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Appendix A. Prior Distributions for Bayesian Cost-Effectiveness Models 

Table 3 Prior Distributions for Bayesian Cost-Effectiveness Models 

Parameter Normal model Log Normal model Gamma model 

Coefficients in cost 

model (𝛼𝑗) 
Normal(0, 1002) Normal(0, 1002) Normal(0, 1002) 

Standard deviation, 

costs (𝜎𝑐) 
Uniform(0, 1000)  Uniform(0, 1000) 

 Uniform(0, 10000)  Uniform(0, 10000) 

Standard deviation, log 

costs (𝛿𝑐) 
 Uniform(0, 3)  

  Uniform(0, 2)  

  Uniform(0, 1)  

  Uniform(0, 0.8)  

Coefficients in QALY 

model (𝛽𝑘) 
Normal(0, 1002) Normal(0, 22) Normal(0, 22) 

Standard deviation, 

QALYs (𝜎𝑒) 
Uniform(0, 1000) Uniform(0, √𝜇𝑒(1 − 𝜇𝑒)) Uniform(0, √𝜇𝑒(1 − 𝜇𝑒)) 

j = 0,1,2,3; k = 0,1,2; 𝜇𝑒 denotes mean QALYs. 
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Appendix B. Kernal density estimation of Uniform prior distributions on log-scale standard deviations in Log-

Normal model against the original-scale standard deviations 

Fig. 6 presents the kernel density estimation of the Uniform priors against the original-scale standard deviation. 

The figure illustrates the implications of Uniform prior distributions with different upper bounds on log-scale 

standard deviations for original-scale standard deviations in the Log-Normal model. The calculation of original-

scale standard deviation in the Log-Normal distribution requires assumptions about the log-scale mean. 

However, an original-scale mean is more intuitive than a log-scale mean for the purpose of prior specification in 

a health economics context. Therefore, assumptions are made based on the original-scale mean. The subfigures 

in Fig. 6 are plotted from left to the right, assuming actual mean costs of £500, £1,000 and £2,000, respectively. 

 

 

Fig. 6 Kernel density estimation of Uniform prior distributions on log-scale standard deviations in Log-Normal 

model against the original-scale standard deviations. As the mean cost on the original scale increases, the same 

Uniform prior distributions on log-scale standard deviations imply a higher probability of larger standard 

deviations on the original scale. 

  



Appendix C. Posterior Predictive Checks 

Fig. 7 to Fig. 14 show direct graphical posterior predictive checks for models with different distributional 

assumptions and prior specification for cost standard deviations. Replicated total health care costs and QALYs 

by treatment arm are generated from the posterior predictive distribution of the models, and compared to the 

distribution of the observed data. No systematic difference between replicated and observed data are expected if 

the model presents a good fit. However, it is obvious that the Normal models can not fit the cost data well. 

  



 

Fig. 7 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Normal model with 

Uniform(0,1000) as the prior on cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 8 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Normal model with 

Uniform(0,10000) as the prior on cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 9 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Beta Gamma model with 

Uniform(0,1000) as the prior on cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 10 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Beta Gamma model with 

Uniform(0,10000) as the prior on cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 11 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Beta Log-Normal model with 

Uniform(0,3) as the prior on log cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 12 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Beta Log-Normal model with 

Uniform(0,2) as the prior on log cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 13 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Beta Log-Normal model with 

Uniform(0,1) as the prior on log cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



 

Fig. 14 Distributions of replicated total health care costs and QALYs by treatment arm drawn from posterior 

predictive distribution compared to the distribution of observed data under the Beta Log-Normal model with 

Uniform(0,0.8) as the prior on log cost standard deviations. The dark blue curve represents observed data while 

the light blue curves display 100 simulated total health care costs and QALYs drawn from their posterior 

predictive distributions. 

  



Appendix D. Prior sensitivity analysis for model coefficients across alternative specifications 

Prior on Cost 

Standard 

Deviation 

Prior on 

Coefficients in 

Cost Model 

DIC Costs (Con) Costs (Int) Incremental Costs 

Normal model 

Uniform(0,1000) Normal (0,10002) 947.6 482 (333, 636) 601 (425, 786) 119 (-108, 367) 

 Normal (0,1002) 948.8 476 (320, 632) 598 (421, 775) 123 (-102, 366) 

 Normal (0,102) 959.9 367 (214, 510) 471 (319, 636) 104 (-110, 324) 

Uniform(0,10000) Normal (0,10002) 947.6 482 (333, 636) 601 (425, 786) 119 (-108, 367) 

 Normal (0,1002) 948.8 476 (320, 632) 598 (421, 775) 123 (-102, 366) 

 Normal (0,102) 959.9 367 (214, 510) 471 (319, 636) 104 (-110, 324) 

Gamma model 

Uniform(0,1000) Normal (0,1002) 718.7 537 (388, 692) 709 (451, 970) 171 (-128, 484) 

 Normal (0,102) 718.8 538 (396, 703) 711 (468, 985) 172 (-149, 477) 

Uniform(0,10000) Normal (0,1002) 718.4 535 (393, 697) 710 (469, 982) 174 (-131, 480) 

 Normal (0,102) 718.3 537 (387, 693) 714 (472, 993) 177 (-129, 499) 

Log-Normal model 

Uniform(0,3) Normal (0,1002) 744.4 2095 (497, 4761) 3396 (620, 8279) 1301 (-4169, 8699) 

 Normal (0,102) 744.3 1981 (469, 4610) 3243 (630, 8116) 1262 (-4511, 7754) 

Uniform(0,2) Normal (0,1002) 740.1 1610 (489, 3266) 1954 (651, 3868) 344 (-2258, 3256) 

 Normal (0,102) 739.8 1537 (477, 3076) 1942 (610, 3879) 404 (-2223, 3185) 

Uniform(0,1) Normal (0,1002) 919.3 412 (260, 585) 468 (287, 667) 56 (-208, 335) 

 Normal (0,102) 918.3 405 (260, 585) 468 (287, 667) 63 (-208, 335) 

Uniform(0,0.8) Normal (0,1002) 1126.9 337 (241, 453) 386 (265, 518) 49 (-127, 215) 

 Normal (0,102) 1126.5 333 (228, 436) 387 (270, 519) 54 (-118, 224) 

 

Table 4 Marginal mean and incremental mean cost estimates (and 95% credible intervals), for models with 

different Uniform prior distributions on cost standard deviations. Note: Costs are measured using British pound 

(£). DIC = Deviance Information Criteria; Con = Control; Int = Intervention. 

  



Appendix E. Details for the simulation study 

The primary objective of this simulation study is to explore the sensitivity of the three most used cost model 

choices in cost-effectiveness analysis (i.e. the Normal, Gamma and Log-Normal model) to the priors on cost 

standard deviations in a health economics context. 

 

1. Data Generating Process 

1.1. Set-Up 

The simulation settings are carefully chosen to reflect common challenges in routine health economics 

evaluations. We consider a cost-effectiveness analysis alongside a one-site, six-month and two-arm RCT and 

build on previous simulation studies to generate individual-level cost-effectiveness data  [1–3]. Individuals are 

randomly assigned to each treatment arm using a 1:1 allocation ratio.  

For each subject, we assume the only continuous demographic variable, age, denoted as 𝑎𝑔𝑒𝑖, and baseline 

utilities, denoted as 𝑢0𝑖, to follow a bivariate Normal distribution:  

(
𝑎𝑔𝑒𝑖
𝑢0𝑖

) ∼ 𝑁((
12
0.82

) , ( 22 −0.13 × 2 × 0.07
−0.13 × 2 × 0.07 0.072

)) 

where i is the individual indicator. Parameters have been calibrated to mimic the case study data and the 

theoretical properties of these covariates. For instance, the utility scores measured by the CHU-9D questionnaire 

range between 0.3261 and 1.000 in theory for a UK population[4]. Our data generating process leads to mean 

age at 12 years old and mean baseline utility scores at 0.817 per treatment arm when the number of participants 

is 200 while results in mean age at 12 years old while mean utilities at 0.820 per treatment arm when the sample 

size increases to 2000.  

 

1.2. Simulation scenarios 

Based on the three dimensions – i.e. data skewness, the proportion of zero and sample size – to explore in this 

simulation study, we have eight scenarios to explore. We set the marginal mean cost in control and intervention 

arm as £480 and £600 respectively, resulting in an incremental cost at £120. The cost standard deviations have 

been set to British pounds 700 and 900 for the control and intervention group, respectively.  

 First, we generate QALYs from a Normal distribution, with 𝜇𝑒𝑖 and 𝜎𝑒 representing the individual-specific 

mean and population-specific standard deviation, respectively. The data generating process can be specified as:  

  

𝑒𝑖 ∼ Normal(𝜇𝑒𝑖 , 𝜎𝑒
2)

𝜇𝑒𝑖 = 0.4 + 0.05𝑡𝑟𝑡𝑖 − 0.007𝑎𝑔𝑒𝑖 + 0. 26𝑢0𝑖
 

where 𝜎𝑒 = 0.2 and 𝑡𝑟𝑡𝑖 is the individual-specific treatment indicator. The resulting mean QALYs are 0.404 and 

0.446 for the control and intervention arm, respectively, with a small sample size at 200 and become 0.401 and 

0.452, respectively, when the sample size is 2000. 

Second, the proportion of zero values are varied across scenarios, leading to different cost data. In cases where 

the proportion of zero values is 10%, we model the probability of having zero cost for individuals using 

Bernoulli distributions with a logit link function: 

𝑝𝑖 ∼ Bernoulli(𝜋𝑖)

logit(𝜋𝑖) = 𝛾0 + 𝛾1𝑡𝑟𝑡𝑖 + 𝛾2𝑎𝑔𝑒𝑖 + 𝛾3𝑢0𝑖
 

where 𝑝𝑖  is the indicator of whether cost for an individual is zero or not, 𝜋𝑖 denotes the probability of cost being 

zero, 𝜸 = (𝛾0, 𝛾1, 𝛾2, 𝛾3) is the set of intercept and coefficient parameters in the logistic regression. We calibrate 

the values of the 𝜸  so that the generated cost data can match the desired proportions of zeros (Table 5). 

  



Proportion of zero 

values in cost data 
N=200 N=2000 

10% 
𝛾0 = 0.19, 𝛾1 = −0.21, 𝛾2 =

−0.20, 𝛾3 = 0.15  

𝛾0 = 0.06, 𝛾1 = 0.11, 𝛾2 = −0.20, 𝛾3 =
0.06  

Table 5 Parameter values for the logistic regression to generate zeros across scenarios containing zero cost 

values. 

 

The positive component of the cost data is generated either from Log-Normal or Gamma distributions, and re-

parametrised based on an individual-level mean parameter (𝜇𝑐𝑖) and a population-level standard deviation (𝜎𝑐). 

When the cost data follow a Gamma distribution, a log link is used. The exact model specification is the same as 

the cost components of the Beta Gamma and Beta Log-Normal models described in the case study. A summary 

of the data generating process can be written as:  

𝑐𝑖 ∣ 𝑒𝑖 ∼ dist(𝜇𝑐𝑖 , 𝜎𝑐)

g(𝜇𝑐𝑖) = 𝛽0 + 𝛽1𝑡𝑟𝑡𝑖 + 𝛽2𝑎𝑔𝑒𝑖 + 𝛽3𝑒𝑖
 

where 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3) is the set of parameters that indexes the regression equation of the cost models. The 

𝜷 has been calibrated to ensure the true parameter values align with the study design (Table 6). The Log-Normal 

and Gamma models will also be directly applied to scenarios where there is no zero value in the cost data.  
 

Cost distributions and 

proportion of zeros 

Parameter values 

N=200 N=2000 

Log-Normal distribution 

0% 
𝛽0 = 5.60, 𝛽1 = 0.204, 𝛽2 =
−0.02, 𝛽3 = −0.68  

𝛽0 = 5.60, 𝛽1 = 0.204, 𝛽2 =
−0.02, 𝛽3 = −0.72  

10% 
𝛽0 = 5.78, 𝛽1 = 0.205, 𝛽2 =
−0.11, 𝛽3 = −3.94  

𝛽0 = 5.80, 𝛽1 = 0.205, 𝛽2 =
−0.11, 𝛽3 = −3.94  

Gamma distribution   

0% 
𝛽0 = 6.08, 𝛽1 = 0.2230, 𝛽2 =
0.16, 𝛽3 = −2.02  

𝛽0 = 6.08, 𝛽1 = 0.2230, 𝛽2 =
0.16, 𝛽3 = −2.02  

10% 
𝛽0 = 6.03, 𝛽1 = 0.2224, 𝛽2 =
0.27, 𝛽3 = −2.94  

𝛽0 = 6.03, 𝛽1 = 0.2224, 𝛽2 =
0.27, 𝛽3 = −2.94  

Table 6 Parameter values for the cost data generating process. 

 

2. Methods 

The Normal, Gamma, and Log-Normal models using different Uniform prior distributions on cost standard 

deviations will be performed and compared across scenarios. Specifically, we consider eight models: the 

Normal models with Uniform(0,1000) and Uniform(0,10000), the Gamma models with Uniform(0,1000) and 

Uniform(0,10000), and the Log-Normal models with Uniform(0,3), Uniform(0,2), Uniform(0,1) and 

Uniform(0,0.8). A constant of one will be added to the original data if the simulated dataset contains zero 

values.  

These models are fitted in JAGS with the following MCMC parameter specifications: two chains, with the 

number of iterations, burn-in, and thinning rate chosen based on sample size. For larger samples (N = 2000), 

each chain runs for 7000 iterations, with a burn-in of 2000 and a thinning rate of 5, resulting in 2000 iterations 

for inference. For smaller samples (N = 200), more iterations are required: we use 20,000 iterations per chain, a 

burn-in of 10,000, and a thinning rate of 2, yielding 10,000 iterations for inference.  

 

3. Performance Measures 



The performance of different statistical methods is assessed by bias, empirical standard errors, and root mean 

squared error (RMSE). These performance measures are defined as below [5]:  

 Estimate 

Bias 
1

𝑛𝑠𝑖𝑚𝑠

∑ 𝜃̂𝑖 − 𝜃
𝑛𝑠𝑖𝑚𝑠

𝑖=1
 

Empirical standard error 

(EmpSE) 
√

1

𝑛𝑠𝑖𝑚𝑠 − 1
∑ (𝜃̂𝑖 − 𝜃̅)

2𝑛𝑠𝑖𝑚

𝑖=1
 

Root mean squared error 

(RMSE) 
√

1

𝑛𝑠𝑖𝑚𝑠

∑ (𝜃̂𝑖 − 𝜃)
2𝑛𝑠𝑖𝑚

𝑖=1
 

Table 7 Definitions of performance measures. 𝑛𝑠𝑖𝑚𝑠 represents the number of simulations. 𝜃 is the true 

parameter value, 𝜃̂𝑖 is the estimate of 𝜃 from 𝑖th simulation, and 𝜃̅ is the mean of 𝜃̂𝑖  across 𝑛𝑠𝑖𝑚𝑠  
simulations. 
 

 

4. Results 

Models Scenarios 

 

10% Zeros, 

N = 200 

No Zero, 

N = 200 

10% Zeros, 

N = 2000 

No Zero, 

N = 2000 

 
Empirical 

SE 
RMSE 

Empirical 

SE 
RMSE 

Empirical 

SE 
RMSE 

Empirical 

SE 
RMSE 

Normal model 

Uniform(0,1000) 40 133 42 124 28 119 29 86 

Uniform(0,10000) 48 148 45 142 27 120 28 87 

Gamma model 

Uniform(0,1000) 67 113 79 112 27 123 30 72 

Uniform(0,10000) 111 125 115 120 34 115 33 70 

Log-Normal model 

Uniform(0,3) 1692 1753 11,238,106 11,274,966 457 480 48,404 55,437 

Uniform(0,2) 371 489 768,007 770,666 155 694 3,576 3,805 

Uniform(0,1) 85 191 157,028 157,564 35 253 NA NA 

Uniform(0,0.8) 71 177 130,043 130,486 29 231 NA NA 

Table 8 Relative performance in incremental costs of Normal, Gamma, and Log-Normal models with different 

Uniform prior distributions when cost data follow a Gamma distribution. Empirical SE = Empirical Standard 

Error; RMSE = Root Mean Squared Error.



 

Models Scenarios 

 10% Zeros, N = 200 No Zero, N = 200 10% Zeros, N = 2000 No Zero, N = 2000 

 Bias 
Empirical 

SE 
RMSE Bias 

Empirical 

SE 
RMSE Bias 

Empirical 

SE 
RMSE Bias 

Empirical 

SE 
RMSE 

Normal model 

Uniform(0,1000) -167 170 27 -165 28 167 -1 18 18 -9 19 21 

Uniform(0,10000) -170 173 31 -168 30 170 -1 18 18 -9 19 21 

Gamma model 

Uniform(0,1000) 18 52 49 6 59 59 82 21 85 16 21 26 

Uniform(0,10000) 40 81 70 17 71 73 82 21 85 16 21 26 

Log-Normal model 

Uniform(0,3) 2,896 3,076 1,037 50,155 108,294 119,296 2,924 299 2940 48,249 17,577 51,347 

Uniform(0,2) 870 913 276 3,615 7,926 8,709 1,351 122 1356 3,730 1,512 4,025 

Uniform(0,1) -168 180 64 374 1,594 1,636 -67 28 73 NA NA NA 

Uniform(0,0.8) -221 227 53 227 1,316 1,334 -136 23 138 NA NA NA 

Table 9 Relative performance in mean costs (control) of Normal, Gamma, and Log-Normal models with different Uniform prior distributions when cost data follow a 

Gamma distribution. Empirical SE = Empirical Standard Error; RMSE = Root Mean Squared Error. 



Models Scenarios 

 10% Zeros, N = 200 No Zero, N = 200 10% Zeros, N = 2000 No Zero, N = 2000 

 Bias 
Empirical 

SE 
RMSE Bias 

Empirical 

SE 
RMSE Bias 

Empirical 

SE 
RMSE Bias 

Empirical 

SE 
RMSE 

Normal model 

Uniform(0,1000) -294 296 29 -282 31 283 -116 26 119 -90 22 93 

Uniform(0,10000) -311 313 37 -302 34 304 -117 21 119 -91 21 93 

Gamma model 

Uniform(0,1000) -73 86 45 -74 50 89 -38 18 42 -50 22 55 

Uniform(0,10000) -16 87 86 -16 89 90 -28 27 38 -46 26 53 

Log-Normal model 

Uniform(0,3) 3,355 3,615 1,345 1,027,976 11,235,032 11,276,367 2,779 357 2,801 75,318 44,845 87,646 

Uniform(0,2) 550 602 244 72,023 768,008 770,767 674 99 682 5,036 3,220 5,977 

Uniform(0,1) -340 344 56 14,277 157,028 157,551 -318 22 319 NA NA NA 

Uniform(0,0.8) -384 386 46 11,724 130,043 130,468 -365 18 365 NA NA NA 

Table 10 Relative performance in mean costs (intervention) of Normal, Gamma, and Log-Normal models with different Uniform prior distributions when cost data follow a 

Gamma distribution. Empirical SE = Empirical Standard Error; RMSE = Root Mean Squared Error.
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