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Abstract

Species and populations did not evolve independently after splitting from their ancestors, and

they were found to exchange alleles when coming into contact. The process of gene flow has

been documented in numerous species throughout the tree of life. The exponential growth of ge-

nomic data over the past two decades has driven a surge in studies aiming to quantify the extent

of gene flow across different systems and to understand the role of gene flow during and after

speciation. Most efforts have been put on employing heuristic or approximate approaches that

rely on summaries of sequence data, in which the rich information for inferring species diver-

gence and cross-species gene flow is not fully leveraged and largely lost. Recent advances in the

multispecies coalescent (MSC) model have made it a powerful framework for the inference of

species tree and the estimation of two idealized formulations of gene flow: episodic introgres-

sion or continuous migration. These methods based on the MSC framework can capture more

features of gene flow, including the strength, direction and timing, while also allowing for the

estimation of key demographic parameters of speciation times and population sizes. This thesis

focuses on gene flow inference based on the full likelihood methods implemented in Bayesian

program BPP. We analyse genomic data from three different species systems. First, we apply

the introgression model in Chapter 2 and both the introgression and migration models in Chapter

3 to re-analyse two previously generated datasets for chipmunk species group Tamias quadrivit-

tatus and a Drosophila clade, identifying gene flow between both sister and non-sister species

that summary methods failed to detect. Next, we compile three massive genomic datasets for

chimpanzees and bonobos in Chapter 4, each of > 50,000 loci. Model-based likelihood methods

identify consistent migration events, whereas earlier evidence is mostly conflicting and geograph-

ically implausible. Lastly, in Chapter 5, we evaluate the impact of read depth on the inference of

gene flow using coalescent-based methods through simulation and assess the influence of phasing

in analysis of data at different depths. The work in the thesis highlights the importance of using

statistically adequate methods to reach reliable biological conclusions concerning cross-species

gene flow. The findings in the empirical data analysis imply that introgression is pervasive and

not merely an exception in species evolution.
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Impact Statement

Gene flow has been extensively identified across taxa, facilitated by methodological advances and

revolutionary sequencing technologies. Despite the availability of high-quality genome assemblies,

typically generated with substantial financial and time investment, a large proportion of published and

ongoing genomic studies still evaluate gene flow using methods based on summaries of sequence data.

The widespread use of these heuristic approaches, and the relative underutilization of full-likelihood

methods, stem primarily from insufficient evaluation in realistic scenarios, regarding their power to

detect gene flow. As a result, discussions of method performance often remain confined to simulations

or small-scale empirical datasets.

We fully acknowledge that full-likelihood methods based on the multispecies coalescent frame-

work tend to involve computationally intensive likelihood calculation, making their application to

genome-scale datasets a valid concern. However, in this thesis, we demonstrate across multiple

biological systems that statistically advanced methods are essential for accurately inferring gene

flow among species and populations, including the direction, magnitude, and timing of gene flow,

where applicable. In the thesis, we mainly address the following questions revolving full-likelihood,

coalescent-based methods:

1. Whether full-likelihood approaches consistently outperform summary methods in empirical

data analysis, as suggested by simulation studies.

2. Whether these methods are computationally efficient enough to handle realistically sized

genomic datasets.

3. How these methods can be effectively and explicitly applied to real genomic data in practice.

4. What factors influence inference under the MSC framework, and in what ways they affect

the results.

We highlight the superior statistical reliability of full-likelihood methods by analysing empirical

data from several distinct species systems, including chipmunks (rodents), flies (insects), and chim-

panzees and bonobos (primates). We show that it is now computationally feasible to apply these
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methods to large-scale datasets consisting of thousands, or even tens of thousands, of loci that were

previously limited to faster, summary-based approaches. Our work contributes to building a standard,

easy-to-follow workflow for gene flow inference using methods implemented in BPP, encompassing

multi-locus data compilation, species tree inference, gene flow model construction, and parameter

estimation.

We also demonstrate that summary methods can suffer from multiple limitations. For example,

in Chapters 2 and 3, methods such as HYDE and QUIBL are shown to detect only specific types

of gene flow predefined in their models. When these model assumptions are violated, the power to

detect gene flow is significantly compromised, which may lead to incorrect conclusions about the

evolutionary history of gene exchange, which is further compounded by the information loss inherent

in summary statistics. Our findings may serve as a reminder to users of these methods, encouraging

them to understand the limitations and interpret results carefully, while also indicating the need to

further improve their statistical properties in future.
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Chapter 1

Inference of Interspecific Gene Flow Using Genomic Data

1.1 The Prevalence and Impacts of Gene Flow

Over the past few decades, gene flow has moved from relative obscurity to a well-recognised

component of evolution. Once considered to be rare, exchange of genetic material has now been

identified in a wide variety of genera across the tree of life, such as Homo humans (Green et al.,

2010; Kuhlwilm et al., 2016a; Li et al., 2024), Pan chimpanzees and bonobos (Brand et al., 2022;

de Manuel et al., 2016), Heliconius butterflies (Edelman and Mallet, 2021; Thawornwattana et al.,

2023b) and Anopheles mosquitoes (Fontaine et al., 2015).

Basically, gene flow refers to the process by which alleles transfer from one population to another,

genetically connecting geographically structured populations (Slatkin, 1985, 1987). As pertains to

gene flow, the term migration is sometimes used synonymously, particularly when gene movement

results from the dispersal of individuals. It was first introduced in the population genetics model

island model of migration to describe the movement of alleles between populations through dispersal

and reproduction (Wright, 1931). The concept introgressive hybridization or simply introgression was

put forward and further elaborated by botanists as the cross-species infiltration of germ plasm through

repeated backcrossing of hybrids to the parental species (Anderson, 1953; Anderson and Hubricht,

1938). The significant role of introgression had motivated botanists to find evidence of gene flow

in multiple plant groups for decades (Arriola and Ellstrand, 1996; Brunsfeld et al., 1992; Ellstrand,

2014; Heiser, 1947). Nevertheless, due to the limited availability of genetic markers for testing gene

flow at the time, it was not very clear how common gene flow actually was in natural populations.

People have long doubted the existence of inter-species animal hybrids in nature, which were

considered rare and largely maladaptive, suffering from hybrid sterility and inviability due to mis-

matched genomes (Mallet, 2005; Mayr, 1942, 1963, 1970). Thanks to the ever-expanding amount of

genomic data, coupled with advances in the toolbox of methods for studying gene flow, the discovery

has recently taken a big step forward. Today, cross-species introgression and hybridization have been

1
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extensively documented, occurring far more frequently than previously thought (Adavoudi and Pilot,

2021; Mallet, 2007). Within-species gene flow was also found to be even more rampant, with alleles

exchanged even between geographically separate populations (Sexton et al., 2024).

The recognition of gene flow’s role in evolution has accordingly undergone profound changes. In-

trogression may have a dynamic role as a homogenizing force and a barrier to divergence (Anderson,

1953; Rieseberg, 1997; Soltis and Soltis, 2009) or a catalyst for speciation and ecological adapta-

tion (Baack and Rieseberg, 2007; Marques et al., 2019; Taylor and Larson, 2019), depending on the

genomic landscape. Recent studies have revealed its evolutionary implications in driving species

diversification and accelerating local adaptation (Feder et al., 2012; Folk et al., 2018; Martin and Jig-

gins, 2017). Gene flow essentially transforms the traditional bifurcating tree-like view of evolution,

calling for a network-like resolution of evolutionary history where species boundaries are blurred

(Mallet et al., 2016). This shift necessitates empirical studies across a wide range of organisms to

build deeper insights into these aspects.

In this thesis, I apply full-likelihood methods to identify the presence and quantify the extent of

introgression/migration using genomic data in systems including Tamias quadrivittatus chipmunks

(Chapter 2), Drosophila flies (Chapter 3), and chimpanzees and bonobos of Pan genus (Chapter 4),

in comparison to the previously used methods based on data summaries. In addition, computer simu-

lation is conducted to assess the impact of sequencing read depth on the inference of species tree and

gene flow in Chapter 5.

1.2 Overview of Methods for Gene Flow Inference

The toolkit for gene flow detection comprises methods of varying complexity, ranging from sim-

ple tests like the D-STATISTIC to sophisticated model-based approaches for inferring phylogenetic

networks.

The most used methods include those relying on summaries of multilocus sequence data, e.g.,

site pattern counts (Blischak et al., 2018; Green et al., 2010), estimated gene trees (Solis-Lemus

and Ane, 2016; Wen et al., 2016) and site frequency spectra (Excoffier et al., 2013; Gutenkunst

et al., 2009), which are referred to as summary methods. These methods tend to be heuristic and

2
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make approximations in likelihood calculations, making them computationally efficient approaches

primarily used for testing the presence of gene flow or estimating its strength under a predefined gene

flow model with a fixed data setup. They are fairly popular in phylogenomic studies but prone to

significant issues of model identifiability resulting from information loss (Pang and Zhang, 2024; Xu

and Yang, 2016).

In contrast, methods that construct and evaluate the complete joint likelihood function of all ob-

served data under a user-specified model are referred to as full-likelihood methods. Unlike summary-

based methods, which use reduced data representations, full-likelihood methods leverage all available

information in the data and make inference based on a likelihood function that connects sequence data

to the underlying evolutionary processes (e.g., speciation history and gene-flow events). Neverthe-

less, the methods are much more computationally demanding and usually not reckoned as the optimal

choice for genome-scale datasets. Recent algorithmic optimizations and progress in computer hard-

ware have made it feasible to analyse datasets of thousands of genomic segments. In the first three

chapters, I study the history of gene flow in a few species groups by analysing their genomic datasets

containing ∼ 1000 to 500,000 loci using the full-likelihood approaches implemented in Bayesian

program BPP (Flouri et al., 2020, 2023; Yang, 2015).

1.2.1 Full-Likelihood Methods

The coalescent process and the multispecies coalescent model The mathematical theory of

coalescent, first developed by Kingman (1982), describes the variation in the genealogical history of

a sample of DNA sequences from one population, assuming the absence of selection, recombination

and gene flow. While traditional population genetics has mainly focused on changes in allele fre-

quencies, the emergence of the coalescent model presents a more natural approach for reconstructing

demographic histories through the analysis of sequence data.

The multispecies coalescent (MSC) model extends the single-population framework for multiple

species, which integrates the phylogenetic process of species divergences and the population genetic

process of coalescent (Rannala and Yang, 2003). Given a species tree, the MSC model gives how

genealogies from different species vary across different genomic regions. When sequences sampled

3
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at a locus are traced backwards in time, coalescent events are Poisson processes occurring at a rate

of 1
2N , inversely proportional to the effective population size N. Define one time unit as the time

to accumulate one mutation per site, any two lineages should coalesce at rate 2
θ

, where θ = 4Nµ

is the effective population size measured in the expected number of mutations per site. When there

are > 2 lineages in the population, two sequences are chosen uniformly at random to coalesce. The

coalescent waiting times follow an exponential distribution with rate
(n

2

) 2
θ

, where n is the number

of lineages that have not yet coalesced at that time. It might be difficult for sequences to coalesce

in time within large populations that existed for short periods in history, as reflected by short branch

length in coalescent units 2τ

θ
= T

2N . Uncoalesced sequences should enter the next parental population

after they reach the end of the current population as specified by species divergence time τ = T µ ,

measured in the number of mutations, and T is the absolute divergence time in generations. Hence, it

is naturally accommodated in the MSC framework that sequences do not necessarily coalesce as soon

as they reach the most recent common ancestor tree but instead coalesce in more ancient ancestors,

which is known as incomplete lineage sorting or deep coalescence. The coalescent process ends if all

sequences have coalesced into a single lineage.

The inference framework of the MSC model operates directly on sequence data. Let D = {Di}

be the sequence data, where Di represents the sequence alignment at ith locus for i = 1,2,3, . . . ,L.

The species tree (S,Θ) is defined by the topology S with parameter vector Θ, including parameters of

species divergence times τ , population sizes θ . Also, let G = {Gi} and t = {ti} be the gene trees and

coalescent times (or branch lengths), where the gene tree at the locus i is Gi with coalescent times ti.

We have the likelihood of the sequence data and the gene tree at any single locus i

f (Di,Gi, ti | S,Θ) = f (Di | Gi, ti) f (Gi, ti | S,Θ), (1.1)

where the phylogenetic likelihood f (Di | Gi, ti) given the gene tree (Gi, ti) can be calculated assuming

a time-reversible substitution model with Felsenstein’s pruning algorithm (Felsenstein, 1981), and the

density f (Gi, ti | S,Θ) is specified by the multispecies coalescent process (Rannala and Yang, 2003).

Note that the data Di and the species tree (S,Θ) are statistically independent given the gene tree (Gi,

ti). However, the gene tree (Gi, ti) at each locus is not observed, so the likelihood should sum over all
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possible gene tree topologies and integration over the coalescent times at each locus:

f (Di | S,Θ) = ∑
Gi

∫
ti

f (Di | Gi, ti) f (Gi, ti | S,Θ)dti. (1.2)

Assuming gene trees at different loci are independent, the likelihood of data D = {Di} is simply

a product of likelihoods across loci:

f (D | S,Θ) =
L

∏
i=1

f (Di | S,Θ). (1.3)

Equation 1.3 is the inference basis for maximum likelihood (ML) methods. In contrast, Bayesian

inference is typically performed based on the joint posterior distribution, using a Markov chain Monte

Carlo (MCMC) algorithm to average over gene trees:

f (S,Θ,G, t | D) ∝ π(S,Θ) f (D,G, t | S,Θ)

= π(S,Θ)
L

∏
i=1

f (Di | Gi, ti) f (Gi, ti | S,Θ),
(1.4)

where π(S,Θ) is the prior on species tree topology and demographic parameters. The MSC density

f (Gi, ti | S,Θ) in eq. 1.4 is straightforward to be derived by traversing the populations and examining

the coalescent events. For example, the gene tree given the MSC model in figure 1.1a has probability

f (Gi, ti | S,Θ) =
2

θA
e−

2
θA

t1 (Population A)

× e−
2

θB
τT (Population B)

× e−
2

θC
τT (Population C)

× 2
θT

e−
12
θT

(t2−τT )× 2
θT

e−
6

θT
(t3−t2)× e−

2
θT

(τR−t3) (Population T)

× 2
θR

e−
6

θR
(t4−τR)× 2

θR
e−

2
θR

(t5−t4). (Population R)

(1.5)

For species A, the contribution is 2
θA

e−
2

θA
t1 , as there was one coalescent event between a1 and a2 at

time t1. In species B, there was no coalescent, so the probability of having no coalescent when there

were two sequences during the time periods (0,τT ) is e−
2

θB
τT . At time t2, it randomly chose two from

four lineages in species T to coalesce so the rate is
(4

2

) 2
θT

= 12
θT

, and so forth at time t3.
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Although both ML and Bayesian frameworks enable joint estimation of the species phylogeny S

and parameters in Θ or parameters solely on a fixed species tree, Bayesian inference (eq. 1.4) may be

more efficient than ML methods (eq. 1.3) in practice since the multi-dimensional integral in eq. 1.2 is

almost impossible to calculate except for small datasets. Bayesian statistics assign prior distributions

to parameters in the model. With a conjugate prior used for a given parameter, the posterior is tractable

and that parameter is allowed to be integrated out. For example, in species tree inference, population

sizes θs may be integrated out analytically through the use of inverse-gamma priors, which improves

MCMC mixing (Hey and Nielsen, 2007).

(a)   MSC model                (b)  MSC-I model               (c)  MSC-M model  
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Figure 1.1: The multispecies coalescent (MSC) model and its gene flow extensions, the MSC-I and MSC-M
models. The digrams in the top row include an instance of species tree (S,Θ) under the MSC, MSC-I and
MSC-M models. The diagrams below display a possible coalescent process (G, t) of six sequences (a1, a2
from A; b1, b2 from B; and c1, c2 from C) given the species tree (S,Θ). (a) MSC model with no gene flow.
Sequences are within the species tree, and those from different species can coalesce in the common ancestors.
(b) MSC-I model with introgression from A to C (in forward time) at time τI with introgression probability
ϕC→B. (c) MSC-M model with continuous gene flow from A to C (in forward time) at a constant rate of MA→C

throughout the time period (0,τT ). From a backward-in-time perspective, sequence c1 was migrated from C to
A at time s1. The tip side indicates present time.

More recently, the MSC model has been generalized to incorporate gene flow, accommodating it

in either episodic introgression or continuous-time migration, which opens the door for model-based

inference of gene flow using genomic data. Currently, there are multiple Bayesian implementations
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of full-likelihood methods aware of gene flow, such as BPP MSC-I (Flouri et al., 2020) and MSC-

M (Flouri et al., 2023), *BEAST (Heled and Drummond, 2010), PHYLONET MCMC SEQ (Wen and

Nakhleh, 2018), G-PHOCS (Gronau et al., 2011) and IMA3 (Hey et al., 2018).

The multispecies coalescent with introgression (MSC-I) The first type of gene-flow model,

the multispecies coalescent model with introgression (MSC-I), specifies pulses of gene flow (Flouri

et al., 2020; Yu et al., 2014). The model assumes episodic gene flow in the past, with hybridization

taking place between populations or species within a short period of contact. The MSC-I model is

also known as the multispecies network coalescent (Wen et al., 2016; Yu et al., 2012) or network

multispecies coalescent (Degnan, 2018) for its setting on species networks.

On top of having nodes representing speciation, the MSC-I model introduces hybridization nodes

on species trees. Each hybridization node has two parents, with one representing the backbone of the

species tree, and the other connected through introgression. When one sequence is traced backwards

in time, it may encounter hybridization events and decide on which way to go, and it is possible for the

sequence to transfer into another population at the time. Each introgression event is defined by two

parameters: introgression time τI and introgression probability ϕ . The introgression probability ϕX→Y

is the proportion of lineages in species Y that come from species X at the introgression time, forward

in time. If traced backwards, for example, in the MSC-I model of figure 1.1b, species A received one

of the lineages from C through the introgression A to C at time τI . The term introgression probability

used in BPP is synonymous with the inheritance probability of Yu et al. (2014) and the heritability of

Solis-Lemus and Ane (2016).

The MSC-I model is available in BPP (Flouri et al., 2020), BEAST2 SPECIESNETWORK (Zhang

et al., 2018), and PHYLONET (Wen and Nakhleh, 2018). The Bayesian implementation in BPP in-

cludes four variants of MSC-I models that can be used for different introgression scenarios: unidirec-

tional (fig. 1.2b) and bidirectional (fig. 1.2d) gene flow, and hybrid speciation (fig. 1.2c), in which

the donor populations are still alive today. It is also possible that one of the parental populations or

both went extinct after hybridization, as shown in figure 1.2a. Essentially, BPP does not implement

MCMC moves that change the MSC-I model but estimate parameters under a fixed model. There are
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Figure 1.2: Four introgression models in BPP. (a) Introgression from an extinct or unsampled parental species
Hl . (b) Unidirectional introgression from species A to C. (c) Hybrid speciation model. Two parental species
A and B contacted with each other and gave birth to hybrid species C. (d) Bidirectional introgression between
sister species A and B. Modified from figure 1 in Flouri et al. (2020).

few methods that can infer introgression models by allowing changes to hybridization events in the

MCMC, such as PHYLONET MCMC SEQ (Wen and Nakhleh, 2018). However, the MCMC does not

mix efficiently, and they are barely applied to realistically sized datasets.

The calculation of density f (Gi, ti | S,Θ), similarly, can be achieved by examining the occurrence

of coalescent in each population. As for introgression, each time when a sequence passes a hybridiza-

tion node, there is a probability ϕ or 1−ϕ depending on which route it has taken. For the gene tree

of figure 1.1b, we have

f (Gi, ti | S,Θ) =
2

θA
e−

2
θA

t1 (Population A)

× e−
2

θB
τT (Population B)

× e−
2

θC
τI (Population C)

×ϕA→C × 2
θS

e−
2

θS
(t2−τI) (Population S)

× (1−ϕA→C) (Population H)

× 2
θT

e−
6

θT
(t3−τT )× 2

θT
e−

2
θT

(t4−t3) (Population T)

× 2
θR

e−
2

θR
(t5−τR). (Population R)

(1.6)

Sequence c1 took the introgression path at time τI , which then coalesced in species S at time t2, so that

the contribution to the gene tree density from S is ϕA→C × 2
θS

e−
2

θS
(t2−τI). The other sequence c2 took
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the parental path and stayed in species C. Since that there was only one lineage in species H (after

time τI and before τT , the contribution of the species is 1−ϕA→C. The terms of coalescent events can

be derived using the same way as in the MSC model.

The multispecies coalescent with migration (MSC-M) Gene flow may occur over a prolonged

period in nature. The second type of model assumes continuous gene flow occurring at a constant rate

every generation over an extended time period (Hey and Nielsen, 2004; Nielsen and Wakeley, 2001),

and it is referred to as the multispecies coalescent model with migration (MSC-M) (Flouri et al., 2023)

or isolation with migration (IM) model (Chung and Hey, 2017; Hey, 2010b).

In the MSC-M model, migration is specified under the idealized assumption of constant gene flow

until the end of coexistence of involved populations. For example, species A in figure 1.1c has been

sending migrants to population C at rate MA→C since their split at time τT . The population migration

rate MX→Y = NY mX→Y is defined as the number of individuals moved from population X to Y per

generation with time running forwards, where mX→Y is the proportion of migrants in Y from X and

NY is the number of individuals in recipient population Y. Some variants of the model are flexible

with the spanning time of migration and allow it to be specified within a certain time frame rather

than throughout the entire contemporary periods (Costa and Wilkinson-Herbots, 2017).

Two strategies are developed to calculate the density of gene trees f (Gi, ti | S,Θ) under the MSC-

M model, which differ in whether the migration history is integrated out. The first strategy relies

on the structured coalescent (Nath and Griffiths, 1993; Notohara, 1990; Takahata, 1988; Wilkinson-

Herbots, 1998). If the gene tree at a locus is represented by the topology and the coalescent times

without including the migration history, the coalescent process can be described using a continuous-

time Markov chain, and states in the chain consist of all possible configurations of the number and

location of sequences (including the coalesced ones) (Andersen et al., 2014; Zhu and Yang, 2012).

Consider the simplest case of two sequences a and b sampled from two species A and B, respectively.

In the MSC-M model with migration in both directions, the state of the two sequences before they

enter the root must be one of the following: (1) one in species A and the other in species B, (2)

both in species A, (3) both in species B, or (4) a and b coalesced in species A or B. In either species
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A or B, a pair of sequences coalesces at rate 2
θ

, and each sequence can migrate backward in time

to another population at rate 4M
θ

. The density calculation can then be achieved by constructing a

transition matrix for each of time periods, in which the rates of coalescent and migration are constant.

In practice, it is efficient only for a small number of species and sequences, as the state space expands

exponentially as the number of species/sequences increases (Hobolth et al., 2011). For example, the

density f (Gi, ti | S,Θ) in figure 1.1c is given as:

f (Gi, ti | S,Θ) =P(t1)AACC,ACC ×P(τT − t1)ACC,AAC (Population A and C)

× 2
θA

e−
2

θA
(t2−τR) (Population A)

× e−
2

θB
τT (Population B)

× 2
θT

e−
6

θT
(t3−τT )× 2

θT
e−

2
θT

(t4−t3) (Population T)

× 2
θR

e−
2

θR
(t5−τR). (Population R)

(1.7)

The term P(t1)AACC,ACC is the transition probability over (0, t1), from the initial state that two se-

quences in species A and two in C to the state where the sequences in A have coalesced while the

sequences in C remain still. Similarly, P(τT − t1)ACC,AAC represents the transition over (t1,τT ) where

one sequence from species C migrates into species A, but the migrated sequence has not coalesced

with the one in A. The formulation is implemented in ML method 3s that infers migration rates using

3 sequences from 3 species (Dalquen et al., 2017; Zhu and Yang, 2012). In Chapter 4, the method is

applied to evaluate the gene flow among chimpanzee subspecies and bonobos.

Alternatively, the gene tree at each locus may include a full history of both coalescent and migra-

tion, which is implemented in G-PHOCS (Gronau et al., 2011), IMA3 (Hey et al., 2018), BEAST2

DENIM (Jones, 2019) and BPP MSC-M (Flouri et al., 2023). Both coalescent events and migration

events are described using Poisson distributions, with rate 2
θ

and 4M
θ

(Beerli and Felsenstein, 2001;

Wang and Hey, 2010). Although including migration history in gene trees may slightly increase com-

putational cost, the derivation of probability density with this strategy is much more straightforward,

applicable for an arbitrary number of species and samples and suitable for Bayesian inference in

most cases. To calculate the density, we can divide the entire timeline into multiple segments, each
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with fixed populations and migration events, so that the rates of these events remain constant within

each period (Jiao et al., 2021). For the instance of the MSC-M model in figure 1.1c, the density

f (Gi, ti | S,Θ) is derived as:

f (Gi, ti | S,Θ) =
2

θA
e−

2
θA

t1 × 2
θA

e−
2

θA
(t2−s1) (Population A)

× e−
2

θB
τT (Population B)

× e−
2

θC
s1 × 4MA→C

θC
e−

4MA→C
θC

(2s1+τT−s1) (Population C)

× 2
θT

e−
6

θT
(t3−τT )× 2

θT
e−

2
θT

(t4−t3) (Population T)

× 2
θR

e−
2

θR
(t5−τR). (Population R)

(1.8)

There is a migration event A to C during the time interval (0,τT ). When traced backwards, one

lineage in species C moved into species A at time s1 and the other one remained in C throughout

the period. Their migration components in the density are given by 4MA→C
θC

e−
4MA→C

θC
s1 and e−

4MA→C
θC

τT ,

respectively. The terms of coalescent events can be derived same as above.

In practice, it may be biologically sensible to estimate migration rates M = Nm in the MSC-M

model as a measure of migration intensity. Statistically speaking, expressing migration rate parame-

ters as W = 4M
θ

makes it possible to sample directly from the posterior with conjugate priors assigned,

which enables Gibbs sampling and improves the mixing of the MCMC algorithm. Methods such as

BPP and IMA3 implement the parametrization to facilitate MCMC. For migration rates W = 4M
θ

= m
µ

measured on a mutation scale, one time unit is the time to accumulate one mutation per site, consistent

with that used for divergence times τ and population sizes θ .

1.2.2 Summary or Heuristic Methods

In addition to likelihood methods, there are a variety of heuristic methods developed to study gene

flow. Various data summaries, such as site-pattern counts, estimated gene trees and site frequency

spectra (SFS), are efficiently reduced representation of multi-locus sequence data, and the relevant

inference frameworks can be viewed as approximation of the full-likelihood methods detailed above.

The simplicity can be a double-edged sword. It simplifies the statistical framework and reduces the
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computational cost by bypassing the expensive likelihood calculations, but it fails to exploit all data

information, so data summaries are typically not sufficient statistics for resolving all model parame-

ters (Jiao et al., 2021; Xu and Yang, 2016). For example, one of the well-known limitations among

most of summary methods is that they have no power to identify gene flow between sister species,

because of the lack of information in the variation of genealogical histories. Furthermore, for gene

flow between non-sister species, they may have low statistical power to detect its presence, and some

methods do not provide an estimator of strength and direction (Ji et al., 2023). The power compar-

ison, full-likelihood versus summary methods, is one of the key topics covered in the thesis. These

methods have been extensively used and evaluated (Hibbins and Hahn, 2022; Ji et al., 2023; Pang and

Zhang, 2024). There is no denying that they have a role in preliminary evaluation of introgression

signals, especially on phylogenies of many species. However, by themselves, it is rather difficult to

accurately reconstruct the detailed history of gene flow. Here is a classification of major summary

methods according to the type of inputs.

Counts of parsimony-informative site patterns and SNP data Genome-wide scans of popula-

tion genetic statistics have become a common strategy for detecting signatures of gene flow between

populations and species. Parsimony site-pattern counts are a typical representative of these statistics.

Consider a quartet tree (((S1,S2),S3),O) of three species S1, S2, S3 and outgroup O. Suppose one in-

dividual (or one lineage) sampled per species, for a single nucleotide site, biallelic site pattern BBAA

matches the branching order of the species tree, where the ancestral allele A is possessed by individ-

uals from species S3 and O, and the derived allele B is possessed by species S1 and S2. Under the

null hypothesis of no gene flow, the frequencies or counts of mismatching patterns ABBA and BABA

pooled across genome are expected to be equal. Deviations from this null expectation are interpreted

as evidence for gene flow between non-sister species S1 and S3 or S2 and S3. This is the widely applied

D-STATISTIC (Durand et al., 2011a; Green et al., 2010). There are multiple variants of the statistic,

such as D f oil (Pease and Hahn, 2015), which extends the framework to five taxa and allows for the

detection of introgression directionality, and HYDE (Blischak et al., 2018; Kubatko and Chifman,

2019), which can be used to estimate introgression probabilities under a predefined hybrid-speciation
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model. These methods, however, are documented to be sensitive to low effective population sizes

and window sizes (Martin et al., 2015; Zheng and Janke, 2018). Almost all these methods implicitly

assume equal population sizes and the infinite-sites model of mutations, frequently challenged in real

data analysis.

The related F-STATISTICS (Patterson et al., 2012) have also been actively applied for studying

population admixture in a range of contexts. The F-STATISTICS are mainly based on SNP data and

involve f2(A,B), f3(A;B,C) and f4(A,B;C,D) statistics that measure shared genetic drift among 2,

3 or 4 populations, respectively. The f4(A,B;C,D) statistic quantifies the covariance in allele fre-

quencies between two population pairs (A,B) and (C,D) in an unrooted tree, and it is the same as the

D-STATISTIC up to a normalization factor. The f4-ratio statistic (Patterson et al., 2012) can estimate

the genome-wide mixing proportion in an admixed species or population, with similar functionality

as HYDE (Blischak et al., 2018). The fd (Martin et al., 2015) and its close relative fdM (Malinsky

et al., 2015) are modified versions of the f4-ratio, designed to detect local introgression signals in

short genomic regions. The f -branch (or fb) statistic (Malinsky et al., 2018) attempts to assign in-

trogression events to specific internal branches on a phylogeny using f statistics calculated based on

species triplets. Most of the statistics mentioned above are integrated in the toolbox DSUITE (Ma-

linsky et al., 2021), which provides efficient computation of D-statistics and f4-ratios across trios. It

is also possible to infer the admixture history from the summary statistics. For example, the graph-

based method QPGRAPH (Maier et al., 2023; Patterson et al., 2012) aims to find the optimal admixture

graph that minimizes the error between fitted and estimated f statistics. Methods such as TREEMIX

(Pickrell and Pritchard, 2012) and ORIENTAGRAPH (Molloy et al., 2021) conduct inference under

similar ideas.

One fundamental issue for the class of methods is that when site pattern counts are averaged across

the genome, gene tree branch lengths at different loci become indistinguishable (Lohse and Frantz,

2014; Zhu and Yang, 2021). The variation in branch lengths provides crucial information about di-

vergence times, and without it, it is impossible to detect gene flow between sister species (Ji et al.,

2023; Jiao et al., 2021).
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Estimated gene trees topologies The principle underlying gene flow tests based on gene tree

topologies is the same as that behind methods using nucleotide site patterns, as both aim to detect

inequalities in summary statistics to infer introgression between non-sister species. Given species

tree ((S1,S2),S3), introgression between S1 and S3 or S2 and S3 alters the expected equivalence in the

probabilities of gene trees ((s1,s3),s2) and ((s2,s3),s1), causing one to occur at a higher frequency

than the other. In the MSC-I model, the probabilities of three possible gene tree topologies can be an-

alytically derived as functions of introgression probabilities (ϕ), population sizes (θ ) and split times

(τ) (Jiao et al., 2021; Solis-Lemus and Ane, 2016). This is implemented in SNAQ (Solis-Lemus

et al., 2017) to estimate inheritance probabilities γ , conceptually synonymous to introgression prob-

abilities ϕ in BPP. The toolkit PHYLONET includes two methods for estimating gene flow given a

list of gene tree topologies — ML module INFERNETWORK ML (Yu et al., 2013, 2014) and its max-

imum pseudolikelihood version INFERNETWORK MPL (Cao and Nakhleh, 2019; Yu and Nakhleh,

2015). Bayesian inference is also available in module MCMC GT (Wen et al., 2016). Besides, the

discordant-count test (DCT) (Suvorov et al., 2022) relies on a model of three species that implicitly

assumes one-way introgression, but the introgression proportion estimate in DCT is biased. PHRAPL

evaluates migration models by comparing the simulated tree topologies under a given model and the

estimated topologies from data (Jackson et al., 2017). Overall, the power of topology-based meth-

ods is essentially associated with the phylogenetic errors in gene tree reconstruction, which may be

considerable for closely related species. They may struggle to resolve the history of gene flow in

the presence of ghost introgression from unsampled lineages due to identifiability issues (Pang and

Zhang, 2024).

Gene tree branch lengths Gene flow may leave signatures on branch lengths in gene trees.

If there is gene flow between non-sister species, the branch lengths of gene trees ((s1,s3),s2) and

((s2,s3),s1), which support introgression, are expected to be shorter than those in tree ((s1,s2),s3),

as introgressed alleles tend to coalesce more recently than those following the species tree topology.

QUIBL (Edelman et al., 2019) assumes a 3-species inflow introgression model (with gene flow from

the outgroup to one of the ingroups) and distinguishes introgression from incomplete lineage sort-
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ing using gene tree branch lengths. There are several other methods devised similarly, such as the

branch-length test (BLT) (Suvorov et al., 2022), DIP (Forsythe et al., 2020) and the statistics detailed

in Hibbins and Hahn (2019). For instance, BLT infers introgression by statistically testing the differ-

ences in coalescent times on the two discordant gene trees, assuming unidirectional introgression in

either way. Methods based on branch lengths may be inconsistent because estimated gene tree branch

lengths are more susceptible to sampling error (DeGiorgio and Degnan, 2014).

Site frequency spectra The site frequency spectrum (SFS) summarizes the distribution of

allele frequencies at all biallelic sites (or only biallelic SNPs) across a given set of regions within

a single population or among few populations, which is also referred to as the allele frequency

spectrum (AFS). It tends to sample multiple individuals per population. In the context of single

population, the 1D-SFS contains information concerning the effective population size. As for the

multi-species SFS, it informs interspecific parameters such as species divergence and introgression

probabilities/migration rates. Wide debate has arisen regarding the information content of the SFS

for inferring demographic histories, with discussions centred on whether distinct historical processes

can produce identical allele frequency distributions (Baharian and Gravel, 2018; Bhaskar and Song,

2014; Myers et al., 2008; Terhorst and Song, 2015).

SFS-based methods infer parameters by maximizing a composite likelihood function which mea-

sures the difference between the expected SFS and the observed data (Adams and Hudson, 2004).

The calculation of composite likelihood typically ignores linkage between sites and assumes inde-

pendence of each entry in the spectrum. The expected SFS is obtained by coalescent simulations

in FASTSIMCOAL (Excoffier et al., 2013, 2021; Nielsen, 2000) or diffusion approximation in DADI

(Gutenkunst et al., 2009; Kimura, 1964). Empirically, the joint SFS is rarely comprised of more

than four populations due to its exponentially increasing dimensionality. Instead, approximation can

be made to accommodate more species. For example, the composite likelihood can be replaced by

the product of pairwise composite likelihoods, although this approach can complicate model com-

parisons (Excoffier et al., 2013). Compared with DADI, the model of differential equations used in

MOMENTS (Jouganous et al., 2017; Ragsdale and Gravel, 2019, 2020) enables direct computation of
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the frequency spectrum and is more tractable and scales up well to more populations.

1.3 Analysis Workflow

1.3.1 Multi-locus Data Preparation

Multi-locus data consist of multiple sequence alignments of short genomic segments, called loci.

The use of multi-locus data is primarily determined by the model assumptions of MSC (Flouri et al.,

2018), which include the following: (1) free recombination between loci, (2) no recombination within

a locus, (3) neutral evolution with no selection and (4) clock-like evolution. These assumptions imply

certain desirable properties for datasets. For example, to satisfy assumptions (1) and (2), a common

approach is to sample short genomic segments every few thousand base pairs along the genome. The

size of a locus typically ranges between 100 and 2000 base pairs, with each locus separated by at least

2k to 10k base pairs. This ensures that loci are short enough for all sites within each locus to be fully

linked, while being sufficiently far apart from each other to minimize linkage disequilibrium (LD)

to assume independence of genealogical histories. The choice of distance between loci is essentially

dependent on the system. For example, in humans, LD typically decays to background level within

20 – 100 kb (Jorde, 2000; Ribas et al., 2008), whereas it decays more rapidly in chimpanzees.

Genome assemblies are constructed by mapping reads to the reference genome. Joint genotyp-

ing of multiple individuals is often performed at population or species level. Diploid (unphased)

sequences are then built by extracting the genotype calls using coordinates obtained in the first step.

Poorly sequenced regions (e.g., those with low depth or low genotyping scores) should be excluded

or masked into Ns in the sequences, and regions that are prone to alignment errors or potentially

violate model assumptions (e.g., CpG islands, transposable elements, or highly repetitive sequences)

should also be uniformly removed across all individuals, provided relevant genome annotations are

available. In the context of low coverage data, excluding poorly sequenced individuals may be more

favourable to maximize the number of loci retained for analysis. It is acceptable for different loci to

have varying numbers of sequences, with some populations or species being present only in a subset
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Non-coding loci

Figure 1.3: Generation of multi-locus data from sequencing reads. Two sets of loci are compiled. Coding loci
include exons of genes, and non-coding loci are formed on intergenic and intronic regions. Short regions are
sampled, which are separated by a certain distance in genome to achieve free recombination between them.

of loci. A minimum of one diploid or two haploid sequences are required. Otherwise, modern popu-

lation sizes cannot be estimated with only a single haploid sequence per locus. Heterozygotes should

be represented using IUPAC codes (e.g., R for A or G) in diploid sequences, and each can be phased

into two haploid sequences using a proper haplotype estimation program (e.g., PHASE (Stephens

and Donnelly, 2003; Stephens et al., 2001)) or the analytical phasing implemented in BPP (Gronau

et al., 2011). Random phase resolution is documented to cause serious bias to parameter estimation

of modern population sizes θ and introgression probability ϕ (Huang et al., 2022b). As indicated

by our simulation analysis, treating heterozygous sites as ambiguities can significantly mitigate the

impact of genotyping errors in low-depth data (e.g., < 10X) and substantially improve the accuracy

of species inference and parameter estimation for coalescent-based methods.

We may construct multiple datasets for genomic regions of different features, such as protein-
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coding regions and non-protein-coding regions (i.e., intergenic and intronic regions). Exons evolve

under the influence of selective forces, which may introduce a risk of bias in phylogenetic reconstruc-

tion. Technically, they are not qualified data for inferring species tree in the MSC model. However, in

few studied systems, including the Pan genus in Chapter 4, the purifying selection acting on coding

regions does not seem to alter the species tree but tends to yield more recent divergence times τ = T µ

(Shi and Yang, 2018; Thawornwattana et al., 2022). It is possible when mutations are mostly neu-

tral or deleterious. The uniform reduction of differences between species over these regions may not

distort the topology of species tree. Nonetheless, as a precaution, it is advisable to treat exonic and

noncoding regions as separate datasets in analysis.

1.3.2 Inference of Model of Gene Flow

Currently, obtaining a model of gene flow through systematic model construction is challenging.

There are few methods that are able to perform model search using cross-model MCMC algorithms,

such as SPECIESNETWORK in BEAST2 (Zhang et al., 2018) and PHYLOGNET MCMC SEQ (Wen

and Nakhleh, 2018). In another Bayesian program IMA3 (Hey, 2010b; Hey et al., 2018), uniform

parameter priors are assigned to enable likelihood ratio tests of nested models (Hey and Nielsen,

2007; Nielsen and Wakeley, 2001). This can be used to exclude non-significant events in fitting of a

saturated or near-saturated model of gene flow. None of the programs can handle datasets of > 500

loci due to poor mixing of MCMC (Jiao et al., 2021). Here, we describe two heuristic approaches.

The first approach requires a stable species tree that is not misled by cross-species gene flow. In

Chapter 2 of the thesis, we develop a Bayesian test of introgression (Ji et al., 2023) that approximates

the Bayes factor via the Savage-Dickey density ratio, and it can be used for comparing nested mod-

els in Bayesian framework. In this approach, introgression events are progressively added onto the

species tree to construct a joint model with multiple introgression events. The Bayes test is applied to

remove introgression events that are not supported in the model at each iteration. It is also advisable

to start with a model specifying all possible introgression events and perform a stepwise subtraction

process, as used in Chapter 3. For both strategies, pre-selecting a subset of plausible gene flow events

beforehand can help reduce the required number of iterations. However, methods based on summary
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statistics are not recommended for the selection as they are not capable of identifying gene flow be-

tween sister species. This approach should be considered for small to medium datasets involving up

to few thousand loci, in which the data can be analysed as a whole or divided into a manageable

number of subsets.

The other heuristic approach simply assembles gene flow signals on phylogeny. One common

practice is to apply triplet-based methods to infer gene flow from all possible triplets (Suvorov et al.,

2022; Thawornwattana et al., 2022). The detected signals are typically assumed in both directions and

are subsequently translated into introgression edges between tips on the full phylogeny. The model

is then revised to minimize the number of introgression events, which parsimoniously assumes that if

gene flow is suggested between species A and most descendants of species B, it is considered to be

a single introgression event between A and B. In Chapter 4, the idea is used to construct a migration

model for the Pan genus. The efficiency of the approach is largely dependent on the applied triplet

method, with which analysis is usually done relatively quickly. However, it does not compare models

statistically when repositioning introgression edges on the phylogeny, not to mention the compro-

mised power of summary methods in gene flow inference when their stringent model assumptions are

violated (e.g., symmetrical population sizes, infinite sites model).
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Chapter 2

Power of Bayesian and Heuristic Tests to Detect Cross-Species In-

trogression With Reference to Gene Flow in the Tamias quadrivit-

tatus Group of North American Chipmunks

Figure 2.1: Geographic distributions of the six chipmunk species in the Tamias quadrivittatus group, based on
data downloaded from the IUCN (https://www.iucnredlist.org/).

The Tamias quadrivittatus group of chipmunks currently consists of nine species that are dis-

tributed across the Great Basin along with the central and southern Rocky Mountains in North Amer-

ica (fig. 2.1). Previous work on Tamias has highlighted the importance of genital morphology, specif-

ically the baculum (a bone found in the penis) in male chipmunks, as a reliable indicator of species

limits (Patterson and Thaeler Jr, 1982; White, 2010). The biogeographic history of the group likely

included large range fluctuations that have periodically resulted in isolation and secondary contact

among species, which would have affected opportunities for hybridization and/or introgression (Good

et al., 2003). The current distributions of species in the group has extensive regions of overlap and
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broad parapatry in ecological transition zones (fig. 2.1), with instances of both allopatry and parap-

atry, and the determinants of current distributions are thought to be related primarily to competitive

exclusion and ecological preference (Brown, 1971; Heller, 1971; Root et al., 2001). The system pro-

vides an exciting opportunity to investigate the effects of introgression on genetic variation within and

between species.

Hybridization between chipmunk species has been widely reported based on discrepancies be-

tween mtDNA, nuclear DNA, and morphology (Good and Sullivan, 2001; Good et al., 2003, 2008;

Hird et al., 2010). Work in the past decade has documented widespread mitochondrial introgression

among species of the group (Reid et al., 2012; Sarver et al., 2017, 2021; Sullivan et al., 2014), which

is often asymmetrical, possibly due to bacular morphology, which has been identified in at least six

species (Good et al., 2003, 2008; Reid et al., 2012; Sullivan et al., 2014). Recent work on six species

in the T. quadrivittatus group found that four of them exhibited clear evidence of introgressed mi-

tochondrial DNA: T. cinereicollis, T. dorsalis, T. quadrivittatus, and T. umbrinus (table 2.1). The

cliff chipmunk (T. dorsalis) was involved in local introgression with multiple other species, receiving

mtDNA from whichever congeneric chipmunk it came into contact with. However, populations of

T. dorsalis that are geographically isolated carry mtDNA haplotypes that are unique to the species

(Sarver et al., 2017; Sullivan et al., 2014). Range overlap in transition zones plays an important role

in mitochondrial introgression in Tamias (Bi et al., 2019; Brown, 1971).

Table 2.1: Summary of evidence for mitochondrial introgression in the T. quadrivittatus group (Sullivan et al.,
2014)

Species Region Distribution Introgression Source
T. bulleri M Allopatric No
T. canipes (C) GB/RM Allopatric No
T. cinereicollis (I) GB/RM Parapatric Yes Not assignable
T. dorsalis (D) GB/RM Parapatric Yes C/U/Q/Not assignable
T. durangae M Allopatric No
T. palmeri GB/RM Allopatric Untested
T. quadrivittatus (Q) GB/RM Parapatric Yes Not assignable
T. rufus (R) GB/RM Allopatric No
T. umbrinus (U) GB/RM Parapatric Yes Not assignable

Note.— Geographic regions include Great Basin (GB), Rocky Mountains (RM), and Mexico (M). Single letter
codes are for the six species included in the nuclear data analysis.

Sarver et al. (2021) used a targeted sequence-capture approach to sequence thousands of nuclear
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loci (mostly genes or exons) to estimate the species phylogeny of the T. quadrivittatus group and to

infer possible nuclear introgression. The program HYDE (Blischak et al., 2018) was used to infer gene

flow. Surprisingly, no significant evidence for gene flow involving the nuclear genome was detected

between any species in the group, despite the evidence for widespread mitochondrial introgression.

We note that HYDE, like the D-statistic, uses the four-taxon site-pattern counts pooled across the

genome as data, and does not use information in the variation in genealogical history across the

genome caused by the stochastic fluctuation of coalescent and introgression (Jiao et al., 2021; Lohse

and Frantz, 2014; Zhu and Yang, 2021). As a result, neither the D-statistic nor HYDE can detect

gene flow between sister species or populations. Importantly, HYDE is designed to estimate the

relative genetic contributions of the two parental species which hybridized to form a third species.

When applied to detect other modes of gene flow, it makes restrictive assumptions about the direction

of gene flow, and about species divergence times and population sizes that may be unrealistic (see

fig. 2.7 below). The performance of HYDE when its model assumptions are violated is unexplored.

To examine whether the lack of evidence for nuclear introgression in the analysis of Sarver et al.

(2021) may be due to the lack of power of HYDE, here we re-analyse the data of Sarver et al. (2021)

using the BPP program (Flouri et al., 2018, 2020), which includes a Bayesian implementation of the

MSci model. Borrowing ideas from stepwise regression or Bayesian variable selection, we add intro-

gression events sequentially onto the binary species tree to construct a joint MSci model with multiple

introgression events. We develop a Bayesian test of introgression, calculating the Bayes factor for

comparing the null model of no introgression against the alternative model of introgression via the

Savage-Dickey density ratio (Dickey, 1971), using a Markov chain Monte Carlo (MCMC) sample un-

der the MSci model. This may have a computational advantage over cross-model MCMC algorithms

such as reversible jump MCMC (Green, 1995) or calculation of Bayes factors using thermodynamic

integration (Gelman and Meng, 1998; Lartillot and Philippe, 2006). Our re-analysis revealed robust

evidence for several ancient introgression events affecting the nuclear genome in the Tamias group,

involving both sister species and nonsister species. We examine the model assumptions underlying

HYDE and use computer simulation to demonstrate that the opposite conclusions reached in the two

analyses may be explained by the lack of power of HYDE to detect gene flow. We then assess the
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impact of ignoring introgression on estimation of population parameters, highlighting serious biases

in species divergence time estimation when introgression exists and is ignored. Our results highlight

the power of coalescent-based likelihood methods in the analysis of genomic datasets to infer the

history of species divergence and gene flow.

2.1 Theory: Bayesian test of introgression

2.1.1 Bayes factor is given by the Savage-Dickey density ratio in comparisons of nested hy-

potheses

One can test for the presence of cross-species gene flow by comparing the introgression (MSci)

model with the corresponding multispecies coalescent (MSC) model with no gene flow. The model

of no gene flow (H0) is a special case of the introgression model (H1), with H1 reducing to H0 when

the introgression probability is 0.

The commonly used device for Bayesian model comparison is the Bayes factor, which is the ratio

of the marginal likelihood values under the two compared models. When the two models are nested,

the Bayes factor is given by the Savage-Dickey density ratio (Dickey, 1971). In general, suppose we

wish to compare the null model H0 : φ = φ0 against the alternative model H1 : φ ̸= φ0, and suppose that

both models have common (nuisance) parameters λ , while parameters ξ in H1 become unidentifiable

when φ = φ0. The parameter vector is λ for H0 and (φ ,λ ,ξ ) for H1. Given data x, let the likelihood be

L0(λ ) under H0 and L(φ ,λ ,ξ ) = p(x|φ ,λ ,ξ ) under H1, with L(φ0,λ ,ξ ) = L0(λ ) as the two models

are nested. Let the prior be π0(λ ) under H0 and π(φ ,λ ,ξ ) = π(φ)π(λ |φ)π(ξ |φ ,λ ) under H1. The

Bayes factor in support of H1 over H0 is defined as

B10 =
m
m0

=

∫∫∫
π(φ ,λ ,ξ )L(φ ,λ ,ξ )dφdλdξ∫

π0(λ )L0(λ )dλ
, (2.1)

where m0 and m are the marginal likelihoods for the two models respectively.

Under the assumption that the priors on the common parameters (λ ) agree between the two mod-

els, with

π(λ |φ0) = π0(λ ), (2.2)

23



Back to Contents 2.1 Theory: Bayesian test of introgression

B10 can be expressed as the ratio of the prior and posterior densities for φ in H1, both evaluated at the

null value φ0:

B10 =
m
m0

=
π(φ0)

π(φ0|x)
, (2.3)

where π(φ |x) =
∫∫

π(φ ,λ ,ξ |x)dξ dλ is the marginal posterior density of φ .

Proof. Rewrite the prior π0(λ ) and likelihood L0(λ ) under H0 as densities under H1.

B10 =
m∫

π0(λ )L0(λ )dλ

=
m∫

π(λ |φ0)L0(λ )dλ

=
m∫ ∫ π(φ0,λ ,ξ )

π(φ0)
L(φ0,λ ,ξ )dξ dλ

=
π(φ0)∫ ∫ 1

mπ(φ0,λ ,ξ )L(φ0,λ ,ξ )dξ dλ

=
π(φ0)∫∫

π(φ0,λ ,ξ |x)dξ dλ

=
π(φ0)

π(φ0|x)
.

(2.4)

Thus eq. 2.3 holds even if there exist nuisance parameters (λ ) in both models, if the null values

(φ0) are at the boundary of the parameter space in H1, and if some parameters in H1 (ξ ) become

unidentifiable when the parameters of interest take the null values (when φ = φ0). The proof above

is more general than that given by Dickey (1971), which does not deal with the unidentifiability of

ξ . Note that such irregular conditions cause considerable difficulties for likelihood ratio test (LRT),

leading to unknown null distributions for the test statistic (e.g., Self and Liang, 1987). It is interesting

that they do not cause any difficulty for the Bayesian test.

If the condition on the priors (eq. 2.2) does not hold, a correction factor may be applied (Verdinelli

and Wasserman, 1995). This is not needed in our application.

2.1.2 Calculation of the Savage-Dickey density ratio

The prior density π(φ0) of eq. 2.3 is typically available analytically. The posterior density π(φ0|x)

can be estimated using a kernel density smoothing procedure using the MCMC sample under H1
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Figure 2.2: (a) Bayes factor expressed as the Savage-Dickey density ratio in the test of the null hypothesis
H0 : µ = 0 against the alternative hypothesis H1 : µ ̸= 0, using a data sample from N(µ,1). The black and
red curves represent the prior and posterior densities for µ in H1, and the small interval (of width ε) in the
parameter space for H1 is the null interval ø (or interval of null effects), representing H0. The prior and posterior
probabilities over the null interval (the gray and red areas) depend on the interval width (ε), but when ε → 0,
their ratio converges to the Bayes factor B10 =

π(µ0)
π(µ0|x) . If the area of null effects shrinks greatly when we move

from the prior to the posterior, the data contain strong evidence against H0. (b) Approximate Bayes factor
B10,ε =

P(ø)
P(ø|x) (eq. 2.8) plotted against ε for a dataset of size n = 100 with the sample mean x̄ = 0.258. The prior

is µ ∼ N(0,σ2
0 ) with σ0 = 2 (twice the sampling standard deviation). When ε → 0, B10 = 1.381. (c) Bayes

factor (eqs. 2.1 or 2.13) plotted against the prior variance σ2
0 for the same dataset showing the sensitivity of B10

to the prior on the parameter of interest (µ). Note that in this dataset (with
√

n|x̄|= 2.58) H0 is rejected by the
LRT with p-value 1%.

(Silverman, 1986). This means that calculation of B10 using eq. 2.3 requires running the MCMC

under H1 only and no cross-model algorithms such as reverse-jump MCMC (Green, 1995) are needed.

Note that within-model MCMC typically has better mixing properties than cross-model algorithms

(Yang, 2014, pp. 247-260).

Suppose (φ (1),φ (2), · · · ,φ (N)) are an MCMC sample from the posterior π(φ |x). These are the φ

values sampled during the MCMC, with the values for other parameters (λ and ξ ) simply ignored.

The kernel density estimator at the point φ0 is

π̂(φ0|x) =
1

Nh

N

∑
i=1

K
(

φ0 −φ (i)

h

)
, (2.5)

where K(·) is the kernel smoothing function and h is the smoothing parameter or window width. A
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good choice of h is

h = 0.9 ·min
(

SD,
inter-quartile range

1.34

)
×N− 1

5 (2.6)

(Silverman, 1986, eq. 3.30-3.31, p.47). The kernel function K is typically symmetrical around 0, with

points further away from φ0 make less contribution to the density at φ0. For example, the Gaussian

kernel is given as

K(t) = 1√
2π

e−t2/2 . (2.7)

However, this approach may be awkward to apply if the prior or posterior density at the null value,

π(φ0) or π(φ0|x), is 0 or ∞. In this chapter, we use a more intuitive way of deriving the Savage-Dickey

density ratio of eq. 2.3, which also provides an approach to its calculation. This treats the problem of

testing as a problem of estimation, and assesses how likely the parameter of interest (φ ) differs from

the null value (φ0). Define a null region or region of null effects, ø : |φ − φ0| < ε , inside which φ

is very close to φ0. The null region is a small part of the parameter space for H1 that represents H0

(fig. 2.2). We then define a Bayes factor to represent the evidence for H1

B10,ε =
1−P(ø|x)
P(ø|x)

/
1−P(ø)
P(ø)

≈ P(ø)
P(ø|x)

, (2.8)

as 1−P(ø)≈ 1 and 1−P(ø|x)≈ 1 for small ε . When ε → 0, P(ø)→ π(φ0)∆ and P(ø|x)→ π(φ0|x)∆,

where the differential ∆ is the size of the null region, so that B10,ε → π(φ0)
π(φ0|x) , as in eq. 2.3. Thus the

same conclusion is reached whether the problem is considered a testing problem (eqs. 2.1 or 2.3) or

an estimation problem (eq. 2.8).

The approach is illustrated in figure 2.2 using the simple problem of testing H0 : µ = 0 against

H1 : µ ̸= 0 using a sample of size n from N(µ,1). The data are summarized as the sample mean |x̄|.

We assign the prior µ ∼N(0,σ2
0 ) under H1. The posterior is then µ|x ∼N(µ1,σ

2
1 ), with µ1 =

nx̄
n+1/σ2

0

and 1
σ2

1
= n+ 1

σ2
0

. The prior and posterior probabilities of the null interval are P(ø) = P{|µ| < ε} =

1− 2φ
(
− ε

σ0

)
≈ π(µ0)∆ and P(ø|x) = φ

(
ε−µ1

σ1

)
− φ

(−ε−µ1
σ1

)
≈ π(µ0|x)∆, with the differential to be

the width of the null interval, ∆ = 2ε .

The above theory applies generally to Bayesian testing of nested hypotheses. Examples include

comparison of different species delimitation models (e.g., one-species versus two-species models)
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(Yang and Rannala, 2010) and test of migration between species (e.g., two species with and without

migration) (Nielsen and Wakeley, 2001).

2.1.3 Test of introgression
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H1: MSci ( > 0)
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A B

R

H0: MSC

(a) Test 1

(b) Test 2

Figure 2.3: Parameters in the alternative and null hypotheses in two Bayesian tests of introgression (i.e., test
of H0 : ϕ = 0 against H1 : ϕ > 0). The parameter of interest is the introgression probability ϕ . In test 1
(a), the shared parameters are λ = (τR,τX = τY ,θA,θB,θR,θX ,θY ). In test 2 (b), the shared parameters are
λ = (τR,θA,θB,θR) while ξ = (τX = τY ) in H1 becomes unidentifiable at the null value ϕ0 = 0. Here only the
two species involved in introgression are shown. Including other species on the species tree adds the same set
of parameters to the null and alternative hypotheses.

When we use the Savage-Dickey density ratio (eq. 2.3) to test introgression, the nuisance param-

eters include species divergence times (τ) and population sizes (θ ) on the species tree. Since we use

the same priors on τ and θ in models with and without introgresion, independent of the introgression
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probabilities (ϕ), the assumption of eq. 2.2 holds. We consider two tests with different assumptions

about the population size parameters (fig. 2.3). In test 1, the MSci model assigns different θ pa-

rameters on the two segments of a branch broken by an introgression event; for example, in figure

2.3a branch RA is broken into two branches RX and XA and assigned θX and θA, respectively. The

null model of no gene flow will have two θ parameters for the branch as well. Such a model can

be implemented in BPP by including ghost species in the MSC model from which no sequences are

sampled (fig. 2.3a). In the second test, the MSci model assigns the same θ parameter for a branch

on the species tree before and after an introgression event (which can be specified using the control

variable thetamodel = linked-msci in BPP) (fig. 2.3b). When the introgression probability takes

the null value (0) in H1, the introgression time τX becomes unidentifiable. The proof of eq. 2.4 ap-

plies to both scenarios. In this study, we used test 1. Note that calculating the Bayes factor using

the Savage-Dickey density ratio (eqs. 2.3 or 2.8) requires an MCMC sample from H1 and does not

require any analysis or MCMC run under H0.

In our BPP analysis, the introgression probability ϕ is assigned a beta prior beta(a,b), and the null

hypothesis corresponds to ϕ0 = 0 in H1. Let the null region be ø : ϕ < ε . Then P(ø) = P(ϕ < ε) in

eq. 2.8 is given by the cumulative distribution function (CDF) for beta(a,b), while P(ø|x) is simply

the proportion of the sampled ϕ values that are < ε . Intuitively, the null region ø : ϕ < ε in H1

represents absence of introgression (as the introgression probability ϕ is negligibly small), 1−P(ø)
P(ø)

is the prior odds in favor of gene flow, while 1−P(ø|x)
P(ø|x) is the posterior odds, and B10 measures the

change in the odds in favour of gene flow when we move from the prior to the posterior. We used

ε = 0.01 and confirm that use of ε = 0.001 gave very similar results. A cut-off of 20 for B10 may be

considered strong evidence in support of H1 (corresponding to 95% posterior for H1 if the prior model

probabilities for H0 and H1 are 1
2 each), while 100 means extremely strong evidence (corresponding

to 99% posterior for H1).
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2.2 Materials and Methods

2.2.1 Chipmunk genomic data

The dataset, generated and analysed by Sarver et al. (2021), includes 1060 nuclear loci from six

chipmunk species: T. rufus (R), T. canipes (C), T. cinereicollis (I), T. umbrinus (U), T. quadrivittatus

(Q) and T. dorsalis (D) (with 5, 5, 9, 10, 11, 11 individuals, respectively), as well as the outgroup

T. striatus (3 individuals). We included all individuals whether or not their mtDNA was likely to

be introgressed. Due to lack of a reference genome, Sarver et al. (2021) assembled genomic loci

(targeted genes or exons) into contigs using an approach called Assembly by Reduced Complexity

(ARC). Filters were then applied to remove missing data (contigs not present across all individuals)

and sequences with likely assembly errors. The procedure generated a dataset of 1060 loci (1060

ARC contigs, Sarver et al., 2021), with sequence length ranging from 14 to 1026 bp among loci and

the number of variable sites from 0.33% to 15.2%.

High-quality heterozygous sites in the data, as identified by high mapping quality and depth of

coverage, are represented using IUPAC ambiguity codes. They are accommodated using the analytical

integration algorithm implemented in BPP (Flouri et al., 2018; Gronau et al., 2011). This takes the

unphased genotype sequences as data and averages over all possible heterozygote phase resolutions,

using their relative likelihoods based on the sequence alignment at the locus as weights (Huang et al.,

2022b).

2.2.2 Species tree estimation for the T. quadrivittatus group

We used BPP version 4 (Flouri et al., 2018; Rannala and Yang, 2017) to estimate the species

tree under the MSC model without gene flow. This is the A01 analysis (speciesdelimitation=0,

speciestree=1) (Yang, 2015).

We assigned inverse-gamma (IG) priors to parameters in the MSC model: θ ∼ IG(3, 0.002) with

mean 0.001 for population size parameters and τ0 ∼ IG(3, 0.01) with mean 0.005 for the age of the

root. The shape parameter α = 3 means that those priors are diffuse, while the prior means are based

on estimates from preliminary runs. Note that both θ and τ are measured in the expected number
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Figure 2.4: (a) Species tree for the T. quadrivittatus group with T. striatus used as the outgroup. Branch lengths
represent the posterior means of divergence times (τ) estimated from BPP analysis of the full data of 1060
loci under the MSC model with no gene flow, with node bars indicating the 95% HPD intervals. A minimum
divergence time of 7 Myrs for the outgroup T. striatus is used to convert the τ estimates into absolute times. b)
The joint introgression model constructed in this study with three unidirectional introgression events, showing
parameter estimates from BPP analysis of the full data of 1060 loci. Nodes created by introgression events are
labeled, with the labels used to identify parameters in table S2.3. The MSci model includes 6 species divergence
times and 3 introgression times (τ), 19 population size parameters (θ ), and 3 introgression probabilities (ϕ).

of mutations per site. The inverse gamma is a conjugate prior for θ and allows the θ parameters

to be integrated out analytically, leading to a reduction of parameter space and improved mixing

of the MCMC algorithm. We conducted 10 replicate MCMC runs, using different starting species

trees. Each run generated 2×105 samples, with a sampling frequency of 2 iterations, after a burn-in

of 16,000 iterations. Each run took about 70 hours using one thread on a server with Intel Xeon

Gold 6154 3.0GHz processors. Convergence was confirmed by consistency between runs. All runs

converged to the same species tree (fig. 2.4a), with ∼ 100% posterior probability, which had the same

topology as the tree inferred by Sarver et al. (2021).
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2.2.3 Stepwise construction of the introgression model

As the species tree is well supported, apparently unaffected by cross-species introgression, we

used the species tree to build an introgression model with multiple introgression events. Our proce-

dure is similar to stepwise regression, the step-by-step method for constructing a regression model

that involves adding or removing explanatory variables based on a criterion such as an F-test or t-test.

Our procedure has two stages. In the first stage, we used BPP to fit a number of introgression

models, each with only one introgression event, and rank candidate introgression events by their

strength (indicated by the introgression probability ϕ). The analyses of Sarver et al. (2021) sug-

gest that mitochondrial introgression affected mostly four species: T. umbrinus (U), T. dorsalis (D),

T. quadrivittatus (Q) and T. cinereicollis (I). We considered introgression events involving all possible

pairs among those four species, as well as another species, QI, the common ancestor of T. cinereicollis

and T. quadrivittatus (fig. 2.4a). The dataset of 1060 loci was analysed under an MSci model with

only one introgression event, estimating the introgression probability (ϕ) and introgression time (τ).

We assign the same inverse-gamma priors on θ and τ as above, and beta(1,1) or U(0,1) for the intro-

gression probability ϕ . Two replicate runs were conducted for each analysis to confirm consistency

between runs, and MCMC samples from the two runs were then combined to produce posterior esti-

mates of parameters. This analysis provides a ranking of the introgression events by the introgression

probability. We calculated the Bayes factor for testing H0 : ϕ0 = 0 given by the Savage-Dickey den-

sity ratio (eq. 2.3), using the null interval ø = (0,0.01) (eq. 2.8); use of (0,0.001) produced virtually

identical results. Only introgresssion events with B10 ≥ 20 were considered further.

In the second stage, we added introgression events onto the binary species tree (fig. 2.4a) sequen-

tially in the order of decreasing strength (introgression probability). To reduce the computational cost

and to examine the robustness of the analysis, this step was applied to two subsets of the 1060 loci:

the first half and the second half, each of 530 loci. The priors used for population sizes and root age

were as above. With multiple introgression events in the model, we extended the MCMC runs to be

k-times as long if the model involved k introgression events. Three replicate runs were performed

to check consistency between runs. Samples from the replicate runs were then combined to produce

posterior summaries. At each step, the added introgression event was retained if it met the same cutoff

31



Back to Contents 2.3 Results

as above in either of the two data subsets.

Our procedure produced a joint introgression model with three unidirectional introgression events.

The joint model was then applied to the full dataset of 1060 loci to estimate the population parameters

including introgression probabilities, introgression times, species divergence times, and population

sizes (fig. 2.4b), using the same prior settings. We conducted 3 replicate runs, using a burn-in of

50,000 iterations and then taking 106 samples, sampling every 2 iterations. Each run took 200 hrs.

2.3 Results

2.3.1 Species tree estimation for the T. quadrivittatus group

We analysed the full data of 1060 loci under the MSC model without gene flow to estimate the

species tree. The ten replicate runs using different starting species trees converged to the same maxi-

mum a posteriori probability (MAP) tree, with posterior probability ∼ 100% (fig. 2.4a). Sarver et al.

(2021) recovered the same species tree topology in their analysis of the same data using ASTRAL (Mi-

rarab and Warnow, 2015) and SVDQUARTETS (Chifman and Kubatko, 2014), although with weaker

support for some nodes, e.g., concerning the placement of T. rufus. The differences in support may be

due to the fact that ASTRAL and SVDQUARTETS use summaries of the multilocus sequence data that

are not sufficient statistics, and are thus less efficient than the full likelihood method implemented in

BPP (Xu and Yang, 2016; Zhu and Yang, 2021).

2.3.2 Stepwise construction of the introgression model

In the first stage of our procedure, we fitted introgression models, each involving one introgres-

sion event, using the full dataset of 1060 loci. We considered introgression events between every

contemporary pair of the five species: T. cinereicollis (I), T. dorsalis (D), T. quadrivittatus (Q), and

T. umbrinus (U), and the ancestral species QI (fig. 2.4a). Introgression events that passed our cutoff

(B10 ≥ 20) are listed in table 2.2. Introgression from QI into D had the highest probability, > 10%,

while six more events had ϕ > 5%: Q→D, D→QI, QI→U, I→D, Q→I, and I→Q. We note that

introgressions between Q and I, and between QI and D, was significant in both directions and the
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Table 2.2: Posterior means and 95% HPD CIs (in parentheses) for introgression probability (ϕ) and introgres-
sion time (τ) in the separate introgression analysis

Introgression ϕ τ (×10−3) B10

* QIRCD → U 0.6215 (0.3907, 0.8243) 0.896 (0.784, 1.004) ∞

* QI → D 0.1187 (0.0866, 0.1499) 0.337 (0.311, 0.367) ∞

Q → D 0.0779 (0.0509, 0.1026) 0.297 (0.253, 0.328) ∞

D → QI 0.0707 (0.0384, 0.1058) 0.337 (0.302, 0.366) ∞

QI → U 0.0624 (0.0269, 0.1020) 0.408 (0.353, 0.457) 21.27
I → D 0.0579 (0.0332, 0.0862) 0.265 (0.217, 0.318) ∞

* Q → I 0.0568 (0.0315, 0.0750) 0.098 (0.073, 0.121) ∞

I → Q 0.0533 (0.0153, 0.0969) 0.111 (0.077, 0.156) ∞

D → U 0.0214 (0.0022, 0.0483) 0.276 (0.178, 0.474) 0.04
Q → U 0.0198 (0.0037, 0.0389) 0.296 (0.209, 0.367) 0.05
D → I 0.0180 (0.0092, 0.0275) 0.155 (0.123, 0.192) 0.39
D → Q 0.0177 (0.0058, 0.0315) 0.184 (0.117, 0.347) 0.10
U → QI 0.0097 (0.0022, 0.0181) 0.371 (0.322, 0.410) 0.01
I → U 0.0069 (0.0015, 0.0136) 0.158 (0.098, 0.223) 0.01
U → D 0.0066 (0.0024, 0.0112) 0.235 (0.176, 0.300) 0.01
U → Q 0.0061 (0.0008, 0.0127) 0.200 (0.119, 0.294) 0.01
U → I 0.0037 (0.0009, 0.0071) 0.147 (0.090, 0.207) 0.01

Note.— The species tree of figure 2.4a is used, with a single introgression event assumed in each analysis.
The full dataset of 1060 loci is analysed using BPP to estimate the introgression probability (ϕ) and the intro-
gression time (τ), together with the species divergence times (τ) and population sizes (θ ) on the species tree.
Introgression events with B10 < 20 (D → U and below) are not considered further in the stepwise approach of
constructing the joint introgression model. The three introgression events that are selected in the joint intro-
gression model are marked with asterisks. Bayes factor B10 = ∞ occurs if all ϕ values in the MCMC sample
are > ε = 1%.

estimated introgressions times were close (table 2.2). We thus replaced the two unidirectional in-

trogression events by one bidirectional introgression in further analyses (model D in Flouri et al.,

2020).

The time of QI→U introgression was estimated to be 0.000408, very close to the species diver-

gence time at node QIR (0.000417) (fig. 2.4a), suggesting that the introgression was probably a more

ancient event. Note that if an introgression event is assigned incorrectly to a daughter branch to the

lineage truly involved in introgression, one would expect the estimated introgression time to collapse

onto the species divergence time. We thus attempted to place the introgression onto more ancient

ancestral branches on the species tree (fig. 2.4a) and finally identified the lineage involved in intro-

gression to be the ancestral species QIRCD. The QIRCD→U introgression had an estimated time that

was away from the species divergence times, and the estimated introgression probability (62%) was
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the highest (table 2.2).

In the second stage, we added introgression events identified in table 2.2 onto the binary species

tree of figure 2.4a, in the order of their introgression probabilities (table S2.1). This was applied to

two data subsets (the full data split into two halves). While our procedure allows introgression events

already in the model to drop out when new introgressions are added to the model, this did not happen

in the analysis of the Tamias dataset. Instead the most important introgression events identified in

stage 1 remained to be most important in the joint introgression models constructed in stage 2. Note

that multiple introgression events may not be independent. An introgression event significant in

stage 1 may not be significant anymore when other introgression events are already included in the

model. For example, when the QI→D introgression was already included in the model, none of the

introgressions Q→D, D→QI, I→D and I→Q was significant. Those introgressions may be expected

to lead to similar features in the sequence data, such as reduced sequence divergences between Q

or I and D. Similarly, introgression probability for an introgression event often became smaller when

other introgressions were added in the model. However, the opposite may occur as well. For example,

ϕQIRCD→U was estimated to be 54-63% when this was the only introgression assumed in the model,

but increased to 59-69% when other introgression events were added in the model (table S2.1).

Results for the two data subsets were largely consistent, especially concerning introgression events

with high introgression probabilities. We thus arrived at a joint introgression model with three unidi-

rectional introgression events (fig. 2.4b, table S2.1).

We examined the impact of the prior for ϕ on the Bayesian test of introgression. We calculated

the Bayes factor B10 using the full dataset of 1060 loci under the prior ϕ ∼ beta(α,β ), with α =

0.2,1,5 and β = 0.2,1,5, generating nine prior settings (table S2.2). Note that beta(α,β ) has the

mean E(ϕ) = α

α+β
and variance V(ϕ) = αβ

(α+β )2(α+β+1) . In particular, the prior mean varied from

0.0385 for beta(0.2, 5) to 0.961 for beta(5, 0.2). The Bayes factor B10 was ∞ for all three introgression

probabilities in the joint model, insensitive to the prior on ϕ (table S2.2).
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Figure 2.5: Posterior means and 95% HPD CIs for the three introgression probabilities (ϕ) obtained from BPP

analyses of the full data of 1060 loci using different beta priors, ϕ ∼beta(α,β ).

35



Back to Contents 2.3 Results

2.3.3 Estimation of introgression probabilities and species divergence/introgression times

Finally, we fitted the joint introgression model of figure 2.4b to the full data of 1060 loci, as well

as the two halves, with parameter estimates shown in table S2.3. The fitted model is very parameter-

rich, partly as we assign different θ parameters for different branches on the species tree: for example,

branch Q in figure 2.4b is broken into two segments by the introgression event, Q→I, which are

assigned two independent θ parameters. As a result, population sizes for ancestral species tend to

be poorly estimated, especially for those populations with a very short time duration. These patterns

are consistent with simulation studies that examine the information content in multi-locus datasets

(Huang et al., 2020).

The estimated introgression probabilities from the full data are 0.625 with the 95% highest proba-

bility density (HPD) credibility interval (CI) to be (0.442, 0.794) for ϕQIRCD→U , 0.106 (0.074, 0.139)

for ϕQI→D, and 0.050 (0.028, 0.074) for ϕQ→I . The introgression probability ϕQIRCD→U involved

considerable uncertainty, with a large CI, possibly because the introgression is ancient and is between

sister species, making it hard to estimate its strength, so that the dataset of 1060 loci may be too small.

We evaluated the impact of the prior for ϕ on parameter estimation in the analysis of the full

dataset, using α = 0.2,1,5 and β = 0.2,1,5 in the prior ϕ ∼ beta(α,β ) (fig. 2.5). The prior had

some effects on ϕQIRCD→U , with the prior mean being more important than the prior variance. Under

beta(0.2, 5) with the prior mean 0.0385, the posterior mean was lower, and the CI wider. Under

beta(5, 0.2) with the prior mean 0.961, the posterior mean was higher, and the CI narrower. However,

the posterior CIs overlapped considerably among the different priors, and overall the impact of the

prior for ϕ on the estimate of ϕQIRCD→U was minor. Estimates of ϕQI→D and ϕQ→I were insensitive

to the prior used (fig. 2.5).

Accommodating gene flow in the model had significant impacts on estimation of the time of diver-

gence between species involved in gene flow (figs. 2.4 & 2.6). While estimates of times for the recent

divergences (τQI,τQIR,τQIRC, and τQIRCD) were nearly identical between the MSC model ignoring

gene flow and the MSci model incorporating gene flow, the estimated age of the T. quadrivittatus

clade (τQIRCDU ) was much greater under MSci than under MSC (fig. 2.6). This can be explained by

the fact that the MSC model ignored the QIRCD→U introgression, which had introgression proba-
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Figure 2.6: Scatterplot of posterior means and 95% HPD CIs (a) for the six species divergence times (τ) and
(b) for the six ancestral population sizes (θ ) in the MSC and MSci models of figure 2.4 obtained from BPP

analyses of the full data of 1060 loci. Note that both τ and θ are measured in the expected number of mutations
per site.

bility 62.5%. Note that sequence divergence between any pair of species X and Y has to be older than

species divergence (tXY > τXY ), and as a result, the minimum (rather than average) sequence diver-

gence dominates the estimate of species divergence time. If gene flow is present between species and

is ignored in the model, the reduced sequence divergence due to gene flow will be misinterpreted as

recent species divergence, leading to underestimation of species divergence time. This effect has been

noted in previous simulations (Leaché et al., 2014).

The estimated age of the root of the species tree (τQIRCDUS) was slightly smaller under MSci than

under MSC. However, τQIRCDUS is negatively correlated with the population size (θQIRCDUS) so that

both parameters have large uncertainties (Burgess and Yang, 2008).

Sullivan et al. (2014, fig. 1) used the minimum divergence time of 7 Ma for the outgroup species

T. striatus, based on fossil teeth thought to belong to Tamias found in the late Miocene, reported

in Dalquest et al. (1996), to date the T. quadrivittatus clade to 1.8 Ma in a maximum-likelihood

concatenation analysis of four nuclear genes, and to 1.2 Ma (with 95% CI 0.6–2.2) in a *BEAST

(Heled and Drummond, 2010) analysis of the same data. Concatenation analysis is known to be

biased as it does not accommodate the stochastic variation of gene tree topologies and divergence
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Figure 2.7: (a) HYDE assumes a hybrid-speciation model with the additional assumption of equal population
sizes, or a symmetrical inflow model, with τS = τT and θS = θT (Blischak et al., 2018). (b, c) Two parental
species trees S1 and S2 induced by the hybridization model of (a). Site patterns are a mixture over the two
species trees.

times among loci due to the coalescent process (Ogilvie et al., 2017). We used the same calibration

to rescale the estimates of τ under the MSC and MSci models (fig. 2.4). The minimum age for

the T. quadrivittatus clade was 1.9 Ma (with 95% HPD CI to be 1.8–2.0) under the MSC model,

comparable to the *BEAST estimate under the same model (fig. 2.4a). Under the MSci model, the

estimated minimum age was 4.1 Ma (with CI be 3.2–5.1) (fig. 2.4b), much older than the estimates

under the MSC model without gene flow. Note that here the CIs accommodate the uncertainty due to

finite amounts of sequence data but not uncertainties in the fossil calibration.

2.3.4 Model assumptions underlying HYDE

Whereas the analyses of nuclear data by Sarver et al. (2021) using HYDE detected no significant

signal of introgression at all, our BPP analyses of the same data revealed strong evidence of multiple

introgression events, involving both sister and non-sister species (fig. 2.4b). To understand the op-

posing conclusions reached in the two analyses, here we examine the model assumptions underlying

HYDE. We then use simulation to compare the performance of HYDE and BPP under conditions that

are representative of the Tamias data but may violate the assumptions of HYDE.
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HYDE was developed under the hybrid-speciation model of figure 2.7a, with τS = τX = τT , and

θS = θT (Blischak et al., 2018). Formulated for quartet data, with one sequence from each of the four

species, it uses the counts or frequencies of three parsimony-informative site patterns: ii j j, i j ji, i ji j,

to estimate the genetic contributions of the two parental species to the hybrid species: ϕ and 1−ϕ .

Here pattern i jkl means a site with nucleotides i, j,k, l in O,P1,H,P2, respectively (fig. 2.7a). Under

this model, the probabilities of gene trees and site patterns are both given by a mixture over the two

binary species trees S1 and S2 (called parental species trees), with mixing probabilities ϕ and 1−ϕ

(fig. 2.7b&c). Given species tree S1, the matching pattern ii j j has a larger probability (say, a) than

the other two mismatching patterns (each with probability b, say, with b < a). Given species tree

S2, the matching pattern i j ji has probability a while the two mismatching patterns have b each. The

symmetry assumptions (τS = τT and θS = θT ) ensure that a,b for tree S1 are equal to a,b for S2. By

averaging over the two species trees, the site pattern probabilities under the hybridization model are

given as

pii j j = ϕa+(1−ϕ)b

pi ji j = ϕb+(1−ϕ)b = b

pi j ji = ϕb+(1−ϕ)a.

(2.9)

Setting those probabilities to the observed frequencies ( p̂) and eliminating a and b from the system of

equations gives the estimate

ϕ̂ =
p̂ii j j − p̂i ji j

p̂ii j j −2p̂i ji j + p̂i j ji
, (2.10)

This is eq. 3 in Blischak et al. (2018), although the derivation here is simpler than that of Kubatko and

Chifman (2019). Note that the theory works if τS = τT > τX and θS = θT , so that the method may be

used under model A of Flouri et al. (2020, fig. 1) with the symmetry assumption. The null hypothesis

of no hybridization/introgression (H0 : ϕ = 0) can be tested by applying a normal approximation to

the site-pattern counts (Kubatko and Chifman, 2019).

To see which of the two assumptions (τS = τT and θS = θT ) has more impact, note that a change

in τ is comparable with the same amount of change in 2
θ

. Coalescent may occur in population RS

(if the H sequence takes the left parental path in the model of fig. 2.7a), at the rate 2
θS

over time
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Figure 2.8: Introgression models (species trees with introgression) used for simulating data to evaluate the
performance of HYDE and BPP. (a) Species tree for three species (R, U and S) with R → U introgression at
the rate of ϕ = 0.625, and with S to be the outgroup, based on BPP estimates from the Tamias data (fig. 2.4b,
table S2.3). Population sizes (θ ) are next to the branches and species divergence times (τ) are next to the
nodes. Two sequences are sampled from species U. When the data are analysed using HYDE, either Ua or Ub
is specified as the hybrid lineage. (b) Outflow model for three species (D, Q, R), with S to be the outgroup, with
introgression from Q to D at the rate ϕ = 0.106 (table S2.3). (c) Inflow asymmetrical model for three species,
with asymmetrical divergence times and population sizes. (d) Inflow symmetrical model for three species, with
τM = τQR and θM = θQR (see fig. 2.7a). Note that only model (d) matches the assumption of HYDE.

period τR − τS, and it may occur in population RT (if the H sequence takes the right parental path),

at the rate 2
θT

over time period τR − τT . If 2(τR−τS)
θS

= 2(τR−τT )
θT

, the probability of coalescent (given

that two sequences enter populations S or T ) will be the same in the two populations. However, the

probabilities of the site patterns depend on the time of coalescent as well as its occurrence. Thus for

eq. 2.10 to be valid, both the rates and the times have to be identical: τS = τT and θS = θT .

Note that HYDE or the D-statistic cannot be used to infer gene flow between sister lineages. One

might think that HYDE or D could be applicable if two sequences were sampled from the recipient

lineage to form a quartet. However this is not the case. With ancient introgression, the two sequences

from the same lineage are interchangeable and have the same average genomic distance to the out-

group sequence. Suppose P1 and H in figure 2.7a are two sequences from the same lineage. Then site

patterns ii j j and i ji j will have the same probability even if ϕ > 0.
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Figure 2.9: Power of detecting gene flow by HYDE and BPP in 100 replicate datasets simulated under the
models of figure 2.8.

2.3.5 Simulations to examine the performance of HYDE

Our examination of assumptions underlying HYDE suggests that HYDE may not be suitable for

testing gene flow in the Tamias data. The strongest introgression in the Tamias data detected using BPP

was between sister species, with ϕQIRCD→U = 0.625 (fig. 2.4b). This is unidentifiable by HYDE. The

next introgression involved outflow with ϕQI→D = 0.106, whereas HYDE assumes inflow. The third

introgression was again between sister species, with ϕQ→I = 0.050. To verify those expectations and

to explore the performance of HYDE and BPP under different scenarios of gene flow, we conducted

simulations using four different model settings (fig. 2.8a-d), based on parameter estimates obtained
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from the Tamias data (fig. 2.4b, table S2.3). Gene trees and sequence alignments at multiple loci were

generated using the simulate option of BPP. HYDE analysis was conducted using PAUP (Swofford,

2003). The data were also analysed using BPP. The results are summarized in figure 2.9.

Model a (fig. 2.8a) assumes gene flow between sister lineages, based on the introgression event

from QIRCD→U in the Tamias data (fig. 2.4b). It was suggested that by including multiple sequences

from the recipient lineage, HYDE or the D-statistic might be used to detect gene flow between sister

lineages. We used species R and U, with introgression rate ϕR→U = 0.625, including two sequences

(Ua and Ub) from the recipient species U, while S was used as the outgroup. The divergence times

(τ) and population sizes (θ ) were based on the real data (table S2.3). When multiple branches in the

full tree (fig. 2.4b) were merged into one branch in the tree of figure 2.8a, θ for the merged branch

was calculated as a weighted average, with the branch lengths as weights. As our objective in this

case was to confirm the lack of power of HYDE (and the D-statistic), we simulated large datasets,

each with L = 8000 loci. The sequence length was 500 sites, and the number of replicates was 100.

When the data were analysed using HYDE and the D-statistic, the quartet tree (((Ua, Ub), R), S) was

used, with Ua or Ub labelled the ‘hybrid’ lineage. The same data were analysed using BPP under the

MSci model with three species (fig. 2.8a).

As expected, HYDE and the D-statistic had no power to detect gene flow between sister lineages:

indeed, the power of HYDE and D was not higher than the significant level (fig. 2.9, table S2.4). Note

that a test that ignores data and produces 5% positives at random will have 5% of power. Also HYDE

did not produce reliable estimates of ϕ; in about half of the datasets, the estimate was outside the

range (0,1).

Model b (fig. 2.8b) was based on the next strongest introgression in the Tamias data, with ϕQI→D =

0.106 (fig. 2.4b). We used species D, Q, R, with S as the outgroup. This is a case of outflow, when

gene flow from an ingroup species Q to a more distant species D. Our examination of the assumptions

made by HYDE suggests that HYDE can be used to detect inflow, but not outflow. We generated

datasets of various sizes with L = 500,2000 or 8000 loci. The other settings were the same as for

model a. When the data were analysed using HYDE, Q was designated the ‘hybrid’ lineage while R

and D were the two parents. HYDE performed poorly (fig. 2.9b), with very low power and frequent
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invalid estimates of ϕ (table S2.5).

Model c (fig. 2.8c) was the same as model b but the direction of gene flow was reversed. The model

was then a case of inflow, as assumed by HYDE. However, species divergence times and population

sizes did not satisfy the symmetry requirements of HYDE (in other words, τM ̸= τQR and θM ̸= θQR).

In this case, HYDE had considerable power in detecting gene flow (fig. 2.9c). However, the estimates

of ϕ by HYDE involved large biases, apparently converging to ≈ 0.32 when the true value was 0.106

(table S2.5). This positive bias is apparently because coalescent occurs at a higher rate or over longer

time period on the M branch than on the QR branch in figure 2.8c, with τQRD−τM
θM

>
τQRD−τQR

θQR
. In the

opposite case, the bias should be negative.

Model d (fig. 2.8d) was the same as model c with inflow but in addition we enforced the symmetry

assumptions, so that species Q was a hybrid species formed by hybridization between D and R. This

is the hybrid speciation model assumed by HYDE, and the method performed well (fig. 2.9d). Its

power was lower than that for BPP, as expected from statistical theory, but improved with the increase

of data, rising from 10% at L = 500 loci to 90% at 8000 loci. The parameter estimate appeared to

be consistent, converging to the correct value (0.106) when the number of loci increased, and there

were not many invalid estimates (table S2.5). Those results are consistent with previous simulations,

which evaluated the performance of HYDE when all its assumptions were met and found the method

to perform well (Blischak et al., 2018; Flouri et al., 2020).

In summary, our simulations suggest that it is important to apply HYDE to detect the correct

mode of gene flow (that is, gene flow between non-sister lineages, and inflow instead of outflow)

(fig. 2.8d). Furthermore, the symmetry assumptions are important for HYDE to produce reliable

estimates of introgression probability. When all model assumptions are met, HYDE performed well.

However, HYDE had no power to detect gene flow between sister lineages, and very low power to

detect outflow.

In all four models (fig. 2.8a-d), the Bayesian test using BPP had good power (fig. 2.9, tables

S2.4&S2.5). Furthermore, the posterior means and 95% HPD CIs for parameters in the introgression

models b-d were well-behaved (fig. 2.10). While HYDE can estimate only two parameters from the

site-pattern counts (the internal branch length in coalescent units on the species tree and the introgres-
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sion probability), the BPP analysis of the same data estimates all parameters in the model. The species

divergence/introgression times were all well estimated with small CIs (fig. 2.10). The introgression

probability was accurately estimated with narrow CIs when ≥ 500 loci were used. Population size

parameters for short branches were poorly estimated due to lack of coalescent events in those popu-

lations.

Table 2.3: False positive rate of BPP and HYDE tests and average estimates of introgression probability in 100
simulated replicates

BPP HYDE

Error Rate Error Rate Error Rate Error Rate Proportion of
# loci (α = 1%) (α = 5%) ϕ̂±SD (α = 1%) (α = 5%) ϕ̂±SD invalid estimates

Inflow asym (fig. 2.8c)
500 0% 0% 0.019±0.011 1% 7% 0.140±0.108 52%
2000 0% 0% 0.009±0.004 5% 13% 0.094±0.061 52%
8000 0% 0% 0.004±0.002 2% 7% 0.038±0.032 51%

Inflow sym (fig. 2.8d, HYDE model)
500 0% 0% 0.032±0.016 0% 3% 0.064±0.048 49%
2000 0% 0% 0.014±0.006 1% 2% 0.039±0.029 55%
8000 0% 0% 0.006±0.003 0% 3% 0.022±0.016 49%

Note.— Data were simulated using the species trees of figure 2.8c-d but with ϕ = 0.

We also examined the false positive rate (type-I error rate) of the HYDE and Bayesian tests, by

simulating data using the inflow-asym (fig. 2.8c) and inflow-sym (fig. 2.8d) models but with ϕ = 0

fixed so that there was no introgression in the true model. The results are summarized in table 2.3.

Under the inflow-asym model, HYDE had higher false positive rate than the nominal significant level.

For example, at the 5% significance level, the false positive rate was 7%, 13%, and 7% in datasets

of 500, 2000, and 8000 loci, respectively. The high rate may be explained by the violation of the

symmetry assumptions for HYDE. Under the inflow-sym model (or the HYDE model), the rate

was 3%, 2%, and 3%, all within the allowed 5% (table 2.3). Thus HYDE performed well when its

assumptions were met and had elevated false positives when the assumptions were violated. In all

settings, the false positive rate of the Bayesian test was estimated to be ∼ 0%. This is consistent with

the expectation that the Bayesian test may be more conservative (with lower false positive rate and

lower power) than the LRT (see discussions later).

Finally, to assess the information content in datasets of the size of the Tamias data, we used
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Table 2.4: LRT and Bayesian tests in the normal example in two datasets

Data LRT Bayesian test
√

n|x̄| p-value Prior B10 P(H1|x)

1.96 p = 0.05 σ0 = 1 0.359 0.264
1.96 p = 0.05 σ0 = 2 0.262 0.208
1.96 p = 0.05 σ0 = 10 0.120 0.107

2.58 p = 0.01 σ0 = 1 0.408 0.290
2.58 p = 0.01 σ0 = 2 0.300 0.230
2.58 p = 0.01 σ0 = 10 0.138 0.122

Note.— The Bayes factor B10 is calculated assuming data size n = 100 in eq. 2.13, while the posterior
model probability is given by eq. 2.14. Note that the p-value for the LRT is 5% (or 1%) in the dataset
with

√
n|x̄|= 1.96 (or 2.58).

parameter estimates from the full dataset (fig. 2.4b, table S2.3) to simulate two datasets of the same

size as the original, with 5, 5, 9, 10, 11, 11, 3 unphased sequences per locus for species R, C, I, U, Q, D

and S, respectively. The sequence length was 200 sites. We analysed the datasets under the same MSci

model of figure 2.4b using BPP to estimate all parameters. The estimates from the two datasets were

similar, so we present those from one of them in table S2.3. At this data size, BPP achieved relatively

good precision and accuracy. The posterior means were close to the true values, and the CIs were

also similar to those calculated from the real data. Similarly to analyses of the real data, divergence

times and population sizes for modern species were well estimated, but ancestral population sizes, in

particular those for populations of short time duration, were more poorly estimated.

2.4 Discussion

2.4.1 Criteria for testing gene flow

Hypothesis testing or model selection involves arbitrariness, and classical hypothesis testing and

Bayesian model selection applied to the same data may produce strongly opposed conclusions, a

situation known as Jeffreys’s paradox (Jeffreys, 1939; Lindley, 1957). Furthermore, Bayesian model

selection is known to be sensitive to priors on model parameters, especially on parameters that are

not shared between the models under comparison. See Yang (2014, pp.194-7) for a discussion of

those issues. Here we review different strategies for testing, using as example a simple problem
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Figure 2.10: Posterior means and 95% HPD CIs for parameters in the three introgression models of figure 2.8:
(b) outflow asym, (c) inflow asym and (d) inflow sym (HYDE model), in BPP analyses of 100 replicate datasets,
each with 500, 2000, or 8000 loci. Note that in model (d) inflow sym, all populations had the same size (θ )
although separate θ parameters were estimated for different populations when the data were analysed using
BPP. Parameters τ and θ are multiplied by 103. The number above the CI bars is the coverage or the probability
that the CI includes the true value.
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of testing the null hypothesis H0 : µ = 0 against the alternative H1 : µ ̸= 0, using a data sample,

x = {x1,x2, · · · ,xn}, from the normal distribution N(µ,1). We assume that a false positive error (of

falsely rejecting H0 when it is true) is more serious than a false negative error (of failing to reject

H0 when it is false). The data can be summarized as the sample mean x̄, with the likelihood given

by x̄ ∼ N(0,1/n) under H0 and x̄ ∼ N(µ,1/n) under H1. Let φ(x; µ,σ2) be the probability density

function (PDF) for N(µ,σ2) and Φ(·) be the CDF for N(0,1).

In hypothesis testing, the p-value can be calculated from the fact that under H0,
√

n|x̄| ∼ N(0,1)

or n|x̄|2 ∼ χ2
1 . At the α = 5% significance level, we reject H0 if

2∆ℓ= 2log
φ(x̄; x̄, 1

n)

φ(x̄;0, 1
n)

= n|x̄|2 > χ
2
1,5% = 3.84. (2.11)

Alternatively one may consider this as an estimation problem and construct a confidence interval (CI)

for µ and reject H0 if the CI excludes the null value 0. This is equivalent to the LRT.

In a Bayesian analysis, we consider two approaches. The first is to examine whether the posterior

95% credibility interval (CI) for µ under H1 excludes the null value 0. We assign the prior µ ∼

N(0,σ2
0 ) under H1. The posterior is then µ|x ∼ N(µ1,σ

2
1 ), with mean µ1 = nx̄

n+1/σ2
0

and precision

1
σ2

1
= n+ 1

σ2
0

. Here the reciprocal of variance is known as precision. The sample precision is n and

the prior precision is 1/σ2
0 , while the posterior precision is the sum of the two. The 95% CI for µ is

given as µ1 ±1.96σ1 so that the CI excludes 0 (in which case we reject H0) if |µ1|> 1.96σ1, or if

n|x̄|2 > 3.84
[
1+1/(nσ

2
0 )
]
. (2.12)

The second approach is to use the Bayes factor to compare the null and alternative hypotheses.

B10 =
P(x̄|H1)

P(x̄|H0|
=

φ(x̄;0, 1
n +σ2

0 )

φ(x̄;0, 1
n)

=
1√

1+nσ2
0

· exp
{

nx̄2

2
[
1+1/(nσ2

0 )
]}, (2.13)

(e.g., Yang, 2006, eq. 5.21).
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The Bayes factor is closely related to (and ’calibrated’ using) the posterior model probability. If

the two models are assigned equal prior probabilities (π0 = π1 =
1
2 ), the posterior model probability

is

P(H1|x) =
B10

1+B10
, (2.14)

so that a 95% cut-off on P(H1|x) corresponds to B10 = 19, and H0 is rejected based on the Bayes

factor if and only if

n|x̄|2 > log
{

19
√

1+nσ2
0

}
×2

[
1+1/(nσ

2
0 )
]
. (2.15)

While the LRT (eq. 2.11) depends on
√

n|x̄| only, both the posterior CI (eq. 2.12) and the Bayes

factor (eq. 2.15) depend in addition on nσ2
0 . Note that the three criteria (eqs. 2.11, 2.12, & 2.15) have

the ordering

3.84 < 3.84
[
1+1/(nσ

2
0 )
]

< log
{

19
√

1+nσ2
0

}
×2

[
1+1/(nσ

2
0 )
]
.

(2.16)

Thus the LRT has more power and higher false positive rate than the posterior CI while the Bayesian

test based on the Bayes factor is the most conservative. The result reflects the general perception that

the LRT tends to reject the null hypothesis and favour parameter-rich models too often, especially in

large datasets. Note that if H0 is true, the false positive rate of the LRT stays at 5% when the sample

size n → ∞, whereas in the Bayesian analysis, the true model H0 will dominate, with P(H0|x) → 1

and B10 → 0 when n → ∞.

Example calculations are given in table 2.4 for two datasets with
√

n|x̄|= 1.96 or 2.58 and n= 100.

In both datasets, H0 is rejected by the LRT (at the 5% and 1% levels, respectively), but the Bayes factor

and the posterior model probabilities favour H0 over H1, with B10 < 1 and P(H1|x)< 1
2 .

This analysis suggests that the difference in power between HYDE and BPP are due to the ineffi-

cient use of information in the data by HYDE, not to the different statistical philosophies. An LRT

for testing introgression applied to the multilocus sequence alignments may be expected to have more

power (and higher false positive rate) than the Bayesian test based on the Bayes factor.
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2.4.2 The power of heuristic and likelihood methods to detect introgression

When applied to the Tamias dataset, HYDE and BPP produced opposite conclusions concerning

gene flow. Our examination of the model assumptions for HYDE and our simulations suggest that

this is because gene flow with the strongest signal in the Tamias group, either between sister species

or involving outflow, may be of the wrong type or in the wrong direction for HYDE. Here we review

and summarize the major issues with HYDE.

First, both HYDE and the D-statistic pool sites across loci when counting site patterns, so that the

site-pattern counts are genome-wide averages. Cross-species gene flow creates genealogical variation

across the genome, with the probabilistic distribution of the gene trees and coalescent times specified

by parameters in the MSC model with gene flow, such as species divergence times, population sizes,

and rates of gene flow (Barton, 2006; Lohse and Frantz, 2014). As a result, there is important infor-

mation concerning gene flow in the variance of site-pattern counts among loci, but this information is

ignored by those methods. In other words, sites at the same locus share the genealogical history under

the assumption of no within-locus recombination (see Zhu et al., 2022 for an evaluation of the impact

of this assumption on MSC-based analyses), and their differences reflect the stochastic fluctuation

of the mutation process. Sites at different loci in addition may have different genealogical histories,

reflecting the stochastic nature of the process of coalescent and introgression. When sites are pooled

across loci, those two sources of variation are confounded, leading to loss of information (Shi and

Yang, 2018; Zhu and Yang, 2021). As a consequence, certain forms of introgression, such as intro-

gression between sister lineages, are unidentifiable by D or HYDE, while estimation of introgression

rates between non-sister species suffers from larger variances (Jiao et al., 2021).

Second, HYDE makes restrictive assumptions about gene flow. The underlying model is one of

hybrid speciation with identical population sizes or equivalently the inflow model with symmetri-

cal species divergence times and population sizes (fig. 2.7a, with τS = τT and θS = θT ) (Blischak

et al., 2018; Kubatko and Chifman, 2019). Our simulation suggests that HYDE can indeed infer

gene flow/hybridization and produce reliable estimates of introgression probability under this model

(fig. 2.9d & table S2.5; see also Blischak et al., 2018; Flouri et al., 2020). However, introgression in

the wrong direction or violation of the symmetry assumptions may lead to loss of power and biased
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or invalid estimates by HYDE (fig. 2.9b&c, table S2.5).

Third, the approaches taken by HYDE to accommodate multiple samples per species and het-

erozygote sites in diploid genomes may be problematic. When multiple samples are available in the

species quartet, HYDE counts site patterns in all combinations of the quartet. Let the numbers of

sequences for species O,P1,H,P2 be nO,n1,nH ,n2. There are then nO×n1×nH ×n2 combinations in

which one sequence is sampled per species, and HYDE counts site patterns in all of them (Blischak

et al., 2018). This ignores the lack of independence among the quartets and exaggerates the sample

size. At the same time, multiple samples from the same species are never compared with each other,

which should provide important information about the population size for that species. In a likelihood

method such as BPP, all sequences at the same locus, both from the same species and from different

species, are related through a gene tree, and genealogical information at the locus is used.

Similarly heterozygote sites are not treated properly in HYDE. If the site pattern is AGRG, with

R representing an A/G heterozygote, HYDE adds 0.5 each to the site patterns i j j j (for AGGG) and

i ji j (for AGAG) (Blischak et al., 2018), in effect treating R as an unknown nucleotide that is either

A or G whereas correctly it means a heterozygote (both A and G). The proportion of heterozygotes

in each diploid genome should be informative about θ for that population, but such information is

not used by HYDE. In BPP, heterozygote sites are resolved into their underlying nucleotides using

an analytical integration algorithm (so that R means both A and G, say), with the uncertainty in the

genotypic phase of multiple heterozygous sites in a diploid sequence accommodated by averaging

over all possible heterozygote phase resolutions, weighting them according to their likelihoods based

on the sequence alignment at the locus (Flouri et al., 2018; Gronau et al., 2011). Simulations suggest

that this approach has nearly identical statistical performance to using fully phased haploid genomic

sequences (Gronau et al., 2011; Huang et al., 2022b).

In this chapter we have focused on the heuristic method HYDE and the likelihood method BPP, as

they have been used to analyse the Tamias data. By choosing parameter values to be representative

of the Tamias data, our simulation has evaluated a tiny portion of the parameter space and does not

constitute a systematic evaluation of the performance of HYDE. The strengths and weaknesses of

heuristic and likelihood methods for inference under models of gene flow were discussed by Degnan
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(2018) and Jiao et al. (2021), but a comprehensive comparative study has not yet been conducted. For

estimation of the species phylogeny under the MSC without gene flow, (Zhu and Yang, 2021, fig. 3)

demonstrated a dramatic information loss resulting from pooling sites across loci in the site-pattern

based methods (also known as coalescent-aware concatenation methods), and from the failure to use

information in coalescent times or gene-tree branch lengths in the two-step methods (which infer the

gene trees and then treat them as data to infer the species tree). Both the site pattern-based and the

two-step methods are used to infer gene flow and to estimate the introgression probability (e.g., HYDE

and the D-statistic in the first category and SNAQ in the second) and similar information loss may be

expected. A detailed analysis of the performance of heuristic methods in comparison with likelihood

methods will be interesting. Currently the gap between the heuristic and likelihood methods appears

to be a large one. Heuristic methods are orders-of-magnitude more efficient computationally and can

be applied to much larger datasets, whereas likelihood methods have far better statistical properties,

being able to identify and estimate all parameters in the model. There are great opportunities for

improving both the statistical performance of heuristic methods and the computational efficiency of

likelihood methods (including the mixing efficiency of MCMC algorithms).

2.4.3 Introgression in T. quadrivittatus chipmunks

The joint introgression model for the T. quadrivittatus group (fig. 2.4b) was constructed using

a stepwise approach that iteratively adds introgression events to the binary species tree. We note

several limitations with this approach. First the approach assumes the availability of a stable binary

species tree, and may not be feasible if the species tree is large and highly uncertain, possibly in-

fluenced by introgression events (Leaché et al., 2014). The Tamias dataset analysed here includes

only six species, and the first stage of our procedure (i.e., the separate analysis) involved 16 possible

introgression events, so that the computation was feasible. Second, the approach is not an exhaustive

search in the space of introgression models and may miss certain introgression events. Note that in-

trogression events not selected in the first stage of the procedure will not be incorporated in the final

joint introgression model. In our analysis of the Tamias data, we considered introgressions between

contemporary species, mostly based on phylogenetic analyses of the mitochondrial genome (Sarver
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et al., 2017), and moved certain events to older ancestral branches when the estimated introgression

time coincided with the species divergence time. We did not evaluate introgressions involving an-

cestral branches systematically. Furthermore, the criterion based on the Bayes factor used in our test

is a stringent one, and the dataset of 1060 loci is relatively small. All those factors suggest that we

cannot rule out the possibility that we may have missed some introgression events; in other words, our

analysis may suffer from false-negative errors. In contrast, the three introgression events identified in

our analysis (fig. 2.4b) appear to be robust and are unlikely to be false positives (figs. 2.5, table S2.2).

We conclude that there is strong and robust evidence that gene flow has affected the nuclear genome

in the T. quadrivittatus group of chipmunks.

Given the extensive mitochondrial introgression in the Tamias group (Sarver et al., 2017, 2021;

Sullivan et al., 2014), introgression affecting the nuclear genome was expected, and the failure to

detect any significant evidence for it in the HYDE analysis was surprising (Sarver et al., 2021). Sarver

et al. (2021) discussed the evidence for cytonuclear discordance in the pattern of introgression (Bonnet

et al., 2017; McElroy et al., 2020; Sarver et al., 2021), as well as possible roles of purifying selection

affecting the coding genes or exons that make up the nuclear dataset being analysed. Our results

suggest a simpler explanation, that gene flow in the Tamias group is of a wrong type or in the wrong

direction, undetectable by HYDE.

Our analyses suggest that species involved in excessive mitochondrial introgression tend to be

those involved in nuclear introgression as well. T. dorsalis was noted to be a universal recipient

of mtDNA from other species (Sarver et al., 2017; Sullivan et al., 2014). Consistent with this, our

separate analysis (table 2.2) identified three introgression events into T. dorsalis with ϕ > 5% as well

as one event with T. dorsalis to be the donor species, even though some of those events become

non-significant after introgression involving older ancestors was incorporated in the model. It will be

interesting to use expanded datasets to examine whether this is due to a lack of power to detect gene

flow or a genuine lack of gene flow.

It will be very useful to generate more genomic data, especially the noncoding parts of the nuclear

genome, including more species from the genus, to provide more power for detecting gene flow and

estimating introgression rates. It will also be interesting to examine whether the noncoding and coding
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regions of the genome give consistent signals concerning species divergences and cross-species gene

flow, and to examine how the effective rate of gene flow vary among chromosomes or across genomic

regions. In a few genomic analyses, coding and noncoding parts of the genome were found to produce

highly consistent results, with nearly proportional estimates of divergence times (τ) and population

sizes (θ ), and with very similar estimates of introgression rates (Shi and Yang, 2018; Thawornwattana

et al., 2018, 2022). One can also examine the posterior distribution of the gene trees to identify loci

or genomic segments that are most likely to have been transferred across species boundaries, and to

correlate with the functions of genes residing in or tightly linked to the segments.
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2.5 Supplemental Information

Table S2.1: Posterior means and 95% HPD CIs (in parentheses) of introgression probabilities (ϕ) and intro-
gression times (τ) in the stepwise construction of the MSci model, applied to datasets of the two halves

First half Second half

Model ϕ τ (×10−3) B10 ϕ τ (×10−3) B10

1 QIRCD → U 0.537 (0.247, 0.801) 0.841 (0.702, 0.980) ∞ 0.632 (0.332, 0.869) 0.906 (0.740, 1.045) ∞

2 QIRCD → U 0.615 (0.427, 0.798) 0.869 (0.773, 0.966) ∞ 0.695 (0.501, 0.876) 0.918 (0.802, 1.037) ∞

QI ↔ D 0.138 (0.094, 0.185) 0.349 (0.311, 0.391) ∞ 0.069 (0.038, 0.102) 0.322 (0.282, 0.363) ∞

0.020 (0.000, 0.047) 0.03 0.018 (0.000, 0.037) 0.03

3 QIRCD → U 0.601 (0.369, 0.813) 0.863 (0.759, 0.971) ∞ 0.696 (0.480, 0.892) 0.915 (0.782, 1.040) ∞

QI → D 0.133 (0.080, 0.191) 0.331 (0.288, 0.372) 53.24 0.085 (0.038, 0.136) 0.331 (0.279, 0.388) 25.06
Q → D 0.008 (0.000, 0.021) 0.153 (0.058, 0.261) 0.00 0.008 (0.001, 0.019) 0.100 (0.040, 0.210) 0.00

4 QIRCD → U 0.588 (0.360, 0.797) 0.854 (0.746, 0.958) ∞ 0.681 (0.470, 0.869) 0.909 (0.787, 1.032) ∞

QI → D 0.132 (0.080, 0.188) 0.330 (0.286, 0.373) ∞ 0.088 (0.035, 0.149) 0.334 (0.270, 0.396) 35.99
I → D 0.007 (0.000, 0.018) 0.120 (0.048, 0.197) 0.00 0.012 (0.001, 0.025) 0.160 (0.090, 0.227) 0.01

5 QIRCD → U 0.582 (0.326, 0.818) 0.852 (0.738, 0.961) ∞ 0.689 (0.473, 0.883) 0.905 (0.778, 1.026) ∞

QI → D 0.126 (0.084, 0.170) 0.307 (0.263, 0.352) ∞ 0.099 (0.063, 0.139) 0.336 (0.291, 0.382) ∞

Q ↔ I 0.036 (0.013, 0.065) 0.099 (0.062, 0.137) 2.90 0.048 (0.023, 0.075) 0.088 (0.051, 0.118) ∞

0.030 (0.008, 0.055) 0.39 0.014 (0.000, 0.028) 0.02

6 QIRCD → U 0.589 (0.338, 0.827) 0.850 (0.738, 0.966) ∞ 0.686 (0.491, 0.870) 0.902 (0.782, 1.022) ∞

QI → D 0.118 (0.074, 0.165) 0.295 (0.246, 0.345) ∞ 0.097 (0.060, 0.136) 0.334 (0.284, 0.381) ∞

Q → I 0.041 (0.014, 0.074) 0.100 (0.066, 0.140) 7.90 0.055 (0.026, 0.087) 0.091 (0.053, 0.132) ∞

Note.— Introgression events are added sequentially onto the species tree of figure 2.4a and those that do not
meet our cutoffs (B10 ≥ 20) are greyed out. B10 =∞ occurs when there are no MCMC samples with ϕ < ε = 1%.
A bidirectional introgression event, e.g., between Q and I has two introgression probabilities, e.g., ϕQ→I (above)
and ϕI→Q (below). The final joint introgression model has three unidirectional introgression events.
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Table S2.2: Bayes factors (B10) for the three introgression probabilities (ϕ) obtained from BPP analyses of the
full data of 1060 loci under the joint MSci model of figure 2.4b and different beta priors, ϕ ∼beta(α,β )

B10

ε & Prior P(ø) QIRCD → U QI → D Q → I

ε = 1%
beta(0.2, 0.2) 0.210 ∞ ∞ ∞

beta(0.2, 1) 0.398 ∞ ∞ ∞

beta(0.2, 5) 0.585 ∞ ∞ ∞

beta(1, 0.2) 0.002 ∞ ∞ ∞

beta(1, 1) 0.010 ∞ ∞ ∞

beta(1, 5) 0.049 ∞ ∞ ∞

beta(5, 0.2) 6.0×10−12 ∞ ∞ ∞

beta(5, 1) 1.0×10−10 ∞ ∞ ∞

beta(5, 5) 1.2×10−8 ∞ ∞ ∞

ε = 0.1%
beta(0.2, 0.2) 0.132 ∞ ∞ ∞

beta(0.2, 1) 0.251 ∞ ∞ ∞

beta(0.2, 5) 0.371 ∞ ∞ ∞

beta(1, 0.2) 2.0×10−4 ∞ ∞ ∞

beta(1, 1) 0.001 ∞ ∞ ∞

beta(1, 5) 0.005 ∞ ∞ ∞

beta(5, 0.2) 6.0×10−17 ∞ ∞ ∞

beta(5, 1) 1.0×10−15 ∞ ∞ ∞

beta(5, 5) 1.3×10−13 ∞ ∞ ∞

Note.— Bayes factor B10 is calculated using eq. 2.8, where the null region ø for ϕ is the interval (0,ε) with
ε = 1% or 0.1%. B10 = ∞ occurs when ϕ > ε in all MCMC samples.
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Table S2.3: Posterior means and 95% HPD CIs (in parentheses) of parameters under the MSci model of figure
2.4b obtained from BPP analyses of three real datasets (the two halves and the full dataset) and a simulated
dataset

Parameters First half, 530 loci Second half, 530 loci Full data, 1060 loci Simulation, 1060 loci

Population sizes (θ , ×10−3)
θQ 1.119 (0.817, 1.455) 1.032 (0.733, 1.370) 1.059 (0.844, 1.287) 1.098 (0.867, 1.347)
θI 1.556 (0.996, 2.191) 2.335 (1.474, 3.387) 1.923 (1.433, 2.473) 2.108 (1.574, 2.701)
θR 0.330 (0.266, 0.399) 0.377 (0.311, 0.442) 0.344 (0.295, 0.396) 0.366 (0.313, 0.421)
θC 0.478 (0.400, 0.556) 0.474 (0.407, 0.547) 0.478 (0.427, 0.534) 0.491 (0.436, 0.542)
θD 3.092 (2.580, 3.633) 3.460 (2.920, 4.016) 3.314 (2.915, 3.705) 3.386 (3.001, 3.781)
θU 0.953 (0.843, 1.063) 0.912 (0.814, 1.011) 0.932 (0.857, 1.004) 0.917 (0.844, 0.991)
θS 0.792 (0.680, 0.904) 0.934 (0.809, 1.052) 0.866 (0.782, 0.948) 0.817 (0.734, 0.900)

θQIRCDUS 11.04 (9.516, 12.56) 10.83 (9.357, 12.30) 11.01 (9.924, 12.09) 10.38 (9.368, 11.40)
θQIRCDU 0.687 (0.332, 1.075) 0.601 (0.274, 0.955) 0.656 (0.367, 0.971) 0.475 (0.229, 0.734)
θQIRCD 1.963 (0.248, 4.652) 1.595 (0.336, 3.153) 2.203 (0.392, 4.533) 1.340 (0.236, 2.809)
θQIRC 3.212 (0.296, 6.828) 1.503 (0.232, 3.505) 2.222 (0.295, 4.800) 2.141 (0.192, 5.173)
θQIR 2.923 (0.724, 5.067) 1.990 (0.755, 3.258) 2.518 (1.266, 3.890) 2.792 (1.523, 4.167)
θQI 0.727 (0.198, 1.503) 1.033 (0.203, 2.427) 0.773 (0.177, 1.714) 1.157 (0.217, 2.714)

θJ 1.017 (0.777, 1.272) 1.242 (0.954, 1.545) 1.107 (0.921, 1.298) 1.147 (0.934, 1.372)
θK 0.686 (0.177, 1.467) 0.799 (0.177, 1.808) 0.626 (0.170, 1.282) 0.959 (0.185, 2.241)
θL 1.911 (0.224, 4.493) 1.280 (0.399, 2.326) 1.568 (0.345, 2.936) 1.381 (0.315, 2.781)
θM 0.412 (0.245, 0.569) 0.430 (0.282, 0.578) 0.407 (0.275, 0.529) 0.415 (0.291, 0.543)
θN 0.439 (0.310, 0.574) 0.476 (0.350, 0.600) 0.440 (0.342, 0.543) 0.384 (0.301, 0.473)
θO 0.291 (0.190, 0.390) 0.422 (0.282, 0.552) 0.325 (0.239, 0.416) 0.350 (0.259, 0.443)

Speciation/introgression times (τ , ×10−3)
τQIRCDUS 3.297 (2.830, 3.851) 3.588 (3.062, 4.075) 3.423 (3.061, 3.783) 3.415 (3.066, 3.768)
τQIRCDU 1.872 (1.299, 2.456) 2.270 (1.703, 2.849) 2.029 (1.569, 2.489) 2.011 (1.673, 2.338)
τQIRCD 0.749 (0.634, 0.855) 0.750 (0.654, 0.837) 0.731 (0.642, 0.815) 0.753 (0.693, 0.815)
τQIRC 0.584 (0.469, 0.699) 0.673 (0.573, 0.765) 0.628 (0.542, 0.707) 0.697 (0.615, 0.766)
τQIR 0.363 (0.283, 0.452) 0.437 (0.360, 0.517) 0.389 (0.322, 0.452) 0.379 (0.312, 0.445)
τQI 0.267 (0.222, 0.312) 0.321 (0.272, 0.367) 0.290 (0.253, 0.327) 0.274 (0.238, 0.309)
τJ = τK = τQIRCD→U 0.850 (0.738, 0.966) 0.902 (0.782, 1.022) 0.871 (0.778, 0.961) 0.832 (0.747, 0.917)
τL = τM = τQI→D 0.295 (0.246, 0.345) 0.334 (0.284, 0.381) 0.307 (0.268, 0.350) 0.298 (0.258, 0.336)
τN = τO = τQ→I 0.100 (0.066, 0.140) 0.091 (0.053, 0.132) 0.102 (0.074, 0.130) 0.094 (0.069, 0.118)

Introgression probabilities (ϕ)
ϕQIRCD→U 0.589 (0.338, 0.827) (∞) 0.686 (0.491, 0.870) (∞) 0.625 (0.442, 0.794) (∞) 0.587 (0.440, 0.733) (∞)
ϕQI→D 0.118 (0.074, 0.165) (∞) 0.097 (0.060, 0.136) (∞) 0.106 (0.074, 0.139) (∞) 0.107 (0.077, 0.140) (∞)
ϕQ→I 0.041 (0.014, 0.074) (8) 0.055 (0.026, 0.087) (∞) 0.050 (0.028, 0.074) (∞) 0.048 (0.028, 0.069) (∞)

Note.— Bayes factor B10 is given in parentheses, calculated using eq. 2.8: ∞ means that all sampled values of
ϕ are > ε = 1%.
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Table S2.4: Power of BPP, HYDE and D-statistic tests of gene flow between sister species and average estimates
of introgression probability in 100 simulated replicate datasets (each of 8000 loci) under the model of figure
2.8a

Power Proportion of

Methods (α = 1%) (α = 5%) ϕ̂±SD invalid estimates

HYDE

R→Ua 3% 8% 0.005±0.003 48%
R→Ub 3% 5% 0.004±0.004 51%

D-statistic
R↔Ua 0% 1% – NA
R↔Ub 0% 2% – NA

BPP

R→U 100% 100% 0.623±0.066 0%
Note.— Bayesian test by BPP is considered significant at the 5% (or 1%) level if B10 ≥ 20 (or 100). In the HYDE

test, Ua and Ub were regarded as the ‘hybrid’ lineage to detect gene flow R→Ua and R→Ub, respectively, in
figure 2.8a. In some datasets, the HYDE estimate of ϕ was outside the range (0, 1), and only the valid estimates
were used to calculate the means.

Table S2.5: Power of BPP and HYDE tests of gene flow and average estimates of introgression probability in
100 simulated replicates under the three models of figure 2.8b-d

BPP HYDE

Power Power Power Power Proportion of
# loci (α = 1%) (α = 5%) ϕ̂±SD (α = 1%) (α = 5%) ϕ̂±SD invalid estimates

Outflow asym (fig. 2.8b)
500 39% 56% 0.096±0.026 1% 4% 0.155±0.111 44%
2000 100% 100% 0.104±0.025 3% 9% 0.107±0.057 33%
8000 100% 100% 0.105±0.013 10% 24% 0.076±0.042 20%

Inflow asym (fig. 2.8c)
500 72% 84% 0.118±0.030 23% 41% 0.331±0.110 10%
2000 100% 100% 0.106±0.014 87% 95% 0.321±0.068 0%
8000 100% 100% 0.107±0.009 100% 100% 0.325±0.037 0%

inflow sym (fig. 2.8b, HYDE model)
500 15% 27% 0.115±0.037 2% 10% 0.124±0.071 19%
2000 90% 95% 0.110±0.022 14% 27% 0.101±0.047 2%
8000 100% 100% 0.108±0.010 83% 90% 0.108±0.025 0%

Note.— The true introgression probability is ϕ = 0.106 (fig. 2.8b-d). See legend to table S2.4.
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Chapter 3

Inference of Cross-Species Gene Flow Using Genomic Data De-

pends on the Methods: Case Study of Gene Flow in Drosophila

A recent phylogenomic analysis of protein-coding genes from Drosophila revealed widespread

introgression across a phylogeny of 149 species (Suvorov et al., 2022). The data were split into

nine well-supported clades to detect gene flow within each. Several tests based on rooted triplets

(or unrooted quartets) were employed, including two newly developed approaches: the discordant

count test (DCT) and branch length test (BLT) (Suvorov et al., 2022). Applied to species triplets,

DCT appears to be equivalent to SNAQ (Solis-Lemus and Ane, 2016; Solis-Lemus et al., 2017),

while BLT is similar to QUIBL as both use estimated branch lengths in triplet gene trees. Another

method used by Suvorov et al. (2022) is PHYLONET (Wen et al., 2018), which takes inferred gene-

tree topologies as input data and ignores information in coalescent times. Those methods cannot

identify gene flow between sister lineages and cannot identify the direction of gene flow. As gene

flow involving ancestral species may show up in many triplet tests, a heuristic metric called f -branch

was used to move introgression events to ancestral branches in the given species tree (Malinsky et al.,

2018). The approach does not consider species divergence times or introgression times, and may

assign gene flow to donor and recipient populations that were not contemporary. Such limitations

of the analytical methods used by Suvorov et al. (2022) suggest a need for reanalysis of the data

using likelihood methods such as BPP. In a recent analysis of exonic data from six Rocky Mountain

chipmunk species in the Tamias group, the summary method HYDE failed to detect any signal of gene

flow affecting the nuclear genome, in contrast to the mitochondrial genome, which is well-known to

be involved in rampant gene flow in the group, prompting discussions of cytonuclear discordance

(Sarver et al., 2021). However, a reanalysis of the same data using BPP detected robust evidence

for multiple ancient introgression events affecting the nuclear genome, including one between sister

58



Back to Contents 3.1 Materials and Methods

species (Ji et al., 2023), suggesting no evidence for cytonuclear discordance. Thus analyses of the

same data using summary (Sarver et al., 2021) and Bayesian (Ji et al., 2023) methods produced

opposing biological conclusions. It is unclear whether the conclusions of Suvorov et al. (2022) are

similarly affected by the use of summary methods.

Here we apply the MSC-I and MSC-M models implemented in BPP (Flouri et al., 2020, 2023)

to reanalyse a subset of the Drosophila data of Suvorov et al. (2022). We used data from clade 2,

which showed the strongest signal of introgression in the analysis of Suvorov et al. (2022, Table 1).

Consistent with Suvorov et al. (2022), we detected strong evidence for gene flow, but the details differ.

The strongest signature of introgression in our analysis is between two sister lineages, not detected by

Suvorov et al. (2022), while several gene-flow scenarios inferred by Suvorov et al. (2022) are rejected

in our test. To understand the differences in the results from the two studies, we conduct computer

simulations to evaluate the statistical properties of BPP and the summary methods used by Suvorov

et al. (2022), including HYDE, QUIBL, DCT, BLT, and SNAQ. Our results suggest that the different

results may be explained by the lack of power of the summary methods used. Our study highlights the

need and importance of using powerful statistical methods to infer gene flow using genomic datasets.

3.1 Materials and Methods

3.1.1 The Drosophila dataset

Suvorov et al. (2022) generated and compiled sequence alignments for 2794 single-copy protein-

coding genes (BUSCO, for Benchmarking Universal Single-Copy Orthologs) from 155 Drosophila

species and constructed a species phylogeny. Data for nine well-established clades were then used

to infer interspecific gene flow. Here we used data for clade 2 in the species tree, comprised of 11

species: D. affinis, D. athabasca, D. azteca, D. lowei, D. miranda, D. persimilis, D. pseudoobscura,

D. bifasciata, D. obscura, D. guanche and D. subobscura (Fig. 3.1a). Seventeen loci had <2 species

and were removed, leaving 2777 loci. The 2777 loci were split into two random halves, with 1389

and 1388 loci, respectively, and analysed separately.
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Figure 3.1: (a) Species phylogeny for 11 Drosophila species in clade 2 of Suvorov et al. (2022) showing
potential gene-flow events in our initial model. Arrows represent potential gene-flow events, based on analyses
of species triplets by Suvorov et al. (2022) (Table S3.1) and on BPP estimates of divergence times. (b) Final
model of gene flow from our analysis, with two gene-flow events from branches ra to rb (that is, w → z), and
from ac to rb (x → y). Estimates of the introgression probability (ϕ) in the MSC-I model and migration rate
(M) in the MSC-M model are from the two data halves. Branch lengths are proportional to posterior means of
species divergence times and introgression times (τ , measured in mutations per site) with node bars representing
the 95% HPD CIs, from BPP analyses of the first half of the data under the MSC-I model. Estimates for the
second half are very similar. Estimates of all parameters under both the MSC-I and MSC-M models for the two
data halves are in Table S3.4. 60
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3.1.2 Inferring the Drosophila species phylogeny

We inferred the species tree under the MSC model with no gene flow using BPP (Rannala and

Yang, 2017; Yang and Rannala, 2014). This is the A01 analysis of Yang (2015). The two data halves

were analysed separately. There are two types of parameters in the MSC model: species divergence

times (τ) and population sizes (θ ), both measured in the expected number of mutations per site. We

assigned the gamma prior to the age of the species-tree root, τR ∼ G(2,50), with mean 2/50 = 0.04.

Given the age of the root, the other divergence times had the uniform-Dirichlet prior distribution (Yang

and Rannala, 2010, eq. 2). A gamma prior is assigned to population size parameters on the species

tree, θ ∼ G(2,200), with mean 0.01. The JC mutation model (Jukes and Cantor, 1969) was used in

calculation of the likelihood for the sequence alignment at each locus. We expect JC to be sufficient

for correcting for multiple hits at the same site because sequences from closely related species are

highly similar (Flouri et al., 2022; Shi and Yang, 2018) (see below for further tests). We used a burn-

in of 40,000 MCMC iterations, and then took 2× 105 samples, sampling every 2 iterations. Each

analysis was repeated four times, with convergence of the MCMC confirmed by consistency across

runs.

3.1.3 Constructing a model of gene flow for the Drosophila data

Species tree inference using BPP produced a well-supported species phylogeny, which had the

same topology as inferred by Suvorov et al. (2022) (Figs. 3.1a & S3.1). The species phylogeny ap-

peared to be unaffected by gene flow. We thus added candidate gene-flow events onto this binary

species tree, using a procedure similar to that followed by Ji et al. (2023) in their analysis of a chip-

munk genomic dataset. We assessed the gene-flow scenarios proposed by Suvorov et al. (2022, Fig. 3)

by integrating their DCT/BLT analyses of many species triplets (Table S3.1), with reference to esti-

mated species divergence times from BPP. The triplet methods of Suvorov et al. (2022) are unable to

identify the direction of gene flow (e.g., Pang and Zhang, 2024; Thawornwattana et al., 2023a). Thus

we assumed bidirectional gene flow in our initial model, with the expectation that if the gene-flow

event in a particular direction is nonexistent, the estimated rate of gene flow will be close to zero and

the Bayesian test will reject gene flow (Thawornwattana et al., 2023a). The resulting initial model of
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gene flow is shown in Figure 3.1a.

We then applied the Bayesian test of gene flow (Ji et al., 2023) to determine the significance of

the gene-flow events in the model. While Ji et al. (2023) sequentially added introgression events onto

the species tree, starting from the most significant introgression events, we fitted the full model with

all gene-flow events, and used the Bayes factor to remove events that are not strongly supported by

the data. The Bayes factor B10, in support of the alternative model of gene flow (H1) against the null

model of no gene flow (H0), was calculated via the Savage-Dickey density ratio using an MCMC

sample under the H1 model (Ji et al., 2023). Gene flow was accommodated using either the MSC-I or

MSC-M models. Under MSC-I, the strength of gene flow is measured by the introgression probability,

ϕXY , which is the proportion of immigrants in the recipient population Y from X . We defined a ‘null

interval’ for the introgression probability, ϕ < ε , which is a small interval in the parameter space of

H1 that represents H0. Then B10 is approximated by

B10,ε =
P(ϕ < ε)

P(ϕ < ε|X)
, (3.1)

where P(ϕ < ε) and P(ϕ < ε|X) are the prior and posterior probabilities for ϕ < ε , respectively.

When ε → 0, B10,ε → B10 (Ji et al., 2023). We used ε = 0.01 and confirmed that use of ε = 0.001

gave similar results. We used a cut-off of 100. Thus B10 > 100 means strong support for H1 and

rejection of H0, which is similar to significance at the 1% level in hypothesis testing. B10 < 0.01

means strong support for H0 and rejection of H1. This does not have an equivalence in hypothesis

testing as hypothesis testing can never reject H1 with great force. See Ji et al. (2023) for detailed

discussions.

Under the MSC-M model, the population migration rate, MXY =mXY NY , is defined as the expected

number of migrants from the donor species X to the recipient species Y per generation, where mXY is

the proportion of migrants in Y from X and NY is the (effective) population size of species Y . Bayes

factor B10 in support of H1 : M > 0 against the null H0 : M = 0 was calculated by defining a null

interval M < ε , with ε = 0.01 or 0.001.

Thus calculation of B10 using eq. 3.1 requires running the MCMC under the model of gene flow
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(H1). Under the MSC-I, the introgression probability was assigned the prior ϕ ∼ beta(1,1) or U(0,1).

We used the option theta-model = linked-msci in BPP, which assumes the same population-size

parameter θ for a branch before and after an introgression event (Ji et al., 2023, Fig. 3b). Under

the MSC-M, the migration rate was assigned the gamma prior M ∼ G(2,10), with mean 0.2. We

used a burn-in of 105 iterations, after which we took 5× 105 samples, sampling every 2 iterations.

Each analysis was conducted four times to confirm convergence, indicated by the difference in the

posterior probability for the maximum a posteriori (MAP) tree between runs being less than 0.3

(Thawornwattana et al., 2022). Runs that did not converge were discarded before the MCMC samples

from multiple runs were combined to produce posterior summaries. Each MSC-I run took ∼90hrs

using two threads, while each MSC-M run took ∼120hrs using four threads.

Gene-flow events that passed the Bayesian test (with B10 > 100) are retained in the final model,

which is then used to estimate population parameters, including the rates of gene flow (ϕ or M),

species split times, and population sizes for extant and extinct species on the species tree.

3.1.4 Assessing the impact of taxon sampling

The evidence for gene flow involving D. lowei (see Fig. 3.1a) appeared to depend on the choice

of the outgroup species and on other species included in the dataset. We thus constructed three triplet

datasets and three quintet datasets, to assess the impact of taxon sampling. We focussed on gene

flow between D. lowei and D. affinis, for which the evidence is significant in 2 out of 3 triplets in the

analysis of Suvorov et al. (2022, Table 1).

For the triplet datasets, the species tree was ((X, D. lowei), D. affinis), where X was D. pseudoob-

scura, D. persimilis, or D. miranda (Fig. 3.1a). The data were also analysed using summary-based

tests (DCT, BLT and QuIBL), with D. guanche used as the outgroup. For the quintet datasets, we in-

cluded two outgroup species: D. guanche and D. obscura, so that the species tree was (((X, D. lowei),

D. affinis), (D. obscura, D. guanche)), where X again was one of D. pseudoobscura, D. persimilis, or

D. miranda (Fig. 3.1a). We applied the Bayesian test to assess the evidence for gene flow between

D. lowei and D. affinis.
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Figure 3.2: Migration (MSC-M) and introgression (MSC-I) models used to simulate and analyse multilocus
sequence data. In the inflow models (a & b), gene flow is from C → B, whereas in the outflow models (c &
d), it is from B → C. In the MSC-M model (a & c), migration occurs at the rate of M = 0.1 migrants per
generation, whereas in the MSC-I model (b & d), the introgression probability is ϕ = 0.2. Species divergence
times are τR = 3θ , τS = 2θ and τT = θ . The introgression time under MSC-I is τX = τY = θ/2. Two values
are used for the population size parameter: θ = 0.0025 and 0.01. Each simulated dataset is analysed using BPP

under both the MSC-M and MSC-I models, generating eight simulation-analysis combinations.

3.1.5 Simulating data to evaluate Bayesian and summary methods for inferring gene flow

As our re-analysis of the Drosophila data (for clade 2) produced different results from those

of Suvorov et al. (2022), we simulated data under the MSC model with gene flow to examine the

accuracy of BPP estimation of parameters (Flouri et al., 2020, 2023) and the power of Bayesian test of

gene flow (Ji et al., 2023), in comparison with the summary methods used by Suvorov et al. (2022).

We conducted two sets of simulations. In the first set, we simulated two datasets using parameter

estimates obtained from the Drosophila data with the D. insularis outgroup under our final MSC-I and

MSC-M models with the w → z and x → y gene-flow events, with parameter values given in Table

S3.2 (first half) and Table S3.3 (first half). Each dataset consisted of 1388 loci, as in the original

data halves. The simulate option in BPP (Flouri et al., 2018) was used to generate data under the

JC mutation model (Jukes and Cantor, 1969), which were then analysed using BPP under the same

model.

In the second set of simulations, we used four artificial MSC-M and MSC-I models for four

species (A,B,C, and outgroup O) of Figure 3.2, with gene flow between nonsister lineages to examine

the performance of Bayesian test of gene flow and Bayesian estimation of the rate of gene flow,

in comparison with summary methods. The four models of gene flow in Figure 3.2 were used to
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simulate gene trees for the loci, which were then used to ‘evolve’ sequences under JC, resulting in a

sequence alignment at each locus. The species divergence times were τR = 3θ , τS = 2θ and τT = θ ,

with θ = 0.0025 and 0.01. The migration rate was M = 0.1 under the MSC-M model (Fig. 3.2a & c).

Under the MSC-I model, the introgression time was τX = τY = 0.5θ , and the introgression probability

was ϕ = 0.2 (Fig. 3.2b & d).

We examined the effects of the number of loci (L = 250,1000,4000), the number of sequences per

species per locus (S= 2,8), the sequence length (n= 250,1000), and mutation rate (θ = 0.0025,0.01).

As the divergence times (τs) are proportional to θ in our experiment design, the two values of θ

mimic genomic regions with different mutation rates (such as coding versus noncoding regions of the

genome). We did not run BPP over the large datasets with L = 4000 loci and S = 8 sequences per

species per locus, as those runs were expensive and BPP already achieved 100% power and highly

precise parameter estimates in much smaller datasets. One hundred replicates were generated for

each parameter setting, with a total of 2000 (= 3×2×2×2×100−400) datasets generated for each

of the four models of Figure 3.2.

Each replicate dataset (simulated under either MSC-I or MSC-M) was analysed using BPP under

both the MSC-M and MSC-I models, resulting in eight simulation-analysis settings. When the data

were analysed, the correct source and donor populations were assumed in the MSC model with gene

flow. Gamma priors were assigned to the population size parameters (θ ) and the age of the species-

tree root (τR). We used the shape parameter α = 2 and adjusted the rate parameter (β ) so that the

prior means are equal to the true values. For example, for data simulated using θ = 0.0025 in the M-

M and M-I settings, we used the priors θ ∼ G(2,800) and τ0 ∼ G(2,266), whilst for data simulated

using θ = 0.01, we used θ ∼ G(2,200) and τ0 ∼ G(2,66). Note that while the same θ was used

for all populations when data were simulated, each branch on the species tree had its own θ when

the data were analysed. Under the MSC-I model, we used the thetamodel = linked-msci option

so that the same population size parameter is assumed for a branch before and after introgression.

Additionally, we used the priors ϕ ∼ beta(1,1) under MSC-I and M ∼ G(2,20) under MSC-M. A

burn-in of 40,000 iterations was used, after which we took 105 samples sampling every 2 iterations.

We evaluated both the power of Bayesian test of gene flow (using the Bayes factor calculated
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via the Savage-Dickey density ratio; see description above) and Bayesian estimation of parameters,

including the rate of gene flow (ϕ in MSC-I and M in MSC-M). Performance in parameter estimation

was measured using the width of the 95% highest probability density (HPD) credible interval (CI).

The simulated quartet data were also analysed using several summary methods, including those

used by Suvorov et al. (2022). We assessed both the power to detect introgression and the bias

and precision in estimation of the introgression probability. Methods used for testing introgression

included HYDE (Blischak et al., 2018), QUIBL (Edelman et al., 2019), DCT (Suvorov et al., 2022),

and BLT (Suvorov et al., 2022). Note that those methods are uninformative about the mode of gene

flow (whether it occurs in a pulse or over an extended time period), and about the direction of gene

flow, whilst BPP assumes a fully specified parametric model. Methods for estimating the introgression

probability included HYDE, QUIBL, DCT, and SNAQ (Solis-Lemus and Ane, 2016). Those methods

generate only point estimates of ϕ , while BPP provides in addition a measure of uncertainty in the

posterior CIs.

HYDE was implemented using the python script run hyde.py from Blischak et al. (2018)

(https://github.com/pblischak/HyDe), which uses a concatenated alignment to count site pat-

terns across all loci. DCT/BLT was implemented using blt dct test.r from Suvorov et al. (2022)

(https://github.com/SchriderLab/Drosophila phylogeny). QUIBL was run using QuIBL.py from

Edelman et al. (2019) (https://github.com/miriammiyagi/QuIBL). For SNAQ, we used the PHY-

LONETWORKS package (Solis-Lemus and Ane, 2016) to estimate the introgression probability.

QUIBL, DCT, BLT and SNAQ were applied using gene trees for the individual loci reconstructed

by RAXML with default settings (Stamatakis, 2014). Like SNAQ, DCT estimates the introgression

probability using inferred gene tree topologies (Suvorov et al., 2022):

ϕ̂ =
cdis2–cdis1

ccon + cdis1 + cdis2
,

where ccon,cdis1,cdis2 are the counts of concordant and discordant gene trees, with ϕ̂ = 0 if cdis1 >

cdis2.

QUIBL, DCT and BLT do not allow multiple sequences per species per locus. Thus input gene
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trees were constructed using a single sequence chosen at random from among the two or eight se-

quences simulated for each species. Results were similar when different sequences were sampled.

Table 3.1: Posterior means and 95% HPD CIs (in parentheses) of introgression probabilities (ϕ), introgression
times (τ) and Bayes factors in support of gene flow (B10) in the BPP analysis of the Drosophila data under the
MSC-I models of Figure 3.1

First half (1389 loci) Second half (1388 loci)

Introgression ϕ̂ τ̂ B10 ϕ̂ τ̂ B10

Model 1a: D. lowei ↔ D. affinis introgression first (Fig. 3.1a)
rb → ac (or y → x) 0.0014 (0.0000, 0.0041) 0.0261 (0.0257, 0.0265) 0.01 0.0011 (0.0000, 0.0032) 0.0260 (0.0256, 0.0265) 0.01
ac → rb (or x → y) 0.0980 (0.0787, 0.1173) ∞ 0.0917 (0.0756, 0.1081) ∞

D. lowei → D. azteca 0.0027 (0.0003, 0.0058) 0.0032 (0.0001, 0.0057) 0.01 0.0009 (0.0000, 0.0026) 0.0025 (0.0000, 0.0053) 0.01
D. azteca → D. lowei 0.0008 (0.0000, 0.0024) 0.01 0.0010 (0.0000, 0.0030) 0.01
D. lowei → D. affinis 0.0026 (0.0000, 0.0062) 0.0050 (0.0025, 0.0066) 0.01 0.0011 (0.0000, 0.0035) 0.0047 (0.0020, 0.0064) 0.01
D. affinis → D. lowei 0.0008 (0.0000, 0.0024) 0.01 0.0016 (0.0000, 0.0040) 0.01

Model 1b: D. lowei ↔ D. azteca introgression first (Fig. 3.1a)
rb → ac (or y → x) 0.0014 (0.0000, 0.0041) 0.0261 (0.0257, 0.0265) 0.01 0.0011 (0.0000, 0.0032) 0.0260 (0.0255, 0.0264) 0.01
ac → rb (or x → y) 0.0980 (0.0788, 0.1173) ∞ 0.0920 (0.0758, 0.1085) ∞

D. lowei → D. azteca 0.0026 (0.0001, 0.0058) 0.0063 (0.0032, 0.0102) 0.01 0.0010 (0.0000, 0.0029) 0.0075 (0.0034, 0.0103) 0.01
D. azteca → D. lowei 0.0008 (0.0000, 0.0025) 0.01 0.0014 (0.0000, 0.0039) 0.01
D. lowei → D. affinis 0.0020 (0.0000, 0.0051) 0.0033 (0.0001, 0.0061) 0.01 0.0011 (0.0000, 0.0033) 0.0034 (0.0028, 0.0062) 0.01
D. affinis → D. lowei 0.0008 (0.0000, 0.0024) 0.01 0.0013 (0.0000, 0.0036) 0.01

Model 2: final model with unidirectional introgression from w → z and x → y (Fig. 3.1b)
ra → rb (or w → z) 0.7275 (0.6893, 0.7690) 0.0381 (0.0375, 0.0387) ∞ 0.7124 (0.6806, 0.7432) 0.0388 (0.0382, 0.0394) ∞

ac → rb (or x → y) 0.0688 (0.0546, 0.0832) 0.0257 (0.0253, 0.0261) ∞ 0.0690 (0.0561, 0.0822) 0.0257 (0.0253, 0.0261) ∞

Note.– Initial models 1a & 1b differ in the time order of two bidirectional introgression events: D. lowei ↔
D. azteca versus D. lowei ↔ D. affinis (Fig. 3.1a). As the time of the ac → rb introgression (τx→y) was very
close to the species divergence time τa (Fig. 3.1a), the introgression event was moved to the parental branch
in (w → z, Fig. 3.1b), but there was support in the data for the x → y introgression, so that both events were
included in the final model 2. Bayes factor for testing introgression (B10) was calculated using the Savage-
Dickey density ratio with ε = 0.01 (Ji et al., 2023). B10 = ∞ occurs when there are no MCMC samples with
ϕ < ε = 0.01, whereas B10 = 0.01 occurs when all MCMC samples have ϕ < ε .

3.2 Results

3.2.1 Inference of species tree and construction of an initial model of gene flow for the Drosophila

data

Protein-coding genes from the 11 species in clade 2 of the Drosophila phylogeny of Suvorov et al.

(2022) (Fig. 3.1a) were separated into two random subsets, with 1389 and 1388 loci, respectively.

They were analysed separately using BPP to estimate the species tree under the MSC model with no

gene flow (Flouri et al., 2018; Yang, 2015). Analysis of the two data halves allowed us to assess the

robustness of our results to the sampling of loci and also reduced the computational load. All runs
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Table 3.2: Posterior means and 95% HPD CIs (in parentheses) of migration rates (M) and Bayes factors (B10)
in the BPP analysis of the Drosophila data under the MSC-M model of Figure 3.1

First half (1389 loci) Second half (1388 loci)

Migration M̂ B10 M̂ B10

Model 1 (Fig. 3.1a)
rb → ac (or y → x) 0.0220 (0.0028, 0.0449) 0.01 0.0075 (0.0002, 0.0181) 0.01
ac → rb (or x → y) 0.3065 (0.2255, 0.3940) ∞ 0.3375 (0.2588, 0.4212) ∞

D. lowei → D. azteca 0.0108 (0.0014, 0.0238) 0.00 0.0084 (0.0004, 0.0215) 0.01
D. azteca → D. lowei 0.0142 (0.0018, 0.0293) 0.01 0.0143 (0.0015, 0.0333) 0.02
D. lowei → D. affinis 0.0134 (0.0011, 0.0306) 0.00 0.0171 (0.0020, 0.0384) 0.00
D. affinis → D. lowei 0.0148 (0.0012, 0.0316) 0.02 0.0181 (0.0032, 0.0378) 0.01

Model 2: final model with unidirectional migration from w → z and x → y (Fig. 3.1b)
ra → rb (or w → z) 0.5677 (0.5183, 0.6151) ∞ 0.6031 (0.5546, 0.6523) ∞

ac → rb (or x → y) 0.0111 (0.0003, 0.0253) 0.01 0.0090 (0.0002, 0.0204) 0.01
Note.– Model 1 assumes three bidirectional migration events or three pairs of migration rates (Fig. 3.1a). All
of them were rejected except Mx→y based on the Bayes factor (B10). In the final model 2, we added the w → z
migration, similarly to analysis under the MSC-I model (Table 3.1).

across the two halves produced the same species tree topology as inferred by Suvorov et al. (2022).

We thus concluded that the species phylogeny was well established. The BPP analysis also produced

Bayesian estimates of parameters including species divergence times (τ). This information was used,

in conjunction with the introgression events inferred by Suvorov et al. (2022) in their analyses of

triplet and quartet data, to construct an initial model of gene flow for clade 2.

Suvorov et al. (2022, Fig. 3) inferred three introgression events for clade 2 (Fig. S3.1). These

were, with nodes and branches labelled as in Figure 3.1a: (i) between x and y, (ii) between branches

be and a f , and (iii) between lineages bd and D. lowei. Event ii had only weak support, with significant

evidence for gene flow in only two out of 40 feasible triplets (Fig. S3.1). This was thus discarded in

our initial model. Event iii involved branch bd and the D. lowei lineage (Fig. 3.1a), inferred by

Suvorov et al. (2022) using the f -branch approach (Malinsky et al., 2018). These two lineages did

not appear to overlap in time according to BPP estimates of species divergence times. While such

a scenario could be interpreted as introgression involving an extinct or unsampled “ghost” lineage

(e.g., Yang and Flouri, 2022, Fig. 9a-c), we note that the introgression event was not well supported

by the DCT/BLT triplet tests of Suvorov et al. (2022, Fig. 3). Those tests supported introgression

between D. lowei and D. affinis, and between D. lowei and D. azteca, but not between D. lowei and
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D. athabasca (Table S3.1). Thus we replaced event iii by two events involving the daughter branches,

between D. lowei and D. affinis (or p ↔ q), and between D. lowei and D. azteca (or u ↔ v) (Fig. 3.1a).

Our initial model of gene flow for clade 2 thus involved three gene-flow events: one ancestral and

two involving extant taxa (Fig. 3.1a). As the triplet methods used by Suvorov et al. (2022) are agnostic

about the direction of gene flow, we treated each event as a bidirectional gene-flow event. This way

of determining the direction of gene flow involves a computational cost but was found to work well in

simulations (Thawornwattana et al., 2023a). We fitted both the MSC-I and MSC-M models of gene

flow. Two variants of the MSC-I model were considered, which differed in the time order of the two

introgression events involving D. lowei (u ↔ v and p ↔ q). The results are summarized in Table 3.1

for MSC-I and Table 3.2 for MSC-M.

Under the MSC-I model, introgression from branches ac to rb (or x → y, Fig. 3.1a) had the

strongest signal. The estimated introgression probability was ϕ̂x→y = 0.098 and 0.092 for the two data

halves, while the Bayes factor B10 = ∞ for the Bayesian test (Table 3.1, models 1a&1b). Introgression

in the opposite direction (y → x) was found to be absent, with the model of introgression rejected

strongly (B10 ≤ 0.01). Apart from the x → y introgression, all other introgression events were rejected

at the B10 ≤ 0.01 cut-off (Table 3.1). Note that the Bayesian test may strongly favor the null model

and reject the more general model of gene flow, unlike hypothesis testing, which may fail to reject the

null hypothesis but may never support it strongly.

The MSC-M model produced results consistent with the MSC-I model (Table 3.2, model 1).

Similarly the only gene-flow event supported was from x → y, with the estimated rate to be Mx→y =

0.32 and 0.34 migrants per generation for the two halves, respectively, while gene flow in the opposite

direction was found to be absent. Also the x → y migration was the only one that was significant

(B10 > 100), while all other gene-flow events were rejected by the Bayesian test at the B10 ≤ 0.01

cut-off.

Interestingly the time of the x → y introgression under the MSC-I model was nearly identical to

the divergence time at the mother node a (Fig. 3.1a): τ̂x = τ̂y = 0.0261 (with the 95% HPD CI 0.0257–

0.0265) and 0.260 (0.0256–0.0265) for the two halves, respectively, compared with τ̂a = 0.0261

(0.0257–0.0265) and 0.0261 (0.0256–0.0265) under models 1a and 1b of Table 3.1. This may suggest
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that the introgression event was assigned to the wrong branch in the initial model; Huang et al. (2022a)

found that when introgression is incorrectly assigned onto a daughter or mother branch of the lineage

genuinely involved in gene flow, the introgression time tends to get stuck on the species divergence

time. Thus we considered a model in which the x → y introgression was replaced by introgression

involving the parental branch (w → z). This model produced greater estimates of the introgression

probability, ϕw→z = 0.248 (CI 0.207–0.291) for the first half, and 0.393 (0.349–0.440) for the second

half, and with the introgression time away from the species divergence time.

We also fitted an MSC-I model with both w → z and x → z introgressions (Fig. 3.1b), with the

expectation that introgression event that did not occur should have low estimated rates, rejected by the

test (Huang et al., 2022a; Thawornwattana et al., 2022). The analysis detected very strong evidence

for gene flow between the sister lineages, with ϕ̂w→z = 0.728 (0.689–0.769) and 0.712 (0.681–0.743)

for the two data halves (Table 3.1, model 2). The evidence for the x → y introgression was also

significant although the rate was much lower, at ϕ̂x→y = 0.069 (0.055–0.083) and 0.069 (0.056–0.082)

(Table 3.1, model 2).

We further assessed possible impacts of including an outgroup species, using either D. melanogaster

or D. insularis as the outgroup, besides the 11 ingroup species in clade 2 (Tables S3.2 & S3.3). Some

parameters such as the population size for the root of the species tree are known to be sensitive to the

inclusion of outgroup species (Burgess and Yang, 2008). The introgression probabilities (ϕw→z,ϕx→y)

and introgression times (τw = τz,τx = τy) are very similar among the datasets (for two halves and two

outgroups) (Tables S3.2 & S3.3), and also similar to the estimates without the outgroup (Table S3.4).

Estimates of θr varied depending on the outgroup used (Tables S3.2 & S3.3), possibly because branch

r ancestral to clade 2 represents different populations depending on the outgroup.

Given the introgression events between extant species inferred using triplet summary methods

(Suvorov et al., 2022), we fitted MSC-I models incorporating various introgression events between

extant species, when the w→ z and x→ y introgression events are already accommodated in the model

(Table S3.5). In particular, we tested bidirectional introgression events involving D. lowei (Fig. 3.1a).

All gene-flow events involving extant species, including bidirectional introgression events involving

D. lowei, were rejected, with B10 ≤ 0.01 (Table S3.5). The w → z and x → y introgressions remained
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the only significant events, and parameter estimates were virtually identical to those under model 2

with the w → z and x → y introgressions only (Table S3.4). We examine the impact of taxon sampling

on inference of gene flow below.

In the MSC-M model, we also included the w → z migration in addition to the x → y migration

(Table 3.2, model 2). Similarly we obtained high estimates of migration rate between the sister

lineages, Mw→z = 0.568 (CI 0.518–0.615) and 0.603 (0.555–0.652) immigrants per generation, and

the Bayesian test was highly significant. The migration rate for the non-sister lineages was much

lower, estimated to be M̂x→y = 0.011 and 0.009 for the two halves, and was not significant according

to the test. Thus the evidence for the x → y gene flow was inconsistent between the MSC-I and MSC-

M models. This could be due to weak signal or low information content in the data, or lower power

of the MSC-M model than the MSC-I model (Thawornwattana et al., 2024).

By integrating all analyses above, we suggest model 2 of Figure 3.1b as our final inferred model

for clade 2 on the Drosophila phylogeny (Suvorov et al., 2022), which includes both the x → y and

w → z introgression events.

3.2.2 Estimation of model parameters on the Drosophila species tree

We fitted the final model of Figure 3.1b to estimate model parameters, with gene flow accommo-

dated using either the MSC-I or the MSC-M models. Estimates of the rate of gene flow (ϕ in MSC-I

and M in MSC-M) are given in Tables 3.1 & 3.2 (model 2), while those for all parameters are in Table

S3.4.

As discussed in the section above, the estimated rate of gene flow between the sister lineages

(w → z) was very high under both the MSC-I and MSC-M models (Table 3.1, model 2; Table 3.2,

model 2). In comparison, the estimated rate of x → y gene flow was much lower, and was indeed not

significant under the MSC-M model. Here we ask whether the two models recover similar amounts

of gene flow between the sister lineages. If the MSC-M model is the true model with the w → z

migration occurring over a time period ∆τ , the expected cumulative proportion of migrants in the

recipient population z will be

ϕ0 = 1− e−4Mwz∆τ/θz (3.2)
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Figure 3.3: Posterior means and 95% HPD CIs for (a) species divergence times (τ , mutations per site) and (b)
population sizes (θ ) in the final model of Figure 3.1b obtained from BPP analyses of the Drosophila data under
the MSC-I and MSC-M models.

(Huang et al., 2022a). Using the estimates under MSC-M (Table S3.4), we calculated the expected

introgression probability for the MSC-I model to be ϕ0 = 1−e−4×0.568×(0.0748−0.0260)/0.0692 = 0.798

for the first half, and 0.789 for the second half, compared with the estimates under the MSC-I: 0.728

and 0.712. The estimates are similar, with slightly more gene flow inferred under MSC-M than under

MSC-I.

Estimates of species divergence times (τ) and population sizes (θ ) for the two data halves under

the MSC-I and MSC-M models are shown in Figure 3.3. The four data-model combinations produced

nearly identical estimates. Estimates of the age of the root for the clade (τr) differ considerably

depending on whether gene flow is accommodated in the model (cf. Fig. 3.1a and Fig. 3.1b). This

is consistent with previous studies which have shown that ignoring gene flow between species leads

to serious underestimation of species split times (Leaché et al., 2014; Thawornwattana et al., 2023a;

Tiley et al., 2023).

For both data halves, ϕ̂ > 1
2 under MSC-I, so that the majority of the lineages from descendent
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species of node a (i.e., D. subobscura, D. guanche, D. obscura, D. bifasciata) are traced back to the

introgression branch rz rather than the speciation branch rw (Fig. 3.1b). This is also the prediction

of the MSC-M model since the estimates suggest ϕ0 >
1
2 by eq. 3.2. We also note that τr in model 1

(Fig. 3.1a) was similar to τw = τz in model 2 (Fig. 3.1b). Thus the histories of sequence divergences

reflected in the gene trees predicted by the two models (one with the x → y gene flow only and the

other with both x → y and w → z gene flow) are somewhat similar.

Our analysis using BPP assumed the JC model (Jukes and Cantor, 1969). To see whether the

mutation/substitution model affects the results, we analysed the data under the final MSC-I and MSC-

M models of figure 3.1b assuming the GTR mutation model (Tavaré, 1986; Yang, 1994) instead of

JC (Fig. S3.2, table S3.6). The estimates under the JC and GTR models were very similar, and

the mutation model had little effects. Estimates of introgression probabilities and migration rates

were also very similar between the two models (table S3.6). This robustness to the mutation model

is expected because the main role of the mutation model in BPP analyses is to correct for multiple

hits at the same site. As the sequence data from closely related species are extremely similar, any

mutation model including the infinite-sites model (Takahata et al., 1995) should work well. Similar

observations were made by Shi and Yang (2018) and Flouri et al. (2022).

3.2.3 The impact of taxon sampling on inference of gene flow involving D. lowei

While there was significant evidence for gene flow between D. lowei and either D. affinis or

D. azteca in the DCT/BLT tests of Suvorov et al. (2022, data S2), those gene-flow events were rejected

in our analyses of data including all species in the group (Table 3.1). We thus examined the impact of

taxon sampling, by constructing three triplet datasets and three quintet datasets and analyzing them

using BPP. We focus on gene flow between D. lowei and D. affinis, for which the evidence was

significant in two out of three triplets in the analysis of Suvorov et al. (2022, data S2).

First, we analysed the triplet datasets using QUIBL and DCT/BLT to examine the impact of the

outgroup species. The assumed ingroup tree was ((X, D. lowei), D. affinis), where X was D. pseudoob-

scura, D. persimilis, or D. miranda, while D. guanche was used as the outgroup (Fig. 3.1a). Unrooted

quartet trees were generated using RAXML under the JC model, rooted with the outgroup, and then
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used as input for DCT/BLT and QUIBL. All summary-based tests were significant for all triplets. Su-

vorov et al. (2022) used Anopheles gambiae as the outgroup, and inferred quartet gene trees under the

GTR+I+G model, finding that BLT and QuIBL were significant for all three triplets, while DCT was

significant in two out of three triplets. The Anopheles outgroup is very distantly related to the ingroup

species, and a closely related outgroup may be preferable as long as it is not involved in hybridization

with the ingroup species. Nevertheless, the results from the summary methods are consistent between

the two studies.

Next we analysed the triplet datasets using BPP (Table S3.7). Bidirectional introgression between

D. lowei and D. affinis was specified in the MSC-I model. In all three datasets, there was strong

evidence for introgression from D. lowei → D. affinis, with B10 > 100 and the estimated introgression

probability ϕ̂p→q = 4.2–4.8%. There was also strong evidence rejecting introgression in the opposite

direction (with B10 ≤ 0.01 and ϕ̂q→p ≈ 0.00). Thus the BPP analysis of triplet datasets is consistent

with the summary methods (DCT/BLT), although BPP was able to infer the direction and strength of

gene flow, rejecting the q → p introgression.

Finally the quintet datasets which include two outgroup species, D. guanche and D. obscura,

were analysed using BPP under MSC-I assuming bidirectional introgression between D. lowei and

D. affinis, either with or without accommodating the w → z and x → y introgressions (Fig. 3.1b, Table

S3.7). In all cases, the q → p introgression was rejected, as in the analysis of the triplet data. Without

the w → z and x → y introgressions in the model, the p → q introgression rate was low (1-2%) and

was not significant (with B10 < 100 in all three datasets). When the w → z and x → y introgressions

were assumed in the model, the p → q introgression became significant in all three quintet datasets

(with B10 > 100), with ϕ̂p→q ≈ 4.1–5.7% (Table S3.7). We also note that in the analysis of data from

all 11 species in clade 2, under the model which incorporates the w → z and x → y introgressions, the

estimated introgression probability ϕp→q was very low (0.1–0.2%) and was rejected with B10 ≤ 0.01

(Table S3.5, last section).

In summary, while the q → p introgression was rejected in all analyses, the Bayesian test of the

p → q introgression was sensitive to the species included in the data and to whether other major

introgression events (w → z, x → y) were already accounted for in the model. The reasons for this
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sensitivity are not well-understood. We suspect that part of the difficulty may be due to problems of

sampling, as the data consist of only one sequence per species per locus. The introgression probability

is defined as a proportion of migrants in the recipient species. Knowledge of the population size or

genetic diversity of the recipient species should help our inference of the contribution to that diversity

from introgression. We note that the population size parameters θD. lower = θp and θD. affinis = θq

are very poorly estimated with wide CIs, and the introgression probability ϕp→q, if nonzero, was

relatively low (< 6%) (Table S3.7), so that inference may be easily affected by factors other than gene

flow. Including multiple samples per species may be expected to increase the information in the data

about the p → q introgression (see Discussion).

3.2.4 Analyses of simulated data by Bayesian and summary methods: Drosophila-based sim-

ulation

Our Bayesian analysis of the Drosophila clade-2 data of Suvorov et al. (2022) produced different

results from those obtained by Suvorov et al. (2022) using triplet methods. To understand possible

reasons for the differences, we conducted two sets of simulations to study the statistical behaviors of

the methods.

In the Drosophila-based simulation, we used parameter estimates of Tables S3.2 (first half) &

S3.3 (first half) obtained from the BPP analysis of the clade-2 data including the D. insularis outgroup

under the final MSC-I and MSC-M models with the w → z and x → y gene-flow events. Two data

halves, each of 1388 loci, were simulated. Bayesian estimates of parameters (Table S3.8) were very

close to the true parameter values, and the 95% HPD CIs were similar to those in the analysis of the

real data (cf: Table S3.4).

In the BPP analyses, we used diffuse gamma priors on parameters τ and θ with the prior means

matching the true values (the 1x priors): τr ∼ G(2,50) and θ ∼ G(2,200). To assess the impact of

the priors, we varied the prior means to be either 10 times larger (the 10x priors): τr ∼ G(2,5) and

θ ∼ G(2,20), or 10 times smaller (the 0.1x priors): τr ∼ G(2,500) and θ ∼ G(2,2000). The priors

had little impact on estimation of the species split times, but some population size parameters were

somewhat affected, with the use of the 0.1x priors causing underestimation of θr and θc (Fig. S3.3).
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Estimates of introgression probabilities (ϕ) and migration rates (M) were very close to the true values

(Table S3.9). Overall the posterior was robust to such orders-of-magnitude changes to the prior mean,

apparently because the datasets analysed in this study were large.

Note that the major introgression event in the true model, from w → z, is between sister lineages

and is thus unidentifiable by triplet methods used by Suvorov et al. (2022). Instead we applied DCT

(which is based on gene-tree counts) and BLT (which is based on branch lengths) to detect the x → y

introgression by constructing triplets. In 8/28 triplets significant evidence was detected by DCT. No

signal was detected by BLT.

3.2.5 Analyses of simulated data by Bayesian and summary methods: quartet data

In the second set of simulations, we used the MSC-M and MSC-I models for four species (A,B,C,

and outgroup O) of Figure 3.2, with gene flow between non-sister lineages (B,C). Divergence times

(τ) and population sizes (θ ) resemble estimates from the Drosophila data, but we used a range of

parameter values. Each dataset was analysed using BPP under both the MSC-M and MSC-I models,

resulting in eight simulation-analysis settings. We examine both estimation of model parameters (in

particular the rate of gene flow) and Bayesian test for the presence of gene flow. This set of simulation

is similar to previous studies that examined the properties of the Bayesian method (Huang et al., 2020,

2022a; Thawornwattana et al., 2023a, 2024), but here we included a number of summary methods.

Bayesian estimation in quartet data. Here we discuss estimation of the rate of gene flow (ϕ in

MSC-I and M in MSC-M) (Fig. 3.4).

In the M-M and I-I settings (Fig. 3.4), data were simulated and analysed under the same model.

The rate of gene flow was well estimated, with the posterior means around the true values while the

95% HPD CIs become narrower when the data size increases. In informative datasets, the coverage

of the 95% CI was in general > 95%. Introgression probability was more precisely estimated in

the inflow model (with gene flow from C → B, Fig. 3.2a&b) than in the outflow model (B → C,

Fig. 3.2c&d) (Fig. S3.6 inflow I-I vs. Fig. S3.10 outflow I-I). For example, the CI width in the least

informative data set (L = 250,S = 2,n = 250, θ = 0.0025) was ∼43% narrower under the inflow than

outflow models. These results are consistent with the observation of Thawornwattana et al. (2023a).
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Figure 3.4: Posterior means and 95% CIs for introgression probabilities (ϕ) in the MSC-I model and migration
rates (M) in the MSC-M model obtained from the BPP analysis of 100 simulated data replicates. Datasets
were simulated under the four models of Figure 3.2 and analysed under both the MSC-M and MSC-I models,
with eight settings in total. For example, in the inflow-M-I setting, replicate datasets were simulated under the
inflow-migration (MSC-M) model (Fig. 3.2a) and analysed under the introgression (MSC-I) model (Fig. 3.2b).
Results for other parameters in the eight simulation settings are in Figures S3.4–S3.11. Numbers above the
CI bars represent the CI coverage probability. Solid black lines represent true parameter values. Dashed black
lines represent the theoretical expectations when the mode of gene flow is misspecified (eq. 3.2). Large datasets
under settings with L = 4000 loci and S = 8 sequences per species per locus (with either 250 or 1000 sites)
were not analysed.

In the M-I and I-M settings (Fig. 3.4), the mode of gene flow was misspecified. The analysis of

Huang et al. (2022a) suggests that when data are generated under MSC-M but analysed under MSC-

I, not all gene flow that has occurred is recoverable, with ϕ̂ < ϕ0 (eq. 3.2). This was the case in the

simulation here (Figs. 3.4, inflow M-I and outflow M-I). The underestimation was more serious (with

larger difference between ϕ̂ and ϕ0) in the outflow case than in the inflow case.

The results for all parameters summarized in Figures S3.4–S3.11. Estimates of population sizes

(θ ) and divergence/introgression times (τ) are shown there.

In the M-M settings (Figs. S3.4 & S3.8), data were simulated under MSC-M and analysed under
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the same model so that the correct model of gene flow was specified. Similarly under the I-I settings

(Figs. S3.6 & S3.10), the MSC-I model was used to both simulate and analyse data. These represent

the best-case scenarios and provide a reference for comparison. In all cases, species divergence times

(τR,τS,τT ) were very well estimated, as were population sizes for extant species (θA,θB,θC,θO). In

the I-I setting, the introgression time (τX = τY in Fig. 3.2b & d) was well-estimated as well. The

posterior means approach the true values while the 95% HPD CIs become narrower when the data

size increases. The results were consistent with the asymptotic expectation that the CI width should

reduce by a half when the number of loci quadruples (L = 250 versus 1000) (O’Hagan and Forster,

2004, p.73). In informative datasets, the coverage of the 95% CI was in general higher than 95%.

Ancestral population sizes (θR,θS,θT ) had larger uncertainties, especially at the low mutation rate

(θ = 0.0025) and in small datasets (with 250 loci and 250 sites), as did ϕ in MSC-I or M in MSC-M.

Note that in our simulation, species divergence times (τs) are proportional to θ so that the two values

of θ mimic the use of genome regions with different mutation rates. The patterns are consistent with

previous simulations conducted under the MSC and MSC-I models (Huang et al., 2020). Introgression

probability was more precisely estimated in the inflow model (with gene flow from the outgroup

species C to the ingroup species B, Fig. 3.2a&b) than in the outflow model (with gene flow from the

ingroup species B to the outgroup species C, Fig. 3.2c&d) (Fig. S3.6 inflow I-I vs. Fig. S3.10 outflow

I-I). For example, the CI width in the least informative data set (L = 250,S = 2,n = 250, θ = 0.0025)

was ∼43% narrower under the inflow than outflow models. These results are consistent with the

observation of Thawornwattana et al. (2023a).

In the M-I settings (Figs. S3.5 for inflow-M-I & S3.9 for outflow-M-I), data were simulated under

MSC-M and analysed under MSC-I, so that the mode of gene flow was misspecified. The analysis of

Huang et al. (2022a) suggests that when data are generated under MSC-M but analysed under MSC-

I, not all gene flow that has occurred is recoverable, and the estimated amount under MSC-I (ϕ̂) is

less than the expected amount (ϕ0) given by eq. 3.2, with ϕ̂ < ϕ0. This was indeed the case in the

simulation here (Figs. 3.4, inflow M-I and outflow M-I). The underestimation was more serious (with

larger difference between ϕ̂ and ϕ0) in the outflow case than in the inflow case, and for short sequences

(n = 250) than for long sequences (n = 1000). While gene flow occurs throughout the time period
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(0,τT ) (Fig. 3.2a&c), the estimated introgression time (τ̂X ) was smaller than the mid-time (τT/2) and

closer to the end of the time period (0), in particular, for datasets with many sequences per species

(S = 8 versus 2) and for long sequences (n = 1000 versus 250) (Figs. S3.5 & S3.9). This is because

the estimated introgression time is dominated by the most recent sequence divergence time between

species (Huang et al., 2022a). Among parameters present in both the MSC-M and MSC-I models,

species divergence times were accurately estimated except for τS which showed a small negative bias

(Figs. S3.5 & S3.9). Population sizes for extant and ancestral species were well-estimated as well,

although there seemed to be a small positive bias in θS. Overall estimates of shared parameters were

very similar to those in the I-I setting where there was no model misspecification.

In the I-M settings (Figs. S3.7 & S3.11), data were simulated under MSC-I and analysed under

MSC-M. The estimated migration rate under MSC-M (M̂) was less than the predicted rate under the

true MSC-I model (M0), with M̂ < M0 (Figs. S3.7 for inflow-I-M and Fig. S3.11 for outflow-I-M).

Thus not all gene flow that occurred according to the true MSC-I model was recovered by the mis-

specified MSC-M model. Again, parameters common in both models, including species divergence

times and population sizes for extant and ancestral species, were accurately estimated with little bias

(Figs. S3.7 & S3.11). There was no discernible difference from estimates in the M-M setting in which

there was no model misspecification.

Whilst the MSC-M and MSC-I models make very different assumptions about the mode of gene

flow, in the simulation settings examined here (Figs. S3.4–S3.11), both produced reliable estimates of

divergence times and population sizes even when the mode of gene flow was misspecified.

Bayesian test in quartet data. Bayesian test of gene flow overall showed very high power in

simulated quartet data (Fig. 3.5). At the 1% cut-off (i.e, with B10 > 100), the test achieved ∼100%

power in all simulation settings. This was the case even in the least informative datasets (with L = 250

loci, n = 250 sites, and at the low mutation rate with θ = 0.0025). In particular, power was ∼100%

in the M-I and I-M settings as well, when the mode of gene flow was misspecified. For instance, if

gene flow occurred continuously over an extended time period according to the MSC-M model but

was assumed to occur in a pulse in the MSC-I model, the test still detected gene flow with nearly full

power (Fig. 3.5, inflow-M & outflow-M, BPP-wrong model).
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Figure 3.5: Power (percentage of replicates in which the null model of no gene flow is rejected at the 1% level)
of BPP (MSC-I and MSC-M), HYDE, QUIBL, DCT and BLT to detect gene flow in data simulated under the
four models of gene flow in Figure 3.2. Bayesian test of gene flow using BPP is conducted assuming either the
correct model (e.g., Inflow-M-M) or incorrect model (e.g., Inflow-M-I), with gene flow detected if the Bayes
factor B10 > 100. Data configurations are specified in the number of loci (L) and the number of sites (n): for
example, in configuration “A2: 250, 1000”, each dataset consists of L = 250 loci, each of n = 1000 sites.
Bayesian estimates of parameters from the same data are shown in Figures 3.4 and S3.4–S3.11.

Estimation by summary methods in quartet data. We applied several summary methods to estimate

the introgression probability (Fig. 3.6) and to test for gene flow (Fig. 3.5). For data simulated under

MSC-I (Fig. 3.6, inflow-I and outflow-I), all summary methods for estimating ϕ appeared to be biased.

In the inflow scenario, SNAQ and HYDE overestimated the introgression probability, while DCT and

QUIBL produced underestimates (Fig. 3.6, inflow-I). In the outflow scenario, all summary methods

produced underestimates (Fig. 3.6, outflow-I). QUIBL, in particular, produced gross underestimates.

This bias of the QUIBL method was noted previously by Edelman et al. (2019).

Test of gene flow by summary methods in quartet data. Next we examined the power of summary

methods for testing for gene flow, in comparison with BPP (Fig. 3.5). While BPP achieved ∼100%

power in all datasets, even when the mode of gene flow was misspecified, the performance of the

summary methods varied. The two methods based on gene-tree branch lengths, QUIBL and BLT, had
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Figure 3.6: Average estimates of introgression probability (ϕ) produced by BPP (MSC-I), SNAQ, HYDE,
QUIBL and DCT for each of the four gene-flow models of Figure 3.2. Black solid lines represent the true value
of ϕ in the MSC-I model, whereas dashed lines represent the expected value ϕ0 (eq. 3.2) when the data are
generated under the MSC-M model. See legend to Figure 3.5.

particularly low power for short sequences (250 sites instead of 1000) and at the low mutation rate

(with θ = 0.0025 instead of 0.01). This may be expected since short and highly similar sequences con-

tain little phylogenetic information, leading to large sampling errors in the estimated branch lengths,

while those errors are ignored by both methods. QUIBL had ∼0% power in data generated under the

outflow model. This appeared to be due to the fact that QUIBL assumes a triplet species tree with an

inflow model of introgression rather than outflow (Edelman et al., 2019, Figs. S61&S62), so that for

those data the assumed direction of gene flow was incorrect.

HYDE showed good power. As it uses site-pattern counts pooled over loci, it is not sensitive

to sampling errors in the estimated gene-tree topology and branch lengths at each locus. We note

that HYDE is based on a hybrid-speciation model, which is a special case of the inflow model with

symmetry in the population size (Ji et al., 2023). Previously HYDE was found to perform poorly

when those assumptions were not met; in particular, HYDE was found to lack power when gene
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flow occurred in the opposite (outflow) direction (Ji et al., 2023, Figure 9; Pang and Zhang, 2024).

In the simulation here the method performed relatively well (Fig. 3.5), apparently because the same

population size was usd for all species in the simulation model, so that the assumptions of HYDE

were largely met.

Finally DCT showed low power in the least informative datasets, but was not so sensitive to short

sequences as were QUIBL and BLT (Fig. 3.5). This may be because DCT uses gene-tree topologies

but not branch lengths.

3.3 Discussion

3.3.1 Likelihood and summary methods for inferring gene flow

Our simulations highlight the desirable statistical properties of the Bayesian method implemented

in BPP. The power to detect gene flow via the Bayesian test (Ji et al., 2023) was high, even when

the information content of the dataset was low and even if the mode of gene flow was misspeci-

fied. Bayesian estimation of parameters including introgression probabilities and migration rates was

highly accurate. We found that if the mode of gene flow was misspecified (when the true model was

MSC-I and the analysis model was MSC-M, or vice versa), the Bayesian method may underestimate

the amount of gene flow. However, the shared parameters between the two models were reliably

estimated. The simulation results here are consistent with and extend previous simulations which

examined the Frequentist properties of Bayesian test and Bayesian estimation under the MSC model

with gene flow (Huang et al., 2020, 2022a; Ji et al., 2023; Pang and Zhang, 2024; Thawornwattana

et al., 2023a).

The performance of summary methods in the simulation varied considerably (Figs. 3.5 & 3.6).

All summary methods for estimating the introgression probability were found to be biased (Fig. 3.6).

In particular, branch length-based methods such as QUIBL performed poorly, and had low power

to detect gene flow, except in the most informative inflow datasets. When the species are closely

related and the sequences are highly similar, estimated branch lengths in reconstructed gene trees are

expected to have considerable errors and uncertainties, which may affect the performance of those

82



Back to Contents 3.3 Discussion

methods.

Suvorov et al. (2022) has relied on the f -branch approach to integrate results of many triplet

analyses. This was designed to move introgression events to ancestral branches on the species tree,

as gene flow involving ancestral lineages may show up as significant introgression events in many

species triplets, which may be hard to interpret (Malinsky et al., 2018). Disturbingly a recent study

demonstrated that the commonly used triplet methods, such as the D-statistic, HYDE, and SNAQ, do

not have the ability to identify different introgression models, including ancestral introgression from

an outgroup, and inflow and outflow between non-sister lineages (Pang and Zhang, 2024). It is unclear

how the performance of fbranch is affected by such unidentifiability. In general, research is needed to

understand the behavior of the approach in realistic scenarios involving multiple introgression events

on a species tree of more than three species when test of gene flow is always conducted using species

triplets.

Overall analyses of real and simulated data in this study as well as in previous studies (Huang

et al., 2020, 2022a; Ji et al., 2023; Pang and Zhang, 2024; Thawornwattana et al., 2023a) have high-

lighted large gaps between full likelihood methods (such as BPP) and summary methods. Summary

methods are orders-of-magnitude faster computationally and can easily accommodate genome-scale

datasets, while likelihood methods have much better statistical performance (with higher power in

inferring gene flow and less bias in estimating its rate). There is an urgent need for improving the

statistical properties of summary methods and the computational efficiency of likelihood methods for

inferring gene flow using genomic sequence data.

3.3.2 Gene flow in Drosophila

There has been long-standing interest in gene flow between species on the Drosophila phylogeny.

Noor et al. (2000) analysed within-species polymorphism and between-species divergence along the

genome to infer gene flow between D. pseudoobscura and D. persimilis. The population genetic anal-

ysis did not identify the direction of gene flow. Wang and Hey (2010, see also Dalquen et al., 2017)

explicitly modelled the coalescent-with-migration process in the so-called isolation-with-migration

(IM) model and used multilocus sequence data to infer low but significant gene flow from D. sim-
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ulans to D. melanogaster, with no gene flow in the opposite direction. The study of Suvorov et al.

(2022) is noteworthy for its use of 155 Drosophila genome assemblies, covering the whole Drosophila

genus and suggesting multiple instances of between-species gene flow.

Our re-analysis of data for clade 2 in the Drosophila genus of Suvorov et al. (2022) has confirmed

the authors’ overall conclusion that gene flow is prevalent on the species phylogeny, and extended

that work by characterizing the lineages involved in gene flow and its direction and by estimating

the timing and rates of gene flow. We inferred a gene-flow event involving sister lineages which is

unidentifiable by the triplet summary methods used by Suvorov et al. (2022) while some introgression

events inferred by Suvorov et al. (2022) were rejected in our Bayesian test. Our simulation in general

demonstrates the accuracy and robustness of BPP, and raised concerns about the reliability of the

summary methods used by Suvorov et al. (2022). Our analyses suggest a need for a re-analysis of

gene flow for the other clades on the Drosophila phylogeny.

Here we note a few limitations with both our Bayesian analysis and the sequence data, which

may affect our inference. First, our search in the space of models was not exhaustive. We used the

Bayesian test to confirm or remove gene-flow events proposed in the triplet analyses of Suvorov et al.

(2022), and in some cases repositioned events to ancestral branches when our analysis suggested

incorrect placement (Table 3.1). We also assessed various scenarios of gene flow involving extant

species (Table S3.5). This constitutes a limited search in the space of introgression models. The use

of a stringent cut-off for B10 in the test may lead to false negatives (i.e., failure to detect gene flow

when it exists), but the test appeared to be very powerful in simulations (this study and Ji et al., 2023).

Second, some concerns may be raised about the suitability of the sequence data of Suvorov et al.

(2022). The data consist of single-copy protein-coding genes compiled to infer the phylogeny and

to estimate divergence times for the whole Drosophila genus, with divergence times >50MY (or

>100MY from the Anopheles gambiae outgroup). While single-copy orthologous genes are ideal for

phylogenetic reconstruction and divergence time estimation among distantly related species, which

are major objectives of the study of Suvorov et al. (2022), they may not be optimal for inferring

gene flow between closely related species. The data for clade 2 involve a high degree of incomplete-

ness, with missing species at ∼50% of the gene loci. Noncoding parts of the genome tend to have
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higher mutation rates and may be more informative than conserved exons, even though they may

pose challenges to genome assembly. Also the data appear to be “haploid consensus sequences”, with

genotypic phase at heterozygous sites in the diploid sequence resolved effectively at random, creating

chimeric sequences that may not exist in nature and may impact on genealogy-based analyses under

the MSC (Andermann et al., 2019; Huang et al., 2022b). Furthermore, the data consist of only one

sample per species per locus. Summary methods considered here do not use information in multi-

ple samples per species, and indeed some authors suggest that “adding more samples provides little

new information with respect to introgression” (Hibbins and Hahn, 2022). However, likelihood-based

methods such as BPP can accommodate multiple samples per species, and both theoretical analysis

and computer simulation suggest that including multiple samples per species (in particular for species

receiving immigrants) may boost the information content in the data for inferring gene flow (Huang

et al., 2020; Yang and Flouri, 2022). For example, with one sequence per species, some models of

introgression are unidentifiable but the problem disappears when multiple samples are included in the

data (Thawornwattana et al., 2023a; Yang and Flouri, 2022). It is unclear whether the extreme sen-

sitivity in the inference of the D. lowei → D. affinis (p → q) introgression to taxon sampling (Table

S3.7) is due to the joint effects of the use of one sample per species and the ‘pseudohaploidization’

of the haploid consensus sequences, as the ‘unusualness’ of the chimeric sequences from the ingroup

species may depend on inclusion or exclusion of sequences from more distant species. Note that

haploid consensus sequences may be chimeric sequences that do not exist in natural populations and

may thus appear highly unusual. They may show up on gene trees as long branches or deeply diver-

gent lineages, and may thus affect inference methods such as BPP that are based on gene genealogies

(Huang et al., 2022b, Fig. 6, Table 6).

While issues related to data quality may impact our analyses using BPP, the major introgression

event involving sister lineages inferred in our analysis (Fig. 3.1b) appears to be robust and well sup-

ported. However, it is likely that certain instances of gene flow may be missed in our analyses. We

leave it to future studies to assemble sequence datasets including noncoding parts of the genome and

including multiple samples per species to infer gene flow in this group of species. In this regard we

note that (Kim et al., 2023) has discussed the complexities of Drosophila genome assembly and made
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progress in producing high-quality genomic data.
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3.4 Supplemental Information

Figure S3.1: Model of gene flow for clade 2 inferred by Suvorov et al. (2022, Fig. 3). The fractions next to
each arrow represent the number of species triplets that support the introgression event by both DCT and BLT
out of the number of informative triplets tested (table S3.1).
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Figure S3.3: The impact of priors on τ and θ in BPP analysis of the data simulated using parameter estimates
from the Drosophila data (Tables S3.2 & S3.3, D. insularis outgroup, first half). We used three sets of priors on
τ and θ , with the prior means to be (i) equal to the true values (the 1x prior): τr ∼ G(2,50) and θ ∼ G(2,200);
(ii) 10x smaller than the true values (the 0.1x prior): τr ∼ G(2,500) and θ ∼ G(2,2000); or (iii) 10x larger (the
10x prior): τr ∼ G(2,5) and θ ∼ G(2,20). Estimates of introgression probabilities and migration rates are in
table S3.9. Estimates for all parameters under the 1x prior are in table S3.8.
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Figure S3.4: (inflow-M-M) Posterior means and 95% HPD CIs for parameters in BPP analysis of replicate
datasets simulated and analysed under the inflow migration (MSC-M) model of figure 3.2a. Solid black
lines represent true values. Numbers above (or below) the CI bars are the coverage probability. We use the
‘simulation-analysis‘ format to specify our simulation setting, so that ‘M-M’ means that data were both simu-
lated and analysed under the MSC-M model, while ‘M-I’ (Fig. S3.5) means that data were simulated under the
MSC-M model and analysed under the MSC-I model.
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Figure S3.5: (inflow-M-I) Posterior means and 95% HPD CIs for parameters in BPP analysis of datasets simu-
lated under the inflow migration (‘M’ for MSC-M) model (Fig. 3.2a) and analysed under the introgression (‘I’
for MSC-I) model (Fig. 3.2b). Dashed black lines for the ϕ parameter denote the theoretical value given by
eq. 3.2. See legend to figure S3.4.

90



Back to Contents 3.4 Supplemental Information

Figure S3.6: (inflow-I-I). See legends to figures S3.4&S3.5.
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Figure S3.7: (inflow-I-M). See legends to figures S3.4&S3.5.
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Figure S3.8: (outflow-M-M). See legends to figures S3.4&S3.5.
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Figure S3.9: (outflow-M-I). See legends to figures S3.4&S3.5.
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Figure S3.10: (outflow-I-I). See legends to figures S3.4&S3.5.
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Figure S3.11: (outflow-I-M). See legends to figures S3.4&S3.5.
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Table S3.1: Fraction of species triplets that supported gene flow out of all informative triplets tested using
DCT/BLT for the 11 Drosophila species of clade 2 (from Suvorov et al. 2022, Supplementary Data S2)

subobscura guanche obscura bifasciata pseudoobscura persimilis miranda lowei azteca athabasca

D. subobscura
D. guanche –
D. obscura 0/1 0/1
D. bifasciata – – –
D. pseudoobscura 0/3 0/3 2/5 2/2
D. persimilis 0/3 0/3 2/4 – –
D. miranda 0/4 0/4 2/8 2/6 0/1 –
D. lowei 1/6 1/5 3/9 3/8 – – 0/2
D. azteca 0/1 0/1 2/3 2/2 0/3 0/1 0/2 1/4
D. athabasca 0/3 0/2 2/4 2/4 0/2 0/1 0/4 0/4 0/1
D. affinis – – 2/3 2/2 0/1 – 0/2 2/3 – –

97



Back to Contents 3.4 Supplemental Information

Table S3.2: The impact of outgroup. Posterior means and 95% HPD CIs for parameters under the MSC-I
models obtained from BPP analyses of the Drosophila data including an outgroup

Outgroup = D. insularis Outgroup = D. melanogaster

Parameters First half Second half First half Second half

Population sizes (θ , ×10−2)
θo 17.95 (17.08, 18.84) 17.99 (17.09, 18.92) 16.96 (16.21, 17.72) 17.15 (16.37, 17.94)
θr 11.39 (10.05, 12.73) 11.87 (10.70, 13.07) 1.38 (0.16, 2.91) 1.77 (0.12, 4.02)
θa 5.14 (4.89, 5.39) 5.22 (4.97, 5.47) 5.06 (4.83, 5.29) 5.26 (5.02, 5.50)
θb 7.20 (6.79, 7.61) 7.86 (7.41, 8.31) 7.01 (6.61, 7.40) 7.80 (7.37, 8.24)
θc 4.50 (3.73, 5.27) 3.65 (3.06, 4.26) 4.35 (3.65, 5.06) 3.95 (3.32, 4.61)
θd 1.72 (1.62, 1.83) 1.78 (1.67, 1.88) 1.74 (1.64, 1.84) 1.78 (1.67, 1.89)
θe 3.72 (3.49, 3.96) 3.69 (3.45, 3.93) 3.70 (3.47, 3.94) 3.71 (3.47, 3.95)
θ f 1.57 (1.46, 1.67) 1.57 (1.47, 1.68) 1.58 (1.48, 1.68) 1.58 (1.47, 1.68)
θg 1.11 (0.97, 1.25) 1.11 (0.97, 1.26) 1.11 (0.97, 1.25) 1.13 (0.98, 1.28)
θh 1.92 (1.78, 2.06) 1.89 (1.75, 2.03) 1.92 (1.78, 2.07) 1.90 (1.75, 2.03)
θi 1.46 (1.22, 1.69) 1.31 (1.08, 1.56) 1.48 (1.25, 1.72) 1.33 (1.09, 1.58)
θw = θa = θa = θa = θa
θz = θb = θb = θb = θb
θx = θc = θc = θc = θc
θy = θb = θb = θb = θb

Speciation/introgression times (τ , ×10−2)
τo 9.54 (9.33, 9.76) 10.05 (9.84, 10.26) 7.48 (7.35, 7.61) 7.90 (7.76, 8.04)
τr 7.53 (7.14, 8.00) 7.43 (7.09, 7.82) 7.42 (7.27, 7.57) 7.84 (7.67, 8.02)
τa 2.75 (2.71, 2.78) 2.74 (2.70, 2.78) 2.78 (2.74, 2.82) 2.78 (2.74, 2.82)
τb 2.18 (2.15, 2.21) 2.17 (2.14, 2.20) 2.23 (2.19, 2.26) 2.18 (2.15, 2.22)
τc 1.96 (1.89, 2.04) 2.07 (2.01, 2.13) 1.98 (1.91, 2.05) 2.06 (1.99, 2.12)
τd 1.03 (1.00, 1.05) 1.01 (0.99, 1.03) 1.03 (1.01, 1.05) 1.01 (0.99, 1.03)
τe 1.01 (0.98, 1.04) 1.03 (1.00, 1.06) 1.02 (0.99, 1.05) 1.03 (1.00, 1.06)
τ f 0.75 (0.72, 0.77) 0.77 (0.74, 0.79) 0.75 (0.72, 0.77) 0.77 (0.75, 0.80)
τg 0.63 (0.60, 0.65) 0.63 (0.60, 0.65) 0.63 (0.61, 0.66) 0.62 (0.60, 0.65)
τh 0.41 (0.39, 0.43) 0.40 (0.38, 0.42) 0.42 (0.40, 0.43) 0.40 (0.38, 0.42)
τi 0.15 (0.13, 0.17) 0.18 (0.16, 0.21) 0.15 (0.13, 0.17) 0.18 (0.16, 0.20)

τw = τz = τw→z 4.00 (3.92, 4.09) 3.98 (3.92, 4.03) 3.98 (3.89, 4.07) 4.05 (3.99, 4.11)
τx = τy = τx→y 2.73 (2.69, 2.77) 2.72 (2.68, 2.77) 2.77 (2.72, 2.81) 2.77 (2.72, 2.81)

Introgression probabilities
ra → rb (or w → z) 0.708 (0.670, 0.747) 0.677 (0.640, 0.718) 0.672 (0.641, 0.703) 0.697 (0.665, 0.730)
ac → rb (or x → y) 0.098 (0.080, 0.117) 0.080 (0.066, 0.094) 0.085 (0.067, 0.105) 0.083 (0.068, 0.097)

Note.– The outgroup species is either D. insularis or D. melanogaster, with the latter being a closer
outgroup for clade 2 (Suvorov et al., 2022, Fig. 1). Node r is the root for clade 2 (Fig. 3.1b), and
o is the root of the tree including the outgroup. Note that D. insularis is a more distant outgroup to
clade 2 (with a larger τo) than is D. melanogaster. The estimates for the first half with the D. insularis
outgroup are used to simulate data analysed in table S3.8.
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Table S3.3: The impact of the outgroup. Posterior means and 95% HPD CIs (in parentheses) under the MSC-M
models obtained from BPP analyses of Drosophila data including an outgroup

Outgroup = D. insularis Outgroup = D. melanogaster

Parameters First half Second half First half Second half

Population sizes (θ , ×10−2)
θo 18.06 (17.18, 19.01) 17.97 (17.07, 18.88) 16.66 (15.93, 17.43) 16.77 (15.98, 17.52)
θr 6.99 (0.26, 13.79) 12.71 (10.94, 14.55) 1.44 (0.15, 3.09) 1.51 (0.18, 3.25)
θa 4.81 (4.58, 5.04) 4.81 (4.60, 5.02) 4.65 (4.44, 4.85) 4.74 (4.54, 4.94)
θb 6.83 (6.44, 7.20) 7.59 (7.18, 7.99) 6.57 (6.22, 6.93) 7.36 (6.98, 7.76)
θc 4.55 (3.81, 5.35) 3.59 (3.04, 4.20) 4.27 (3.64, 4.98) 3.87 (3.28, 4.51)
θd 1.73 (1.63, 1.84) 1.78 (1.68, 1.89) 1.75 (1.65, 1.86) 1.79 (1.68, 1.90)
θe 3.72 (3.48, 3.95) 3.68 (3.44, 3.92) 3.71 (3.49, 3.95) 3.72 (3.49, 3.96)
θ f 1.58 (1.48, 1.68) 1.58 (1.47, 1.68) 1.59 (1.48, 1.69) 1.58 (1.47, 1.68)
θg 1.10 (0.97, 1.25) 1.11 (0.97, 1.26) 1.10 (0.97, 1.24) 1.12 (0.98, 1.27)
θh 1.92 (1.78, 2.06) 1.88 (1.75, 2.02) 1.92 (1.78, 2.06) 1.89 (1.75, 2.03)
θi 1.46 (1.23, 1.69) 1.31 (1.08, 1.56) 1.47 (1.25, 1.72) 1.33 (1.09, 1.58)

Speciation/introgression times (τ , ×10−2)
τo 9.51 (9.29, 9.73) 10.05 (9.85, 10.26) 7.61 (7.49, 7.75) 8.11 (7.97, 8.25)
τr 8.77 (7.75, 9.69) 8.34 (7.90, 8.74) 7.60 (7.46, 7.74) 8.10 (7.95, 8.24)
τa 2.74 (2.70, 2.78) 2.75 (2.71, 2.79) 2.80 (2.77, 2.84) 2.80 (2.76, 2.84)
τb 2.20 (2.17, 2.23) 2.18 (2.15, 2.22) 2.24 (2.21, 2.28) 2.20 (2.16, 2.24)
τc 1.95 (1.87, 2.02) 2.08 (2.02, 2.14) 1.99 (1.92, 2.05) 2.07 (2.00, 2.13)
τd 1.02 (1.00, 1.04) 1.01 (0.99, 1.03) 1.02 (1.00, 1.05) 1.01 (0.99, 1.03)
τe 1.01 (0.98, 1.04) 1.03 (1.00, 1.05) 1.02 (0.99, 1.05) 1.03 (1.00, 1.06)
τ f 0.74 (0.72, 0.77) 0.77 (0.74, 0.79) 0.74 (0.72, 0.77) 0.77 (0.75, 0.80)
τg 0.63 (0.61, 0.66) 0.62 (0.60, 0.65) 0.63 (0.61, 0.66) 0.62 (0.60, 0.65)
τh 0.41 (0.39, 0.43) 0.40 (0.38, 0.42) 0.42 (0.40, 0.43) 0.40 (0.38, 0.42)
τi 0.15 (0.13, 0.17) 0.18 (0.16, 0.20) 0.15 (0.13, 0.17) 0.18 (0.16, 0.20)

Migration rates
ra → rb (or w → z) 0.557 (0.515, 0.603) 0.594 (0.549, 0.641) 0.531 (0.489, 0.574) 0.562 (0.516, 0.605)
ac → rb (or x → y) 0.016 (0.003, 0.029) 0.009 (0.000, 0.020) 0.016 (0.004, 0.029) 0.021 (0.007, 0.036)

Note.– See Note in table S3.2. Node o is the root of the species tree including the outgroup. The
estimates for the first half with the D. insularis outgroup are used to simulate data analysed in table
S3.8.
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Table S3.4: Posterior means and 95% HPD CIs of parameters under the final MSC-I and MSC-M models of
Figure 3.1b obtained from BPP analyses of the Drosophila data set

MSC-I MSC-M

Parameters First half Second half First half Second half

Population sizes (θ , ×10−2)
θr 12.85 (11.95, 13.76) 14.47 (13.50, 15.46) 13.24 (12.22, 14.29) 14.86 (13.81, 15.92)
θa 5.19 (4.92, 5.46) 5.22 (4.98, 5.48) 4.62 (4.41, 4.82) 4.64 (4.44, 4.86)
θb 7.49 (7.03, 7.95) 8.16 (7.68, 8.65) 6.92 (6.51, 7.31) 7.74 (7.28, 8.19)
θc 5.28 (4.31, 6.30) 4.44 (3.64, 5.27) 5.16 (4.25, 6.09) 4.34 (3.60, 5.10)
θd 1.72 (1.62, 1.82) 1.77 (1.67, 1.88) 1.74 (1.64, 1.85) 1.79 (1.68, 1.89)
θe 3.78 (3.54, 4.02) 3.74 (3.50, 3.99) 3.79 (3.56, 4.03) 3.75 (3.51, 3.99)
θ f 1.51 (1.41, 1.61) 1.48 (1.38, 1.58) 1.52 (1.42, 1.62) 1.49 (1.39, 1.59)
θg 1.09 (0.95, 1.23) 1.12 (0.97, 1.27) 1.09 (0.95, 1.23) 1.12 (0.97, 1.27)
θh 1.93 (1.78, 2.07) 1.88 (1.75, 2.02) 1.92 (1.78, 2.07) 1.88 (1.75, 2.02)
θi 1.46 (1.24, 1.70) 1.31 (1.07, 1.55) 1.46 (1.23, 1.70) 1.30 (1.06, 1.54)
θw = θa = θa – –
θz = θb = θb – –
θx = θc = θc – –
θy = θb = θb – –

Speciation/introgression times (τ , ×10−2)
τr 7.28 (6.89, 7.74) 7.42 (7.10, 7.73) 7.48 (6.93, 8.17) 7.61 (7.05, 8.25)
τa 2.58 (2.54, 2.62) 2.58 (2.54, 2.62) 2.60 (2.57, 2.64) 2.61 (2.57, 2.65)
τb 2.21 (2.18, 2.24) 2.19 (2.15, 2.22) 2.23 (2.19, 2.26) 2.21 (2.17, 2.25)
τc 1.85 (1.77, 1.94) 1.94 (1.88, 2.01) 1.86 (1.78, 1.93) 1.95 (1.89, 2.01)
τd 1.03 (1.01, 1.05) 1.01 (0.99, 1.04) 1.03 (1.01, 1.05) 1.01 (0.99, 1.03)
τe 1.02 (0.99, 1.05) 1.03 (1.00, 1.06) 1.02 (0.99, 1.05) 1.03 (1.00, 1.06)
τ f 0.69 (0.67, 0.72) 0.73 (0.70, 0.75) 0.69 (0.66, 0.71) 0.72 (0.70, 0.75)
τg 0.63 (0.61, 0.66) 0.62 (0.59, 0.65) 0.63 (0.61, 0.66) 0.62 (0.59, 0.65)
τh 0.41 (0.39, 0.43) 0.40 (0.38, 0.42) 0.41 (0.39, 0.43) 0.40 (0.38, 0.42)
τi 0.15 (0.12, 0.17) 0.18 (0.16, 0.20) 0.15 (0.12, 0.17) 0.18 (0.16, 0.20)

τw = τz = τw→z 3.81 (3.75, 3.87) 3.88 (3.82, 3.94) – –
τx = τy = τx→y 2.57 (2.53, 2.61) 2.57 (2.53, 2.61) – –

Gene-flow rate Introgression probability (ϕ) Migration rate (M)
ra → rb (or w → z) 0.728 (0.689, 0.769) 0.712 (0.681, 0.743) 0.568 (0.518, 0.615) 0.603 (0.555, 0.652)
ac → rb (or x → y) 0.069 (0.055, 0.083) 0.069 (0.056, 0.082) 0.011 (0.000, 0.025) 0.009 (0.000, 0.020)
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Table S3.5: Posterior means and 95% HPD CIs of introgression probabilities (ϕ), introgression times (τ) and
Bayes factors in support of gene flow (B10) in the BPP analysis of the Drosophila data under the MSC-I model
with w → z and x → y introgressions, and bidirectional introgression between extant species X and Y

First half (1389 loci) Second half (1388 loci)

Introgression ϕ̂ τ̂ B10 ϕ̂ τ̂ B10

X = D. obscura and Y = D. pseudoobscura
w → z 0.7461 (0.6968, 0.7990) 0.0380 (0.0374, 0.0387) ∞ 0.7029 (0.6738, 0.7313) 0.0387 (0.0381, 0.0392) ∞

x → y 0.0669 (0.0522, 0.0818) 0.0258 (0.0253, 0.0262) ∞ 0.0671 (0.0545, 0.0803) 0.0257 (0.0253, 0.0261) ∞

X → Y 0.0011 (0.0000, 0.0034) 0.0007 (0.0000, 0.0014) 0.01 0.0009 (0.0000, 0.0028) 0.0009 (0.0000, 0.0017) 0.01
Y → X 0.0014 (0.0000, 0.0036) 0.01 0.0008 (0.0000, 0.0024) 0.01

X = D. bifasciata and Y = D. pseudoobscura
w → z 0.7345 (0.7005, 0.7683) 0.0380 (0.0374, 0.0386) ∞ 0.7014 (0.6714, 0.7311) 0.0387 (0.0381, 0.0392) ∞

x → y 0.0675 (0.0534, 0.0820) 0.0257 (0.0253, 0.0261) ∞ 0.0672 (0.0547, 0.0803) 0.0257 (0.0253, 0.0262) ∞

X → Y 0.0009 (0.0000, 0.0027) 0.0007 (0.0000, 0.0014) 0.01 0.0008 (0.0000, 0.0026) 0.0009 (0.0000, 0.0017) 0.01
Y → X 0.0014 (0.0000, 0.0035) 0.01 0.0007 (0.0000, 0.0022) 0.01

X = D. obscura and Y = D. persimilis
w → z 0.7215 (0.6838, 0.7579) 0.0380 (0.0374, 0.0386) ∞ 0.7000 (0.6592, 0.7331) 0.0386 (0.0380, 0.0392) ∞

x → y 0.0659 (0.0520, 0.0804) 0.0257 (0.0253, 0.0261) ∞ 0.0670 (0.0543, 0.0800) 0.0257 (0.0253, 0.0261) ∞

X → Y 0.0011 (0.0000, 0.0033) 0.0008 (0.0000, 0.0014) 0.01 0.0011 (0.0000, 0.0034) 0.0009 (0.0000, 0.0017) 0.01
Y → X 0.0015 (0.0000, 0.0037) 0.01 0.0008 (0.0000, 0.0024) 0.01

X = D. bifasciata and Y = D. persimilis
w → z 0.7338 (0.6977, 0.7686) 0.0380 (0.0374, 0.0386) ∞ 0.7064 (0.6776, 0.7353) 0.0386 (0.0381, 0.0392) ∞

x → y 0.0673 (0.0532, 0.0822) 0.0257 (0.0253, 0.0261) ∞ 0.0669 (0.0543, 0.0803) 0.0257 (0.0253, 0.0262) ∞

X → Y 0.0009 (0.0000, 0.0029) 0.0008 (0.0000, 0.0014) 0.01 0.0009 (0.0000, 0.0027) 0.0009 (0.0000, 0.0017) 0.01
Y → X 0.0014 (0.0000, 0.0035) 0.01 0.0007 (0.0000, 0.0023) 0.01

X = D. obscura and Y = D. miranda
w → z 0.7239 (0.6740, 0.7688) 0.0380 (0.0374, 0.0386) ∞ 0.7023 (0.6720, 0.7315) 0.0386 (0.0380, 0.0392) ∞

x → y 0.0662 (0.0524, 0.0810) 0.0257 (0.0253, 0.0261) ∞ 0.0676 (0.0550, 0.0809) 0.0256 (0.0252, 0.0260) ∞

X → Y 0.0010 (0.0000, 0.0031) 0.0023 (0.0001, 0.0041) 0.01 0.0010 (0.0000, 0.0030) 0.0020 (0.0000, 0.0039) 0.01
Y → X 0.0014 (0.0000, 0.0037) 0.01 0.0008 (0.0000, 0.0024) 0.01

X = D. bifasciata and Y = D. miranda
w → z 0.7198 (0.6858, 0.7546) 0.0379 (0.0373, 0.0385) ∞ 0.7057 (0.6768, 0.7351) 0.0387 (0.0381, 0.0393) ∞

x → y 0.0669 (0.0528, 0.0818) 0.0257 (0.0252, 0.0261) ∞ 0.0675 (0.0547, 0.0806) 0.0257 (0.0253, 0.0262) ∞

X → Y 0.0009 (0.0000, 0.0028) 0.0022 (0.0002, 0.0041) 0.01 0.0009 (0.0000, 0.0028) 0.0020 (0.0000, 0.0039) 0.01
Y → X 0.0014 (0.0000, 0.0035) 0.01 0.0007 (0.0000, 0.0023) 0.01

X = D. obscura and Y = D. lowei
w → z 0.7134 (0.6762, 0.7523) 0.0380 (0.0374, 0.0386) ∞ 0.7220 (0.6902, 0.7524) 0.0387 (0.0381, 0.0393) ∞

x → y 0.0654 (0.0512, 0.0798) 0.0257 (0.0253, 0.0261) ∞ 0.0679 (0.0550, 0.0811) 0.0258 (0.0254, 0.0262) ∞

X → Y 0.0008 (0.0000, 0.0025) 0.0056 (0.0006, 0.0102) 0.01 0.0008 (0.0000, 0.0025) 0.0057 (0.0006, 0.0103) 0.01
Y → X 0.0014 (0.0000, 0.0039) 0.01 0.0008 (0.0000, 0.0025) 0.01

X = D. bifasciata and Y = D. lowei
w → z 0.7132 (0.6705, 0.7559) 0.0379 (0.0373, 0.0385) ∞ 0.7178 (0.6868, 0.7473) 0.0387 (0.0381, 0.0393) ∞

x → y 0.0662 (0.0522, 0.0811) 0.0257 (0.0253, 0.0261) ∞ 0.0678 (0.0547, 0.0807) 0.0257 (0.0253, 0.0262) ∞

X → Y 0.0007 (0.0000, 0.0023) 0.0048 (0.0000, 0.0094) 0.01 0.0008 (0.0000, 0.0024) 0.0051 (0.0000, 0.0097) 0.01
Y → X 0.0014 (0.0000, 0.0036) 0.01 0.0008 (0.0000, 0.0024) 0.01
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First half (1389 loci) Second half (1388 loci)

Introgression ϕ̂ τ̂ B10 ϕ̂ τ̂ B10

X = D. obscura and Y = D. azteca
w → z 0.7113 (0.6768, 0.7461) 0.0379 (0.0373, 0.0385) ∞ 0.6967 (0.6681, 0.7249) 0.0387 (0.0381, 0.0392) ∞

x → y 0.0661 (0.0521, 0.0807) 0.0257 (0.0253, 0.0261) ∞ 0.0672 (0.0546, 0.0802) 0.0257 (0.0253, 0.0262) ∞

X → Y 0.0008 (0.0000, 0.0025) 0.0058 (0.0005, 0.0103) 0.01 0.0007 (0.0000, 0.0024) 0.0051 (0.0003, 0.0100) 0.01
Y → X 0.0010 (0.0000, 0.0030) 0.01 0.0008 (0.0000, 0.0024) 0.01

X = D. bifasciata and Y = D. azteca
w → z 0.7279 (0.6892, 0.7691) 0.0380 (0.0374, 0.0386) ∞ 0.7042 (0.6760, 0.7323) 0.0387 (0.0381, 0.0392) ∞

x → y 0.0669 (0.0527, 0.0813) 0.0257 (0.0253, 0.0261) ∞ 0.0671 (0.0543, 0.0799) 0.0257 (0.0253, 0.0261) ∞

X → Y 0.0007 (0.0000, 0.0023) 0.0054 (0.0005, 0.0103) 0.01 0.0007 (0.0000, 0.0023) 0.0050 (0.0003, 0.0099) 0.01
Y → X 0.0007 (0.0000, 0.0023) 0.01 0.0008 (0.0000, 0.0024) 0.01

X = D. obscura and Y = D. athabasca
w → z 0.7299 (0.6866, 0.7747) 0.0380 (0.0374, 0.0386) ∞ 0.7257 (0.6960, 0.7545) 0.0387 (0.0381, 0.0393) ∞

x → y 0.0669 (0.0527, 0.0815) 0.0257 (0.0253, 0.0261) ∞ 0.0694 (0.0562, 0.0825) 0.0256 (0.0252, 0.0260) ∞

X → Y 0.0008 (0.0000, 0.0025) 0.0033 (0.0002, 0.0063) 0.01 0.0008 (0.0000, 0.0024) 0.0031 (0.0000, 0.0059) 0.01
Y → X 0.0008 (0.0000, 0.0026) 0.01 0.0008 (0.0000, 0.0026) 0.01

X = D. bifasciata and Y = D. athabasca
w → z 0.7311 (0.6882, 0.7832) 0.0380 (0.0374, 0.0386) ∞ 0.7018 (0.6735, 0.7318) 0.0387 (0.0381, 0.0392) ∞

x → y 0.0669 (0.0525, 0.0814) 0.0257 (0.0253, 0.0261) ∞ 0.0673 (0.0545, 0.0802) 0.0257 (0.0253, 0.0262) ∞

X → Y 0.0008 (0.0000, 0.0024) 0.0032 (0.0001, 0.0061) 0.01 0.0008 (0.0000, 0.0025) 0.0027 (0.0000, 0.0058) 0.01
Y → X 0.0007 (0.0000, 0.0023) 0.01 0.0010 (0.0000, 0.0029) 0.01

X = D. obscura and Y = D. affinis
w → z 0.7385 (0.7017, 0.7781) 0.0381 (0.0375, 0.0387) ∞ 0.7020 (0.6736, 0.7300) 0.0386 (0.0381, 0.0392) ∞

x → y 0.0675 (0.0529, 0.0821) 0.0257 (0.0253, 0.0262) ∞ 0.0669 (0.0541, 0.0799) 0.0257 (0.0253, 0.0261) ∞

X → Y 0.0009 (0.0000, 0.0027) 0.0001 (0.0000, 0.0002) 0.01 0.0008 (0.0000, 0.0026) 0.0001 (0.0000, 0.0003) 0.01
Y → X 0.0008 (0.0000, 0.0026) 0.01 0.0008 (0.0000, 0.0024) 0.01

X = D. bifasciata and Y = D. affinis
w → z 0.7139 (0.6794, 0.7487) 0.0379 (0.0374, 0.0386) ∞ 0.7026 (0.6750, 0.7295) 0.0386 (0.0381, 0.0392) ∞

x → y 0.0665 (0.0523, 0.0812) 0.0257 (0.0253, 0.0261) ∞ 0.0671 (0.0545, 0.0803) 0.0258 (0.0253, 0.0262) ∞

X → Y 0.0008 (0.0000, 0.0025) 0.0000 (0.0000, 0.0001) 0.01 0.0008 (0.0000, 0.0025) 0.0002 (0.0000, 0.0004) 0.01
Y → X 0.0007 (0.0000, 0.0022) 0.01 0.0008 (0.0000, 0.0026) 0.01

X = D. lowei, Y = D. azteca, Z = D. affinis
w → z 0.7248 (0.6826, 0.7677) 0.0380 (0.0374, 0.0386) ∞ 0.7061 (0.6767, 0.7348) 0.0388 (0.0382, 0.0394) ∞

x → y 0.0671 (0.0530, 0.0817) 0.0257 (0.0253, 0.0260) ∞ 0.0684 (0.0557, 0.0815) 0.0257 (0.0253, 0.0261) ∞

X → Y 0.0028 (0.0002, 0.0060) 0.0055 (0.0020, 0.0081) 0.01 0.0009 (0.0000, 0.0028) 0.0073 (0.0070, 0.0075) 0.01
Y → X 0.0008 (0.0000, 0.0024) 0.01 0.0019 (0.0000, 0.0046) 0.01
X → Z 0.0022 (0.0000, 0.0054) 0.0026 (0.0003, 0.0058) 0.01 0.0010 (0.0000, 0.0032) 0.0008 (0.0000, 0.0035) 0.01
Z → X 0.0007 (0.0000, 0.0023) 0.01 0.0007 (0.0000, 0.0023) 0.01

Note.– All tested gene flow events between extant species are rejected when the model already ac-
counts for the w → z and x → y introgressions.
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Table S3.6: Posterior means and 95% HPD CIs (in parentheses) obtained in BPP analyses of the real data under
the JC and GTR mutation models

JC GTR

Model First half Second half First half Second half

MSC-I
ϕw→z 0.728 (0.689, 0.769) 0.712 (0.681, 0.743) 0.723 (0.688, 0.758) 0.708 (0.675, 0.739)
ϕx→y 0.069 (0.055, 0.083) 0.069 (0.056, 0.082) 0.067 (0.053, 0.081) 0.069 (0.056, 0.082)

MSC-M
Mw→z 0.568 (0.518, 0.615) 0.603 (0.555, 0.652) 0.568 (0.523, 0.614) 0.605 (0.555, 0.654)
Mx→y 0.011 (0.000, 0.025) 0.009 (0.000, 0.020) 0.008 (0.000, 0.018) 0.007 (0.000, 0.016)

Note.– Estimates of τs and θs are shown in figure S3.2.

103



Back to Contents 3.4 Supplemental Information

Table S3.7: Parameter estimates (posterior means and 95% HPD CIs) and Bayes factors (B10) for testing gene
flow in BPP analysis of triplet and quintet datasets informative for D. lowei ↔ D. affinis gene flow

X = D. pseudoobscura X = D. persimilis X = D. miranda

Parameter Estimate B10 Estimate B10 Estimate B10

Triplet tree: ((X , D. lowei), D. affinis)
ϕ̂p→q (D. lowei → D. affinis) 0.0477 (0.0326, 0.0630) ∞ 0.0478 (0.0333, 0.0631) ∞ 0.0420 (0.0307, 0.0537) ∞

ϕ̂q→p (D. affinis → D. lowei) 0.0089 (0.0000, 0.0186) 0.01 0.0046 (0.0000, 0.0130) 0.01 0.0010 (0.0000, 0.0029) 0.01
τb 0.0198 (0.0193, 0.0202) 0.0192 (0.0187, 0.0196) 0.0199 (0.0195, 0.0203)
τe 0.0085 (0.0083, 0.0088) 0.0086 (0.0083, 0.0088) 0.0084 (0.0082, 0.0086)
τp = τq 0.0082 (0.0074, 0.0087) 0.0081 (0.0072, 0.0087) 0.0081 (0.0074, 0.0086)
θD. lowei 0.0136 (0.0013, 0.0293) 0.0134 (0.0012, 0.0292) 0.0150 (0.0016, 0.0320)
θD. affinis 0.0147 (0.0018, 0.0298) 0.0143 (0.0005, 0.0307) 0.0109 (0.0002, 0.0260)
θb 0.0609 (0.0587, 0.0631) 0.0662 (0.0639, 0.0686) 0.0458 (0.0439, 0.0476)
θe 0.0221 (0.0206, 0.0236) 0.0229 (0.0213, 0.0245) 0.0130 (0.0122, 0.0137)

Quintet tree: (((X , D. lowei), D. affinis), (D. obscura, D. guanche))
ϕ̂p→q (D. lowei → D. affinis) 0.0148 (0.0069, 0.0232) 0.08 0.0231 (0.0132, 0.0332) 6.21 0.0169 (0.0093, 0.0246) 0.35
ϕ̂q→p (D. affinis → D. lowei) 0.0010 (0.0000, 0.0030) 0.01 0.0009 (0.0000, 0.0026) 0.01 0.0008 (0.0000, 0.0024) 0.01
τr 0.0298 (0.0295, 0.0301) 0.0295 (0.0292, 0.0299) 0.0301 (0.0298, 0.0304)
τa 0.0208 (0.0202, 0.0214) 0.0208 (0.0202, 0.0215) 0.0214 (0.0207, 0.0221)
τb 0.0207 (0.0203, 0.0210) 0.0204 (0.0199, 0.0208) 0.0206 (0.0202, 0.0209)
τe 0.0093 (0.0090, 0.0095) 0.0093 (0.0090, 0.0095) 0.0090 (0.0088, 0.0092)
τp = τq 0.0086 (0.0072, 0.0095) 0.0089 (0.0079, 0.0095) 0.0085 (0.0074, 0.0092)
θD. lowei 0.0137 (0.0012, 0.0296) 0.0145 (0.0015, 0.0309) 0.0144 (0.0014, 0.0308)
θD. affinis 0.0114 (0.0003, 0.0271) 0.0115 (0.0003, 0.0273) 0.0112 (0.0003, 0.0266)
θr 0.0762 (0.0742, 0.0782) 0.0785 (0.0764, 0.0805) 0.0662 (0.0644, 0.0680)
θa 0.0743 (0.0646, 0.0843) 0.0702 (0.0611, 0.0796) 0.0838 (0.0714, 0.0966)
θb 0.0461 (0.0428, 0.0495) 0.0500 (0.0462, 0.0537) 0.0307 (0.0285, 0.0328)
θe 0.0216 (0.0202, 0.0229) 0.0229 (0.0214, 0.0244) 0.0128 (0.0121, 0.0136)

Quintet tree: (((X , D. lowei), D. affinis), (D. obscura, D. guanche)), with w → z and x → y introgressions
ϕ̂w→z 0.9066 (0.8931, 0.9196) ∞ 0.8750 (0.8600, 0.8901) ∞ 0.9513 (0.9405, 0.9621) ∞

ϕ̂x→y 0.0890 (0.0754, 0.1031) ∞ 0.0851 (0.0717, 0.0981) ∞ 0.0913 (0.0764, 0.1063) ∞

ϕ̂p→q (D. lowei → D. affinis) 0.0413 (0.0273, 0.0555) ∞ 0.0571 (0.0418, 0.0723) ∞ 0.0496 (0.0365, 0.0629) ∞

ϕ̂q→p (D. affinis → D. lowei) 0.0009 (0.0000, 0.0027) 0.01 0.0010 (0.0000, 0.0031) 0.01 0.0007 (0.0000, 0.0023) 0.01
τr 0.0902 (0.0852, 0.0949) 0.0818 (0.0795, 0.0841) 0.0872 (0.0837, 0.0906)
τa 0.0225 (0.0222, 0.0229) 0.0225 (0.0221, 0.0229) 0.0234 (0.0230, 0.0238)
τb 0.0205 (0.0200, 0.0209) 0.0205 (0.0201, 0.0210) 0.0210 (0.0205, 0.0214)
τe 0.0090 (0.0088, 0.0093) 0.0090 (0.0087, 0.0092) 0.0088 (0.0086, 0.0090)
τw = τz 0.0356 (0.0351, 0.0360) 0.0353 (0.0348, 0.0357) 0.0352 (0.0348, 0.0357)
τx = τy 0.0225 (0.0221, 0.0228) 0.0224 (0.0220, 0.0228) 0.0233 (0.0229, 0.0237)
τp = τq 0.0088 (0.0084, 0.0093) 0.0088 (0.0085, 0.0092) 0.0087 (0.0083, 0.0090)
θD. obscura 0.0018 (0.0001, 0.0042) 0.0013 (0.0000, 0.0029) 0.0011 (0.0001, 0.0025)
θD. lowei 0.0149 (0.0013, 0.0316) 0.0148 (0.0015, 0.0317) 0.0149 (0.0017, 0.0319)
θD. affinis 0.0116 (0.0003, 0.0273) 0.0118 (0.0003, 0.0277) 0.0112 (0.0002, 0.0266)
θr 0.1228 (0.1130, 0.1333) 0.1130 (0.1049, 0.1211) 0.1183 (0.1071, 0.1299)
θa 0.0493 (0.0475, 0.0512) 0.0483 (0.0464, 0.0501) 0.0491 (0.0473, 0.0508)
θb 0.0476 (0.0447, 0.0505) 0.0510 (0.0479, 0.0543) 0.0305 (0.0284, 0.0325)
θe 0.0221 (0.0207, 0.0235) 0.0237 (0.0222, 0.0253) 0.0134 (0.0126, 0.0142)
θw = θa = θa = θa

θz = θb = θb = θb
θx = θD. obscura = θD. obscura = θD. obscura
θy = θb = θb = θb
θp = θD. lowei = θD. lowei = θD. lowei
θq = θD. affinis = θD. affinis = θD. affinis

Note.– Nodes r,a,b,e, p,q refer to the species tree in figure 3.1a. The triplet species tree is ((X , D. lowei),
D. affinis), where X is D. pseudoobscura, D. persimilis, or D. miranda, with species divergences at nodes b
and e and with bidirectional introgression at nodes p,q (Fig. 3.1a). The quintet datasets include two outgroup
species D. guanche and D. obscura, with an additional internal node a (Fig. 3.1a). The quartet introgression
model assumes the w → z and x → y introgressions (as in Fig. 3.1b). The number of loci in the triplet datasets
is 2672, 2646, and 2672 for X = D. pseudoobscura, D. persimilis, and D. miranda, respectively, and the
corresponding numbers for the quintet datasets are 2759, 2757, and 2758.
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Table S3.8: Posterior means and 95% HPD CIs (in parentheses) from BPP analysis of datasets simulated under
the MSC-I and MSC-M models of figure 3.1b with the D. insularis outgroup

MSC-I MSC-M

Parameters Truth Estimates, first half Estimates, second half Truth Estimates, first half Estimates, second half

Population sizes (θ , ×10−2)
θo 17.95 17.61 (16.79, 18.44) 17.53 (16.72, 18.36) 18.06 17.85 (17.02, 18.69) 17.28 (16.44, 18.06)
θr 11.39 10.94 (9.18, 12.69) 11.30 (9.88, 12.73) 6.99 1.83 (0.17, 4.03) 1.73 (0.15, 3.78)
θa 5.14 5.13 (4.86, 5.40) 5.17 (4.89, 5.46) 4.81 4.65 (4.42, 4.87) 4.88 (4.65, 5.11)
θb 7.20 7.15 (6.62, 7.68) 6.64 (6.16, 7.13) 6.83 6.71 (6.27, 7.15) 6.49 (6.05, 6.96)
θc 4.50 3.53 (2.63, 4.43) 3.50 (2.44, 4.60) 4.55 4.19 (3.04, 5.40) 5.19 (3.90, 6.53)
θd 1.72 1.84 (1.69, 2.00) 1.72 (1.58, 1.86) 1.73 1.79 (1.64, 1.94) 1.82 (1.67, 1.98)
θe 3.72 3.82 (3.51, 4.14) 4.02 (3.70, 4.33) 3.72 3.87 (3.56, 4.18) 3.68 (3.39, 3.98)
θ f 1.57 1.57 (1.44, 1.69) 1.55 (1.42, 1.67) 1.58 1.48 (1.36, 1.60) 1.61 (1.48, 1.74)
θg 1.11 0.96 (0.66, 1.26) 1.27 (0.97, 1.58) 1.10 1.08 (0.77, 1.40) 1.03 (0.75, 1.32)
θh 1.92 1.89 (1.66, 2.13) 1.70 (1.48, 1.92) 1.92 1.95 (1.69, 2.21) 2.04 (1.79, 2.29)
θi 1.46 1.69 (1.16, 2.22) 1.75 (1.26, 2.24) 1.46 1.68 (1.26, 2.13) 1.13 (0.70, 1.61)
θw = θa – – –
θz = θb – – –
θx = θc – – –
θy = θb – – –

Speciation/introgression times (τ , ×10−2)
τo 9.54 9.57 (9.39, 9.75) 9.67 (9.49, 9.84) 9.51 9.37 (9.20, 9.53) 9.63 (9.47, 9.78)
τr 7.53 7.78 (7.40, 8.17) 7.37 (6.97, 7.77) 8.77 9.32 (9.09, 9.54) 9.60 (9.41, 9.78)
τa 2.75 2.78 (2.72, 2.84) 2.73 (2.68, 2.79) 2.74 2.69 (2.63, 2.74) 2.73 (2.68, 2.78)
τb 2.18 2.20 (2.15, 2.26) 2.24 (2.19, 2.30) 2.20 2.19 (2.14, 2.24) 2.24 (2.18, 2.29)
τc 1.96 2.07 (1.95, 2.20) 2.11 (1.97, 2.26) 1.95 1.98 (1.84, 2.12) 1.90 (1.75, 2.04)
τd 1.03 1.00 (0.96, 1.05) 1.02 (0.98, 1.06) 1.02 1.01 (0.97, 1.06) 1.03 (0.98, 1.07)
τe 1.01 1.01 (0.96, 1.06) 0.97 (0.92, 1.02) 1.01 0.98 (0.93, 1.03) 1.01 (0.96, 1.05)
τ f 0.75 0.76 (0.71, 0.81) 0.77 (0.72, 0.81) 0.74 0.77 (0.72, 0.81) 0.72 (0.67, 0.77)
τg 0.63 0.66 (0.59, 0.73) 0.60 (0.53, 0.66) 0.63 0.64 (0.58, 0.71) 0.66 (0.59, 0.72)
τh 0.41 0.41 (0.37, 0.45) 0.43 (0.39, 0.46) 0.41 0.42 (0.38, 0.46) 0.39 (0.35, 0.43)
τi 0.15 0.12 (0.06, 0.17) 0.11 (0.06, 0.16) 0.15 0.10 (0.05, 0.15) 0.17 (0.12, 0.23)

τw→z 4.00 4.04 (3.96, 4.12) 4.01 (3.93, 4.09) – – –
τx→y 2.73 2.75 (2.68, 2.81) 2.69 (2.60, 2.77) – – –

Gene-flow rate Introgression probability (ϕ) Migration rate (M)
ra → rb (or w → z) 0.708 0.716 (0.686, 0.747) 0.712 (0.680, 0.744) 0.557 0.500 (0.457, 0.544) 0.524 (0.472, 0.571)
ac → rb (or x → y) 0.098 0.119 (0.094, 0.144) 0.090 (0.068, 0.112) 0.016 0.023 (0.002, 0.048) 0.033 (0.002, 0.068)

Note.– True parameter values for the MSC-I model with w → z and x → y introgressions are from
table S3.2 (first half with the D. insularis outgroup), and the parameter values for the MSC-M model
are from table S3.3. Node o is the root of the species tree including the outgroup.
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Table S3.9: Posterior means and 95% HPD CIs (in parentheses) for the rate of gene flow (ϕ in MSC-I or M in
MSC-M) obtained in BPP analyses of the simulated data using the 0.1x, 1x and 10x priors

Priors on τ and θ

Model Truth 0.1x 1x 10x

MSC-I
ϕw→z 0.708 0.761 (0.734, 0.788) 0.716 (0.686, 0.747) 0.719 (0.688, 0.750)
ϕx→y 0.098 0.123 (0.099, 0.147) 0.119 (0.094, 0.144) 0.119 (0.094, 0.143)

MSC-M
Mw→z 0.557 0.499 (0.458, 0.545) 0.500 (0.457, 0.544) 0.509 (0.465, 0.554)
Mx→y 0.016 0.024 (0.001, 0.051) 0.023 (0.002, 0.048) 0.024 (0.001, 0.051)

Note.– Estimates of τs and θs are shown in figure S3.3. See legend to figure S3.3.
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Chapter 4

Unravelling the Migration History between Chimpanzees and Bono-

bos

Bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) are great apes found in western and

central Africa, and they diverged from humans about 5-10 Mya (de Manuel et al., 2016; Prado-

Martinez et al., 2013). The current taxonomy of the genus Pan recognises bonobos as one species,

while chimpanzees are divided into four subspecies (Caswell et al., 2008; Prado-Martinez et al.,

2013). The two species likely diverged through allopatric or sympatric speciation (Hey, 2010a; Os-

ada and Wu, 2005) about 0.9 – 2 Mya ago. They are currently separated by the Congo river (fig. 4.1a)

(de Manuel et al., 2016; Kuhlwilm et al., 2016b; Lobon et al., 2016; Prado-Martinez et al., 2013).

Western chimpanzees, P. t. verus, occur in the most western part of the species geographic range,

from Senegal on the west to Ghana on the east. The other three subspecies are separated from West-

ern chimpanzees by the Dahomey gap. From west to east, Nigeria-Cameroon chimpanzees (P. t. el-

lioti) are separated from Central chimpanzees (P. t. troglodytes) by the Sanaga river, and Eastern

chimpanzees (P. t. schweinfurthii) are separated from Central chimpanzees by the Ubangi river.

Genetic data have suggested that the four chimpanzee subspecies form two clades, which diverged

about 400-600 Kya ago. Within Pan troglodytes, Western and Nigeria-Cameroon chimpanzees form

one clade, with the estimated split time of about 250-500 Kya, while Central and Eastern chimpanzees

form another clade, with the estimated split time of about 90-250 Kya (Becquet et al., 2007; de Manuel

et al., 2016; Hey, 2010a; Kuhlwilm et al., 2016b; Prado-Martinez et al., 2013; Won and Hey, 2005).

However, phylogenetic reconstruction may be affected by incomplete lineage sorting and gene flow

between species/subspecies (Jiao et al., 2021; Rannala et al., 2020; Xu and Yang, 2016). Ignoring

gene flow between populations may lead to serious underestimation of the divergence time (Ji et al.,

2023).

Analyses of genetic data under models of isolation with migration (IM) have found signals of

gene flow between the chimpanzee subspecies, but there is little consensus regarding the subspecies
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Western chimpanzees (Pan troglodytes verus)
Nigeria-Cameroon chimpanzees (Pan troglodytes ellioti)
Central chimpanzees (Pan troglodytes troglodytes)
Eastern chimpanzees (Pan troglodytes schweinfurthii)
Bonobos (Pan paniscus)

Congo River

Nile River
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Figure 4.1: (a) Geographical distribution and (b) proposed migration events for bonobos (Pan paniscus) and
four subspecies of chimpanzees (Pan troglodytes): western chimpanzees (P. t. verus), Nigeria-Cameroon chim-
panzees (P. t. ellioti), central chimpanzees (P. t. troglodytes), and eastern chimpanzees (P. t. schweinfurthii).
The time spans of migration events are indicated by grey shading on phylogeny. Time estimates τ are genome
averages across noncoding blocks in BPP, which are converted into absolute times assuming mutation rate
µ = 1.2×10−8 per site per generation and a generation time of 25 years.
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involved (see Figure 1 in Brand et al., 2022 for a summary) (Becquet et al., 2007; de Manuel et al.,

2016; Hey, 2010a; Hey et al., 2018; Prado-Martinez et al., 2013; Wegmann and Excoffier, 2010).

Some gene-flow events are hard to reconcile with the current biogeography of the Pan genus (e.g.,

the introgression of 21% from Western to Eastern chimpanzees suggested by Brand et al., 2022),

although the authors argue that the current and historic ranges of these subspecies may be different.

The geographic barriers (the Dahomey gap, the Sanaga and the Ubangi rivers) may be permeable

in the past. The discharge of these rivers likely experienced large variations along the history of

Congo rivers formed 1-2 Ma ago so that gene flow between bonobos and chimpanzees as well as

geographically proximate chimpanzee subspecies may be possible during dry seasons (Brand et al.,

2022). There were large fluctuations in chimpanzee’s ranges and substantial forest expansion around

Dahomey Gap that potentially allowed for contact between the subspecies (McBrearty and Jablonski,

2005).

Early analyses of autosomal loci, incorporating data from three subspecies, have already detected

rampant signals of migration across populations (Caswell et al., 2008; Hey, 2010a; Wegmann and

Excoffier, 2010). Models of gene flow proposed in these analyses present limited agreement, partly

due to the lack of the Nigeria–Cameroon lineage. Recent analyses have used all five populations. For

instance, de Manuel et al. (2016) identified multiple migration events between the two species, and

among the chimpanzee subspecies, with the ancestral population of central and eastern chimpanzees

being the recipient of bonobo alleles. Limited by computation, full likelihood methods have been

applied to small datasets (Hey et al., 2018). Estimation of gene flow with recently generated sequenc-

ing data using full likelihood methods may be essential to reliably resolve the history of population

divergence and migration and introgression/hybridization in the Pan genus.

Brand et al. (2022) used a recently developed method called LEGOFIT (Rogers, 2019) to compare

different models of gene flow between the bonobo and the chimpanzee subspecies. The method

makes use of genome-wide site pattern frequencies, like the D-STATISTIC or HYDE. This suffers

from multiple problems, such as failing to use samples from the same population and (i.e., ignoring

within-population variation), ignoring variation in genealogical histories across the genome, etc. The

method is not expected to have the capability of distinguishing among the different models considered
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by Brand et al. (2022). Kuhlwilm et al. (2019) suggested that introgression into the bonobo lineage

from a putative ancient great ape lineage, contributing up to 4.8% of the genome. This was done by

fitting models to data of the (joint) site frequency spectrum (SFS) using FASTSIMCOAL. However,

more proper testing in the likelihood framework using the IMA3 program found no evidence for

existence of this ghost lineage Hey et al. (2018).

Here, we processed whole-genome sequencing data from de Manuel et al. (2016) for bonobos

and chimpanzees to compile alignments of unphased diploid genomic sequences and used them to

infer gene flow between species and subspecies. We compiled three sets of data, for exons (coding),

noncoding regions, and conserved noncoding elements (CNEs). We use the full-likelihood method

implemented in the BPP program (Flouri et al., 2018). This includes an efficient Bayesian imple-

mentation of the MSC-M (or IM) model, which has been applied to genome-scale datasets with over

10,000 loci (Flouri et al., 2023). We attempt to explain why different analyses of gene flow in bonobos

and chimpanzees have produced highly incompatible results.

4.1 Materials and Methods

4.1.1 Genomic sequencing data and variant calling

We processed sequencing reads for chimpanzees and bonobos published by Prado-Martinez et al.

(2013) and de Manuel et al. (2016) to compile multi-locus datasets comprised of aligned unphased

diploid sequences. Prado-Martinez et al. (2013) sequenced 25 chimpanzee and 10 bonobo genomes,

while de Manuel et al. (2016) sequenced 36 more chimpanzees. We used all samples except west-

ern chimpanzee sample Ptv-9730 Donald from de Manuel et al. (2016), which was identified as a

central-western hybrid. There were thus 10 bonobo (Pan paniscus) samples and 60 chimpanzee

(Pan troglodytes) samples, including 12 western chimpanzees (P.t. verus), 10 Nigeria-Cameroon

chimpanzees (P.t. ellioti), 18 central chimpanzees (P.t. troglodytes), and 20 eastern chimpanzees

(P.t. schweinfurthii). Most samples were sequenced to an average depth of at least 25x. The bonobo

and the four chimpanzee subspecies are referred to below as five populations. We also retrieved two

African human genomes (HG02615 and HG02975) from the 1000-Genomes Project (Byrska-Bishop
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et al., 2022), and used them as outgroups.

Reads were mapped to the human reference genome hg19 for variant calling using BWA v0.7.7

(Li and Durbin, 2009). Genotypes were called using Genome Analysis Toolkit (GATK) v4.2.5.0 fol-

lowing GATK best practices (Poplin et al., 2017). Variants were first called for each sample separately

using GATK HaplotypeCaller resulting in a GVCF per sample. GVCFs were consolidated into a VCF

using GATK GenomicsDBImport and joint genotype calling was performed using GATK Genotype-

GVCFs. Indels were masked as missing data (alignment gaps, ‘-’). Variants were filtered using the

bcftools v1.13 filter module (Li, 2011). We included multiallelic as well as biallelic SNPs. For each

SNP, we required a minimum genotype quality (GQ) score of 20 and the read depth (DP) to be in the

interval [20, 3*meanDP]. For the Y chromosome, the interval was [10, 3*meanDP]. All regions on

the Y were non-recombining. Sites that did not meet those criteria were masked as missing data.

4.1.2 Selection of genomic regions and multilocus datasets

We compiled short genomic segments that are far apart in the genome and refer to them as loci.

To ensure data quality, we used the coverage for each site in each sample. Three separate sets of data

were generated, for coding, noncoding, and CNEs (conserved noncoding elements), respectively.

Coding regions included exons from NCBI reference sequence database (RefSeq). CNEs are con-

served intronic or intergenic regions, identified using PhastCons conservation scores calculated from

genome alignments for 10 primate species (the primate subtrack) (Pollard et al., 2010). CNE data

were compiled first, before non-CNE noncoding loci, so that there is no overlap of loci between the

two datasets.

For each individual, the per-site coverage was calculated using samtools v1.13 depth module

(Danecek et al., 2021). We then selected sites at which at least 10 individuals from at least four of the

five species or subspecies had at least 8x coverage. Such high-coverage sites, if they are adjacent, were

merged into regions. Regions with simple repeats, recent segmental duplications, CpG islands, and

transposable elements as well as regions not showing conserved synteny in the human-chimpanzee

alignment, based on annotations from the UCSC Genome Browser, were removed.

We used a coding/CNE region if it spanned over 100 sites or a noncoding region with over 500
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sites. Each region was required to be at least 5kb away from the previous region. Long regions

with more than 2kb were trimmed to 2kb by removing an equal number of nucleotides from both

sides. An individual is said to be of high coverage for each region if ≥ 95% of sites had a minimum

coverage of 8x. A region is selected if at least 10 high-coverage individuals from at least four of the

five populations were present, and at a selected region, low-coverage individuals are discarded. An

unphased diploid sequence was constructed for each high-coverage individual in each region using

the consensus module in bcftools, with heterozygotes represented using IUPAC ambiguity codes

(e.g., Y for a T/C heterozygote). For chromosome X, we kept only female high-coverage individuals

at each locus, as the male X chromosome tends to have low coverage and quality. For chromosome

Y, we only considered male individuals and masked heterozygous genotype calls. If there exist a

few sites with low coverage in a high-coverage individual, they were masked as missing data. Note

that the number of sequences might be variable between loci, depending on the number of high-

coverage individuals. Loci with > 50% missing data (across all sites and individuals at the locus)

were excluded.

The number of loci and basic information for the three datasets (coding, noncoding and CNE) are

shown in table S4.1. There are over 50,000 loci in each dataset, with more than 500 loci on each

chromosome. Note that we generated alignments of unphased diploid sequences, rather than artificial

haploid sequences with heterozygote phase resolved at random (Huang et al., 2022b). When the

data are analysed using BPP, the likelihood calculation averages over all possible phase resolutions at

heterozygote sites using an analytical integration algorithm (Flouri et al., 2018; Gronau et al., 2011).

At 556 coding, 13,065 noncoding, and 325 CNE loci, the number of site patterns in the A3 alignment

(which includes all possible site patterns generated from all possible heterozygote phase resolutions)

was > 3000. To reduce the computation load, we reduced the number of sequences at those loci to

have two random samples per population.

4.1.3 Species trees across the genome

We inferred species trees of the five populations using Bayesian inference under the MSC model

without gene flow implemented in BPP (Yang, 2015). For each of the three sets of data (coding,
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noncoding and CNE), we formed 100-loci blocks in the order of occurrence in the human reference

genome to infer the species tree under the MSC model with no gene flow. We assigned gamma priors

to both population sizes and divergence times in the MSC model: θ ∼ G(2,2000) with mean 0.001,

τ0 ∼ G(2,400) with mean 0.005 for the age of the root (the human-chimpanzee divergence). We

conducted 3 replicate MCMC runs, using different starting species trees. We used a burn-in of 20,000

iterations, and then took 2×105 samples, sampling every 2 iterations. Convergence was confirmed by

ensuring that the MAP trees were identical in at least two runs, and its posterior probability differed

by no more than 0.3. If those criteria were not met, the runs were repeated until convergence was

achieved. MCMC samples from successful runs were combined to generate the posterior summaries.

4.1.4 Construction of a migration model

Our species tree analysis of the autosomes and the mitochondrial data suggested that the most

likely population phylogeny was (((S,T ),(E,V )),P). We then took a two-step approach to add gene-

flow events onto the population phylogeny to construct a model of gene flow for the bonobo and the

four chimpanzee subspecies.

In the first step, we used the maximum likelihood program 3S (Dalquen et al., 2017; Zhu and

Yang, 2012) as well as BPP to analyse datasets of population triplets to infer gene flow. 3S implements

likelihood ratio tests (LRTs) to test for gene flow among three closely related species/populations.

It is computationally efficient and feasible with large datasets, but is limited to three populations.

The method is used as an exploratory tool to assess the prevalence of gene flow between species

and subspecies. We used bonobo (P) as the outgroup and chose two other populations from four

chimpanzee subspecies, resulting in six triplets: STP, SEP, SVP, TEP, TVP, and EVP. Let the three

populations be S1,S2,S3, with the assumed phylogeny ((S1,S2),S3). Each locus consists of three

sequences. The sample configuration at each locus is selected at random, with probability 40% for

123, and probability 10% for each of the 6 configurations: 112, 122, 113, 133, 223, and 233, where

‘123’ means one sequence for each population, ‘112’ means two sequences from S1 and one from S2,

and so on.

For each triplet, coding and CNE loci on the same chromosome were grouped into one dataset,
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resulting in 23 datasets (for 22 autosomes and the X chromosome). Noncoding loci were on average

five times longer (table S4.1) and contained more variable sites than exons and CNE loci. Thus, we

sampled 4000 noncoding loci at random on each chromosome if there are more than 4000 noncoding

loci, which similarly led to 23 datasets, each with at most 4000 loci.

Two models were fitted to each triplet dataset using 3S: the null MSC model with no gene flow

(M0) and the MSC-migration model (MSC-M or M2). In M2, gene flow is specified between two

chimpanzee subspecies and between the chimpanzee ancestor and the bonobo in both directions. For

instance, for the triplet STP, the model assumes migration between populations S and T, and between

their common ancestor ST and species P, with four migration rates (M = Nm). For each model, we

performed 20 replicate runs, and the results corresponding to the highest log likelihood were used.

Models M0 and M2 were compared using a likelihood ratio test. Migration rates were considered

significant if they passed the LRT (for comparing M0 against M2) at the 1% level.

With the above locus sampling plan, the resulting dataset includes loci with configurations involv-

ing two sequences from one population, such as 122, 113, 133, 223, and 233. The inclusion of these

configurations improves the power of the LRT of gene flow and is essential for accurate estimation

of migration rates and population sizes (Dalquen et al., 2017). This ensures that all parameters are

identifiable in both models M0 and M2, with M2 containing more parameters (e.g., migration rates).

As a result, the null distribution is known to be the 50:50 mixture of 0 and χ2
k , where k is the number

of migration rates in M2 (Dalquen et al., 2017). Here, the null distribution is the mixture of 0 and

χ2
4 , with 1% critical value to be 11.14. Note that the LRT in the context only suggests whether the

migration model is favoured by the data over the null model without gene flow, while it has no power

to identify which specific migration event has rate M > 0.

The Bayesian program BPP was also used to analyse triplet data under the MSC-M model, which

allows the use of more than three sequences per locus. To reduce the computational cost, we selected

five 100-loci blocks on each chromosome at random, with 23 datasets of noncoding, CNE and coding

loci, each of 500 loci, for the 23 chromosomes. Data were prepared for the 6 triplets as above,

including all sequences for the three populations. The triplet datasets were then analysed using BPP to

fit the MSC-M model with the same four migration rates. The same gamma priors on θ and τ as in the
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A01 analysis above were used, while the migration rate was assigned the gamma prior M ∼ G(1,10)

with mean 0.1. Each analysis was conducted twice, using a burn-in of 105 iterations and collecting

106 samples, sampling every 2 iterations. Convergence was confirmed by examining the consistency

between runs. The significance of the migration rates was assessed by applying the Bayesian test

of gene flow using the Savage-Dickey density ratio (Ji et al., 2023), which can be used to compare

nested models with (H1) and without migration (H0) based on an MCMC sample obtained under the

model of gene flow (H1). The Bayes factor B10 is calculated for each migration event in the model to

determine whether the migration rate (M) is statistically excluded by a null interval (0,ε). We used

ε = 0.01 and confirmed that use of ε = 0.001 gave similar results. We used a cut-off of 100 for the

Bayes factor (B10 ≥ 100).

The triplet analyses suggested significant evidence for gene flow in many triplets (fig. S4.3).

Note that the same gene-flow event involving ancestral lineages on the full population phylogeny

may show up as significant evidence in many triplets, and also that multiple gene-flow events on the

full phylogeny may be lumped into one event in the triplet analysis. We used the following criteria

to integrate the results of the triplet analyses to formulate an MSC-M model for the full population

phylogeny of five populations. Only events that were significant in both 3S and BPP tests on ≥ 5

chromosomes were retained in the model. If migration was found between species S3 and both S1

and S2, we assume migration between S3 and the common ancestor S12. Migration events identified

between E and ST can reconcile the two major species trees in the genome identified in the analysis

of the 100-loci blocks (fig. 4.2).

The MSC-M model retaining migration events that passed those filters was then assumed to esti-

mate species split times and migration rates using BPP.

4.1.5 Estimation of migration rates and species divergence times

Given the population phylogeny and the gene-flow events of figure 4.1b, we ran BPP to estimate

the parameters: migration rates (M), species divergence times (τ) and population sizes (θ ). The

analysis was also performed based on data blocks, each of 200 loci. The blocks are twice as large as

those used in species tree inference to achieve reasonable parameter estimates that are driven more by
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data information than priors, while each block remains small still to reflect the local migration rate of

that region. We assigned priors θ ∼ G(2,2000), with mean 0.001, τ0 ∼ G(2,400), with mean 0.005,

and M ∼ G(1,10) with mean 0.1. The MCMC was run for 106 iterations, sampling every 2 iterations,

after a burn-in of 105 iterations.

4.2 Results

4.2.1 Fluctuation of genealogical relationships across the genome

We inferred the species tree using blocks of 100 loci under the MSC model with no gene flow.

This is the A01 analysis of Yang (2015), and it accounts for ancestral polymorphism and incomplete

lineage sorting but ignores gene flow. Note that chimpanzees and bonobos possess 24 pairs of chro-

mosomes, while the 2A and 2B chromosomes were fused in humans. Henceforth, the results were

presented based on human chromosome set, given that we used the human reference for read mapping

and variant calling above. Over the 23 chromosomal regions (22 autosomes and the X chromosome),

there were 2,844 noncoding blocks (2,685 autosomal, 159 X-linked), 1,384 CNE blocks (1,324 auto-

somal, 60 X-linked), and 615 coding blocks (591 autosomal, 24 X-linked). The Y chromosome was

analysed as one locus.

The species trees estimated in this block analysis on each chromosome are shown in figure 4.2

for the three sets of data. The 15 inferred trees were ordered according to their average posterior

probabilities across all blocks (fig. 4.2). Trees 1 to 4 in figure 4.2 received genome-wide support

> 5%, identified as the maximum a posteriori (MAP) tree in 44%, 38.7%, 9.6% and 6.4% of the

blocks, respectively. Together, these trees accounted for approximately 99% of all inferred trees

across the genome.

Among the four trees, the unbalanced tree ((((S,T ),E),V ),P) (Tree 1 of fig. 4.2) and the balanced

tree (((S,T ),(E,V )),P) (Tree 2 of fig. 4.2) had relatively high probabilities on each chromosome,

with each supported by ∼ 40% of the blocks across three sets of data. Tree 1 was indeed inferred in

more blocks than Tree 2.

In this analysis, we formed blocks of 100 loci and inferred species tree from each block. The block
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size should be sufficient to filter out the fluctuations in the coalescent process, so the differences

among the blocks are primarily caused by heterogeneity in the migration rate along the genome.

Among the three datasets, most of the noncoding blocks on autosomes had species tree distributions

dominated by either Tree 1 or Tree 2. In contrast, there were signals of more diverse trees in coding

and CNE blocks. It may be due to that the migration rate varies drastically in different types of data.

It is expected that one of the inferred trees should be the population phylogeny that reflects the

history of population divergence, while the others are a result of gene flow. To identify the true

population phylogeny, we obtained whole mitochondrial genome sequences (about 16,500 bps) for

43 bonobos (P.p), 18 N-C (P.t.e), 37 Western (P.t.v), 40 Eastern (P.t.s) and 59 Central chimpanzees

(P.t.t), compiled by Lobon et al. (2016). The chimpanzee and bonobo reference sequences were

removed as they may be chimeric. The reconstructed ML tree in figure S4.2a was clear of gene flow

signatures and agreed with Tree 2 (((S,T ),(E,V )),P) of figure 4.2. The tree was also supported in

the BPP analysis with a high posterior probability of 97.8%. ML analysis of the D-loop region (about

1100 bps) produced a very similar tree.

Based on the results, Tree 2 (((S,T ),(E,V )),P) was assumed to be the population tree in the

subsequent analysis. It suggests a relationship of chimpanzee subspecies that the Nigeria-Cameroon

(E) and Western (V) chimpanzee form a clade sister to that of the eastern (S) and central chimpanzee

(T). The divergence time (τ) estimates under the MSC model in figure S4.1 suggest the split of E and

V to predate that between the other pair of subspecies. The older divergence between E and V was

consistent with previous evidence (de Manuel et al., 2016; Hey et al., 2018; Prado-Martinez et al.,

2013).

On the other hand, the trees of figure 4.2 hinted potential ancient migration between chimpanzee

subspecies. For example, the high probability of 44% for tree ((((S,T ),E),V ),P) (fig. 4.2) might

be indicative of certain migration between subspecies E and the ancestor ST. However, it is difficult

to use the source of evidence to identify weak signals of gene flow, and there is no information on

migration between sister species, which does not necessarily cause topological shifts. We then took a

more methodical approach to building a model of gene flow.
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Figure 4.2: Posterior probabilities for species trees for the bonobo and the four chimpanzee subspecies in BPP

analysis of 100-loci blocks under the MSC model with no gene flow. The height of each coloured bar represents
posterior probability and ranges between 0 to 1. The five most probable trees are shown in colours, with the
proportion of blocks across the three sets of data in which each tree was the MAP tree shown in parentheses.
Tree 2 (38.7%) is consistent with the mitochondrial tree in figure S4.2a, used as the population phylogeny.
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4.2.2 Construction of a model of gene flow for the chimpanzees and bonobos

In the first step of the model construction, we fitted migration models of three species using 3S

and BPP. Bidirectional migration were specified between chimpanzee subspecies and between the

ancestor and the bonobo. Each migration model includes 4 migration rates.

The migration rates and the results of hypothesis tests in the triplet analysis were summarized in

figure S4.3a for 3S and S4.3b for BPP. In 3S, an upper bound of 1.5 is set for the migration rate

(M = Nm < 1.5 migrants per generation). Nearly half of the rates estimated using 3S reached the

upper bound. Both 3S and BPP suggested widespread gene flow between chimpanzee subspecies and

between the two species, with an absence or low rate of migration into the western chimpanzee (V).

Among the four chimpanzee subspecies, migration between the eastern (S) and central (T) chim-

panzees is the most significant, as indicated by the highest migration rate M in BPP. The rates of

other migration ranged approximately between 0.1 and 0.4, except those involving the western (V)

as recipient (fig S4.3b). Additionally, migration from the chimpanzee to the bonobo was generally

stronger than in the opposite direction.

In the next step, we formulated a joint migration model for each of the three data types, by includ-

ing migration events supported by both 3S and BPP in the triplet analyses (table 4.1). The joint models

for the CNE and coding data are the same, including 8 migration rates: STEV → P, P → STEV, ST

→ E, E → ST, V → ST, S → T, T → S, and V → E. The model for the noncoding data included one

additional rate: ST → V. We then used BPP to fit the joint model for each data type to the 23 datasets

for the 23 chromosomes, each of 500 loci. The rates averaged across chromosomes are shown in

table 4.1. Migration with the strongest signal throughout the genome was between ST and E, with a

rate of ∼ 0.5 for ST to E, and an even higher rate in the opposite direction. Interestingly, gene flow

between S and T, which was inferred to be most significant in the triplets, was found to be negligible

under the joint model. Migration from V → E and from STEV → P was supported by coding data on

several chromosomes and by noncoding data across nearly all chromosomes, but neither was detected

on more than 5 chromosomes using CNE data. In the analysis under the joint models in table 4.1, we

identified substantial evidence for four migration events (ST → E, E → ST, V → E and STEV → P)

using noncoding and coding data, out of which migration from ST → E and from E → ST was also
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Table 4.1: Average estimates of migration rates (M) and the number of significant tests in BPP analysis of
datasets for the 23 chromosomes

Migration Average rate Significance

Noncoding, MSC-M model with 9 rates
ST → E 0.54 23/23
E → ST 1.67 23/23
V → E 0.14 21/23
STEV → P 0.34 18/23
P → STEV 0.04 4/23
ST → V 0.05 3/23
V → ST 0.07 2/23
S → T 0.16 1/23
T → S 0.09 1/23

CNE, MSC-M model with 8 rates
ST → E 0.52 19/23
E → ST 0.66 5/23
V → E 0.10 2/23
STEV → P 0.05 0/23
P → STEV 0.04 0/23
V → ST 0.19 3/23
S → T 0.09 0/23
T → S 0.09 0/23

Coding, MSC-M model with 8 rates
ST → E 0.57 23/23
E → ST 0.75 13/23
V → E 0.09 2/23
STEV → P 0.14 6/23
P → STEV 0.04 1/23
V → ST 0.17 1/23
S → T 0.08 0/23
T → S 0.07 0/23

Note.— Twenty-three datasets (each of 500 randomly sampled loci) were constructed for the 23
chromosomes, and each dataset was analysed under the MSCI-M model with 9 or 8 migration rates.
The column significance indicates the number of datasets in which the Bayesian test of gene flow is
significant at the 1% level (i.e., B10 ≥ 100).

well supported in CNE data. Kuhlwilm et al. (2019) identified an archaic ghost introgression from

an extinct ape species into the bonobo. This was investigated by fitting the joint models including the

ghost gene flow event (fig. S4.4) to the same data for the 23 chromosomes using BPP, and the results

are shown in table S4.2. There was no evidence found for the ghost gene flow into bonobos.

We noted migration signals detected in the joint models were largely consistent with the results

of Hey et al. (2018), based on 100 noncoding autosomal loci. Yet the model of Hey et al. (2018)

includes migration between modern populations from E → S (with the rate Nm = 0.011), which

was not detected in our analyses. In our parsimony approach, gene flow from E → S and E → T
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was consolidated into a single migration event from E → ST. Thus we used the inferred model of

migration in Hey et al. (2018), shown in figure 4.1b, in the subsequent genome-wide analysis. It

includes five migration events, ST → E, E → ST, V → E, STEV → P and E → S.

Pilot runs were conducted to evaluate the model of Hey et al. (2018) together with three other

models (fig. 4.3). Models i to iv were fitted using BPP to a randomly selected block of 200-loci per

chromosome for each data type. This was to verify the model of gene flow after the E → S migration

was added. The results largely confirm our results obtained earlier under the joint models (table 4.1).

The E → S migration was significant, even in the presence of the E → ST gene flow. Also, the

estimation of rates between species appeared to be affected by the specification of gene flow between

chimpanzee subspecies. Specifically, there was an increase in the migration rate from STEV → P

when gene flow between subspecies was incorporated in the model (fig. 4.3).

Selective pressures acting on coding and CNE loci may diminish the detectable signatures of

gene flow, potentially due to the deleterious effects of such gene flow on fitness. Consequently, the

observed migration rates were relatively low in comparison to those inferred from noncoding loci.

4.2.3 Estimation of migration rates and species divergence times

We estimated migration rates under the MSC-M model using blocks of 200 loci. A total of 1,422,

691, and 308 blocks were formed for the noncoding, CNE, and coding datasets, respectively. For each

block, the MSC-M model in figure 4.1b was fitted, with 5 migration rates.

The estimated migration rates and the results of the Bayesian tests of gene flow for blocks on each

of the 23 chromosomes were shown in figure 4.4. For each data type, the average migration rates

are fairly consistent between different chromosomes (fig. S4.5). Noncoding regions generally exhibit

higher rates of migration than exons and CNEs, while there are some exceptions suggested by gene

flow V → E and E → S (fig. S4.6). This matches the observation in pilot runs.

The posterior means of the migration rates inferred from noncoding data were averaged to be ∼

0.5 for MST→E , and ∼ 1.5 for ME→ST on each chromosome (fig. S4.5), and the rates were lower in

coding and CNE blocks. They are the strongest migration detected, supported by the most evidence

across these blocks (fig. 4.4). Specifically, we identified gene flow ST → E in 73.7% of all blocks and
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Figure 4.3: Migration (MSC-M) models tested in pilot runs using BPP. (a) Model i is the model inferred by
Hey et al. (2018), with 5 migration rates. (b) Model ii extends Model i with an additional migration from P
to STEV. (c) Model iii has a single migration from STEV to P. (d) Model iv includes bidirectional migration
between the two species (between STEV and P). Outgroup H (humans) is included in the models but not shown
here.
Below are posterior means and 95% HPD of population split times and migration rates (M = Nm) obtained in
BPP analyses under the four MSC-M models above using 23 datasets of each type (noncoding, CNE or coding)
for the 23 chromosomes, each dataset with 200 randomly selected loci. The numbers in the panels of migration
rates (M) represent the number of datasets for each data type where the Bayesian test of gene flow is significant
at the 1% level (i.e., B10 ≥ 100)
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Figure 4.4: Posterior means and 95% HPD CIs for migration rates in BPP analysis of 200-loci blocks under the
MSC-M model of figure 4.1b with 5 migration rates. The histograms display the distribution of Bayes factors
calculated for blocks within each chromosome. The height of red/green/blue bars indicates the proportion of
blocks in which rates are significant (B10 > 100) in noncoding/CNE/coding set, respectively. B10 < 0.01 are
shown in black while 0.01 ≤ B ≤ 100 are in grey. Bayes factors are calculated using the Savage-Dickey density
ratio with ε = 0.01 (Ji et al., 2023).

in more than 90% of noncoding blocks using the Bayesian test of gene flow. The significant rate for

gene flow between ST and E explained the occurrence of tree ((((S,T ),E),V ),P) in the blockwise

tree inference of figure 4.2, resulting in nearly half of the genome reflecting the history made up by

the gene flow. The rate of the bidirectional migration appeared to be highly variable across blocks,

and the rate variation along the genome was also predicted based on the colour patterns in figure 4.2.

Migration V → E and E → S between modern populations was estimated to be much weaker,

with both rates around 0.1, and the difference was minor among the three data types and between

different parts of genome. Despite the low rate from E to S, the reconciled tree ((((S,E),T ),V ),P) is
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still represented in ∼ 10% of blocks.

In the BPP analysis under the MSC-M model, we detected considerable evidence for gene flow

between ST and E. This event was also reported in recent studies incorporating all five populations

(de Manuel et al., 2016; Hey et al., 2018). Further back, before the sequencing of Nigeria-Cameroon

subspecies (E) by Prado-Martinez et al. (2013), gene flow had been identified between V and ST

(Becquet et al., 2007; Hey, 2010a; Wegmann and Excoffier, 2010). The evidence is indeed compatible

with the migration model generated in our analysis (fig. 4.1b), where V → ST migration may occur

through two gene flow events, V → E and E → ST, related by population E.

In addition to the migration among subspecies, gene flow between two species was also retained in

the joint model and confirmed in the pilot runs above, with an assumed direction from the chimpanzee

ancestor to the bonobo (STEV → P). The interspecific migration was estimated to have a rate of

∼ 0.15, averaged over blocks in the genome, significant in 501/1422 (35.2%) noncoding blocks,

27/308 (8.8%) coding blocks but almost none of CNE blocks. The estimation of the deep migration

may suffer from low information content, even with 10 bonobo individuals included in the datasets.

As indicated by the coalescent simulation (fig. S4.7), most bonobo lineages have coalesced before

entering the chimpanzee ancestor at time τST EV , leaving only one to three sequences remaining at that

time. In BPP, the estimation of migration rate for a given migration event under the MSC-M model

relies on information such as the frequencies of lineages migrated through that event in genealogy

samples, which is informative about the Poisson rate of migration events, 4M
θ

. Estimates may be

inconsistent due to large random error when there are too few lineages in the recipient population

before the start of migration period. Our rate estimates appeared to be consistent and free of the issue.

The speciation times (τ = T µ) (fig. 4.5) and population sizes (θ = 4Nµ) estimated under the

MSC-M model of figure 4.1b on each chromosome were shown in figure S4.8. The ratio of mutation

rates ( µy
µx

) between two types of data on the x- and y-axis of figure S4.8 is represented by the slope

of linear regression in each panel. Exonic regions are expected to be conserved, while CNEs prove

even more resistant to mutations, as indicated in the comparisons of parameters. The posterior means

obtained using coding loci were proportionally smaller than those from noncoding loci, with a slope of

0.35 for τ (fig. S4.8a) and 0.75 for θ (fig. S4.8b), and slightly larger than the estimates of CNEs, with
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a slope of 1.4 for τ (fig. S4.8a) and 1.04 for θ (fig. S4.8b). The linear relationship is well reflected for

parameters of speciation times (τ) and modern population sizes (θtip), with a fitted R2 > 0.96. This is

due to that ancestral population sizes are more difficult to be precisely estimated.

We further investigated the impact of among-subspecies migration on the estimation of gene

flow between species. One hundred 200-loci blocks were simulated using estimates from noncod-

ing blocks, each with 10 haploid sequences for each chimpanzee subspecies and bonobos, and 4 for

humans. The simulated data were then analysed under Models i to iv of figure 4.3, with results shown

in figure 4.6. In the simulation analysis, when the migration between chimpanzee subspecies are not

specified, as in Models iii and iv, there is clear underestimation of the migration rate MST EV→P and the

age of the chimpanzee root τST EV , similar to the observation in the pilot runs using real data (fig. 4.3).

One possible explanation is that the time period for the between-species gene flow (τST EV P − τST EV )

is overestimated due to the underestimation in τST EV if gene flow between subspecies is ignored.

Given the amount of transferred alleles is stable through the period, the migration rate MST EV→P is

thus inferred to be lower in Model iii and iv than i and ii.

In the simulation, we also examined the model misspecification when chimpanzee subspecies E

was unsampled or unavailable. We removed the sequences from that subspecies at each locus in the

simulated data and analysed the reduced datasets under the 4-population model (except E) in figure

S4.10, which includes 3 migration events STV → P, V → ST and V → S. The events V → ST and

V → S were assumed among subspecies as substitutes for the gene flow from V → E, E → S, and

that between E and ST, given that subspecies E is not in the model. Parameter estimates were shown

in figure S4.10. MSTV→P were close to the true value of MST EV→P in Model i, almost unaffected by

the misspecified model ignoring E. Migration V → ST was inferred to have a rate of ∼ 0.3, higher

than MV→E = 0.1 but much lower than ME→ST = 1.5. Estimated migration rates from V to S were

considerably low and not detected in any replicates using the Bayesian test of gene flow. This is likely

because that the migration V → E and E → S was both very weak. Note that the migration rates used

in the simulation are genome-wide averages. It is still possible for migration V to S to be detected in

some genomic regions where V → E and E → S are stronger than the background level.
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Figure 4.5: Migration history in each chromosomal region under the MSC-M model of figure 4.1. Speciation
times (τ), represented on the y-axis, are calculated as the average of posterior means obtained using individual
blocks in each chromosomal region. The intensity of the horizontal blue edges represents the five migration
rates, which also have been averaged over blocks from each chromosome.
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Figure 4.6: Posterior means and 95% HPD CIs for parameters in the MSC-M models of figure 4.3 in BPP

analysis of 100 datasets simulated under Model i, each with 200 loci. The number above the CI bars is the
number of replicates where the rate is significant in the Bayesian test of gene flow. True parameter values are
shown using black solid lines. Averages of mean estimates across replicates are represented with white dashed
lines.
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4.2.4 Gene flow affecting the sex chromosomes

We then discuss the migration rates estimated on the two sex chromosomes, X and Y. We did not

identify a different migration history on the sex chromosome X, while the rates MST EV→P, MST→E

and ME→ST were lower than those on autosomes (fig. S4.5). However, the male chromosome Y

revealed a distinct pattern of gene flow.

In the species tree inference above, we identified a unique population phylogeny on the chromo-

some Y, ((((S,(E,V )),T ),P),H) (fig. S4.2b and Tree 5 of fig. 4.2 &), consistent with the parsimony

tree reconstructed in de Manuel et al. (2016). There were some examples of conflicting phylogenies

for autosomes, Y chromosome and mitochondrial genomes (Chan et al., 2012; Hallast et al., 2016;

Sarver et al., 2021). The differences may be purely due to estimation artefacts. In our case, the ML

tree in figure S4.2b has very short internals branches due to the accelerated coalescent process on the

haploid chromosome, prone to systematic phylogenetic errors. There is considerable uncertainty in

the tree inference using BPP on the chromosome. Hallast et al. (2016) attributed the tree to relatively

slow coalescent in large populations T and the ancestor ST, while it was rarely supported in the anal-

ysis of autosomal and X chromosome data (fig. 4.2). It also cannot explain why there is no evidence

of autosomes gene flow on Y. Providing that the patterns are real rather than a result of analytical

artefacts, it may suggest a male-specific gene flow event between EV and S. Assume the population

phylogeny (((S,T ),(E,V )),P), we fitted the MSC-M model with bidirectional migration between EV

and S to the chromosome Y, which was treated as one locus in the analysis. The EV to S migration is

significant and estimated to have rate MEV→S = 0.46, and migration rate in the opposite direction is

close to zero.

In many primate species, including chimpanzees, male individuals are expected to be philopatric

and stay in their natal groups, while females disperses between populations (Inoue et al., 2008). Given

that the chromosome Y is paternally inherited, the signature of gene flow via immigration of females

may not be detected specifically on the Y chromosome. The evidence detected here may suggest the

possibility of historic male-biased dispersal.
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4.3 Discussion

Alongside our work, a wide variety of population genetics and phylogenomics methods have been

applied to decipher the complex history of gene flow between chimpanzees and bonobos, revealing

substantial signals between species and among subspecies, shown in table 4.2. We note that the dif-

ferences in results may be explained by the data and methods used for studying gene flow. According

to the comparative summary in table 4.2, the findings in previous studies are partially dependent on

the populations considered in the models.

Table 4.2: Summary of methods, datasets and identified evidence in previous studies investigating gene flow in
the Pan genus

Detected gene-flow signal(s)

Method or model Data Between species Among subspecies

Brand et al. (2022)
LEGOFIT Genome-wide site patterns counts P → ST V → S

Kuhlwilm et al. (2019)
FASTSIMCOALa Folded 3D-SFS (TVP) Ghost → P, TV → P, P ↔ T T ↔ V
ABC based on S* statistics Ghost → P

Hey et al. (2018)
IMA3 100 – 200 noncoding loci STEV → P ST ↔ E, V → E, E → S

de Manuel et al. (2016)
D-STATISTICb SNPs across genome P ↔ ST ST ↔ E
FASTSIMCOALa Folded 4D-SFSs (STEP and STVP) STE → P, STV → P, P ↔ ST
TREEMIX SNPs across genome P → T S → E

Prado-Martinez et al. (2013)
D-STATISTICb Genome-wide site patterns counts ST ↔ E, S ↔ E, S ↔ V
TREEMIX SNPs across genome E → S

Hey (2010a)a

IM model of 2 populations 73 loci, mostly noncoding regions T ↔ V
IM model of STV V → ST, V → S
IM model of STVP STV → P V → ST, V → S, S ↔ T

Wegmann and Excoffier (2010)a

ABC based on 96 statistics 265 microsatellites plus 26 intergenic loci Fixed model assumed
Becquet et al. (2007)a

IM model of 2 populations 26 – 69 loci P ↔ S T ↔ V, S ↔ V, S ↔ T
Won and Hey (2005)a

IM model of 2 populations 46 – 48 loci V → T
a: Studies or analyses that did not incorporate all 5 populations.
b: Evidence from D-STATISTICS is interpreted as gene flow in both directions.

Early studies prior to Prado-Martinez et al. (2013) invoked a model-based approach but were lim-

ited to two populations and, most importantly, failed to accommodate the Nigeria-Cameroon chim-

panzee (E), which was directly involved in 4 migration events in our model of figure 4.1b. As a

recipient of gene flow, it received alleles from ST and V, while as a donor population, it sent alleles

to ST and S. The transfer of genetic material along the path V → E → ST or V → E → S in the
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MSC-M model is expected to be detected even in the absence of the intermediate population (fig.

S4.10). Indeed there were detected signals supporting gene flow between V and S and V and ST in

these studies (Becquet et al., 2007; Hey, 2010a). Similarly, the gene flow V → S in Prado-Martinez

et al. (2013) of table 4.2 was inferred based on the statistic D(Human,V ;S,T ) without accounting for

E. Given the current geographical distributions of the two subspecies (separate by nearly 3000 km),

direct migration from Western (V) to Eastern chimpanzees (S) or the ancestor (ST) seems to be geo-

graphically implausible (Hey, 2010a). Instead, it is more likely that the migration was intermediated

by another population in the middle, such as Nigeria-Cameroon chimpanzees.

Previous evidence of gene flow between S and T and V and T is likely an artefact caused by

subsampling only two or three populations (Becquet et al., 2007; Hey, 2010a; Won and Hey, 2005).

We had similar noise in the analysis of triplet datasets of figure S4.3, which was rejected and excluded

in the joint model (table 4.1). More recent analyses incorporating all subspecies have not found

evidence for the events.

In this chapter, we identified robust evidence for multiple migration events using the full-likelihood

method in BPP. Hey et al. (2018) applied a model-based approach in IMA3 and arrived at the same

migration model as shown in figure 4.1b, but with lower rates for MST→E and ME→ST . The data em-

ployed in Hey et al. (2018) is equivalent to one or two blocks in the datasets compiled by us. Given

the vast difference in data size, the rate differences are reasonable and a consensus is considered to

have been reached. We then discuss the summary methods in table 4.2.

Methods such as TREEMIX and FASTSIMCOAL use allele frequencies summarized from SNPs

across genome. The genome-wide averages are not expected to be informative for distinguishing a

ghost introgression model from a model of gene flow between non-sister species (Pang and Zhang,

2024), and they may not be able to identify the direction of gene flow. For example, TREEMIX

suggested migration from E to S in Prado-Martinez et al. (2013) and that in the opposite direction

(S → E) in de Manuel et al. (2016), despite that the datasets used were largely overlapping. D-

STATISTIC and LEGOFIT suffer from more serious information loss for pooling site pattern counts

across the genome, which cannot be used to infer gene flow between sister species or directionality

of gene flow between non-sister species. de Manuel et al. (2016) used D-STATISTICS and identified
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gene flow between ST and E, indicated by evidence for gene flow between S and E and T and E, when

examining different triplets. Migration between sister-species such as V to E and STEV to P were

completely undetectable using these methods.

There are actually some limitations in our inference framework. First, the migration model of

figure 4.1 was constructed using a two-step approach that formulates a joint model based on analy-

sis of triplet data and revise the model to exclude false positive signals. The random subsets from

each chromosome might not be sufficient to represent the entire chromosomal region. Signals not

pronounced in the small subsets may be overlooked in our analysis.

Also, the parsimony assumption of gene flow events may not be correct. The migration between

species was mostly inferred between P and ST and between P and STEV. Our analysis in triplets

indicated stronger evidence of gene flow between P and ST than between P and EV (fig. S4.3), while

they were assumed to occur between P and their ancestor STEV in the joint model. We have not yet

statistically tested the possibility that they were two independent migration events in history.

Overall we suggest that insufficient sampling may be the major factor that prevent the early studies

from correctly identifying the gene flow among subspecies. In particularly, the data for Nigeria-

Cameroon chimpanzees (E) are critical since it was involved in all migration events among subspecies.

Given the conflicting results produced in table 4.2, we highlight the consistency of full-likelihood

methods in resolving gene flow history for complex scenarios.
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4.4 Supplemental Information
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Figure S4.1: MAP species trees showing the 95% HPD CIs for species split times for noncoding, CNE, coding
blocks on autosomes/X/Y/mitochondria, estimated under the MSC model with no gene flow (fig. 4.2). Blocks
in which the MAP tree is not one of the top several trees are not shown here. The Y chromosome, 14 noncoding
segments were concatenated and analysed as one locus. The whole mitochondrial genome was analysed as one
locus. Node heights of the backbone trees reflect the averages across blocks. Species trees are coloured in the
same way as in figure 4.2.
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Figure S4.2: (a) ML tree inferred from RAXML analysis of the mitochondrial genome sequences. All sub-
species except Central chimpanzees were monophyletic. (b) ML tree inferred from RAXML analysis of Y
chromosome. The mitochondrial and Y species trees have posterior probabilities of 97.8% and 32.3% using
BPP, with each treated as a single locus in the analysis.
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Figure S4.3: (a) ML (3S) and (b) Bayesian (BPP) estimates of migration rates (M = Nm) under the MSC-M
model in analyses of triplet datasets for each chromosome. (a) In 3S analyses, for the CNE and coding data,
the dataset for each chromosome includes all loci. For the noncoding data, 4000 loci were sampled at random
if there were more than 4000 for the chromosome. Each dataset was analysed using 3S to fit the MSC-M model
with four migration rates (that is, MX→Y ,MY→X ,MXY→P,MP→XY in the case of triplet XY P where X ,Y are two
chimpanzee subspecies and P is the bonobo). The intensity of color represents the migration rates averaged
across datasets for each pair of populations, while the numbers in the cell (in the x/y format) record the number
of datasets, out of 23, in which the rate passed the LRT at the 1% level. M = 1.5 is the upper limit set in
the program. (a) In BPP analyses, for each of the three data types (noncoding, CNE, and coding), twenty-three
datasets were constructed for the 23 chromosomes, each consisting of 500 randomly selected loci, and analysed
using BPP under the MSC-M model with four migration rates.
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Figure S4.4: Migration model including five events in figure 4.1b and the ancient ghost event (Ghost → P)
identified by Kuhlwilm et al. (2019), represented using a red arrow.
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Figure S4.5: Boxplot of posterior means for migration rates in BPP analysis under the MSC-M model of figure
4.1b. The medians are represented by lines inside boxes, and the top and bottom edges of boxes indicate 25%
and 75% quantiles, respectively. The whiskers represent the range of means for migration rates. The solid lines
represent the genome-wide averages of migration rates (over all blocks).
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Figure S4.6: Ratios of average migration rates using the data of figure S4.5.
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Figure S4.7: Number of bonobo sequences reaching the chimpanzee root (or τSTEV), given 10 bonobo individ-
uals (or 20 sequences) at each locus.
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Figure S4.8: Estimates (posterior means) of τ and θ averaged over blocks on each chromosome for different
data types under the MSC-M model of figure 4.1b. Estimates of τ and θ are multiplied by 103.
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Figure S4.9: Densitrees from BPP analysis of the data blocks under the MSC-M model of figure 4.1b, showing
the estimated species divergence times (τ). The backbone represents average speciation times over trees within
each set.
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Figure S4.10: Migration model of 3 subspecies and bonobos, including 3 migration events: STV → P, V → ST
and V → S. Posterior means and 95% HPD CIs for parameters in the MSC-M model in BPP analysis of 100
datasets simulated under Model i of figure 4.3 are shown below. This is the same data analysed in figure 4.6
but with sequences from subspecies E excluded at each locus. The number above the CI bars is the number of
replicates where the rate is significant in the Bayesian test of gene flow. True parameters values of Model i are
represented using black solid lines if these parameters also exist in the 4-population model. Averages of mean
estimates across replicates are represented with white dashed lines
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Table S4.1: The number of loci, the number of sequences per locus (median and range), the sequence length
(median and range), and the number of variable sites for the three data sets

Dateset # loci # seqs # sites # variable sites

Coding 62,016 65 (5, 72) 170 (100, 2001) 3 (0, 103)
Noncoding 285,431 62 (4, 72) 876 (500, 2001) 24 (0, 202)
CNE 138,879 65 (6, 72) 166 (100, 2001) 3 (0, 68)

Note.– At most loci, there are more than 10 sequences, but the minimum is < 10 because we excluded male
individuals for loci on chromosome X and subsampled some loci with many heterozygote sites.

Table S4.2: Average estimates of migration rates (M) and the number of significant tests in BPP analysis using
models include a ghost gene flow event for the 23 chromosomes

Migration Average rate Significance

Noncoding, MSC-M model with 10 rates
ST → E 0.59 23/23
E → ST 1.57 23/23
V → E 0.10 14/23
STEV → P 0.11 6/23
P → STEV 0.04 4/23
ST → V 0.06 3/23
V → ST 0.06 1/23
S → T 0.15 0/23
T → S 0.09 0/23
Ghost → P 0.00 0/23

CNE, MSC-M model with 9 rates
ST → E 0.49 19/23
E → ST 0.68 6/23
V → E 0.11 4/23
STEV → P 0.04 0/23
P → STEV 0.04 0/23
V → ST 0.21 4/23
S → T 0.09 0/23
T → S 0.07 0/23
Ghost → P 0.00 0/23

Coding, MSC-M model with 9 rates
ST → E 0.57 23/23
E → ST 0.73 12/23
V → E 0.08 1/23
STEV → P 0.10 1/23
P → STEV 0.04 2/23
V → ST 0.17 2/23
S → T 0.08 0/23
T → S 0.07 0/23
Ghost → P 0.00 0/23

Note.— For each data type, the fitted model consists of all migration events in table 4.1 and one ghost
migration event from an unsampled ape lineage to the bonobo (Ghost → P). The column significance
indicates the number of datasets in which the Bayesian test of gene flow is significant at the 1% level
(i.e., B10 ≥ 100).
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Chapter 5

The Impact of Read Depth on Bayesian Analysis of Genomic Data

under the Multispecies Coalescent Model

The multispecies coalescent (MSC) model accommodates the heterogeneity in genealogical rela-

tionships of sequences across the genome and provides a natural framework for analysis of phyloge-

nomic data despite gene tree–species tree conflicts (Jiao et al., 2021; Kubatko, 2019). Data suitable

for analysis under the MSC are multilocus sequence alignments, or sequences that are short genomic

fragments that are far apart. The large gap means that different loci have approximately independent

coalescent histories, while intralocus recombination is unlikely in short genomic fragments. In such

data, a locus is a short genomic segment and may not be protein-coding. Two strategies are commonly

used to generate multilocus datasets in phylogenomic and population genomic analysis. The first is

to sample short fragments that span hundreds to few thousand bps from sequenced genomes (e.g.,

Burgess and Yang, 2008; Dalquen et al., 2017; Hey et al., 2018; Thawornwattana et al., 2018). For

example, each segment may be 100-2000 bps long and separated by at least 2kb or 10kb. The second

strategy is targeted sequence capture or reduced-representation sequencing, and includes RAD-seq

(Eaton and Ree, 2013; Rubin et al., 2012), ddRAD-seq (Ali et al., 2016), exomes, transcriptomes,

ultra-conserved elements (UCEs, Faircloth et al., 2012), anchored hybrid enrichment (AHE, Lem-

mon et al., 2012), conserved nonexonic elements (CNEEs, Edwards et al., 2017), and rapidly evolv-

ing long exon capture (RELEC, Karin et al., 2020), etc. This is a popular and less-costly alternative

to whole-genome sequencing, widely used to generate phylogenomic datasets. The targeted genomic

segments are typically 100-2000 bps long, and are sequenced to a high coverage.

Due to factors such as the cost, the coverage or read depth may not be very high, so that se-

quencing errors and genotype-calling errors may exist in the multilocus datasets, despite the common

application of filters to remove or mask regions of low coverage to improve the quality of the se-

quence data (Thawornwattana et al., 2018). In population genetics the impact of sequencing errors at

different read depths has been studied extensively, with methods developed to correct biases in esti-
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mates of population genetic parameters (such as the population size parameter θ = 4Nµ) caused by

sequencing errors at low read depths (Fumagalli, 2013). There does not appear to be any systematic

study to examine the impact of sequencing errors at low coverage on phylogenomic inference under

the multispecies coalescent (MSC) model, which addresses very different questions.

In this chapter we simulate multilocus genomic sequence data under the MSC model including

sequencing errors at different read depths to examine the impact of genotyping errors on inference

of species trees and estimation of population parameters in the MSC model with gene flow. We

develop a Markov-chain model of read depths for sites along a sequence and simulate base-calling

and genotype-calling errors in the sequence data. The data with genotype-calling errors are then

analysed using the Bayesian program BPP to infer the species tree and to estimate parameters in

the MSC-with-introgression (MSC-I) or migration (MSC-M), with the sequencing errors ignored, to

assess the impact of sequencing errors on MSC-based inference.

5.1 Materials and Methods

5.1.1 Simulating sequence errors

We simulate multilocus alignments of unphased diploid sequences with sequencing errors by first

generating correct sequences with no errors and then ‘post-processing’ the correct sequences to intro-

duce genotype-calling errors using the base-calling error rate and simulated read depths for sites in

the sequence in each sample. The procedures of the simulation are shown in the flowchart of figure

5.1. Note that here we do not simulate mapping errors or the use of filters to remove them. We do

not simulate sites with zero coverage, as they are removed or masked during data processing if the

neighbouring sites have high coverage.

We assume that all samples from the same species have the same average read depth and do not

consider variable data qualities among samples of the same species. Because adjacent sites have a

high chance of occurring in the same read, the read depths for different sites in the sequence at one

locus are expected to be highly correlated. We develop a (hidden) Markov model to describe the

transition of read depths at the adjacent sites in a sequence. Given the true genotype and the read
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Figure 5.1: Simulation of multi-locus alignments of diploid sequences with genotyping errors at a given average
read depth using BPP. (a) Simulation of gene trees at multiple loci under the MSC model with or without
gene flow. (b) Simulation of true alignments using the gene trees (with two haploid sequences generated and
merged into one diploid sequence). (c) Simulation of read depths using the beta model described in the paper,
simulation of reads at sites in the sequence for each locus by binomial sampling of alleles and simulation of
genotype calling by ML. (d) The resulting alignment of diploid sequences.
In (c), the diploid sequence from A is used as an example, with a base-calling error and a genotyping error
shown in red. In (d), homozygotes miscalled as heterozygotes are in red while heterozygotes miscalled as
homozygotes are in blue. Note that in the diploid sequence for B (b), the heterozygotes at two sites, W..S or
(A/T)..(G/C), represent the haploid sequences A..G and T..C. Genotyping errors caused the heterozygotes to be
mis-called as homozygotes TT and GG (d), and the resulting sequences with T..G at the two sites are chimeric
and differ from the true sequences.
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depth at each site, the reads at the site are generated through binomial sampling and are used to call

the (observed) genotype by using maximum likelihood (Li, 2011).

5.1.2 A Markov model with a beta kernel for simulating read depths along a sequence

We use a pair of bounds for read depth: dmin = 2, dmax = 100, and use the beta distribution

between those bounds to model the read depths for individual sites in a sequence. Let x ∼ beta(α,β ).

This has mean α

α+β
and variance αβ

(α+β )2(α+β+1) . Then

d = dmin + x · (dmax −dmin), dmin < d < dmax, (5.1)

has the 4-parameter beta distribution, with parameters (α,β ,dmin,dmax). As the bounds dmin,dmax are

fixed,

x =
d −dmin

dmax −dmin
, 0 < x < 1, (5.2)

and d form a one-to-one mapping. We thus treat x as a scaled read depth and describe our model

using x instead of d for simplicity.

Let d̄ or x̄ be the overall average read depth, specified in the simulation. Let d̄s or x̄s be the average

read depth for species/sample s. We assume that all loci in all samples from the same species s have

the same average read depth. This is generated as

x̄s ∼ beta(x̄as,(1− x̄)as), (5.3)

where as is a parameter that describes how variable the average read depth is among species (with a

larger as representing less variation).

Let dsl j be the read depth at the jth site in the lth locus in species/sample s. We use a (hidden)

Markov model to simulate the transition of read depths at adjacent sites. For the first site ( j = 1), we

have

xsl1|x̄s ∼ beta(x̄sap,(1− x̄s)ap), (5.4)

with mean x̄s, where ap describes how variable read depths are among positions (sites) of the same
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sequence (with a larger ap representing less variation). We used as = 500 and ap = 1000, with more

fluctuation between samples than between sites.

For site j = 2, · · · , we generate xsl j from the beta distribution, xsl j ∼ beta(x̄s, jap,(1− x̄s, j)ap), but

the mean x̄s, j is given as a weighted average of the depth at the previous site and the mean depth for

the species/sample:

x̄s, j = pxs,l, j−1 +(1− p)x̄s (5.5)

The parameter p controls how strongly correlated read depths are over adjacent sites. We used p= 0.9

based on an analysis of sitewise read depths in genomic sequence data (table 5.1, Model 1). The

algorithm generates read depths dsl1,dsl2, · · · for sites in the sequence at locus l from sample s.

We considered an alternative model (table 5.1, Model 2), in which the read depth at the current

site (xsl j) is assigned the read depth at the previous site (xs,l, j−1) with probability p and generated

from the beta distribution beta(x̄sap,(1− x̄s)ap) as in eq. 5.4 with probability (1− p). This appeared

to fit the empirical data less well (see below) and was thus not used.

Besides the beta kernel, we also considered an alternative Markov model for read depths based

on the gamma kernel. The read depth at the current site j, dsl j is generated from the gamma dis-

tribution with the mean to be a mixture of the read depth at the previous site and the mean for the

species/sample. The continuous gamma variables are rounded to integers and used as read depths.

However, the algorithm may produce very low read depths (0 or 1), and truncation to apply the

bounds (dmin,dmax) changes the mean read depth, making the model less attractive.

We processed real genomic data to collect the observed read depths at neighbouring sites to assess

the fit of our models. Let fi j be the observed frequencies of doublet sites with read depth i and j,

respectively. Note that here we are assuming that the read depths along the sequence are Markovian,

which we expect to be unrealistic but good enough for our purpose. The probability of observing two

adjacent sites with read depths i and j under our model is

ei j = pi pi j, (5.6)

where pi is the overall proportion of read depth i (or the stationary distribution of the Markov chain)
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and pi j is the transition probability (that is, the probability that the read depth for the next site is j

given that the read depth for the current site is i). We can measure the discrepancy by

Q = E(ei j − fi j)
2 = ∑

i
∑

j
ei j(ei j − fi j)

2. (5.7)

5.1.3 Simulating genotypes given the read depth and true genotypes

Let ε be the base-call error rate. Given ε and the read depth dsl j we use the true genotype at the

position to generate the reads by multinomial sampling. For each read, one of the two alleles at the

position is chosen at random, and is then read correctly with probability 1− ε and incorrectly with

probability ε . When a read error occurs, one of the three alternative bases is chosen at random. We

will not deal with three or four alleles at one position and repeat the simulation for the site if more

than two alleles occur.

The base-call error rate ε reflects the sequencing technology and may be independently estimated.

Lou et al. (2013) mentions that Illumina sequencing machines of the time produce errors at a rate of

0.001–0.01, while the rate was estimated to slightly less than 10−3 for Heliconius genomes sequenced

using paired-end reads on the Illumina Hi-Seq 2500 (Edelman et al., 2019; Thawornwattana et al.,

2022).

Genotype calling. We assume that the base-call error rate ε is given, assumed to be the same

among the reads, independent of the true base. Given the simulated reads, genotypes were called

using maximum likelihood (ML) (Li, 2011). Given the data of k 1s and (n− k) 0s among the n reads,

where 0 refers to one allele and 1 the alternative allele, the likelihoods for the three genotypes (GT =

00, 01, and 11) are given by the binomial probabilities as

L(00|k) = P(k|GT = 00) =
(n

k

)
(1− ε)n−k

ε
k,

L(01|k) = P(k|GT = 01) =
(n

k

)(1
2

)n
,

L(11|k) = P(k|GT = 11) =
(n

k

)
(1− ε)k

ε
n−k.

(5.8)

The genotype achieving the highest likelihood is the called (inferred) genotype.
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5.1.4 Implementation of the algorithm for simulating genotype-calling errors

The above algorithm for simulating site-wise read depths and for simulating diploid sequences

with possible genotyping errors are implemented in BPP. The option variable seqerr in the control

file has the following syntax:

seqerr = 5 0.01 500.0 1000.0 (read depth & base-calling error & a samples & a sites),

where the four parameters are the average read depth (d̄), the base-calling error (ε), as, and ap,

respectively. In our simulation, we considered d̄ = 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, and ε = 0 (no

error), 0.001, 0.005, 0.01.

The base-calling error rate ε is a fixed constant. To simulate a replicate dataset, we sample the

average read depths (d̄) for different species first. We then set up the alias method (Yang, 2014,

p.421) for sampling reads given the read depth (which varies between dmin and dmax) and ε . Then we

loop through all loci, and introduce genotyping errors to the simulated diploid sequences with true

genotypes, by sampling reads and calling genotypes by ML, before printing the alignments for each

locus. In this algorithm, each average read depth (d̄) is specific-specific, applied to all samples, all

sequences, and all sites from that species in the whole dataset. However, d̄ differs among species in

the same dataset and among replicate datasets for the same species.

Heterozygotes in diploid sequences are coded using the International Union of Pure and Applied

Chemistry (IUPAC) ambiguity codes (for example, Y stands for a T/C heterozygote). When the data

are analysed by BPP, the phase control variable is used to instruct BPP to resolve each heterozygote

genotype into the two alleles, averaging over all possible resolutions of phase at multiple heterozygous

sites in the same sequence using the algorithm of (Gronau et al., 2011; Huang et al., 2022b).

5.1.5 Species tree estimation

This set of simulations examined the estimation of the species tree topology under the MSC model.

We used the setting of Zhu et al. (2022). Multilocus sequence data were simulated assuming species

trees B or U of figure 5.2. For tree B, the parameters were τr = 5θ , τs = 4.8θ , τt = 4.7θ , and
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(A) Tree shape 1 (B) Tree shape 2
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Figure 5.2: Species trees B and U for five species (A,B,C,D,E) used to simulate data for BPP estimation of the
species tree (the A01 analysis). For balanced species tree B, the parameters are τr = 5θ , τs = 4.8θ , τt = 4.7θ ,
and τu = 4.8θ . For unbalanced species tree U, we used τr = 5θ , τs = 4.8θ , τt = 4.6θ , and τu = 4.4θ . In each tree,
two values of θ are used: 0.0025 and 0.01. For analysis using ASTRAL and concatenation/ML, we included an
outgroup species (O) with a divergence time of 10θ .

τu = 4.8θ . For tree U, they were τr = 5θ , τs = 4.8θ , τt = 4.6θ , and τu = 4.4θ . Two values were used

for θ : 0.0025 and 0.01.

We generated either S = 1 or 4 diploid sequences per species per locus, with either N = 250 or

1000 sites in the sequence. Each replicate dataset consisted of L = 40 or 160 loci, with 5 or 20

unphased diploid sequences per locus. The number of replicate datasets was 100. The total number

of simulated datasets, for all the combinations of tree, S, N, L, and θ is thus 2×2×2×2×2×100 =

3200.

Data were generated using the simulate option of BPP (Flouri et al., 2018; Yang, 2015). Gene

trees with branch lengths (coalescent times) were simulated under the MSC model (Rannala and

Yang, 2003). Then sequences were “evolved” along the branches of the gene tree according to the JC

model (Jukes and Cantor, 1969), and the sequences at the tips of the gene tree constituted data at the

locus.

Each dataset was analysed using BPP to estimate the species tree. The subtree-pruning-and-

regrafting (SPR) algorithm was used to move between species trees (Flouri et al., 2018; Rannala

and Yang, 2017). We integrated out θs analytically through the use of the conjugate inverse-gamma

priors (Flouri et al., 2018), which may help with MCMC mixing. We assigned inverse-gamma (IG)
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priors to parameters in the MSC model: θ ∼ IG(3, 2θ ) for population size parameters and τ0 ∼ IG(3,

10θ ) for the age of the root, with the mean matching the truth. As the starting species tree affects the

time taken to reach stationarity, but not the mixing efficiency of the Markov chain after the burn-in,

we used the true species tree as the starting tree. We calculated the posterior probabilities for the

species tree and clades to measure performance.

We also analysed the data using ASTRAL and concatenation/ML to estimate the species tree. The

sequence data included an outgroup species (O) to root the tree, which diverged from the ingroup

species at time τ = 10θ (fig. 5.2). For ASTRAL analysis, we used RAXML to reconstruct the gene tree

for each locus under the JC model and then used ASTRAL to generate the species tree. The RAXML

analysis treats the diploid sequence with heterozygotes as a haploid sequence with ambiguities; for

example a T/C heterozygote is treated as either T or C (Andermann et al., 2019; Huang et al., 2022a).

The concatenation method is applied to the case of S= 1 diploid sequence per species only. Sequences

from all loci are concatenated and the super-alignment is analysed using RAXML to generate one tree,

which is the estimate of the species tree. Again heterozygotes are treated as ambiguities.

5.1.6 Estimation of divergence times, population sizes, and rates of gene flow

In this set of simulations, we examined the estimation of parameters in the MSC model with gene

flow, such as the species divergence times (τ), population sizes, and the rates of gene flow (ϕ or

M = Nm), with the species tree fixed. We assumed species trees B or U of figure 5.3, and for each

tree, we used two models of gene flow: MSC-I (Flouri et al., 2020) and MSC-M (Flouri et al., 2023),

each with two unidirectional gene-flow events. We used two values for the population-size parameter

θ : 0.0025 and 0.01. For tree B, the divergence times were τr = 5θ , τs = 4θ , τt = 3θ , and τu = 4.5θ .

For tree U, the divergence times were τr = 5θ , τs = 4θ , τt = 3θ , and τu = 2.5θ . The introgression

times under the MSC-I model were τb = τc = θ , and τd = τe = θ . In the MSC-I model, ϕbc = 0.3 and

ϕde = 0.2, while in the MSC-M model, we used Mbc = mbcNC = 0.3 and Mde = 0.2.

For each parameter setting, we generated 100 replicate datasets. Each dataset consisted of L = 40

or 160 loci, with S = 1 or 4 diploid sequences per species at each locus, with the sequence length to

be either N = 250 or 1000 sites. In total 3200 datasets were generated.
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Figure 5.3: Two species-tree models of gene flow used in the simulation to evaluate Bayesian parameter esti-
mation. Gene flow is modeled using either MSC-I or MSC-M. The parameters for tree B are τr = 5θ , τs = 4θ ,
τt = 3θ , τu = 4.5θ , τb = τc = θ , and τd = τe = θ , while those for tree U are τr = 5θ , τs = 4θ , τt = 3θ , τu =
2.5θ , τb = τc = θ , and τd = τe = θ . We used two values for θ : 0.0025 or 0.01. In the MSC-I model, we used
ϕbc = 0.3 and ϕde = 0.2, while in the MSC-M model, we used Mbc = mbcNC = 0.3 and Mde = 0.2.

Each replicate dataset was analysed using BPP v.4.7 (Flouri et al., 2018) to estimate the 21 param-

eters in the MSC-I model or 15 parameters in the MSC-M model. The correct species tree and the

correct model (JC) were assumed. Under the MSC-I model, we assumed the same θ parameter for a

branch on the species tree before and after an introgression event (by specifying theta-model=linked-msci

in BPP control file), ensuring that θb = θB, θc = θC, θd = θD, θe = θE . Gamma priors were assigned

on the population size parameters (θ ) and the age of the root on the species tree (τ0 = τr), with the

shape parameter 2 and the prior means equal to the true values: τ0 ∼ G(2,160) and θ ∼ G(2,800) for

θ = 0.0025, and τ0 ∼ G(2,40) and θ ∼ G(2,200) for θ = 0.01. The introgression probabilities under

MSC-I were assigned the prior beta(1,1), while the migration rates under MSC-M are assumed the

prior M ∼ G(1,10). While the same θ was used for all species on the species tree in the simulation,

every branch on the species tree had its own θ when the data were analysed using BPP.

We used 32,000 iterations for burnin, after which we took 105 samples, sampling every 2 itera-

tions. Analysis of each dataset took ≈ 4 hours on a single thread for small datasets of 40 loci and 10

sequences per locus or ≈ 23 hours for large datasets of 160 loci and 40 sequences per locus.
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5.2 Results

5.2.1 Empirical examination of read depths at adjacent sites in the genome

Table 5.1: Deviation measuring goodness of fit (Q, eq. 5.7) of two models for read depths along the sequence
to observed data from two sequenced genomes (fig. 5.4)

Chimpanzee genome (20.26X) Rabbit genome (4.21X)

p Model 1 Model 2 Model 1 Model 2

0 0.0023 0.0023 0.0626 0.0626
0.1 0.0022 0.0025 0.0631 0.0695
0.2 0.0021 0.0033 0.0618 0.0779
0.3 0.0019 0.0049 0.0586 0.0879
0.4 0.0017 0.0072 0.0533 0.0995
0.5 0.0014 0.0106 0.0457 0.1128
0.6 0.0011 0.0150 0.0358 0.1277
0.7 0.0008 0.0206 0.0237 0.1444
0.8 0.0005 0.0275 0.0113 0.1628
0.9 0.0002 0.0360 0.0035 0.1830

Note.– Model 1 is the beta model based on eq. 5.5. Model 2 is the alternative model based on the beta
distribution described in the text. Model 1 is used in our simulation as it fits the empirical data better.

We used site-wise read depths in sequenced genomes to assess the goodness of fit of our Markov-

chain models of read depths along the sequence. The proportions ( fi j) of site doublets with read

depths i, j for a high-coverage chimpanzee genome (average coverage 20.26X) sequenced by Prado-

Martinez et al. (2013) and a low-coverage rabbit genome (4.21X) by Andrade et al. (2024) were used

to generate empirical estimates of transition probabilities (fig. 5.4). These suggest strong correlation

in read depth between adjacent sites, with very high probabilities that the read depth for the next site

will be identical or very similar to that for the current site. We fitted the two beta models described

above to the two depth datasets, and the goodness of fit for two models is measured using the sum

of squared differences, Q (eq. 5.7). The results (table 5.1) suggest that the conditional-mean model

fitted the data better for both datasets, with the parameter p = 0.9. This model is used in our study to

simulate read depths along the sequence, given the average read depth.
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Figure 5.4: Heat-map representation of empirical transition probabilities of read depths at two adjacent sites
( p̂i j = fi j/ fi) estimated from (a) a Nigeria-Cameroon chimpanzee genome (Pan troglodytes ellioti), sequenced
on the Illumina HiSeq 2000 platform to an average depth of 20.26x by Prado-Martinez et al. (2013) (NCBI
accession: SRX360475) and (b) a European rabbit genome (Oryctolagus cuniculus), sequenced on the Illumina
NovaSeq 6000 platform to an average depth of 4.21x by Andrade et al. (2024) (SRX21096756). The shading
in each cell represents the frequency ( fi j) that the next site has read depth j given the read depth at the current
site (i). Each row sums to 1.

5.2.2 Species tree estimation in presence of genotyping errors

The probabilities of inferring the correct tree using BPP, ASTRAL and concatenation/ML are sum-

marized in figure 5.5. The average posterior probabilities for the true tree are shown in figure S5.3.

First, we consider the standard BPP analysis (BPP in fig. 5.5), treating the sequences as diploid

sequences, averaging over all possible phase resolutions at heterozygote sites (Gronau et al., 2011;

Huang et al., 2022b). Note that in our simulation the data size is fixed, and the results obtained when

there was no sequencing errors (ε = 0) constitute the best-case scenario and provide a reference for

comparison. Note that in the smallest datasets (with L = 40 loci, S = 1 diploid sequence per species,

and n = 250 sites), accuracy was low, due to lack of information (fig. 5.5).

Species tree estimation was affected by genotyping errors at low read depths, especially at the high

base-calling error rates (0.01 and 0.005). Indeed estimation accuracy was lower at read depths 8 than

at read depth 3-5. This counter-intuitive result is due to the discrete nature of read depth: for example,

at the base-calling error rate e = 0.01, the expected genotyping-calling error for heterozygotes is
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Figure 5.5: Accuracy of species tree estimation using BPP, BPP-ambiguity, ASTRAL and concatenation/ML.
The results are shown separately for the four methods in figures S5.1&S5.2. Concatenation/ML is applied to
the case of one (diploid) sequence per species (S = 1) only.
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Figure 5.6: Expected and observed genotyping error rate for given base-calling error (ε) and read depth (d), as
in Thawornwattana et al. (2018). In our simulation, we used the error rates ε = 0 (no errors), 0.001, 0.005, and
0.01. Note that when ε = 0 the genotyping error rate is 0 for homozygotes and

(1
2

)d−1 for heterozygotes.

higher at read depth d = 8 than at d = 5 (fig. 5.6). When average read depth is 15X or higher,

genotyping errors did not have an effect on species tree anymore in our simulation.

Accuracy of the probability of inferring the true tree reaches its peak at a mean read depth of

15X for θ = 0.0025 and 10X for θ = 0.01. This likely indicates that genotyping errors caused by

base-calling inaccuracies are a major factor distorting tree inference in BPP when relatively low-depth

sequencing data (< 5X) are used. However, this issue diminishes when sequencing depth exceeds

15X or 10X, depending on the divergence between species.

Higher mutation rate (θ = 0.01 versus 0.0025) is noted to improve the accuracy of species tree
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inference. Note that in our experiment, species split times (τ) are proportional to θ , so that the shape

of the species tree does not change with θ , and θ mimics the use of different genomic regions with

different mutation rates (e.g., neutral DNA versus conserved noncoding elements or exons).

Accuracy was higher for the unbalanced tree U (fig. 5.2) than for the balanced tree B. As pointed

out by Huang et al. (2020), this is due to our choice of the internal branch lengths: in tree B, the three

internal branch lengths have the lengths 0.1θ , 0.2θ , and 0.2θ , whereas in tree U, all three internal

branches had the length 0.2θ . Coalescent is less likely to occur on branches of short length, and there

is limited information on the local topology, making it prone to phylogenetic errors.

Next we consider the approach of treating called heterozygotes as ambiguities (fig. 5.5, BPP-

ambiguity). This treats heterozygotes as missing data (for example a T/C heterozygote, which means

‘both T and C’, is treated as ‘either T or C’), and is expected to use less information in the data,

and to underestimate heterozygosity or θ . The approach reduced the impact of genotyping errors

considerably. Also with this approach, the results were very similar at different base-calling error

rates and at different average read depths.

We also analyzed the same data using ASTRAL and concatenation/ML to estimate the species tree.

We include a sequence from a distant outgroup species (O) to root the tree (fig. 5.2), as these methods

do not infer the root of the species tree. For ASTRAL analysis, we used RAXML to reconstruct the

gene tree for each locus under the JC model and then used ASTRAL to generate the species tree. The

RAXML analysis treats the diploid sequence with heterozygotes as a haploid sequence with ambi-

guities; for example a T/C heterozygote is treated as either T or C (Andermann et al., 2019; Huang

et al., 2022a). The results are summarized in figure S5.2. Overall, ASTRAL and concatenation/ML

appear to be robust to genotyping errors in the simulations here. Performance was nearly identical at

different read depths and at different base-calling error rates. The two methods performed better than

BPP and were similar to BPP-ambiguity.

In the case of no sequencing errors (ε = 0), BPP most often had better performance than ASTRAL

and concatenation/ML. However, exceptions do exist. For example in the case of tree B, and lower

mutation rate (θ = 0.0025), concatenation/ML performed better than ASTRAL, which in turn was

better than BPP. Such unusual cases are uncommon but are expected to occur (see Yang, 1996, 1998
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for discussions).

5.2.3 Parameter estimation under the MSC-I model

We simulated data using the balanced and unbalanced trees (B and U) for five species of figure

5.3 with two gene-flow events and analysed the data using BPP to estimate parameters in the model.

The true introgression probabilities ϕbc = 0.3,ϕde = 0.2.

First we discuss the results under the MSC-I model. The average posterior means and HPDs

among the replicates are presented in figures 5.7 and S5.4–S5.6.

In the standard BPP analysis (BPP in fig. 5.7 & S5.4–S5.6), low depth (< 15X) causes bias to

many parameters in presence of base-calling errors (ε > 0). Population sizes for modern species (θA,

θB, θC, θD and θE) and speciation/introgression times (τR, τS, τT , τU and τb, τd under the MSC-I

model) are overestimated when read depth is < 10X, with the peak mainly occurring at 5X. The θs

for ancestral populations are generally much more robust to the errors.

Generally, parameters showed greater bias relative to the true values at the lower mutation rate

(θ = 0.0025 vs. 0.01). In theory, parameters related to short branches are estimated with more un-

certainty, and the shortest branch in the trees of figure 5.3 is u− r in tree B and u− t in tree U, with

a length of 0.5θ . The mean estimates of θU in both trees basically have no error, while the HPD

intervals are slightly wider compared to other population sizes. Likewise, introgression probabilities

ϕb→c and ϕd→e are biased with low-depth data.

We also examined the power to detect gene flow using the Bayesian test (Ji et al., 2023) (figs. 5.7

and S5.4–S5.6, Pb→c and Pd→e). In the test, we used a null interval of (0, 0.001) and confirmed

that use of (0, 0.01) and (0, 0.005) produced nearly identical results. At the high base-call error rate

(ε = 0.01) and with S = 4 sequences per species, power may be affected by genotyping errors at

low read depths (d = 5). However, overall the power to detect gene flow is high. When base-calling

errors are incorporated and depth is low (d < 10 and ε > 0) , introgression probabilities under the

MSC-I model are estimated with large intervals, resulting in a low rate of detecting gene flow using

the Bayesian test of gene flow, and it is more problematic for shallower trees with θ = 0.0025 (fig.

S5.4 & S5.6). Introgression from d to e is expected to be easier than b to c in both trees, despite
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Figure 5.7: Average posterior means and 95% HPD CIs for parameters in data simulated and analysed under
the MSC-I model of tree B (fig. 5.3a) with θ = 0.01. Dashed lines indicate true parameter values (τ and θ are
multiplied by 100). Pb→c is the power of the Bayesian test or the proportion of replicate datasets in which the
Bayesian test inferred b → c introgression at the 1% level (with B10 ≥ 100), using a null interval (0, 0.001).
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of an exception in tree B with small amount of divergence (θ = 0.0025) (fig. S5.4), where Pb→c is

somewhat higher than Pd→e when depth is low. Both introgression events are detected in the test by

∼ 100% when depth is 15X or higher except in the simulation with too limited data (L = 40, S = 1,

Sites = 250).

We may ask the question whether a few samples sequenced at a higher depth are better than many

samples sequenced at a lower depth. For example, the two scenarios S = 1 with d = 20 and S = 4

with d = 5 may involve similar amounts of sequencing effort or cost. The answer to this question is

clear-cut: a few high-depth samples are much better than many low-depth samples. Indeed at d = 5,

use of S = 4 samples exacerbates the bias and is worse than having one sample (S = 1 at d = 5), not

to mention one sampled sequenced at great depth (S = 1 at d = 20).

Treating heterozygotes as ambiguities (missing data) (fig. 5.7 & S5.4–S5.6, BPP-ambiguity) re-

duced the bias in parameter estimation caused by genotyping errors at low read depth, although pop-

ulation sizes at tips (θA, θB, θC, θD and θE) are all underestimated. With heterozygotes treated as

ambiguities, there is little difference between S = 1 and S = 4.

We note that for this set of simulation, the tree shape (B versus U) had little impact. The number

of sequences (S = 1 or 4) has minimal impact, with the bias at low read depths tend to be more serious

when more sequences per species are included.

5.2.4 Parameter estimation under the MSC-M model

Under the migration (MSC-M) model, the population migration rates used were Mbc = 0.3,Mde =

0.2. Here the population migration rate Mxy =mxyNy is the expected number of x → y migrants, where

mxy is the proportion in the recipient population y of immigrants from x, and where Ny is the effective

population size of y. The results for simulation under the MSC-M model are shown in figure 5.8, and

S5.7–S5.9.

The impact of low depth on parameters estimated under the MSC-M model is similar to that in the

MSC-I model. Most of parameters are overestimated due to the impact of genotyping errors, while

there are few instances of underestimation under the MSC-M model, such as τU in tree B (fig 5.8

& S5.7). The underestimation of τU or the overestimation of spanning time for migration d to e is
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Figure 5.8: Average posterior means and 95% HPDs for parameters under the MSC-M model of tree B
(fig. 5.3a) with θ = 0.01. Pb→c and Pd→e is the power of the Bayesian test of gene flow (at the cutoff B10 ≥ 100).
See legend to figure 5.7.
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essentially correlated with the underestimation in migration rate Md→e. Actually, in the absence of

sequencing errors (ε = 0), the time τU is not very well inferred and underestimated in the cases where

simulated datasets contain a limited number of loci (L = 40)

Some parameters under the MSC-M model appear to be more influenced by low depth. The

migration rates Mb→c and Md→e have larger bias than the introgression probabilities ϕs in the MSC-I

model above. The estimates under the MSC-M model are close to the truths with acceptable error at

depth of 15X, and 20X appears to be the safe choice to ensure accurate inference of all parameters in

specific cases — for example, Md→e under tree B with θ = 0.0025 (fig. S5.7). Overall, the MSC-M

model turns out to be more demanding and expects high-depth data of at least 20X.

As shown for BPP-ambiguity in figure 5.8, and S5.7–S5.9, treating heterozygous sites as ambi-

guities is also useful for mitigating the impact of genotyping errors in parameter estimation under

the MSC-M model. Population sizes for ancestral populations and speciation times (except τU ) are

estimated with sufficient accuracy and almost no bias across depths 3X to 10X. For the modern pop-

ulation sizes, it is the same as in the MSC-I model where they are underestimated because of the use

of unphased sequences.

In our simulation, there is very little improvement for involving more loci (L = 160) and more

sites per sequence (Sites = 1000), and the use of larger datasets does not always help reduce the

bias. Notably, when phasing is disabled in BPP and there are multiple sequences per species (fig. 5.8

BPP-ambiguity, S = 4), migration rates estimates are biased, and some of them are close to 0. This

underestimation is probably caused by analysing data with approach BPP-ambiguity as the impact of

genotyping errors become negligible when depth exceeds 20X.

Regarding the impact on the Bayesian test of gene flow, the power of the test is compromised

under the migration model due to the wide HPD intervals of M estimates using low-depth data. The

power of the test reaches 100% when depth is 15X or 20X.

Parameters tend to have smaller bias if heterozygotes are regarded as ambiguities, although this

approach leads to underestimation in migration rates when S = 4 sequences are present for each

species. The Bayesian test of gene flow is largely robust to the bias and detects evidence of gene

flow in most replicate datasets. However, there are cases where the test yields low power. In figure
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5.8, with S = 4, the high power Pb→c of BPP-ambiguity is a result of the overestimation in Mb→c

when depth is < 10X , which then gradually decreases and stabilizes at a relative low level as depth

increases. Thus, we suggest that the analytic strategy of BPP-ambiguity should be used with caution

under this model.

5.3 Discussion

5.3.1 Limitations of our simulation of read depth

In this chapter we develop a model for simulating read depths for sites in a sequence. The model

accounts for the strong correlation between read depths at two adjacent sites. Here we discuss the

limitations of the simulation model and of our simulation. First the model of read depths is Markovian

in that the read depth at the next site depends on the read depth at the current site, but not on read

depths at the previous sites. This assumption is clearly unrealistic. It should be simple to incorporate

high-order dependence. However for the purpose of our study, which is to assess the impact of

genotyping errors on inference under the MSC, we suggest that the assumption is unimportant. As

the read depths at adjacent sites is very strong, the difference between the models is minor.

Our simulation model has not accounted for mapping or alignment errors. In particular, if genomes

are sequenced from different species and if the reference genome is far away, mapping errors may be

considerable. When selecting genomic regions for generating multi-locus data, we typically avoid

regions such as simple repeats and transposable elements, which effectively minimizes the alignment

errors in the data (Gronau et al., 2011). Another issue is that in our simulation, we assumed that

genotype calling is based on reads for each sample. In the case of multiple samples from one species,

use of multiple samples to call genotypes is known to reduce genotyping errors (Poplin et al., 2017).

Methods for calling genotypes using multiple-sample read data from several species are yet to be

developed.

Despite those limitations, we suggest that our simulation provides useful guidelines for genome-

sequencing projects for inferring species phylogenies accounting for the coalescent process, and for

inferring interspecific gene flow.
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5.3.2 Approaches to dealing with genotyping errors

The inference devices in BPP are affected by the genotyping errors in low-depth data, generating

biased parameter estimates. Currently, there are several approaches to dealing with genotyping errors

at different levels.

The first approach is to develop methods that work in data with genotyping errors. Zhang and

Nielsen (2025) developed a method called WASTER for inferring species trees using data of low cov-

erage, based on the method called CASTER from Zhang et al. (2025). These are heuristic methods that

use genome-wide site pattern counts and ignore information in the variation of genealogical histories

across the genome. The methods are aimed to estimate the species tree topology only, and do not

provide estimates of population demographic parameters such as population sizes, species split times,

and rates of gene flow between species.

In the likelihood framework, Gronau et al. (2011) developed a Bayesian method, called BSNP,

that infers genotypes at each site using information in the aligned bases, including base-call quality

scores, and mapping quality scores produced by BWA (Li and Durbin, 2009). The aim is to infer the

correct, unbiased genotype at each position and prevent genotype calling from being driven by reads

from low-coverage genomes. To some extent, the method reduces the number of erroneous genotype

calls in genomes. This method may still struggle to handle tricky cases where all samples have

uniformly low sequencing depth. One possible solutions is to accommodate genotyping uncertainty

in phylogenomic and population genetic analyses (Korneliussen et al., 2014).

From our simulation, we suggested the approach of treating heterozygotes as ambiguities is useful

for reducing the biases. Miscalling of heterozygous sites as homozygotes are expected to be more

damaging than calling homozygotes into heterozygotes, as the former type of errors potentially creates

chimeric sequences (fig. 5.1). When treated as ambiguities, heterozygotes miscalled homozygotes

merely result in some information loss but do not produce wrong phase resolutions, reducing the

impact of the errors and making the inference in BPP more accurate.
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Figure S5.1: Accuracy of BPP species tree estimation at different mean read depths (d̄) and base-calling error
rates (ε), measured by the proportion of replicates in which the inferred species tree by BPP (the MAP tree) is
correct.
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Figure S5.2: Accuracy of species tree estimation using (a, b) ASTRAL and (c, d) concatenation/ML at different
mean read depths (d̄) and base-calling error rates (ε). Data are the same as those of figure S5.1 except that an
outgroup (O) is also included to root the tree. Concatenation/ML is applied to data of one (diploid) sequence
per species (S = 1) only.
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Figure S5.3: Average posterior probabilities for the correct species tree in BPP species tree estimation using
simulated data at different mean read depths (d̄) and base-calling error rates (ε). The true species trees are trees
B and U of figure 5.2. The results are summarized using the same runs as BPP in fig. 5.5.
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Figure S5.4: Average posterior means and 95% HPDs for parameters under the MSC-I model of tree B (fig
5.3a) with θ = 0.0025. See legend to figure 5.7.
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Figure S5.5: Average posterior means and 95% HPDs for parameters under the MSC-I model of tree U
(fig. 5.3b) with θ = 0.01. See caption to figure 5.7.
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Figure S5.6: Average posterior means and 95% HPDs for parameters under the MSC-I model of tree U
(fig. 5.3b) with θ = 0.0025. See caption to figure 5.7.
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Figure S5.7: Average posterior means and 95% HPDs for parameters under the MSC-M model of tree B
(fig. 5.3a) with θ = 0.0025. See caption to figure 5.7.
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Figure S5.8: Average posterior means and 95% HPDs for parameters under the MSC-M model of tree U
(fig. 5.3b) with θ = 0.01. See caption to figure 5.7.
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Figure S5.9: Average posterior means and 95% HPDs for parameters under the MSC-M model of tree U
(fig. 5.3b) with θ = 0.0025. See caption to figure 5.7.
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Table S5.1: The expected and observed probabilities of correlated read depth between adjacent sites.

Chimpanzee genome (20.26X) Rabbit genome (4.21X)

P1 P2 P1 P2

Expected
p = 0 0.2275 0.6143 0.5549 0.9668
0.1 0.2387 0.6377 0.5745 0.9751
0.2 0.2493 0.6594 0.5927 0.9813
0.3 0.2595 0.6795 0.6099 0.9859
0.4 0.2693 0.6981 0.6264 0.9893
0.5 0.2789 0.7156 0.6428 0.9918
0.6 0.2881 0.7319 0.6601 0.9936
0.7 0.2971 0.7472 0.6801 0.9949
0.8 0.3061 0.7617 0.7044 0.9955
0.9 0.3156 0.7762 0.7415 0.9951

Calculated 0.5729 0.9114 0.9410 0.9956
Note.– The expected values are calculated under Model 1 using p = 0 to 0.9, while the line at bottom
displays the proportions obtained from the real data. P1 = P(dnext = dcurrent) = ∑i πiPii = ∑i fii is the
probability that the next site has the same read depth as the current site, and P2 = P(|dnext−dcurrent| ≤
1) = ∑i πi(∑

i+1
j=i−1 Pi j) = ∑i ∑

i+1
j=i−1 fi j, represents the probability that the next site has a read depth

that differs by at most 1 from the current site. For both samples, given the depth dcurrent at the current
site, more than 90% sites at the next position along the genome have a depth within the interval
[dcurrent −1,dcurrent +1].

173



Back to Contents Summary

Summary

Gene flow is now recognized as a common feature of species divergence in many taxa, with im-

portant evolutionary consequences for local adaptation and species diversification. In the first three

chapters, we demonstrate the superior power of full-likelihood approaches under the multispecies co-

alescent (MSC) framework for inferring gene flow. We also develop a Bayesian test of introgression,

which computes Bayes factors using the Savage–Dickey density ratio from MCMC samples. This

test can be used to assess the significance of individual gene flow events.

In Chapters 2 and 3, we adopt a stepwise approach to construct models of introgression or mi-

gration, while in Chapter 4, we construct a joint migration model by summarizing evidence from

triplet analyses. Across these studies, we identify substantial gene flow among closely related species

and evaluate the performance and limitations of commonly used summary statistics. In Chapter 5,

we investigate the impact of sequencing depth on inference and show that treating heterozygotes as

ambiguities in low-coverage data can effectively mitigate the bias caused by genotyping errors. To-

gether, the thesis highlights an urgent need to apply likelihood methods for inferring gene flow using

genomic sequence data and to improve the statistical properties of summary methods.

Stepwise construction of model of gene flow Inferring species trees with gene flow is both

biologically crucial and computationally challenging. Bayesian methods are struggling with exploring

the space of possible introgression or migration models, even for datasets with as few as 100 loci (Jiao

et al., 2021). The stepwise model construction offers a statistically principled and computationally

feasible alternative.

The stepwise approach works on a stable species tree that is not misled by the gene flow. De-

spite the misspecification, the species tree can often be accurately inferred using methods ignoring

gene flow, such as the MSC model implemented in BPP. For scenarios with excessive introgression

and rapid speciation, the species tree can be highly uncertain, and the posterior may involve multiple

competing species trees. It is still possible to identify the true species tree from genomic regions that

are less affected by gene flow. For example, when migration results from sex-biased dispersal, the sex

chromosomes or mitochondrial genomes specific to the opposite sex may remain unaffected. As a re-
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sult, individuals from each population/species tend to form monophyletic groups on the corresponding

gene trees. In Chapters 4, we identify the population phylogeny for chimpanzees and bonobos using

mitochondrial data. Additionally, regions of low recombination tend to exhibit reduced introgression,

with certain parts of the genome being most resistant to gene flow. In Heliconius butterflies, the Z

chromosome shows no evidence of recent gene flow, while autosomes display widespread admixture

(Thawornwattana et al., 2022, 2023b).

In our stepwise framework, gene flow events are iteratively added to the binary species tree, usu-

ally in order of decreasing statistical support (e.g., estimated introgression probabilities). After each

addition, the Bayesian test of gene flow is applied to determine whether the events in the model are

significantly supported given the data; non-significant events are excluded from the joint model. Al-

ternatively, it may begin with a saturated or nearly saturated model that includes all or most of gene

flow events. The non-existent events are expected to be estimated with probabilities close to zero and

drop out. These two strategies reflect alternative heuristics for navigating model space, and in theory,

both are able to reach the true model. Although starting with a saturated model may require fewer

steps to reach the final model, it involves fitting complex, parameter-rich models early on. In contrast,

stepwise addition is often more computationally tractable, especially for large phylogenies.

When dealing with phylogenies involving 5 or more species/populations, the number of possible

gene flow edges in the species tree becomes prohibitively large. A common workaround is to first

identify introgression events among extant species, and then translate those signals into events in-

volving ancestral lineages. For example, if gene flow is detected from species A to C and from B

to C, this may be interpreted as introgression from their ancestor AB to C. Another promising and

scalable approach is the divide-and-conquer strategy, which was originally developed for estimating

species trees (Molloy and Warnow, 2019). Similarly, inferences of gene flow can be performed on

subsets of species (e.g., triplets) and the resulting evidence of gene flow is merged parsimoniously to

obtain a full model.

Despite the practical advantages, the stepwise approach has limitations. First, it does not perform

an exhaustive search over model space and may miss some gene flow events. Furthermore, it assumes

the availability of a well-supported species tree, which may not be feasible in cases with extremely
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rampant introgression. Lastly, while the approach itself is applicable to datasets of any size, analysing

huge datasets can still demand substantial computational resources. In such cases subsampling of

loci/sequences may be employed to downsize the data.

Challenges and outlook The MSC-I and MSC-M typically require thousands of loci to obtain

reliable estimates, particularly for models of many parameters, while performing model selection

through introgression or migration models remains a major challenge when working with datasets at

this size. Even with a fully specified model, parameter estimation based on full-likelihood methods

can still be computationally demanding with more than 10 species involved.

Summary methods are computationally fast and scale well to large phylogenies. Despite their

heuristic nature and the associated information loss, they remain useful especially in exploratory

analyses to rapidly identify candidate introgression events over a species tree. Efforts have been

made to integrate the computational efficiency of summary methods with the statistical rigour of full-

likelihood inference. One such framework D-BPP (Yang et al., 2025) unifies the summary method

D-STATISTIC (Durand et al., 2011b) and the full likelihood method BPP MSC-I (Flouri et al., 2020),

and it is designed to resolve complex introgression scenarios by evaluating competing models through

Bayesian model comparison. Moreover, it should be possible to improve the power of summary

methods by making more efficient use of multilocus information, including gene tree topologies,

branch lengths, and variation in gene trees across loci (Jiao et al., 2021).

Another direction is to generalize the MSC framework to incorporate other important biological

processes such as recombination and natural selection.

Phylogenomic analyses under the MSC models assume independent gene trees across loci and

a single gene tree per locus, implying free recombination among loci and no recombination within

each locus. The estimation of gene flow may benefit from making use of information in linkage

disequilibrium between adjacent genomic segments. Instead of assuming independence across loci,

methods including PHYLONET-HMM (Liu et al., 2014) and DICAL-ADMIX (Steinrücken et al.,

2018) use a hidden Markov model (HMM) to approximate gene tree correlations along the genome.

These methods, typically developed for two or three taxa, can be used to estimate introgression and

also identify introgressed genomic regions.
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Selection is another factor that has not yet been accommodated into the MSC framework. Previous

simulation studies found that species tree estimation tends to be robust to background selection and

positive selection (Shi and Yang, 2018; Thawornwattana et al., 2018, 2022). However, more recent

work indicates that ignoring selection can bias the detection of introgression using full-likelihood

methods (Smith and Hahn, 2024). There are methods that allow for variable θ among loci to reflect the

reduced mutation rate in background selection. The incorporation of fitness effects in more complex

scenarios of selection (e.g., balancing selection and directional selection) may rely on the use of

machine-learning approaches (Mo and Siepel, 2023; Schrider and Kern, 2018).

When read depth is a concern in the data, such as in ancient DNA or other degraded samples,

genotyping errors can lead to distorted inference. The approach of treating heterozygotes as missing

data can mitigate the impact of genotyping errors, especially for analysis under the MSC-I model. It

may be useful to develop multi-sample genotype-calling methods under the MSC model to improve

genotyping quality at low read depths. If the species are closely related, even multi-sample genotype-

calling procedures developed for population data (from one species) may improve genotyping quality.

If low-depth sequence data are common, it may be worthwhile to implement probabilistic models to

accommodate sequencing and genotyping errors in genome sequences at low depths.

Ultimately, advances in methods for reliably detecting and quantifying gene flow will enhance our

understanding of its role across different evolutionary timescales. In shallow phylogenies, accurate

inference of gene flow among closely related species will illuminate key biological questions includ-

ing how often species diverge with gene flow between closely related species and how species can

remain distinct in spite of gene flow (Mallet et al., 2016). Studying introgression provides critical in-

sights into the nature of species. Over deeper timescales, introgression contributes to biodiversity by

creating novel genetic combinations that facilitate ecological adaptation and species divergence (Ab-

bott et al., 2013; Marques et al., 2019). Improved methods will enable more accurate assessment of

its prevalence over an extended timeline and refine our understanding of its macroevolutionary impact

on species diversification and trait evolution. As we face a world of continuously reducing biodiver-

sity, learning from past examples may improve our ability to anticipate responses to environmental

change.
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Ž., Gušic, I., Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C., de la Rasilla, M., Fortea,

J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney, E., Mullikin,

J. C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., and Pääbo, S. 2010. A Draft
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