aims to find a regularising correction to the NACs by connecting
the forward and backward evolved AtDT solutions through application of switching
functions to the associated generator matrices (see discussion below and in Section
B). I term this method ‘Hybrid Asymptotic Property-Based diabatisation’ (HyAP)
herein.

Any set of boundary conditions on the AtDT can be enforced in conjunction
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with the HyAP method, where a regularising correction to the NACs will be com-
puted such that the resulting forward- and backward-evolved AtDT solutions are

connected in a single trajectory of the AtDT.

The AtDT is represented via the following exponential map
U=cP, (2.74)

where B is a real and skew-symmetric N x N matrix known as the generator of the
rotation U. For a thorough analysis of these generator matrices and their properties
with regards to Lie theory, see Section B.2. However, a concise summary of the the-
ory and motivations behind this generator/exponential-mapping representation of U
are provided below. Since B is skew-symmetric, i.e. ﬂT = —PB, and B commutes

with its transpose [ﬁT, B] = 0 then U is guaranteed to be unitary since
UUT =cBeP — BB — BB (2.75)

This exponential map representation offers several advantages. It enables the use
of switching functions to create a regularised AtDT via a linear combination of the
forward and backward evolved generator elements, B¢ and B, respectively. Fur-
thermore, the dimensionality of the parameter space is significantly reduced from
N? to N(N — 1)/2 unique terms. Finally, any adjustments made to these elements
will yield a unitary AtDT by construction, and substitution into Eq.(2.49) will yield
a set of regularised NACs that, together with the regularised AtDT, exactly satisfies

the criteria for a strictly diabatic basis.

In the two-state case (Eq.(2.54)), the exponential map elements correspond di-
rectly to Euler mixing angles. In the N-state case, however, the generator B provides
a more general parameterisation with a relationship to the NACs being less direct.

My proposed method leverages this parameterisation to regularise the NACs.

The HyAP regularization scheme is as follows. Firstly, a forward-solution, Uy,
is evolved from the identity at the left boundary Ug(ry) =1 — Ug(rr) = P, where
the backward-evolved solution Uy (rz) ~ I < Uy (rr) = P is recovered via Eq.(2.71)
(see Section 2.70 for details). Figure 2.6 illustrates that the imposed boundary con-
ditions of the AtDT are not always satisfied, where it can be assumed that mod-
ification to the NACs connects the Uy and Uy, solutions. This work proposes the

following linear combination of forward- and backward-evolved generator matrices

U=exp(FoB,+(1—F)oB,), (2.76)



2.6. The N-State Diabatisation Problem 64

where U is the regularised AtDT, o is the element-wise (Hadamard) product, 1 is a
matrix with every element equaling 1, B = In(U) is a generator matrix, and F acts
as a switching function between B, and B;. Sigmoid functions are used to model
the elements of the switching matrix F

1
Fij(r;%j,r0ij) = (1 -I-e_”f(r_m’”)) ; 2.77)

1
2’
is the slope parameter of the sigmoid where a larger value means a steeper change

where F;j: R — (0,1), ro;; is the reference geometry at which F;; = 5, and ¥;;
in the function value near ro;;. Therefore, the exponent in Eq.(2.76) represents a
generator matrix which gradually transitions from B at short bond lengths to B,
at longer bond lengths. By construction, the asymptote/boundary-problem is fixed,
where U evolves from I — P and I <— P, and the desired asymptotes of the diabatic

properties are ensured.

Despite solving the asymptote/boundary-condition problem, the resulting dia-
batic properties are not guaranteed to be smooth functions of the nuclear coordinate
r. The trajectory of the AtDT with molecular bond length therefore needs to be opti-
mised to ensure a physical diabatisation. As discussed above, the AtDT trajectory is
conveniently parameterised by the generator matrices through which the optimisa-
tion is performed. To this end, further flexibility in the shape of F;; is introduced by
morphing the constant ¥;; parameter of Eq.(2.77) to a Surkus-like expansion 76177
via

N
= Zo B (r)(r— &) + &pBws, (2.78)
i=

where ylrjef is a constant reference slope-parameter in which the morphing is applied,

E,(r) is the so-called Surkus variable'”® given by
P —
&(r) = R (2.79)

ref

where p is an integer parameter that adjusts the responsiveness of the polynomial,
while rr is a reference geometry for the expansion in Eq.(4.21) and here it is set
to ro;; from Eq.(2.77). B; are the expansion coefficients corresponding to differ-
ent orders of the polynomial, where B.. is usually taken as zero in order to allow
the expansion to not diverge towards r — oo, Lastly, z is a damped displacement
coordinate given by

2(r) = (r—re)exp[—Ba(r—re)* — Ba(r—re)*, (2.80)
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where 3, and 34 are damping constants, preventing large oscillations at bond lengths
far from the reference geometry. This, in particular, is quite useful for the HyAP
method as it can be used to preserve the dynamics near the boundary conditions and

concentrate the regularization to the region of strong-non-adiabatic interaction.

To complete the HyAP method, the parameters ¥;(r) and ro;; must be opti-
mised for each element (F; ;) to achieve the smoothest-possible diabatic properties.
Through extensive testing, the following cost function was identified as consistently

yielding robust and reliable results when minimised

N2 — 0 2.81)
k

where 27 is the second-derivative matrix of the diabatic property (e.g. diabatic
potential matrix, dipole matrix, e.t.c.) for the dynamics induced by action of U
only. For instance, consider the adiabatic and diabatic property matrices .Z* and
2% =U".2%U, then 27 can be computed via

d*ut dUT dU d*U
2 a a T a
= 2= A m =
9 P LU+ drf dr+U$ P
d?.¢4 d" >
—— = 40 ) 2.82
dr? ( dr" ) (2:82)

This approach avoids penalizing dynamics that arise from the derivatives of the
adiabatic properties, eliminating the need to handle the noisy numerical derivatives
commonly encountered in ab initio data. Lastly, || -||a is defined here to be the

Frobenius-norm operator for the upper-triangle and diagonal elements defined by

IM|[a=[) M (2.83)
i<

where the Frobenius norm would sum over all elements, however, when M is Her-

mitian, double counting of the off-diagonal elements would occur.
The regularising correction to the NACs can then be computed by inserting U
of Eq.(2.76) into Eq.(2.49) via

_ dU*
o =w +A=W (2.84)

(1)

where A is the skew-symmetric regularising correction matrix and Wy, is the reg-

ularised NAC matrix. The regularising correction then ensures the AtDT to cor-
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rectly evolve between two imposed boundary conditions and the NACs to be in-
ternally consistent with the adiabatic property (PECs, dipoles, e.t.c.) such that the
resulting diabatic representation is smooth. Using these NACs in rovibronic calcu-
lations means the associated diabatic representation induced by action of U is an
exact transformation by construction since the regularised NAC matrix and U sat-
isfy Eq.(2.49). However, this method’s limitations lie in the choice of cost function
and the functional form of the switching functions, both of which introduce a degree
of artificiality into the regularised NACs. The impact of this artificial regularization

on the rovibronic solution is discussed in Chapter 3.

2.7 Motivations for the Chosen AtDT Boundary

Conditions

The process of diabatisation, particularly for complex multi-state systems, presents
numerous challenges tied to the non-uniqueness of the AtDT, its boundary con-
ditions, and inconsistencies between NACs and adiabatic property curves. It has
been discussed that modifying the NACs by a regularising correction (and will be
demonstrated in Chapter 3) can ensure an AtDT that satisfies the imposed boundary
conditions and produces a smooth diabatic representation. My choice of bound-
ary conditions was guided by a pragmatic aim to construct a physically meaningful
and spectroscopically useful diabatic model that is exactly equivalent to the adia-
batic representation. This section discusses the motivations behind these boundary

condition choices.

2.7.1 Constraining the AtDT at the Dissociation Limit

A natural boundary condition for diabatisation can be established at molecular dis-
sociation, enforcing coincidence between the adiabatic and diabatic representations
when the atoms are far separated. In this limit, the diabatic states exhibit zero elec-
tronic coupling (DC) and dissociate into the adiabatic channels describing isolated
fragments. The AtDT in this framework corresponds to a (signed) permutation ma-
trix, P, which effectively swaps the adiabatic states — in line with diabatic states that
cross. As r — oo, the AtDT approaches the constant matrix P, and the NACs are
required to vanish, as demonstrated by inserting a constant AtDT into Eq. (2.49).

1.179 showed that if at least one atom dissociates into a

However, Dalgarno et a
state with non-zero angular momentum (e.g., non-S states), electronic-nuclear cou-
pling cannot be neglected. Later, Butler %0 derived that NACs remain non-zero
when two electronic states correlate to atomic orbitals differing in angular momen-

tum by 1, due to dipole-like contributions. For example, ab initio calculations have
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181,182

shown non-zero NACs in H; persisting up to bond lengths of 80 Bohr and up

to 40 A in my ab initio calculations of KH (see Section 5.3).

Subsequent studies 83186

concluded that these non-vanishing NACs are fic-
titious, arising from the use of undesirable electronic coordinate frames within the
Born-Oppenheimer framework. This issue, known as the electron momentum trans-
fer problem, occurs because the Born-Oppenheimer approximation neglects dynam-
ical electron translation effects, leading to a static view of electronic structure and
preventing the electron clouds from dynamically following nuclear motion '37-188,
Thus, NACs computed this way are coordinate frame dependent. Solutions to this
problem include incorporating electron translation factors (ETFs) or using scatter-
ing coordinates to account for electron position and momentum, thereby remov-
ing non-vanishing NACs and ensuring accurate descriptions of slow atomic colli-

188

sions*>183185 More recently, Bian et al. '8 adopted a semi-classical phase-space

approach to address this electron-inertia issue.

For simplicity, we ignore long-range interactions between electronic states that
correlate to degenerate monomer states in the asymptotic region, which would oth-
erwise split the dissociation channel and introduce further electronic coupling 2180,
The persistence of non-vanishing NACs poses challenges for constructing diabatic
states and defining the AtDT boundary condition. Such diabatic states fail to align

189

with adiabatic ones and continue intercrossing as r — oo °”, as discussed in Sec-

tion 2.7.2. When NACs do not vanish at the separated atom limit, the construction

of useful diabatic states becomes impossible !°°.

In this thesis, non-vanishing NACs are assumed to have been removed during
the ab initio stage using one of the aforementioned methods, ensuring the validity
of the AtDT boundary condition, P. The focus of the ExoMol project is typically
on bound-state molecular dynamics in the spectroscopically relevant region of in-
termediate bond lengths. Thus, non-vanishing NACs in the separated atom limit are
not pertinent to our objectives. Assuming vanishing NACs as r — oo, along with the

considerations presented here, is sufficient to achieve my practical goals.

2.7.2 Special Case AtDT - Constant NAC Limit at Long
Stretches

As discussed in Section 2.7.1, NACs may persist in the seperated atom limit. For
the case of a constant NAC matrix (dW(!) /dr =0), Eq. (2.49) yields the following
solution for U

U=e™" (2.85)
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Figure 2.8: Illustration of the AtDT and generator matrix elements from the solution in
Eq.(2.85 for an artificial three-state system (W, = 2, Wiz = 0.5, Wy = —1).
The top panel depicts the long range behavior of the AtDT matrix elements
when NACs tend to a constant limits, and are seen to be oscillatory in behav-
ior. The bottom panel showcases the corresponding generator matrix elements,
which are linear functions indicative of a rotation of the diabatic configuration
space at a constant angular-frequency.
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which is easily verifiable by directly differentiating

(2.86)

therefore,

+
CZCZ% _ e_rW(l)erW(1>W(1) — W(l), (287)

satisfying condition Eq.(2.49).

Figure 2.8 illustrates this, where the generator elements, B = In(U), are seen
to be linear with bond length and represent constant velocities of the evolution (see
Appendix B for more details). The AtDT matrix will represent a rotation with con-
stant angular frequency given by the magnitude of the constant NACs. Therefore,
towards the limit r — oo, for systems with NACs that asymptotically approach a con-
stant, the diabatic configuration space will rotate about axes, planes, or manifolds
(depending on the dimension of the system studied) with fixed angular-velocities,
meaning the diabatic properties will oscillate between adiabatic properties and their
mixtures.

The top panel of Figure 2.8 plots the matrix elements of the AtDT, U, in this
seperated atom limit, where the elements are seen to be oscillatory and periodically
pass through the identity. The axes/planes/manifolds of rotation and the angular-
velocities are determined from the eigenvalues and eigenvectors of the constant
w) matrix, or could be understood from the Schur-decomposition as described

in section A.1.2.

2.7.3 Constraining the AtDT Toward Short-Stretches

This section focuses on constraining the AtDT at short internuclear separations
(united atom limit, r — 0) and at spectroscopically important regions, particularly
the equilibrium geometry.

Toward the united atom limit » — 0, NACs are not well defined since adiabatic
states will approach degeneracy at high energies. Macias et al.!°! showed that,
except for single-electron heteronuclear molecules, NACs can vanish in this limit
only when the electronic coordinate origin coincides with the nuclear charge center.
Additionally, Kim et al. 190" demonstrated that, similarly to the dissociation limit,
NACs may not vanish for coupled states correlating to atomic orbitals with an an-
gular momentum difference of 1. Despite this, Kim et al. 1% diabatise their 7-state
LiH system by initializing their evolution by setting the AtDT to the identity matrix
(U=1) at r = 0. Using the adiabatic atomic states as a reference, this ensures a

smooth transition of the diabatic states into intermediate bond lengths, making them
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physically meaningful and sensibly ordered (see discussion below). This diabatisa-
tion is sufficient for rovibronic calculations as the high energies in this region do
not significantly impact lower-lying bound states, and so the characterisation of the

NAC:s for r — 0 are not spectroscopically important.

The equilibrium geometry is central to molecular spectroscopy, as it controls
the dominant rovibronic energy level structure: electronic transitions depend on
the equilibrium energy, rotational transitions on the bond length, and vibrational
transitions on the potential well width. Consequently, the equilibrium electronic
structure, thus well-constrained by spectroscopic data, is central to theoretical treat-
ments like variational or effective Hamiltonian approaches. This representation is
typically accurate within the adiabatic framework, usually computed ab initio us-
ing the Born-Oppenheimer approximation which holds well near equilibrium for

11

most molecules''. A diabatic representation that deviates significantly from this

equilibrium structure 3

may compromise control over spectroscopically important
regions. For example, Morse oscillator functions effectively model adiabatic poten-
tial energy curves, with parameters directly controlling spectroscopic properties like
minimum energy, bond length, and well width. This approach is extensively used
to refine spectroscopic models to experimental data in the ExoMol project33%173,

enabling computation of an accurate and comprehensive rovibronic spectroscopy.

I aim to generate a diabatic representation that provides accurate control over
dominant molecular spectroscopy, which approximately coincides with the adia-
batic representation near equilibrium geometry. This approach, central to many

property-based diabatisation methods2%-79-68

, constructs diabatic potential energy
curves (or properties like dipoles) that match adiabatic curves outside avoided cross-
ings while remaining smooth within them. For example, in two-state diabatisations
(see Section 2.5.1), the diabatic curves cross at the avoided crossing and coincide
with the adiabatic curves elsewhere, with the NAC integral (mixing angle) typically
set to 7r/4 at the crossing point and 7/2 at dissociation3:13:105:170.26 " 1p this for-
malism, the AtDT starts as the identity matrix at short internuclear separations —
where NACs are assumed to vanish — and evolves into a signed permutation matrix

at dissociation, where diabatic states swap energy enumeration.

Considering the arguments presented here, I wish to adopt the boundary condi-
tion on the AtDT which equals the identity in the limit » — 0 in line with property-
based diabatisation approaches.

8While equivalent if generated by an AtDT satisfying Eq. (2.49), significant deviations are cor-
rected by the DCs.
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argmax(W(l)) r

) ij ¢ r

1 2 1.653

1 3 1.380 2.168 1.606
1 4 1.797

2 3 1.326 1.504 1.083
2 4 1.658 1.913
3 4 2.000

Table 2.1: The maximum positions of the NACs and the diabatic crossing geometries, r,
between states i and j are shown. The superscripts 'f” and ’b’ refer to the diabatic
crossing geometries using the forward and backward AtDT scheme, respectively.
It is clear that the relationship between the position of the NACs and the diabatic
crossing geometries are non-trivial for the general N-state coupled system.

2.7.4 Smoothness of the Diabatic Representation

In Section 2.6.1, I demonstrate that satisfying multiple boundary conditions on the
AtDT is non-trivial. The connection of NACs and smoothness of the diabatic prop-
erties is now discussed, which is unclear in the CH model presented in Figure 2.6.
The non-uniqueness of diabatisation means the relationship between NACs and the
character of the diabatic representation is inherently complicated. For N-state sys-
tems (N > 2), establishing this connection requires selecting a boundary condition
and calculating the AtDT, adding additional complexity absent in two-state sys-
tems. In the latter, one can easily sketch a diabatic representation and model a
consistent NAC since the diabatic crossing position typically coincides with the
NAC centroid3®13:165:170.26 with only the NAC width primarily controlling diabatic
smoothness. A simple test illustrates that shifting the NAC away from the optimal
avoided crossing position introduces steep gradients in the two-state diabatic PECs,
which is shown in Figures 2.5 and 2.12.

For N-state systems, the non-uniqueness of the diabatisation and the increased
dimensionality and interdependence of states make this process significantly more
challenging. For instance, Table 2.1 shows that for the CH model in Figure 2.6, the
NAC peak positions and diabatic crossing geometries differ significantly between
forward and backward AtDT evolution schemes. Thus, to ensure a smooth diabatic
representation a non-linear optimisation of potentially many coupled parameters is
likely required (see Section 2.7.5).

In summary, NACs fundamentally shape the diabatic properties, but their in-
fluence is non-linear and mediated by the AtDT and its boundary conditions. Un-
derstanding this relationship requires careful consideration of NACs and the AtDT

constraints. However, inconsistency between the NACs and the adiabatic PECs will
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hinder the construction of a smooth diabatic representation.

2.7.5 Artificialness and Reproducibility in Property-Based dia-
batisation

As discussed in Section 2.7.4, the relationship between NACs and the character of
the diabatic representation is ambiguous due to the non-uniqueness of diabatisa-
tion via the evolution method. Property-based diabatisation methods aim to ensure
smooth diabatic properties by optimising the AtDT. This can be achieved by ei-
ther minimising a cost function defining diabatic smoothness (method A) or mod-
elling smooth diabatic properties that reproduce adiabatic ones upon diagonalisa-
tion (method B, known as ansatz diabatisation33-89-8287.83.81) "Both approaches face
challenges with reproducibility and artificiality due to their reliance on optimisation
and functional parameterisation. Sections 2.8.4 and 2.8.5 discuss these methods in
more detail.

A popular approach in both methods is to use simple functions like Lorentzians
to represent NACs !70-171,165.166 Wwhjle holding well in the strong interaction region,
this parameterisation can introduce artificiality, as seen in the systems studied here
where NACs exhibit more complex structures. Furthermore, method B, while suc-

cessful for two-state systems 35172

, struggles with N-state systems (N > 2) due to
the difficulty of ensuring singularity-free adiabatic PECs and DCs. Even with con-
ditions to determine DCs from diabatic properties and NACs>® (see Section 2.8.4
for a general condition), constructing a consistent set of NACs and a diabatic rep-
resentation with singularity-free DCs and adiabatic properties remains challeng-
ing. Optimisation in both methods is computationally expensive, requiring repeated
AtDT evolutions. Alternatively, optimising the DCs directly such that diagonalisa-
tion with sketched diabatic PECs is equally challenging, as there is no guarantee
that a consistent set of DCs exists to exactly reproduce the adiabatic PECs. This
ansatz diabatisation scheme has been shown to reproduce well the dynamics of ul-
trafast nonadiabatic processes, but struggles to represent all regions of the adiabatic
PECs accurately® . Internal tests confirm that this approach is highly inefficient for
accurately reconstructing adiabatic PECs globally and demands careful functional
parameterisation and selection of initial diabatic PECs.

The HyAP method (see Section 2.6.4) attempts to address these limitations by
eliminating repeated AtDT evolutions and minimising artificiality through a regular-
ising correction. This correction, derived from optimised switching functions (see
Section 2.6.4), while artificial, are shown in Chapter 3 to introduce minimal changes

to the original NACs of N, and results in rovibronic energy differences within the
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expected error of ab initio calculations. Efforts are made to keep the switching
function as flexible as possible, ensuring the final AtDT remains guided by the un-
derlying electronic structure data. While some modification of NACs is necessary
to address inconsistencies in the spectroscopic model, these corrections are minimal
compared to the artificiality introduced by other property-based diabatisation meth-
ods, which may disregard electronic structure data entirely. Furthermore, a detailed
analysis of HyAP’s sensitivity to boundary conditions and switching functions is
a promising avenue for future research to further enhance the method’s robustness

and accuracy.

2.8 Other Methods for Computing the AtDT

This section presents several different methods to determine the AtDT. First,

two direct-diabatisation’¢7°

approaches in solution to Eq.(2.49) are compared
to the formal exponential line-integral propagator approach discussed in Section
2.6. Next, non-direct diabatisation approaches are discussed, namely property-
based 20968 and ansatz83-89:82:87.88.81 myethods, where their usefulness and impli-

cations are discussed.

Although the analysis presented here on the linear propagator and perturbative
approaches to solving the AtDT has not been published, it forms an important part
of the methodological development undertaken during my PhD. These approaches
represent well-established and broadly representative methods that were explored as
part of a comprehensive evaluation of possible solutions, prior to ultimately adopt-
ing the line-integral method. Notably, to the best of my knowledge, the perturbative
solution proposed here is the first of its kind in its specific application to solving for
the AtDT. These methods are included to document and compare their performance
with the selected approach, offering insight into the decision-making process that
led to the development of the HyAP method. While a more detailed comparative
study remains outside the scope of this thesis, it represents a valuable direction for

future work.

2.8.1 Linear Propagators: Euler’s Method

As a straightforward approach to solving Eq.(2.49), one could use the standard and
widely used Euler method which aims to solve first-order initial-value differential
equation of the form

dy

i f(x,y), where y(xo) = yo, (2.88)
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where yy is the initial-value of the function to be solved, y(x), known a priori to
computation, and f(x,y) is a function of the independent variable x and y(x). Euler’s
method, also known as first-order Runge-Kutta, is desirable since the computation
of high-order derivatives is not required, like in Taylor series solutions, but instead
only the functional value is needed. For example, the Euler method solution to

Eq.(2.88) can be written in the simple linear form

y(x+h)=yx)+ hf(xy(x)) . (2.89)
———

linear-propagator

The main drawback of the Euler method, and other linear propagator solutions like
higher order Runge-Kutta methods (a.k.a RK2, RK3, and most commonly RK4), is
that it relies on the solved object to posses addition algebra. It is known that the
AtDT belongs to the (Lie) group SO(N) which is not a group under the addition
operation (see Appendix B for a thorough discussion). Therefore, the resulting
solution will not be an object of SO(N), and will be expected to lose orthogonality.
Despite this, one may expect that a dense-enough grid, by which the AtDT is solved,
may overcome this problem where the propagated error will be small enough for

practical applications.

Here the formula of the Euler method in the context of solving Eq.(2.49) is
stated. Eulers method, the simplest of all predictor-corrector methods, will serve
to represent linear-propagator type method for comparison in this section. Euler’s

formula is then given by

Ul (r+h) = U (r) + U (WO (). (2.90)
~—_—————

linear-propagator

2.8.2 A Perturbative Approach

A perturbative approach is now introduced, where the aim is to directly evaluate the
(skew-symmetric) generator matrix of Eqns.(2.51,A.1,B.6) by some recursive for-
mulae in solution Eq.(2.49). Consider the Taylor series of the exponential generator

matrix U = exp(—K)

U:e_K:Z(_l)n K" (2.91)

where K is a real skew-symmetric matrix, k = —k", and U is the AtDT. Inserting

the above into Eq.(2.49), using the Taylor series expansion for the exponential and
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its derivative, yields the following formulae

e o e Lk (1A k] K] = WO

dr 257 6 T 24 R )
(2.92)

Here k' = ”Cll—'r‘, where this series of nested commutators is equivalent to the

Baker—Campbell-Hausdorff formula'®*!%3 (BCH) for matrix products of non-
commuting matrix exponents. It turns out that the BCH formula shows that the
Lie algebra determines the Lie groups structure (see Appendix B for more de-
tails). This is because the Lie algebras and Lie bracket operators (commutators)
define how the product of two Lie groups equals another Lie group, i.e. prod-
uct exp(A)exp(B) = exp(C). This result is promising as the formal exponential
line-integral propagator method produces sensible solutions for the AtDT and its

generator representation is a natural choice.

If ¥ and k¥’ commute, i.e. [K’,x] =0, then one can pull-out the k¥’ term on
either the left or right hand side, where the above expression reduces to K’ = w),
This solution is equivalent to the two-state problem in Section (2.5.1) where this
commutativity holds. In general, only the two-coupled state AtDT has this property,
where solution to Eq.(2.49) reduces to computing the scalar mixing angle from the

cumulative integral of the single NAC term — Eq.(2.53).

To solve for k, which can not be done analytically for the above mentioned
reasons, and one can use a perturbative treatment. K is now expanded in a power

series of the small perturbation parameter €,
k=Y €, (2.93)
i=1

and then choose as the leading order solution to align with the ‘two-state’ like prob-

lem, yielding

m:%/wmw (2.94)
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The N order term can be evaluated by the following expression

where 6y (i, j,k,---) is the N th_pested commutator defined by

%N(i,j,k,---) = [H [K;,Kj} ,Kk} ,} s KN—i— j—k—-- ] (2.96)

For example, the first, second, and third nested terms are given by

(51 (l) = [Ki/7 K‘N,i]
(i) = [k, K] ki ]
¢s(i,j,k) = [[ [, 5], %] s kv—i j] (2.97)
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Table 2.2: Lorentzian function parameters in Eq.(4.5) used to model simplified NACs for
testing different methods in solution of Eq.(2.49) for the AtDT. The NACs are
modelled after the 3-state N NACs described in Section 3.6.1.

2.8.3 Comparison of Methods in Solution of the AtDT

I now compare the formal exponential line-integral propagator method (FELIP),
the Euler method (section 2.8.1), and the perturbative method (Py, where N is the
perturbative order; see section 2.8.2) in solution to Eq.(2.49) for the AtDT. A 3-state
system representing a simplified version of the N, model described in Section 3.6.1
of Chapter 3 is used in the comparison. The three NACs are modelled here using the
Lorentzian function of Eq.(4.5), where Table 2.2 presents the functional parameters
and Figure 2.9 plots them as a function of bond length. The N, NACs are simplified
as Lorentzian functions since their integral is analytic and is given by Eq.(2.56).
Hence, the error due to integrating the NAC in the FELIP and perturbative methods

is removed. Therefore, since the Euler method does not require integrals of the
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Figure 2.9: Illustration of three NACs computed using Lorentzian functions in Eq.(4.5)
with parameters given in Table 2.2. The NACs are simplified models of the N,
NAC:s presented in Section 3.6.1.

NAC matrix, its comparison with the other methods measures the characteristics of
the solution due to the method applied only.

In order to study the effectiveness of the different solution methods, three met-
rics are compared. Firstly, the solution error is determined by the Frobenius norm of
the residual kinetic energy matrix in Eqns.(2.72,2.73) as described in Section 2.6.1.
Secondly, the orthogonality (unitarity) of the AtDT is computed by the Frobenius
norm of the difference matrix

UIUs -1, (2.98)

where Uy is the solved AtDT and I is the identity matrix. Larger values of the
orthogonality metric in Eq.(2.98) correspond to greater differences from orthogo-
nality, where zero means UZUS coincides with the identity.

Figure 2.10 illustrates orthogonality and residual kinetic energy metrics across
the three solution methods, where perturbative orders of 1, 2, 4, 7 and 10 are consid-
ered. The JULIA programming language was used to facilitate calculations, where
the grid of internuclear stretches had a spacing of 10~* A. Both the FELIP and the
perturbative approaches maintain orthogonal AtDT solutions, as demonstrated by
the stability of ||U; Uy —I||, which remains within the precision limit of Float 64
in JULIA (approximately 16 significant decimal digits). By contrast, the Euler
method shows substantial drift from orthogonality, with the metric reaching 12 or-
ders of magnitude greater than the other methods. This is to be expected since linear
propagation of the AtDT will introduce non-orthogonality in the final solution.

The bottom panel displays residual kinetic energy couplings, demonstrat-
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ing FELIP’s numerical exactness across all nuclear geometries considered. In-
terestingly, the perturbative method shows increased error at low expansion or-
ders, with the 10" —order solution error surpassing that of Euler’s method at ex-
tended stretches. This result suggests that exact AtDT solutions cannot be well-
represented by low-order perturbations of the two-state-like case (see Sections 2.8.2
and 2.5.1). Corrections are needed for the non-commutativity intrinsic to gen-
eral N-dimensional rotations, which are substantial in this 3D example, indicat-
ing that a perturbative approach may be unsuitable for capturing the complex non-
commutative behavior. The Euler method, with residual kinetic energy couplings at

1073 cm™!, lacks the precision needed for high-resolution spectroscopy.

In this section, I have demonstrated that linear-propagator solutions, at least for
the simplistic Euler method, do not maintain orthogonality and produce poor accu-
racy in the final result of the AtDT. However, as long as the AtDT varies smoothly,

and the grid is dense enough, higher accuracy results may be obtained.

2.8.4 Ansatz/Block-diagonalisation diabatisation

Ansatz-based diabatisation methods 83-89-82.87.88.81

, also known as block diagonali-
sation, prioritise practicality and often employ optimisation strategies. Unlike the
direct approaches discussed above, these methods operate in the reverse transfor-
mation direction, effectively performing an ‘adiabatisation’. The methods begin by
diagonalising the diabatic potential matrix

v v Ut (2.99)

ansatz

where I note that U here is now used to diagonalise the diabatic representation as

opposed to diabatising the adiabatic one. The associated eigenvalues of the ansatz
d)

V!

ansatz are then identified as the adiabatic potential energies. The diabatic PECs are

often sketched to be smooth functions of the nuclear geometries and chosen to co-
incide with the adiabatic potentials far from the avoided crossings. Then, the DCs
are optimised to ensure that upon diagonalisation with the diabatic potentials, the
(ab initio) adiabatic potentials are reconstructed from the eigenvalues. In practice
this method has been shown to reproduce well the dynamics of ultrafast nonadia-
batic processes, but struggles to represent all regions of the adiabatic PECs accu-
rately®. Particularly why this is is because the exact functional form of the DCs
are unknown, but will be heavily influenced by the topology of the potentials and
NAGC:s. Itis also not guaranteed that a set of DCs exist such that diagonalisation with

a sketched set of diabatic potentials will yield the desired set of adiabatic PECs,
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Figure 2.10: Comparison between different methods in solution to Eq.(2.49). The top panel
illustrates the deviation from orthogonality (see text for details) of the solved
AtDT — U — through Eq.(2.98), where 0 means exact orthogonality. The
bottom panel illustrates the residual kinetic energy after transformation by
the solved AtDT. Labels with P, refer to perturbative methods of order n and
FELIP means 'Formal Exponential Line-Integral Propagator’.

and will also require the simultaneous optimisation of the diabatic potentials. For
N-state systems, many highly-correlated parameters are often required to be op-
timised, where convergence whilst maintaining a sensible diabatic representation
over all regions of the configuration space is very difficult.

For two-state systems, however, this method is practical and well defined. Sec-
tion 2.5.1 shows how the two-state DC can be recovered from definition of two sim-
ple crossing diabatic potentials and a NAC centered on the crossing geometry, and
is given by Eq.(2.59). This gives a handle on representing the equilibrium geometry
and the shape of the avoided crossing ‘hump’, requiring no knowledge of the DC
functional form. The diabatic potentials are then constructed with simple Morse

oscillator functions or repulsive curves and the NAC by a simple Lorentzian with
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its position fixed. We have used this ansatz-procedure to fit the adiabatic poten-
tial energy curves of multiple molecular systems (YO>2, CH (internal testing), AIH

(internal testing), and SO 194y to experimental transition data.

Extension of condition 2.59 to the N-state case can be achieved by comparing
the resulting off-diagonal elements of the transformed matrix UTV(@U which, by
definition, should be zero in the adiabatic representation. This will provide con-
straints on the DCs to ensure an exact diagonalisation by U and a modelled set of
diabatic potentials. The vector of N(N — 1)/2 DCs, 2, is then given by

Dy = —;%—; Fy. (2.100)

F is a vector of transformed diabatic PECs defined by

= ~(d o
Fu=Y UnUl Vi e i#), (2.101)
m.k
where u is the vectorising index generated by “stacking rows” for i # j, and V(d) is

the diabatic potential matrix with only the diagonal elements being non-zero. The
matrix < is defined by

A =UiU}; i#jepm#kel. (2.102)

This provides a way to compute the DCs which ensure the diabatic electronic
Hamiltonian V(@) is diagonalised upon action of a diabatising unitary matrix solved
through Eq.(2.49) and N diabatic PECs. We are not aware of any such formulae
in the literature which mixes the representations in construction of a set of avoided
crossing adiabatic PECs, similarly to the presented 2-state methodology discussed

in 2.5.1, using a mixture of diabatic potentials and NACs.

Equation (2.100) does not explicitly impose a condition analogous to the two-
state case’® (Eq.(2.59)), where the NAC integral must equal 7/4 at the diabatic
crossing point. While one could attempt to derive conditions on the AtDT elements
from Eq.(2.100), their direct correlation with the NACs remains unclear. This is
because the AtDT is inherently non-unique (it depends on the chosen boundary

conditions) and highly nonlinear in the NAC terms.

Numerical tests show that Eq.(2.100) yields the required diabatic couplings
(DCs), enabling their diagonalisation with the modeled diabats through U. How-

ever, using Eq. (2.100) often results in DCs and adiabatic potential energy curves
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(PECs) with steep gradients when the NACs (and thus U) are not well-defined. Fig-
ure 2.11 illustrates an example ansatz/block-diagonalisation diabatisation for the
simplified N, system discussed in Section 3.6.1 of Chapter 3. A set of ansatz di-
abatic PECs are modeled with Morse oscillator functions and are sketched to co-
incide with the ab initio adiabatic PECs and cross smoothly through the avoided
crossings. A forward-evolved AtDT, U, is computed from the Lorentzian NACs in
Figure 2.9 and used in conjunction with the ansatz diabatic PECs to compute the
resulting DCs via Eq.(2.100). The DCs are seen to become discontinuous where
the eigenvalues of the ansatz diabatic potential matrix become degenerate. These
eigenvalues are observed to be significantly different to the desired ab initio curves
in dashed lines, showing large gradients at the avoided crossings, becoming degen-
erate which is impossible for true (adiabatic) Born-Oppenheimer states, and do not
coincide with the adiabatic curves far from the avoided crossings (at the asymp-
totes). The latter point is probably due to the forward-evolved AtDT not coinciding
with a permutation matrix at the separated atom limit, highlighting the ambiguities
in choosing a good boundary condition. It is clear that this method, while being
practical, is sensitive to the ansatz and complicates modelling a set of adiabatic
PECs.

It would be valuable to explore the application of the HyAP method along-
side constraints on the AtDT elements derived from Eq.(2.100). Unfortu-
nately, time constraints during my PhD prevented further investigation. Nev-
ertheless, I believe this approach could enable an efficient hybrid ansatz-block-
diagonalisation/property-based diabatisation method. The main challenge, how-
ever, lies in selecting appropriate boundary conditions for computing U. As demon-
strated in Section 2.6.4 and the simple test above, achieving adiabatic-diabatic
coincidence at both asymptotic limits is not guaranteed, particularly when using
simplified NAC functions to generate U, typical of practical diabatisation methods.
Consequently, regardless of the ansatz quality, the proposed method cannot ensure
adiabatic-diabatic coincidence at both asymptotes and thus global reconstruction of
the adiabatic PECs through diagonalisation of the model diabats.

A potential solution could be leveraging the HyAP method to optimise the
generator matrix trajectory to minimise the residuals between the eigenvalues of
the ansatz model and the ab initio adiabatic potentials — opposed to maximising
the smoothness of the resulting diabatic properties when diabatising the adiabatic
representation (see HyAP method in Section 2.6.4). The advantage of the latter (and
which the HyAP method is built on), is that the resulting diabatic representation is

exactly equivalent with the (ab initio) adiabatic representation, whereas the former
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Figure 2.11: Illustration of an ansatz/block-diagonalisation diabatisation for the simplified
N, system. A forward-evolved AtDT, U, is computed from the Lorentzian
NAC: in Figure 2.9 and used with ansatz diabatic PECs to compute the re-
sulting DCs via Eq.(2.100) which are shown in the bottom panel. The ansatz
diabats are modelled with Morse oscillator functions and are sketched to co-
incide with the ab initio adiabatic PECs (plotted with dashed lines) and cross
smoothly through the avoided crossings. The eigenvalues of the ansatz dia-
batic potential matrix are then plotted as solid lines.

approximates the adiabatic representation in favour of a desirable sketched diabatic

representation.

2.8.5 Property-Based diabatisation

20.59-68 5 built upon the pragmatic goal of construct-

Property-based diabatisation
ing diabatic property curves (or surfaces) which are smooth functions of the nuclear
coordinates which are both simpler to represent analytically and easier to treat nu-
merically (avoiding careful integration in regions of strong variations in the topol-
ogy gradient). This is motivated by the heuristic that a physical — or rather, sen-
sible — representation should efficiently yield physics which are not sensitive to
the representation. In this heuristic, the derived diabatic property curves are twice
differentiable due to the properties of the wave function and derivatives. If the
wavefunction, and/or property curves such as dipoles, exhibit steep gradients then
the computed spectroscopy — which often relies on integrating these functions —

will be sensitive to the topology of the associated spectroscopic model, with poten-
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tially poor convergence properties. Multiple studies *®°%% have shown the adiabatic
representation, which exhibits steep gradients in the coupling and potential energy
landscape close to the avoided crossings, to have poor convergence properties ex-

actly due to this.

The construction of (smooth) diabatic states through their properties constrains
the AtDT. The early work by Macias and Riera®* present a formal analysis on the
variation of molecular properies in the vicinity of avoided crossings, and show that
a significant reduction of strong NAC can be done by constructing smooth molec-
ular properties, and thus (near) diabatic states, in this region. Similar procedures
have been utilised in the literature, examples include the ionic and covalent struc-

tures of alkali hydrides®>?3 £20

which can be distinguished by the dipole momen
and represent natural diabatic states. For example, Werner and Meyer >, similarly
to Macias and Riera®, form diabatic states of LiH by computing mixing angles
which ensure the (linear) ionic component of the dipole moment passes smoothly

through the adiabatic DMCs.

These examples demonstrate that a simple optimisation procedure can be de-
fined by which the AtDT is computed, even without NACs computed a priori. Con-
sider some Hermitian matrix . corresponding to some molecular property, such as
the potential or dipole moment, the diabatic property matrix is then constructed by
the transformation

29 =yu" £y, (2.103)

where the superscripts ‘(a)’ and ‘(d)’ indicate the adiabatic and diabatic representa-
tion, respectively, and U is the AtDT. In this strictly property-based approach, one
then parameterises the AtDT in terms of the NACs. For a simple example, consider
modelling the i/ NAC Wig-l) with a characteristic position r;; and width parameter

%:j» then one parameterises the AtDT as

U(r{rijh {%i})- (2.104)

Computing the AtDT from the NAC matrix WO for a two-state system is simple
and is detailed in Section 2.5.1, however for an N-state system an evolution scheme
is required (e.g., see Sections 2.6 and 2.8.1). Then, with this parameterisation the
AtDT can be optimised to ensure the elements of the diabatic property matrix . (d)

are smooth, and could be approximately defined to minimise the following cost
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function from Section 2.6.3

\/ZH%(@;{'”?,-},{%j})HAZ — 0 (2.105)
k

where 27 is the second-derivative matrix of the diabatic property .29, and || - ||a
is defined as the Frobenius-norm operator in Eq.(2.83).

The optimisation itself is easy to achieve using any commonly available op-
timisation libraries. Throughout this thesis I use the Julia programming language
and the open-source Optim library’s Optim.minimiser function to minimise

loss functions using the Nelder-Mead method %1% Figure 2.12 demonstrates the

~ 70000 ~ 70000
1S IS
V] 8]
5 &
5 60000 - 5 60000 1
C )
[WN] w
© ©
‘€ 50000 - € 50000
] g
[e] O
[a o
25
3 -
20 A
o 27 < 15
g g
> S 10 1
1 -
1 )\
01 0
1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5
Bond Length, A Bond Length, A

Figure 2.12: Illustration of the optimisation of the AtDT as parameterised by the NAC
using Eqns.(2.103,2.104,2.105). The two-state 'TT system of sulfur monoxide
presented in Figure 2.3 is used as a test model to demonstrate the property-
based diabatisation method. The dashed and solid lines are the adiabatic and
diabatic PECs, respectively, where the bottom panels show the corresponding
NAC. The left plot shows diabatisation by an initial, un-optimised AtDT with
a guessed NAC whereas the right hand plots then show the diabatisation after
optimising the NAC (thence AtDT). Consequently, the diabats are made to be
smooth functions of r. A Lorentzian function is used to model the NAC.

effect of optimisation involved in property-based diabatisation as applied to the two-
state system presented in Section 2.5.1. The left plot illustrates how with an initial,
guessed NAC, diabatisation yields a set of diabatic PECs which exhibit a kink at

the avoided crossing, which is undesireable. However, the NAC coupling these
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states (and thence AtDT) is then optimised to ensure the diabats are smooth and
is illustrated in the right panel. This figure showcases how improper NACs will
yield non-physical diabatisations, where property-based methods aim to build a set
of NACs consistent with a smooth set of diabatic moelcular property curves.

To perform a similar optimisation but for an N-state system, repeated evalua-
tions of the AtDT evolution would be required after updating the NACs. This would
be computationally expensive, inefficient, and does not take into account the issue
with diabatic asymptotes. Instead, the proposed HyAP method in Section 2.6.4 in
conjunction with a set of simple Lorentzian NACs centred on the avoided crossing
geometries — possibly fitted to two-state diabatisations within the N-state model —
would be more practical and efficient. Alternatively, an ansatz method may be better

suited, and is discussed in Section 2.8.4.



Chapter 3

The Numerical Equivalence of
Adiabatic and Diabatic
Representations in Nuclear Motion

Calculations

3.1 Introduction

As discussed and mathematically shown in Chapters 1 and 2, non-adiabatic cou-
plings (NACs) are a result of relaxing the Born-Oppenheimer approximation, and
arise due to the subsequent coupling of electronic and nuclear motion in molecules.
These derivative couplings (DDRs), particularly near avoided crossings or conical
intersections! become singular, and therefore must not be neglected. As discussed
in Chapter 1, these couplings are critical for describing physicochemical processes
such as photodissociation, non-radiative transitions, and collision dynamics. The
adiabatic representation diagonalises the electronic Hamiltonian, where NACs man-
ifest as derivative terms within the vibrational nuclear kinetic energy operator (see
Eq.(2.30)), which is non-diagonal in this frame. By contrast, the diabatic repre-
sentation was shown in Section 2.4 to eliminate both first- and second-order DDR
couplings through a unitary transformation of the molecular Hamiltonian. In this
diabatic representation, the vibrational nuclear kinetic energy operator is now diag-
onalised at the cost of introducing off-diagonal diabatic couplings (DC) within the
electronic Hamiltonian. The diabatic representation was shown to be desirable since
PECs of the same symmetry are allowed to cross, where (it is assumed) property

curves become smooth. This chapter focuses on the numerical equivalence of these

! Avoided crossings and conical intersections arise in regions of the molecular configuration space
where potential energy curves/surfaces of states of the same symmetry near degeneracy.
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two representations within nuclear motion calculations, where rovibronic energies
and wavefunctions are shown to be preserved whilst the different representations
offer distinct computational advantages depending on the system.

Despite the routine use of diabatisation to treat avoided crossings in molecular
PECs, few studies have rigorously examined the numerical equivalence of adia-
batic and diabatic representations. Such an investigation would be valuable not
only for benchmarking nuclear motion codes but also to better understand the indi-
vidual contributions of terms in the adiabatic and diabatic Hamiltonians. Numerical
equivalence refers to the principle that both representations should yield identical
physical observables, such as energy eigenvalues.

The solution of the rovibronic Schrédinger equation should be independent of
whether the adiabatic or diabatic representation is employed“®. In practical numer-
ical applications, equivalence is expected to emerge as calculations become more
precise, for example, by increasing the size of the basis set or number of points in
the solution grid. However, this equivalence, often assumed, is rarely demonstrated.
Studies investigating convergence between the two representations are scarce. For
instance, Zimmerman and George?” performed numerical convergence tests on
transition probability amplitudes for collisions in collinear atom—diatom systems.
They demonstrated equivalence but found that convergence behavior of the diabatic

representation to be much faster. Similarly, Shi et al. 98

examined the convergence
of energy eigenvalues and eigenfunctions in adiabatic and diabatic representations
using a sinc-DVR method. While equivalence was ultimately achieved, it required
a complete adiabatic model and a conical intersection at high energy.

The following section demonstrates the numerical equivalence between the
adiabatic and diabatic representations within nuclear motion calculations for several
diatomic molecules. The results presented in this chapter are based on our recent

publications 38197

, where we apply the diabatisation methods detailed in Chapter
2 to the yttrium oxide (YO), carbon monohydride (CH), molecular nitrogen (N»),
and a synthetic 10-state diatomic systems. The presented numerical equivalence of
the adiabatic and diabatic representations within nuclear motion calculations is the
first, where our recent article® also demonstrated that vibronic energy convergence
rates was faster diabatically for the strongly NAC coupled YO system but initially
faster adiabatically for the weakly coupled CH system, illustrating the importance
of choosing an appropriate frame. This Chapter also demonstrates that a regularis-
ing correction to the NACs, through computation via the HyAP method (see Section
2.6.4 of Chapter 2), ensured their internal consistency between different DDR com-

ponents and adiabatic PECs while minimally influencing the rovibronic solution
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within the expected error of ab initio calculations — a first regularisation of this type
to the best of my knowledge (see Section 2.6.4 for details). The combined results
of this chapter and Chapter 2 have built a robust set of methods in the rovibronic
treatment of NAC terms and production of a practical and accurate diatomic line
lists, essential for the computation of high resolution molecular spectra in line with
the ExoMol project.

YO exhibits avoided crossings between the B2yt D2t and AZI1, C2I1 elec-

1 172

tronic states as described by Brady et a in the production of a semi-empirical

line list. YO is of significant scientific interest due to its broad range of applications

and astrophysical sightings. YO has been observed in stellar spectra, typically of

198-201 202,203

cool stars , utilised in high-temperature solar furnaces

204

where its spectra
has been used to probe high temperature materials“””, and explored in the devel-
opment of magneto-optical traps, showcasing its potential in quantum control and
ultracold physics?>-2%8. The complex electronic structure of YO is characterised
by multiple low-lying electronic states which exhibit avoided crossings, making it
a valuable target for accurate theoretical modelling.

CH is one of the most extensively studied free radicals, known for its occur-

209210 ppafe

rence in a wide array of environments. CH has been detected in flames
ing it of interest to industrial application. Non-terrestrially, CH has been observed
both in solar spectra and stellar atmospheres 2! =213 It is also observed in cometary
spectra®'4, the interstellar medium (ISM)?!>-218 "and in molecular clouds?!'® high-
lighting its importance for astrochemical studies. This Chapter studies the non-
adiabatic interactions between the C2Xt, 22¥*. 32¥+t and 423t states of CH,
where the analysis begins at the two-state system [C 22 T,22X "] which are coupled
by a weak NAC3®, and then increases the complexity to the four-state system where
equivalence and the HyAP method are tested.

Ny, is a spectroscopically important molecule since it makes up nearly 78 per-
cent of Earth’s atmosphere, yet its strong triple bond renders it highly inert, pos-
ing challenges for chemical utilisation??? and also spectroscopic detection. This is
because of both its weak rovibrational lines and the scarcity of any tracer gases.
Despite this, N is indispensable across biological, agricultural, and industrial pro-
cesses such as in the nitrogen cycle and the production of ammonia via the Haber-

Bosch process???22. N,

uv 223-225

has also been observed within our solar system in the
and the ISM?%%. The electronic structure of N exhibits a highly com-
plex web of avoided crossings across multiple electronic states>>’~22°. The work in
this Chapter is particularly interested in the avoided crossings between the [1 12;,

2 12;, 3 12;] states which are strongly bound and exhibit significant non-adiabatic
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coupling, which will be used to test the HyAP diabatisation method (see Section
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Figure 3.1: Illustration of the [D?X*, B2£*] and [C 22+, 2 2X*] avoided crossing systems
([black, blue] lines) for the YO and CH diatomics, respectively, which are used
to perform tests on the adiabatic and diabatic equivalence. The top panels show
the diabats (solid lines) and adiabats (dashed lines). The bottom panels show
the corresponding NAC (in the units of inverse A ) defining the transformations.

3.2 2-State Spectroscopic Models

As an illustration of the numerical equivalence between the adiabatic and diabatic
representations used to compute the diatomic rovibronic solution, two model two-
state electronic systems are investigated. We study YO and CH with their diabatic
and adiabatic curves shown in Figure 3.1. The respective spectroscopic models in-
put to our variational code Duo (see Section 2.3) are detailed below. We chose these
systems for an initial analysis because they exhibit contrasting spectroscopic behav-
ior, where their adiabatic and diabatic representations differ significantly. YO will
be seen to have a strong NAC and weak DC characterised by a sharp avoided cross-
ing, whereas CH contains a weak NAC and strong DC characterised by a smooth
and broad avoided crossing. This behavior is mostly attributed to the energetic
separation between the interacting states being small for YO and large for CH.
Therefore, achieving equivalence for both YO and CH will demonstrate that the
implementation of our diabatic Duo module to be robust for many different system

types of varying degrees of NAC strength.

3.2.1 YO spectroscopic model

As an example of a two-state system with strongly bound electronic curves charac-
terised by a narrow avoided crossing and a large NAC, we choose the ab initio PEC
curves of the B2X" and D?X™ states of YO from Smirnov et al. >3 with the NAC
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from Brady et al. 72, We model this YO system using the mathematical footing and

theory from Section 2.5.1 of Chapter 2, which is summarised below.

We model the diabatic B>X* and D?L* PECs of YO using a simple Morse

oscillator function given by
V(i) =T + (Ae—Te) [1 —exp(—b(r—re))]?, 3.1)

where r. is the equilibrium position, A, is a dissociation asymptote, the expansion
coefficient b controls the width of the potential well, and A, — V (r¢) is the dissoci-
ation energy. As is often done for strong NACs, we model the [B?LT, D22 1] NAC

of YO with a Lorentzian function given by

Y

My 1
R N

; (3.2)
where ¥ is the HWHM parameter and r is its center defined to align with the cross-
ing point of the diabatic curves. The model Morse oscillator PECs and lorentzian
NAC are illustrated in Figure 3.2 where their functional parameters were obtained
by a least squares fitting to the corresponding ab initio data, and are listed in Ta-
ble 3.1. Accuracy of the fit at this stage is not important, since we only wish to test
the equivalence of the adiabatic and diabatic representations, where only a consis-

tent set of models is required.

For the Lorenztian model of the NAC, Eq. (3.2) can be easily integrated to
yield the AtDT mixing-angle f(r) given by (see also Eq.(2.56))

r 1 —
B(r)= Z+§arctan (r yrc> , (3.3)
where r; is corresponds to the crossing point between the diabatic PECs and is
obtained as numerical solution to Vld = Vzd, which is listed in Table 3.1. It is required
that the Lorentzian centroid r. coincides with the diabatic crossing point otherwise
the resulting adiabatic PECs and DC will become singular. This can be seen in the

following expression for the two-state DC (from Eq.(2.59) of Section 2.5.1)
1
Vi (r) = 3 tan(2Bia(r) (v (1) = V(¥ (1), (3.4)

where at the crossing point, the tangent function is singular tan(2f2(r.)) =
tan(7/2) = . However, the difference term in the diabatic potentials approaches

zero at the crossing point, negating the singularity from the tangent term. There-
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fore, if the crossing point differs from the Lorentzian center, where the mixing angle
is computed as /4, the DC becomes singular. This is also true for the adiabatic
PECs, which are obtained from the diabatic potentials and DC as the eigenvalues
of the diabatic electronic Hamiltonian (see Eqns.(2.60, 2.61, 2.62) in Section 2.5.1)

which read
d r d r
i = SO L v Svimpravie). 6
d r d r
iy = PO L v Svimprawie). 6o

The YO DC curve is computed using Eq. (3.4) with the diabatic PECs and the
mixing-angle computed via the parameters in Table 3.1. The adiabatic PECs of YO
were computed as the eigenvalues of the diabatic electronic Hamiltonian given by
Egs. (3.5, 3.6). The model YO adiabatic PECs and DC are illustrated in Figure 3.2.

Finally, the second-order DDR K matrix is computed from Eq.(2.17) which,
for a two-electronic state system, has only one unique element given by

(m)?
K2x2=—<W(1)>2: (W1;> (sz))z . (3.7)

Table 3.1: The molecular parameters defining the YO spectroscopic model

Parameter Vfl V2d Wl(zl )
T.,cm~ ' 20700.000 20400.000

Fe, A 1.890 2.035

b, A1 1.500 1.260

Ae,cm™' 59220.000  59220.000
y,cm™! 0.010
re, A 1.946

3.2.2 CH spectroscopic model

As an example of a weakly non-adiabatically coupled two-electronic state system
characterised by a large energetic separation, we investigate the CH spectroscopic
model corresponding to the C2X* and 2%X* ab initio curves by van Dishoeck 23!
We model the diabatically bound CIT state with a Morse oscillator Eq. (3.1), which
is seen to have a diabatic well depth of about 16700 cm™"! (2.0705 eV). The 222"
state is diabatically repulsive, much different to the YO two-state model, with the

dissociation energy lower than that of the C2X* state by about 10000 cm~!. We
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chose to model the C?X* PEC using the following form
V(r) = Do +Cy/r". (3.8)

The NAC between the CH [C2Xt, 22X 1] states are modelled using the Lorentzian
function of Eq. (3.2), where the Lorentzian parameters were chosen to match the
NAC from van Dishoeck>3!. All parameters defining the CH [C2X*, 22X+] spec-
troscopic model are listed in Table 3.2. Similarly to YO, the value of the crossing
point r is obtained as a numerical solution to V]d = Vzd, the DC is determined via
Eq.(3.4), and the adiabatic potentials are obtainted via diagonalisation of the dia-

batic CH electronic Hamiltonian.

Table 3.2: The molecular parameters defining the CH diabatic spectroscopic model

Parameter Vld VZd X3y~ Wl(zl)
T.,cm ' 32500.000 0.000

re, A 1.120 1.120

b, A1 2.500 1.968

Ae,cm™' 49200.000 29374.000  39220.000

Cy, A 18000.000

y,cm™! 0.200
e, A 1.657

3.3 Solving the Two-State Rovibronic Schrodinger

Equations
The fully coupled rovibronic Schrodinger equation for the CH and YO doublet sys-

tems are solved using the variational code Duo, where the methodology in its solu-
tion is discussed in Section 2.3 of Chapter 2. As part of this work, the Duo kinetic
energy operator was extended to include the first derivative component required
for implementation of the NAC using the sinc-DVR representation?*?. The DBOC
terms can be either provided as input or generated from the NAC using Eq. (2.16).
Demonstrating numerical equivalence between the adiabatic and diabatic rep-
resentations of nuclear motion calculations, despite being the primary aim of my
work, is not my only focus. Developing a tool which allows one to study the impor-
tance of different DDR terms on the computed spectroscopy would prove invaluable
to any theoretical treatment of a diatomic system. Omission of DDR coupling terms
is common practice, but their effect on the rovibronic energies, and therefore deter-
mination of a quantitative error on the rovibronic solution, is nontrivial. To address

this, Duo allows the omission and inclusion of any combination of DDR couplings,
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to which we define three levels of approximations to compare to: (Al) in the adia-
batic model, both DDR terms are switched off (Wl(zl) = K =0); (A2) in the adiabatic
model, the diagonal DDR is switched off (K = 0), but the NAC is kept in; (A3) in
the diabatic model, the diabatic coupling is set to zero (Vi = 0).
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Figure 3.2: Full adiabatic (left) and diabatic (right) models of the B2yt and D23t systems
of YO. The top panels show the PECs, where the adiabatic PECs include the
diagonal DDR correction aK and o = h/(87%cp). The bottom panels show
the corresponding coupling curves, NAC (left) and DC (right).

3.3.1 The YO solution

The vibronic energies (J = 0.5) of the coupled B>~ and D2X* systems are com-
puted in both the adiabatic and diabatic representations as accurately as possible.
This serves to establish a baseline while demonstrating the equivalence of the two
representations. Although theoretical equivalence (i.e., identical results within nu-
merical error) is expected between these representations, the practical realisation is
subject to numerical convergence and other computational limitations. For instance,
Duo employs a PEC-adapted vibrational basis set, constructed by solving the pure
vibronic problem, which inherently differs depending on whether the adiabatic or
diabatic representation is used. Therefore, both representations should exhibit dif-
ferent convergence behaviour.

The YO model curves detailed in Section 3.2.1 are presented in Figure 3.2,
where the diagonal Born—Oppenheimer correction (DBOC) coupling (K) is added
to the adiabatic PECs for clarity. Despite the significant differences between the
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adiabatic and diabatic models — most notably a pronounced spike in the middle of
the adiabatic PECs — Duo should yield identical eigenvalues and eigenfunctions,
provided the calculations are fully converged.

The lowest twenty rovibronic energy term values (J = 0.5) computed using the
two spectroscopic models are listed in Table 3.3. Despite the approximate Duo as-
signed quantum number labels being vastly different between the two calculations,
the energies are indeed identical (within 2.5 x 107> cm™!). Duo assigns quantum
labels via the largest contribution from the corresponding basis sets, which in both
cases are very different and so are their state interpretations, in which case states of
matching energy enumerator n are compared.

Having established numerical equivalence, we now investigate the role of dif-
ferent non-adiabatic couplings within the YO model. Specifically, we analyse the
impact of the three approximations outlined in Section 3.3 on the calculated rovi-
bronic energy terms of YO (J=0.5). The effects of these approximations are sum-
marised in Table 3.3, alongside results from the fully coupled models. For the adi-
abatic model, the omission of the DBOC coupling term (K, approximation A2) has
the most significant influence, particularly on the B>X* term values. By contrast,

neglecting the off-diagonal diabatic coupling term (Vl(;i )

= 0, approximation A3) in
the diabatic model has a smaller impact. Quantitatively, approximation A2 yields
a RMSE in the rovibronic energies (computed for the lowest twenty states) ap-
proximately 1.5 times larger than adiabatic approximation A1, and 10 times larger
than the diabatic approximation A3. Nevertheless, it is evident that any simplifi-
cation or omission of non-adiabatic couplings introduces significant errors, which
are unacceptable for high-resolution spectroscopic applications. This is the central
conclusion from this work, the exclusion of any non-adiabatic correction in models
describing systems with electronic state crossings must be carefully evaluated, as
such omissions can significantly compromise accuracy.

Out of the two representations, the adiabatic model is usually considered to
be more complex to work with. Its curves have complex shapes with the model
being very sensitive to the mutual consistency of the curves V}, V' and WI(ZI) around
the crossing point. The disadvantage of the diabatic representation is that it does
not come out as a solution of the (adiabatic) electronic structure calculations and
needs to be constructed either through a diabatisation approach20-39-61,26.69-75.49 ¢
approximated. However, it is clear for systems of strong NAC, then the diabatic
representation offers a more physical model which is both more easily modeled and
yields rovibronic energies less sensitive to the DC than the adiabatic model is to

changes in the NACs.
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Table 3.3: The rovibronic (J/ = 0.5) energy term values (cm™1) of the B2L" (B) and DXt
(D) systems of YO computed using the adiabatic and diabatic representations.
The energies are listed relative to the lowest J = 0.5 state. The root mean square
error of the rovibronic energies computed via different approximations is given
in the last line.

n Adiabatic Diabatic
E  E(DDRs=0) E(K=0) State V E E(Vi=0) State v
1 0.000000 0.000000 0.000000 B 0 0.000000 0.000000 D 0
2 344431810  347.928597 191.831751 B 1 344.431809 351.249676 B 0
3 561.079914  690.986320  492.221984 B 2 561.079921 549.732652 D 1
4 1009.133229  967.537324  983.098980 B 3 1009.133232  1002.246089 B 1
5 1108.354299 1132.062465 1129.463766 D 0 1108.354283  1095.516787 D 2
6 1612.539760 1553.296745 1777.897073 B 4 1612.539736  1637.352406 D 3
7 1688.323434 1897.761066 1868.635701 B 5 1688.323453  1647.646531 B 2
8 2179.350796 2008.167697 2345.749886 D 1 2179.350783  2175.239507 D 4
9 2297.569318 2465.488852 2396.923772 B 6 2297.569321 2287.451003 B 3
10 2718.929830 2689.784491 2839.568147 B 7 2718.929830 2709.178092 D 5
11 2928.147305 2925.374682 3115.611400 D 2 2928.147294  2921.659505 B 4
12 3247.771603  3395.227251 3377.138924 B 8 3247.771603  3239.168161 D 6
13 3559.124439 3442.432354 3666.238711 D 3 3559.124429  3550.272037 B 5
14 3772447582 3862.695406 3963.866748 B 9 3772.447578  3765.209712 D 7
15 4181.801597 4167.979957 4373.535285 D 4 4181.801594 4173.288598 B 6
16 4295.897860 4333.054560 4472.298326 B 10 4295.897854  4287.302747 D 8
17 4783.958004 4805.617146 4913.118506 B 11 4783.958001 4790.709188 B 7
18 4829.238038 4866.961640 4961.045768 D 5 4829.238030 4805.447266 D 9
19  5320.626170 5275.859430 5497.071432 B 12 5320.626156  5319.643267 D 10
20 5417.844769 5552.275088 5610.459386 D 6 5417.844772  5402.533809 B 8

RMSE 97.968392 143.401905 14.339312

3.3.2 Eigenfunctions and Reduced Density

It is instructive to compare the eigenfunctions (pl.J "*(r) of the adiabatic and diabatic
solutions and different approximations. To this end we form reduced radial densi-
ties of the eigen-state in question. The eigenfunctions (pl-] " computed by Duo are

expanded in the basis set |n),
J,T Al T
¢/ =Y Cllln), (3.9)
n=1

where N is the basis size and Ci’nf are the expansion coefficients used to assign
quantum numbers by largest contributions. |n) denotes the full basis (see Section
2.3 for details on this A — S basis) |n) = |state,J,Q,A,S,X,v). where ‘state’ is the
electronic state, S is the total electron spin angular momentum, v is the vibrational
quantum number, and A, X and Q are the projections of electron orbital, spin, and
total angular momentum along the internuclear axis, respectively. The reduced ra-

dial density piJ’T(r) is then given by

Pt () =Y YIC Pl (), (3.10)
k

v
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where |k) = |state,J, Q, A, S,X) and j,(r) are the vibrational wavefunctions. The re-
duced density states are radial probability density functions averaged over all quan-
tum numbers in |n). This is an efficient way of examining the behaviour of the
wavefunctions without looking in a hyperdimensional space defined by quantum
numbers |n).

Figure 3.3 shows selected reduced radial state densities of YO computed via
the adiabatic and diabatic representations and approximations Al, A2, and A3. As
expected from the energy comparisons of YO, the diabatic and adiabatic representa-
tions produce identical results, whereas the reduced densities quickly deviate when
omitting the NAC and/or K corrections. It appears that omitting only the DBOC (ap-
proximation A2) yields significantly different reduced densities than when all NAC
terms are removed from the calculation (approximation Al), at least concerning
the lower energy levels. Furthermore, the diabatically computed reduced densities
when omitting the DC (approximation A3) yields almost identical results than the
fully coupled calculations. These results are consistent with the computed energy

comparison in Section 3.3.1.

3.3.3 Adiabatic and diabatic solutions for CH

Our investigation now shifts to a system different to YO, the C 2y+ and 225t states
of CH which are depicted in Figure 3.4. In the adiabatic representation, these states
are characterised by a large energy separation and a broad, weak NAC. Unlike YO,
the DBOC term (K) does not introduce any spike-like features into the adiabatic
PECs of CH. It can therefore be expected that the influence of the DBOC on the
rovibronic solution to be less than that of YO. In the diabatic representation, the
system consists of a bound and a repulsive state which cross at large internuclear
distances and at high energies which — according to perturbation theory which pre-
dicts energy corrections inversely proportional to the energy difference — should
not significantly influence the lower rovibronic states of C2L". Regardless of the
representation used, the region above the first dissociation channel (39220.0 cm ™)
is heavily (pre-)dissociated and should contain both pre-dissociative and continuum
states. Duo is capable of computing both bound and continuum eigensolutions. The
bound-state wavefunctions satisfy standard boundary conditions, decaying at both
small and large distances. Continuum wavefunctions, also computed using the sinc-
DVR method, by contrast satisfy the boundary conditions that enforce vanishing at
the edges of the simulation box, along with their first derivatives 233, To facilitate
our analysis, (quasi-)bound and continuum states are distinguished by examining

the wavefunction behaviour at the ‘right’ border ry,x. Bound states vanish com-
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Figure 3.3: YO reduced density states for the lowest 5 bound levels with n being the en-
ergy enumerator given in Table 3.3. These reduced densities are illustrated
and computed using different levels of theory: diabatic representation with DC
(blue dotted); diabatic model with the DC turned off (magenta, A3); adiabatic
representation with both the NAC and K correction included (lime green); adia-
batic representation with NAC only (orange, A2); adiabatic representation with
no correction (red, Al).

pletely at large distances, while continuum states exhibit oscillatory behavior for
r — oo, with a non-zero density that extends to rpax 234

The resulting bound state rovibronic energy term values are computed and
listed in Table 3.4 for all five cases, including non-adiabatic and diabatic couplings
with approximations as in the YO example. The full diabatic and adiabatic (bound)
C?X* energies are fully equivalent within 107® cm~! (here shown up to the second
decimal point). However, any degradation of the theory leads to significant changes
in the calculated rovibronic energies of the C>X* state, with the error quickly de-
teriorating already for v = 2. For example, removing the DC term, the diabatic
solution becomes meaningless with many non-physical bound states above the first
dissociation channel, non-existent in the case of the full treatment. A similar effect
is caused by the omission of the NAC terms from the adiabatic picture with bound

spurious 22X states being produced. Although the omission of the K term from
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Figure 3.4: Full adiabatic (left) and diabatic (right) models of the C2X* and 22ZF system
of CH. The top panels show the PECs, where the adiabatic PECs include the
diagonal DDR correction aK, where o = h/(87%cut). The bottom panels show
the corresponding coupling curves, NAC (left) and DC (right).

the adiabatic solution seems harmless for the topology of the corresponding PECs,
even this case leads to a spurious v =0 22y + state. Therefore, the conclusion is
that every non-adiabatic term should be considered important, unless proven oth-
erwise. The RMSE on the (six comparable) computed rovibronic CH energies for
the diabatic approximation A3 is approximately 24 and 13.5 times larger than for
adiabatic approximations A2 and Al, respectively. Therefore, molecular systems
weakly coupled by a broad NAC with PECs of large energetic separation (conse-
quently large DC) have an adiabatic representation that yields rovibronic energies
less sensitive to the DDR terms compared to the corresponding diabatic representa-
tion.

The corresponding reduced densities for some lower lying bound states of CH
(C2xt, J=0.5) are shown in Figure 3.5 (n = 1,2,3). The low lying vibronic states
of C?X* are seen to be largely unaffected by the omission of the DDRs or DC
since they are energetically well separated from the region of non-adiabatic inter-
action, in this case occurring near dissociation. However, the reduced densities of
the 22X+ state (n = 4) quickly diverge when removing the NAC and/or K correc-
tion. The 22X state is adiabatically bound and diabatically unbound, where this

drastic difference is seen in the reduced densities of Figure 3.5, and corresponds to
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energy levels which arise from PECs of very different character. For example, in
the diabatic case where the DC is omitted, the n = 4 state corresponds to the bound
C?X*(J =0.5,+,v = 3) state whereas in the adiabatic A1 and A2 cases the n = 4
bound state corresponds to the bound C2X*(J = 0.5, +,v = 0) state. In the cases
where the DDRs and DC are fully accounted for, no fourth bound state exists since
the couplings will push it into the quasi-bound region about the adiabatic potential
hump of the C2X* state. This quasi-bound nature begins to show itself in the re-
duced density of the adiabatic case with K = 0 where small oscillations propagating

to the right simulation border at 4 A are seen.

Table 3.4: The rovibronic (J = 0.5,1.5 and 2.5) bound energy term values (cm™') of the
C2Xt(C)and 22X1(2) systems of CH computed using the adiabatic and diabatic
representations. The energies are listed relative to the lowest J = 0.5 state.

J e/f Adiabatic Diabatic

State v E E(DDRs=0) E(K=0) State v E E(Vi2=0)

0.5 e C 0 0.00 0.00 0.00 C 0 0.00 0.00
0.5 e C 1 2450.23 2448.12 2446.42 C 1 2450.23 2524.70
0.5 e C 2 4617.30 4608.42 4601.48 C 2 4617.30 4822.76
0.5 e 2 0 11191.50  13607.15 C 3 6894.18
0.5 e 2 1 12464.33 C 4 8738.95
0.5 e 2 2 13549.98 C 5 10357.08
0.5 e 2 3 14449.75 C 6 11748.57
0.5 e 2 3 C 7 12913.41
0.5 e 2 3 C 8 13851.60
0.5 e 2 3 C 9 14563.15
0.5 f 2 2 27.83 27.82 27.82 C 6 27.83 28.08
0.5 f 2 3 2476.23 2474.10 2472.39 C 7 2476.23 2551.11
0.5 f C 0 4641.14 4632.21 4625.24 C 8§ 4641.14 4847.45
0.5 f 2 1 11205.63  13620.21 C 9 6917.10
0.5 f 2 2 12478.11 C 0 8760.06
0.5 f 2 3 13562.86 C 1 10376.30
0.5 f 2 4 14461.35 C 2 11765.83
0.5 f 2 4 C 3 12928.61
0.5 f 2 4 C 4 13864.61
0.5 f 2 4 C 5 14573.78
RMSE 5.29 9.42 126.45

3.3.4 Continuum solution of CH: photo-absorption spectra

In order to illustrate the equivalence of the continuum solution involving the re-
pulsive 22X+ state of CH, we model a photoabsorption spectrum of the X2IT —
C2yt/22Y transitions, where we follow the recipe from Pezzella et al. 23>, Ten-
nyson et al.>3¢ for this analysis. For the X2II state, we model its PEC using the
Morse function in Eq. (3.1) with the parameters listed in Table 3.2. For the CH tran-
sition electric dipole moments fix ¢ = (X*I1| 1 |C?L") and fix » = (X*II| u [2227),

k23l

we adopt the ab initio curves computed van Dishoec with an approximate
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Figure 3.5: CH reduced density states for the lowest four bound rovibronic levels with n
being the energy enumerator given by the row number in Table 3.4. Differ-
ent levels of theory are used to compute these reduced densities and are illus-
trated: diabatic representation with DC (blue dotted); diabatic model with the
DC turned off (magenta, A3); adiabatic representation with both the NAC and
K(r) correction included (lime green); adiabatic representation with NAC only
(orange, A2); adiabatic representation with no correction (red, Al).

model using the following function

ﬂ(l’):(C()-i-Clép)(l—ép), 3.11)

where &, is the Surkus !7® variable given by

D __ P
g, = ref (3.12)

=—F.
rp+rref

The parameters defining the diabatic transition dipole moment (TDM) functions are
listed in Table 3.5. The adiabatic TDM curves are obtained through the unitary
AtDT transformation U(r)

B(r) = BY)U" = (1, 13) = (i cos(B) — s sin(B), s sin(B) + i cos(B))
(3.13)
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where the mixing-angle B(r) is computed from Eq. (3.3) using the CH [C2L,
22¥*] Lorentzian NAC parameters in Table 3.2, and [L?, ﬁg are the diabatic TDM
curves (X?TI| u|C2X*) and (X°TI|u |222H), respectively. The full photodissoci-

ation system, in both the adiabatic and diabatic representations, is illustrated in

Figure 3.6.
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Figure 3.6: Adiabatic (left) and diabatic (right) models of the photo-absorption system of
X?I1 — C2?2*/22%* of CH. The top panels show the PECs, adiabatic and di-
abatic, while the bottom panels show the corresponding transition dipole mo-
ment curves.

Table 3.5: The molecular parameters defining the CH diabatic transition dipole moment
functions

Parameter (X TI|u |C?XT) (X°TI[u[222F)

Frefs A 1.4 1.27
p 4 5

co, Debye 0.71 0.85
c1, Debye 0.09 0.17

Figure 3.7 illustrates the Duo computed photoabsorption spectrum of CH sim-
ulated at 7 = 300 K using the continuum solution of the coupled adiabatic and
diabatic [C2XT, 225 1] system from the bound states of X 2[1. The continuum solu-
tion used a simulation box size 60 A and 1600 sinc-DVR points to sample as many
unbound states as possible in the Frank-Condon region of the ground state. For the

cross sections, a Gaussian line profile of the half-width-at-half-maximum (HWHM)
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equal to 50 cm™!

was used to redistribute the absorption intensities between the
‘discrete’ lines representing photo-absorption continuum (see Pezzella et al.>*> for
details). The diabatic and adiabatic continuum wavefunctions are obtained identi-
cal, so the photo-absorption spectra in Figure 3.7 are indistinguishable. Figure 3.7
also illustrates effects of the non-adiabatic approximations on the photoabsorption
spectra of CH. Removing the diagonal DDR (K = 0) results in a shift of the band by
about -50 cm~!, which can be understood since this DBOC term introduces a small
barier at the avoided crossing which will shift energy levels. By contrast, setting
both DDRs to zero leads to a significant drop of the absorption by a factor of ~ 4.
This could be understood for multiple reasons. Firstly the wavefunction overlap will
be different and will contribute to the observed intensity difference, where NACs
mix the two state wavefunctions. To further illustrate the CH continuum system,
Figure 3.8 illustrates exactly the reduced densities of one of the continuum states
used in the photo-absorption simulations which are seen to be very different for
the different approximations considered. Consequently, TDMs will become mixed
through the intensity stealing mechanism, illustrative in the diabatic picture. The
diabatic (X2IT|u|C?L*) TDM is ~ 2 times larger than the corresponding adiabatic
TDM in the vertical region of the ground state, meaning a difference of approxi-
mately 4 times in the intensity which depends on the dipole moment squared. If the
DC term from the diabatic model is removed, the bound absorption is observed to
dominate in the Franck-Condon region (see Figure 3.6) and the photo-absorption
contribution drops by two orders of magnitude and is therefore not visible on this

scale.

3.4 Convergence

Since Duo uses a solution of the J = 0 uncoupled vibrational Schrodinger equation
to form its vibrational basis set functions y,(r), it should be expected they should
differ significantly whether the adiabatic or diabatic representation is used due to
the PECs having different character. Therefore, one can also expect that the eigen-
solution convergence will be impacted by the choice of the representation.

The convergence of the J = 0.5 energy levels of the simplified YO and CH
models are tested in the diabatic and adiabatic representations where all non-
adiabatic effects encountered. Figure 3.9 illustrates the convergence of the lowest
20 J = 0.5 energies of YO and the n = 5 state of CH (C>X*(J = 0.5, 4)). Tllustrated
is the difference of the i-th energy level E; to its converged value E7'® plotted as a
function of vibrational basis size. The two systems show contrasting results. The

diabatically computed YO (D*X1) energies converge very quickly for a smaller ba-
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Figure 3.7: Photo-absorption spectra of CH at T = 300 K. The fully coupled adiabatic and
diabatic calculations are shown with the blue line; the NAC=0 case is shown
with the red line and the black line shows spectrum with all DDRs set to zero.
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Figure 3.8: Reduced density of the continuum state corresponding to an energy of hc -
38183.6576 cm ™. Its transition with the X3X~(J = 1.5, f,v = 0) state is po-
sitioned at the peak in the spectra of Figure (3.7). The reduced density state is
illustrated and computed using different levels of theory: diabatic representa-
tion with DC (blue dotted); diabatic model with the DC turned off (magenta,
A3); adiabatic representation with both the NAC and K correction included
(lime green); adiabatic representation with NAC only (orange, A2); adiabatic
representation with no correction (red, Al).
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sis size of ~ 25 compared to the adiabatic representation where a much larger basis
set of ~ 250 is required to achieve convergence. This is interesting since YO is
a strongly NAC coupled system, where its diabatic representation, given its small
DC, is a significantly more efficient representation of the nuclear dynamics for this
system. For CH (C?X1) the adiabatic energies initially converge faster but the dia-
batic energies eventually converge to within 1076 cm™! for a basis size of ~ 25 as

opposed to ~ 42 for the adiabatic energies.

Repeated tests on the adiabatic and diabatic vibrational energy convergence
rates for numerous J levels were conducted, yielding the same conclusions as above

for the J = 0.5 case for rotationally excited rovibronic levels.

This shows that there is not one representation that rules over the other, it
depends on the character of the avoided crossing, specifically in its position, the
shape of the potentials approaching the crossing, and the separation of the adiabatic
PECs. It is therefore important to consider the system of study before choosing a

representation, where all corrections must be included.
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Figure 3.9: Convergence of the lowest 20 vibrational J = 0 energies of the D?L* state of
YO (left) and the C 22* (v = 0,¢/f) state of CH (right) are plotted, where the
difference of the i-th vibrational level E; to its converged value E;"© is plotted
as a function of vibrational basis size. A constant grid size of G= 3001,4001
points for the sinc-DVR basis set was used for the YO and CH states, respec-
tively. The diabatically computed energies for YO are observeed to converge
much faster than the adiabatic ones, whereas for CH the opposite is true.
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3.5 Numerical Equivalence for the General N-State

Problem

So far in this chapter the two-state coupled diatomic system has been considered,
where equivalence between the adiabatic and diabatic representations was shown
for nuclear motion calculations as facilitated by the Duo code. I now extend our
non-adiabatic treatment to any number of coupled electronic states and demonstrate
that an exact AtDT can be determined, where the adiabatic and diabatic representa-
tions are shown to be rovibronically equivalent. The general N-state problem, and
generation of the AtDT, is discussed rigorously in Section 2.5. The main challenges
are now in the computation of a numerically exact AtDT which can remove all DDR
couplings such that a strict diabatic representation which is rovibronically equiva-
lent to the adiabatic representation can be made. Secondly, the obtained AtDT may
not yield physical diabatic property curves, and so a regularising correction to the
NAC: is identified and computed using the HyAP method as described in Section
2.64.

The following sections of this chapter demonstrate, for the first time, numerical
equivalency between the adiabatic and diabatic representations for multi-electronic-
state coupled systems of diatomic molecules. Equivalency is demonstrated by di-
rect application to the 3-state N, system, the 4-state CH system, and an artificially
generated 10-state system with its PECs illustrated in figure 3.10. A regularising
correction to the NACs of these systems is found such that the resulting diabatic
property curves are physical, practical, converge to desirable asymptotic limits, and
the spectroscopic model is made to be internally consistent. The importance of non-
adiabatic coupling in these highly correlated systems are then investigated, where
correct description of the complex non-adiabatic interactions and potential mani-
folds of these molecules will be valuable to many fields (see Section 3.1 for example
uses). It is usually seen that highly excited electronic states of simple diatomics ex-
hibit complex non-adiabatic behaviour and complex electronic structure?*’, making
the understanding of many coupled state systems and their interactions important.
For example, molecules like C,, CN, N, 1, 12; symmetry manifolds), SiC, Sij,,

238,239,237 exhibit these effects which moti-

O3, NO and their corresponding ions
vates my work. Numerical equivalency will be first demonstrated on the extreme
10-state synthetic system, followed by an investigation of the impact of DDR terms
in nuclear motion calculations for physical spectroscopic models of real molecu-
lar systems with fewer interacting states. Finally, the synthetic 10-state system is

revisited to explore the effect of truncating the number of adiabatic states on the
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computed rovibronic energy levels. The HyAP method is also applied to the system
of study, where the effect of NAC regularisation on the computed rovibronic energy
terms is investigated for the N; system.

The selection of CH and N, for construction of model 4-state and 3-state
benchmarks is motivated by the contrasting extremes of their nonadiabatic be-
haviour. N is characterised by strong, sharp NACs and avoided crossings between
clearly bound PECs near their potential minima. In contrast, CH exhibits weak,
wide NACs and broad avoided crossings near dissociation. Thus, I do not aim
to provide empirically accurate data for these specific molecules, but use them as
representative systems for numerical equivalence tests of non-adiabatic effects in

diatomic molecules.
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Figure 3.10: Illustration of the diabatisation of synthetic 10-state coupled system: Adia-
batic PECs (top left), NACs (bottom left; regularised via the HyAP method),
diabatic PECs (top right), and DCs (bottom right).

3.6 N-State Spectroscopic Models

It was shown that NACs are well described by a Lorentzian profile near the avoided

crossing ! 70:171,165.166 - However, more flexibility is required in general. All NACs
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in the following sections are modeled using a linear combination of a Lorentzian

and a Gaussian distribution of equal width 7, peak position ry, and amplitude N,
240,241 via

giving a pseudo-Voigt profile
f(r) =mL(r;ro,v,N) + (1 =m)G(r;r0,v,N) + Y L(r; 70, %, Ni), (3.14)
i

where L is the Lorentzian function given by

L(r;ro,y,N) = %VWY_W (3.15)
and G is the Gaussian distribution given by
N r—ro 2
G(r;rg,7,N) = Z/exp [—ln(2) < y ) ] ) (3.16)

The fraction of Lorentzian and Gaussian character contributing to f(r) of Eq.(3.14)
is controlled by the constant parameter m. For m = 1, f(r) reduces to a pure
Lorentzian, and for m = 0 a pure Gaussian. The summation of Lorentzian func-
tions in Eq.(3.14) are used to model additional (perturbative) sharp peaks which are
typically seen to be of lower magnitude to the rest of the profile. The width pa-
rameter Y is then modeled to vary sigmoidally to introduce skewness into the final

profile 240241 yia

2%

_ 3.17
(1 + ea(rfro)) ’ ( )

Y(ri%0,a,70) =
where 7y is a reference width and a is a skewness parameter when equal to zero
ensures Y = .

All adiabatic potentials will be defined as a grid of points, to which the re-
sulting diabatic PECs and DCs will be computed on the same grid of internuclear
separations. The generation of the diabatic spectroscopic models will require a
regularising correction to be computed for the NACs in question, such that the
spectroscopic models are internally consistent (with desired properties discussed
in Sections 2.5.2, 2.6.4, 2.7) and an AtDT which satisfies the physical boundary

conditions discussed in Section 2.7 is constructed.

3.6.1 The N, Spectroscopic Model

Molecular nitrogen has been shown by numerous works to have complex electronic

227-229

structure , of interest are the avoided crossings between the strongly coupled
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Table 3.6: Function parameters of Eq.(3.14) for the NACs between the 1 12;, 2 12;, and

3

12; states of N.

oA y@&) N a m ro; (A 1A N;
(I'5;[Z]2Txf) [ 12272 00147 10273 00000  1.0000
(' L13155) | L1151 00273 -10111 -11.8152 03927
(1 IZ;| % 13 12;{) 1.3073 0.2178 0.1629 -18.7122 -0.5968 0.0150 0.0300 0.0150
1.097 1.0300 1.1400
0.0065 0.013 0.0035

Table 3.7: Morphing parameters for the position dependent width parameters ¥;; of the
switching functions in construction of the regularised N, AtDT solution ((see
Eqns.(4.21, 2.77,2.76))). All functions have 3, = 0.1, B4 =0.02, and p = 4.

Tret (A)  Yet (A) By B, B,
Y2 | 1.2130 7.9860 9.7618 -0.0691 -0.3258
N3 | 1.2391 5.3487 0.0589 -2.3842 0.3663
Y3 | 1.2158 52183 1.1768 1.1938 1.8434
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Figure 3.11: Illustration of the diabatisation of the N [1 12;, 2 IZ;, 3 12;] system: Adia-
batic PECs (top left), NACs (bottom left), diabatic PECs (top right), and DCs
(bottom right). The DBOC corrections have been added to the adiabatic poten-

tials, and are computed from multiplying the kinetic energy factor € =

by the diagonal elements of the K matrix.

h
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[1'xF, 2 IZ;, 3 12;] electronic states, characterised by bound PECs illustrated in
Figure 3.11. The PECs and NACs for the [1'Z}, 212}, 312] system studied here
were taken from Gelfand et al.??’, where ab initio calculations were performed
using MOLPRO at the MRCI/aug-cc-pVQZ level of theory, with orbitals optimised
in preceding CASSCEF calculations.

Upon inspection of the ab initio 212; and 3 12; PECs, the presented calcu-
lations omit interaction with higher energy states causing an avoided crossing in
these PECs at ~ 1.43 x 10° cm~!. Therefore, the 2 12; and 3 12; PECs were ex-
tended smoothly to an energetically higher dissociation limit to effectively ignore
interactions to the unresolved states. This extension is feasible since this interaction
region is energetically well separated from the [1 IZ;, 2 12;, 315/ avoided cross-
ing system of interest here. Since the extension of the PECs were made arbitrarily,
this introduces a source of inconsistency between the NACs obtained ab initio and
the modified adiabatic potentials. This is not a problem, instead it then allows an
interesting test on the HyAP NAC regularisation procedure, and is discussed later.

The NACs coupling the [1 12;, 2 12;, 3 12;] states of N, are fitted to the ab

initio curves of Gelfand et al. %%’

using the pseudo-Voigt function of Eq.(3.14), and
are illustrated in Figure 3.14. The fitted parameters are given in table 3.6. Only
the (1 12;\ 43 12;) (outer) NAC required additional perturbation by additional
Lorentzian functions, creating a jagged pattern towards shorter bond lengths rela-
tive to the global peak of the distribution. This introduces significantly more mixing
angle about the [1 12;, 3 12;] axis towards shorter bond length as opposed to omit-
ting the perturbation. I am not concerned about accuracy of the fit here since any
inconsistencies will add a valuable metric to test the HyAP method.

With the adiabatic spectroscopic model of the Ny [1'E], 2'5f, 31577 sys-
tem defined, the AtDT and regularising NAC corrections are then computed via the
HyAP method (see details in Section 2.6.1). Figure 3.12 illustrates the generator el-
ements associated with the forward and backward evolved AtDT which are notably
different, and therefore yield markedly different diabatisations. Overlaid are their
linear combination which smoothly connects the forward and backward evolved
AtDT solutions — satisfying the imposed short and long range boundary conditions
while maximising the smoothness of the diabatic potential matrix with respect to
the nuclear geometry. The linear combination is computed via Eq.(2.76), where the
fitted switching functions are plotted in the bottom panel of Figure 3.12 and their
optimised parameters given in Table 3.7. It is clear that the switching functions act-
ing on the three generator elements are not necessarily similar. For example, the 31,

switching function is a near pure sigmoid whereas a severely modified sigmoid is
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optimised for the B3 element. The flexibility of the morphing function in Eq.(4.21)
allows a unique morphology to be achieved, and is desirable for this problem since
the exact shape of the switching function to maximise diabatic smoothness is not
known a priori to the optimisation.

Figure 3.11 illustrates the diabatisation of the adiabatic N; spectroscopic
model, where the DBOCs (& = #MK) have been added to the adiabatic PECs
(top left panel). The DBOCs are seen to introduce a significant potential barrier
at the avoided crossing of the order 10> — 10 cm™!, therefore one should expect
the DDR terms to be significant for the consistency and completeness of the model.
This 3-state N, system is reminiscent of the 2-state YO system encountered ear-
lier in this chapter. From the analysis on YO (and CH), it is clear that all DDR
coupling terms are extremely important for the spectroscopic model and rovibronic
calculations, neglecting these terms were shown to introduce gross errors into the
accuracy of not only rovibronic energies but also their wavefunctions which will be
relevant here for the 3-state case. Figure 3.11 also illustrates the three DCs coupling
the N, [1 12;, 2 IZ;, 3 1Z‘,;,L] states, which are seen to be simple, smooth functions
of bond length with the exception at around the avoided crossing, where complex
topology ensues. The DCs then tend towards 0 cm™! towards both short and long
range limits. The three diabatic PECs are simpler and smoother than their adiabatic
counterparts, closely resembling a morse-oscillator function which showcases the

advantages of the diabatic representation, where modelling is simpler.

3.6.1.1 The N, AtDT and Regularising Correction

Figure 3.13 illustrates the regularising corrections computed for the three NACs
connecting N [1 12;, 212;, 3 IZ;] using the HyAP method described in Section
2.6.4. The top panels compare the original (blue) and regularised (red) NACs, re-
vealing complex differences in the spectroscopically important range of 0.7-3.0 A.
The bottom panels illustrate their difference, which corresponds to the regularis-
ing corrections applied to the NACs such that the diabatic PECs are made smooth.
These corrections exhibit a non-standard dependence on nuclear geometry, as they
are uniquely tailored to the adiabatic system in question, in this case ensuring con-
sistency with the adiabatic PECs.

The magnitude of the regularising corrections are small relative to the associ-
ated NAC, which indicates the N, model to be nearly complete and internally con-
sistent. An exception is for the Wl(;) NAC, which has a correction of a similar order
of magnitude. However, this does not pose a significant issue due to the inherently

(D)

low magnitude of W};’. Interestingly, a common bump is present in all regularis-



3.6. N-State Spectroscopic Models 111

—— Forward Evolved
—— Backward Evolved
o —0.5 1 Regularised
«Q
—1.0 A
m —0.5 1
«Q
—1.0 4
1.0 A
q
0.5 1
£8:
c 1.0 1
2 F12
g Fi3
z —F
o 0.5 23
C
£
£
=
» 0.0 1

1.0 1.5 2.0 2.5 3.0 3.5
Bond Length, A

Figure 3.12: The matrix elements of the generator matrices for the forward- (blue) and
backward- (red) evolved solutions for the N, AtDT can be seen in the top
three panels. The regularised generator matrix (green dashed) is computed via
Eq.(2.76) using the switching functions in the bottom panel. The switching
functions have been optimised to maximise the smoothness of the diabatic
potential matrix via minimisation of Eq.(2.81).

ing corrections at ~ 2 A. This feature coincides with the region where the upper
two adiabatic PECs have been manually extended to a higher dissociation, showing
the method is reactive to such inconsistencies. This behaviour was not necessarily
expected, however, the fact that the regularisation responds to the PEC extension
confirms the close mutual consistency between the NACs and other molecular prop-
erties. Importantly, such consistency has been shown to be exploitable outside of
not only the evolution solver, but also outside of ab initio calculations.

The AtDT that removes all radial DDR coupling has been determined for the
N, [1 IEZ{, 2 12;, 3 1Z‘{;] system, and therefore results in a strict diabatic representa-

tion of its spectroscopic model being found. The AtDT is illustrated in the top panel
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Figure 3.13: The original N, NACs (blue) are superimposed with the regularised NACs
(red) found via the asymptotic-property-based-diabatisation method. The bot-
tom panels show their difference as a function of bond length and corresponds
to the regularising correction to the NACs.

of Figure 3.14 in an axis-angle representation, where solid lines depict the vector
elements of the diabatising axis of rotation in the adiabatic basis. For example, %3
represents the axis in configuration space aligned with state 1 (1 12;). The black
dashed line corresponds to the global mixing angle about the diabatisation axis. It
is clear for this three-state system that the axis of rotation in Figure 3.14 varies
with bond length. For the two-state problem, however, the AtDT is exactly solvable
as the diabatising axis of rotation remains constant, and is the crux of the prob-
lem when extending to N-state systems (see Section 2.6). At short bond lengths,
before the avoided crossing region, the global mixing angle begins at yjopa = 0°
indicating that there is no mixing between the electronic states. The mixing angle
then evolves to Bgjopa1 = 120 ° after the avoided crossings towards large stretches,
consistent with a cyclic permutation of the three adiabatic eigenvectors. The solid
curves in Figure 3.14 are color-coded to show the contributions of adiabatic ba-
sis vectors to the diabatic basis: red represents contribution by |1 12;}, green by
2'2}), and blue by |3'£). This visualization confirms that the diabatising trans-
formation at the right boundary corresponds to a cyclic permutation and reflection,
where some basis vectors acquire a phase of —1. The observed state transitions
are fromr =0 — oo are 1™ — 37, 3" — 2%, and 2 — 1, where the superscripts

denote the phase of the eigenvector.

The bottom panel of Figure 3.14 illustrates the residual kinetic energy matrix
computed via Eqgs.(2.72, 2.83) after transformation of the AtDT, quantifying the

accuracy of the solved Ny AtDT. The residuals were computed using regularised
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NACs and the AtDT determined by the HyAP method as input — which by con-
struction exactly satisfies Eq.(2.49) — and demonstrates that all DDR couplings are
removed completely to within ~ 10712 cm™!. Tests on the accuracy of the evolu-
tion method itself have been made by computing the residual kinetic energy when
substituting instead the original NACs and an evolved AtDT matrix into Eqs.(2.72,
2.83). The tests revealed that using the inverse transform sampling method pre-
sented in Section A.2 in conjunction with 50000 points yields the same accuracy as
the exact approach detailed above. Thus, with a sensible grid, a numerically exact
solution for the evolution of the AtDT is achievable. However, tests show that the
accuracy of the computed NAC integral in Eq.(2.67) is the leading contribution to
the error in the solved AtDT. Thus, use of methods with higher accuracy than the
trapezium rule, or even analytical methods depending on the NAC functional forms,

will yield an instant accuracy increase for prototypical evolution solutions.
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Figure 3.14: The AtDT for the N, [1'2], 2'EF, 3'T1] 3-state system is illustrated in axis-
angle representation (top panel), where the colored lines (see text for details)
are the global rotation axis elements and the dotted line is the global mixing
angle about the diabatising axis. The bottom panel shows the residual kinetic
energy coupling after diabatisation via the Frobenius norm of the transformed
adiabatic kinetic energy in Eqs.(2.72, 2.83).
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Table 3.8: Function parameters of Eq.(3.14) for the NACs between the [C?L*t, 225+,
32xF, 42¥1] states of CH. No perturbative Lorentzian’s were used in the mod-

elled NACs.

n@A)  y@A) N a m
(C2ZH[L1225%) | 1.6998 03114 09844 21145 1
(c?ct 4 i C|3257) | 1.4283 03768  0.3033  -0.9984 0
(c?et| 4 i L |425T) | 1.8500  0.1900 -0.0500 -19.0000 1
(225F| 4 i C|325T) | 13384 02714 0.8468  -0.6660 1
(225F] 4 i L|425T) | 1.6450 02120 0.1775  1.1454 1
(325 4 i ~|42£T) | 2.0058 0.2051  0.8049  -0.6020 1
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Figure 3.15: Illustration of the NAC regularisation on the subsequent diabatisation. The
dashed lines plot the adiabatic potentials, where the diabatic PECs are plotted
as solid lines in the top panels. The left panels depict the original, unregu-
larised, NACs (bottom) and the resulting diabatic PECs, which are seen to
correlate to different dissociation asymptotes. The right panels depict the reg-
ularised NACs (bottom) and the resulting diabatic PECs which are seen to be
clearly bound or repulsive and correlate to the adiabatic asymptotes.

3.6.2 The CH Spectroscopic Model

The excited electronic states of CH has been studied ab initio by van Dishoeck 3!
who show the X" manifold to exhibit multiple avoided crossings. The diabatisa-
tion of the two-state CH [C2X ™, 22X 1] system was studied earlier in this chapter,
where the analysis of the different DDR coupling terms was based on our recent
38 T now aim to extend our treatment to instead the lowest four 2X "
electronic states [C2X+, 22X+, 32X+, 42X*]. To do this, I performed ab initio

calculations for six NACs at the CASSCEF level of theory using the weighted aug-

publication

cc-pwCVQZ basis sets via the MOLPRO quantum chemistry package’*?. Subse-
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quently, the CH [C?Xt, 22XF, 322 F, 42X ] potential energies were computed via
the MRCI method using molecular orbitals optimised on the prior CASSCEF calcu-
lations. The aug-cc-pwCVQZ basis set was chosen after confirming convergence in
the computed potentials, lowering state energies in accordance with the variational
principle.

To simplify the analysis, the PEC of the 42X state was modified to omit un-
resolved avoided crossings with higher-energy states at r = 1.870 A and r = 3.375
A. This adjustment was made to preserve the ab initio topology around the avoided
crossing with the 32X state at » = 1.95 A. The global description of the ab initio
PEC for the 42X state, identified as 12X+, has been made by Kalemos et al. 243
These modifications render the 422% PEC quasi-diabatic, ensuring it provides a
practical diabatisation framework for this study while introducing controlled in-
consistencies into the CH spectroscopic model which I aim to correct through the
HyAP regularisation procedure. The 4%X* PEC was further extended smoothly to
the C('P) + H dissociation limit and to shorter bond lengths using guidance from
CASSCEF calculations. Non-physical behaviour observed in the (C2X™| dir 1425 +)
NAC near the region of non-convergence in the 42X PEC was modelled to repli-
cate the ab initio character in the well-converged region and taper off to zero beyond
this. This modification serves as a useful test for the regularisation method, and so
its accuracy is not a concern at this stage. The C?X*, 22X+, and 32X states were
also extrapolated for bond lengths ranging from r = 0.5 A to r = 1 A, as ab initio
calculations of their PECs did not converge in this region.

Table 3.8 lists the fitted parameters of the asymmetric Lorentzian-Gaussian
mixture in Eq.(3.14) to the ab initio calculations. The sources of inconsistency
between the NACs and adiabatic PECs for the studied CH system will be from
convergence issues in the corresponding MRCI calculations, the aforementioned
modifications to the property curves, and incompleteness of the model (ignoring
unresolved upper electronic states; truncation of the Born-Huang expansion of the
wavefunction) which the proposed HyAP regularisation method aims to address

through construction of a practical and physical diabatic representation.

3.6.2.1 The CH AtDT and Regularising Correction

With the adiabatic CH [C2X™, 2227, 325+, 425+] spectroscopic model defined,
the AtDT for this 4-state system is computed using the HyAP method detailed in
Section 2.6.1 (for more details see the application to N; in Section 3.6.1). The resid-
ual kinetic energy coupling in the corresponding diabatic representation is com-

puted via Egs.(2.72, 2.83), resulting in a maximum error of 10~!4 cm~!— practically
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Figure 3.16: The matrix elements of the generator matrices for the forward- (blue) and
backward- (red) evolved solutions for the CH AtDT can be seen in the top
three panel rows. The regularised generator matrix (green dashed) is com-
puted via Eq.(2.76) using the switching functions in the bottom panel. The
switching functions have been optimised to maximise the smoothness of the
diabatic potential matrix via minimisation of Eq.(2.81).

zero. Regularising corrections to the CH NACs were then computed by maximis-
ing the smoothness of the diabatic potential energy topology, and are shown in the
bottom panels of Figure 3.15 as the differences between the original and corrected
NACs (left and right panels). The generator matrix elements for the forward- and
backward- evolved AtDTs are plotted as a function of bond length in Figure 3.16,
exhibiting significant discrepancies. The largest deviations occur in the generator
elements B3, B4 and B3, consistent with the distinct diabatic representations seen
in Figure 2.6 and discussion presented in Section 2.6.1. The six switching functions
and the corresponding linear combination of generator elements are illustrated in

Figure 3.16, where Table 3.9 lists the optimised switching function parameters.

Figure 3.17 illustrates the adiabatic potentials of the CH [C2X T, 22X+, 325+,
42y+] system and regularised NACs (left panels) with the corresponding diabatic
representation (right panels). The DBOC terms have been added to the adiabatic
PECs, and can be seen to introduce a minimal potential barrier unlike the YO and
N, cases. The diabatic PECs appear as simple and smooth functions, with the Vl(d),
Vz(d), and V4(d) states showing bound, Morse-like behavior while the V3(d) state is
diabatically repulsive, crossing Vl(d) and Vz(d) to the C('P)+H dissociation limit.

The DCs (bottom right panel) are seen to have complex behavior in the region of
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T'ref (A) Yeet (A) By By By
Y2 | 1.5236 4.5177 1.3523 0.8911 0.2793
T3 | 1.6616 3.6494 0.5642 -0.9450 -0.0686
Ya | 17811  1.8135 0.9224 -0.0029 0.0649
Y3 | 2.2488 2.3498 0.9586 0.0436 -0.1269
Yoa | 1.9488 2.1169 0.4680 0.0116 0.5909
Y4 | 1.6929 1.9850 3.5388 -0.3588 -0.2925

Table 3.9: Functional parameters for switching functions (Eq.(2.77)) are listed, where mor-
phing parameters to Eq.(4.21) in generation of a position dependent width ¥;; are
given. These, in conjunction with the evolved AtDT solutions construct the regu-
larised CH AtDT solution via Eq.(2.76). All functions have 3, = 0.1, 4 = 0.02,

and p =4.

avoided-crossing and are in general large in magnitude, reflecting the large separa-

tion in the adiabatic PECs at the avoided crossings.
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Figure 3.17: Illustration of the diabatisation of the CH [C?X*, 225", 325 F, 422 %] system:
Adiabatic PECs (top left), NACs (bottom left), diabatic PECs (top right), and
DCs (bottom right). The DBOC corrections have been added to the adiabatic
potentials, and are computed from multiplying the kinetic energy factor € =

h

8m2 e

i by the diagonal elements of the K matrix.

3.6.3 The 10-State Spectroscopic Model: A Web of Avoided
Crossings

So far in this chapter a strict diabatic representation has been demonstrated to be

possible for a 2-, 3-, and 4-state coupled system, where the AtDT ensured both the

bound and continuum rovibronic solutions are preserved. The extension to the gen-

eral N-state system would ideally have no limit to the number of states treated, N.
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I now wish to test the adiabatic/diabatic equivalence on a significantly larger sys-
tem, and to this end I generate a synthetic 10-state problem. The 10-state synthetic
problem, X10 herein, was generated from the successive adiabatsations (diagonal-
isations) of 2-state systems between 10 neighboring Morse oscillator PECs via the
method used to model the CH [C?X*,22XF] system in Section 3.6.2. Lorentzian
functions were used to initially model the 2-state NACs, where their magnitude
was chosen to reflect the separation in the PECs. After the adiabatic PECs were
generated, the outer-NACs Wis.l) coupling states separated by one or more neigh-
boring states (|i — j| > 2) were placed arbitrarily into the NAC W) matrix. This
arbitrariness is then a valuable metric to test the robustness of the HyAP method
in generation of a physically meaningful diabatic representation. In essence, this
“made-up” model of guessed NACs and PECs is the ultimate test on the HyAP
regularisation scheme and numerical exactness of the computed AtDT. In total, the
10 electronic states are coupled by 45 NACs, yielding complex coupling pathways,
where slight modification of one state will be “felt” by all other 9 states. The X10
model is not entirely guessed, however, but chosen to resemble the high energy
electronic manifolds of molecules like C», CN, N, (3T, symmetry manifold), SiC,
and Sip — which all possess a complicated web of adiabatic avoided crossings with a
single deep diabatic potential well which crosses the entire potential web up to high
dissociation limits 23323, Furthermore, this type of system is seen in the !X+ man-
ifold of Alkali Hydride electronic structures 92.93.26 " Therefore, the results yielded
from X10’s diabatisation should emulate that of a real physical system.

Figure 3.10 illustrates the !X+ electronic manifold of the synthetic X10 system,
where the NACs are regularised and subsequently a smooth and practical diabatic
representation is generated using the HyAP method. The 45 DCs coupling the 10
diabatic states exhibit complex topology over the studied range of internuclear sepa-
ration, where the diabatic PECs are seen to resemble smooth Morse oscillator func-
tions. It is interesting to see a single bound electronic state pass through the web of
potentials in a smooth manner, despite the complexity of the DCs, NACs, and adia-
batic PECs. A significant portion of bound and continuum solutions for transitions
connecting the ground adiabatic state are then reconstructed as transitions within
the single diabatic bound well, where the rovibronic wavefunctions are expected to
be equivalent to the adiabatic picture. The adiabatic/diabatic equivalence for the
X10 system 1is studied later in this chapter.

Figure 3.18 illustrates the 45 forward- and backward- evolved AtDT generator
elements of the X10 system and are seen to be complex functions of bond length.

The two solutions also appear to differ significantly across all geometries, which
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is to be expected since the NACs were arbitrarily chosen in generation of the adia-
batic representation — therefore the evolution of the AtDT is not ensured to satisfy
the proposed boundary conditions. The curves are plotted with nearly 2 x 10* grid
points, and so the strange features seen are not due to numerical noise, but are
real topological features of the AtDT. The linear combination of the forward- and
backward- evolved elements are also overlaid in Figure 3.18, where the associated
switching functions are optimised to ensure a smooth set diabatic PECs. The linear
combination connects both solutions whilst maintaining their distinct topological
features. With the extension to a 10-state coupled system emerges the possible
complexity of the associated AtDT, where a physical, smooth diabatic representa-
tion is constructed using a very complex, non-smooth AtDT. Despite the challenges
of dealing with such a complex system, I have demonstrated that the HyAP method

can robustly produce sensible diabatisations regardless of system size.

3.7 Solving the N-State Rovibronic Schrodinger

Equation

The fully coupled rovibronic Schrodinger equation for the 3-state N», 4-state CH,
and 10-state X10 systems detailed above are solved using our variational code Duo,
where the methodology in its solution is discussed in Section 2.3. As part of this
work, we further extended the Duo kinetic energy operator to incorporate an arbi-
trary number of nonadiabatically coupled electronic states. Similarly to the 2-state
system described earlier in this chapter, the DBOC terms can be either provided as
input or generated from the NAC using Eq. (2.16).

Earlier in this chapter, it was demonstrated that rovibronic calculations for the
2-state system were consistent between the adiabatic and diabatic representations,
even subject to the convergence (because of PEC-adapted vibronic basis set) or
other numerical limitations. It was also shown that neither the adiabatic or diabatic
model is better, but depends on the system studied. However, the coupled two-
state system is an approximation, often justified by Hellman-Feynman theorem (see
Section 2.2.1), to the exact system of an infinite number of coupled adiabatic states.
The effect of couplings to higher energy states on the rovibronic energies, and hence
wavefunctions, is tested in the following sections.

With the extension to N-states, further off-diagonal second-order DDR deriva-
tive couplings in the K matrix must be considered, which necessitates further ap-
proximate cases to be tested. Four approximations to the rovibronic solution are

considered: I, the case when DBOCss are omitted from the adiabatic representation;
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Figure 3.18: The 45 forward- and backward- generator elements of the 10-state system

are plotted as blue and red lines, respectively. Overlaid in green are their
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II, the case when all off-diagonal DDR couplings are omitted (K;; = Wig.l) =0)
from the adiabatic representation; III, the case when all DDR couplings (DBOC,
off-diagonal DDRs) are omitted from the adiabatic representation; I'V, the case when

DCs are omitted from the diabatic representation.

It will be demonstrated in the following sections, and should be expected from
the previous analyses in this chapter, that these approximations will significantly
impact the computed spectroscopy, and as a result yield a quantum number la-
belling which becomes non-comparative between the different approximations. To
this end, a combination of the energy enumeration, n, set of assigned quantum num-
bers, and character of the (“‘vibronic wavefunction”) reduced density state (see 3.3.2
and Brady et al.*® for more details) are studied, where only the closest matching
states will have their energy compared. It has been discussed that state numbering
leads to accurate assignments of the bound rovibronic levels, as summarised by the
oscillation theorem>*+-240 which states that the i™ bound rovibronic eigenfunction
has i internal nodes, but breaks down in the strongly coupled case where the single

state approximation is no longer valid.

3.7.1 The 10-State Solution

The bound-state rovibronic solutions for the X10 10-state system introduced in Sec-
tion 3.6.3 are now analysed. Figure 3.10 illustrates the adiabatic and diabatic spec-
troscopic models constructed using the HyAP method. Examining the equivalence
of rovibronic solutions between the adiabatic and diabatic representations is partic-
ularly interesting given the system’s complexity. The intricate network of avoided
crossings, characterised by 45 NACs, poses a significant computational challenge
due to the extensive coupling between states, where any inconsistencies in the trans-

formation should be pronounced in this complex system.

The lowest 1000 J = 0 rovibronic energies for the fully coupled 10-state system
were computed in the adiabatic and diabatic representations, where selected J = 0
energies are listed in table 3.10. These J = 0 energy terms were selected to be
near the avoided crossing regions over all 10 excited states to rigorously test the
equivalence and diabatic module in Duo. Despite the large correlation in this highly
coupled system, equivalence has been shown between the adiabatic and diabatic
representations where a numerically exact AtDT has been found. This shows that
one can model large systems for an arbitrary number of states in Duo without loss

of strictness in the diabatic basis.
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Table 3.10: Selected J = 0 rovibronic energy term values (in cm~!) of the synthetic 10
coupled state state system computed within the adiabatic and diabatic repre-
sentations using Duo. These states were chosen to be situated at the avoided
crossing regions.

n Adiabatic

Diabatic

E State

E State

7 1847.007771 1'xF

8 2129.925260 1'x+

9 2416.431857 1'z+

30 6678.428517 2!zt

32 6984.594060 2!zt

35 7298.846922 2y
114 12464.895630 1+
115 12523.517670 3'z+
116 12586.520910 2!x+
247 18814.479740 3'z*
249 18895.065350 5'z*
251 18981.836630 3'z*
25319032.279350 1'z*
426 25580.915070 5'x+
42725596.980210 6!x+
43525915.997070 41z +
662 33094.870560 6'L*
663 33124.269800 5'T*
664 33161.059010 2'z*
669 33265.317660 7'L*
949 40738.198500 6!x+
95040787.878880 7'x*
958 40985.704660 8>+
1267 48624.059359 9'x*
1270 48668.417006 5'T*
1271 48684.060547 1'L*
1272 48743.879213 7%+
1273 48769.629102 3'z*

1276 48833.738010 10' 2+

1847.007771 2'=F
2129.925261 2'x+
2416.431858 2!x+
6678.428518 3zt
6984.594060 3'zt
5 7298.846922 31yt
84 12464.895630 1'z+t
5 12523.517670 2'2+
24 12586.520910 3'z*
26 18814.479740 4y +
0 18895.065350 5!x+
27 18981.836620 4'x+
127 19032.279350 112+
11 25580.915070 6'x+
2 25596.980210 6'x+
32 25915.997070 5'2*
18 33094.870560 5'x+
43 33124.269800 3'x*
164 33161.059010 6'=*
7 33265.317660 71L*
70 40738.198500 7'x+
25 40787.878880 1'T*
13 40985.704660 6'x+
20 48624.059359 8!'x*
154 48668.417006 3'x*
241 48684.060547 2'x+
90 48743.879213 81x*
202 48769.629102 4'x+

S W oo o<

0 48833.738010 10!zt

—_ O W A W<

2
13
80
20
21
0
22
21
2
3
27
98
160
37
8
62
54
110
80
217
236
81
197

0

1626 56637.515727 101+ 32 56637.515727 10'2+ 32
1627 56656.811037 8'T 105 56656.811037 9'x+ 96
1629 56677.102187 7'£t 138 56677.102187 8=t 130
1648 57082.586039 4'£+ 208 57082.586039 5'=* 205
1669 57491.954867 91Xt 61 57491.954867 10'L+ 43
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Table 3.11: The lowest 25 J = 0 rovibronic energies (to 2 decimal places) of the 1'Z},
2 12;’, 3 1E'g"states of N> as computed within the adiabatic and diabatic repre-
sentations using Duo. The rovibronic energies are computed in the adiabatic

representation with the regularization correction to the NACs WO 4 A, see
Eq.(2.84)) and without (W),

n EWWY) EWWD4A)  AE State v
1 0 0 0 1'5f 0
2 45778 45817  -039 1'y; 1
3 69356 693.58 -0.02 1'% 2
4 1416.01 141629 -028 1't; 3
5 2131.06 213337 231 1'5; 4
6 2537.89 2548.85 -10.96 1'tf 5
7 2868.13 2863.40 473 1'5f 6
8  3549.80 3548.53 127 1'5f 7
9 421022 4213.43 321 1'5f 8
10 4695.01 4687.04 797 1't; 9
11 5133.73 5114.74 1899 1':f 10
12 5790.16 5781.04 9.2 1'sf 11
13 6479.41 6484.35  -4.94 1'5f 12
14 6779.06 681649 -37.43 2'5f 0
15 7213.41 719824 1517 1'5f 13
16 7903.01 7894.19  8.82 1'% 14
17 8583.09 8573.52 957 1'%] 15
18 8881.59 8898.94 -17.35 2'%; 1
19 9252.76 9251.95 081 1'5f 16
20 9904.98 9901.24 374 1'5f 17
21 10539.64  10532.84 68 1'%; 18
22 1087791  10891.38 -13.47 2't; 2
23 1114161 1113939 222 1'Z) 19
24 11664.87  11660.10 477 1'% 20
25 1208238  12091.36 -898 3'tS 0
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3.7.2 The Effect of Regularisation on Rovibronic Calculations

Understanding the relationship between changes in the DDR coupling terms and
their impact on rovibronic energy levels is nontrivial. An effective regularisation
procedure should correct the NACs such that any resulting changes in the molecule’s
spectral properties, particularly its rovibronic energy levels and wavefunctions, is
less than the expected error in ab initio calculations. In the following section, I
compare rovibronic energy levels computed with and without regularisation to as-

sess the procedure’s effectiveness.

3.7.2.1 Application to the 3-State N, System

The N; system presented in section 3.6.1 is treated rovibronically using the nuclear
motion code Duo. To assess the impact of regularisation on the spectral properties,
rovibronic energies were computed in the adiabatic representation using NACs with
and without regularising corrections. Table 3.11 illustrates the computed rovibronic
energies (quoted at two decimal places) relative to the zero-point energy of the
1 12; state, showing that the adiabatic calculations with regularisation introduces
corrections similar to the expected error of MRCI calculations>*’, typically of the
order 1 — 10 cm™!, with a root mean square error of 10.2 cm~!. Some energies,
however, are minimally changed with a difference to the unregularised case of ~
1 em~!. T conclude that the HyAP method yields regularising NAC corrections
which produce a sensible diabatic representation that preserves the physics of the
system. Therefore, HyAP has been demonstrated to be a robust method for systems

of different character and of arbitrary size.

3.7.3 The 3-State N, Solution

The rovibronic energies for the N, 3-state system described in Section 3.6.1 are
computed, where the adiabatic and diabatic spectroscopic models are illustrated
in Figure 3.11. The NACs and hence AtDT have been regularised via the HyAP
method (see Section 2.6.4). The DBOC coupling K, has been added to the adi-
abatic PECs to demonstrate the significant difference between the adiabatic and
diabatic models, where a large spike at the avoided crossing is seen in the adiabatic
PECs. Regardless, one expects the two models to produce the same rovibronic
eigenvalues and eigenfunctions, which this section aims to demonstrate.

The lowest 37 rovibronic energy term values (J = 0) computed using the adi-
abatic and diabatic Ny [1'Z], 2'2F, 31Z7] models are listed in Table 3.12. It is

clear that whilst the approximate quantum state numbers are very different for the
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The lowest 36 J = 0 rovibronic energy term values (cm~!) of the 1 1):;, 2 12;

and 3 1):; states of N computed within the adiabatic and diabatic representa-
tions using Duo (columns labeled with E). Varying degrees of approximations
are used and are labeled: I is the case when DBOCs are omitted from the adi-
abatic representation; II is the case when all off-diagonal DDR couplings are

omitted (Kjx; = Wigl) = 0) from the adiabatic representation; III is the case
when all DDR couplings (DBOC, off-diagonal DDRs) are omitted from the
adiabatic representation; IV is the case when DCs are omitted from the dia-
batic representation. All energies are relative to the zero-point energies (Ezpg,
including the electronic excitation) given at the bottom of each column. The
bold numbers refer to states with difficult quantum number assignment (see
text). The root mean square difference of the lowest n approximate and fully
coupled rovibronic terms are computed for the energy (E;nys) and radial reduced
densities (Orms, see Eq.(3.18)).

n Adiabatic Diabatic
E E) E(II) E(II) State v E E(IV) State v
1 0 0 0 01 O 0 491.132475 3 0
2 457.775275 434.700608 467.732785 449.719219 1 1 457.775275 01 0
3 693.564594 692.305891 694.208912 693.345881 1 2 693.564594  1147.153095 3 1
4  1416.011696 1405.993194 1419.423663 1412.727672 1 3 1416.011696 1841.288774 3 2
5 2131.061586 2063.317832 2141.838444 2102.127941 1 4 2131.061586 2531.370457 3 3
6 2537.890864 2343.138774 2607.762407 2464.898286 1 5 2537.890864 2135.104439 1 1
7 2868.126501 2816.769779 2917.159177 2907.742287 1 6 2868.126501 3211.1168 3 4
8 3549.801719 3411.324632 3621.012807 3561.954983 1 7 3549.801719 3887.928645 3 5
9 4210.218745 4012.169077 4323.406743 4182.424384 1 8 4210.218745 4576.045634 3 6
10 4695.005744 4466.6889 4889.466721 4757.112509 1 9 4695.005744 4220.679791 1 2
11 5133.725681 4916.044996 5394.712916 5374.479159 1 10 5133.725681 5276.230211 3 7
12 5790.155876 5622.044377 6086.615985 6042.50547 1 11 5790.155876 5974.586575 3 8
13 6479.408694 ... 6814.520674 1 12  6479.408694 6668.763491 3 9
14 6779.063208 6312.321252 - ... 2 0 6779.063208 6272.449671 1 3
15 7213410603 7161.506134 7480.056823 7376.437593 1 13 7213.410603 7357.065681 3 10
16 7903.009725 7866.377086 8070.548217 8027.394958 1 14  7903.009725 8032.029573 3 11
17 8583.091028 8515.760577 8701.901839 8681.313712 1 15 8583.091028 8695.766524 3 12
18 8881.592989 8770.025055 ... ... 2 1 8881.592989 8297.308561 1 4
19 9252763917 9147.869568 9381.767562 9335.855912 1 16 9252.763917 9349.303672 3 13
20 9904981173 9794.810171 10057.131561 9984.600392 1 17 9904.981173 9994943445 3 14
21 10539.639862 10440.512909 10692.735631 10624.650889 1 18 10539.639862 10629.690668 3 15
22 10877.912402 10683.076709 ... 2 2 10877.912402 10289.060547 1 5
23 11141.610134 11029.361392 11292.145140 1 19 11141.610134 11254.067422 3 16
24 11664.870261 11932.753651 1 20 11664.870261 ... 20
25 12082.377293 11479.032172 ... ... 3 0 12082.377293 11867937671 3 17
26 12541.173804 12441.239638 12528.326913 12499.508185 1 21 12541.173804 12470.756238 3 18
27 12881.431795 12750.503022 ... 1 22 12881.431795 12244.598117 1 6
28 13129.244992 12993.67838 13154.459922 13108.832369 2 3 13129.244992 13061.272211 3 19
29 13562.8288 13491.249709 13706.292719 1 23 13562.828800 A |
30 13934.090728 13852.417223 ... ... 1 24 13934.090728 13640.028525 3 20
31 14380.132252 14292.754881 14335.152946 14291.510206 3 1 14380.132252 14205.528529 3 21
32 14762.541917 14689.50826 14890.589468 14863.83192 1 25 14762.541917 14205.528529 1 7
33 14987.484472 14889.542778 ... ... 1 26 14987.484472 14757.424872 3 22
34 15431.979951 15365.047639 15441.030728 15423.319147 2 4 15431.979951 15294.675269 3 23
35 15776.743132 15692.664149 15988.978434 ... 1 27 15776.743132 15816.839734 2 2
36 16094.15384 16038.826781 15968.690176 3 2 16094.153840 16322.968809 3 24
Ezpg 102834.749359 102834.412294 102834.810154 102834.492953 102834.749359 103364.634233
Eims n<36 176.037033 138.544997 90.668019 333.288705
Eims n<100 680.151000 407.768000 420.263000 492.621000
Prms n<100 0.637000 1.434000 1.441000 0.755000




3.7. Solving the N-State Rovibronic Schrédinger Equation 126

adiabatic and diabatic representations, the state energies are identical to 10~ cm™!.

Duo assigns quantum labels via the largest contribution from the corresponding ba-
sis sets, which in both cases are very different and so are their state interpretations,
in which case states of matching energy enumeration are compared. Comparison of
the adiabatic and diabatic reduced density states reveals that their wavefunctions are
identical, confirming the comparison of rovibronic energies with the same energy
enumeration is correct. In approximate cases, quantum numbers and energy enu-
meration fail as reliable state labels, requiring inspection of reduced density states
for meaningful comparison with fully coupled cases. This inspection is done both
visually and via studying the Euclidean distance between two reduced densities (see
Eq.(3.18) below). The approximate solutions include many non-physical interme-
diate states (denoted by dots in the table). In some extreme cases, state assignment
is too ambiguous for comparison. In some cases, highlighted in Table 3.12 in bold,
only partial match of the radial densities can be established between approximate
and fully coupled solutions.

Now that numerical equivalence has been demonstrated for the three-state
problem, the significance of non-adiabatic coupling terms in the N> model can be
assessed. Table 3.12 lists the rovibronic energies computed using approximations
I, IT, III, and IV (as described in Section 3.7). For the lowest energy levels, the ex-
clusion of DCs (approximation IV) play a critical role in maintaining model accu-
racy. Omitting these couplings leads to significant discrepancies, with a root mean
square error (RMSE) of 333.289 cm~! compared to RMSE values for the adiabatic
approximations: RMSE(I) = 176.037cm™!, RMSE(I) = 138.545 cm~!, RMSE(III)
=90.668 cm™ .

This large discrepancy is primarily due to the unexpectedly strong DCs in this
strongly non-adiabatic coupled system, which contradicts the earlier predictions in
Section 3.33% which anticipate smaller DCs when NACs are large for the two state
case of YO (see Section 3.3.1). The substantial differences between the adiabatic
and diabatic potential minima leads to a swapping of the ground and first excited
states (as seen for n = 1 and n = 2 in Table 3.12), introducing a systematic offset
in the energy agreement. This effect is particularly relevant for the lowest energy
levels, which are of significant spectroscopic importance and thus warrant careful
analysis. Figure 3.19 illustrates how some of the approximations affect the com-
puted energies of N, by comparing states approximated energies (adiabatic III and
diabatic IV) to the “exact” values, i.e. computed with all associated couplings. It
is clear that both approximations lead to strong deviations from the “exact” values

with the diabatic case especially affected by the absence of the diabatic coupling.
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It is interesting that despite the adiabatic zero-order approximation appearing to
provide a more accurate and physically intuitive solution than in the the zero-order
diabatic approximation, the convergence of the diabatic solution is faster for the

latter, diabatic case.

In the region of the avoided crossing (states n = 10 — 15), neglecting NACs
results in discrepancies comparable to those seen when the DCs are omitted, with
energy differences from the fully coupled case on the order of 10> cm~!. However,
for states higher in energy than the crossing, the adiabatic approximations continue
to break down as rovibronic energies deviate from the fully coupled case. When
analysing the lowest 100 bound states, the RMSE increases significantly for adia-
batic approximations (I, II, III), with the largest errors occurring when the DBOC
is omitted. On the other hand, omitting the DCs results in a similar RMSE when
more states are included. This suggests that the adiabatic representation for N> is
less stable for highly excited states compared to the diabatic case.

Additionally, Table 3.12 highlights that the adiabatic approximation fails to
capture certain states that are still present in the approximate diabatic case. Vi-
sual inspection of the reduced density states reveals that the wavefunctions in the
adiabatic approximations struggle to reproduce the correct character seen in the
fully coupled calculations. Deviation between the approximate and fully-coupled

reduced density states are quantified by their Euclidean distance, defined as

d(pi.pj) = /(Pi_Pj)zd"- (3.18)

The RMSE of the Euclidean distance between the approximate and fully coupled
reduced density states is twice as large for the adiabatic approximations than when
the DCs are omitted from calculations. This indicates that wavefunctions computed
in the approximate adiabatic representation differ significantly from those in the
diabatic approximation IV, which may lead to inaccuracies in computed rovibronic
intensities. Despite this, the induced errors via these approximations prove that for
high resolution applications all non-adiabatic effects must be included.

While this analysis suggests the adiabatic representation is more reliable for the
lower states, while the diabatic representation is more stable for higher states of the
N> model, caution is needed when generalising these results. The comparison here
is specific to this model, and further complexities must be considered. Notably, the
sensitivity of the spectroscopy in each representation is an important factor. Testing
the effect of varying the NACs revealed that small changes in their magnitudes led

to substantial variations in the DCs, on the order of 10* cm~!. A reduction of NAC
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Figure 3.19: Illustration of the energy term values of the N, model (J = 0) system com-
puted using the adiabatic approximation III (dashed, left panel) and diabatic
approximation IV (dashed, right panel) compared to the corresponding “‘ex-
act” solution (no approximations, solid gray lines, both panels) for the lowest
18 states.

magnitudes by 20% resulted in a corresponding change of 10° cm™! in the DCs.
Therefore, while the DCs in this system are strong, the N spectroscopy is likely to

be less sensitive to the diabatic representation.

3.7.4 The 4-State CH Solution

A rovibronic solution is computed for the CH 4-state system described in Section
3.6.2 using the adiabatic and diabatic representations of the spectroscopic model
presented in Figure 3.17. The NACs have been regularised using the Hy AP method
to generate the diabatic representation. The DBOC correction terms have been
added to the adiabatic PECs in Figure 3.17, which produce no obvious spike-like
topologies in the region of avoided crossing.

The CH [C2XF, 2257, 325+, 42X*] system is different to the studied Nj
[1 12;, 2 12;, 3 12;] system in that, adiabatically, the CH PECs have large energetic
separations, the NACs are weaker by an order of magnitude meaning no spike-like
contributions from the DBOC terms, and diabatically the DCs are an order of mag-
nitude greater. As described in Section 3.3, above the first CH dissociation chan-
nel (39220.0 cm™ 1) is heavily (pre-)dissociated and contains (pre-)dissociative and
continuum states which are separated from this analysis by removing wavefunctions
which oscillate at the ‘right’ border ry.x — o0, whereas bound state wavefunctions
vanish completely>3*233. However, the continuum solution was shown to be equiv-
alent through diabatisation in Section 3.3.4, where both continuum wavefunctions
and photo-absorption spectra to these states are shown to be equivalent when com-

puted using adiabatic and diabatic spectroscopic models. Therefore, only the bound
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The lowest 17 J = 0.5 e parity rovibronic energies of the [C?XT, 22%7,
325,425 %] system of CH as computed within the adiabatic and diabatic
representations using Duo. Varying degrees of approximations are used and
are labeled: I is the case when DBOCs are omitted from the adiabatic rep-
resentation; II is the case when all off-diagonal DDR couplings are omitted
(Kizj = Wig.l) = 0) from the adiabatic representation; III is the case when all
DDR couplings (DBOC, off-diagonal DDRs) are omitted from the adiabatic
representation; 1V is the case when DCs are omitted from the diabatic repre-
sentation. All energies are relative to the zero-point energies (Ezpg, includ-
ing the electronic excitation) given at the bottom of each column. The root
mean square difference of the approximate and fully coupled rovibronic terms
are computed for the energy (Ens) and radial reduced densities (prms, see
Eq.(3.18)).

Adiabatic Diabatic

E E) EI) E(II) State v E E(IV) State v
0 0 0 0 1 0 0 0 1 0
2603.377370  2601.61 260391 2602.15 1 1 2603.377370  2636.14 1 1
4945.843448  4939.04 494794  4941.15 1 2 4945.843448  5061.21 1 2
16789.795532 16778.98 16773.52 2 3 16789.795532 1 10
35292.621456 35251.74 35286.78 35245.85 3 0 35292.621456 2 4
44373.500709 44372.59 44373.46 44372.55 3 5 44373.500709 44052.40 4 0
45130.519202 45128.91 45130.66 45129.04 3 6 45130.519202 44832.40 4 1
45858.509178 45855.77 45858.90 45856.16 3 8 45858.509178 45585.66 4 2
46548.411670 46542.70 46548.79 46543.00 3 9 46548.411670 46313.23 4 3
47255.394177 47247.31 4725394 47246.11 3 11 47255.394177 47016.19 4 4
47841.236755 47829.32 47841.29 47829.25 3 12 47841.236755 47695.43 4 5
48329.046921 48326.19 48306.66 3 13 48329.046921 48351.65 2 12
48752.567999 48738.67 48749.41 48735.75 3 14 48752.567999 48351.65 4 6
49246.485508 49236.12 49245.62 49235.33 3 15 49246.485508 48985.97 4 7
49754.863246 49743.51 49754.64 49743.26 3 16 49754.863246 49599.12 4 8
50243.670156 50232.21 50243.28 50231.83 3 17 50243.670156 50188.72 4 9
50724.086185 50714.07 50723.88 50713.92 3 18 50724.086185 50753.76 4 10

Ezpe  33961.631668 33960.58 33961.76 33960.71 33961.631668 34430.76

Ens 13.11 1.94 15.40 191.07

Prms 0.000919 0.000200 0.002045 0.516103
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state eigensolutions to the rovibronic Schrédinger equation for the CH problem will
be studied here.

The lowest 17 bound J = 0.5 parity e rovibronic energy levels computed us-
ing both the adiabatic and diabatic CH models are listed in Table 3.13. The energy
values match to within 5 x 1078 cm™! in both representations, confirming their
equivalence for the 4-state system. A strict diabatic basis for the CH system has
been established, yielding results that are numerically equivalent to the adiabatic
model as computed using the Duo program. A comparison of rovibronic energies
calculated via the approximate adiabatic and diabatic models indicates that the DCs
play a critical role in ensuring model equivalence, both in terms of rovibronic en-
ergy and wavefunctions. Table 3.13 presents the RMSE for the studied bound states,
showing that omitting the DCs results in a RMSE an order of magnitude higher than
the approximate adiabatic calculations. Additionally, the approximate diabatic cal-
culations yield significantly poorer reduced density states compared to the adiabatic
approach, as reflected in the RMS of the Euclidean distance between the approx-
imate and fully coupled reduced density states. Thus, the approximate adiabatic
representation more accurately reproduces the spectroscopy of the CH system than
the approximate diabatic representation. This aligns with the conclusion of Brady
et al.*, who studied the numerical equivalence of the CH [C?LT, 22X+] 2-state
system and found that weakly non-adiabatic systems generate large DCs, making
the adiabatic representation a more appropriate framework for modeling the spec-
troscopy. However, the induced errors via these approximations prove that for high
resolution applications all non-adiabatic effects must be included.

The impact of these approximations on the energies of my model CH system
are graphically illustrated in Figure 3.20 by plotting the states corresponding to the
adiabatic approximation III and diabatic approximations IV and comparing them to
the corresponding “exact” values (no approximation). While the adiabatic system
of CH appears to be relatively immune for the absence of the couplings here, the
diabatic zero-order approximation has a dramatic effect on the positions and even
physical meaning of the computed states. Indeed, not only the approximated en-
ergies are very different, the very steep potential well of Vl(d), when not connected
to the repulsive state V3(d), yields additional bound states in the region above the

adiabatic dissociation of the C2X 7 state.

3.8 Validity of the 2-State Approximation

The two-state approximation refers to the coupling of only two adiabatic states,

meaning the K matrix in Eq.(2.16) is diagonal and the DBOCs are given by the
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Figure 3.20: Illustration of the energy term values of my CH model system (J = 0.5, e)
computed using the adiabatic approximation III (dashed, left panel) and dia-
batic approximation IV (dashed, right panel) compared to the corresponding
“exact” solution (no approximations, solid gray lines, both panels) for the low-
est 6 states.

NAC squared between states 1 and 2 (see Section 2.1). The two-state approximation
is attractive since solution to Eq.(2.49) is analytic, and hence a diabatic representa-
tion is exactly known, where modelling of the full adiabatic or diabatic system is
simple and requires only parameterisation of the NAC and two simple Morse and/or
repulsive curves (see Section 2.5.1). The argument for such an approximation can
be made via Hellman-Feynman theorem, which relates the difference in adiabatic
energies to the NAC via (see Section 2.2.1 and Lengsfield and Yarkony !**, Saxe
and Yarkony 125 Baer?® for details)

dA@

(1 1
W
dr

) _
%P Eg—Eq

(va

\pg>. (3.19)

Hence, if states o and 3 are sufficiently well separated, i.e. |Eg — Eq| > 1, then the

DDR matrix elements are small WO(:[); < 1.

dyg :
d—rﬁ> can then be expressed in terms of the energy

The DBOC Ky 5 = (44

separation as follows

K, 5=Y !
a’B_Z(Ea—EK)(EK—E5)< o

K

dA@
dr

dA@
dr

v ) (v

where the summation is over all adiabatic states and in the last line the Hellman-

w§> (3.20)

Feynman relation in Eq.(3.19) is inserted. It is evident that for the coupled two-
electronic state system, states |y{) and |y5), the NAC elements coupling other

states will be reduced by a factor of 0 1

B EOE By’ for sufficiently well separated
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Figure 3.21: Illustration of the difference between the lowest 25 adiabatic rovibronic en-
ergy (E,(la)) in Table 3.10 computed with an N, model and the fully-coupled
10-state model presented in section 3.6.3. The top left panel plots the energy
level on the vertical axis vs. the discrepancy to the 10-state computed energy,
where the states in question reside in the potential region shown in the top
right panel. The bottom panel illustrates the energy discrepancy with increas-
ing number of electronic states for the lowest 4 vibrational states of 11X+,
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states from the coupled system |yy{') and |y4) the summation is truncated yielding
~_ (W)’ o1
Kpp~— (W1,2> : (.21

To assess the validity of the two-state approximation, the lowest 25 rovibronic
energy levels of the 10-state system described in Sections 3.6.3 and 3.7.1 are com-
pared by progressively reducing the number of electronic states included in the nu-
clear motion calculations. Figure 3.21 shows the absolute differences between the
n™ rovibronic energy level computed with an Ny model and the full 10-state adi-
abatic model with all DDR couplings, which is treated as the “true” reference for

this system.

The most significant improvement occurs when moving from a single-state
model to the two-state coupled system, reflected by an order-of-magnitude reduc-
tion in energy error, highlighting the critical role of non-adiabatic interactions.
However, even for the lowest rovibronic states, the two-state model never agrees
with the 10-state results to better than 1072 cm ™!, indicating the necessity of incor-
porating additional non-adiabatic interactions from higher excited electronic states.
Even the 9-state model does not achieve agreement with the 10-state reference

within 1073 cm™!, which is insufficient for high-resolution spectroscopy.

Despite this argument being somewhat heuristic, it is evident that states sep-
arated by energies on the order of 10* cm~! have a non-negligible impact on
the ground-state energies. This can be attributed to the complex interactions be-
tween multiple different electronic states and results in a non-trivial correlation even
among well-separated states. This challenges the straightforward application of the
Hellmann-Feynman theorem to truncate the number of adiabatic states treated in
rovibronic applications and highlights the need for further investigation, which tools

like Duo now facilitate.

3.9 Applications of Diabatisation

This section outlines example use cases of our implemented diabatic module in the
Duo program. So far this thesis has outlined both theoretical and numerical results
in the construction of practical and exact diabatic representations for diatomic nu-
clear motion calculations, to which I now demonstrate its usefulness in the calcula-
tion of molecular line lists as in our recent works for the YO 72 (yttrium monoxide)

and CO2*8 (carbon monoxide) molecules.
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Figure 3.22: CASSCF NACs and empirical diabatic couplings D(r) of YO, A—C and B-D.

3.9.1 %Y!°Q: The BRYTS Line List

The diabatic representation was employed in the construction of the BRYTS line
list for 39Y100, 89Y170 and 89Y'80. The line list covers the six lowest doublet
electronic states: X 22+, A2TI, A’?A, B>X+, C?I1 and D2X+ up to 60 000 cm~!. A

previous ab initio study>>°

provides the theoretical foundation for our refinement to
spectroscopic data. This study employed a combination of multireference configu-
ration interaction (MRCI) and coupled-cluster methods to compute potential energy
curves (PECs), spin—orbit coupling curves (SOCs), electronic angular momentum
curves (EAMCs), and (transition) electric dipole moment curves ((T)DMCs) for

these six electronic states of YO.

Our collaborators extended this ab initio model to incorporate NACs for the
B2X*, D?X*, and AT, C?11 state pairs. These NACs were computed using the
DDR procedure in MOLPRO !3° (see Section 2.2.2) at the complete active space self-
consistent field (CASSCF) level of theory and are plotted in Figure 3.22. The ab
initio calculations revealed that the B>X+, D?XF and A 2I1, C2I1 state pairs exhibit
avoided crossings near their potential minima. Consequently, a careful treatment of
non-adiabatic interactions was necessary to accurately reproduce the experimentally

derived energy levels, as described below.

3.9.1.1 Refinement of the Diabatic Spectroscopic Model

We model the diabatic potentials for the ATI, B2, and A°II state PECs using
the Extended Morse Oscillator function (EMO)2*°. However, since the C2IT PEC
lacks experimental data, we model its PEC with the Extended Hulburt-Hirschfelder
(EHH) function®>%>! which was suggested to be more suitable for the description

of the dissociation region?>?

. Prior to refinement, the parameters describing the ini-
tial diabatic PECs were obtained by fitting the eigenvalues of the diabatic electronic

Hamiltonian matrix to the ab initio PECs (see the ansatz diabatisation method in
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Figure 3.23: Refined (lines) and ab initio (points) PECs of YO: diabatic (left) and adiabatic
(right).

Section 2.8.4). The DCs in this procedure are readily obtained from two diabatic
PECs and a NAC via Eq.(2.59), where the NACs in this case were modelled by fit-
ting Lorentzian functions to the ab initio computed curves. Figure 3.22 illustrates
the CASSCF NACs and DCs for the B2X /D2 " and A >TT/C 211 state pairs obtained
by the methods described above. The B2X*/D?X* DC has an asymmetric-Gaussian
character, where ultimately the asymmetry in the DC is controlled by the difference
Vz(d) — Vl(d) if a symmetric NAC is used.

Figure 3.24 illustrates the available experimental J = 0.5 energy term values
superimposed on the diabatic B2Xt/D2%* and A?I1/C?I1 PECs. Since the region
about the avoided crossing of the B2LT/D?L" system is well represented by ex-
perimental data, an inverse EMO function is used to model the DC between these
states to introduce extra flexibility into the refinement of the coupled curves. Con-
versely, we model the A 2IT/CI1 DC via the diabatic PECs and a Lorentzian NAC
via Eq.(2.59). The BX* vibronic energies of v > 4 are strongly affected by the
diabatic coupling with the D2 state. Introduction of the diabatic coupling to the
B?Y7 states makes the shape of the PEC broader and pushes the positions of the
D?%7 energies down. It is interesting to note that the A I state vibronic energies
forv=11,12,13 do not appear to be very perturbed by the presence of the close-by
C°T1 state, unlike the interaction of the B/D diabatic pair. This can be attributed to
the difference in the corresponding DCs of the B/D and A/C pairs in Figure 3.22.

The diabatic spectroscopic model including PECs, DCs, and couplings (SOCs,
EAMC:s, initially computed ab initio via MRCI) was then tuned to experimentally
determined energy levels obtained through the MARVEL algorithm (see Section
4.11.1 of Chapter 4 for details on the MARVEL algorithm). The refined (diabatic)
PECs of YO are illustrated in Figure 3.23. The CCSD(T)/CBS ab initio energies

from Smirnov et al. 3", shown with circles, appear to closely follow the refined
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Figure 3.24: Diabatic PECs of the B/D and A/C pairs with the corresponding experimental
energy term values (J = 0.5).

curves, indicating the excellent quality of the ab initio CCSD(T) PECs. The fitted
DCs are then illustrated in Figure 3.22.

The results of the refinement are illustrated in Figure. 3.25, where |obs.-calc.|
residuals are shown for the A2I1, D22+, and B2X T electronic states. Some of the
bands show clear systematic behavior of the residuals with respect to J, especially
those that correspond to the synthetic data (derived via spectroscopic constants us-
ing PGOPHER '*°) or high resolution data (e.g. A°IT and some of the B2X* vibra-
tional systems), while others appear random with no particular structure (e.g. v =10
of B’LT and D2X*). The root-mean-square error achieved is 0.29 cm™! for all
5906 energies (including the ground state and A’2A) covering J up to 142.5.

Given the sensitivity and significant impact of NACs (and DCs) on rovibronic
energy levels, achieving the level of accuracy shown in Figure 3.25 is a challeng-
ing task. However, the inclusion of these couplings was crucial to attaining this
precision, allowing us to achieve near-spectroscopic accuracy by accounting for the

non-adiabatic effects.

3.9.1.2 Intensity Calculations

I diabatise our ab initio (T)DMCs using a combination of cubic-spline interpolation
to smooth out the region around the avoided crossing and knowledge of the shape of
the diabatised target curves. Figure 3.26 illustrates the property-based diabatising
‘transformation’ for the (B>X* |, |X?X*) and (D?LF| . |X?L*) transition dipole
moment pairs, the effect being the two curves ‘swap’ beyond the avoided crossing
and are now smooth. This method was employed because some computed coupling
curves were incomplete, and this pragmatic, physics-driven approach provided a
sensible solution. Additionally, since the avoided crossing positions predicted by
ab initio CASSCF NACs, MRCI couplings, and CCSD(T) PECs may differ slightly,
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Figure 3.25: Observed minus calculated residuals for YO using the refined diabatic spec-
troscopic model for different vibronic states.
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Figure 3.26: Example of the diabatisation (see text for details) of the adiabatic
(B?LF| u, |X?2+) and (D?L*|u,|X2L+)dipole moment pairs, where the
B?X* and D2X states exhibit an avoided crossing at r ~ 1.81 A.
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simply sketching the diabatic curves resolves any non-physical dipole oscillations
that would arise from an inconsistent diabatisation using curves obtained at different
theoretical levels — thus preventing strong artifacts in the computed diabatic inten-
sities. The resulting computed intensities were validated against available spectro-

scopic data and show excellent agreement (see below).

2 Bernard et al. (1979)
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Figure 3.27: Comparison of our computed AT , < X*L" and A*IT; ), <~ X" v=0—
0 rotational-electronic emission bands with those of Bernard et al. >3 (red
lines), a measured spectrum using Fourier Transform Spectroscopy (upper
displays). We compute our spectrum at a temperature of 1500 K to best match
that of Bernard et al. >3, A Gaussian line profile of 0.065 cm™! was used with
a resolution of 0.01 cm~'. ©AAS. Reproduced with permission.

Figure 3.27 compares the experimental A*IT; , - X?£" and A°I13 ), < X?E "
v =0 — 0 emission bands measured by Bernard et al.?>3 via Fourier Transform
spectroscopy (black, extracted from their Figure 2) to our computed spectra (red).
We simulate our spectra at the temperature of 1500 K to agree with the rotational
structure of the experiment. Excellent agreement in both line position and band
structure with the experiment is seen. Some discrepancies can be seen in the line
intensities, but this could be due to assumptions about the temperature and line
broadening. Generally, the magnitude of band head residuals AV = Vexp — Vealc

correlates with the level of the rotational and vibrational excitations. The band heads
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with Jpead below 70.5 and v < 8 agree within ~ 0.1 cm™!, which then degrades to

about 0.5 cm™! for Jpeaq — 100.5.

As in the previous YO ab initio study by Smirnov et al. >3’

parisons with the B’2* — X2+ and D22+ — X2X+ absorption spectra from Zhang

et al. 2>

, We present com-

, shown in Figure 3.28, now with improved agreement using the BRYTS
line list. For further details, refer to the corresponding discussions in Smirnov

et al. 230

. The experimental spectra were recorded in a heavily non-local thermo-
dynamic equilibrium (non-LTE) environment, with rotational populations cooled to
liquid nitrogen temperatures and vibrational populations remaining hot. This made
comparisons to these bands challenging; however, we attempt to account for these
non-LTE conditions by simulating the spectra with a rotational temperature of 7
= 50K and a vibrational temperature of 7,;, = 800K. We observe some intensity
differences in the D?X — XX+ absorption bands, but with good agreement in line
positions. Due to the heavily non-LTE conditions, quantifying the accuracy of our

computed bands is difficult.

Zhang et al. (2017)
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Figure 3.28: Comparison of our computed (bottom) D2X+—X2¥+ absorption spectra to the
measurements of Zhang et al. >>* (top). The simulations assumed a cold rota-
tional temperature of 7, = 50 K and a hot vibrational temperature of 7., =
800 K. A Doppler line profile corresponding to T;,; = 50 K was used.
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3.9.2 CO

Since, after hydrogen, CO is the second most abundant molecule in the uni-

255,256

verse , 1ts spectrum is of astrophysical importance, e.g. for planetary atmo-

257-259 interstellar space%o 261-266

spheres , exoplanetary and stellar atmospheres
The CO spectrum is also important in plasma physics, laser physics, and combus-
tion297-26%  Indeed, some of the CO spectral bands are named after their signatures
in plasmas. This means interpreting its spectral signature requires a thorough un-
derstanding of its absorption and emission properties, particularly of highly excited
electronic states.

We report?’® a new accurate spectroscopic model for the ground and
electronically-excited states of the CO molecule computed at the ab initio
CASSCF/MRCI+Q level of theory. Of the investigated A'TT — X 'x*+, Blx+ —
X'tt, 't —X!x*, and E'TI - X 'SF band systems, I discuss here the B>+
and C'X* states which are characterised by multiple, near-vertical, avoided cross-
ings. I then diabatise these states to obtain an accurate diabatic electronic structure
model.

To the best of our knowledge, this is the first systematic theoretical spectro-

scopic study of highly excited states of the CO molecule.

3.9.2.1 Diabatisation

The highly excited states of CO exhibit strong nonadiabatic character, and so proper
treatment of the non-Born-Oppenheimer effects must be taken into account for
the accurate calculation of the CO UV spectroscopy. We identify three important
states involved in the nonadiabatic coupling of the !X+ manifold, B'L*, C!xt,
and (IV)'Z*. The ab initio PECs of these three states are illustrated in Figure
3.29 which shows an avoided crossing between C'E*/(IV)!L" at r, = 1.246 A and
B'Yt/C'y+at r, = 1.275 A. What is interesting about this system (and what makes
it complex) is the near-vertical nature of the avoided crossings.

A proper treatment of the CO [B!ZF, C!X*, (IV)!Z*] system would require
ab initio calculation of the three NACs coupling these states, where a direct N-
state diabatisation can be obtained through methods discussed extensively through-
out this thesis. However, at the time of this project we lacked knowledge on the
NAC calculations and on N-state diabatisations, and so we adopted the two-state
property-based diabatisation approaches previously applied to the YO and CH sys-
tems in Section 3.2 (and also SO in Chapter 4). To do this, a two-step approach is

required

* Perform a two-state diabatisation on the sub-manifold [C'ZF, (IV)!Z*] to
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Figure 3.29: The ab initio PECs of the B'X*, C'L*, (IV)'L* states are plotted as solid
lines in the top left panel. A two step two-state property-based diabatisa-
tion (see text) yielded the optimised NACs shown in the bottom left plot, the
diabatic PECs in the top right plot, and DCs in the bottom right plot. The
diabatic model then serves the basis for rovibronic intensity calculations. The
quasi-diabatic state QD'Y ", the intermediary state for the applied two-step
diabatisation approach, is plotted as a red dashed line in the top left panel.

yield quasi-diabatic states. The lowest quasi-diabatic state will be identified
as the diabatic C!'X 1 state used in subsequent rovibronic calculations, and is

illustrated in the top right panel of Figure 3.29.

« The upper quasi-diabatic state QD'X ", illustrated in the top left panel of Fig-
ure 3.29 (red dashed), will be used in a subsequent two-state diabatisation
with the adiabatic B'X7 state. The lowest component of this second diabati-
sation is identified as the diabatic B'X* state illustrated in Figure 3.29, and

the upper diabatic state is now a repulsive curve.

Within both property-based diabatisations, NACs are optimised to yield the
smoothest diabatic PECs, and can be seen plotted in Figure 3.29. The subsequent
DC:s are also illustrated in the bottom right panel of Figure 3.29.

Using these NACs, the transition DMCs connecting X 'E* with B!t and
C'E7T are diabatised and are used in the intensity calculations in Section 3.9.2.2.
The diabatic PECs are then fitted to experimentally derived energy levels. For more

details, see discussions in Khalil et al. 270,
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3.9.2.2 Intensity Calculations

As demonstrated throughout this chapter, the adiabatic and diabatic representations
are exactly equivalent — yielding identical rovibronic energies, wavefunctions, and
intensities — when all nonadiabatic couplings are fully encountered. However, adi-
abatic models often omit the NACs to reduce the computational cost of their inte-
gration and analytical fitting?’'. The adiabatic spectrum of CO has been computed
using adiabatic PECs, TDMCs, with NACs omitted. The diabatic CO spectrum is
computed including and excluding DCs. Comparisons of these spectra then reveal

some interesting properties of the diabatic representation.

Figure 3.30 compares the adiabatically and diabatically computed C !X+ —
X'2F v =0—0 band system with the experimental spectrum of Ubachs et al.?’?.
There are noticeable differences between the adiabatically computed spectra and
experiment: The (0-0) band peak shows a shift of about 0.137 nm in the line posi-
tion, while the fundamental (1-0) peak position is shifted by about 0.187 nm (see
Figure 20 of Khalil et al. 270). The diabatic bands, however, show excellent agree-
ment to the experimental band, with a line position difference < 0.0048 nm for the
(0-0) peak and 0.0034 for the (1-0) peak. Even with omission of the DC, the com-
puted diabatic band intensities generally agree well, but less than the fully coupled
case due the strong DC (975.6121 cm~!). Thus, the uncoupled diagonal diabatic
potentials are a significantly better approximation to the spectroscopy of this system
than the adiabatic representation with no NAC. In this case, it is clear the diabatic

representation is a more physical representation than the adiabatic picture.

3.10 Summary

The work of this Chapter demonstrates the numerical equivalence of adiabatic and
diabatic representations in nuclear motion calculations for multi-state diatomic sys-
tems, using Duo as a benchmark tool. I validate this equivalence for several sys-
tems, including N», CH, YO, and an artificial 10-state model, by comparing rovi-
bronic energies and radial reduced densities computed in both representations. My
results confirm that a strict diabatic representation — where all derivative couplings

vanish — is achievable regardless of the number of states considered.

A key finding is the crucial role of NACs, DBOCs, and DCs in ensuring nu-
merical consistency between the two representations. Omitting these terms leads
to deviations of up to 10> cm™!, making them essential for high-resolution spec-
troscopy. Notably, the diagonal derivative coupling, often neglected, is shown to

significantly impact computed spectra. Moreover, I highlight the limitations of the
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Figure 3.30: Comparison between the adiabatic and diabatic representations of the (0-0)
C'* — X '3+ band and with Ubachs et al. >’?> experiment.

commonly used two-state approximation, demonstrating that truncating the number
of adiabatic states without quantitative validation introduces substantial errors, even

when considering nine out of ten states in a multi-state model.

I further introduce a hybrid-asymptotic-property-based (HyAP) diabatisation
scheme for N-state systems, applied here to Ny, CH, and a 10-state model, which
ensures a smooth diabatic representation with sensible asymptotic behavior while
maintaining exact equivalence to the adiabatic framework. The aim of develop-
ing HyAP was to allow the construction of practical, but accurate, diabatic states
such that, for example, an efficient contracted rovibronic basis can be constructed
to solve the fully coupled problem. Despite inherent challenges such as asymptotic

misbehavior and topological discontinuities, these issues are mitigated through a
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regularisation approach optimising switching functions on the exponential mapping
of the AtDT - yielding regularised NACs. My method successfully removes all
derivative couplings from the nuclear kinetic energy and provides a robust frame-
work for modelling diatomic rovibronic spectra.

Beyond validating diabatic and adiabatic equivalency, the work presented in
this chapter underscores that the preferable representation depends on the system:
adiabatic models converge faster when NACs are small, whereas diabatic repre-
sentations are more efficient for systems with strong NACs. The methodologies
developed here lay the groundwork for extending these concepts to polyatomic
molecules, where full removal of derivative couplings is not always possible.

The presented findings reinforce the importance of carefully considering all
coupling terms and basis truncations in high-resolution molecular spectroscopy.
The methodologies and benchmarks provided by Duo offer a reliable platform for
future investigations into diabatisation strategies and non-adiabatic effects in molec-

ular systems.



Chapter 4

A Spectroscopic Model and
Rovibronic Line List for Sulfur
Monoxide: SOLIS

4.1 Introduction

From the fiery hearts of volcanoes to the frosty depths of interstellar space, sul-
fur monoxide (SO) leaves its mark on a remarkably diverse range of environments.
SO plays a key role as an intermediate in the oxidation of sulfur compounds, par-

ticularly within combustion processes, making it central to environmental chem-

istry due to its contribution to atmospheric acidification and pollution?’3-277-141,

Its high reactivity and interactions with N> and O, further stress’ its importance
within atmospheric chemical reactions'#'. Astrophysically, SO was first detected
by radio astronomy in the interstellar medium by means of rotational spectroscopy
and was the first >Y ground state molecule to be detected in outer space®’8. Ad-
ditionally, SO was the first molecule observed using pure rotational transitions via
microwave spectroscopy within its excited electronic states>’®. Since its first detec-

tion, SO has been observed in an array of astronomical environments. For exam-

278,280 281,282

ple, in interstellar clouds , molecular clouds , planetary, and lunar atmo-

spheres?83-28_ Tt is proposed by numerous studies that sulphur-bearing molecules,

including SO, are important constituents of volcanic planetary atmospheres?37-289

Consequently, SO is seen to play a role in many solar-system atmospheres, includ-

283,284 285,286 SO’

ing that of Jupiter’s moon lo and of Venus s presence in plane-

tary atmospheres could be linked with its presence within protoplanetary disks2"?,

where studies suggest sulphur-carrier based dust-formation channels may lead to

291,292

planetary formation . SO is now also expected to be present in regions where

photochemistry is important. For example, the recent detection of SO; in the atmo-
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sphere of the hot-Jupiter WASP-39b%3 suggests SO to be part of the photochemical
production pathway of SO, and has been detected in this object?**. It is in these
studies that our SO line list, SOLIS, has been applied and is discussed later this
chapter. Additionally, Zeeman splitting has been used to probe the magnetic fields
of dense star-forming regions, such as the Orion molecular cloud, for field strengths
> 1072 G2%2% and its presence within warm chemistry’s mean it is an excellent
shock tracer297-2%8 Recently, our SO line list was utilised in a chemical evolution
model which predicted detectable levels of SO in Type Ibc supernovae'. SO for-
mation was determined to influence the ejecta’s temperature and spectra, with the
8.7um fundamental band feature a potential target for JWST observations. Experi-
mentally, UV lasing has been demonstrated by SO 2?30 making it of spectroscopic
interest.

Because of SO’s diverse observational applications, an accurate description of
its rovibronic structure is of central importance. The frontier orbitals of SO re-
semble that of carbon monoxide where the two * valence electrons mean SO has
a X3y~ ground state similar to O, and S;. Being isoelectronic with O;, SO has
two low-lying metastable a !A and b 2" states which are relatively short lived due
to large spin-orbit coupling. To achieve a complete rovibronic description of SO,
collaborator Gap-Sue Kim calculated ab initio potential energy curves (PECs), spin-
orbit curves (SOCs), electronic angular momentum curves (EAMCs), and electric
(transition) dipole moment curves ((T)DMCs) for the 13 lowest electronic states of
SO (X327, a'A, bIE*, 127, AP3A, A"3ET, ATL, B3E~, C3IL, d ', € 'T1, C' 311,
(3)'TT) at an MRCI level of theory using aug-cc-pV5Z basis sets'3. The relative
phases of the the non-diagonal couplings and transition dipole moments provided

t391 which is crucial for reproducible spectroscopic studies.

are fully self-consisten
Our ab initio curves are adiabatic as computed under the Born-Oppenheimer ap-
proximation” and so the spatially degenerate states e 'TI, (3)'IT and C3I1, C"3I1
exhibit avoided crossings due to their shared symmetries, where non-adiabatic ef-
fects play important role (see Chapter 2 for details). I obtain a set of NACs, and
therefore a diabatisation, for the two mentioned 2-state systems via the property-
based diabatisation method, where I explored — for the first time during my PhD
— the use of diabatic and adiabatic curves in rovibronic calculations. It is in the
spectroscopic characterisation of SO where my journey into studying diatomic non-
adiabatic interactions begun.

The literature also contains many theoretical studies of SQ392-323:307.324 " the
most comprehensive, and one I compare to often, being Yu and Bian>'?> who give

spectroscopic constants on all electronic states considered here (except (3) TT) com-
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puted through internally contracted multireference configuration interaction (ic-
MRCI) methods using aug-cc-pV5Z basis sets. Another important theoretical work
is by Sarka and Nanbu 3>
they compute PECs, DMCs, and non-adiabatic couplings (NACs) for the X 3y,
A3TI, B3, C3I1, C'311, (3)3% 7, (4)°T1, and (5)°I1 states at a MRCI-F12+Q level

of theory using aug-cc-pV(5+d)Z basis sets. Sarka and coworkers3> are also the

who study the UV region of SO non-adiabatically where

first to compute cross-sections for SO down to 190 nm in the UV.

Experimentally, the SO spectrum for the X 32~ a!A, b!'XF, A3TI- at low vi-
brational excitation’s — B3X~, and C3I1 electronic states has been studied by nu-
merous works, where I provide a full analysis of the experimental coverage on SO
in Section 4.12. SO’s electronic transitions were first reported by Martin (1932)3%,

1327,328 329-331

and has since been subject to pure rotationa , electronic , and ro-

vibrational 3327334

spectroscopic studies. The pure rotational transitions within sev-
eral vibrational states in the ground XX~ electronic state have been measured in
the terahertz 139335 far infrared33%-337, and microwave regions 328.338.339 More re-
cently, Bernath et al.3*%34! produced empirical line lists for SO’s b'ET—X3¥~,
a'A-X3Y~, X3¥~, and a'A rovibronic bands. For most of these recorded spec-
tra, SO was studied in non-local thermodynamic equilibrium (non-LTE) conditions,
and so only relative intensities are available at best. Currently, to the best of my
knowledge, only Heays et al. !4 have provided absolute spectral intensities for SO.
However, measurements of state lifetimes provide information on Einstein A co-
efficients and hence transition dipole moments3*?. Experimental lifetimes for the
b1Tt, A3 and B3X~ states have been measured*33%, and provide a valuable
benchmark for my intensity calculations (see 4.14.1).

In this chapter I present the largest compilation of experimental transition data
and derived self-consistent empirical rovibrational energy levels for 32S'°0 to date.
The derived energy levels where obtained through use of the MARVEL (Measured-
Active-Rotational-Vibrational-Energy-Levels) spectroscopic network algorithm, to
which the 328100 data is formatted based on the MARVEL format . The ab ini-

tio spectroscopic model 13

can then be refined to the determined empirical energies
to produce a hot semi-empirical line list SOLIS for 32S'90 as part of the Exo-
Mol project>*>*. The SOLIS line list supplements existing spectroscopic line list
data for SO which are limited in coverage. For example, spectroscopic databases
CDMS 346 and NIST>*7 databases contain data covering the microwave region only.
HITRAN>*? considers relatively low vibrational excitations for transitions between
electronic states X3~ ™, a'A and b'X* only. The SOLIS line list is compared to

the existing spectra data in Section 4.14.5.
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4.2 Computational Details

Initially, internally-contracted multi-reference configuration interaction (icMRCI)
ab initio calculations for the 13 lowest singlet and triplet states of SO correlating
with SCP) + OCP), S('D) + O(P) and S('D) + O(' D) were performed by collabora-

349 with aug-cc-pV5Z basis sets %331 Molecular

tor Gap-Sue Kim using MOLPRO
orbitals were optimised using prior obtained state-averaged complete active space
self-consistent field (CASSCEF) calculations. Under Cpy point group symmetry all
ab initio calculations started with 14 (8¢, 37,, 37,) orbitals which included 6 closed
(40, 17y, 17y) orbitals. The active space occupying 12 active electrons consisted of
8 (50-80,2m,3m) valence orbitals. The PECs, including the 8 bound states X 3y,
a'A, b'TF, 12, A73%, A’3A, A3TI, and B3X~ are shown in Figure 4.1, as well
as the adiabatic e 'TT - (3)'TT and C>II - C'3IT systems. The EAMC, SOCs (both
diagonal and non-diagonal), DMCs (diagonal and transition) computed are shown
in Figures. 4.2 — 4.6 in the original adiabatic representation as computed by MOL-
PRO 20153% (left) and the diabatic representation (right). Further discussion of the
diabatisation is given in the next section.

I note here that 1 later performed further ab initio calculations with the
same theory method and active space described above to supplement the ab initio
model. Additional (b'E*|SO, |A>TI), (a'A|SO,|A3TI), (e'TI| SO, |A>TI) (diaba-
tised), (d 'T1|SO, |A3IT), and (¢ 'X~| SO, |A3TI) spin-orbit couplings are computed,
originally missing in the initial set of calculations. These SOCs were identified as
either important upon refinement of the ab initio model to our MARVEL dataset,
in study of the b !X+-X 3¥~"band intensity, or required for completeness.

Table 4.1 lists the quantum numbers used to label the electronic states in the
following sections. All electronic states of SO studied in this chapter are either
triplet (S = 1) or singlet (S = 0) multiplets in the 2~ (A =0), X" (A=0), [T (A= 1),
and A (A = 2) manifolds.

Quantum Number \ Description
2541 The spin-multiplicity with total electron spin S
A Electronic orbital AM projection
X Electronic spin AM projection
Q=A+X The total electronic AM projection
+ Planar reflection symmetry about the internuclear axis

Table 4.1: Quantum numbers used in description of the molecular term symbol 2S+1A£.
"AM’ refers to angular momentum and its projection is onto the internuclear
axis.
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Figure 4.1: Plots of our 13 adiabatic (left) and diabatised (right) ab initio PECs covering
the first 7 triplet and 6 singlet electronic states up to 80,000 cm ™!,
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of the same A as a function of bond length.
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Figure 4.3: Ab initio spin-orbit MOLRPO matrix elements in the adiabatic (left) and di-
abatic (top right) representations between states of different values of A as a
function of bond length.
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Figure 4.5: Adiabatic (left) and diabatic (right) ab initio transition dipole moment curves
(Debye) between states of different symmetry as a function of the bond length.
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4.3 Diabatisation

A detailed description of the theory and methodology behind diabatisation can be
found in Chapter 2, however, this section discusses a different formulation of the
NAC used in the property-based diabatisation of the e 'TI - (3)'TT and C3T1 - C'3I1
2-state systems. Specifically, Section 2.5.1 of Chapter 2 details the theory behind
2-state diabatisations, where below the application of the theory directly within our

SO model is summarised.

4.3.1 Analytical NACs and the 2-State AtDT

The transformation from the adiabatic to the diabatic representation is described by

a unitary matrix U, which is parametrically dependent on the NAC term,

.1

U(B() = [cos(ﬁ(r)) —sin(ﬁ(r))] |

sin(B(r))  cos(B(r))

where the mixing angle 3(r) is obtained by integrating the functional form of the

non-adiabatic derivative coupling Wy, (r) := (yq| dir |y ) 164-166,20

B(r) = /_:o Wi (rdr 4.2)

with |y1) and |y;) being the lower and upper energy electronic wavefunctions in
the adiabatic representation. The lower limit of the integral here is —oo rather than 0
because the functional forms of the NAC extend over all regions of the independent
variable r. As will be seen below, the functional forms are not zero for r < 0, this
is simply an artifact of the approximation made when representing the NAC with a
mathematical function. In all practical use cases, this is not a problem where I wish

to simply parametrise the NAC, mixing angle, and subsequently the AtDT.

Writing the two-state electronic Hamiltonian in terms of the adiabatic potential

energy curves V2(r) and V(r),

arn (Vi) 0
V(r)_<10 vza(r))’ (4.3)

The diabatic electronic Hamiltonian is obtained by applying the unitary transforma-
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tion U(B(r)),

d d
Vd r) = UTVa r U — Vl (r) V12<r)> —
" ") (Vldz(r) Vzd(r)
[vla cos? B+ Vasin® B L(V2—V2)sin(2B)

1(ya a\ o agin2 a 2 , (44
>(V3=V¥)sin(2B) V{sin”f +Vjcos”f

where the superscripts ‘d’ and ‘a’ refer to the diabatic and adiabatic bases, respec-
tively, and the off-diagonal elements Vld2 (r) are the DCs. The reverse transformation

is obtained by diagonalising the diabatic electronic Hamiltonian.

The NAC can be computed via quantum-chemistry methods from the elec-
tronic wavefunctions, as done by Sarka and Nanbu3?> for SO. It is approximately
symmetrical with a cusp at the crossing point r.. Alternatively, the NAC curves are

modeled using, e.g. a Lorentzian?®, as given by

1 (04
_ Loy, _
Wislr) = Wi 0ore) = 3 ot )
where « is the inverse half-width-at-half-maximum (HWHM), or a Laplacian
/4 r—r,
‘/V’](r) = ‘/Vi]]_:a(r; Ys rC) = 4—/}/6Xp [_%] ) (46)

where ¥ is a damping constant related to the FWHM, superscripts ‘Lo’ and ‘La’
mean Lorentzian and Laplacian respectively, and the normalisation [, Wi, (r)dr =
n/2 is applied. Figure 4.8 illustrates the C>IT —~C’3I1 NAC modelled in this work
using a Lorentzian and Laplacian function. The mixing angle B(r), determined
through Eq. (4.2), ranges from O to /2 going through 7 /4 at the crossing point
r = r. which can also be seen in Figure 4.8.

The Lorentzian was shown to provide a good description of the ab ini-
tio NACs around the crossing point!70:171:163.166 (see Figure 4.8) but diverges at
large distances r from r. causing improper shaped diabatic PECs by decaying too

SlOle 165,166,170,352

. It has been discussed that some damping functions can be
introduced to correct the Lorentzian’s slow decay using properties such as dipole
moments, but determination of their fitting parameters is both difficult and requires
extra calculations '7%?%. Laplacians underestimate NACs far in the wings and over-
estimate them near the crossing point'%>. One can show that NACs have an overlap

170,353

dependence on the internuclear separation , r, which is given properly by a

Laplacian'®. The undesirable features of these NAC models can be mitigated by
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their combination 16>-166:170:352 {4 which I base my diabatisation procedure of SO
on. The used method of augmenting the Lorentzian with a Laplacian is discussed

in section 4.3.2.

4.3.2 Mixing Angle from a Geometric Average of DCs

The ‘property based diabatisation’ method?’ is explored below (see discussions in
Chapter 1 and Section 2.8.5 of Chapter 2), where diabatic potentials are constructed
using the condition of having no avoiding crossing, which I define as to minimise

their second derivatives in the vicinity of the crossing point r:

922?‘”7 4.7)

hence creating the smoothest PECs V{(r) and V3!(r). This is, however, easily gen-
eralisable to any diabatic property, such as dipoles. Section 4.3.3 details the algo-
rithmic implementation of my property-based diabatisation.

In order to mitigate the undesirable properties of the Lorentzian and Laplacian
functional forms of Eqns. (4.5,4.6), I follow the approach by An and Baeck ' and
represent the mixing angle 8 of Eq.(4.2) by the following combination of the mixing
angles determined from the Lorentzian and Laplacian NACs (Eq.(4.2)), 8 Lo(r) and

B (r)

(r) = %arcsin (1/sin(2BLe(r))sin(2BE(1)) ). 4.8)

where the ‘ga’ superscript refers to the geometrically averaged diabatic mixing an-

gle (See Figure 4.8), the Lorentzian derived mixing angle B°(r) is given by

Lo(r) = %Jr%arctan(a(r—rc))v (4.9)

and the Laplacian derived mixing angle B*(r) is given by

%exp(r_yrc), r<re

L

ija(r> = %7 r=r. . (4.10)
o), o

Equation (4.8) must not be taken as the geometric average of B° and B2, but rather

originates from the simple geometric average of V1L2° and Vlea 165 From Eq.(16) of
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An and Baeck 9%, the following is obtained
ga d,Lo d,La
Vo =VVis Vs

Q
| —

(V& —V})sin(2pL0) - %(V; — V) sin(2pL2)
(V3 — Vi), /sin(2BL0) sin(2p2)

(V2 = Vi) sin(2B™)

l\.)l'—‘l\-)l'—k

where in the second line the matrix elements given in Eq.(4.4) are substituted. Com-
paring the last two lines, one can recover Eq.(4.8), the mixing angle that corresponds

to the geometrically averaged DC is then

sin(ZﬁaV) = \/sin(ZﬁLO) sin(2pLe)
Ny T arcsm (\/ sin(2BL) sin(ZBLa)) ,

which corresponds to Eq. (15) of An and Baeck '%°. An and Baeck !9 also showed

that an optimal relation between the parameters ¢ and 7y exists which given by
axy=1.397 “4.11)

providing maximal overlap between the Lorentzian and Laplacian functions over
the bond length.

Where my method diverges from that of An and Baeck !¢ is in the determi-
nation of the crossing point 7. and the Lorentzian parameter &. An and Baeck '%
obtained r. and o through fitting a Lorentzian to a NAC computed with MOL-
PRO. Instead, I determine a set of parameters {r., o} by fulfilling the condition
given in Eq.(4.7), to which the Laplacian parameter ¥ is instantly obtained through
Eq.(4.11). Using the theory in section 4.3.1 and Eq.(4.8) the AtDT U#? correspond-
ing to the ‘geometrically averaged’ NAC is found. With this the diabatic potential
energies and DC elements can be obtained through the simple matrix transforma-
tion in Eq.(4.4). The diabatic PECs for SO can be seen in Figure 4.1 and a close-up
of the avoided crossings between the e 'TT — (3)'TT and C>TT — C">I1 states of SO
superimposed with their DCs, ija, and NACs, Wlf , are illustrated in Figure 4.9.

Figure 4.9 shows that the pair of singlet states are coupled more strongly than
the triplet states, and also reveals the DCs to be slightly asymmetric. This is to be

expected since the DCs depend on the difference V' — V' which can be asymmet-
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rical in nature (see examples in Chapter 3). One sees an effect of this especially in
the DC between the triplet states where the adiabatic PEC turning points are offset
to each other by ~ 0.01 A.

0.5 = 25
7 BLa @La
§04 { —Bega 20 - A —pga
-‘E BLo | \ ¢Lo
g 0.3 ;: 15
o" -
- ®
202 - < 10
< Z
)
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Nuclear seperation, R (A) Nuclear seperation, R (A)

Figure 4.8: Comparison of example NACs (W;;) and corresponding diabatic mixing angles
(B) between the Lorentzian (‘Lo”), Laplacian (‘La’), and geometrically aver-
aged (‘ga’) cases as described in the text. These curves are computed for the
C3T1 and C'*T1I non-adiabatic interaction (see section 4.4 and Figure 4.1).

4.3.3 Diabatisation Procedure

To diabatise adiabatic couplings such as spin-orbit, or dipoles, one requires the
operation of the AtDT given in Eq.(4.1). For some coupling, {, considering two
adiabatically interacting states |1) and |2}, the transformation for non-diagonal cou-
plings (i| € |k), where i € {1,2} and k # 1,2, from the adiabatic (‘a’) to the diabatic

(‘d”) representation can be found as follows

d a
FWW]:wFWW]. (4.12)
2[¢ k) (2| 1K)

To diabatise diagonal couplings one requires inclusion of the off-diagonal counter-
parts, which transforms similarly to the elecronic Hamiltonian as,
U=U'2"U

W_rmmdmmmrw1mmw<mma
QICINt @lct| T @I @l

The computational procedure for performing the diabatisation is straightforward,
and is based on the heuristic that the diabatisation should result in smoothly varying

potential energy curves that are twice differentiable due to the properties of the
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Figure 4.9: Illustration of the avoided crossings between e 'TI - (3)'IT and (right panels)
and C3T1I - C' 311 states of SO (left panels) are shown, where adiabatic PECs are
presented as dashed lines and diabatic ones in solid lines. Superimposed are
the DCs (Vlgzal , bottom panels), and NACs (Wﬁa, top panels).

wave function and derivatives. For a function represented by a discrete grid of

points V; at geometries r;, gradients are calculated via finite differences and the

task of satisfying this criterion is approximated by minimising the sum of second

derivatives of the function.

To achieve this I optimise the parameters of an arbitrary NAC function,

W (r;{p}). The parameters {p} are typically: a central geometry r., and a char-
acteristic width @ (see e.g Equations (4.5) and (4.6)). The NAC function, in turn,
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parameterises the transformation from the adiabatic potential energy operators V¥
to the diabatic potential energy operators V? at each geometry i, as described by
Equation (4.4).

The optimisation itself is easy to achieve using any commonly available opti-
misation libraries. I use the Julia programming language and the open-source Optim
library’s Opt im.minimizer function to minimise the following loss function us-
ing the Nelder-Mead method '%3-196

L(o,re;{Vi},{ri})

2N IV,H —7i21) = VS (rig1 —ric1) + V& (rig1 — 1)

(rig1—ri) (rig1 —ric1) (i —ri-1)

where the terms of the summation are simply central finite difference second deriva-
tives of the diabatic potential energy operator.

The integration of the NAC function to obtain the mixing angle f3; at each
geometry is obtained by adaptive Gauss-Kronrod quadrature using the QuadGK. j1
library.

Empirically, I find that an initial guess for the characteristic width @ with the
correct order of magnitude suffices for the optimiser to converge. However, the
procedure is somewhat more sensitive to the initial guess for the central geometry
rc, as a result a convenience function that attempts to detect the central geometry
by searching for the largest absolute value of the second order derivatives of the
adiabatic operators is provided.

Table 4.2 provides values for the optimised NAC parameters «, Y, r. used to
diabatise the energy degenerate pairs e 'IT — (3)'II and C3IT — C’3I1, which are
visualised in Figure 4.9. The effect of diabatisation is seen to smooth the PECs,
as enforced by Eq.(4.7) with no avoided-crossing. The non-Born-Oppenheimer dy-
namics, initially manifested in the nuclear kintetic energy, has been rotated into the
potential and coupling terms connecting the non-adiabatically interacting states. As
aresult, PECs are produced that can be more easily modelled using analytical forms
in the diabatic representation. This facilitates their refinement to experimental data
in Section4.13.1, aligning with the ExoMol project’s goal of producing empirically

accurate line lists.

4.4 Ab initio Potential Energy Curves

Figure 4.1 presents ab initio PECs of the 13 lowest energy electronic states of SO.

The C?T1 state exhibits an avoided crossing at r ~ 2.05 A due to a non-adiabatic
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Table 4.2: Optimised parameters ¢ (inverse Lorentzian HWHM), y (Laplacian damping
parameter), and r. (avoided crossing/centroid position) for the Lorentzian and
Laplacian NACs used to diabatise the e 'TT and CI1 state PECs (see Figure 4.1).

State a YN

eI 52422 0.027 1.949
C31 39.859 0.035 2.047

coupling with the C"3T1, which lends a dissociative character to the C>I1 in the long-
range region. Similarly, the e 'TI state exhibits an avoided crossing at 1.95 A, due
to the singlet state (3)'TT3!2. These non-adiabatic interactions produce large gra-
dients in coupling curves connecting these states within the region of the avoided
crossing, as shown for EAMCs, SOC, and DMC:s in Figures. 4.2—4.6. The equilib-
rium geometry of the C>IT state also lies very close in energy to those of the d 'TT
and B3X~ states, and so one can expect perturbations in the energy levels around
their minima which was reported and confirmed experimentally by Liu et al. 3%, It
is worth noting that the A’3A and A” 3%+ states lie very close across the range of

nuclear geometries included in these calculations, but do not cross.

Table 4.3 compares the equilibrium potential energies, T, (cm™ '), equilibrium
bond lengths, re (A), and dissociation energies, D, (eV), of the 11 lowest singlet and
triplet states of SO determined directly from the ab initio adiabatic PECs presented
in Figure 4.1 to both calculations 325-312:311355,302 £340,356,357,355,358
The calculations>!>311:353:302 yse a MRCl/cc-aug-pV5Z level of theory, whereas the
ab initio calculation by Sarka and Nanbu 32> use a MRCI-F12+Q/cc-aug-pV(5+d)Z

level of theory. The experimentally derived spectroscopic constants where obtained

and experimen

via Photoion-Photoelectron Coincidence’, Multiphoton Ionization 355 and Ar+
SO, afterglow>® spectroscopies as well as from the recent analysis by Bernath

et al. 340,

Our bond lengths show good agreement to both theoretical and empirical val-
ues, with better agreement to experiment than previous calculations for the b !X+,
A3TL, and d 'TI states. Worse agreements are seen for our 7; values, the most accu-
rate being Tz (A>II), T(CII), and T (e 'TT) within 152 cm™!, 210 cm™!, and 338
cm™! of experiment respectively. Lastly, worse agreements are seen between our
ab initio dissociation energies to both experiment and calculations, to which we un-
derestimate. It is apparent that our dissociation asymptotes are the major source of
inaccuracy in our ab initio SO model and probably arise because we do not include
sulfur specific diffuse d orbitals in our basis set during ab initio calculations. This is

not a major problem, however, since I refine the PECs to the available spectroscopic
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data later in Section 4.13.1, mitigating inaccuracies present in the current ab initio
curves. I note that the reported 7. values by Bernath et al.**? in Table 4.3 were
derived from the By—( rotational constant, and show close agreements to within
0.006 A and 0.002 A to our bond lengths for the a'A and b 'L respectively. Our
fundamental vibrational energy of the X 3£ state is found approximately 30 cm™!
too high from the experiment, which is to be expected with MRCI calculations, and
provides insight to the accuracy of the other computed states and couplings, which
will also require empirical tuning.

The intersections between states of different symmetries obtained in our cal-
culations can be seen in Figure 4.10. The d 'TT and C>IT states cross at 1.59 and
1.82 A, d'TT and B3X™ at 1.64 and 2.20 A, both agreeing with the intersection lo-
cations of 1.62 and 1.80 A and 1.60 and 2.14 A, respectively, provided by Yu et
al. (2011)3'2. The intersection of the e!IT with the B3X~ state occurs at 2.4 A
in our calculations, somewhat larger than the value of 2.3 A reported by Yu et al.
(2011)3'2. Since the e 'IT and d 'TI states become repulsive at 1.92 Aand 1.9 A
respectively, crossings beyond these geometries provide potential predissociation
pathways for the C3IT and B3X™ states. Yu and Bian>'? also show that the C’">IT
state crosses the B3X~ state at 2.25 A, to which they state predissociation of B3y~
through this C"I1 state is possible. Sarka and Nanbu3? also give intersections
R(C,B) =1.57,2.21 A as opposed to our values of R(C,B) = 1.67,2.18 A.

Lastly, I report further crossings between the ¢!X~, A’3A, and A”3XF states
and the AT and d ' states of SO at r(c,A) = 1.46 A, r(A’,A) = 1.48 A, r(A",A) =
1.50 A, r(c,d) =140 A, r(A',d) = 1.42 A, and r(A”,d) = 1.43 A. These crossings
agree with those reported by Yu and Bian>'? between ¢ !X, A’3A, and A” 3+ with
AT in the region 1.47-1.51 A and crossings between c'2~, A’3A, A”3Lt with
d'TI in the region 1.42-1.45 A.
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Comparison of our ab initio equilibrium potential energies 7, (cm™!), dissoci-
ation energies D, (eV), and equilibrium geometries (A) to the values from
the literature. Parameters next to bold state symbols correspond to the ab initio
PECs calculated in this study.

State T. cm™ 1) D (eV) re (A) | State T. cm™ 1) D (eV) re (A)
X3z 0 5.1253 1.4821 | AT3A 29097.8878 1.503 1.7571
Calc.31? 0 5.418 1.4865 | Calc.?'? 29828 1.72 1.7649
Expt. 3% 5.429 1481 | B2~ 43255.0097 0.9212 1.8121
Calc.3» 0 5.475 1.4925 | Calc.’?®  41706.5886 1.4022 1.7868
Expt.>’ 1.481 | Calc.’'? 41314 1.387 1.782
Calc.3!! 1.481 | Expt.7 41629 1.410%%° 1.775
Calc.32 1.493 | Calc.?? 41206 1.794
a'A 5479.8013 4.4486 1.4979 | d'T1 45309.0766 0.0587 1.545
Calc.’2 5936 4.682 1.4945 | Calc.?'? 44166 0.189 1.5475
Expt.?*® 5873 4.647 1.4919 | Expt.? 43902 0.195 1.5303
Calc.?2 5883 1.502 | Calc.’2 44975 0.059 1.723
Expt. 340 1.4920 | Calc.’ 44471 0.14 1.553
b'zt 9774.1938 3.9154 1.5057 | A”3"  29731.2077 1.4417 1.765
Calc.?2 10548 4.112 1.5062 | Calc.3'2 30495 1.637 1.7701
Expt.»® 10510 4.137 1.5001 | Expt.>*® 30692
Calc.’2 10576 1.514 | Cale.?%2 30025 1.776
Expt.3* 1.5035 | C*1I 44719.2593 0.5489 1.6786
AT 38607.6737 0.4246 1.6079 | Calc.?'? 44033 0.609 1.6692
Calc.’®  38879.2948 0.6441 1.5946 | Calc.’?S  44909.0901 0.6027 1.6727
Calc.’? 38334 0.665 1.6196 | Expt.3> 44381 1.654
Expt.3° 38455 0.662 1.609 | Calc.’0> 44038 1.681
Calc.’"" 38880 1.613 | e'll 51347.9346 0.4524 1.6864
Calc.’2 38931 1.719 | Calc.?'? 51224 0.45 1.6826
clz” 27274.9752 1.7679 1.7571 | Expt.3 51558 1.6774
Calc.’? 28544 1.879 1.7617 | Calc.?*? 51258 1.685
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Figure 4.10: Our ab initio PECs in the region 37,000 — 57,000 cm~! showcasing the various

state crossings.
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4.5 Ab initio Spin-Orbit and Electronic Angular Mo-

mentum Curves

Figures 4.2 and 4.3 plot the z (SO;) and x (SO,) components of the spin-orbit curves
of SO over nuclear geometries where the former couple states of same A (projection
of the electronic angular momentum) and the latter couple states of different A val-
ues. One sees again that the effect of diabatisation is to smooth out the curves over
r, where avoided crossings in the adiabatic picture create steep gradients around
the avoided crossing. An example of the diabatisation process can be seen for the
(e'T1| SO, |X32~) and ((3)'T1| SO, |X 3L~) pair in Figure 4.11. Spin-orbit matrix
elements at the avoided crossing geometries are important in determining the possi-
ble spin-orbit induced predissociation mechanisms that occur between states of dif-
ferent spin multiplicity3!>. Referring to the spin-orbit couplings (e 'TI| SO, |B3X™)
and (d'TI|SO,|B3X ™) in Figure 4.3 with the magnitudes of approximately 90 and
20-30 cm™!, respectively, the predissociation of the B3YL~ state through d ' is
likely to be very weak, but will be stronger through the e 'TT state. The construction
of diabatic SOCs will hence influence the description of pre-dissociation pathways
between states of different symmetry.

Figure 4.6 shows the EAMCs of SO both in the adiabatic and diabatic repre-
sentations, where their relative phases are carefully maintained according with their

ab initio values>0!

. Without this, using couplings and any other non-diagonal prop-
erties in rovibronic calculations become meaningless. The phase of the EAMCs
often changes after the crossing point, lending different long-range total angular

momenta of the S+0O atomic system important in dissociation mechanisms.

4.6 Ab initio Dipole Moment Curves

Figures 4.4 and 4.5 plot the z- and y-components of the dipole moments coupling
states of same and different symmetry (A and multiplicity) respectively. The corre-
sponding L, components can be always reconstructed from (i, using their symmetry
properties. It is again evident that the effect of diabatisation is to smooth out the
curves over r, where the DMCs tend to zero in the long range limit now with no
steep gradients around the avoided crossing regions.

The vibronic intensities are directly affected by the derivatives of the dipole
moment with respect to the internucelar separation, r. Since adiabatic curves are
prone to strong, steep-gradient variations around avoided crossings, even small in-
accuracies in ab initio calculations (including the position of the crossing and the

corresponding NAC) can lead to large errors in spectral properties of the molecule.



4.6. Ab initio Dipole Moment Curves 164

100 A

(VED SO |X3Z ™ ) gia

SOC, cm™!
N
o

(eM|SOLIX3E ™ ) aai

20 BRI S S PR N
—_— - (o} ——

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Bond Length, A

Figure 4.11: Example diabatisation of the adiabatic (e'TI[SOL|X32Z~) (red) and
((3)'TI|SO4|X?Z~) (blue) SOCs which are seen to have steep topology at
the region of avoided crossing r. highlighted by the vertical line. The corre-
sponding diabatic SOCs (black and green dotted lines) are seen to have smooth
topology, and are simple curves of nuclear geometry, ideal for modelling.

Table 4.4: ¥ values (total spin angular momentum projection onto the internuclear axis) for
the bra and ket electronic states of the SOCs presented in Figures [4.2, 4.3, 4.7].

SO coupling braX ketX SO coupling braX ketX

(A°TI|SO, [X3Z7) 0 1 (e'T1| SO, |X327) 0 1
(A3TI|SO, |A3A) 0 1 (e'T1|SO, |B3L™) 0 1
(C3T1| SO, |A/3A) 0 1 (C’T|SO.A"32%) 0 1
(AST1|SO, |B3X7) 0 1 (e'T1| SO, |A"3A) 0 1
(C3T1| SO, |X327) 0 1 (d'T1| SO, |X327) 0 1
(C3T1|SOy |B327) 0 1 (d'T1|SO, |B3Z7) 0 1
(ASTI|SO, |A"3EH) 0 1 (b'TFSO,|IX327) 0 0
(d'T1| SO, |A"3A) 0 1 (a'A|SO,|A"3A) 0 0
(A3A|SO, |A"3A) 1 1 (A3TI| SO, |A3TI) 1 1
(A"32+80, X327y 1 1 (A"3%+[SO,B3Z™) 1 1
(C3T1| SO, |A>TI) 1 1 (C311| S0, |C31) 1 1
(b'2+]S0, |B3L") 0 0 (b'L+|S0,|AT) 0 1
(alA|SO, |A3TT) 0 1 (c'27]S0,|A%TT) 0 1
(d'T1| SO, |A3TT) 0 1 (e'T1| SO, |ATT) 0 1
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For example, the adiabatic (C*TT|DM |X3%~) dipole moment has a steep gradient at
around 2 A which can be expected to be due to the avoiding crossing between C>T1
and C'311 states, therefore the C3T1-X 3X~ electronic band is expected to be sensi-
tive to the quality of its adiabatic description. The diabatic representation can also
be sensitive to the quality of the corresponding curves, but to a significantly lesser
extend due to their smooth character. Of course, the adiabatic and diabatic repre-
sentations are equivalent (as demonstrated in Chapter 3) but one should still expect
the two representations to offer different behaviours when subject to the accuracy of
the calculation. For example, whether convergence has been achieved and numer-
ical precision of mathematical operations such as the derivative or diagonalisation
which depend on the choice of grid spacing.
Comparison with the (A3TT| u, | X 327), (C310| u, [X 3Z7), and (B3Z ™|, |X327)

transition dipoles provided by Sarka and Nanbu 32>

shows excellent agreements
up to dissociation, with values ({ours,Sarka and Nanbu 325}) at the ground state
equilibrium geometry R,(X3X~) = 1.48 A of {0.16,0.18} Debye, {0.333,0.337}

Debye, {1.623,1.633} Debye, respectively.

4.7 Nuclear Motion Calculations

Duo % is a general purpose variational code that solves the rovibronic Schrodinger
equation for diatomics while allowing an arbitrary number of couplings between
various electronic states including spin-spin, spin-orbit, spin-rotation, and rota-
tional Born-Oppenheimer breakdown curves. It is assumed one has solved the
Schrédinger equation for the electronic motion a priori in order to obtain PECs,
SOCs, EAMCs, (T)DMC:s etc. for the electronic states in question. These curves
can be supplied to the program as either a grid of ab initio points, or in an analytical
form. After solving the Schrodinger equation for the nuclear motion Duo obtains
eigenstates and energies for the good quantum numbers J (total angular momen-
tum), and 7 (parity); other quantum numbers are assigned on the basis of the largest
coefficient in the basis set. The eigenfunctions are used to compute transition line
strengths and Einstein A coefficients in order to obtain a complete spectroscopy for
the system in question. A detailed methodology of Duo is given by Yurchenko
et al. !9 and is discussed in Section 2.3 of Chapter 2.

In our original publication!?, we did not include non-adiabatic couplings
(NAC:S) in the rovibronic Duo calculations. At the time, I was new to non-adiabatic
nuclear motion and did not fully appreciate the importance of these couplings on
the rovibronic solution and computed spectroscopy. However, it is interesting to

compare the computed spectra using adiabatic and diabatic curves, as the differ-
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ent models are expected to have different convergence characteristics and efficacy
in representing the spectroscopy. Their comparison serves as an example in the
importance of a proper non-adiabatic treatment since one expects the diabatic and

adiabatic spectrum to be exactly equivalent.

4.8 The ab initio SO Spectrum

Using the diabatic spectroscopic model I produce an ab initio rovibronic spectrum
of SO for the system involving the lowest 11 singlet and triplet electronic states of
SO covering the wavelength range up to 147 nm. The vibrational sinc-DVR basis
set was defined for a grid of 701 internuclear geometries in the range 0.6-6.0 A.
I select 58, 58, 49, 11, 31, 41, 27, 27, 14, 20, and 36 vibrational wavefunctions
for the XX, a'A, b'TF, A3TL B3E~, ¢'£7, A”3EF, A/3A, C31, d 'T1, and e 'T1,
respectively, to form the contracted vibronic basis. In total 15 364 624 Einstein A
coefficients between 119 600 bound rovibronic states were computed with a maxi-
mum total rotational quantum number J,x = 180 and used to simulate rovibronic

absorption spectra at a given temperature using the program EXOCR0SS*®. Figure
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Figure 4.12: Dipole allowed and forbidden components of the ab initio absorption spec-
trum simulated with the diabatic model at 5000 K connecting the X 32, a A,
A"3A, and A”3X*states. The C'3I1 continuum is also plotted in gold. The
absorption lines are modelled using Gaussian profiles with a HWHM of 0.6
cm~! in the bound cases, and 300 cm~! for the continuum band.

4.12 shows an absorption rovibronic spectrum of SO computed at 5000 K with all
bands plotted using different colours, both electric dipole-allowed and forbidden.
The spectrum is modelled at a high temperature for a visual aid since at this temper-

ature there is a good separation between different electronic bands. The grey shaded
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region in Figure 4.12 marks the total SO bound-bound absorption at 5000 K, which
is mostly traced by the strongest bands with the exception for the region between
12000-17000 cm~!. Hence, weaker bands, e.g. ones that break dipole selection
rules, have negligible contribution to the total SO opacity and will be less important
for low resolution studies such as in astrophysical observations.

The non-bound diabatic states such as C’3IT and (3)'IT are excluded from the
bound-bound spectra simulations. Tests show that the effect of the unbound states
on the bound-bound spectra is negligible, and vice versa, the continuum spectra
are negligibly affected by the bound electronic states and therefore can be treated
separately.

The continuum spectra of the unbound diabatic C’3IT state is computed using

the stabilisation method?3>

and is shown in Figure 4.12 plotted in gold overlaying
the bound-bound spectrum to demonstrate its contribution to the total SO opacity.
For the continuum state a larger basis set of 5000 wavefunctions was used. The
structure energetically above (below) the ‘dip’ at 41200 cm ™! is due to absorption to
unbound C' 31T states above (below) the S('D) + O(*P) dissociation. The X 32~ —
C’311 continuum band continues to 100000 cm™!, peaking at ~78000 cm™! which
corresponds to the Frank-Condon region (vertical transitions) from states localised
around the minima of X 3X~.

I note that the dipole-forbidden bands in Figure 4.12 are not computed us-
ing quadrupole or magnetic dipole moments, which have very weak intensities, but
rather intensities are ‘stolen’ from other transitions. This intensity stealing propa-
gates through the mixture of electronic wave-functions via couplings such as SOCs
and EAMCs. For example, the spin-forbidden ¢ 'X~—X 3%~ band occurs due to the
overlap between the ¢'X~ wavefunction both with e'II and d 'TT wavefunctions
through the EAM couplings, and then with X 3£~ through a secondary mixing via
(e'TI| SO |X3Z ™) and (d 'TI| SO |X 3L ™) to produce an effective, direct dipole mo-
ment, which dominates over the weaker magnetic and quadrupole moment mecha-
nisms.

Absolute intensities for every rovibronic transitions are computed between the
lowest 11 diabatic singlet and triplet states of SO covering the entire spectroscopic
range down to 147 nm, where the avoided crossings have been studied. I note
that the only other study with similar coverage into the UV on SO is from the

theoretical work by Sarka and Nanbu 323

who compute cross sections in the 190-300
nm wavelength region. However, our spectroscopic model is both more complete
and phase consistent (phases carefully reconstructed, see 4.5), whereas Sarka and

Nanbu 32> do not provide any phases.
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4.8.1 Experimental Coverage of the ab initio SO Spectrum

Currently within the literature a small fraction of the SO spectrum has been mea-
sured experimentally covering only the X 3y, a'A, b'Et, A%, B3, and C311
states. Figure 4.13 reviews the spectroscopic coverage of SO from 24 experimen-
tal sources from the literature. Figure 4.12 shows our model to supplement the
experimental data over the whole spectral range. In particular, we cover the SO
spectrum above 40000 cm ™! and 1200016000 cm~! where no measurements have
been taken for any electronic state. I also plot the available HITRAN>®! SO line
list containing data on the first three electronic states X 3%, a IA, and b'Zt. Our
ab initio model is able to extend the HITRAN coverage up to dissociation at 40000
em L,

The aim of Section 4.13.1 is to refine our ab initio SO model to the experimen-
tal transition frequencies from these sources and to produce an empirically accurate
line list for SO.
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Figure 4.13: Coverage of experimental measurements for 24 sources illustrated by hor-
izontal bars covering the spectral regions measured, where the named

works 140-141:331.362 include some spectral data, mostly with relative intensities:
(a) 14 sources

363,139,296,364-366,336,367,368,328,337,369,339,335,346 cover X3y- N

X327, a'A — a'A, 'St — b'TT for 0-125 cm™'; (b) 3 experimental
sources 30370371 cover the A3IT — X3X~ and B3YX~ — X3X~ bands for
38000-39800 cm™'; (c) 2 experimental sources 3233 cover the X3X~ —
X3Y and a'A — a'A bands for 1040-1125 cm™'.

4.9 Effect of Diabatisation on the Computed Spectra

In theory, the adiabatic and diabatic representations should yield identical results,

provided that the corresponding NACs and DCs are included. However, due to
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the computational cost of computing NACs through proper ab initio methods, it
is not common practice to include NACs in adiabatic models. Without definition
of the NAC, non-Born-Oppenheimer interactions are effectively removed. In our
original work !> we omitted the NAC terms to study the effect of these non-Born-
Oppenheimer interactions on the computed spectroscopy when compared to a com-
plete diabatic model. Our results show that these interactions are important not just
for energies and wavefunctions (see Chapter 3), but also in the computed intensities.
In this section I analyse the importance of the non-adiabatic couplings between the
[C3I1, C'31] and [e 1, (3)1H] systems when computing the (absorption) spectra
of SO.

As discussed in our two-state adiabatic-diabatic equivalence study>® and in
Chapter 3, when the NAC is strong, the DC tends to be small in magnitude. A
heuristic can be made where one can consider the diabatic representation with-
out DCs to more efficiently represent the physics of the studied electronic struc-
ture than an adiabatic representation without treatment of NACs. To test this, the
fully coupled Schrodinger equation is solved for the diabatic C'I1 state for two
cases which include (case A) or exclude (case B) the upper C’ 31T state and its
(electronic/diabatic) coupling to the C3I1 state. The results showed that the C3T1—
X 3¥~bound-bound spectrum is minimally influenced by the coupling to the C’3IT
state. This could be due to a combination of: the Frank-Condon region correspond-
ing to transitions from the X >°£ ™ to levels of a heavily bound character in the C>I1
state; a small DC between the C>IT and C’T1. Figure 4.14 illustrates the vibrational
energy levels of the diabatic C>I1, fully bound below its dissociation limit of 50700
cm !,

Figure 4.15 illustrates the importance of the non-adiabatic effects when mod-
eling the spectra consisting of transitions to states around the avoiding crossings
for the X3X~ — C3II and a'A — ¢ 'TI bound-bound absorption bands (panel a),
and the X 32~ — C’3II continuum absorption band (panel b). The adiabatic spec-
tra were computed with the NACs excluded and compared to the diabatic spectra
with the non-adiabatic effects fully encountered. Each spectra has been modeled
at a temperature of 5000 K — such that hot bands are populated, aiding my com-
parisons below — with Gaussian profiles of a 0.6 cm™! half-width-at-half-maximum
(HWHM) for the bound-bound spectra and a HWHM of 300 cm™! for continuum
bands.

Great differences between the bound-bound spectra in panel (a) of Figure 4.15
are seen towards both the high and low energy regions. In the high energy region

the adiabatic spectral bands terminate abruptly at the avoided crossings whereas
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Figure 4.14: The computed Duo diabatic vibronic energies of the C3IT superimposed
upon the C3IT and C'3I1 PECs. The secondary and tertiary ‘bumps’ at
R =2.42,3.30 A are due to an avoided crossing and numerical noise, respec-
tively.

the diabatic bands continue to the diabatically correlated dissociation asymptotes
S('D)+O(P) & S(1'D) +O('D) (see Figure 4.1). The diabatisation extends these
bands by at least a few thousand wavenumbers because of the availability of higher
rovibrational states in the deeper diabatic potential wells. For purely bound-bound
calculations, the adiabatically computed bands have lower intensities compared to
the diabatic spectrum which can be attributed to the increased repulsive character
of the adiabatic PECs on the right hand side of the crossing points present. Due
to the tunneling through the potential barriers, the adiabatic wavefunctions ‘leak’
to the continuum region thus resulting in reduction of the intensity of their bound

absorption spectra.

The most interesting feature from Figure 4.15 is the extension of the a'A —
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e 'TI band beyond the stronger X 3£~ — C3II band at E /hc > 50000 cm~!. Al-
though being relatively weak, this band is not covered by stronger bands and there-
fore may be observable in the ~ 0.18 — 0.2 um region, a result only predicted when
using a full non-adiabatic theoretical treatment.

The low intensity regions are very sensitive to changes in the ab initio model
and will be also affected by the changes in the shape of couplings between the
adiabatic and diabatic representations. The hump-like structure in the C3TI-X 3£~
band at around 10,000 cm~! is absent in the adiabatic spectrum because of the
unavailability of vibrational states above the avoided crossing. For example, the
brightest transitions within this hump for the C3TI-X 3£~ band connect the v = 13
state which is energetically above the avoided crossing in the adiabatic PEC.

I note that these regions negligibly contribute to the total SO opacity and so
are not important for the SO model, but will be important for other systems where
non-adiabatic effects occur in the spectroscopically important regions.

Panel (b) of Figure 4.15 presents a similar analysis for the continuum X 32~ —
C'3T1 band, which would include an additional bound structure towards longer
wavelengths if the NAC is not included in the adiabatic model since the C"3I1 PEC
in this representation is bound. However, the adiabatic X 3¥~ — C'311 bound fea-
ture is orders of magnitude weaker than the continuum bands presented here and
an analysis on the change of character of bound-bound absorption bands with di-
abatisation is already provided above. The X3Y~ — C’3II continuum bands for
transitions to unbound C’ 31T states above the S('D) + O(*P) dissociation converge
between both representations, since the non-adiabatic effects are far away from
the peak at ~78000 cm™~! corresponding to vertical transitions from the electronic
ground state. However, if the avoided crossing occurred vertically above the X 3%~
minima, one would expect non-adiabatic effects to have a greater contribution to
the continuum cross sections.

From the comparison above, I show that neglecting NACs within an adiabatic
model can lead to drastic differences in the physics gleamed from the computed

spectra.

4.10 Conclusions on the ab initio Analysis of SO

In this work, multireference methods of electronic structure theory combined with
a diabatisation procedure were used to compute a fully diabatic model for the tran-
sient diatomic molecule sulphur monoxide. The model includes 25 spin-orbit, 29
(transition) dipole moment, and 18 electronic angular momentum curves for the
X357, a'A, b'ET, AL B2, 127, AV3ET, AP3A, CT1, d'11, and e'T1 elec-
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Figure 4.15: A comparison between the X 32~ — C3I1, a'A — ¢TI, and X 32~ — €311
band spectra computed with an adiabatic model with no NAC and a diabatic
model. These bands are dipole allowed and are expected to be observable,
great differences are seen between the spectra at the dissociation, highlight-
ing the importance of proper non-adiabatic treatment. Each spectra has been
modeled at a temperature of 5000 K with Guassian line profiles of a 0.6 cm™!
HWHM.

tronic states of SO and were produced ab initio via CASSCF and MRCI methods
using aug-cc-pV5Z basis sets. These curves were then used to compute the nuclear

motion via solving the fully-coupled Schrodinger equation with the Duo program.
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A further two electronic states (C'IT and (3)'IT) were computed along with their
couplings, which are essential to forming the diabatic representation.

The property-based diabatisation procedure I use is a computationally low
cost method to reconstruct the non-adiabatic couplings without additional quantum
chemistry calculations a priori to nuclear motion calculations.

To assess the importance of non-adiabatic effects for the spectroscopy of SO,
spectra computed in the diabatic and adiabatic representations, without definition
of NACs, are compared. The most notable difference is the absence of the UV
spectrum above ~ 50000 cm™! because of the illusionary predissociation from the
adiabatic PECs. It was also observed that adiabatically computed bound absorption
bands to have lower intensities than the diabatic counterparts. It is therefore im-
portant to treat NACs for systems where these non-adiabatic interactions occur in
spectroscopically important regions since they have drastic effects on the computed
spectroscopy.

All coupling curves of SO are defined with self-consistent relative phases,

which is crucial for spectral calculationsC!

. Therefore our spectroscopic model
of SO provides a comprehensive and extensive theoretical baseline, which is the
first fully reproducible spectroscopic description of SO longer than 147 nm. Since
the existing spectroscopic data on SO only covers X327, a!A, b!1XF, A3T1, B3X,
and C3IT our ab initio model can be used as a benchmark for future rovibronic

methods and calculations.

4.11 Building a Semi-Empirical Hot Line List for SO

The topic of the following sections will be to build a (hot) semi-empirical line list
as part of the ExoMol project®*>* for SO through the refinement of our ab initio
model (see Sections 4.2 — 4.10) to experimental transition data, where I expect to
reduce the shift in line positions relative to experiment. The final SO line list will
have applications primarily in the atmospheric modelling of exoplanets?8’-?% and
cool stars. Further applications of this empirical SO line list will be in shock zone

modeling®7>2%7:2% SO lasing systems2**3%, and spectroscopy of Venus 243286 and

0283284

The following sections in this chapter will be organised as follows. Sections
4.11.1 and 4.11.2 summarise the theoretical background behind the generation of a
self-consistent set of empirical rovibronic energy levels, quantum number assign-
ments, and uncertainties. Section 4.12 details the experimental transition frequency
database curated from the literature, where their inversion to a set of empirically

determined rovibronic energies and associated uncertainties is analysed. Section
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5.2.4 details the SO spectroscopic model used for refinement to the MARVEL en-
ergies, where the refinement process, the resulting accuracy of the final computed
rovibronic energy terms, and the MARVELisation of the SO line list are discussed.
Section 4.14 details the intensity calculations, opacities, and comparisons between
our calculated and experimental spectra. Finally, Section 4.16 discusses the works
in which our SO line list was used, where the main results are presented from these

studies.

4.11.1 The MARVEL Procedure

The critical evaluation of experimental transition data and formation of a self-
consistent set of rovibronic energy levels is done through the MARVEL proce-

dure 196-373

which is built on the concept of spectroscopic networks (SN)37437,
Through a weighted linear least squares protocol, MARVEL inverts the informa-
tion contained within transition data to form a set of associated energy levels and
uncertainties. This procedure is built on the simple idea of matrix inversion, for ex-

ample, consider a list of N; transition frequencies and the following matrix equation
AE=T (4.13)

where T is an N;-dimensional vector of transition frequencies with index j, E is an
Ng-dimensional vector of unique energy levels with index i, and the matrix A maps
the energy level index i to transition index j. Inversion of A thus yields the vector
of energy levels. The same procedure is done for the associated uncertainties of the

transitions obtained by experiment.

Self consistency within the energy levels is then achieved through an iterative
re-weighting algorithm which adjusts (increases) the uncertainties in the line posi-

tions to an optimised uncertainty Oy until they agree with the rest of the network.

The inverted MARVEL energy levels form nodes of a SN, which are linked
by transitions, to which the validation of experimental information can be done on
all data simultaneously using elements of network theory. The final energy level
uncertainties in the SN are obtained through combining the optimal MARVEL un-
certainties of all transitions connecting a given energy level. This study used a new
implementation, MARVEL 4, which uses a bootstrap method to determine uncer-
tainties in the empirical energy levels it determines3’. Tused 100 iterations with the
bootstrap method to determine the uncertainties in our empirical MARVEL energy

levels.
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4.11.2 Quantum Numbers

The rovibronic energy levels of 32S'°0 were assigned using the vibrational and ro-
tational quantum numbers v and J, respectively, rotationless parity T (¢/f) and, in
line with Hund’s case-(a) coupling scheme, sublevels denoted by the fine structure
Fys+1. For the following definition of quantum numbers, triplet and singlet mul-
tiplets were assigned only, different formulae’s would entail for systems with half

integer spins. For J > A4S, the fine structure, F>54 1, 1s defined for triplet electronic

states via
Fi=N+S,
F, =N, (4.14)
Fs=N-38,

where singlet states have no spin projection (i.e. /) and the total angular momen-
tum excluding electronic and nuclear spin is labelled N. For linear molecules such
as diatomics, levels with parity +(—1)7 and —(—1)’ are labelled e and f levels,
respectively, and their relation to the =+ parities are given in Table 4.5. Thus, assign-
ment of every experimental rovibrational transition was done using the v,J,e/f,F
quantum numbers and standard spectroscopic notation for electronic states. For nu-
clear motion calculations the quantum numbers A, X, and Q were used to assign
electronic states, which are the projection of orbital, spin, and total angular mo-
mentum on the bond axis, respectively, in additional to the state labels X 3y, AL,
b'L* etc. For the X3X~ and B3X~ states the spin-parity sub-levels in increasing

energy order are

(Fi,e):A=0,2=0, Q=0,
(F,f):A=0,2=1,Q=1, (4.15)
(Fs,e):A=0,2=1,Q=1,

whereas for the regular A>I1 there is lambda-doubling, yielding

(Fi,e/f):A=1£=—1,Q=0,
(Foe/f):A=1,£= 0,Q=1, (4.16)
(Fse/f):A=1,£=+1, Q=2
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Table 4.5: Relation between the e/ f and =+ parities for linear molecules.

e/f J +
e even +
e odd —
f even —
f odd +

and for the inverted C>I1 the sublevels increase in energy with decreasing Q

(Fie/f):A=1,S=+1,Q=2,
(Fre/f):A=1,£= 0,Q=1, (4.17)
(Fs,e/f):A=1,£=—1,Q=0.

Rigorous electric-dipole selection rules hold here, and can be summarised as + <>
—Al==xl (e e,f< f),and AJ =0 (e <> f,0 0).

4.12 The Experimental Transition Database
4.12.1 OQOutline

Table 4.6 summarises the experimental transition data included within our MAR-
VEL analysis where each study is conveniently labelled with a tag including the
first two digits of the year of publication and letters of the names of the first three
authors in the form Y YAaBbCc’. Table 4.6 includes the spectral coverage of each
study, the associated quantum number coverage of their assignments, and the mean
uncertainty of their results. I compiled a total of 50 106 transitions, of which 49 613
are non-redundant, from 29 experimental sources covering the XX, a!A, b1XT,
A3T1, B3Y~ and C3I1 electronic states of SO for rovibrational excitation’s J < 69,
v < 30.

4.12.2 General Comments

A crucial limitation of the experimental data set for SO (Table 4.6) is in the vi-
brational state coverage of the lower electronic states. Transitions to/within states
beyond the third vibrational excitation for X 2™, a A, b'X*, and A 11 are severely
lacking. Some vibrational transition data involving states beyond v > 3 are avail-
able, but inclusion of these within our MARVEL analysis often led to fragmented
SNs.

Our literature review found that no transitions have been measured associated
with the vibrational ground state of the B3X ™ state, which makes it difficult to con-

strain its PEC minima during refinement of the spectroscopic model. The impact of
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this missing data is then amplified since the B>~ and CIT energies exhibit many
mutual perturbations because of their overlapping potentials and strong coupling.
To correctly model the perturbations one requires accurate positioning of the po-
tentials corresponding to the resonating states relative to each other, which is made
difficult because of the absence of data connecting to the B3L~ (v = 0) state.
Isotopologues of SO have been experimentally measured by several

sources covering 338160369’139’140, 34S160335,366,377,328,139,141,367,140, 328170369,

3ZSISO 369,335,366,377,141,367 36SI6O 140,369

and the rare isotopologue Few studies

measure transitions within excited electronic states for these isotopologues, where
Klaus et al.?* measured the a'A and H'Tt states, Yamamoto32® measured the
b'L* state, and Heays et al.'*" measured the higher A°TI, B3L~, and C3I1 elec-
tronic states. Low vibronic excitation is typically measured with similar J coverage

as the main 32S'°0 isotopologue.

4.12.3 Source Specific Comments

(a). A significant problem faced during data analysis is that several literature
sources>’8-380:330.371 4id not provide obvious uncertainties on their line mea-
surements, which is important for their validation within the MARVEL pro-
tocol (Section 4.11.1). I thus had to estimate their uncertainties through com-
bination difference (CD) tests to other data in our database with known uncer-
tainties where possible. Initial uncertainties for these sources were assumed
to be 0.05 cm~! and manually increased with successive MARVEL runs un-
til the data gave satisfactory CD relations with other sources. In the case of
blended lines, their uncertainties were increased by a factor of \/5 relative
to the non-blended data which often resulted in their validation. As a re-
sult of this the source uncertainties were estimated to be 0.02 cm~!'37!, 0.4
em 1385382 0,05 cm 1380 and 0.2 cm 1330,

(b). Another issue with the experimental transition data is the significant propor-
tion of blended lines that are reported, such in the measurements by Colin 380
330 Clyne and Tennyson3’?, Burkholder et al.'#!, Kanamori et al.*** and
Bogey et al.?*°. To account for potential inaccuracy in their assignments the
blended lines were given a lower weight in our SN model (see comment (a)

above).

(©) Experimental sources 383,332,368,334,328,371,369,339,335,363

in high vibrational states which were removed from the MARVEL SN (see
Section 4.12.2).

provide transition data



(d).

(e).

®.

().

(h).

0)-
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15MaHiMo ' provide much data on SO isotopologues with determined iso-
topically invariant parameters as well as other various constants for the lowest

7 vibrational states.

87BulLoHa!*!' contains a misprint in Table 1 column 5, the SO (X 3y v =
1 —0, R(18)) line should be 1108.81665 cm~!, not 1008.81665 cm~!.

88KaTiHi>*** provide 60 SO (a'A, v =3 —4,4 —5) transitions. If high vi-
brational data for SO becomes available these would be a prime source for

inter-vibrational transition data to supplement our MARVEL dataset.

A discrepancy in the CDMS data for the X 3™, v = 1 state of SO was found.
The lowest v = 1 state energy had to be shifted by 26.4559 cm™!. Further-
more, a shift of 6.478 cm~! was found in the a'A, v = 0 CDMS data of SO,
where the source of error may come from use of a high uncertainty v =0—0
band center3%*. The relative energies between CDMS levels within the same
vibrational levels are unaffected, hence the transition wavenumbers are cor-

rect, but were corrected before being used in analyses involving MARVEL.

22HeStLy '*? perform high-resolution FUV Fourier-transform photoabsorp-
tion spectroscopy and provide the only published UV transition data covering
the C3TT+X3YX~and B3X~ (v=4...30) « X 3L ~. Because of the large over-
lap and spin-orbit coupling (SOC) between the B3~ and C>II states, many
perturbations are present within the experimental data which appear to be
assigned accurately. They also provide transition data for the isotopologues
336160 and 365160

. 99SeFiRa*}! provide 74 b'L* — X 3L~ magnetic dipole transitions, which

have the same selection rules as for electric dipole transitions except from the

parity changing rule. I do not include these in our MARVEL network.

I chose to omit the 540 AT (v/ = 2)—X 3%~ (v = 0) transitions measured
by Colin%" for two reasons: (1) they produced many conflicts with the
more comprehensive and more accurate data by Heays et al. '*; (2) use of
MARVELised energies generated including these data for refining our spec-
troscopic model proved very difficult; abnormalities in the energy structure
were prescribed to be due to the poor data which did not occur when using
the equivalent MARVELised data from Heays et al. 140,
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Figure 4.16: Our generated MARVEL energies plotted against the angular momentum
quantum number J for the X327, a'A, b'E+, A3II, B3X~, and C3IT states.
The vertical structure within each electronic state corresponds to the different
vibrational levels. The size of the plot markers are directly proportional to the
number of combination differences to that level in the SN.
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Figure 4.17: Illustration of the MARVEL spectroscopic network of SO. The coloured cir-
cles are nodes corresponding to energy levels and the connecting lines are
transitions. The size of the nodes are proportional to the number of experi-
mental transitions from that level. The colours correspond to different elec-
tronic states: blue for X 3£, pink for b'L7, yellow for a'A, red for B3L~,
and green for C>T1.

4.12.4 MARVELisation of the Experimental Transition Data

The 32S'°0 spectroscopic network was built through input of 50 106 rovibronic
transitions into MARVEL from the 29 data sources outlined in Table 4.6. 546
transitions were invalidated since their optimised uncertainties did not satisfy the
validation condition Ogp; — Oexp < 0.05 cm™!. Invalidation of transition data can be
due to multiple reasons, errors in their quantum number assignment, in their mea-
surement, in the digitization of their scanned data tables (especially in old papers),
and simply because they are not self-consistent with the rest of the network. The
latter is the most common cause of invalidation but since they usually connect few
levels they are invalidated if the aforementioned reasons are not the cause. The
invalidated transitions are removed from the MARVEL network but are kept in

the MARVEL input file with a negative wavenumber transition frequency. I note
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590 transitions were excluded not because of invalidation through the MARVEL
procedure and are detailed in comments (i) and (j) in Section 4.12.3.

The majority of transitions that were invalidated are for lines connecting v > 3
(69%) because of the lack of inter-vibrational data energetically above v > 3 which,
if included, resulted in the fragmentation of our central SN and the invalidation
of otherwise seemingly reliable data sources. There are a lack of measurements
of rotational transitions within these higher vibrational states. It was found that
keeping data for v < 3 produced the largest set of self consistent energy levels and
hence SN. For v < 3 the experimental source that provided the most invalidated
transitions is by Colin>%" (44%) who measured the only A°TT — X3~ v=2—=0
band transitions, which is important for the refinement of the A 3IT potential energy
curve (PEC). Colin %" measured 32S'®0 in emission by means of flash photoly-
sis of sulphur bearing gases using a medium resolution quartz spectrograph. They
provide no direct uncertainty on their line positions, but provide an uncertainty for
their X3X~ — B3X~ bandheads of +1 cm™! obtained in their absorption study.
If one uses this value as a metric for their line position uncertainties, then it is to

380 should be treated with caution, con-

be expected that data coming from Colin
sequently leading to much of their data being invalidated. The majority of the
remaining invalidated v < 3 data comes from Colin®** and Stuart et al.?”! (21%
and 22%, respectively) who measure X >~ — A3IT and XX~ — B3X transition
bands, respectively.

As a result of the critical evaluation of the experimental transition data, we
invert and provide optimised uncertainties for 8558 rovibrational energy levels for
328160 which forms a fully self-consistent SN. Figure 4.16 plots the MARVEL
energies versus the rotational quantum number J, where a large gap in the ~15 000-
37 000 cm™! region exists, corresponding to missing highly excited vibrational data
in the X32~, a'A, and b'X7" states and any experimental coverage of the interme-
diate electronic states ¢ 'X~, A’3A, and A”3LF. For the higher vibrational energy
levels of each electronic state there are also gaps in the rotational structure.

Figure 4.17 illustrates the 32S'°0 MARVEL spectroscopic network as a graph
of nodes and edges. The graph was generated using the GEPHI software package >
and the force-directed layout algorithm 8¢, Each node is arranged based on its con-
nectivity in the network and is agnostic to the quantum number labelling. Two
strand structures are seen to form a ladder-like object which starts at low J at the
right and increases in J along to the bottom left. Each rung on this ladder usually
corresponds to an alternating parity state, where clusters at the rung have structure

depending on the vibrational state. The nodes forming a ring at the outer perimeter
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of the network correspond to states with minimal connection to the main network,
and form strands with usually a single connecting node to the main network. These
states (typically a'A states) therefore will have minimal combination differences.
Please note this is just an artistic illustration of the network and contains no infor-

mation on the energies.

4.13 The Spectroscopic Model

To produce the final semi-empirical line list for 32S'60 the ab initio spectroscopic
model presented in Sections 4.3—4.10 (see also our study Brady et al. !3) is used as
a theoretical baseline for refinement to our MARVELised energy levels. Sections
4.2 and 4.3 overviews the details of the ab initio model and Section 4.13.1 details

the method used to refine it.

4.13.1 Refinement
I refined our model to the IR/Vis region by fitting to the X32~, a'A, b'X*, and

A3TI energies only. Only the minimum number of states and couplings required are
included such that the computed energies for these states agree with the MARVEL
energies. The refined model includes PECs and couplings connecting the X 3%~
a'A, b'Xt, ASTI, B3X=T, AT3AT, A”35+7, e TT' states, see Figure 4.18, where
potentials for states labelled with a ’§” superscript are not refined; these are included
solely for their couplings within our model, but their dipoles are kept ab initio.
These couplings, despite not being the dominant contributions to the energies of
the X3X, a'A, b'XT and A3II states, will redistribute intensities according to the
intensity stealing mechanism (see Sections 4.15 and 5.2).

Firstly, I found that including the ¢ !X~ and d 'TI states within the model had
negligible effect on the energies of the states of interest, and so they were omitted.
Secondly, the inclusion of the CI1 state proved problematic and only worsened the
fit. Because the B3X~ and C>I1 PECs have large overlap and strong mutual cou-
plings, their MARVEL energies include many perturbations. This is because the
B3X~ and CT1 states resonate due to their close proximity, where an example res-
onance is plotted in Figure 4.19 between the 32S'0 MARVEL B3~ (v = 6) and
C3I(v = 1) rotational energies. To accurately reproduce these resonances in our
spectroscopic model, careful modelling of the rotational trajectories leading into the
resonances are required, where the vibrational energy levels need to be very accurate
in this region. Any inaccuracies in this region will yield a resonance which occurs
at both different energies and J, producing Obs.-Calc. of the order 10 — 100 cm ™!,
Additionally, both the B3~ and CIT states exhibit multiple avoided crossings with
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Figure 4.18: Potential energy curves of states included within our spectroscopic model of

SO. The solid lines correspond to the potentials refined to MARVEL data,
dashed lines correspond to states included within our model but have not been

refined, where couplings to these states are essential for the accuracy of the
X3%7,a'A, b'ST, and A3TI energies and band intensities.
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Figure 4.19: Rotational progression of the 32S!°0 MARVEL B3L~ (v = 6) and C3II(v =
1) energies are plotted and deperturbed by a rotational constant of B = 0.47
cm~!. The high opacity region marks the resonance of between these states,
where the state trajectories with J appear to continue along the other state
trajectories. This demonstrates the excellent assignment by Heays et al. 14
and the complicated task of fitting our model to these resonances.

upper electronic states, complicating their energy structuring. Furthermore, due to
the lack of important experimental data and consequent lack of proper constraint on
the B>X~ PEC minimum, efforts to include the UV region within my fit proved too
difficult to do satisfactorily. Therefore the C>IT state is removed entirely from the
model, but found including the B3Y ™, now without resonances with C*I1, improved
the fit of the XX, a'A, b'L*, and A>T1 energies without being a major contribu-
tion to the accuracy of our model. My initial efforts to fit the UV model constrained
the B3~ ~ PEC enough such that expectation values of its couplings to other states
in our model were sensible. Furthermore, the current need for the IR/Vis SO line
list means we leave work on the UV model to a future study when the appropriate

data becomes available.

Refinement of the ab initio model is facilitated through Duo, a general pur-
pose variational code that solves the rovibronic Schrodinger equation for diatomic
molecules. A description of the methodologies used in Duo is given by Yurchenko
et al. 1>°
goes as follows: (1) represent PECs, SOCs, EAMCs, DMCs, and other empirically

fitted couplings such as rotational Born-Oppenheimer breakdown, spin-spin, and

and are discussed in Section 2.3.1 of Chapter 2. The refinement process
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spin-rotational curves with analytical forms; (2) compute energy levels using Duo
through solving the rovibronic Schrédinger equation with curves defined; (3) fit pa-
rameters of the analytical functions such that the computed energy levels agree with
the MARVEL energies.

Before refinement, the MARVEL energy level quantum number assignments
need to be converted to the Duo quantum numbers J, 7, v, A, X, and Q (see Section
4.11.2 and Table 4.1). Next, the i-th MARVEL energy was given a weight equal to

wi = |log;o (07| x niP. (4.18)
where Gfpt 1s its optimised uncertainty and niCD is the number of combination differ-
ences/frequency of occurrence within the transition database. This weight is used
in the Duo fitting procedure meaning energy levels with large uncertainty and a low
number of combination differences will have less effect on the optimisation. Next,
a running number must be defined to enumerate the global order of the energy lev-
els calculated by Duo. These should agree with MARVEL’s energy ordering for
lower v and J numbers, but for higher energy states where Duo’s calculated ener-
gies deviate significantly from the MARVEL data, the ordering of states between
the two can differ. The running number I employ increases by 1 per vibrational
excitation and by 100 per each electronic state, for example the running numbers
for X3~ (v=1) and a'A(v = 2) are 1 and 102, respectively. This produced a sen-
sible enumeration that effectively separated the energy levels and provided correct

assignments of the calculated energy levels.

4.13.1.1 Potential energy, spin—orbit, electronic angular momentum

curves

I represent all PECs using the Extended Morse Oscillator (EMO) function?* which

has the form

N | 2
V(r) =Ve+ (Ae — Vo) (1 —exp [— (Zaiép(r)l> (r—re)]> , (4.19)
i=0

where D, = A. — V. is the dissociation energy, V. is the potential minimum and A is

the asymptote, a; are the expansion coefficients, r, is the equilibrium bond length,

178

and &, (r) is the so called Surkus variable'”® given by

P — ik

= 4.20
rP+rf ( )

ép(”)
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with p as an integer parameter to allow for a better convergence at large bond lengths
values and effectively controls the “variability”/*“responsiveness” of the polynomial
with 7. The X3X~, alA, b1Zt, A3TI, A’3A, and A” 3L states dissociate to the same
asymptote SCP) + O(’P), which was initially set at 5.429 eV as reported by Huber
and Herzberg >>° and then floated during my fits, which converged to a nearby value
of 5.42895 eV. The B3X~ state adiabatically correlates to S('D) + O(*P) which was
set to a value of 6.5731 eV (53015.86 cm™!) as determined through atomic energies
from the NIST atomic database. I shifted the PECs to the X >~ minimum such that
Ve(X3Z7) = 0 cm~!. Since only the X327, a'A, b'X*, AT, B>~ and C3II
have experimental transition data to refine their PECs to, the ab initio PECs for
the A”3X+, and A’3A were fitted to the EMO function given in Eq. (4.19) using 10
expansion parameters which ensured accurate representation of their shape as given
by ab initio calculations. Once the EMO functions were fitted, I could then tune
their dissociation assymptotes to the 5.429 eV limit>>°. The T value for the A” 3L "
state was fixed to 30 692 cm~! as provided by Norwood and Ng3>7. We chose not
to tune the e 'TI ab initio PEC because it has a strong influence on the computed
X3%7, a'A, b'Xt, and A3TI energies and negatively effects the refinement when
altering its potential. This negative effect is due to: (1) The shapes of the PEC would
be destroyed in tuning the 7; and D, values; (2) the e 1T state has been diabatised 13,
so tuning its PEC would change the avoided crossing morphology and hence a new
diabatisation of the spectroscopic model would be required; without experimental

data covering e 'TT we chose to keep the diabatised ab initio potential values.

During the refinement, the ab initio B’L~ PEC by Sarka and Nanbu3>> was
used instead of the PEC from our recent ab initio work '3. The latter did not employ
(the extended) sulphur specific diffuse d-orbital functions in the basis set, which
led to the underestimation of the S’P) + OCP), S('D) + OCP) and S('D) + O('D)
dissociation asymptotes. Particularly, the omission of these d-orbitals negatively
effected the B3X~ PEC the most (see Table 4.3). The adiabatic character of the
B3X~ PEC was modelled by diagonalising a 2 x 2 matrix of diabatic potentials and
corresponding diabatic coupling yielding the adiabatic potentials as the associated

eigenvalues 3.

The ab initio SOCs and EAMCs were morphed from the grid representation to

176,177

a Surkus-like expansion given by

N
F(r)=Y BiZ(r)(r—&) +&pBe, (4.21)
=0
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where B; are the expansion coefficients, B. is usually taken as zero in-order to pre-
vent the expansion from diverging towards r — oo, and z is a damped displacement

coordinate given by

2(r) = (r—re)exp[—PBa(r —re)* — Ba(r—re)’], (4.22)

where f; and 34 are damping constants which prevent large oscillations of the func-

tion asymptotes which are not well constrained by the data.

4.13.1.2 Empirical Rotational Born-Oppenheimer Breakdown,
Spin-Spin, Spin-Rotational Curves
The phenomenological spin-spin (SS) couplings and the empirical spin-rotation
(SR) couplings of the triplet X 3X~, AT, and B3X~ states were fitted to account
for additional Q-splitting and to allow for additional variation of J, respectively, not
described by the ab initio model °-'Y7 . Additionally, rotational Born-Oppenheimer
breakdown (BOB) curves for all but the B3~ state were fitted to correct for the
electron un-coupling to the nuclear motion. This produced additional J?> depen-
dence in the residuals of the rovibronic energies, and can be thought of as a correc-
tion to the position-dependent rotational mass. Some SS, SR, and BOB couplings

are modelled using Eq.(4.22) and some using a Surkus polynomial expansion given
by

N
F(r)=(1-¢&,) ) ai),+&pa. (4.23)
i=0
This greatly enhanced the accuracy of the finalised spectroscopic model.

4.13.2 Accuracy of the Refined Model
Figure 4.20 illustrates the Observed minus Calculated (Obs.-Calc.) energy residuals

as a function of the rotational quantum number J, and provides a metric on the
accuracy of our model to reproduce our MARVELised energies (see Section 4.12).
Most of the highly scattered energy levels have no combination differences with
other sources, and so are effectively removed from the fit by setting their weight to
1075, 1fit 100% of 512 X *X~ (J < 69) energy levels with a total root-mean-square
(rms) error of 3.13 x 1072 ecm™!, 99% of 244 a'A (J < 52) energy levels with a
rms error of 1.08 x 1073 cm™!, 95% of 206 b 'Lt (J < 64) energy levels with a
total rms error of 0.27 cm~!, and 78% of 1262 A3I1 (J < 34) energy levels with a
rms error of 0.24 cm™!. The above rms errors were calculated after filtering outliers
from our dataset which heavily influenced the rms, such as the scattered data of
b'St(v = 3,4), the ATI(v = 2,J > 35) states, and a single data point of a'A.
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Elks and Western3*3 provide rotational constants for the A3 (v = 4 — 13) states
fitted to their 1+1 resonances enhanced multiphoton ionisation spectra. I used these
constants to compute low J (J < 5) energies via PGOPHER '3, These energies to
our knowledge are the only ones covering the highly excited vibronic states of A>TT
and so we use them to constrain the A>T potential up to its dissociation. The black
points in figure 4.20 for J < 5 (see label (a)) indicates the vibrational dependence
in the residuals of these PGOPHER levels, which I managed to fit all within ~4.5
cm~!. Doing this allowed for a more physical description of the effective position
dependent correction to the rotational mass for the A>IT state by constraining the
potential gradient, and ultimately led to higher accuracy in the associated computed
lifetimes (see Section 4.14.1).

Generally, the !XT data are of high quality and are reproduced by our model
to within ~ 10~% — 1073 cm~! with the exception of high scatter within the MAR-
VELised b'L* (v = 3,4) energies. This scatter can be seen in Figure 4.20 around
the label (b). One striking feature in Figure 4.20 is of the A3TI (v = 2) Obs.-Calc.
residuals, which, despite many attempts to model correctly, are poorly recovered
in the model. A smooth, but rapid increase in the MARVEL energies with J of
this band to ~35 cm™! at J = 51 is seen. It could be postulated that a dark state
pushes these energies upwards, some candidates being the ¢ !X =, A”3X* and A’3A
which cross through the A3IT potential, however all attempts to correctly position
their PECs relative to the A 3T1 failed to reproduce this behaviour. No published data
on the crossing states exists, but it is entirely possible that a correct description of
these electronic potentials could resolve this issue, and some empirical data could
be used to constrain their curves better than blindly varying their positions.

Some residual J-dependence can be seen for the X 3y~ and b !XT states, where
the former is due to J-dependent Q-splitting and parity splitting within the |Q| =1
levels, and the latter is due to vibrational dependence in the effective rotational cen-
tre not being fully accounted for. However, the residuals to the MARVEL energies
are all <102 cm~! which means the model should extrapolate well to higher J.

One major problem faced during the refinement was with the spin-orbit split-
ting of the A>IT energies, where experiment>8%-330 predicts regular Q energy or-
dering, whereas multiple ab initio calculations reveal the (A3TI|SO,|A3TI) SOC
to have a negative phase, suggesting irregular  energy ordering. Analysis by
Colin 38" shows the A-doubling (LD) to be ~1.2 cm™! in the lowest energy Q state
with slight dependence on J, small doubling in the middle component which varies
with J(J + 1) and zero splitting for the highest component state. To decide whether

to adopt the irregular € energy ordering suggested by ab initio calculations or the
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experimental assignment with a change in phase of the (A3I1|SO, |A3IT) SOC, the
e/ f parity splitting of the A3TI energies were studied since this would confirm what
A-doubling matrix elements to adopt. It was found that the slightly J-dependant
~1.2 cm™! parity splitting in the lowest energy state could only be resolved via the
following A-doubling element

s 1 o
Hp = Eaglg(r)(si +82) (4.24)

with the A-doubling constant being consistent with the Brown and Merer '®° con-

vention ocoL[],)q = oM 4 ptP 4¢P for a regular Q energy ordering, i.e. the splitting is
between states of AY. = £2 which is only possible for a triplet state if Q = 0. If one
adopted an irregular assignment scheme with Q0 = 2 for the lowest energy state, then
one could not correctly model the J-dependence of the splitting since the element
in Eq.(4.24) would be zero. The experimental assignment was thus adopted and the
sign of the computed (A3TI|SO,|A3IT) SOC was changed. This should not break

the phase consistency of the model since it is a diagonal coupling.

4.13.3 Dipole Moment Curves

We use the accurate ab initio ground state dipole moment function from Bernath
et al.>*! who calculate with an ic-MRCI+Q level of theory including the David-
son corrections, scalar relativistic contributions using the exact 2-component (X2C)
relativistic Hamiltonian, and aug-cc-pCV6Z-X2C basis sets. All other DMCs are
computed at a level of theory described in Section 4.2. Within nuclear motion and
intensity calculations, these dipoles are originally represented as a grid of ab ini-
tio points on the Duo defined grid, however one sees a flattening of both the IR
X3X~-X 3%~ band spectrum and its variation of TDMC with vibrational excita-
tion. The source of this nonphysical flattening has been discussed by Medvedev
et al. 387 388 Medvedev and Ushakov3%° who identify numerical noise as the cul-
prit. This noise comes from the interpolation of the given MOLPRO dipole grid
points onto the Duo defined grid. One can try to increase the precision of their
transition moments from double to quadruple precision, but this seldom fixes the
problem with any appreciable magnitude. The most effective method found is to
represent the input dipole moments analytically. For the X *°Y£~ DMC, the following
‘irregular DMC” form proposed by Medvedev and Ushakov **° was adopted

6

Dirre (r) = x(ric2,...,¢6) Y biTi(2(r)) (4.25)
i=0
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Figure 4.20: Visual representation of the difference between MARVEL (Obs.) and Duo
calculated (Calc.) energy levels as a function of J for the X3X~, a'A, b'X+,
and A>TI states. (a) The Black crosses compare computed PGOPHER ener-
gies to the calculated Duo ones; (b) high scatter present in the MARVELised
b'Et (v =3,4) levels; (A3TI(v = 2)) the Obs.-Calc. structure in the red points
increases rapidly towards higher J’s (see text).
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Figure 4.21: The ab initio X%~ DMC provided by Bernath et al.**!, computed at an
ic-MRCI+Q level of theory with full relativistic corrections using aug-cc-
pCV6Z-X2C basis sets, is shown (black crosses) superimposed with my fitted
analytical form using Eq. 4.25 (red line). The residuals to the ab initio DMC
of the fit are shown in the top panel (green line).

Where T; are Chebyshev polynomials of the first kind, b; are summation coefficients
to be fit, z(r) is a reduced variable in bond length similar to the damped polynomial

coordinate in Eq.(4.22) and is given by,
2(r)=1-2¢, (4.26)

which maps the r € [0,00] interval to the z € [—1, 1] reduced interval, and finally
x(r;ca,...,cq) is an r-dependent term parametrically dependent on 5 ¢; parameters
to be fitted and is given by

(1 . 6—02")3
(r2 — c%)2 + ci\/(rz — cg)2 + c%

x(r;ca,...,co)
\/

Our fitted X £~ DMC is illustrated with its residual to the ab initio DMC in Figure
4.21.

The irregular DMC has the desirable properties of quickly converging to the
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correct long-range limit, having enough parameters (13) to ensure an accurate de-
scription of the full range in bond length with minimal local oscillations, and yields
a straight Normal Intensity Distribution Law (NIDL)389-390.387

The desired NIDL is a major constraint on the model DMC, where the loga-
rithm of the vibrational overtone TDM (intensity) should evolve linearly with the
square root of the upper state energy over the harmonic frequency, or /v + % The
v/ —0 TDM was computed up to dissociation for the X 3~ using both the grid de-
fined dipole and the fitted analytical form, where Figure 4.22 shows their behaviour.
The expected linear form of the NIDL is shown on Figure 4.22 as a gray line which
is seen to have greater agreement to the TDM computed using the analytical X 3£~
DMC compared to the calculation using the grid interpolated DMC. At the v/ = 8
overtone the grid interpolated DMC causes an non-physical flattening of the in-
tensities at ~ 107% Debye, whereas a departure from the straight NIDL at v/ = 16
when using the analytical form is seen — flattening at ~ 10~!4 Debye. The ana-
lytically represented X >~ DMC therefore provides a more physically meaningful
behaviour of the vibrational overtone TDM but still departs from the expected NIDL
at high overtones where the intensities are much lower and therefore less important

since they will be ‘washed out’ by higher intensity bands38-387-39

4.14 Line List

We produce a semi-empirical rovibronic line list SOLIS for 32S'0 covering the
X3%7, a'A, b'ET and AT electronic states, where a system involving couplings
between X 32, a'A, b'EF, A3, B3L~, A”3%F, A'3A, and e 'TI defines our spec-
troscopic model. The SOLIS line list covers wavelengths down to 222.22 nm.
[lustrations of the spectra simulated with the new line list are presented in Figures
4.25 and 4.26.

For nuclear motion calculations a vibrational sinc-DVR basis set was defined
for a grid of 301 internuclear geometries in the range 0.6-6.0 A. Fifty eight vibra-
tional wavefunctions were then selected for the X3X~, a!A, b'Xt, A3, B3X~,
A”3xt A’3A, and e!TT states to form the contracted vibronic basis. In total
7 008 190 Einstein A coefficients between 84 114 bound rovibronic states were
computed with a maximum total rotational quantum number Jpax = 250.

The PEC of the AT state implies that predissociative and continuum states
should exist for the region above dissociation. To this end, these states have been
removed from the line list through checking the character of the wavefunctions at
the ‘right’ simulation border ry,x in our Duo model where unbound states tend to

oscillate at r — oo with a non-zero density around rpax 234 The presented line list



4.14. Line List

Table 4.7: Extract from the states file of the line list for SO.

194

i Energy (cm ') g J unc T Parity State v A X Q Ma/Ca Energy (cm )
733 12277.658473 5 2 0.302298 0.068323 + e alDelta 6 2 0 2 Ca 12277.658473
734 12576.55717 5 2 0.01039 0.0067518 + e blSig+ 2 0 0 0 Ma 12576.558535
735 12824.746272 5 2 0.603962 0.025301 + e X3Sig- 12 0 0 O Ca 12824.746272
736 12836.684546 5 2 0.603962 0.025272 + e X3Sig- 12 0 1 1 Ca 12836.684546
737 13297.933546 5 2 0.352298 0.059146 + e alDelta 7 2 0 2 Ca 13297.933546
738 13602.425655 5 2 0.165193 0.0069414 + e blSig+ 3 0 0 0 PS 13601.834707
739 13810.582705 5 2 0.653962 0.023019 + e X3Sig- 13 0 0 O Ca 13810.582705
740 13822.57783 5 2 0.653962 0.022993 + e X38ig- 13 0 1 1 Ca 13822.57783

i: State counting number.

E: State energy term values in cm~!, MARVEL or Calculated (DUO).
gi: Total statistical weight, equal to gns(2J+1).

J: Total angular momentum.

unc: Uncertainty, cm ™!,

7: Lifetime (s~ 1).

+/—: Total parity.

e/ f: Rotationless parity.

State: Electronic state.

v: State vibrational quantum number.

A: Projection of the electronic angular momentum.

X: Projection of the electronic spin.

Q: Projection of the total angular momentum, Q = A+ X.

Label: ‘Ma’ is for MARVEL, ‘Ca’ is for Calculated, and *PS’ is for predicted shift.
Energy: State energy term values in cm™!, Calculated (DUO).

Table 4.8: Extract from the transitions file of the line list for SO.

S i Ag (s Vi
37557 36527 .7817E-01 5199.704942
37204 36852 .7817E-01 5199.704945
32098 32422 .2080E+00 5199.713048
21055 22048 .3851E-06 5199.718029
60350 61047 .8777E-04 5199.728151
45755 46501 .3835E-01 5199.728902

NN W R NN

f: Upper state counting number;
i: Lower state counting number;
Ay;: Einstein-A coefficient in s 1.
. 1

Vy;: transition wavenumber in cm™ .
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Figure 4.22: v/ — 0 overtone TDMs are plotted on a log scale vs. /v + % and are computed

using the grid interpolated ab initio DMC of**! (shown as blue crosses) and
the fitted analytical model DMC (Eq. (4.25), shown as red crosses). A simple
exponential decay is shown for comparison which simulates the correct NIDL
behaviour.

therefore only contains bound to bound transitions only.

The calculated energies in the .states file are ‘MARVELised’ which in-
volves replacing them with the MARVEL ones. For levels that are not covered by
the MARVEL SN, the predicted shift method of Bowesman et al. 391 \as used to
MARVELise them. Predicted shifts work by fitting the Obs.-Calc. trends as func-
tions of J for each ‘state’, v and € energy band to then interpolate gaps within the
MARVEL network or extrapolating to higher J.

The SOLIS line list is available in the ExoMol database in the form of a States
(.states) and Transition (.t rans) files, with extracts shown in Tables 4.7 and
4.8 respectively. Uncertainties for the energy levels where either taken directly as

the MARVEL ones where available, or otherwise computed using the following



4.14. Line List 196

empirical formulae
o(state,J,v) = AT + Awv+ABJ(J + 1), (4.27)

where o is the energy uncertainty for a given state and A7, Aw, AB are state de-
pendent parameters given in Table 4.9. AT were found by taking twice the standard
deviation of the total Obs.-Calc. of each electronic state (see Figure 4.20) after
outliers were removed by selecting states outside of this two standard-deviation

threshold, where the standard deviation was computed again.

Table 4.9: State dependent parameters (in cm~') of Eq. (4.27) used to estimated uncertain-
ties for the calculated states of 2S'°0 where MARVEL uncertainties were not
available.

State AT Ao AB
X3~ 0.003363 0.05 0.0001
a'A  0.001698 0.05 0.0001
blXt 0368965 0.05 0.0001
AT 2.835039 0.05 0.0001

4.14.1 Intensity Scaling: Dipoles and Lifetimes

There are only a few recorded experimental values for electric dipole moments, life-
times, and no direct intensity measurements for many electronic states of SO which
can be used to constrain our ab initio dipoles. Lifetimes are useful to constrain

dipole moments via the relation

1 ~
== LAw e[ (ul o D, (4.28)

u l

where |[) is the dominant ro-vibronic state contributing to the lifetime of the level
lu), 0 = 0,41 denotes a tensorial dipole component. So a scaling in lifetime T =&t
would correspond to an approximate scaling in dipole moment to the dominant
lower state of 1/1/E.

Previous Stark measurements>%+33% have determined the ground state dipole to
be ,ué‘ = 1.55(2) D*%* and 1.52(2) D338, slightly smaller than my computed vibra-
tional transition moment of | (X3Z~,v = 0| to |X 3X~,v = 0) | = 1.588 D. I scale our
X 3%~ dipole to the value of 1.535 D averaged from the two Stark measurements,
which I note is the dipole moment adopted by CDMS3*¢ where the same averag-

1 392

ing was done. Wildt et a measure the radiative lifetime of the »'ZF (v = 0)

state through time-resolved measurements of the b'X+t — X3¥~ emission band
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and provide a lifetime of 7 = 6.8 £ 0.4 ms. To achieve this lifetime, I scale our
(b'ZF| o |b'Lt) dipole by a factor of 0.7401.

Saito?”® determines the a'A dipole moment to be 1.336 4 0.045 D
through Stark measurements, larger than my computed transition moment
[(a'A,v=0]upla'A,y=0)| = 1.184 D. I scale our a'A dipole by a factor of
1.1282 to reproduce the measured transition moment.

Radiative lifetimes of the A 311 state for v/ = 0 — 13 were measured by Elks and
Western>*? by laser induced fluorescence and for v/ = 0 — 6 by Clyne and Liddy *%3.
Figure 4.23 shows the experimentally determined lifetimes as a function of v/ with
the theoretically predicted values by Borin and Ornellas>'!, Fulscher et al.*?!, and
those computed by our model superimposed in red. Since Elks and Western3*3
quote their lifetimes to a lower uncertainty and for a large vibrational coverage,
their lifetimes were chosen to be modelled. Modelling these lifetimes proved to
be difficult, the characteristic sharp drop in lifetime from v/ = 0 and v/ = 1 was
very sensitive to multiple factors: (1) the position of the (A3TT|uy|X3Z™) dipole
relative to the respective PECs; (2) the crossing point of the dipole with zero; (3)
the local gradient of the dipole around the zero crossing point. Initial attempts to
reproduce the experimental lifetimes were made using our ab initio dipole, various

ab initio dipoles from the literature32!323-305

, and the empirical dipole from Elks
and Western3*3 which all failed to produce lifetimes that agreed with experiment.

Firstly, I was able to reproduce the lifetimes of Elks and Western 343

using a
linear dipole function. Albeit being nonphysical, it provided important constraints
on the short range position and the gradient around the equilibrium geometry. This
linear dipole function was then combined with the MRCI-F12+Q/aug-cc-pV(5+d)Z
dipole computed by Sarka and Nanbu 32 at larger values of r into a single smooth
curve. Despite a slight change in the shape of the ab initio dipole, Figure 4.23 shows
that my semi-empirically fitted (A 3TT| u.q |X 3£7) dipole yields lifetimes which are
much closer to the experimentally determined lifetimes by Elks and Western 343

than other theoretical predictions.

4.14.2 Partition Function

The molecular partition function (PF) for 328160 s computed from our semi-

empirical line list using the equation

E;

O(T) =Y g7 (4.29)
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Figure 4.23: The A°I1 lifetimes as a function of v are shown from experimental >*3-370 and
theoretical3!!*?! sources with my computed lifetimes overlaid in red.

where ¢; is the second radiation constant, £; is the rovibronic energy term value in
wavenumbers, g = g,(2J; + 1) is the total state degeneracy which includes the

nuclear weight spin-statistic gns (gns = 1 for 328160) where a 1 K temperature step
is used. Figure 4.24 compares our computed PF to the PFs of Sauval and Tatum 34,
Barklem and Collet3, CDMS3#¢, and HITRAN3°® who compute their PF from the
line lists produced by Bernath et al. 34?341 " As the nuclear spin degeneracy is one,
no PFs need to be scaled to the physics convention of nuclear statistical weights,
which ExoMol uses. Figure 4.24 shows that all PFs agree for 500 < 7' < 2000 K;
for all temperatures our computed PF continues to agree with that of Barklem and
Collet**, where our computed PF is generally lower than theirs up to 0.1% at 5000
K; the CDMS PF agrees to within 1% of all PFs up to its cutoff at 300 K; the PF
of Sauval and Tatum>** is larger than the rest of the PFs at low temperatures up to
500 K and at 5000 K their PF is 3.4% lower than our computed PF; the HITRAN PF
begins to deviate from the other PFs at ~ 2000 K, where at 5000 K it is lower than

ours by 17%. This behaviour of HITRAN PFs has been noted previously*7.
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Figure 4.24: Comparison between our partition function and those produced by HI-
TRAN?%, Sauval and Tatum **#, Barklem and Collet*> and CDMS 3%,

4.14.3 SO opacities

We follow the ExoMolOP procedure of Chubb et al.?*® and generate molecular
opacities for SO using the SOLIS line list for four exoplanetary atmosphere re-
trieval codes ARCiS3%°, TauREx*%°, NEMESIS*°! and petitRADTRANS 402 on an
extensive grid of temperatures and pressures. The opacities are provided as part of
the SO ExoMol dataset.

4.14.4 Simulated spectra

Program EXOCRO0SS?%" was used to simulate rovibronic absorption spectra as a
function of temperature using SOLIS. Figure 4.25 illustrates the dipole allowed
and forbidden electronic bands connecting X 32~ to X327, a!A, 'L, and A3TI
which are shown as different colours. The total computed SO opacity is also shown
in Figure 4.25 as a grey region. Here, lines are simulated with a Gaussian line
profile of HWHM 0.6 cm™'. The forbidden band intensities are stolen through
mixing of the electronic wavefunctions through couplings such as SOCs, DMCs,
and EAMC:s resulting in non-zero dipole matrix elements, which I note provides

a stronger mechanism here than their corresponding magnetic dipole or electric
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Figure 4.25: Dipole allowed and forbidden components of the absorption spectrum simu-
lated with our semi-empirical model at 1000 K connecting X X~ with X 3X~,
a'A, b'Lt, and A°TI. Regions of spectral importance are marked with roman
numerals and are detailed in the text. The grey shaded region marks the total
SO opacity computed with our model at 1000 K.

quadrupole couplings. Figure 4.26 shows the temperature variation of the simu-
lated total SO opacity which has a strong effect on the UV/Vis cross-sections. The
greatest temperature variation can be seen in the 18 000-35 000 cm™! region (V)
where the X 3£~ — B3X~ band begins to dominate opacity. Again, lines are sim-
ulated with a Gaussian line profile of HWHM 0.6 cm~!. Tt is clear the IR/NIR
spectrum is largely unaffected by the increase of temperature except from the ex-
pected rotational broadening. Below I comment on the spectral regions marked by
[-VI illustrated in Figure 4.25.

(I) The IR ~0-5000 cm™~! region is dominated by the X 3Y~« X 3%~ elec-
tronic band peaking at ~ 3 x 1072° cm? per molecule.

(IT) The ~5000-7800 cm~! NIR region shows strong a 'A<~ X 3£~ band fea-
tures, even for room temperature spectra, but X 3~ "« X 3X~ lines are expected to
be still observable here.

(ITT) The ~7800-13000 cm~! NIR region is dominated by strong b!XF«
X 3%~ band absorption for all temperatures, and is almost as strong as the dipole

allowed X 3L« X 3L~ band spectrum because of large intensity stealing mecha-
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Figure 4.26: The total absorption spectrum of SO simulated with our semi-empirical model

for different temperatures ranging from 298 K to 5000 K. It is seen that the
intensity deviation is greatest in region V around 18 000-35 000 cm ™! where
the B3X ™« X >X~band begins to dominate opacity.
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nism facilitated through the strong (b'Z* |, [X3X~) SOC.

(IV) The Vis ~13000-18200 cm™! region shows a flat feature due to A3TT—
X 3¥~ band absorption which becomes prominent for temperatures above 3000 K.
However, since the C>II state is removed from our spectroscopic model, the
C3TT+ A’3A and C3TI+ A”3%* band intensities were not computed, although we
previously predicted them to be strong in this region 2.

(V) The Vis/UV ~18200-37700 cm™! region is largely uncovered at high ac-
curacy by our spectroscopic model since it is dominated by the B3Y ™« X3Y~ and
lesser C3T1«+ X 3L~ electronic bands which become major sources of SO opacity
for temperatures above 1000 K. I am currently working on the UV SO line list for
a future study which will accurately cover this region. However, for lower temper-
atures the A3TT« X3X~ and b'2 T« X 3%~ bands become more important which
are recovered accurately by our line list.

(VI) The UV ~37700-43500 cm~! region has a strong A>T+ X 3%~ band

feature which should be observable at all temperatures.

4.14.5 Comparisons to experimental spectra

There are few recorded experimental spectra of 3280 with large coverage and al-
most none with absolute intensity measurements. However, relative intensities are

d403.141,331.362 "The only study to my knowledge that provides mea-

usually provide
sured absolute intensities is the recent study by Heays et al. '*? on the A3TI—X3x~
band, which I compare to (also B3Y~—X3Y and C3I1-X3X bands which I do
not compare to).

The forbidden band intensities computed here are through the intensity stealing
mechanism which works through mixing of electronic state wavefunctions through
couplings such as SOCs. We do not compute magnetic dipole intensities, which
are much weaker for the bands of interest than the redistributed intensities which
we compute. For example, the diagonal (b'E¥|u, |p'Z%) and (X327 | u, |X327)
dipoles produce h!EZT« X3~ band intensities a factor of ~ 10 — 1000 times
stronger at the band peak than the corresponding magnetic dipole intensities. There-
fore, magnetic dipole transitions are omitted from our line list. An illustration of

the intensity stealing mechanism for this band is given in Section 4.15.

4.14.5.1 HITRAN
HITRAN produces empirical SO line lists which have been produced by fitting

spectroscopic models to experimentally derived spectroscopic constants, lifetimes,
and rotational branching ratios (ratios in perpendicular and parallel transition mo-

ments, see below discussion). Therefore, I will compare to this data since it
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Figure 4.27: Comparison between the theoretical and HITRAN X3Y~ — X 3X~ rovibra-
tional band for 0-7000 cm~!. I simulate the spectra using a temperature of
296 K and scale the intensities by the fractional isotopologue abundance of
0.9479348,

is the closest comparison of rovibronic intensities to experimental data for the
X3 —Xx32 ", p'2t—X3% ", and a'A—X3X " electronic bands.

HITRAN* provides empirical line list data on the first three electronic states
of SOX3X~, a'A, and b X to which I compare our theoretical spectra to. The HI-
TRAN intensities for the X 3£~ <X 3X~ band were originally presented by Bernath
et al.**! and the forbidden »'X* « X3%X~ and a'A < X3%L~ bands are from

Bernath et al. 340

. In both studies, fitted spectroscopic constants from the litera-
ture were used to predict line positions, transition moments were obtained using
LeRoy’s LEVEL program*** which assumes the single state approximation, and
their line lists were computed using PGOPHER '3, Bernath et al.?** used the

Q-representation (see Section 5.2.1 in Chapter 5) to allow for the single state ap-
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Figure 4.28: Comparison between the theoretical and HITRAN X3X~ — b'L* (top) and
X 3%~ — a'A (bottom) absorption spectrum for 0-15000 cm™". I simulate the
spectra using a temperature of 296 K and scale the intensities by the fractional
isotopologue abundance of 0.9479343,
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proximation — in line with LEVEL*** — such that the forbidden band intensity are
computed from effective dipoles between single Q-states, the so-called parallel and
perpendicular transition moments. This is as opposed to the non-approximate in-
tensity stealing mechanism via mixing of electronic wavefunctions through, e.g.
SOCs, as we do. Perpendicular and parallel electronic transition moments between
the spin-orbit states 0T — X0, bOT — X1, and a2 — X 1 were computed by Bernath
et al. >0 at an ic-MRCI/aug-cc-pCVQZ-DK level of theory and were scaled to the
experimentally determined values by Setzer et al. **!. The HITRAN X 32—« X 3%~
intensities were computed using the ab initio ground state expectation dipole mo-
ment computed by Bernath et al. 3*! at a ic-MRCI+Q/ACV6Z-X2C/ED+Q level of
theory.

In all comparisons below, I scale our computed intensities with the 32S160 iso-
topologue abundance 0.947926 given by HITRAN*®. Figure 4.27 presents a com-
parison between our semi-empirical X 3£~ <~ X 3L~ rovibronic spectrum, where I
compute stick spectrum using a temperature of 296 K, and the empirical HITRAN
line list*!. A good agreement in both the line positions and band structure are
seen, where band intensities agree up to the fifth hot band at ~ 4500 cm™~! where
I compute higher intensities relative to the HITRAN data. The 0 <— 0 band agrees
extremely well which can be seen in the sub plot of Figure 4.27. The agreement
in intensities confirms our methodology since the HITRAN dipole was also scaled
to the same experimental values discussed in Section 4.14.1. The discrepancy in
intensities towards hotter bands can be attributed to the difference in the DMCs as
well as the wavefunctions used to calculate the transition probabilities.

Figure 4.28 compares my computed b !X+ « X 3%~ spectrum simulated at a
temperature of 296 K to the empirical HITRAN>*® p 13+ «— X 3%~ line list3*?. For
this comparison, the magnetic dipole transitions present in the HITRAN line list
are filtered out, since we only calculate electric dipole transitions. The selection
rules for magnetic dipole branches are the same except they follow the non-parity
changing rule. Our model is seen to supplement the HITRAN line list at both the
higher and lower wavenumber regions (< 4000 cm~! and > 12500 cm~!) where
line positions, band structure and intensities generally show good agreement. This
is to be expected since the HITRAN b !X+ < X 3%~ dipoles were scaled to the same
experimental values for the »!X* lifetime as I do. For vibrational bands energeti-
cally below ~ 7500 cm™! the two spectra begin to deviate from each other, where
SOLIS tends to be slightly lower than the HITRAN intensities. However, this is be-
low the standard HITRAN intensity threshold of 1073° cm?/molecule, and so these

bands are typically of less importance. For intensities above the threshold, good
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agreement is seen in line with the methodologies used.

I also compare to the forbidden a'A < X3X~ band in Figure 4.28 to the the-
oretical HITRAN line list at 296 K. The transitions here are all electric dipole in
nature. It is evident that the electronic band structures agrees well between the peak
band up to the penultimate hot band before the HITRAN terminus at ~11000 cm™!
with the largest intensity deviation being between vibronic bands outside the 5000—
8500 cm~! spectral range. The low energy bands <4500 cm™! all sit below the
1073 cm?/molecule intensity threshold, which are less important spectroscopically.
Differences in the band intensity are difficult to disentangle since a 'A< X3~ isa
dipole forbidden band where intensities are accumulated through ‘intensity stealing’
mechanism via multiple coupling channels in our model.

The general agreement with SOLIS and the empirical HITRAN line list con-
firms that no fundamental physics is missing, since both approaches produce simi-
lar spectra using different methodologies. Furthermore, Bernath et al. 3*0 scale their
b'Xt « X 3% effective dipoles using the same lifetime provided by Setzer et al. 33!
as I did, whereas the a ' A <— X 3£~ band has no reliable experimental dipoles or life-
times to scale the ab initio dipoles to except the indirect a'A— a'A dipole moment
presented by Saito?’?, which was used for scaling only in SOLIS. Agreement for
the latter band then confirm the good quality of the PECs, SOCs, and (T)DMCs

used.
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Figure 4.29: Comparison of the absorption A3TI(v' = 1,2,3)—X32~ (v = 0) band com-
puted from our spectroscopic model, to the cross sections generated using the
empirical line list of Heays et al. '*°, which was fitted band-by-band to their
measured spectra.
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4.14.5.2 A-X Bands

The recent study by Heays et al.'*" measured, in high resolution, the FUV
A3TI-X 3%~ band via Fourier-transform spectroscopy up to the (v/,v”) = (3,0)
band for J < 51; the B3~ —X3X~ and C3T1—X 3X~ bands were also measured but I
do not compare to these here. Heays et al. '4? present an empirical line list where ef-
fective Hamiltonian spectroscopic constants were fitted band-by-band to their mea-
sured spectrum, providing quantum number assignments and oscillator strengths for
each assigned transition. Their coupled-band models reproduce the experimentally
measured line positions, intensities, and widths to within 5% uncertainty. With this,
I converted their line list to the EXOCROSS format to compute corresponding cross-
sections, which is then compared to. For all spectra simulations a temperature of
T = 360 K and Gaussian line broadening of HWHM 0.3 cm ™! was used. Figure
4.29 shows the comparison between the A3TI(v' = 1,2,3)—X 32~ (v" = 0) band in-
tensities computed from our model in blue (bottom panel) and the simulated band
intensities of Heays et al.'%" in red (top panel). Excellent agreement in line posi-
tions, intensities, and band structure is seen, where a mirror plot was chosen since
overlaying the spectra made it hard to distinguish between them since they agree so

well.

I am confident that our model correctly reproduces the experimental spectra
for the A3TI(v' = 1,2,3)—X 32~ (v" = 0) band, confirming the good quality of our
PECs, (T)DMC:s, and couplings to other states.

Table 4.10: The largest expansion coefficients for the X 3£~ and b' X+ wavefunctions in the
Q representation. The column headers with a subscript ‘Duo’ are the computed
Duo-states which have components in the basis states given as rows due to spin-
orbit coupling.

Basis |X 326+>Du0 |b 12'(T—'_>Dua |X32;—1>Duo ‘X3ZI—>Du0
|X 3Z:I> 0 0 0.99999 0
|X 32;1> 0 0 0 0.99999
|A§H+1) 0 0 0 -0.00119
|A°TI_) 0 0 0.00119 0
|X 325 +> -0.99964 -0.02670 0 0
|b 1)2(‘)* L) 0.02669 -0.99964 0 0
|A°TIo4) 0.00121 -0.00093 0 0
|A3TT,_) -0.00121 0.00093 0 0
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4.15 Intensity Stealing Mechanism for the !X+ —
X3Y~ Band

Dipole forbidden transitions can arise through multiple mechanisms, such as
through the magnetic dipole moment (MDM), quadrupole moment, and from inten-
sity stealing. Intensity stealing propagates through the mixture of electronic state
wave-functions via couplings such as SOCs and EAMCs, where contributions to
the forbidden intensities are derived through taking dipole matrix elements in the
eigenstates of the diagonalised Hamiltonian constructed from the coupled A — X
basis. To understand these intensity contributions to the XY~ — b'X* band an
analysis was conducted on the Duo computed electronic state wavefunctions cor-
responding to the eigensolutions of the diagonalised Hamiltonian which included
SOCs, EAMCs, and DMCs for the full 11 state system described in Section 4.2
plus additional (b'X+|SO,|A3II), and (a'A|SO,|A>II) couplings. The contribu-
tions to the X 3£~ and !X+ computed wavefunctions in the Q representation are
shown in Table 4.10 which gives the expansion coefficients C, of the wavefunctions
in the eigenbasis of the diagonalised Hamiltonian

Pt =Y ¢l n) (4.30)
n

where J is the rotational quantum number, 7 is the parity, and n represents the full set
of quantum numbers |n) = |State,J,Q, A, S,X,v). Because of a large SOC between
the X3X~ and bt states, it is seen that they share sizeable contributions in their
final mixed wavefunctions of their corresponding unmixed basis states. The amount
of intensity stealing will then distribute itself through subsequent coupling of the
dipole operators in the new mixed state basis. To this end, consider the parallel and
perpendicular transition dipole moments (TDMs) which couple Q = 0" — 0 and
Q = 0" — 1 states, respectively. In spherical tensor form they read, considering the

X32 and 1T T states,
to = (b'Zq | e |XZ) (4.31)

=+ (b 55|27 F i) X (4.32)

The experimental measurement and analysis by Setzer et al.’*! of the !X+ —
X 3%~ emission band and work by Bernath et al.>** shows the tg and s, TDMs
to be of the same order of magnitude. However, comparing the 'L+ — X3~
v = 0 — 0 band measured by Setzer et al.>3! to our semi-empirical line list and the

HITRAN empirical line list show disagreements in the P- and R- branch ratios where
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experiment predicts the P- branch to have the most intensity within the band. Con-
sidering the intensity stealing mechanism, cross-examining Eqs.(4.31,4.32) with Ta-
ble 4.10 reveals that intensity stealing is different for the perpendicular and parallel
transitions and therefore the branch ratios for these transitions. This could explain
the experimental observation in Setzer et al.?*! that the P- and R- branch ratios
are different. In an attempt to understand this discrepancy, my analysis on the
mixed X 3X~ and b !Xt state wavefunctions reveals that the competition between
the (b'=F|u, |pb'E+) and (X32 |, |X3L~) DMCs provides the dominant contri-
butions to L, as facilitated through the large (b!'2+|SO,|X3X™) spin-orbit cou-
pling, where (b'X* |y, |p'E*) subtracts from (X3~ |, [X3Z~) and can be seen
in Figure 4.30 as the reduction of intensity between the red and blue spectra. U,
however, has leading contributions from the (A3TT| u, |X 3£ ™) dipole as facilitated
through the (b'X*|SO, |A>II) and (X3X~|SO,|A3II) couplings. It is found that
the perpendicular TDM p; is responsible for the P- R- branch asymmetry (P > R)
as seen in the Fourier transform spectroscopy by Setzer et al. 3! whereas the parallel
TDM py produces the opposite branch ratios (P < R). However, when considering
only a vibrationless expansion for the wavefunctions, that is v = 0, the u; TDM
is very weak producing much lower intensities than the parallel transition moment
and as a result the '+ — X 3L~ band has a P < R branch ratio. When considering
a larger vibrational basis (v = 20) the P- R- branch ratio becomes more sensitive to
changes in DMCs and SOCs. From this analysis is is evident that the vibrational
TDMs have an effect on the rovibrational band intensity distribution in favour of
the P- R- branch ratio as seen in Setzer et al. >3!.

I therefore speculate that further coupling to an unresolved 31T state could re-

405 show that coupling to highly

solve the seen branch asymmetries. Somogyi et al.
excited IT states is crucial in proper reproduction of the IR branch ratios. However,
since I have achieved a good fit to the empirical energy levels, this problem is left

for a future study.

4.16 Application of the **S'°0 Line List

The 328160 line list, SOLIS, has been utilised in several astrophysical studies. Its
creation was the focus of my master’s project with Sergey Yurchenko and contin-
ued through the early years of my PhD. Since then, we have made SOLIS available
for various chemical modelling studies, where it has contributed to advancing our
understanding of sulfur chemistry in astrophysical environments. This section pro-
vides a brief overview of key applications of the line list, highlighting its scientific

impact.
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Figure 4.30: Visualisation of the different contributions to the forbidden X3X~ — b!X+
band intensities. 'Q’ refers to the magnetic dipole moment, where the green
spectra are due to magnetic dipole transitions, which is orders of magnitude
weaker than the intensity stealing mechanism.

4.16.1 The molecular Chemistry of Type Ibc Supernovae (Lilje-
gren, S. et al.1)

Liljegren, S. et al.! coupled a chemical kinetic network into the non local thermal
equilibrium (NLTE) spectral synthesis code SUMO to study the spectral evolution
of Type Ic SN in the 100-600 days time range. In this code, four species — CO,
S10, SiS, and SO — participate in NLTE cooling of the modeled stripped envelope
SNe gas to achieve self-consistency between the molecule formation and the tem-
perature. As a result, predicted molecular formation masses are computed over
the studied epochs and their effect on the temperature and optical spectra of these
stripped envelope SNe are studied. Some key results for 32S'60 in these environ-

ments include:

« 328150 formation in SNe ejecta: At ~ 350 days SO becomes abundant
where its fundamental band, blended with the SiO fundamental, contributes
significantly in the 7-10 um region. At these epochs, the SNe ejecta densities

can be contrained by the emerging 32>S!'0 emission — a promising epoch for



4.16. Application of the 3>S'°O Line List 211
the first SO detection in an SNe.

+ 328150 nucleosynthesis tracer: SO forms mainly in the O/Si/S zone of the

SNe ejecta, and holds a promising tracer species for neon burning.

« 328160 detectability: It is predicted that 2S00 should be detectable in the
mid-IR via the JWST/MIRI telescope.

4.16.2 Photochemistry in the Atmosphere of WASP-39b

The SOLIS line list for 32S'°0 has played a role in advancing our understanding
of exoplanet atmospheres, particularly in the study of WASP-39b. Two major stud-
ies utilised the line list to investigate the presence and photochemical role of SO
(mainly SO») in the atmosphere of this Saturn-mass exoplanet. These studies pro-
vide the first unambiguous detection of sulfur photochemistry in an exoplanetary
atmosphere, with implications for planetary chemistry, atmospheric metallically,

and exoplanet characterization.

4.16.2.1 Photochemically Produced SO, in WASP-39b (Tsai

et al. 148)

This study provides the first detection of SO, in an exoplanet atmosphere through
JWST transmission observations using NIRSpec PRISM (2.70) and G395H (4.50).
A strong spectral feature at 4.05 um is identified to be produced via SO;. This de-
tection was particularly interesting since the proposed source of SO, was explained
as a photochemical product of hydrogen sulfide (H,S) oxidation, rather than as an

equilibrium chemistry species. Key findings include:

* SO, as a tracer of metallically: The inferred SO, abundance suggested a
10x solar metallically atmosphere, making SO, a new indicator of bulk at-

mospheric composition.

* Photochemical pathways: The study demonstrated that UV-driven oxidation
of sulfur leads to SO, production, revealing the complexity of sulfur chem-

istry in hot exoplanetary environments.

* Predicted additional spectral features: The work suggested that SO and
SO, should also exhibit strong features in the ultraviolet and infrared, moti-

vating further observations.

The SO line list contributed to this study by providing accurate spectroscopic data
in transmission spectroscopy models (in addition to other molecular species) in con-

firmation of the presence of SO,.
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4.16.2.2 Sulfur Dioxide in the Mid-Infrared Spectrum of WASP-

39b (Powell et al.#%%)
Building upon the initial detection of SO, by Tsai et al.'*®, this study**® used
JWST/MIRI LRS observations to detect additional SO, absorption features at 7.7
um and 8.5 um, further confirming the role of photochemistry in WASP-39b’s at-

mosphere. Major results include:

* SO, spectral features in the mid-infrared: The study identified broad SO,
absorption bands, in agreement with photochemical model predictions.

* Consistency with prior detections: The retrieved SO, abundance (0.5-25
ppm) was consistent with previous near-infrared findings, reinforcing the pho-

tochemical origin of SO».

* Detection of SO: A weak feature at ~ 9 um was identified as a possible
SO signature with a 2.5 ¢ detection (as predicted by Liljegren, S. et al.! in
Section 4.16.1), though further observations are needed for confirmation. The
presence of stronger SO, features in this region mask SO, but the retrievals do
not rule out SO’s presence, which is consistent in the photochemical models

of sulfur bearing species in a UV-driven oxidation scheme.

The SOLIS opacities were included in the ARCIiS retrievals, where its weak-
to-moderate detection further supports the proposed photochemical production

schemes of SO, — improving constraints on WASP-39b’s atmospheric chemistry.

4.17 Summary

A semi-empirical SOLIS line list for 32S'60 is constructed starting from the refine-
ment of the ab initio spectroscopic model'® presented in Sections 4.2-4.10 to em-
pirically derived MARVEL energy levels. As part of the line list creation, a MAR-
VEL analysis of 29 experimental transition sources resulted in a self-consistent set
of 8558 rotation-vibration energy levels (/ < 69 and v < 3) for the X 3%, alA,
b1xt, A3T1, B3X~, C311 electronic states, where 48 972/50 106 experimental tran-
sitions were validated. The SOLIS SO line list now supplements existing ExoMol
line lists for SO, %7 and SO3*%.

The X 3X~ state expectation value of the dipole moment operator was fitted to
an analytical form and shown to improve the non-physical flattening of the vibra-
tional transition moment and NIDL compared to using the grid interpolated form of
the DMC. This resulted in the physical exponential decay of the X 3£~ — X3X~ IR

spectral band.
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Comparison of the simulated rovibronic spectrum of 32S'®0 to experi-
ment/HITRAN show good agreements in both positions and intensities. However,
inspection of the v = 0 — 0 of the forbidden »'X+ — X3X~ band revealed dis-
agreeing P- and R- branch ratios to experiment, where tuning of the spectroscopic
model showed no proper inversion of the branch intensities. Analysis of the elec-
tronic wavefunctions revealed that the band intensities are dominated by competing
diagonal X and » DMCs, which contribute to the parallel transition moment. The
weaker perpendicular transition moment was shown to produce intensities of the
desired P- and R- branch ratio, but was much weaker than the parallel transition
component to the intensities. Analysis on the basis set revealed the branch ratio
to be more sensitive when including a larger vibrational basis, but still does not
produce the desired branch ratio. I speculate that coupling to unresolved, highly
excited IT states should contribute to the desired branch ratios, which is left to a
future work.

The future work includes extension to the UV region with the B3YL <«
X 3X~and C3II+ X 3L ~electronic bands, and production of photodissociation cross
sections and rates.

The SOLIS line list has a wide range of applications, spanning environmental
chemistry to astrophysics. In atmospheric science, it facilitates the study of sulfur
monoxide (SO) and its role in processes such as acid rain formation and pollu-
tion. In astrophysics, SOLIS enables the investigation of SO across diverse en-
vironments, including interstellar clouds, planetary atmospheres, and supernovae.
It contributes to our understanding of planetary formation and evolution, the dy-
namics of star-forming regions, and the chemical composition of celestial bodies.
Additionally, SOLIS can be used in the study of SO’s photochemistry, its poten-
tial as a shock tracer, and its suitability for observational studies with telescopes
like the James Webb Space Telescope (JWST). Notably, SOLIS has been used in
detecting sulfur dioxide (SO,) in the exoplanet WASP-39b, marking the first unam-
biguous observation of UV-driven photochemistry in a hot exoplanetary atmosphere
Tsai et al. 43, Its mid-infrared fundamental band feature has also been identified in
WASP-39b by Powell et al. 47, and it has been recognized as an abundant molecular

species in the oxygen/silicon/sulfur neon-burning zones of supernova ejecta.



Chapter 5

Additional Research and

Contributions

The preceding chapters have detailed the primary research projects and major find-
ings of my doctoral studies. This chapter complements that work by documenting
additional research activities, collaborative projects, and preliminary results. While
not forming the core focus of the thesis, these endeavors represent significant con-
tributions and highlight potential avenues for future investigation. This chapter en-
compasses both collaborative efforts and independent explorations, including work
that has not yet reached full publication readiness, with the aim of providing a com-

plete overview of my research activities during my PhD.

5.1 Collisional Broadening of Molecular Rovibronic
UYV Lines

My initial PhD research trajectory focused on the effects of pressure broadening on
UV/visible spectral lines, a different direction from the nonadiabatic effects in di-
atomic molecules that ultimately formed the core of this thesis. A key early collab-
orative project, undertaken with visiting collaborator Jeanna Buldyreva — during her
six-month tenure with the ExoMol group at UCL — involved calculating high-level
ab initio interaction potentials for excited states of diatom-diatom and diatom-atom
collisions. These potentials were intended to be used, via phase-shift theory, to esti-
mate pressure broadening coefficients. This is the topic of this section, with a focus
on my contribution being the ab initio calculations (for more details see Buldyreva
et al.40%).

Our recent article*®

aims to meet the burning need for high-resolution
pressure-induced line-shape parameters in the UV/visible regions for hot-

temperature industrial and atmospheric applications as well as current and future
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space missions*!0#13_ In this article, phase-shift theory is examined in its histori-
cal context, tested, and revisited using accurate numerical potentials and advanced

trajectory models.

Within the mean-thermal-velocity approximation (MTVA), the phase-shift-

theory formulae for collisional linewidth y and shift & (in s™') are #1418
y:Nv/ (1 —cos (b)] bdb , 5.1)
0
5= Nv / sin 1) (b)bdb (5.2)
0

with N denoting the number of molecules per unit volume, v standing for the mean
thermal velocity and 1 (b) being the phase shift induced in the radiation by a colli-
sion of impact parameter b. The phase shift 17(b) represents an accumulation of the
frequency displacements A (in rad s™') at time ¢ through the trajectory:
~+oo
n(b) = Awdt (5.3)
and Aw itself is determined by the intermolecular interactions inversely proportional

to the n-th powers of the intermolecular distance r.

The theoretical approach developed by Hindmarsh and coauthors*'” suggested
a realistic treatment of Eq.(5.3) via a combination of both attractive and repulsive

forces in a Lennard-Jones 12-6 form

e ACY, _ AC&
)= [ |5 = s o9

where the parameters AC1, :ﬁACi2 and ACg = ﬁACg refer to the differences between
the Lennard-Jones intermolecular isotropic potential parameters for the final and

initial states of the transition considered.

The relatively straightforward formulae for linewidth/shift calculations above
rely on a simplified representation of the isotropic intermolecular interaction by a
12-6 Lennard-Jones form, which enables analytic integration for the phase shift
n(b) and converged numerical integrations over the collision parameter for the
linewidth y and shift 6. However, it was found that the Lennard-Jones parame-
ters to be extremely sensitive to the choice of the intermolecular-distance interval
and strongly influence the computed linewidth and shift. Therefore, in the frame of
the MTVA adopted for simplicity, a numerical integration was attempted on the ab

initio computed difference AV (r) = Vy(r) — V;(r) of the isotropic interaction poten-
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tials in the final ‘f” and initial ‘7’ electronic states of the active molecule to get the

phase-shift dependence on b (for straight line trajectories)

(5.5)

_g *  AV(r) .
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=~
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o

Figure 5.1: Collision geometry and Jacobi coordinates for NO perturbed by Ar and N».

5.1.1 Abinitio Calculations of Intermolecular Interaction Poten-
tials

The general considerations presented above are supported below by calculations for
some test systems. To choose them, the availability of experimental data up to high
temperatures (see Table 1 of Buldyreva et al.**”) and representativity of various

leading interactions was taken into account. NO and OH with the permanent dipole



5.1. Collisional Broadening of Molecular Rovibronic UV Lines 217

moments differing by an order of magnitude (0.158 D*?° and 1.668 D**!, respec-
tively) were chosen as active molecules whereas Ar and N, — a rare-gas atom and a
non-polar molecule with the quadrupole as its leading multipole — were taken as per-
turbers. With these combinations, the behaviour of the active molecule with weak
and strong dipoles and the role of dispersion/induction and electrostatic interactions
were probed.

Inter-molecular potential energy surfaces (PES) of the complexes NO-Ar,
NO-N,, OH-Ar and OH-N; were computed ab initio using the MOLPRO quan-
tum chemistry package'?® at the coupled-cluster level of theory CCSD(T):
RCCSD(T)/aug-cc-pV(X+d)z (spin-restricted) or UCCSD(T)/aug-cc-pV(X+d)z
(spin-unrestricted), where X=T,Q**2. Since CCSD(T) is a single reference the-
ory, the T1 diagnostic*?? for all ground and excited state calculations was checked
against both the 0.044 and 0.02 criteria (criteria %} and %3, herein) suggested

by Rienstra-Kiracofe et al.*** 423

and by Lee and Taylor™, respectively, where T1
values larger than this indicate the need for a multireference electron correlation
procedure. The corresponding inter-atomic distances were fixed at their equilib-
rium values, while the distance and orientation between the radiator (NO or OH)
and perturber were varied over sets of grid points in Jacobi coordinates: {r,0} for
collisions with Ar or {r, 6;,6,, ¢} for collisions with N, (see Fig. 5.1).

For collisions with Ar, the isotropic parts of the PESs corresponding to the
ground and excited electronic states were extracted with the use of expansions over

series of /™ rank Legendre polynomials P:
V(r,0) =} Vi(r)P(cos(8)) ,
l

where V; (r) are the radial potential terms with / = 0 giving the isotropic compo-
nent. For collisions with Ny, the approach of limiting geometries for homonuclear-

d425

heteronuclear diatoms (A,-BC) was use and the isotropic term was

V(r)= 1—18{4VH(r) + Vi, (1) + Vi, (r) +2[Vey (r) + Vi (r) +2(Vey (r) + Ve (0)]}

where the indices on the potentials in the right hand side indicate the contributing
geometries (see**> for more details). The isotropic parts were further fitted by 12-6
Lennard-Jones expressions (see Eq. 5.4).

I note here that within the phase-shift theory the accuracy of the final computed
broadening parameters is limited to not the quality of ab initio PESs but rather the

theory itself. Phase-shift theory is an approximate frame whereby semi-classical
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methods for modelling the collision processes are made, such as the notion of a
classical trajectory and the lack of rotation-vibration effects accounted for. Further-
more, I fit the isotropic interaction potential derived from my ab initio PESs to a
simple Lennard-Jones form, so any inaccuracies introduced by choice of quantum
chemistry theory will not effect the computed broadening parameters with any ap-
preciable magnitude since errors introduced by the Lennard-Jones approximation
will be greater. What phase-shift theory allows us to do is derive values for the
line broadening parameters for a general system of active molecule involved in an

electronic transition and perturber.

NO(X?M) — Ar NO(A%x+) — Ar
0 A 0
T 204 0
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Figure 5.2: Ab initio RCCSD(T)/aug-cc-pV(t+d)z computed interaction potentials for the
NO(X)-Ar and NO(A)-Ar complexes as a function of the NO-Ar separation r in
Figure 5.1. The interaction potentials are plotted for different scattering angles
0 (see also Figure 5.1) plotted in different colours.

5.1.1.1 NO-Ar

The interaction PESs of the NO-Ar complex were computed for the ground X >IT and
first excited A2X " electronic states of NO. The radiator was approximated by a rigid
rotor with equilibrium bond lengths r.(X) = 1.15077 A and r.(A) = 1.06434 A.
Due to the computational costs of the RCCSD(T)/aug-cc-pV(X+d)z level of theory
(X=T,Q), a grid of 62 intermolecular distances NO-Ar (2-15 A) and only 5 angles
(30, 60, 90, 120 and 150 degrees) between the inter-molecular distance vector and
the NO molecular axis equal to were considered, providing 310 points in total. The

ab initio computed interaction potentials are illustrated in Figure 5.2.



5.1. Collisional Broadening of Molecular Rovibronic UV Lines 219

The T1 diagnostic never exceeded values of 0.017 and 0.032 for the ground-
and excited-state calculations, respectively, both less than the 4] and %, criteria.
This confirms that the computed wavefunctions are described well by a single ref-

erence determinant and that there is minimal multireference character.

When introducing the Ar atom from non-linear geometries the X 2IT ground
state of NO is lowered in symmetry, creating a symmetric A’ and antisymmetric A”
state of the NO-Ar complex within the C; point group. This lowering in symmetry
means that NO(A 2X)-Ar is no longer the lowest A’ symmetry state. An advantage
of this system is that its weak interaction does not break the orthogonality of NO’s
molecular orbitals, meaning that one can converge a CCSD(T)/aug-cc-pV(X+d)z (X
= T,Q) calculation to the excited NO(A)—Ar state through rotation of the electron
orbitals centered on the active molecule. I rotated the outer electron orbital of NO
obtained via an initial restricted Hartree-Fock (RHF) calculation which was then
used in a second RHF calculation preceding the actual RCCSD(T) calculation. Test-
ing was done using a CASSCF+icMRCI (Complete Active Space Self-Consistent
Field**® + internally-contracted Multi-Reference Configuration Interaction*?”) ap-
proach and the aug-cc-pV(X+d)z (X=T,Q) basis sets, however strange results were
often obtained where multiple discontinuities are seen over the potential minimum,
especially within the excited-state PES. The RCCSD(T) calculations, however, pro-
duced more stable results with a lower dissociation energy, in accordance with the

values predicted by Holmes-Ross and Lawrance*?®, Tsuji et al.**°, Alexander***

and Sumiyoshi and Endo*3!.

51.1.2 NO-N,

Similar to the NO-Ar case, the ground- and first-excited-state PESs of the NO-
N, complex were calculated at the RCCSD(T)/cc-pV(Q+d)z level of theory using
MOLPRO 3%, The T1 diagnostic never exceeded 0.022 and 0.017, respectively,
both less than the 0.044 criterion*>* for all ground- and excited-state calculations,
confirming minimal multireference character. The ab initio computed interaction

potentials are illustrated in Figure 5.3.

Seven leading configurations of NO-N;, geometry were taken into account:
two linear L, three perpendicular T, a parallel H, and the X configurations. As
for NO-Ar, the near linear geometries of the excited state were the most difficult
to converge and the UCCSD(T)/aug-cc-pV(X+d)z (X =T, Q) level of theory was

found to help said convergence.
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Figure 5.3: Ab initio RCCSD(T)/aug-cc-pV(Q+d)z computed interaction potentials for the
NO(X)-N; and NO(A)-N, complexes as a function of the NO-N, separation r
in Figure 5.1. The interaction potentials are plotted for different scattering an-
gle configurations {6;,6,,¢} (see also Figure 5.1) plotted in different colours.
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Figure 5.4: Ab initio UCCSD(T)/aug-cc-pVQz computed interaction potentials for the
OH(X)-Ar and OH(A)-Ar complexes as a function of the OH-Ar separation
r in Figure 5.1. The interaction potentials are plotted for different scattering
angles 0 (see also Figure 5.1) plotted in different colours.
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5.1.1.3 OH-Ar
For all geometries of the OH(X)—Ar complex, the UCCSD(T)/aug-cc-pVQz

(ground electronic state) and MRCl/aug-cc-pV5z (excited electronic state) lev-
els of theory were used. The T1 diagnostic (both for the ground and electronic
states) on average gave 0.004 and only 9 points of which exceeded the 0.044 crite-
rion*** at a value of 0.075. For the first electronically excited state A>X T, electronic
orbitals were rotated as for NO-Ar. However, convergence to the correct energy was
not reached, which was checked by studying the difference in ground and excited
coupled cluster energies for the complex at a 15 A separation. A CASSCF+icMRCI
approach was then used to compute the excited state PES using the larger aug-cc-
pV5Z basis sets. The ab initio computed interaction potentials are illustrated in
Figure 5.4.

A grid of intermolecular distances corresponding to the range 2—15 A and the
angles between the intermolecular distance vector and the OH molecular axis equal
to 10-180 degrees in 10 degree steps provided 1275 points in total.

The ground and first excited electronic states of OH are the same as NO, when
introducing the Ar atom from non-linear geometries, the ground X 2IT state of OH
is seen to lift degeneracy and is energetically lowered, creating a symmetric A’ and

antisymmetric A” state of the OH-Ar complex within the C; point group.

5.1.2 Results: Pressure Broadening Parameters

To assess the reliability of phase-shift theory for representative molecular systems,
we selected NO and OH as active molecules, with Ar and N, as perturbers, chosen
for their distinct dipole moments and interaction types. These systems have also
been extensively studied experimentally across various temperatures.
Lennard-Jones parameters for linewidth and shift calculations were derived
from quantum chemistry calculations of the potential energy surfaces of ground
and excited electronic states, as detailed in Section 5.1.1. When the interaction
potential deviated significantly from the Lennard-Jones form, we prioritised the
repulsive-wall regions, which are dominant at high temperatures. For instance,
NO-Ar showed improved line-shape predictions with this approach. Generally,
linewidth and shift coefficients at 295 K and 2700/2800 K were underestimated
by about 30%, with a notable 44% underestimate for NO-N; at 2700 K. Prediction
accuracy was similar for NO perturbed by Ar and N,, while limited OH data pre-
vented definitive conclusions. Overall, phase-shift theory provided underestimated
values with uncertainties under 50%, making it suitable for order-of-magnitude es-

timates.
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To reduce sensitivity to the Lennard-Jones fit region, we also applied a numer-
ical representation of the potential difference AV for NO-Ar, with extrapolation for
small r values. While extrapolation type had little impact on linewidths, shifts were
severely underestimated. Thus, refining the potential alone within the traditional

phase-shift theory proved ineffective.

Next, we explored trajectory model improvements using mean-thermal-
velocity approximations. Parabolic and exact curved trajectories were tested for
NO-Ar and NO-N;. Results varied significantly, suggesting that further trajectory
refinements are necessary to match experimental data.

For detailed quantitative discussions on the derived pressure broadening line

shape parameters, please refer to Buldyreva et al. 4%,

5.2 A True Q Representation: Spin-Orbit Induced
Non-Adiabatic Effects

Similarly to the (a)diabatising transformation, the transformation to what we call the
Q—representation has been widely used>*%432433 to simplify the treatment of spin-
orbit coupling (SOC) in rovibronic calculations. SOC is a fundamental interaction
in molecular systems, especially for highly excited electronic states, giving rise to
the fine structure of rovibronic energy levels, reaction pathways between otherwise
non-interacting states **+%33 (e.g. interstate crossings between singlets and triplets),
and making dark states bright through the intensity stealing mechanism#36:437.13.341
(spin-orbit mixing). The transformation to the Q—representation, known as the

d432,433

state interacting metho , aims to remove the SOC by diagonalisation of the

Breit-Pauli SO-Hamiltonian together with the electronic Hamiltonian,
UG, (V+Hso) Ug = Vo, (5.6)

where Ug is the unitary diagonalising transformation to the Q2—representation, Hgo

is the Breit-Pauli spin-orbit Hamiltonian '>7:438:439.433

, yielding effective potentials
for each SO-component as the diagonal elements of V. It has become an estab-
lished method, where it is assumed that removal of the SOC decouples the molecular
system transforming it to a single state representation. Single state representations
are desirable not only because of their simplicity, but also because they can be read-
ily used in LeRoy’s LEVEL program“**, together with generated effective transition
dipole moments (synonymous with the intensity stealing mechanism for forbidden

bands, see Section 5.2.4.2), to compute transition intensities 340
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However, like the AtDT transformation, transforming to the Q2—representation
(“adiabatic”) introduces strong NAC terms and complex bond length dependence in
molecular properties, such as spin, which are otherwise constant in the A — S rep-
resentation (as in Eq.(2.33) and Section 2.3). Although many spectroscopic stud-
ies 440340441 appear to overlook the need to transform the vibrational and rotational
kinetic energy operators accordingly, the resulting non-adiabatic coupling terms and
bond-length dependence are not entirely unrecognised, particularly in the context of
ultracold physics**>~#44. Given my expertise in the full nonadiabatic treatment of
the rovibronic problem, and the widespread use of the state-interacting method for
generating single-state approximations to molecular spectroscopy, I found this rep-

resentation problem particularly compelling.

We are currently developing a numerical comparison of the conventional A —
S representation and the Q-representation, examining the challenges of using the
single-state approximation for molecular spectroscopy. This work is ongoing, and I
plan to submit our findings soon. Consequently, this section highlights the current
progress and initial results from this project, reflecting the significant time and effort

dedicated to its development.

5.2.1 Transformation to the (Q—representation

In this thesis, a ‘true’ Q—representation is built by transforming all terms of the
rovibronic molecular Hamiltonian in Eq.(2.9), where the impact of neglecting SOC-
induced NAC terms on the rovibronic solution are investigated. But first, a theoret-
ical framework for the Q-representation must be developed, where each term is
studied. For the remainder of this section I study the fully spin-orbit coupled rovi-
bronic Schrodinger equation, where all NAC terms arising from the decoupling of
electronic and nuclear motion are omitted for simplicity. One has, in the usual A—S§

basis
—
2 0

—ﬂﬁ—i—ﬁmﬁ—V(r)—f—ﬁso 21=Eix, (5.7)

I:Itotz =
where H,o is defined in Eq.(2.32) as the rotational Hamiltonian operator.

Transformation of the A — S basis in Eq.(2.33) to the Q representation after

diagonalisation of Eq.(5.6) results in the following

state,A,S,X) —  [state,Q) . (5.8)
—_——— —_————

A — S representation, |n) Q representation, |m)
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Where one now considers a Hund’s case (c) type basis where the total electronic
AM projection quantum number £ is approximately conserved. Since SOC cou-
ple states of the same Q, it is evident that the SO-Hamiltonian is diagonal in the
Q—basis. Currently, the electronic and SO Hamiltonian has been transformed, how-
ever each term of Eq.(5.7) requires transformation by Ug to maintain consistency
between the A — § and Q representations. Particularly, the unitary transformation
of the vibrational nuclear kinetic energy operator has been discussed extensively
in Chapter 2, particularly in Section 2.4 for the derivation of the AtDT condition
Eq.(2.49). Therefore, in matrix notation, the transformed Q2—representation of the

total molecular Hamiltonian reads

N w» [ d* , | d d "2 5
Hoo=— -5+ (Wa) — | —-Wq—-Wqo— —— UgR?U}
tot, Q 2“ (a’r2 +( Q) [dr Q er ) +Vq+ 2/,Lr2UQ UQ?

(5.9)

where Vg is defined in Eq.(5.6) and W, is a skew-symmetric matrix, analogous to
the NAC matrix, containing radial nuclear momentum couplings between states of
the same Q quantum number. Therefore, the spin-orbit induced NAC matrix Wy, is
related to the Q—transformation similarly to Eq.(2.48) via

duy,

Ug—= = Wo. (5.10)
dr

All that is left to study is the transformation of the rotational part to the
Q-—representation. This task is slightly more complicated due to the selection
rules arising in the different AM operator terms of Eq.(2.32), and so I will derive

the AM matrix elements for a simple example system in the following section.

state\A > Q
Iy 1To 0 0
3510 0 0
0 +1 441

Table 5.1: Possible components of electronic AM projection A ¥, and Q for 2~ and 'XF
electronic states.

5.2.2 Transforming the Rotational Hamiltonian: 33X -I1X+

Transition

This section serves not only as a theoretical exercise, but also for debugging pur-

poses in our implementation of the Q—representation in our nuclear motion code
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|3Z_307170> |12+707070> |3Z_70717_1> |3Z_a03171>
(°z~,0] o1 w12 0 0
('z*, 0 o) 02 0 0
Gz, 1] 0 0 1 0
G 1) 0 0 0 1

Table 5.2: Overlap integrals between the Q and A — S basis functions of a X~ and a !X F
state given by the rows and columns. @;; are elements of the diagonalising
Q—transformation Ug. Here I specify the ordering of states in increasing Q
quantum number, given by the ordering of rows and columns above.

Duo. I study the transformed matrix elements of the Rotational Hamiltonian of
Eq.(2.32) for the simple example of a two-state 3L ~—!Z* system. Table 5.1 shows
all possible values of electronic AM projections A X, and Q for this test system,
showing that only the Q = 0 component is coupled by SOC. I use the subscript no-
tation to denote the Q value, for example 326 corresponds to a state with A =0,
S =1, and Q = 0. Any basis vector with this notation means it is evaluated in the

Q —representation.

Transforming the matrix elements of a general operator P from the A — S to the

Q—representation can be done as follows

(state, Q| P |state”, Q") = Z [(state’, Q'[state;, A;, Si, X;) (statej, A j, Sj, T jstate”, Q")
L,j
X <statei,A,~,S,~,Zi\ P ]statej,Aj,Sj,Zj)] 69’;A;+Zi59”;/\j+2j7
(5.11)

where only the non-rotational part of the rovibronic basis set Eq.(2.33) is consid-
ered, i and j denote counting indices over all quantum numbers A,S,X and the
‘state’ label (or equivalently, matrix element indices of the A — § basis), and the
Kronecker delta’s indicate that the Q—transformation couples only states of the
same  quantum number. The wavefunction overlaps will then contain combi-
nations of the Q—transformation matrix elements, computed on each point of the
bond length grid. Therefore, additional bond-length dependence is introduced into
the transformed matrix elements, such as molecular AM properties like spin which
is constant in the A — § representation.

§2

The matrix elements of the S? spin angular momentum operator in the A — S repre-

sentation are
(S,2|8?S,2) = S(S+ 172, (5.12)
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and so the selection rules couple states of same spin S and its projection X. The

non-vanishing Q—representation matrix elements are then given by

CZy[S*PEy) =200 2
("2 |8°]'5)) = 205, 12
('2§1871PEy) = 20m 011 2 = (25| S?|'EF)
(5.13)

where ;;(r) are the matrix elements of the diagonalising Q—transformation and

are related to the overlap integrals given in Table 5.2.

.

The matrix elements of the S, spin angular momentum operator in the A — S repre-
sentation are
(S,2|S,|S,X) =Xh, (5.14)

and so the selection rules couple states of same spin § and its projection X. The

non-vanishing Q2—representation matrix elements are then given by

<3Z:1|S2 ’32:0 =N
Cxf |82 PLy) =i
(5.15)

A

St

The matrix elements of the S- spin angular momentum operator in the A — S repre-

sentation are

($,2+1]S+]S,X) = [S(S+1)—X(E+1)]2 A, (5.16)

and so the selection rules couple states same spin S and its projection differing by
I quantum (AY = 41). The non-vanishing Q—representation matrix elements are

then given by
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Ceg|S_PED) = o V212
("S5I8 [PIy) = w1 V272
(18- Prg) = o1 V2R
(18- 1'Ey) = on V2R
(25184 PE2,) = o V2R
('E518+PE2,) = on V2R
Cer1S: PEy) = o V212
CEIISHI'Ey) = o V2R2

(5.17)

A

Ly

The matrix elements of the L. orbital angular momentum operator in the A — S

representation are
(L,A+ 1| Ly LAY = (LLAE 1Ly LAY £ i(L,A+ 1]Ly |L,A) (5.18)

and so the selection rules couple states of same electronic orbital angular momenta
L (states with the same dissociation limit) and its projection differing by one quanta
AA = +1 . For a 32~ —! £+ transition all elements of the electronic orbital AM
ladder operator are zero since A = 0 in both states. To transform L. one can simply

transform the L, matrix via Ug transformation.

5.2.3 Transformation of the electric Dipole Moment

The light intensity seen from a molecular transition is due to interaction with the
dipole moment in the laboratory frame. However, since one solves nuclear motion
in the molecule-fixed frame, the molecule-fixed coordinates of the dipole moment
must be transformed to the lab-frame. It can be shown %7 that the electric dipole

moment is calculated as

(state, A, S, X| (state, v| (J,Q, M| ug, |state’, A", S, ') |state’ V') |J', Q" M')

= Y (—1)*(state,v| (state, A| i, |state’, A") [state’, ")
1=0,+1

x (S,%|S, ) (J,Q,M|D", . |J,Q M), (5.19)
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where R, is the lab-fixed spherical tensor coordinate which is related to the

molecular-fixed spherical coordinates r; by the rotation matrix D! 4, Via

A—tnl
R,= ) (-D*'D., r. (5.20)
1=0,+1
Therefore, U, represents the usual transition dipole moment operator in the
molecule-fixed frame, where its electronic elements are computed in quantum
chemistry programs such as MOLPRO 3¢, Next, the transition dipole moment above

is transformed to the Q—representation, using the transformation of the form given
by Eq.(5.11), yielding

(state, Q| (state, v| (J, 2, M| ug, |state’, Q') [state’,v') [J/, Q' M')
= Z(—1)’1_’<state,Q]statei,Ai,S,-,Zi><statej,Aj,Sj,Zj|state’,Q’>
1,0,j

X (state, v| (state;, A| Uy, |statej, A ;) |state’, ')
X 5S,‘,Sj 521‘,2]‘59,[\,'+Z,‘59/,Aj+2j
o J J 1 J 7 1
x (=DM =127 +1)2J +1))/? ,
Corener e (T LY
(5.21)

where the elements of the rotation matrix D' 41—, are given explicitly in terms of
the Wigner 3-j symbols in the last line. The transition dipole moment in the
Q—representation is then slightly more complicated since the summation is not only
over spatial degrees of freedom, but also in the A — § states with matrix element in-
dices given by i and j. Summing over the i, j indices (the resolution of the identity in

the A — S basis) then yields the transition dipole moments in the Q—representation

(state, Q| uy, |state’, Q') = Z(state,Q|state,-,A,-,S,-,Z,-><statej,Aj,Sj,Zj|state/,Q’)
i,j

x (state;, A| Ur, [state;, Aj) 8o A+x,00/ A, 1x;- (5:22)

Therefore, for a 3~ —! ¥ transition the Q—representation transition dipole ele-

ments read

GCr7,0/uy, P27,0) = 0 P27, A=0|uy, P27, A=0)
+oh ('ZF A=0/u, |'ST,A=0), (5.23)
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G, =1y, P27, 1) = (27, A=0|uy, ’X7,A=0), (5.24)

Crm 1w, P27, 1) = C27,A=0|uy, PZ7,A=0), (5.25)

<12+70‘ Hr, |12+a0> = (0221 <3277A = 0| i, ’3277/\ =0)
+ 0% (', A= 0|, |'EF,A=0), (5.26)

(X7,0/ur, I'=F,0) = @100 P, A= 0|, PL7,A=0)
+opon ('SHA=0/p, |'ST,A=0). (5.27)

Itis evident in Eq.(5.27) that a transition dipole moment arises between the two spin
multiplets in the Q—representation, where transitions between states such as 3~
and 'TF are spin-forbidden in the A — S representation meaning no direct transition
dipole moment (TDM) exists. Spin-orbit coupling (SOC) introduces spin-orbit mix-
ing that leads to the dipole forbidden transition intensity. This works by mixing the
two states wavefunctions where, subsequently, components of the diagonal dipole
moments are effectively “borrowed”, enabling transitions that would otherwise be

forbidden — the intensity-stealing mechanism.

Conveniently, in the Q-representation forbidden transitions become directly al-
lowed due to SO-induced mixing, with new selection rules being AQ =0, +1. These
are classified as parallel or perpendicular transitions based on the orientation of the
transition dipole moment relative to the internuclear axis**. For the perpendicular
transition, this is made possible through further interaction with, for example, a in

state 172,

5.2.4 Spectroscopic Model of a >°x~ —! LT System

x I now present an example artificial two-state electronic system coupled by SOC,

where the rovibronic solution will be studied in both the A — S and Q representation.

I model two bound potential energy curves that intersect near their minima
to ensure that the Q-transformation significantly impacts low-lying bound states,
thereby highlighting the consequences of omitting DDR terms in subsequent anal-
yses. I assign the two states as a triplet-singlet system with term symbols X3%~

and b'XT, where transitions between them are dipole/spin-forbidden. The A — S
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\ Vx Vi Wix
T, 0.0000  2000.0000
A, | 42056.0000 27000.0000
Te 1.2100 1.2400
b 1.9000 2.3000
e 1.4529
y 0.0100

Table 5.3: Molecular parameters for the two-state model.

potentials were modeled using simple Morse oscillator functions of the form
V(r) =To+ (Ae = To)[1 —exp(=b(r —re)))?, (5.28)

where V(r,) = T, is the minimum energy, A, is the dissociation asymptote, b is a
parameter controlling the width of the well, and r, is the minimum position. Using
the methodology presented by Brady et al.?® (see also Section 2.5.1), the SOC is
modeled like their diabatic coupling (DC), where combination of two potentials and
a NAC define the SOC (DC) via

$0ux(r) = 3 tan (2Byx(r)) (Vi ~ Vi), 5:29)

where Bpx (r) is the mixing angle of the Q-transformation, defined by the corre-

sponding SO-induced NAC W,x by the cumulative integral.

-
B(r)=po+ /0 Wa pxdr. (5.30)
I model the SO-induced NAC W,x with a Lorentzian function of the form

v

1
T

, (5.31)

where 7 is the half-width at half-maximum (HWHM) and r, defines the centroid
position which is set to the crossing geometry of the Vx and V}, (A — ) potentials.
The mixing angle By, is then

T 1 r—re
Bpx (r) = 1 + Earctan ( ; ) ) (5.32)

The parameters for the potential and NAC curves for this two-state coupled system

are given in Table 5.3.
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Figure 5.5 illustrates the Q and A — S curves for the spectroscopic model de-
fined here, where the DBOC-like diagonal corrections to the Q-potentials have been
added and are seen to create huge spike-like barriers. It is therefore expected these
SO-induced NAC terms will be important in the final rovibronic solution. The
Q potentials are computed via the eigenvalues of the resulting diagonalisation in
Eq.(5.6). The three SO-components of the X3~ state are seen as solid lines in the
top left panel of Figure 5.5, where the degenerate X, | terms are seen to not interact
with the b state, following the SO-selection rules, but an avoided crossing is exhib-
ited between the by and X, Q-states with a NAC centered at the avoided crossing.

|Q) representation A, S) representation
40000
- 14000 A
£ 12000 A Vv
g 30000 A X
< 10000 A
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2 20000 - Vb
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£ 2000 1
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Figure 5.5: Illustration of the potentials (top panels) and associated couplings (bottom pan-
els) of the two-state coupled system in the Q-representation (left panels) and
A — § representation (right panels). The DBOC-like corrections have been
added to the Q potentials, and are computed from multiplying the kinetic en-

ergy factor € = #ﬂc by the diagonal elements of the W2 matrix in Eq.(2.17).

5.2.4.1 The Rovibronic Solution

With the spectroscopic model defined in Section 5.2.4, the rovibronic basis, either

in the A — S or Q representation (see section 5.2.1), is used to construct the fully
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coupled rovibronic Hamiltonian. The Hamiltonian is then diagonalised to yield
a set of rovibronic energies and wavefunctions. A full non-adiabatic module has
been implemented in our rovibronic code Duo to incorporate the NACs arising from
the transformation of the vibrational nuclear kinetic energy. All functionality of
Duo, previously implemented exclusively in the A — S representation, has now been
extended to operate in the Q representation, where all terms of the Hamiltonian are

transformed.

The lowest twenty J = 0 energy levels are calculated for the presented two-state
system to demonstrate the equivalence between the A — S and € representations,
as well as the impact of omitting induced NAC terms on the rovibronic solutions.
These energies are computed with high accuracy to avoid limitations stemming from
basis set convergence issues. Since the vibronic wavefunctions are optimised for
the respective potentials, differences between the two representations are naturally

expected.

To evaluate the impact of NAC terms, rovibronic energies are computed under
three levels of approximation: (A) omitting all NAC terms (Wq = 0, (WQ)2 =0);
(B) omitting only the DBOC-like correction term ((WQ)2 = 0); and (C) omitting
spin-orbit coupling (SOC) in the A — S representation. The results are summarised
in Table 5.4. The Q representation, when including all NAC terms, produces identi-
cal energies to the fully coupled A — S representation, confirming their equivalence
as expected. However, omission of any NAC terms introduces significant errors,

with maximal deviations on the order of 10% cm™!.

For high-resolution applica-
tions, NAC terms must be included, as they are crucial for maintaining equivalence
between the A — S and Q representations. Brady et al.>® show that omission of any
NAC terms also leads to drastic differences seen in the computed rovibronic wave-
functions, therefore since I have demonstrated this in the energies it can be assumed

the wavefunctions will also be significantly effected.

Interestingly, omitting SOC in the A — S representation results in much smaller
errors than in the Q representation, with maximum differences below 10 cm~ L,
Therefore, transformation to the Q representation should be treated with caution, as
omitting induced NAC terms is not a reliable approximation. The Duo program now
supports testing various approximations in non-adiabatic effects, providing a robust
tool for quantitatively studying the impact of these approximations on rovibronic

energy calculations.
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Table 5.4: The lowest 25 J = 0 rovibronic energies of the presented two-state system com-
puted within the A —§ and Q representations using Duo. Varying degrees of
approximations are used and described in the text.

n Q representation A — S representation
E E(A) EB) State v E E(C) State v
1 0 0 0 X 0 0 0 X 0
2 968.345455  968.354306  968.304973 Xy 1 968.345455  968.485302 X 1
3 1924.867208 1925.231078 1924.429095 X, 2 1924.867208 1925.554298 X 2
4 1966.978286 1966.596190 1966.928886 by 0 1966.978286  1964.514372 b 0
5 2859.629394 2864.714731 2857.087255  bo 1 2859.629394  2862.363719 b 1
6 2875.718441 2870.521034 2872.441660 X, 3 2875.718441 2871.206988 X 3
7 3743.883880 3746.544245 3724.749937 by 2 3743.883880 3743.483993 b 2
8 3806.823099 3803.674870 3770.379262 X, 4 3806.823099 3805.443372 X 4
9 4608.585135 4613.974883 4461.643064 by 3 4608.585135 4607.875192 b 3
10 4729.337869 4722.247604 4550.730178  Xp 5 4729.337869 4728.263448 X 5
11 5456.318936 5473.798714 5106.378331 by 4 5456.318936  5455.537318 b 4
12 5640.676959 5618.439714 5300.498571  Xj 6 5640.676959  5639.667218 X 6
13 6287.255096 6338.303861 5976.212596 X, 7 6287.255096  6286.470370 b 5
14 6540.670439 6477.847087 6238.527487 by 5 6540.670439  6539.654681 X 7
15 7101.433679 7214262671 6971.996148 X, 8 7101.433679  7100.674348 b 6
16 7429.278037 7295.604841 7280.802461 by 6 7429.278037 7428225842 X 8
17 7898.869553 8091.348144 7867.479901 X, 9 7898.869553  7898.149252 b 7
18  8306.484602 8092.493363 8276.551687 by 7 8306.484602 8305.380717 X 9
19 8679.569862 8870.870473 8521.679569 X, 10 8679.569862 8678.895083 b 8
20 9172.282642 8960.013008 9041.823978 by 8 9172.282642 9171.119361 X 10

5.2.4.2 Spin-Orbit Mixing: Visualising the Intensity Stealing Mech-

anism

Spin-orbit coupling (SOC) introduces spin-orbit mixing that leads to dipole forbid-
den transition intensity. In the A-S representation, transitions between states such
as XX~ and b'X* are spin-forbidden, meaning no direct transition dipole moment
(TDM) exists between them. However, SOC mixes the wavefunctions of these states
where components of the diagonal dipole moments are effectively “borrowed”, en-
abling transitions that would otherwise be forbidden — the intensity-stealing mech-

anism.

Conveniently, in the Q-representation forbidden transitions become directly
allowed due to SO-induced mixing, with new selection rules being AQ = 0,=£1.
These are classified as parallel or perpendicular transitions based on the orientation
of the transition dipole moment relative to the internuclear axis**>. The TDMs in
this representation can be derived by applying the unitary Q—transformation to the

dipole moment matrix in Section 5.2.3.

Figure 5.6 illustrates the dipole moment curves in both representations. Inter-
estingly, the effective by — Xo dipole (with subscripts being the Q value) exhibits a
Lorentzian-like character in regions of strong SOC-induced non-adiabatic coupling

(NAC). In this region, the molecular wavefunctions are nearly equal superpositions
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of the A-S states, allowing the emergence of transition dipole moments. Outside
these regions, the states behave analogously to the A-S representation, where tran-
sitions are dipole spin-forbidden and thus TDMs vanish. Diagonal dipole moments
show an avoided crossing in regions of strong SOC, reminiscent of adiabatic prop-

erty behavior during avoided crossings between states of identical symmetry.

0.5 A
A
\ n
FAN {(Xo|Hz|bo)
0.0 -
()
>
o)
)
a
£ —0.5 -
()
£
O
=
v _ 4
> 1.0
o
a
—-1.5 4

1.0 1.5 2.0 2.5 3.0
Bond Length, A

Figure 5.6: Dipole moment curves in the A-S and Q representations. The effective by — Xp
dipole moment reveals SOC-driven intensity-stealing, while diagonal dipoles
illustrate avoided crossings as in the adiabatic representation of the electronic
Hamiltonian.

5.2.4.3 Transformation of the Rotational Hamiltonian

Transformation of the rotational kinetic energy Hamiltonian (see Section 5.2.2) is
necessary to maintain consistency between the A —S and  representations. A
key example is the spin operator, S. In the A-S representation, S eigenvalues are
constants, since spin is treated as a conserved quantum number. However, the Q-
representation introduces a bond-length dependence to spin properties. Figure 5.7
illustrates the spin evolution as a function of bond length. At short internuclear
distances, where NAC is weak, the b state is predominantly singlet and the X state

is predominantly triplet, consistent with the A-S description. As the bond length
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Figure 5.7: Illustrations of the spin eigenvalues as a function of bond length in the Q-
representation. SOC-induced mixing swaps spin multiplicities between the b
and X states, highlighting the emergence of a transition dipole moment. The
correpsonding constant spins in the A — S representation are also shown.

increases, SOC-driven mixing (or NAC) leads to state spin multiplicities swapping

over the avoided crossing.

This spin evolution explains the emergence of transition dipole moments in
regions of strong mixing, where both b and X states exhibit significant singlet-
triplet contributions, satisfying spin selection rules. While the Q-representation
provides insight into spin-orbit mixing and the generation of transition dipole mo-
ments, it introduces complexity into the spectroscopic model. Properties such as
spin and angular momentum acquire a nuclear geometry dependence, resulting in
complex topologies for important quantities like the dipole moment. Accurately
treating the true Q-representation requires careful treatment, as small changes in
the avoided crossing topology of the SO-component potentials can significantly al-
ter spin curves and dipole moments (if one was to remain consistent). By contrast,
the A-S representation simplifies modeling, requiring only the treatment of poten-
tials and SOC terms. Constant spin properties can then be hard-programmed and

require no treatment beyond their initial computation, making it a more practical
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choice for applications demanding accuracy and consistency.

5.2.5 Conclusions

A ‘true’ Q—representation is presented, whereby all terms of the rovibronic molec-
ular Hamiltonian are transformed with the diagonalisation of the spin-orbit and po-
tential matrix. In this representation, spin-orbit couplings vanish, however strong
non-adiabatic couplings ensue and a bond length dependence is introduced into
molecular properties such as spin which are constant in the A — S representation.

I show that omitting spin-orbit-induced NAC terms (common in many stud-
ies) introduces significant errors in computed rovibronic energies and that they are
crucial for the equivalence between the £ and A — S representations. Thus, for high-
resolution applications, all NAC terms must be included, or their omission should
be rigorously tested using tools like the Duo program.

The bond-length dependence of molecular properties, such as spin, introduces
complex topologies in the Q—representation. While spin-orbit mixing can provide
insights, such as understanding forbidden band intensities through effective tran-
sition dipole moments, treating these effects (fitting analytical forms, integrating
property curves, etc.) is computationally challenging. Refining QQ—representation
potentials for spectroscopic models requires careful adjustment of molecular prop-
erties such as spin and dipole moments to maintain consistency. This is difficult
even for a two-state model and becomes impractical for larger systems.

I conclude that the Q—representation, while often perceived as simpler, can
be more complex and challenging to implement accurately. It is highly sensitive to
the topology of property curves and often less practical than the spin-orbit coupled
A — § representation. An exact decoupling scheme is not rigorously achievable,
where simplification of one part of the Hamiltonian leads to the complication of

another.

5.3 An Ab initio study on Potassium Hydride

Alkali hydride molecules have long been a subject of interest in both experimental

and theoretical chemistry #46-434

. Despite their seemingly simple diatomic structure
(MH, where M represents an alkali metal), these compounds present significant
challenges. These challenges arise from a combination of factors: strong electron
correlation effects (particularly core-valence interactions); the ionic character of
the ground state (M™+H™) which dissociates into neutral atomic fragments (M +
H), leading to avoided crossings between electronic states; and the large-amplitude,

highly anharmonic nuclear motion resulting from the light hydrogen atom. For
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heavier alkali metals like potassium, relativistic effects also become important.
These factors combine to make accurate ab initio calculations computationally de-
manding and complicate experimental investigations due to the molecules’ high

reactivity and complex spectra.

The ionic-to-neutral transition during dissociation necessitates a charge-
transfer process, manifesting as an avoided crossing, making a diabatic representa-
tion particularly insightful. Previous studies on LiH***#3¢_ for example, highlight
the benefits of the diabatic approach for understanding non-Born-Oppenheimer

457-459 460,460—462’ and

effects, such as collision-induced transitions , vibronic shifts
vibronic non-radiative lifetimes#*0!:*%2, Furthermore, the diabatic framework can be
used to improve the accuracy of ab initio calculations by mitigating the difficulties
associated with accurately computing the electron affinity of hydrogen due to basis
set limitations, a significant source of error in determining ground-state binding en-

ergies of alkali hydrides*>*

. For these reasons, KH could be a benchmark molecule
for theoretical chemistry, where proven advantages of the diabatic representation
for LiH motivates extension to KH.

While KH has been studied theoretically#>!-463:430:447.463-468 3 experimen-

tally 469-473

, a comprehensive spectroscopic line list, crucial for its potential astro-
physical detection, is currently lacking. To the best of our knowledge, existing ab
initio calculations focus primarily on potential energy curves and dipole moments,
without fully addressing all relevant couplings (e.g. spin-orbit, electronic angular
momentum). This work presents a full spectroscopic model for KH, addressing this
gap. It is speculated that potassium containing molecules should contribute to the
absorption in astrophysical plasmas“’#, but the astrophysical detection of KH — the
simplest potassium molecule — has yet to been done. The KH line list will then be

important for its potential future detection.

This section details the ab initio electronic structure calculations for the KH di-
atomic, where I obtain PECs for the lowest lying singlet and triplet states and their
SOCs, EAMCs, and TDMCs. My aim is to provide an accurate and thorough ab ini-
tio spectroscopic model to be used in subsequent refinement to a future MARVEL
network of rovibronic energy levels. I also aim to produce a strong theoretical base-
line for the study of NACs for the ionic molecule, where a diabatic representation

is discussed above to be potentially insightful for the resulting nuclear motion.

While this research was completed as part of my doctoral work, time limita-
tions prevented its publication. The results are now ready for manuscript prepara-

tion, and I plan to submit them for publication in the near future.
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Figure 5.8: Illustration of the ab initio calculated adiabatic PECs of the energetcially low-
est 7 singlet and triplet states of KH (top panel). The bottom panel plots the
CASSCF computed NACs in the '2* manifold as dashed lines and their fitted
analytical forms to Eq.(5.33) — which show excellent agreement.

5.3.1 Calculation Details

Internally-contracted multi-reference configuration interaction (icMRCI) ab initio
calculations for the lowest 7 singlet and triplet electronic states of KH correlating
to the K(4s)-+H, K(4p)+H, and ionic K"+H™ dissociation limits were performed
using MolPro'% with aug-cc-pVQZ-X2C basis sets, using molecular orbitals ob-
tained from state-averaged complete active space self-consistent field (CASSCF)
calculations. Under C,, point group symmetry, all ab initio calculations were done
using the occupied orbital space (8,3,3,0) across the Al, B1, B2 and A2 irreducible
representations, respectively, with corresponding core orbitals (5,1,1,0).

Potential Energy Curves: The potential energy curves (PECs) for the elec-
tronic states X'XF, (2)'2+, (3)!'ZF, (1)32H, (2)°2Z+, (1)'11, and (1)3IT were com-
puted and are shown in Figure 5.8. Except for the (1)3Z* and (2)3Z+ states, which
are clearly unbound, the remaining five states are bound. However, the (1)'TT and
(1)1 states exhibit very shallow potential wells. Notably, the potentials extend

significantly at large bond lengths. An avoided crossing structure is observed in the
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Figure 5.9: [llustration of my ab initio SOCs coupling the states of KH considered here.
SO, denotes the cartesian x -component of the SO operator, coupling states of
different symmetry, while SO, denotes the z-component which couples states
of the same symmetry.

¥+ manifold, where the ground state appears ionic. The diabatic counterpart of this
state extends toward the ionic limit in the (3)'X* state. These avoided crossings are
indicative of a charge-transfer process, leading to the progression from ionic to neu-
tral character in X' X%, contributing to the wide extension of these potentials. Addi-
tionally, three non-adiabatic couplings (NACs) between the [X'ZF, (2)!2+,(3)12%]
system were computed at the CASSCF level of theory using the DDR procedure
(see Section 2.2.2), as illustrated in the bottom panel of Figure 5.8.

Spin-Orbit: Figure 5.9 illustrates all non-zero computed spin-orbit couplings
between the electronic states of interest. Only one diagonal SO, term is present, and
couples the (1)3IT state. It is clear that the SOCs appear to be simple functions of
bond length, and correlate to different asymptotes corresponding to the spin-orbit
interaction in the atomic fragments. The spin-orbit interactions are weak for KH,
and so minimal splitting of the total angular momentum £ states is expected.

Electronic Angular Momentum (EAM): Figure 5.10 illustrates the computed
cartesian x-component of the (non-diagonal) EAM couplings between all electronic
states of interest. Some coupling curves are seen to show strange ungulations in
their topology, consistent with the adiabatic character of properties in the vicinity

of avoided crossings. Again, the EAM couplings correlate to different asymptotes
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Figure 5.10: Illustration of my ab initio EAMCs coupling the states of KH considered here.
L, denotes the x-component of the electronic angular momentum operator,
which couples states of different symmetry.

corresponding to the EAM of the atomic fragments.

Dipole Moment Couplings (DMCs): Figure 5.11 illustrates the computed
DMCs between all electronic states of interest. The top panel shows the diagonal
z-component of the dipole oeprator coupling states of the same symmetry (A and S),
and the bottom panel plots the off-diagonal x-component of the DM operator cou-
pling states of different symmetry. One striking feature is the ((3)'Z%|u,|(3)'Z*)
DMC, which becomes linear in bond length, consistent with the ionic nature of
the (3)!X* state in this region. Generally, the DMCs appear to be strong, which
could be lent to the ionic nature of the KH electronic structure, where any non-zero

asymptotes corresponds to strong atomic transitions in the potassium atom.

5.3.2 A Flexible Functional Form for NACs

From Eq.(3.14) in Chapter 3, the three computed NACs of KH in Figure 5.8 (dashed
lines) were fitted (solid lines) using a linear combination of a Lorentzian and a
Gaussian distribution of equal width 7, peak position r(y, and amplitude N, giving a

pseudo-Voigt profile>4*! via

f(r)=mL(r;ro,y,N)+ (1 —m)G(r;ro,7,N) +ZL(r; r0.i, YisNi), (5.33)
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Figure 5.11: Illustration of my ab initio (T)DMCs coupling the states of KH considered
here. u, denotes the cartesian x-component of the dipole operator, coupling
states of different symmetry, while u, denotes the z-component which couples
states of the same symmetry. It is clear that the (3)'Z* state is ionic due to its
linear DMC with bond length (top pane, light blue).
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where L is the Lorentzian function given by

N Y

L(r;ro,7,N) =2 r—r)

(5.34)

and G 1s the Gaussian distribution given by

2
G(r;r0,7,N) = %exp (—m(z) (r_y”’) > . (5.35)

The fraction of Lorentzian and Gaussian character contributing to f(r) of Eq.(5.33)
is controlled by the constant parameter m. For m = 1, f(r) reduces to a pure
Lorentzian, and for m = 0 a pure Gaussian. The summation of Lorentzian func-
tions in Eq.(5.33) are used to model additional (perturbative) sharp peaks which are
typically seen to be of lower magnitude to the rest of the profile. The width pa-
rameter Y is then modeled to vary sigmoidally to introduce skewness into the final

profile?40-24! yia

2%

—_ 5.36
(1 4 ea(r—ro)) ’ ( )

Y(r;,a,70) =
where 7y is a reference width and a is a skewness parameter when equal to zero
ensures Y = .

This functional form fits the ab initio NACs extremely well with a root
mean square error for the A/B coupling to be RMS(X'Z*, (2)'x*) = 0.0008 A1,
RMS(X'z+,(3)'2+)=0.0001 A~!, and RMS((2)'*, (3)!2*)=0.0008 A~!. Sim-
ilar fitting accuracy was also seen for the N, and CH cases in Chapter 3, in-
dicating there may be physics in the skewed profile. It would be interesting to
study the expected functional dependence of the NAC on the nuclear coordinate, r,
where one could attempt to represent the electronic wavefunctions in a simple basis
(such as GTO), and derive the corresponding NAC computed using the finite differ-
ence/density overlap schemes within the CASSCEF theory level. My initial insights
would be that the skewness is due to coupling to other electronic states, i.e. an effect
not captured in a two-state approximation, and the reference width 7y should depend
on the adiabatic separation (or DC) and the gradient of the diabatic potentials at the

avoided crossing (as seen for the two-state YO and CH systems in Chapter 3).



Chapter 6

Conclusions

This thesis focuses on improving diatomic molecular line list production, essential
for high-resolution spectroscopy, by enhancing the underlying spectroscopic mod-
els used in the variational nuclear motion code Duo. Specifically, it addresses the
increasing importance of non-adiabatic effects, particularly in the UV region. The
following sections summarise the major contributions and results from each chapter

of this thesis, and conclude on potential future works.

6.1 Summary

Chapter 2 presents a reformulation of existing diabatisation theory for systematic
benchmarking of non-adiabatic effects within the Duo rovibronic code. While the
underlying physics of non-adiabatic (radial) electron-nuclear coupling and its in-

clusion in nuclear motion are well-established 123:49-48.41.475

, this thesis provides a
novel, consolidated framework within a rovibronic context, establishing the theoret-
ical foundation for subsequent analysis of the adiabatic to diabatic transformation
— the AtDT. Specifically, this work integrates: (1) the Hermitian formulation of
the non-adiabatic coupling terms within the vibronic Schrodinger equation; (2) a
complete description of the non-adiabatic nuclear kinetic energy Hamiltonian using
only the first derivative term (NAC); (3) an examination of the condition for a strict
AtDT, comparing to other similar conditions to highlight solution difficulties; (4)
solutions for the AtDT in two-, three-, and N-state cases, with discussions on the
theory and practical applications for constructing contracted vibronic basis sets for
nuclear motion; and (5) quantitative and qualitative comparisons of different AtDT
solution methods.

The primary result of Chapter 2 is the development of a novel regularisa-
tion (and diabatisation) method, hybrid-asymptotic-property-based diabatisation

(HyAP), for NACs. To construct spectroscopic models with advantageous con-
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vergence properties, accurate descriptions of relevant spectroscopy, and simpli-
fied property curves for analytical and numerical treatment, this method leverages
asymptotic conditions on the AtDT and NACs inspired by two-state property based
diabatisation approaches. Both the mathematical framework and algorithmic im-
plementation of the HyAP method, with detailed discussions on its motivation, are
presented and benchmarked.

Chapter 3 implements the diabatisation methodologies developed in Chapter 2
within Duo for real molecular systems. A key achievement of this thesis is the es-
tablishment of Duo as a unique and powerful tool for benchmarking non-adiabatic
effects in rovibronic calculations. By demonstrating, for the first time, numerical
rovibronic equivalence between adiabatic and diabatic representations across both
two-state and N-state systems — defined as the exact reproduction of rovibronic en-
ergies and wavefunctions — this work validates Duo as a robust platform for quan-
titatively assessing the impact of different non-adiabatic coupling terms (equiva-
lently, DDR terms). This equivalence is demonstrated across a range of systems,
including two-state YO and CH, the three-state N, the four-state CH, and an ar-
tificial 10-state model. Through this, a comprehensive benchmarking of various
NAC terms, including off-diagonal and diagonal (DBOCs) contributions, as well as
diabatic couplings (DCs), is conducted, revealing their critical role in achieving nu-
merical consistency. Our findings emphasise the impact of all DDR terms, including
the diagonal DDR couplings, often omitted, on spectral accuracy and highlight the
limitations of two-state approximations, underscoring the necessity of rigorous val-
idation when truncating adiabatic states for spectroscopic modelling. This novel
application of Duo represents a significant contribution, offering a reliable method
for evaluating non-adiabatic effects in molecular systems.

Despite the exactness of the computed AtDT through evolution methods, is-
sues such as asymptotic misbehavior, topological non-smoothness of diabatic prop-
erties, and non-coincidence of imposed ideal AtDT boundary conditions were ob-
served, stemming from improper NACs input to the solver. These inconsistencies,
often obscured in the adiabatic representation but evident upon diabatisation, can
arise from factors like differing theory levels in ab initio calculations, convergence
errors, post-processing adjustments, or truncation of the Born-Oppenheimer state
manifold. My pragmatic goal was to create a smooth diabatic representation suit-
able for controlling bound rovibronic molecular spectroscopy through efficient con-
tracted rovibronic bases. To achieve this, I developed (in Chapter 2) the HyAP reg-
ularisation approach that optimises switching functions connecting AtDT solutions

evolving from different boundary conditions. This connection yields a regularising
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correction to the NACs, ensuring an AtDT that evolves between desired boundary
conditions while establishing a smooth diabatic representation. The HyAP method
minimises artificiality in the regularised NACs by leveraging underlying electronic
structure data to guide the correction, combining the accuracy of direct diabatisa-
tion with the practicality of property-based approaches. HyAP is applied to N,
CH, and a 10-state model, and was shown to successfully produce smooth diabatic
representations with sensible asymptotic behavior while subsequently maintaining
exact equivalence to the adiabatic framework. The HyAP method’s validity was
demonstrated by comparing rovibronic energy levels of the N, system with and
without NAC regularisation. The resulting energy level differences were consistent
with expected ab initio errors. Furthermore, the regularising corrections were sig-
nificantly smaller than the substantial NAC terms for both N, and CH, confirming
the method’s robustness and reliability. In essence, the Hy AP method provides a ro-
bust framework for constructing diabatic spectroscopic models for the modeling of
diatomic rovibronic spectra, effectively mitigating challenges associated with NAC
inconsistencies and ensuring the generation of physically meaningful and computa-
tionally efficient diabatic representations.

Beyond demonstrating equivalency, our work highlights system-dependent ad-
vantages between adiabatic or diabatic representations, emphasising the impor-
tance of considering NACs in model selection. The methodologies and bench-
marks established in Chapter 3 lay a foundation for extending these concepts to
polyatomic molecules, where full derivative coupling removal is not always feasi-
ble. Ultimately, this research reinforces the necessity of meticulous consideration
of non-adiabatic coupling terms and basis truncations in high-resolution molecular
spectroscopy, positioning Duo as a reliable tool for future diabatisation and non-
adiabatic effect investigations.

Chapter 4 describes the development of a semi-empirical line list for the
328160 radical. The project began with the calculation of an extensive ab initio
spectroscopic model 3 for the 13 lowest-energy singlet and triplet electronic states
of SO (X327, alA, b'S*, 127, A3A, A735F, AP, B32, C°T, d'1, €11,
C'31, (3)'II). These calculations included potential energy curves (PECs), spin-
orbit curves (SOCs), electronic angular momentum curves (EAMCs), and electric
(transition) dipole moment curves ((T)DMCs), all performed at the MRCI level of
theory using aug-cc-pV5Z basis sets. The computed ab initio curves are adiabatic,
as they were obtained under the Born-Oppenheimer approximation?. Consequently,
states with the same symmetry, such as e I, (S)IH and C3T1, C' 311, exhibit avoided

crossings due to non-adiabatic interactions. These effects, which play a crucial role
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in the computed spectroscopy, are discussed in Chapters 2 and 3. To address these
non-adiabatic interactions, I derived a set of NAC terms for these two-state pairs
using a property-based diabatisation procedure. Notably, this study marks the first
time during my PhD that I explored the use of both diabatic and adiabatic curves in
rovibronic calculations — an investigation that initiated my journey into the study of
diatomic non-adiabatic interactions.

Following the development of an ab initio spectroscopic model for 32S'°0,
Chapter 4 presents the most comprehensive compilation of experimental transi-
tion data and self-consistent empirical rovibrational energy levels for 32S!60 to
date. These energy levels were derived using the MARVEL (Measured-Active-
Rotational-Vibrational-Energy-Levels) spectroscopic network algorithm 59373,
Subsequently, I refined our initial ab initio spectroscopic model'® to compute
rovibronic energies that best reproduce these empirically determined energy levels,
ultimately producing an accurate semi-empirical line list, SOLIS, for 32S'°0 as
part of the ExoMol project’3~4.

The SOLIS line list supplements existing spectroscopic line lists for SO,

which are currently limited in spectroscopic coverage. For instance, the CDMS 346

and NIST?*/ databases provide only microwave spectral data, while HITRAN3*®
includes transitions between the XX, a!A, and b!XZ 1 electronic states but only
for relatively low vibrational excitations. A detailed comparison of the SOLIS line
list with existing spectral data is provided in Section 4.14.5.

As discussed in Chapter 4, the SOLIS line list serves a broad range of appli-
cations, extending from astrophysics to environmental chemistry. In atmospheric
research, it provides valuable data for examining sulfur monoxide and its involve-
ment in processes like acid rain formation and pollution. In the field of astrophysics,
SOLIS supports the exploration of SO across various environments, including in-
terstellar clouds, planetary atmospheres, and supernovae. Particularly, the 328160
line list can be used to further our understanding of planetary evolution, atmospheric
chemistry, and star-forming regions. Moreover, SOLIS proves useful in studying
the photochemical behaviour of SO, its potential as a tracer of shock regions, and its
observability using instruments such as the James Webb Space Telescope (JWST).
Notably, the line list has contributed to the detection of sulfur dioxide (SO») in the
atmosphere of the exoplanet WASP-39b, marking a major milestone as the first clear
observation of UV-driven sulfur photochemistry in a hot exoplanet atmosphere '43.
Additionally, the mid-infrared fundamental band feature of SO was identified in
WASP-39b 47, and it has been recognised as a prominent molecular species in the

oxygen/silicon/sulfur neon-burning zones within supernova ejecta’.
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Chapter 5 presents additional research undertaken during my doctoral studies,
complementing the primary projects discussed in previous chapters. These efforts
include investigations into phase-shift theory for UV spectral line pressure broaden-
ing, the development of an exact Q-representation for rovibronic calculations, and

a comprehensive ab initio study of the KH alkali hydride diatomic.

To assess the reliability of phase-shift theory, NO and OH were studied with
Ar and N, as perturbers, where their interaction potentials were computed using
coupled cluster methods with MOLPRO. While the theory systematically under-
estimated linewidth and shift values, it remained suitable for order-of-magnitude
estimates. Refining the interaction potentials within the framework proved insuf-
ficient, highlighting the need for methodological improvements beyond traditional

phase-shift theory.

Chapter 5 also details a significant theoretical advancement, which was the
implementation of a ‘true’ Q-representation for rovibronic calculations. By diag-
onalising the spin-orbit and electronic Hamiltonian, this approach eliminated the
spin-orbit couplings but introduced strong non-adiabatic couplings into the nuclear
kinetic energy and complex bond-length-dependent properties. My study demon-
strated that neglecting spin-orbit-induced NAC terms significantly worsens rovi-
bronic energy predictions more so than simply omitting spin-orbit couplings in the
conventional A — § representation for the studied toy model. Maintaining a self-
consistent Q-representation model is particularly challenging due to the introduced
complex bond-length dependence of molecular properties like spin, which must

align with the associated NACs and potentials.

Additionally, a detailed ab initio study of the KH alkali hydride molecule was
conducted to (1) address the data gap in the ExoMol database by producing a rovi-
bronic line list, and (2) explore the non-adiabatic charge-transfer dynamics in its
electronic ground state, particularly the ionic-to-neutral transition. High-level ab
initio calculations, including potential energy curves, spin-orbit couplings, transi-
tion dipole moments, and NACs for the lowest seven singlet and triplet states, were
performed using ic-MRCI theory with aug-cc-pVQZ-X2C basis sets in MOLPRO.
This spectroscopic model provides a strong foundation for future refinements and
the development of a KH line list, which will support its potential astrophysical
detection and enhance our understanding of potassium-containing molecules in as-

trophysical environments.
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6.2 Future Work

With the successful implementation of non-adiabatic effects and a diabatic module
within the Duo diatomic rovibronic code, extension to polyatomic systems, which
are expected to be important*’6478 would be a natural avenue for future research.
Polyatomic non-adiabatic interactions are much more complex due to the increased
number of nuclear degrees of freedom, where cross derivative terms prevent all non-
adiabatic couplings from being removed exactly — yielding quasi-diabatic represen-
tations 84089479 - Specifically, the longitudinal NAC term is removable, whereas
the transverse NAC term is non-removable in general, but can be minimised*”. Di-
atomic systems are simple in the sense that the AtDT, with definition of the NACs
and a boundary condition, is unique. Polyatomics, on the other hand, have infinitely
many integration paths to choose in solution of the AtDT, which for evolution meth-
ods typically gives rise to path ordered integrals*®, meaning the AtDT is not unique.
The next problem is finding a suitable platform to test rovibronic equivalence in the
adiabatic and quasi-diabatic representations. My colleague Armando Perri, and his
collaborator Alexander Mitrushchenkov, are currently exploring diabatic and adia-
batic modules in the EVEREST*® triatomic rovibronic program — an ideal plat-
form for the testing of triatomic adiabatic and diabatic rovibronic equivalence in
the near future. I would be interested in exploring new diabatisation methodolgies
in the construction of physical, sensible, and rovibronically advantageous diabatic
representations (e.g. in the construction of contracted basis sets) for polyatomic

systems — similar to HyAP.

Chapter 4 focused on refining a spectroscopic model for SO in the IR/Vis re-
gion by fitting to the XX, a'A, b'X*, and A>TI energy levels only. While this
approach yielded accurate rovibronic calculations for these states, the SOLIS line
list is largely incomplete, particularly in the UV region. This is because of the
exclusion of the C3II, B3X~, d 1, and ¢TI states, which introduced complexi-
ties in maintaining an accurate spectroscopic model in this region, such as strong
couplings and resonances, particularly between the B>~ ~ and C7IT states. These
states also exhibited complex adiabatic topology due to avoided crossing with other
electronic states. Future work should prioritise extending the SO model to incorpo-
rate these UV states. The application of the developed diabatic methodologies in
this thesis to fit the UV line list would significantly enhance the model’s accuracy
and predictive power in this region, which is crucial for astrophysical applications.
Furthermore, the inclusion of UV states, in particular diabatically dissociative C'"*IT

and (3) I states, would enable the computation of photodissociation cross sections,



6.2. Future Work 249

a critical data source for understanding the photochemical processes in astrophys-
ical environments?3>#81=483 " The UV spectral region of sulfur bearing molecules
is of particular importance in astrophysics, where photodissociation plays a key

role in the chemical evolution of interstellar clouds*3+-48¢

and more recently in
planetary atmospheres with the first unambiguous detection of (UV) photochemi-
cally driven sulfur chemistry of sulfur bearing molecules in an exoplanetary atmo-
sphere 148147 Therefore, a comprehensive model describing both the IR/Vis and
UV regions would provide a more complete and accurate description of the SO
spectroscopy, offering valuable insights for astrophysical studies.

Section 5.2 of Chapter 5 details the theory and implementation of a true Q-
representation within the Duo rovibronic code. This work is currently unpublished
due to ongoing challenges in demonstrating exact equivalence between intensities
computed in the Q- and A — S-representations. While rovibronic energies and radial
reduced densities are precisely reproduced, and external transformations confirm
the accuracy of DMCs in the Q-representation, I believe convergence issues are
the primary source of discrepancy. The Q-representation demands an exceptionally
large number of grid points (~ 2000 — 3000) and contracted vibronic basis functions
(~ 1000). Furthermore, numerical noise in the integration of near-discontinuous
property curves may lead to non-exponential decaying vibronic transition moments
(premature flattening), similar to observations in the X 3L~ state of SO in Chap-
ter 4. I am actively debugging these issues, aiming to establish exact rovibronic
equivalence in energies, wavefunctions, and intensities between the Q- and A — §-
representations. This is particularly important as the Q-representation is often used
in the single-state approximation within the widely used LEVEL program“%* for

computing forbidden band intensities340:432:433

, and I wish to quantify the errors
introduced by this commonly employed approximation.

For future work, extending the Q-representation to diagonalise all quantities
independent of the rotational quantum J, such as spin-orbit couplings (SOCs), elec-
tronic angular momentum couplings, spin angular momentum, e.t.c., would be in-
teresting. This could potentially allow for a more simplified model, where non-
adiabatic couplings and transformed PECs would completely define the vibronic
spectroscopy. However, as I now have experience with the Q-representation, this
new representation is not guaranteed to be advantageous or simple. Regardless, it
would be a novel and interesting project for a future work.

Section 5.3 of Chapter 5 details the calculation of an ab initio spectroscopic
model for the potassium hydride molecule. An important future work would be

to collect and critically evaluate experimental transition frequency data with the
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MARVEL algorithm to produce a set of empirically determined energy levels and
uncertainties. From this, the ab initio KH spectroscopic model can be fitted to re-
produce the MARVEL energies, similarly to the SO line list generation in Chapter
4. This would allow for the accurate prediction of the KH spectrum, where a full
KH line list may be crucial for the first astrophysical detection of KH.

Finally, the diabatisation methodologies, in determination of an AtDT, pre-
sented throughout this thesis are currently implemented in an external JULIA pro-
gram, DIABATOM-PRO. The results from DIABATOM-PRO are then fed into
the Duo code to compute adiabatic and diabatic rovibronic solutions. However,
Duo can currently model adiabatic PECs by definition of a set of diabats and DCs,
for the N-state case, or two PECs and a NAC for a two-state system. Current efforts
to try and reformulate the AtDT condition of Eq.(2.49) in terms of a linear alge-
bra problem, whereby coefficients of some basis are found to solve the differential
equation would allow a potentially numerically efficient method to perform N-state
diabatisations on-the-fly within the Duo program. So far, I have identified that such
a DVR method exists for solving this first order differential matrix equation, where

efficiency considerations are currently being tested.



Appendix A

Technical Programmatic and
Theoretical Details on N-state

Diabatisation

A.1 Matrix Exponentiation

A.1.1 The 3-State Problem

The problem of matrix exponentiation, required for the exponential line-integral
propagator method of solving Eq. (2.49), is now addressed for the specific case of a
3-state system. The AtDT for a 3-state system resembles a 3D rotation matrix, and

has some useful properties I wish to exploit.

For three-dimensional systems, Euler angles are often less convenient due to
their non-unique parameterisation and their susceptibility to Gimbal lock (where
a degree of freedom is lost when two of the three rotation axes align). Instead, an
angle-axis representation can provide a more straightforward solution, which can be
derived using the Rodrigues rotation formula*®7-438 . This formula offers a closed-
form solution that is a quadratic polynomial in the generator matrix B (see Eq.(2.51)

for a 2-state example)

sin(@) 1 —cos(a)

U=eP =1+ B (A1)

B+

where the generator B € s0(N) is a 3 x 3 skew-symmetric matrix and is discussed in
Appendix B, « is the global angle of the rotation and is computed from the Frobe-

nius norm of the upper triangle elements of B (or equivalently from its eigenvalue)
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(A.2)

Eq.(A.1) provides an analytical way to find the exponential mapping of B which
removes numerical error in its computation and reduces computational time during
the evolution of U. Rodriguez formular is a generalisation of Eulers equation for

2 x 2 matrix exponentials as the simple rotation matrix in Eq.(2.54).

Rodrigues formular also provides a convenient way to find the generator from

the non-exponentiated matrix U. I present the relations for completeness here:

(04
P= eV~ U, &-3)

where the global angle o can be computed from the trace of U as follows

w) ) (A.4)

Tr(U) =142cos(ot) — o = arccos ( 5

A.1.2 The N-State Problem

The treatment is now generalised to systems of dimension N > 3, where a closed
form of the matrix exponential is not necessarily available. Numerical methods are
then used to compute the exponential mapping of the skew-symmetric matrices f8
in an efficient and generalisable manner. One powerful approach uses the spec-
tral decomposition, which generalises Euler’s formula for rotations and extends the
Rodrigues formula (Eq.(A.1)) to higher dimensions. I will summarise the spectral
decomposition method here since it yields intuitive results, for more details please
see the book by Higham %

To compute the matrix exponential of a skew-symmetric matrix B, consider its
spectral decomposition
B=TAT", (A.5)

where T is a unitary and A is a diagonal matrix with elements being either zero (for
odd dimensional matrices) or imaginary eigenvalue pairs +iA;. Exponentiation is
then simple since the exponential of A remains diagonal and simply exponentiates
the diagonal elements. However, while this decomposition yields a simple method

to computing the exponential, it does not yield an obvious geometric interpretation.

Instead, I use the Schur decompositi0n489, which gives a block-diagonal form
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when considering the spectrum of skew-symmetric matrices
B=TQT", (A.6)

where T is again unitary and Q is block diagonal given by

0 A4 0 0
A 0 0 0

o=| 0 0o o0 A ---[, (A7)
0 0 -4 O

where A, is the it unique eigenvalue multiplied by the imaginary number. Then, the

exponential of B is related to the exponential of Q by

cos 11 sin 11 0 0
—sin 11 cos 11 0 0
B =TT =T 0 0 cosdy sindy --- | TT (A.8)
0 0 —sin ;12 cos 12

which can be derived by analysis of the odd and even powers of the Taylor expan-
sion of exp(Q@). The exponential exp(Q) matrix then has the geometric interpreta-
tion of representing a set of independent plane rotations by a rotation given by the

eigenvalues of .

A.2 A (Nearly Monte-Carlo) Method of determining
the Nuclear Geometry Grid

This section details a physics-driven approach for selecting a suitable nuclear geom-
etry grid for the AtDT evolution. The impact of grid choice on the AtDT accuracy

will now be discussed, where the following aspects are found to be important:

* Density in Strong Coupling Regions: A fine grid spacing of ~ 107> A is
required where non-adiabatic interactions are strong. For N; (Section 3.6.1),
this ensures residual kinetic energy matrix norms below 108 cm~!, yielding
comparable adiabatic and diabatic rovibronic energies. However, this metric

is system-dependent and should be tested (e.g., with Duo, Section 2.3.1).
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* Trajectory Considerations: Sensible evolution into strongly coupled re-
gions can impact the resulting diabatisation. NACs are modeled with func-
tional forms vanishing at |r| — oo, requiring a large configuration space
(r € [~1000,1000] A). While negative bond lengths lack physical meaning,
they facilitate a smooth transition into the physical region, preventing discon-
tinuities in short-bond regions. Although these regions are not spectroscop-
ically important, they affect how the AtDT evolution unfolds into the spec-
troscopically relevant regions. A cleanly initialized evolution is desirable,
akin to two-state system treatments, where the mixing angle is determined by
integrating the NAC function from —eo. This highlights the inherent approxi-
mation in choosing NAC functional forms, though this is not an issue for most

practical applications.

* Grid Efficiency: A uniformly dense grid across a wide range is inefficient.
To enable on-the-fly diabatisation and interactive spectroscopic modelling, a
non-uniform grid is required — sparse in outer regions and denser where NACs

are strongest.

* Transition Profile: The rate at which the grid transitions from sparse to dense
impacts AtDT accuracy. Optimising both accuracy and efficiency (minimis-
ing points) is non-trivial. While an adaptive grid was tested to dynamically

optimise solution accuracy, it proved inefficient for my use cases.

With the above points in mind, I now turn to inverse transform sampling**° which is
a Monte Carlo method (MCM)*°! for generating random samples from any proba-
bility distribution function (PDF) given its cumulative distribution function (CDF).
The PDF is defined as the probability density of the continuous variable x given by

p(x), and the CDF is then defined as the integral of the PDF via

Clx) = /_ xoop(x')dx'. (A.9)

MCM inverse transform sampling works by generating a random number Y € [0, 1],

then inverting the CDF to map Y to the independent variable of the PDF, x, i.e.
x=CHY). (A.10)

Figure A.1 visualises the MCM inverse transform sampling method by chosing the
PDF, (x) to be a Gaussian distribution. This then allows the generation of a grid

sample, X, that is distributed according to the PDF of the studied system, and is ideal
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for efficiently generating non-uniformly spaced geometry grids for the evolution of
the AtDT in Eq.(2.67).
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Figure A.1: Illustration of inverse transform sampling, where the left panel plots the PDF
p(x) and the right panel the CDF C(x) computed via Eq.(A.9). A value Y is
chosen to sample the CDF and is inverted to yield the corresponding indepen-
dent variable x = C~'(Y). Repeated inverse transform sampling of the CDF
will then yield a set of x values which are distributed according to the PDF,
and are visualised by the teal dots above the PDF. The denser regions cor-
responds to a high frequency of points being sampled where the probability
density is highest, and reduces for regions further from the PDF peak.

To use this MCM inverse transform sampling method, one requires computa-
tion of the CDF, which needs definition of a PDF. In the case of generating a nuclear
geometry grid to perform the AtDT evolution Eq.(2.67) on, the NAC matrix wb
contains important information about the interaction strength as a function of the
bond length — defining the propagator. Multiple options are available to construct a
PDF from W), two examples being the eigenvalues of WU or the Frobenius norm
of W) via Eq.(2.83). The eigenvalues will contain information about the instan-
taneous axis of diabatisation and the angle of rotation, where for 3-state systems
the Frobenius norm is equivalent to the positive eigenvalue of W), However, for
N—state systems, multiple unique eigenvalues are realised, making definition of a
single PDF ambiguous. Instead, the Frobenius norm of w is proposed to yield a
metric for the NAC strength of a given system. This norm can then be considered a

PDF since NACs are assumed to be bounded functions of the nuclear geometry (see
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discussion in Section 2.7), and the norm is then a positive bounded function. The

following form of the PDF is then used
p(r) = [[W|a, (A.11)

where the operator || -||a is the Frobenius norm of the upper triangle given by
Eq.(2.83), r is the nuclear geometery (bond length), and its integration then yields
the following CDF

C(r) = /_w (WD [a(F)dr, (A.12)

which can be normalised to the interval [0, 1]. From the above CDF, inverse trans-
form sampling can be employed to yield a set of grid points r. Instead of randomly
sampling the above CDF as in Monte-Carlo methods, I instead sample with a grid of
n equally spaced points between 0 and 1, and invert them through Eq.(A.10). Now
the only meta-parameter that requires definition is simply the number of points,
where the non-linearity of the grid structure is constructed through the proposed

sampling scheme.

Figure A.2 illustrates a set of three model NACs corresponding to the NACs
coupling the 3-state N> !X+ manifold discussed in Section 3.6.1 and the associated
PDF and CDF computed via Eqns.(A.11,A.12). The PDF is a double peaked distri-
bution corresponding to the strong NACs Wl(zl) and W2(31 ), where the computed CDF
has a structure which reflects this. As a consequence, it should be expected that
the nuclear geometries computed via the inverse transform sampling of this CDF
to cluster around the peaks of the bimodal distribution. Figure A.3 visualises the
resulting nuclear geometry grid where indeed the grid becomes very dense at the
region of strong NAC with a separation of ~ 107® A, and becomes sparse for ex-
tended geometries — the ideal behaviour of a non-linear geometry grid for evolution
of the AtDT. An AtDT is then computed via a forward evolution using the three
N> NACs in Figure A.2 via Eq.(2.67). The corresponding residual diabatised ki-
netic energy matrix is computed. Figure A.4 plots the convergence of the maximal
residual kinetic energy Frobenius norm with the number of points used to construct
the nuclear configuration grid via inverse transform sampling. It is observed that
at ~ 5 x 10* points the accuracy of the evolution solution has converged to a max-
imal norm of ~ 5 x 10712 cm™!. It is interesting to see that only ~ 7500 points
is required to yield a maximal error of 108 cm™! whereas my manual efforts re-
quired 53000 points. Thus, the inverse transform sampling method is an efficient

and physics driven procedure to compute a non-linear grid to be used in the com-
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Figure A.2: Illustration of an example 3-state system NAC elements (taken from the N
system discussed in Section 3.6.1), where the corresponding Frobenius norm
of this NAC matrix is computed via Eq.(2.83) and is plotted on the right panel
in black. The corresponding CDF is computed via integration of the PDF via
Eq.(A.12) and is plotted in red (right panel).
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Figure A.3: Illustration of the computed nuclear geometry grid via the inverse transform
sampling method applied to the CDF in Figure A.2, where grid spacing is plot-
ted as a function of the grid position. In the region of strong NAC interaction
the grid is dense, and exhibits structure reflecting the strength of w,
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putation of the AtDT via the evolution method, which requires no optimisation and

only the definition of the number of points.
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Figure A.4: Convergence of the maximal error as a function of the number of points used to
generate a nuclear geometry grid via the inverse transform sampling method.
The error is identified as the maximal Frobenius norm of the residual kinetic
enerrgy matrix after diabatisation (see Eqns.(2.72,2.73)) of the 3-state N; sys-
tem in Figure A.2.



Appendix B

Generator Representation of The
AtDT

This appendix summarises the mathematical framework behind what this thesis
refers to as the ‘generator representation of the AtDT’ and why this approach is
desirable. Specifically, this thesis is concerned with Lie groups in the context of
rotation matrices (the AtDT) and the corresponding Lie algebras, which serve as
their generators. A Lie group is a smooth, differentiable N-dimensional manifold.
Although the elements of a Lie group do not necessarily form a vector space, its
associated Lie algebra defines a tangent space that is a (flat) vector space of dimen-
sion N(N —1)/2. As a result, the Lie algebra is generally simpler to analyse than
the corresponding Lie group (rotation matrices) and captures most of the group’s
properties, thus motivating the use of this representation in my analysis.

I do not claim that the following sections are new mathematical developments,
I try to briefly detail aspects relating to Lie theory in the context of rotations and
NACs. For more details please refer to the excellent books of Stillwell*°2, Ross-

man*?3, and Gilmore*%*.

B.1 The Special-Orthogonal Group

The AtDT can be considered a (unitary) rotation matrix which rotates the adiabatic
frame to the diabatic frame, an object which belongs to the special orthogonal group
of dimension N, SO(N).! Rotation matrices are orthogonal matrices since they
satisfy the following relation

R'R=1, (B.1)

"Here 1 continue the derivations with the set of orthogonal matrices, but in general this thesis
typically refers to the AtDT as being unitary. This does not change the conclusions, however, and
should be noted.
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which has the property of preserving vector norms upon action on a vector space

RY. For example, consider the length, /, of a vector ¥ € RY in Euclidean-N space

‘—/»T

V=12, (B.2)
rotating this vector by action of R yields the following scalar product
W RT- Ry =7 Iv =12 (B.3)

showing that the orthogonal matrices R are norm preserving, and thus represent
proper rotations. Now, noting that the determinant of products equals the product

of determinants, one yields
det(RTR) = det(R)? = det(I) = 1, (B.4)
and therefore the determinant of orthogonal matrices is then
det(R) = £1. (B.5)

Ignoring the case when the determinant is —1, which represent reflections, the or-
thogonal matrix is said to be special when its determinant is +1, representing rota-
tions. Therefore, considering only rotations, the AtDT can be considered to belong
to the SO(N) group.

It can briefly be confirmed that SO(N) forms a group with the operation being
matrix multiplication. Firstly, matrix multiplication is associative and therefore the
group is closed since the product of two rotation matrices is a rotation matrix. Sec-
ondly, the SO(N) group contains the identity element I. Lastly, since each element

R € SO(N) has a non-zero determinant, its inverse exists — as the transpose.

B.2 Generators of Rotation

I now turn the discussion towards the so-called generator of the rotation R € SO(N).

Consider the following exponential map of some matrix K

R =¢" (B.6)
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In order for this to coincide with a rotation, i.e. R € SO(N), then kK must posess

certain properties. Recalling the orthogonality condition

T

RTR = () ¥ = X =1. (B.7)

If k and its transpose commutes, then the product of exponentials can be simplified
as an exponentiated summation

T

RTR=¢" =L (B.8)

In order for the above exponential to equal the identity, it is required K to be an

antisymmetric matrix, i.e.
'+x=0 — «l=—«x (B.9)

It can be quickly checked whether a skew-symmetric matrix and its transpose com-
mute
(k" k] ="k —kk" = —Kk*+ x> =0, (B.10)

supporting the step from Eq.(B.7) to Eq.(B.8) where commutativity was assumed.
Therefore, exp(k) is orthogonal. Finally, it is required to show that exp(k) has de-
terminant 41, making it special. Recalling the general definition of the determinant

det(A) = [ 4 (B.11)

i

where A; are the eigenvalues of A. Recalling the trace invariance to similarity trans-

formations, considering the diagonalising transformation P,
Tr(PAP™') =Tr(P~'PA) = Tr(IA) = Tr(A) = Y A, (B.12)
i
for any square matrix A, where the cyclic nature of the trace has been used and also
Tr(PAP™') =Tr(D) =) 4, (B.13)
i

where D is the diagonalised form of A. Considering the trace of the exponential

matrix,
Tr(e) = e = kit = T eM, (B.14)
i
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where A; are the eigenvalues of k. However, exp(ii) are the eigenvalues of the
exponential matrix exp(k). Comparison with Eq.(B.11) reveals that the following
relation holds

det(R) = "), (B.15)

Finally, knowing that k is skew-symmetric, its trace is zero, the determinant of the

exponential matrix is indeed 1 via
det(R) = det(e®) =’ =1, (B.16)

thus proving that SO(N) Lie groups are connected to skew-symmetric matrices by
the exponential map.

The (real) skew-symmetric matrix K has its diagonal elements equaling zero,
and its off-diagonal elements coming in =+ pairs giving rise to skew-symmetry.
Therefore, for an N x N rotation matrix R with N? elements, the corresponding
skew-symmetric matrix k has N(N — 1)/2 unique elements. One sees how the ex-
ponential mapping nicely transforms the rotation to a representation with fewer pa-
rameters, simplifying the problem. In fact, a subset of skew-symmetric matrices
S, can be defined which represent infinitesimal rotations about the u" axis and has

elements given by

+1, even index permutations
(Su)i ;= €uij =4 —1, oddindex permutations (B.17)

0, otherwise

where g;; is the Levi-Civita symbol. The skew-symmetric matrix in Eq.(B.6) can

then be represented by the following linear combination
K(r) =Y au(r)Sy, (B.18)
u

where a, are in general scalar functions, in the case of the diatomic AtDT, of in-
ternuclear separation r. The skew-symmetric matrices Sy, have a special meaning,
they are the infinitesimal generators of the rotation R, and form a vector space. It
can be quickly proved that S, forms a vector space since the addition operation and
scalar product between any S, matrix is also skew-symmetric. Thus, S, consti-

tute the basis for a (flat) vector space 2. For example, in the N = 2 case, only one

2This is a powerful property of the skew-symmetric matrices, and allows linear combinations of
skew-symmetric matrices in generation of a new AtDT in the HyAP method (see section 2.6.1) since
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skew-symmetric matrix exists, that is

0 1
— . B.1
S3 (_1 0) (B.19)

In the N = 3 case, there are N(N — 1) /2 = 3 generator elements as follows,

0 10 00 —1 0 0 0
Ss=|-1 00|, S5=(o00 o], Ss=[0 0o 1]. (B20
0 00 1 0 0 0 -1 0

K then represents the generator matrix of a finite rotation, a linear combination of

the generator basis Sy;.

B.3 Lie Algebras

The previous section (B.2) showed that the generator of a rotation is a skew-
symmetric matrix, which, when exponentiated, yields the rotation matrix. It was
also seen that generators form a vector space. It can be shown that this vector space
is in fact the tangent space to SO(N) by considering Eqns.(2.49,2.48,2.43) which
have the form

G:Z—I: = RQ(r), (B.21)
where R € SO(N) is a rotation matrix parametrically dependent on some parameter
r, and € is a skew-symmetric matrix. Evaluating the above equation at the identity

R(I’ = I’o) =1
dR(r())
dr
Thus, at the identity, the tangent space of SO(N) corresponds to all possible N x

— Q(r). (B22)

N skew-symmetric matrices €(ry). Another way of showing this is in the Taylor

expansion of the rotation matrix near the identity

dR(ro)
dr

R~I+ (r—ro)+ 0%  |r—ro| <1, (B.23)

and the exponential series
X~ I+Kk+0(k?). (B.24)

Direct comparison shows the skew-symmetric matrix K represents the tangent of R

at the identity. Therefore, the entire set of N x N skew-symmetric matrices form

addition algebra is allowed.
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the tangent space of SO(N) — this is exactly the Lie algebra so(N) of the Lie group
SO(N). The tangent space therefore represents a space of angular “velocities” that
all points on the SO(N) group manifold can have when passing through the iden-
tity. In conclusion, the generator representation of a rotation matrix is equivalent to

representation by the Lie algebra ( x € so(N)).

For completeness, Lie algebras are required to be closed under the Lie bracket
operation, which in this case is the commutator. Consider the transposed commuta-

tor between two skew-symmetric matrices A and B
(A,B)" = (AB)" —(BA)" =BTAT —ATB" =BA—AB=—[A,B]. (B.25)

Therefore, the commutator between two skew-symmetric matrices is itself skew-
symmetric, proving that skew-symmetric matrices are closed under the commutator

—a Lie algebra.

B.4 Example Generator for the 2D Problem

To illustrate the generator, the simplest case of N = 2 is now considered.?> Recall-
ing from section B.2 that there exists only one Lie algebra element for the two-

dimensional problem, S; (see Eq.(B.19)), the rotation matrix is

R(6) = %5 = cos(0)I +sin(0)S; = (_Czlsé(eg) z:;((z))) (B.26)

where 0 is the angle of rotation and is a scalar quantity.  One can separate the even
and odd power terms of the exponential series to give the trigonometric representa-
tion of the rotation matrix, where the above is a generalisation of Euler’s formulae
to matrices. The SO(2) manifold in this case is 2—dimensional and can be thought
of as a circle where the x— and y— values are the sin and cos of the angle 6. 6 then
parameterises the trajectory ‘arc’ of the rotation through the SO(2) manifold. The
tangent to this circle then represents the angular velocity of the rotation and corre-
sponds to the generator, or Lie algebra, which indeed is a 1—dimensional object.

Figure B.1 illustrates this pictorially. At the identity (8 = 0), the derivative of the

3 An example application of generator representation of the AtDT for a 2-state system is discussed
in section 2.5.1

“In general the parameterisation of R € SO(N) in the tangent space so(N) is a N—dimensional
vector quantity, with elements a,,,(r) as in Eq.(B.18).
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sin(|6])

cos(|6])

S0(2)

Figure B.1: Simplified visualisation of the SO(2) group manifold with Lie group relating
to the 1D angular velocity.

rotation is then easily computed from above as

dR(0 = 0) (0 1) do  do B27)

dr  \—1 0)dr _ar?®

This equation looks similar to Eqns.(2.49,2.53), and indeed the NAC is equivalent
to the angular velocity of the diabatic frame relative to the adiabatic frame in the
diatomic Hilbert space. It is then clear that NACs have a deep connection to coordi-
nate transformations, or more specifically, rotational dynamics, and the abstract Lie
algebras of these tranfromations. This, however, was foreshadowed when deriving
the conditions for transforming to a strictly diabatic representation in section 2.4.
Lie algebras, or generators, then form a sensible representation of the AtDT, and
motivates the methodology not only used extensively in this thesis, but also in the

literature *%°.
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