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Abstract
Using the replica method, we compute the statistics of the top eigenpair of
diluted covariance matrices of the form J= XTX, where X is a N×M sparse
data matrix, in the limit of large N,M with fixed ratio and a bounded number of
non-zero entries. We allow for random non-zero weights, provided they lead to
an isolated largest eigenvalue. By formulating the problem as the optimisation
of a quadratic Hamiltonian constrained to the N-sphere at low temperature,
we derive a set of recursive distributional equations for auxiliary probability
density functions, which can be efficiently solved using a population dynam-
ics algorithm. The average largest eigenvalue is identified with a Lagrange
parameter that governs the convergence of the algorithm, and the resulting
stable populations are then used to evaluate the density of the top eigenvector’s
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components. We find excellent agreement between our analytical results and
numerical results obtained from direct diagonalisation.

Keywords: eigenvalues, statistics, Wishart, random matrix theory,
diluted covariance matrices

1. Introduction

In recent decades, we have witnessed an unprecedented surge in the amount of informa-
tion available for processing and forecasting, marking the emergence of the Big Data era.
Contemporary data analysis challenges frequently involve processing datasets with numer-
ous variables and observations. This high-dimensional nature of data is particularly evident in
fields such as climate studies, genetics, biomedical imaging, and economics [1].

Consider a scenario where one conducts N measurements ofM variables that characterise a
system. These variables might represent, for instance, assets in a stockmarket or a collection of
climate observables, with measurements taken simultaneously at N different time points. The
collected data can be organised into an N×M matrix X, where element Xij represents the ith
measurement of the jth variable. From this, we construct theM×M sample covariance matrix
J= XTX, which encodes all possible correlations among the variables. This covariance matrix
plays a fundamental role inmultivariate statistical analysis, finding applications in dimensional
reduction and classification procedures, such as principal component analysis [2] and linear
discriminant analysis [3].

A reasonable assumption for many natural phenomena is that each variable exhibits signi-
ficant correlation with only a limited subset of other variables, resulting in sparse covariance
matrices characterised by numerous entries that are either very small or zero. This sparsity is
particularly relevant in inferring causal influences among system components from empirical
covariance matrices. Notable examples include the experimental reconstruction of interactions
in biological systems, such as cellular signalling networks [4], gene regulatory networks [5,
6], and ecological association networks [7, 8]. Similar sparse structures also emerge in other
fields: in natural language processing, where word co-occurrence matrices reveal correlations
between contextually related words [9]; in finance, where asset correlations tend to cluster
within sectors [10]; and in social networks, where relationships between users are captured by
sparse covariance matrices [11]. Additionally, working with large, dense covariance matrices
is computationally demanding, often requiring regularisation techniques that induce sparsity
and improve efficiency [12].

One of the most important observables in the case of random covariance matrix is the top
eigenvalue and its associated eigenvector. For instance, in Principal Component Analysis the
top eigenvalue and eigenvector capture the most significant variability in data, enabling dimen-
sionality reduction and assisting in signal detection [13–20].

In this paper, we build on the works [21–24] to formulate a replica approach that is well
suited to the average largest eigenvalue and the density of its associated eigenvector’s com-
ponents of diluted Wishart matrices. We allow for a large class of weights on non-zero entries
that lead to an isolated top eigenvalue (see below for more details).

The outline of the paper is as follows. In section 2 we review the relevant literature; in
section 3, we formulate the problem, introduce notations, and specify our assumptions; in
section 4, we use the replica formalism to compute the largest eigenvalue of sparse random
matrices of the form J= XTX; in section 5, we build on the results of the previous section to
compute the density of the corresponding top eigenvector components; in section 6, we discuss
the population dynamics algorithm used to solve the system of self-consistent equations; in
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section 7we show how taking the dense limit recovers the known noncentralWishart-ensemble
results; finally, in section 8, we summarise our results and conclusions; appendix A provides
an upper bound for the largest eigenvalue, which may serve as a suitable starting point for the
population dynamics algorithm, while appendix B is devoted to the calculation of a technical
average.

2. Literature review

Since Wishart’s pioneering work [25], random matrix theory has played a fundamental role
in multivariate statistics [26]. Results derived from random matrix models serve as crucial
benchmarks for comparison with empirical data. A central focus of this field is the study of
eigenvalue and eigenvector statistics, which provide insight into correlations and principal
components in complex data.

A common null model for the covariance matrix J= XTX assumes independent Gaussian
random variables, adjusted to have zero mean, as entries of X. This model yields an analyt-
ically known joint distribution of eigenvalues, completely decoupled from the distribution of
eigenvectors, enabling the application of the Coulomb gas technique in the large N,M limit
with their ratio fixed [27–29]. This approach has led to extensive results on the eigenvalue stat-
istics of dense covariance matrices [13, 30–33], including a detailed characterisation of both
typical and atypical eigenvalue fluctuations [13]. The eigenvectors of this rotationally invari-
ant model are Haar-distributed over the sphere [34], and their associated components follow
the Porter-Thomas distribution [35].

While the eigenvalue and eigenvector statistics of dense covariance matrices are well under-
stood, the situation is markedly different for sparse (‘diluted’) covariance matrices, where
many entries are zero. Analytical results in this case are primarily limited to the average spec-
tral density [21, 36] and the number of eigenvalues in a given interval [37]. A key challenge
is the absence of an analytical expression for the joint eigenvalue distribution, as the loss of
rotational invariance precludes the use of the Coulomb gas approach and other techniques
based on orthogonal polynomials [35] or Fredholm determinants and Painlevé transcendents
[38]. While novel methods have expanded our understanding of sparse random matrices [36,
39–47], the analytical framework remains less developed compared to the ‘classical’ dense
case.

A particularly important aspect of covariance matrix spectra is the behaviour of the largest
eigenvalue and its associated eigenvector, which serves as a key indicator of system-wide cor-
relations. In the dense regime, significant progress has been made in characterising the largest
eigenvalue distribution. Several works [48–52] have established that, under fairly general con-
ditions, the largest eigenvalue follows the Tracy–Widom law, demonstrating a form of strong
universality. The statistics of eigenvectors of non-centred and doubly correlated Gaussian ran-
dom matrices has been tackled in [53] using a supersymmetric technique.

In contrast, in the sparse regime, the largest eigenvalue may exhibit a fundamentally differ-
ent behaviour, and elementary results remain relatively scarce. While some progress has been
made-such as a local Tracy–Widom law for sparse covariance matrices with zero-mean entries
[54] and studies on heavy-tailed distributions revealing deviations from classical universality
[55] — many open questions remain. In particular, for matrices of the form XTΣX, where Σ
introduces non-uniform sample couplings, the largest eigenvalue can separate from the bulk
spectrum. In the dense regime, this phenomenon corresponds to thewell-knownBBP transition
[56], in which the structure of Σ drives the detachment. Interestingly, even in the null case,
whereΣ= 1, a spectral gap can emerge if the entries of X have a non-zero mean [57, 58]. In
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this scenario, the nonzero mean entries can be interpreted as a deterministic signal, to which
Gaussian noise is added in the form of a zero-mean random covariance matrix. Under this
interpretation, the detachment of the largest eigenvalue marks the point at which the noise
level becomes low enough to allow inference of the principal component of the original data.
Correspondingly, the detachment is accompanied by a similar transition in its associated eigen-
vector, which becomes localised on a cone whose axis aligns with the principal component of
the deterministic signal [58]. In the sparse regime, a qualitatively similar behaviour is observed,
but a precise quantitative characterisation of this transition remains an open problem.

To study spectral properties of large random matrices, various analytical techniques have
been developed. Originally introduced in the context of spin glasses [59, 60], the replica
method was first applied to random matrices by Edwards and Jones [61] to compute the spec-
tral density of dense matrices. This approach, which relies on the joint distribution of matrix
entries rather than eigenvalues, was later extended by Bray and Rodgers [62] to derive an
expression for the spectral density of sparse Erdős–Rényi adjacency matrices. However, solv-
ing the resulting integral equations remains challenging, with numerical progress made only
recently [63].

Alternative functional methods, such as the single defect approximation and effective
medium approximation [64, 65], have been developed to tackle these problems. In the con-
text of sparse covariance matrices, these approaches were used in [21] to compute the spectral
density. Another promising line of research builds on the replica-symmetric framework of
Bray and Rodgers, representing order parameters as continuous superpositions of Gaussians
with fluctuating variances [39, 66]. This method was recently applied in [22, 23] to study the
typical largest eigenvalue of sparse weighted graphs, leading to non-linear integral equations
that can be efficiently solved using a population dynamics algorithm.

These techniques, originally developed in [39, 67, 68], have since found widespread use in
random matrix theory [69–72], providing a powerful framework for analysing spectral prop-
erties beyond the classical setting.

3. Formulation of the problem

Consider the sparse N×M matrix X, whose entries, Xij, are random variables, defined as

Xij = cijKij . (1)

Here, cij ∈ {0,1} regulate the density of non-zero elements of X andKij represent the non-zero
elements’ weights, randomly drawn from the pdf p(K). The central object of this study is the
M×M symmetric matrix

J= XTX . (2)

We work in the regime N→∞ and M→∞, but with the ratio

α=

√
N
M

(3)

kept finite. According to the spectral theorem, the symmetric matrix J can be diagonalised via
an orthonormal basis of eigenvectors, {vm}Mm=1 ∈ RM, whose corresponding real eigenvalues
are denoted by {λm}Mm=1. Assuming that the real eigenvalues are not degenerate, we can sort
them as λ1 > λ2 > .. . > λM. The main goal of this work is to evaluate
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• The typical value of the largest of them, denoted by ⟨λ1⟩ — assumed to be ∼O(1) in the
limit.

• The density of its corresponding eigenvector’s components, T(u) =
〈

1
M

∑M
i=1 δ

(
u− v(i)1

)〉
,

where ⟨·⟩ stands for averaging over different realisations of X.
By analogy to the standard prototype of sparse random systems (the Erdős–Rényi graph),

the model we study is defined by the following probability to draw (independently) the matrix
entries Xij

P(Xij) =

[
q√
NM

δcij,1 +

(
1− q√

NM

)
δcij,0

]
p(Kij) . (4)

Indeed, in graph-theoretical terms [73], the randommatrixX can be interpreted as the weighted
adjacency matrix of a Poissonian bipartite random graph with two distinct node types [36]: i-
nodes, corresponding to the rows of X, and j-nodes, corresponding to its columns. The matrix
X is sparse in the sense that the average number q/α of its non-zero elements per row does not
scale with either N or M.

The model defined in (4) suffers from two potential drawbacks, though: (i) without further
restrictions on the maximal number of nonzero elements allowed in each row and column,
the largest eigenvalue may (slowly) grow with N,M, in contrast with our assumption that
⟨λ1⟩ ∼ O(1); and (ii) a general and unrestricted weight distribution p(K) may lead to a largest
eigenvalue that is not detached from the continuous bulk of the spectrum.

The concern (i) follows from the observation that — in the similar case of (square) adja-
cency matrices of sparse random graphs— the largest eigenvalue (without further restrictions)
indeed grows (slowly) with N, as proven in [74]. Although we are not aware of a similar the-
orem in the context of diluted correlation matrices, it is a plausible assumption that a similar
mechanismmay be at work here. To ensure that the largest eigenvalue remainsO(1), we there-
fore impose the constraints that there be at most C non-zero elements per column and R per
row. In appendix A we show that such a constraint indeed results in an O(1) upper bound
for ⟨λ1⟩.

The concern (ii) can be allayed more easily by assuming that the weight pdf p(K) is such
that the largest eigenvalue is isolated, i.e. there is a macroscopic gap between it and the sea of
smaller eigenvalues. This detachment also occurs in the dense regime, where precise relation-
ships between p(K) and the resulting spectral gap can be established [57] — notably, a neces-
sary (though not sufficient) condition is that p(K) has a non-zero mean. The sparse regime
exhibits a similar qualitative behaviour, although a complete analytical characterisation of
the transition remains an open problem. Throughout the rest of the paper, when referring to
p(K) as a ‘nonzero mean distribution’, we specifically mean it in the sense of it generating a
spectral gap.

While the restriction on the maximal number of nonzero elements in X imposes non-trivial
couplings between the cij’s, which would in principle require a re-working of the form (4)
of the pdf of entries and introduce an additional analytical burden, we benefit here from a
key observation made in [22, 39, 75]: a convenient shortcut for the calculation consists in
(i) initially replacing the ‘microcanonical’ version of the model with the simpler ‘canonical’
one, in which the cij’s are independent Bernoulli random variables with success probability
q/
√
NM (as given in (4)), and (ii) manually adjusting the Poissonian distribution of ‘degrees’

of the connectivity matrix—which naturally emerges in the replica calculation— to allow for
a finite maximum number of nonzero entries per row and column (see, e.g. equations (55)–(57)
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and discussion after equation (68)). For all the technical details that motivate this shortcut, we
refer to appendix B in [22].

In the next section, we provide a detailed analysis of the replica calculation for the typical
largest eigenvalue of diluted Wishart matrices.

4. Replica analysis of the typical largest eigenvalue

We begin our analysis by noting that the problem of evaluating J’s largest eigenvalue can be
formulated in terms of the Courant–Fisher maximisation

λ1 =
1
M

max
v∈RM, |v|2=M

⟨v,Jv⟩ , (5)

where ⟨·, ·⟩ stands for the standard dot product among vectors in RM. We now introduce an
auxiliary canonical partition function at inverse temperature β

Z=

ˆ
dv exp

(
β

2
⟨v,Jv⟩

)
δ
(
|v|2 −M

)
. (6)

In the zero-temperature limit β→∞, applying the Laplace method to the integral in (6) we
obtain using (5) that

Z≈ exp

(
β

2
max

v∈RM, |v|2=M
⟨v,Jv⟩

)
= exp

(
β

2
Mλ1

)
. (7)

Therefore

⟨λ1⟩= lim
β→∞

2
βM

⟨lnZ⟩ . (8)

To tackle the average on the r.h.s of equation (8) we invoke the replica trick [60]

⟨λ1⟩= lim
β→∞

2
βM

lim
n→0

1
n
ln⟨Zn⟩ , (9)

where n is initially treated as an integer, and then analytically continued to real values
around n= 0. The next section is devoted to computing the average of the replicated partition
function ⟨Zn⟩.

The evaluation of (9) proceeds through five principal steps: (1) we average the replicated
partition function over the disorder (randomness encoded in the matrix entries Xij); (2) we
reformulate the replicated partition function in terms of a functional integral, which lends
itself to a suitable form for a saddle point analysis; (3) to study the saddle point structure of
the replicated partition function, we then invoke a replica symmetric ansatz that recasts the
order parameters as a superposition of an uncountably infinite set of Gaussians; (4) we use the
replica symmetric ansatz to derive the saddle point equations, and finally, (5) we evaluate the
replicated partition function at the saddle point in the limit β→∞.

We will guide the reader through the various steps below.
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4.1. Averaging the replicated partition function over the disorder

The first step in our analysis is to write the replicated partition function,

⟨Zn⟩=
ˆ ( n∏

a=1

dva

)〈
exp

β
2

n∑
a=1

M∑
i,k=1

viaJikvka

〉 n∏
a=1

δ
(
|va|2 −M

)
, (10)

as an integral of an exponential function. Expressing Jik =
∑N

j=1XjiXjk, we note that〈
exp

β
2

n∑
a=1

M∑
i,k=1

viaJikvka

〉=

〈
exp

β
2

n∑
a=1

M∑
i,k=1

N∑
j=1

XjiviaXjkvka

〉

=

〈
n∏

a=1

N∏
j=1

exp

β
2

(
M∑
i=1

viaXji

)2
〉

=

〈
n∏

a=1

N∏
j=1

√
β

2π

ˆ
duexp

(
−β
2
u2 +βu

M∑
i=1

viaXji

)〉

=

(
β

2π

) Nn
2
ˆ  n∏

a=1

N∏
j=1

dujae
− β

2 u
2
ja

〈 M∏
i=1

N∏
j=1

exp

(
βXji

n∑
a=1

viauja

)〉
, (11)

where we used the Hubbard–Stratonovich transformation,

ˆ ∞

−∞
dx e−ax2+bx =

√
π

a
e
b2

4a . (12)

In appendix B we show that using the sparsity condition, the average in equation (11) can be
performed for large N,M as〈

M∏
i=1

N∏
j=1

exp

(
βXji

n∑
a=1

viauja

)〉

≃ exp

 q√
NM

M∑
i=1

N∑
j=1

[〈
exp

(
βK

n∑
a=1

viauja

)〉
K

− 1

] , (13)

where the average ⟨·⟩K is over a single realisation of the random variable K drawn from p(K),
the weight distribution. Furthermore, we use the Fourier representation of the delta function,

n∏
a=1

δ
(
|va|2 −M

)
=

ˆ ∞

−∞

(
n∏

a=1

β

2
dλa
2π

)
n∏

a=1

exp

[
−i
β

2
λa

(
M∑
i=1

v2ia−M

)]
, (14)

such that equation (10) takes the form (ignoring pre-factors whose logarithm vanishes in the
limit)
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⟨Zn⟩ ∝
ˆ ( n∏

a=1

dvaduadλa

)
exp

−β

2

n∑
a=1

N∑
j=1

u2ja

exp

(
iM

β

2

n∑
a=1

λa

)

× exp

(
−i

β

2

n∑
a=1

M∑
i=1

λav
2
ia

)
exp

 q√
NM

M∑
i=1

N∑
j=1

[⟨
exp

(
βK

n∑
a=1

viauja

)⟩
K

− 1

] . (15)

Note that in (15), {ua}na=1 ∈ RN and {va}na=1 ∈ RM.

4.2. Functional integral representation

Next, we aim at expressing the replicated partition function through a functional integral over
the following order parameters

ϕ (⃗v) =
1
M

M∑
i=1

n∏
a=1

δ (va− via) (16)

ψ (⃗u) =
1
N

N∑
j=1

n∏
a=1

δ (ua− uja) , (17)

where v⃗, u⃗ ∈ Rn are n-dimensional vectors in replica space. The order parameters were chosen
as such since this approach will eventually lead to a symmetric representation of the replic-
ated partition function under the duality transformation α→ 1/α. This symmetry reflects the
simple fact that the matrix J= XTX shares its largest eigenvalue with its ‘dual’ N×N coun-
terpart J̃= XXT. This approach serves as a starting point for a functional scheme introduced
in [21] for the analysis of the spectral density of J.

To enforce the definitions given in equations (16) and (17) upon the replicated partition
function, we multiply equation (15) by the functional-integral representations of the identity

1=
ˆ
MDϕDϕ̂exp

{
−i
ˆ

d⃗vϕ̂ (⃗v)

[
Mϕ (⃗v)−

M∑
i=1

n∏
a=1

δ (va− via)

]}
(18)

1=
ˆ
NDψDψ̂ exp

−i
ˆ

d⃗uψ̂ (⃗u)

Nψ (⃗u)−
N∑
j=1

n∏
a=1

δ (ua− uja)

 , (19)

where d⃗v=
∏n

a=1 dva, and similarly d⃗u=
∏n

a=1 dua. This allows us to rewrite equation (15)
as

⟨Zn⟩ ∝
ˆ

DϕDϕ̂DψDψ̂dλ⃗exp
[
−iM
ˆ

d⃗vϕ̂ (⃗v)ϕ (⃗v)− iN
ˆ

d⃗uψ̂ (⃗u)ψ (⃗u)

]
× exp

[
q
√
NM
ˆ

d⃗vd⃗uϕ (⃗v)ψ (⃗u)
(〈

eβK⃗v·⃗u
〉
K
− 1
)
+ iM

β

2

n∑
a=1

λa

]

×
ˆ ( n∏

a=1

dva

)
exp

[
−β
2

n∑
a=1

M∑
i=1

λav
2
ia+ i

M∑
i=1

ˆ
d⃗vϕ̂ (⃗v)

n∏
a=1

δ (va− via)

]

×
ˆ ( n∏

a=1

dua

)
exp

−β
2

n∑
a=1

N∑
j=1

u2ja+ i
N∑
j=1

ˆ
d⃗uψ̂ (⃗u)

n∏
a=1

δ (ua− uja)

 . (20)

8
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Note that the two multiple integrals appearing in the last two lines of equation (20) can be
factorised into M and N identical n-fold integrals respectively,

IM =

ˆ ( n∏
a=1

dva

)
exp

[
−β
2

n∑
a=1

M∑
i=1

λav
2
ia+ i

M∑
i=1

ˆ
d⃗vϕ̂ (⃗v)

n∏
a=1

δ (va− via)

]

=

{ˆ
d⃗vexp

[
−i
β

2

n∑
a=1

λav
2
a+ iϕ̂ (⃗v)

]}M

, (21)

IN =

ˆ ( n∏
a=1

dua

)
exp

−β
2

n∑
a=1

N∑
j=1

u2ja+ i
N∑
j=1

ˆ
d⃗uψ̂ (⃗u)

n∏
a=1

δ (ua− uja)


=

{ˆ
d⃗uexp

[
−i
β

2

n∑
a=1

u2a+ iψ̂ (⃗u)

]}N

, (22)

such that (20) can be written as

⟨Zn⟩ ∝
ˆ

DϕDϕ̂DψDψ̂dλ⃗ e
√
NMS[ϕ,ϕ̂,ψ,ψ̂;λ⃗] . (23)

The action S
[
ϕ, ϕ̂,ψ, ψ̂; λ⃗

]
is defined as

S
[
ϕ, ϕ̂,ψ, ψ̂; λ⃗

]
= S1

[
ϕ, ϕ̂
]
+ S2

[
ϕ̂; λ⃗
]
+ S̃1

[
ψ,ψ̂

]
+ S̃2

[
ψ̂
]
+ S3

[
λ⃗
]
+ Sint [ϕ,ψ] , (24)

where

S1
[
ϕ, ϕ̂
]
=− i

α

ˆ
d⃗vϕ̂ (⃗v)ϕ (⃗v) (25)

S2
[
ϕ̂; λ⃗
]
=

1
α
Log
ˆ

d⃗vexp

[
−i
β

2

n∑
a=1

λav
2
a+ iϕ̂ (⃗v)

]
(26)

S̃1
[
ψ,ψ̂

]
=−iα

ˆ
d⃗uψ̂ (⃗u)ψ (⃗u) (27)

S̃2
[
ψ̂
]
= α Log

ˆ
d⃗uexp

[
−i
β

2

n∑
a=1

u2a+ iψ̂ (⃗u)

]
(28)

S3
[
λ⃗
]
= i

β

2α

n∑
a=1

λa (29)

Sint [ϕ,ψ] = q
ˆ

d⃗vd⃗uϕ (⃗v)ψ (⃗u)
(〈

eβK⃗v·⃗u
〉
K
− 1
)
, (30)

and Log is the branch of the complex logarithm such that Log ez = z.
The form (23) is amenable to a saddle-point evaluation for large N,M. In order to facilitate

the n→ 0 limit, we will first adopt a replica symmetric ansatz as detailed in the sub-section
below.

9
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4.3. Replica-symmetric ansatz

We now employ a replica symmetric ansatz, which assumes that the dependence on the vector
arguments v⃗ and u⃗ is only through a permutation-symmetric function of the vector compon-
ents. An even stronger ‘rotationally invariant’ assumption — namely that such dependence
would only be through the modulus |⃗v| and |⃗u| of the vectors involved — was shown to lead
to the correct solution for the spectra of sparse random matrices [39, 60–62]. However, for
questions related to the largest eigenvalue/eigenvector, the latter assumption was shown to be
too restrictive on the space of functions within which to seek for an extremiser of the action
[21–24].

The permutation-symmetric ansatz consists in writing the replicated order parameters as
a superposition of uncountably infinite Gaussians with non-zero mean. We will follow this
prescription, as originally suggested in [39, 67, 68], while noting that it is not the most general
possible as it does not include cross-terms.

To this end, we introduce the following normalised densities, π(ω,h), π̂(ω̂, ĥ), ρ(σ,µ), ρ̂(σ̂,
µ̂), and their respectivemeasures, dπ = dω dh π(ω,h), dπ̂ = dω̂ dĥ π̂(ω̂, ĥ), dρ= dσdµρ(σ,µ)
and dρ̂= dσ̂dµ̂ρ̂(σ̂, µ̂). We then use these densities to represent the replicated order
parameters as

ϕ (⃗v) =
ˆ

dπ
n∏

a=1

1
Zβ (ω,h)

e−
β
2 ωv

2
a+βhva (31)

iϕ̂ (⃗v) = ĉ
ˆ

dπ̂
n∏

a=1

e
β
2 ω̂v

2
a+βĥva (32)

ψ (⃗u) =
ˆ

dρ
n∏

a=1

1
Zβ (σ,µ)

e−
β
2 σu

2
a+βµua (33)

iψ̂ (⃗u) = t̂
ˆ

dρ̂
n∏

a=1

e
β
2 σ̂u

2
a+βµ̂ua (34)

iλa = λ ∀ 1⩽ a⩽ n , (35)

with

Zβ (x,y) =

√
2π
βx

e
βy2

2x . (36)

Note that since π, π̂,ρ and ρ̂ are normalised densities, this representation preserves the norm-
alisation of ϕ (⃗v) and ψ (⃗u). The constants ĉ and t̂ are introduced to account for the fact that the
conjugate functions iϕ̂ and iψ̂ do not have the interpretation of a density, therefore they need
not be normalised.

This representation allows us to integrate out the v⃗’s and u⃗’s and extract the leading n→ 0
behaviour, which is currently only implicit in (24) (for full details of how to apply the trans-
formation, see appendix E in [24]). Inserting equations (31)–(35) into (25)–(30) and collecting
terms up toO(n), while introducing Lagrange multipliers that enforce normalisation upon the

10
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densities, the action takes the form of

S [π, π̂,ρ, ρ̂;λ]≃− nĉ
α

ˆ
dπ dπ̂Log

Zβ
(
ω− ω̂,h+ ĥ

)
Zβ (ω,h)


+
n
α

∞∑
s=0

pĉ (s)
ˆ

{dπ̂}sLogZβ
(
λ−{ω̂}s ,

{
ĥ
}
s

)
− nt̂α

ˆ
dρdρ̂Log

[
Zβ (σ− σ̂,µ+ µ̂)

Zβ (σ,µ)

]
+ nα

∞∑
s=0

pt̂ (s)
ˆ

{dρ̂}sLogZβ
(
1−{σ̂}s ,{µ̂}s

)

+ n
β

2α
λ+ nq

ˆ
dπdρ

〈
Log

Zβ
(
ω− K2

σ ,h+
Kµ
σ

)
Zβ (ω,h)

〉
K

+ γ

(ˆ
dπ− 1

)
+ γ̂

(ˆ
dπ̂− 1

)
+ ξ

(ˆ
dρ− 1

)
+ ξ̂

(ˆ
dρ̂− 1

)
,

(37)

where we introduced the shorthands {dπ̂}s =
∏s
ℓ=1 dπ̂ℓ, {ω̂}s =

∑s
ℓ=1 ω̂ℓ, {ĥ}s =

∑s
ℓ=1 ĥℓ,

and similarly with ρ̂, σ̂ and µ̂. Moreover, we denoted by pm(s) = e−mms/s! the Poisson distri-
bution with meanm. Note that for the u⃗ and v⃗ integrals to converge, one has to formally require
the following inequalities, ω > ω̂, ω> 0, λ > {ω̂}s and similarly, σ > σ̂, σ> 0, 1> {σ̂}s.
Furthermore, if we denote the lower (upper) bound of the support of p(K) by ζ− (ζ+), another
requirement is ωσ > [max(|ζ−|, |ζ+|)]2. In practice, to satisfy these constraints, one has to
dynamically enforce them while running the population dynamics algorithm (see section 6).

4.4. Saddle point analysis

We now proceed with our fourth step, which involves studying the saddle point structure of
the normalised densities introduced in section 4.3 under the replica-symmetric framework.

In the limit of N,M→∞, equation (23) is evaluated using a saddle-point method to give

⟨Zn⟩ ≈ e
√
NMS[π⋆,π̂⋆,ρ⋆,ρ̂⋆;λ⋆] , (38)

where π⋆, π̂⋆,ρ⋆, ρ̂⋆ are the saddle point forms of the densities, obtained from the stationary
conditions δS/δπ|π⋆,π̂⋆,ρ⋆,ρ̂⋆;λ⋆ = 0 and similar, and ‘≈’ denotes equivalence on a logarithmic
scale. To facilitate the notation, from now on we discard the ⋆’s when addressing the saddle
point forms of the densities. Consequently, the first stationary condition, δS/δπ = 0, entails

ĉ
αq

ˆ
dπ̂Log

Zβ
(
ω− ω̂,h+ ĥ

)
Zβ (ω,h)

=

ˆ
dρ

〈
Log

Zβ
(
ω− K2

σ ,h+
Kµ
σ

)
Zβ (ω,h)

〉
K

+
γ

q
, (39)

where γ is the Lagrange multiplier enforcing the normalisation of π. To match the two sides
of equation (39) for all values of the non-integrated variables, ω and h [24], while preserving

11
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normalisation of π̂, we set

π̂
(
ω̂, ĥ
)
=

ˆ
dρ

〈
δ

(
ω̂− K2

σ

)
δ

(
ĥ− Kµ

σ

)〉
K

(40)

ĉ= αq (41)

γ = 0 . (42)

To obtain the next stationary condition, δS/δρ= 0, we first note that the interaction term in (37)
was evaluated by integrating out first the u’s and then the v’s. However, one could have equally
well swapped the order of integrations, which results in an equivalent form of Sint given by

Sint [π,ρ] = nq
ˆ

dπdρ

〈
Log

Zβ
(
σ− K2

ω ,µ+
Kh
ω

)
Zβ (σ,µ)

〉
K

. (43)

Keeping that in mind, the stationary condition δS/δρ= 0 can be written as

αt̂
q

ˆ
dρ̂Log

[
Zβ (σ− σ̂,µ+ µ̂)

Zβ (σ,µ)

]
=

ˆ
dπ

〈
Log

Zβ
(
σ− K2

ω ,µ+
Kh
ω

)
Zβ (σ,µ)

〉
K

+
ξ

q
, (44)

where ξ is the Lagrange multiplier enforcing normalisation of ρ. Using the same argument that
led us to equation (40), we find that

ρ̂(σ̂, µ̂) =

ˆ
dπ

〈
δ

(
σ̂− K2

ω

)
δ

(
µ̂− Kh

ω

)〉
K

(45)

t̂= α−1q (46)

ξ = 0 . (47)

The next stationary condition, δS/δπ̂ = 0, is given by

ˆ
dπLog

Zβ
(
ω− ω̂,h+ ĥ

)
Zβ (ω,h)


=

∞∑
s=0

spĉ (s)
ĉ

ˆ
{dπ̂}s−1LogZβ

(
λ−{ω̂}s−1 − ω̂,

{
ĥ
}
s−1

+ ĥ

)
+
γ̂

ĉ
, (48)

where γ̂ is the Lagrange multiplier enforcing normalisation of π̂. Using ĉ= αq (equation (41))
we thus find that

π (ω,h) =
∞∑
s=1

spαq (s)
αq

ˆ
{dπ̂}s−1 δ

(
ω−

(
λ−{ω̂}s−1

))
δ

(
h−

{
ĥ
}
s−1

)
(49)

γ̂ =−αq
ˆ

dπLogZβ (ω,h) . (50)

12
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The next stationary condition, δS/δρ̂= 0, reads
ˆ

dρLog

[
Zβ (σ− σ̂,µ+ µ̂)

Zβ (σ,µ)

]
=

∞∑
s=0

spt̂ (s)

t̂

ˆ
{dρ̂}s−1LogZβ

(
1−{σ̂}s−1 − σ̂,{µ̂}s−1 + µ̂

)
+
ξ̂

t̂
, (51)

where ξ̂ is the Lagrange multiplier enforcing normalisation of ρ̂. Using t̂= α−1q
(equation (46)), the saddle point form of ρ can be expressed as

ρ(σ,µ) =
∞∑
s=1

spα−1q

α−1q

ˆ
{dρ̂}s−1 δ

(
σ−

(
1−{σ̂}s−1

))
δ
(
µ−{µ̂}s−1

)
(52)

ξ̂ =−α−1q
ˆ

dρLogZβ (σ,µ) . (53)

Finally, in the β→∞ limit, the condition ∂S/∂λ= 0 yields

∞∑
s=0

pαq (s)
ˆ

{dπ̂}s


{
ĥ
}
s

λ−{ω̂}s


2

= 1 . (54)

A further simplification can be made by reducing the number of equations. This is done by
inserting (45) into (52) to obtain

ρ(σ,µ) =
∞∑
s=1

spα−1q (s)

α−1q

×
ˆ

{dπ}s−1

〈
δ

(
σ−

(
1−

s−1∑
ℓ=1

K2
ℓ

ωℓ

))
δ

(
µ−

s−1∑
ℓ=1

Kℓhℓ
ωℓ

)〉
{K}s−1

, (55)

where ⟨·⟩{K}s−1
means averaging over s− 1 random variables drawn from p(K). Then, by sub-

stituting (40) into (49) we get

π (ω,h) =
∞∑
s=1

spαq (s)
αq

×
ˆ

{dρ}s−1

〈
δ

(
ω−

(
λ−

s−1∑
ℓ=1

K2
ℓ

σℓ

))
δ

(
h−

s−1∑
ℓ=1

Kℓµℓ
σℓ

)〉
{K}s−1

. (56)

Furthermore, to express (54) in terms of ρ, we substitute (40) into (54) and obtain

∞∑
s=0

pαq (s)
ˆ

{dρ}s

〈 ∑s
ℓ=1

Kℓµℓ

σℓ

λ−
∑s
ℓ=1

K2
ℓ

σℓ

2〉
{K}s

= 1 . (57)

One can, in principle, substitute (55) into (56) and (57), and obtain self-contained equations
for π, but this results in somewhat cumbersome expressions.
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4.5. The replicated partition function at the saddle point

The final step in the analysis is to evaluate the saddle point form of the replicated partition
function in the β→∞ limit. To this end, we use the saddle point forms of π̂ and ĉ, (i.e. (40)
and (41) respectively) to obtain (arguments removed for ease of notation)

S1 ∼−nqβ
2

ˆ
dπdρ

〈(
h+ Kµ

σ

)2
ω− K2

σ

− h2

ω

〉
K

, (58)

where we used the definition ofZβ (equation (36)) and evaluated the β→∞ asymptotic beha-
viour (∼). Similarly,

S̃1 ∼−nqβ
2

ˆ
dπdρ

〈(
µ+ Kh

ω

)2
σ− K2

ω

− µ2

σ

〉
K

. (59)

Next, we have

S2 ∼
nqβ
2

ˆ
dπ̂

∞∑
s=0

spαq (s)
αq

ˆ
{dπ̂}s−1

{
ĥ
}
s−1

+ ĥ

λ−{ω̂}s−1 − ω̂
ĥ . (60)

Multiplying the last line by 1=
´
dωdhδ (ω− (λ−{ω̂}s−1))δ

(
h−{ĥ}s−1

)
and using the

saddle point form of π (equation (49)), we have

S2 ∼
nqβ
2

ˆ
dπ̂dπ

(
h+ ĥ
ω− ω̂

ĥ

)
. (61)

Then, by using the saddle point form of π̂ (equation (40)), we can further rewrite (61) as

S2 ∼
nqβ
2

ˆ
dπdρ

〈
Kµ
σ

h+ Kµ
σ

ω− K2

σ

〉
K

. (62)

Following similar lines, we also conclude that

S̃2 ∼
nqβ
2

ˆ
dπdρ

〈
Kh
ω

µ+ Kh
ω

σ− K2

ω

〉
K

. (63)

Lastly, considering the two equivalent forms of the interaction term (fifth line in equation (37)
and (43)), its β→∞ limit can be written as

Sint ∼
nqβ
4

ˆ
dπdρ

〈(
h+ Kµ

σ

)2
ω− K2

σ

− h2

ω
+

(
µ+ Kh

ω

)2
σ− K2

ω

− µ2

σ

〉
K

. (64)

Inserting equations (58), (59), (62)–(64) into (37), while noting that

Kµ
σ

h+ Kµ
σ

ω− K2

σ

+
Kh
ω

µ+ Kh
ω

σ− K2

ω

− 1
2

[(
h+ Kµ

σ

)2
ω− K2

σ

− h2

ω
+

(
µ+ Kh

ω

)2
σ− K2

ω

− µ2

σ

]
= 0 , (65)
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the saddle point action eventually takes the form

S [π, π̂,ρ, ρ̂;λ]∼ nβ
2α
λ , (66)

in the n→ 0 and β→∞ limits. Then, by inserting (66) into (38), the replicated partition func-
tion at the saddle point becomes

⟨Zn⟩ ≈ e
nβM
2 λ . (67)

Finally, substituting (67) into (9), we obtain

⟨λ1⟩= λ . (68)

We recall at this point that the replica derivation started under the simplifying assumption
that the cij’s are independent Bernoulli random variables (see equation (4)). This implies that
the distribution of total number of nonzero elements in each row (column)— pαq(s) (pα−1q(s))
— naturally appearing in equations (55)–(57) is a Poisson distribution with unbounded sup-
port. However, due to [22], we know that these equations remain formally valid for any con-
nectivity distribution p(s). In our case, it is then necessary to consider the truncated Poisson dis-
tribution andmanually amend the upper limit of the sums to account for the existence of a max-
imal number of nonzero elements in each row (column), R (C). Putting everything together,
in this section we have shown that by finding λ, π and ρ that solve the following system of
recursive distributional equations supplemented by an integral constraint

π (ω,h) =
R∑
s=1

spαq (s)
⟨s⟩pαq

ˆ
{dρ}s−1

〈
δ

(
ω−

(
λ−

s−1∑
ℓ=1

K2
ℓ

σℓ

))
δ

(
h−

s−1∑
ℓ=1

Kℓµℓ
σℓ

)〉
{K}s−1

ρ(σ,µ) =
C∑
s=1

spα−1q (s)

⟨s⟩pα−1q

ˆ
{dπ}s−1

〈
δ

(
σ−

(
1−

s−1∑
ℓ=1

K2
ℓ

ωℓ

))
δ

(
µ−

s−1∑
ℓ=1

Kℓhℓ
ωℓ

)〉
{K}s−1

R∑
s=0

pαq (s)
ˆ

{dρ}s

〈 ∑s
ℓ=1

Kℓµℓ

σℓ

λ−
∑s
ℓ=1

K2
ℓ

σℓ

2〉
{K}s

= 1 (69)

the typical largest eigenvalue of J is given by (68). Note that for ease of notation, in (69), we
used pαq(s) (pα−1q(s)) to denote the truncated Poisson distribution with parameter αq (α−1q),
an upper cutoff R (C), and ⟨s⟩pαq (⟨s⟩pα−1q

) denoting its average.
In section 6, we will show that these integral equations can be efficiently solved using a pop-

ulation dynamics algorithm. In the next section, we instead provide the theoretical framework
to compute the probability density of the top eigenvector’s components for diluted Wishart
matrices.

5. Density of the top eigenvector’s components

We now demonstrate how the results from the previous section can be applied to compute the
average density of the top eigenvector’s components for largeM,N,

T(u) =

〈
1
M

M∑
i=1

δ
(
u− v(i)1

)〉
, (70)
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where once again, ⟨·⟩ denotes averaging over different realisations of X. We begin by outlining
the strategy, highlighting its similarities and differences with the analysis in section 4. We then
carry it out to derive an expression for T(u), which builds on the solution of equation (69).

To this end, we introduce the auxiliary partition function

Z(β)ϵ (t,X;u) =
ˆ

dvexp

[
β

2
(v,Jv)+βt

∑
i

δϵ (u− vi)

]
δ
(
|v|2 −M

)
, (71)

where δϵ is a smooth regulariser of the delta function and J= XTX. Due to the concentration
of the Gibbs measure (see (6)),

Pβ,X (v) =
exp
(
β
2 (v,Jv)

)
δ
(
|v|2 −M

)
´
dv ′ exp

(
β
2 (v

′,Jv ′)
)
δ
(
|v ′|2 −M

) , (72)

which localises around J’s top eigenvector in the β→∞ limit, we can formally express
T(u) as

T(u) = lim
β→∞

lim
ϵ→0+

1
βM

∂

∂t

〈
Log Z(β)ϵ (t,X;u)

〉∣∣∣
t=0

. (73)

To evaluate Z(β)ϵ (t,X;u), we apply again the replica trick, leading to

T(u) = lim
β→∞

lim
ϵ→0+

lim
n→0

1
βM

∂

∂t
1
n
Log

〈[
Z(β)ϵ (t,X;u)

]n〉∣∣∣
t=0

. (74)

Since the structure of equation (71) resembles that of equation (6), with an additional t-
dependent term, we expect that, in the large N,M limit, the replicated partition function will
once again take the form〈[

Z(β)ϵ (t,X;u)
]n〉

∝
ˆ

DφDφ̂DψDψ̂dλ⃗exp
{√

NMS(β)n

[
ϕ, ϕ̂,ψ, ψ̂, λ⃗; t, ϵ;u

]}
. (75)

The above structure will then enable us to employ the replica-symmetric ansatz (i.e. represent
the fields as a superposition of uncountably infinite Gaussians, see equations (31)–(36)) and
perform a saddle-point evaluation for large N,M〈[

Z(β)ϵ (t,X;u)
]n〉

≈ exp
{√

NMS(β)n

[
π⋆, π̂⋆,ρ⋆, ρ̂⋆, λ⃗⋆; t, ϵ;u

]}
, (76)

where the starred objects represent the saddle point forms of π, π̂,ρ, ρ̂, λ⃗, found through
the corresponding stationary conditions. Since the partial derivative ∂

∂t in (73) only acts on
terms containing any explicit dependence on t, and not through any other indirect functional
dependence, t can be safely set to zero in the resulting saddle-point equations. Consequently,
π⋆, π̂⋆,ρ⋆, ρ̂⋆, λ⃗⋆ satisfy the same saddle-point equations derived in section 4.4.

Inserting (76) into (74) and assuming that the leading n→ 0 behaviour of the action at the
saddle point is given by

S(β)n

[
π⋆, π̂⋆,ρ⋆, ρ̂⋆, λ⃗⋆; t, ϵ;u

]
∼ nsβ (t, ϵ;u)+ o(n) , (77)
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the final expression for the average density of top eigenvector’s components is obtained by
inserting equations (74), (76) and (77) into (73)

T(u) = lim
β→∞

α

β
s ′β (0,0;u) , (78)

where (·) ′ stands for differentiation with respect to t. Since the saddle-point equations for
π, π̂,ρ, ρ̂, λ⃗ are identical to those derived in section 4.4, the remaining challenge is to identify
sβ(t, ϵ;u) and evaluate (78).

To this end, we apply this strategy to our matrix J= XTX , where X’s entries follow the
distribution given in equation (1). Exponentiating the replicated partition function by following
the same lines as in section 4.1, we obtain

〈[
Z(β)ϵ (t,X;u)

]n〉
∝
ˆ ( n∏

a=1

dvaduadλa

)
exp

−β
2

n∑
a=1

N∑
j=1

u2ja

exp

(
iM
β

2

n∑
a=1

λa

)

× exp

(
−i
β

2

n∑
a=1

M∑
i=1

λav
2
ia

)
exp

 q√
NM

M∑
i=1

N∑
j=1

[〈
exp

(
βK

n∑
a=1

viauja

)〉
K

− 1

]
× exp

[
βt

n∑
a=1

M∑
i=1

δϵ (u− via)

]
. (79)

Comparing this expression with equation (15), it is natural to define the same functional order
parameters as in equation (17),

ϕ (⃗v) =
1
M

M∑
i=1

n∏
a=1

δ (va− via) , (80)

ψ (⃗u) =
1
N

N∑
j=1

n∏
a=1

δ (ua− uja) . (81)

Then, by following the same lines as in section 4.2, we see that the functional-integral form
of (79) is identical to the one in (23), except for the term S2. Hence, the functional integral
representation of the replicated partition function can indeed be expressed as〈[

Z(β)ϵ (t,X;u)
]n〉

∝
ˆ

DφDφ̂DψDψ̂dλ⃗exp
{√

NMS(β)n

[
ϕ, ϕ̂,ψ, ψ̂, λ⃗; t, ϵ;u

]}
, (82)

with the action given by

S(β)n

[
ϕ, ϕ̂,ψ, ψ̂, λ⃗; t, ϵ;u

]
= S1

[
ϕ, ϕ̂
]
+ S2

[
ϕ̂, λ⃗; t;ϵ;u

]
+ S̃1

[
ψ,ψ̂

]
+ S̃2

[
ψ̂
]
+ S3

[
λ⃗
]
+ Sint [ϕ,ψ] , (83)

where all contributions other than S2 are identical to those defined in equations (25)–(30), and
the t and ϵ dependence is confined to S2, which is now given by

S2
[
ϕ̂, λ⃗; t, ϵ;u

]
=

1
α
Log
ˆ

d⃗vexp

[
−i
β

2

n∑
a

λav
2
a+βt

n∑
a

δϵ (u− va)+ iϕ̂ (⃗v)

]
. (84)
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We then follow the same strategy as in section 4.3, and enforce the replica symmetric ansatz
by representing the functional order parameters as a superposition of uncountably infinite
Gaussians (see equations (31)–(36)). Specifically, we recall that

iϕ̂ (⃗v) = ĉ
ˆ

dπ̂
n∏

a=1

e
β
2 ω̂v

2
a+βĥva . (85)

Substituting this representation into equation (84) yields the following leading n→ 0
behaviour,

S2 ≃
ĉ
α
+
n
α

∞∑
s=0

pĉ (s)
ˆ

{dπ̂}s Log
ˆ

dvexp

[
−i
β

2
λv2

+βtδϵ (u− v)+
β

2
{ω̂}s v

2 +β
{
ĥ
}
s
v

]
. (86)

Therefore, we can identify the function sβ(t, ϵ;u) in (77) as

sβ (t, ϵ;u) =
1
α

∞∑
s=0

pĉ (s)
ˆ

{dπ̂}s Log
ˆ

dvexp

[
−β
2
λv2 +βtδϵ (u− v)

+
β

2
{ω̂}s v

2 +β
{
ĥ
}
s
v

]
, (87)

with iλ≡ λ solving (69) as before. Taking the t-derivative and setting t and ϵ to zero, while
recalling that ĉ= αq, we obtain

s ′β (0,0;u) =
β

α

∞∑
s=0

pαq (s)
ˆ

{dπ̂}s
exp
[
−β

2

(
λ−{ω̂}s

)
u2 +β

{
ĥ
}
s
u
]

´
dvexp

[
−β

2

(
λ−{ω̂}s

)
v2 +β

{
ĥ
}
s
v
] .

Taking the β→∞ limit and inserting the result into equation (78), we find that

T(u) =
∞∑
s=0

pαq (s)
ˆ

{dπ̂}s δ

u−
{
ĥ
}
s

λ−{ω̂}s

 . (88)

Finally, using the saddle point form of π̂ (equation (41)) to express it via ρ, and truncating the
Poisson distribution as before, we obtain

T(u) =
R∑
s=0

pαq (s)
ˆ

{dρ}s

〈
δ

(
u−

∑s
ℓ=1

Kℓµℓ

σℓ

λ−
∑s
ℓ=1

K2

σℓ

)〉
{K}s

. (89)

Putting everything together, after solving equation (69) for ρ and λ, these can then be used to
sample the integral in (89) and obtain the density of the top eigenvector’s components. The
algorithmic way to do this is explained in the next section.
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6. Population dynamics

In this section we briefly present the population dynamics algorithm [67, 76, 77], which can
be used to numerically solve the system given by (69). Different incarnations of this algorithm
have been used in a number of problems recently [22–24, 78–81]. For a specified set of inputs
q,α,p(K),R,C and a target error tolerance ∆, the algorithm outputs the theoretical value of
⟨λ1⟩, with an uncertainty ±∆/2:

(i) Initialise the real parameter λ to a ‘large’ value (using the estimate in appendix A).
(ii) Randomly initialise two sets of coupled populations, each of size NP, {(ωi,hi)}1⩽i⩽NP and

{(σi,µi)}1⩽i⩽NP
.

(iii) Generate a random s∼ spαq(s)
⟨s⟩ , where pαq(s) is a truncated Poisson distribution with para-

meter αq and upper cutoff R.
(iv) Draw s− 1 i.i.d. random variables Kℓ from p(K).
(v) Select s− 1 random pairs {(σℓ,µℓ)}s−1

ℓ=1 from the population, compute

ω(new) = λ−
s−1∑
ℓ=1

K2
ℓ

σℓ
, (90)

h(new) =
s−1∑
ℓ=1

Kℓµℓ
σℓ

, (91)

and replace a randomly selected pair (ωr,hr) with (ω(new),h(new)).
(vi) Generate a random s∼ spα−1q(s)

⟨s⟩ , where pα−1q(s) is a truncated Poisson distribution with

parameter α−1q and upper cutoff C.
(vii) Draw s− 1 i.i.d. random variables Kℓ from p(K).
(viii) Select s− 1 random pairs {(ωℓ,hℓ)}s−1

ℓ=1 from the population, compute

σ(new) = 1−
s−1∑
ℓ=1

K2
ℓ

ωℓ
, (92)

µ(new) =
s−1∑
ℓ=1

Kℓhℓ
ωℓ

, (93)

and replace a randomly selected pair (σr,µr) with (σ(new),µ(new)).
(ix) After every sweep, monitor the populations’ first moment.

• If any one of them shrinks to zero. Set λ(new) = λ−∆ and return to (ii).
• If any one of them explodes, set ⟨λ1⟩= λ+∆/2 and exit the algorithm.

(x) Return to (iii).

The nature of the algorithm ensures that the only value of the (real) parameter λ under
which stability is reached is the one corresponding to ⟨λ1⟩ [22]. When λ < ⟨λ1⟩ the h and µ
populations will explode, and for λ > ⟨λ1⟩ they will shrink to zero. Consequently, one can
monitor the populations’ stability by examining the time-evolution of their first moment, as
shown in figure 1. Another observation is that the rates at which the populations diverge and
vanish increase as the value of λ deviates from ⟨λ1⟩. Furthermore, the stable regime is highly
peaked aroundλ= ⟨λ1⟩, which allows us to pinpoint the value of ⟨λ1⟩with very high precision.
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Figure 1. Evolution of the first moment of the h population in absolute value, |⟨h⟩|(t),
according to the population dynamics algorithm as outlined in section 6, with population
size ofNP = 105 andwhere t is measured in sweeps. The control parameters in this figure
are chosen as q= 8, α=

√
5/4 and p(K) = δK,1 for the left figure and p(K) = Θ(1−

K)Θ(K) for the right figure. In both figures the maximal number of nonzero elements in
each row is set to R= 70 and in each column to C= 60. The target error tolerance was
set to∆= 0.1. The different curves correspond to ascending values of λ (top to bottom),
the parameter that governs the convergence of the algorithm, which was initialised as
λinitial = 250 in both figures. Forλ < ⟨λ1⟩ (red and orange lines) the population diverges,
for λ > ⟨λ1⟩ (blue and cyan lines) it vanishes, and only when λ= ⟨λ1⟩ (green line),
stability is reached. The rate of divergence/decay depends on the amount by which λ
deviates from ⟨λ1⟩.

Specifying to the case where λ= ⟨λ1⟩ and non-trivial stability is achievable, it is possible
to identify multiple fixed points for the densities π and ρ that satisfy the first two equations
in (69) by adjusting the initial populations. However, incorporating the third equation in (69)
uniquely determines the solution. Once the algorithm identifies the value of λ that allows non-
trivial stable populations, the third condition in (69) can be fulfilled by rescaling the h and
µ populations, yielding a solution that satisfies the full set of equations (69) in its entirety.
This rescaling is always allowed due to the linear nature of the recursion governing their
updates [22].

Given the behaviour described above, the strategy for pinning down the value of λ under
which stability can be reached, is to start with a large value, determined by a proper upper
bound for ⟨λ1⟩. Then, while running the algorithm, one monitors the time evolution of the
populations’ first moment, and gradually decreases the value of λ until they stabilise. A plaus-
ible upper bound that can be used as a starting point is λ⋆ = [max(|ζ−|, |ζ+|)]2RC, where ζ−
(ζ+) is the lower (upper) bound of the support of p(K), while R and C are the maximal num-
bers of nonzero elements in each row and in each column respectively (see appendix A for
a proof). Once the populations stabilise and the typical largest eigenvalue is determined, one
can use them to obtain the density of the top eigenvector’s components via (89).

In figure 2 we present the scaling of ⟨λ1⟩with the dimensions of the matrixX, under the fol-
lowing choice of control parameters: (a) α=

√
5/4, q= 11.8 and p(K) = δK,1; (b) α=

√
5/4,

q= 8 and p(K) = Θ(K)Θ(1−K), withΘ(·) being the Heaviside function (i.e. K ∈ (0,1) with
uniform probability). In both figures the maximal number of non-zero elements in each row
is set to R= 70 and in each column to C= 60. The target error tolerance was set to ∆= 0.1.
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Figure 2. Scaling of ⟨λ1⟩ with the dimensions of the matrix X. This figure shows ⟨λ1⟩,
collected from direct numerical diagonalisation of 102 realisations of J (circles), as the
size of the matrix X is increased, while the ratio α=

√
N/M is kept fixed. The scaling

parameter d is defined such that each data point was obtained using a matrix X of size
(100 · d)× (80 · d). The solid blue line represents the results obtained from the replica
analysis, using the population dynamics algorithm, using populations of size NP = 105.
The set of control parameters used here is (a) α=

√
5/4, q= 11.8 and p(K) = δK,1;

(b) α=
√

5/4, q= 8 and p(K) = Θ(K)Θ(1−K). In both figures the maximal number
of nonzero elements in each row is set to R= 70 and in each column to C= 60. The
target error tolerance was set to∆= 0.1. As can be observed from the figure, even for a
relatively small matrix of size 100× 80, finite size effects are responsible for a deviation
of only up to∼ 4% from the analytical result. For a matrix∼ 50 times bigger than that,
this deviation drops below the measurement’s resolution.

As outlined in section 4, we computed the leading behaviour of ⟨λ1⟩ as both of J’s linear
dimensions tend to infinity. Therefore, our analysis does not account for any finite size effects.
However, in figure 2 we show that these corrections are negligible compared to the lead-
ing behaviour, which is perfectly captured by our analysis. Specifically, even for a relatively
small matrix of size 100× 80, finite size corrections are responsible for a deviation of merely
∼4%. When the matrix size is further increased, the numerical results quickly align with our
analytical results, to the extent that the two are indistinguishable within our measurement’s
resolution.

In figure 3 we compare results for ⟨λ1⟩ obtained from the replica analysis (solid line) and
direct numerical diagonalisation (circles), as a function of q, which regulates the average dens-
ity of nonzero elements inX. In this figure we choseα=

√
5/4 and the weight distributions (a)

p(K) = δK,1; (b) p(K) = Θ(1−K)Θ(K). In both figures the maximal number of nonzero ele-
ments in each row is set to R= 70 and in each column toC= 60. The target error tolerance was
set to∆= 0.1. In figure 2, the numerical data was obtained by averaging over 102 realisations
of X with a fixed size of 5000 × 4000, such that finite size corrections are negligible. Within
this framework, we find excellent agreement between the numerical and analytical results.

Building on the results for ⟨λ1⟩, in figure 4, we compare the results for T(u), obtained
from equation (89) (red crosses) and direct numerical diagonalisation (green circles). For this
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Figure 3. We show ⟨λ1⟩ as obtained by both population dynamics (solid line) and dir-
ect numerical diagonalisation (circles) as a function of q, which regulates the average
density of nonzero elements in X. For this analysis, we used α=

√
5/4 and set the

weight distribution to (a) p(K) = δK,1, and (b) p(K) = Θ(1−K)Θ(K). In both figures
the maximal number of nonzero elements in each row is set to R= 70 and in each
column to C= 60. The target error tolerance was set to ∆= 0.1. The numerical data
represents an average over 102 realisations of X, each of fixed and large dimensions
5000 × 4000. Under these conditions, the numerical and analytical results are in very
strong agreement.

analysis, we used the same settings as in figure 3. The numerical and analytical results are
again in very strong agreement.

The density T(u) was numerically evaluated using a procedure based on a population gen-
erated by the algorithm outlined in section 6. We initially choose a resolution for our density,
denoted by ∆u, and split up the interval [0,3] into bins of size ∆u. We then generate a stable
population following the algorithm of section 6 and randomly sample members of the popu-
lation in order to evaluate the value∑s

ℓ=1
Kℓµℓ

σℓ

λ−
∑s
ℓ=1

K2

σℓ

. (94)

Each time the computed value of (94) fell within a given bin, a count of one was added to that
bin. This procedure was performed many times, after which the bin counts were normalised
in order to produce the numerical density T(u).

7. The dense limit

Below, we demonstrate how taking the large q limit recovers the familiar results of the non-
central Wishart ensemble, by following the same lines as in [22]. To ensure a finite largest
eigenvalue in this limit, we rescale the bond weights as

Kij =
K̃ij
q
, (95)
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Figure 4. We compare the results for T(u), obtained from (89) (red crosses) and direct
numerical diagonalisation (green circles). For this analysis, we used α=

√
5/4 and set

the weight distribution to (a) p(K) = δK,1, and (b) p(K) = Θ(1−K)Θ(K) as in figure 3.
In both figures the maximal number of nonzero elements in each row is set to R= 70 and
in each column to C= 60. The target error tolerance was set to∆= 0.1. The numerical
data represents an average over 102 realisations of X, each of fixed and large dimensions
5000 × 4000. The numerical and analytical results are in very strong agreement. The
resolution of the density, ∆u, has been set at ∆u= 0.05.

and assume that ⟨K̃⟩ and ⟨K̃2⟩ are nonzero and ofO(1). Note that this scaling differs from that
used in [22], which is K= K̃/

√
q, due to a subtle but important difference in the underlying

assumptions. In [22], the authors consider a sparse centralmodel, in which the nonzero entries
satisfy ⟨K⟩= 0. In the dense limit, they recover the upper edge of the semicircle law. In con-
trast, our model is non-central, in the sense that ⟨K⟩ ̸= 0, which causes the largest eigenvalue
to detach from the bulk of the spectrum. As we will later demonstrate, our scaling ensures that
the detached ⟨λ1⟩ remains of O(1), whereas alternative scalings would yield a vanishing or
diverging result in the q→∞ limit. Inserting (95) into the first two lines of (69), we obtain

π (ω,h) =
∞∑
s=1

spαq (s)
αq

ˆ
{dρ}s−1

〈
δ

(
ω−

(
λ− 1

(αq)2

s−1∑
ℓ=1

α2K̃2
ℓ

σℓ

))

×δ

(
h− 1

αq

s−1∑
ℓ=1

αK̃ℓµℓ
σℓ

)〉
{K̃}

s−1

(96)

and

ρ(σ,µ) =
∞∑
s=1

spα−1q (s)

α−1q

ˆ
{dπ}s−1

〈
δ

(
σ−

(
1− 1

(α−1q)2

s−1∑
ℓ=1

α−2K̃2
ℓ

ωℓ

))

×δ

(
µ− 1

α−1q

s−1∑
ℓ=1

α−1K̃ℓhℓ
ωℓ

)〉
{K̃}

s−1

. (97)

As q→∞, the Poissonian weights effectively concentrate around s= αq±O(
√
αq) in (96)

and s= α−1q±O(
√
α−1q) in (97). Thus, the quantities that appear in the δ-functions in
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equations (96) and (97),

ω̄ := λ− 1

(αq)2

s−1∑
ℓ=1

α2K̃2
ℓ

σℓ
, (98)

σ̄ := 1− 1

(α−1q)2

s−1∑
ℓ=1

α−2K̃2
ℓ

ωℓ
, (99)

h̄ :=
1
αq

s−1∑
ℓ=1

αK̃ℓµℓ
σℓ

, (100)

µ̄ :=
1

α−1q

s−1∑
ℓ=1

α−1K̃ℓhℓ
ωℓ

, (101)

are non-fluctuating in the limit, due to the law of large numbers. Consequently, the δ-functions
force the densities to concentrate around (ω,h) = (ω̄, h̄) and (σ,µ) = (σ̄, µ̄),

π (ω,h) = δ (ω− ω̄)δ
(
h− h̄

)
, (102)

ρ(σ,µ) = δ (σ− σ̄)δ (µ− µ̄) . (103)

This fact, in turn, enables us to evaluate ω̄, σ̄, h̄ and µ̄ self-consistently, by substituting ωℓ = ω̄,
σℓ = σ̄, hℓ = h̄ and µℓ = µ̄ into equations (98)–(101),

ω̄ = λ+O
(
q−1
)
, (104)

σ̄ = 1+O
(
q−1
)
, (105)

h̄=
α⟨K̃⟩µ̄
ω̄

, (106)

µ̄=
α−1⟨K̃⟩h̄

σ̄
. (107)

At this point, it becomes clear why the two cases— central and non-central— require different
scalings of the nonzero entries in order to obtain ⟨λ1⟩=O(1). In the non-central case, where
⟨K⟩ ̸= 0, the moments of the variables h and µ would diverge in the q→∞ limit if we were to
choose K= K̃/

√
q. This divergence would, in turn, lead to a diverging ⟨λ1⟩. On the contrary,

if ⟨K⟩= 0, the scaling K= K̃/q would lead to a vanishing moments of the variables h and µ
in the q→∞ limit, hence to a vanishing ⟨λ1⟩.

Solving equations (104)–(107) for ω̄, σ̄ and λ we obtain

ω̄ = ⟨K̃⟩2 +O
(
q−1
)
, (108)

σ̄ = 1+O
(
q−1
)
, (109)

λ= ⟨K̃⟩2 +O
(
q−1
)
. (110)

Recalling that ⟨λ1⟩= λ, we finally get

⟨λ1⟩= ⟨K̃⟩2 +O
(
q−1
)
, (111)

which coincides with the isolated largest eigenvalue of the non-central Wishart ensemble (see
equation (52) in [82], with the appropriate scaling).
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To obtain the density of the top eigenvector’s components in the dense limit, we start from
equation (89). After rescaling the weights as Kij = K̃ij/q, and accounting for the fact that
ρ(σ,µ) and π(ω,h) concentrate (see equations (103) and (102)), we obtain

T(u) =
∞∑
s=0

pαq (s)

〈
δ

(
u− αµ̄

ω̄σ̄

1
αq

s∑
ℓ=1

K̃ℓ

)〉
{K}s

. (112)

Again, as q→∞, the Poissonian weights concentrate around s= αq±O(
√
αq). Hence, the

quantity

ū=
αµ̄

ω̄σ̄

1
αq

s∑
ℓ=1

K̃ℓ (113)

is again non-fluctuating, due to the law of large numbers. Consequently, the δ function in
equation (112) forces T(u) to concentrate around u= ū, which evaluates to

ū=
αµ̄

σ̄ω̄
⟨K̃⟩ . (114)

Combining the concentration of the top eigenvector’s components with the normalisation of
the eigenvectors, |v|2 =M, we expect that ū= 1. This result indeed follows directly from eval-
uating µ̄. Since the first two equations of (69) determine the distribution of µ’s up to an arbit-
rary scaling, to fix the value of µ̄ we use the integral normalisation condition (third line in
equation (69)). After rescaling the weights and accounting for the fact that π(σ,µ) and ρ(ω,h)
concentrate, it takes the form

∞∑
s=0

pαq (s)
α2µ̄2

ω̄2σ̄2

〈
1

(αq)2

(
s∑
ℓ=1

K̃ℓ

)2〉
{K}s

= 1 . (115)

Evaluating the average over the weights, we obtain

α2µ̄2

ω̄2σ̄2

∞∑
s=0

pαq (s)
s(s− 1)⟨K̃⟩2 + s⟨K̃2⟩

(αq)2
= 1 . (116)

Using the known moments of the Poisson distribution, we have

α2µ̄2

σ̄2ω̄2
⟨K̃⟩2 +O

(
q−1
)
= 1 . (117)

Substituting equation (117) into (114), we obtain ū= 1 as anticipated, such that

T(u) = δ (u− 1) . (118)

Hence, in the dense limit6 of our non-central model, the top eigenvector is fully localised
around 1= (1, . . .,1) ∈ RM. Incidentally, we note that this localisation phenomenon is very
similar to [83], valid for the slightly different setting of dense symmetric random matrices
with independent entries drawn from an arbitrary distribution.

6 Note that this corresponds to a sequence of two limits: first, N,M→∞ (with their ratio fixed), and next q→∞.
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Figure 5. Density of the top eigenvector’s components in the dense regime (i.e. q=
αM), plotted as a function of the rescaled variable x= δ

√
M(u− 1), where δ is defined

in equation (121). The numerical data (symbols) were obtained by diagonalizing 20
independent realizations of the matrix J= XTX, where X’s entries are drawn from a
uniform distribution p(K) = Θ(K)Θ(1−K). We fixedM= 4 · 104 and examined three
values of N, corresponding to (×) α=

√
2/3, (◦) α=

√
4/3, and (△) α=

√
6/3.

The numerical results exhibit excellent agreement with the standard normal distribution
N (0,1) (solid line).

For finite N,M, we could have defined the density of top eigenvector’s components as
TN,M (u | q,p(K)). Our previous result would then correspond to computing the double limit

lim
q→∞

lim
M→∞

Tα2M,M (u | q,p(K)) = δ (u− 1) . (119)

Empirically, numerical diagonalisation on large but finite matrices shows that T(u) indeed
becomes narrower as q is gradually increased. However, it would be interesting to study how
this complete localisation in the limit is approached on a narrower scale asN,M increase.While
the finite N,M density TN,M (u | q,p(K)) is not attainable via our method, we nevertheless con-
jecture (on the basis of numerical simulations) that the components of the top eigenvector
display Gaussian fluctuations in the double-scaling limit

T(x) := lim
M→∞

1

δ
√
M
Tα2M,M

(
u= 1+

1√
M

x
δ
| q= αM,p(K)

)
=N (0,1) (120)

with

δ =
α√

⟨K̃2⟩
⟨K̃⟩2 − 1

. (121)

In figure 5, we numerically validate our conjecture. The figure shows the density of the top
eigenvector’s components in the dense regime (i.e. q= αM), plotted as a function of the res-
caled variable x= δ

√
M(u− 1), where δ is defined in equation (121). The numerical data

(symbols) were obtained by diagonalizing 20 independent realisations of the matrix J= XTX,
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where X’s entries are drawn from a uniform distribution p(K) = Θ(K)Θ(1−K). We fixed
M= 4 · 104 and examined three values of N, corresponding to (×) α=

√
2/3, (◦) α=

√
4/3,

and (△) α=
√

6/3. The numerical results exhibit excellent agreement with the standard nor-
mal distribution N (0,1) (solid line). A first-principles proof of this conjecture would be very
welcome.

8. Summary and conclusions

In summary, we developed a replica formalism to compute the top eigenpair statistics of sparse
correlation matrices of the formXTX, where the nonzero entries follow a nonzero mean weight
distribution p(K), leading to an isolated largest eigenvalue.

Specifically, we focused on the average largest eigenvalue and the density of its associated
eigenvector components. The problem of evaluating the average largest eigenvalue can be
reformulated as an optimisation problem involving a quadratic Hamiltonian on the sphere. In
the zero-temperature limit β→∞, the Gibbs measure concentrates around the ground state,
corresponding to the top eigenvector. Using the replica method, we evaluated the disorder-
averaged partition function and derived a system of self-consistent equations governing the
order parameter λ (see equation (69)).

We solved these equations via a population dynamics algorithm and identified ⟨λ1 ⟩, the
average largest eigenvalue, as the critical value of λ that determines the convergence of the
population dynamics: for λ < ⟨λ1 ⟩, variables diverge, while for λ > ⟨λ1 ⟩, they converge to
zero. Numerical simulations confirmed excellent agreement between this critical value and
direct numerical diagonalisation, both for the degenerate case p(K) = δK,1 and for a uniform
weight distribution over K ∈ [0,1].

Building on this, we extended our method to compute the density of top eigenvector com-
ponents. Again, numerical results showed excellent agreement with diagonalisation for both
weight distributions.

Finally, we demonstrated that taking the appropriate dense limit of our model recovers
known results from the noncentral Wishart ensemble. Future work should explore the non-
gapped regime and the connection between p(K) and the detachment transition.
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Appendix A. Upper bound for ⟨λ1⟩

In this appendix we show that

⟨λ1⟩⩽
[
max

(
|ζ−|, |ζ+|

)]2
RC , (A.1)

where ζ− (ζ+) is the lower (upper) bound of the support of p(K), whileR andC are themaximal
numbers of nonzero elements in each row and in each column respectively. Our starting point
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is the identification of λ1 with the square of the spectral norm of the matrix X. According to
identity 15.511.1 from [84], the spectral norm obeys

λ1 ≤

(
max
1⩽j⩽M

N∑
i=1

|Xij|

) max
1⩽i⩽N

M∑
j=1

|Xij|

 . (A.2)

Since Xij = cijKij (equation (1)), we can use the fact that p(K) has a bounded support and that
the number of nonzero elements in each row (column) is restricted by R (C) to write

λ1 ⩽
[
max

(
|ζ−|, |ζ+|

)]2(
max
1⩽j⩽M

N∑
i=1

cij

) max
1⩽i⩽N

M∑
j=1

cij


⩽
[
max

(
|ζ−|, |ζ+|

)]2
RC . (A.3)

Since this inequality holds for every realisation of X, the ensemble average of λ1 clearly sat-
isfies this condition too. Hence, we obtained our desired result, equation (A.1).

Appendix B. Performing the Average in (13)

In this appendix, we show how to compute the average〈
M∏
i=1

N∏
j=1

exp

(
βXji

n∑
a=1

viauja

)〉
, (B.1)

in the q≪
√
NM limit. This average is performed over different realisations of the N×M

random matrix X, whose entries are i.i.d random variables, expressed as Xji = cjiKji, and are
drawn from

P(Xji) =

[
q√
NM

δcji,1 +

(
1− q√

NM

)
δcji,0

]
p(Kji) , (B.2)

with p(K) being the weight distribution. First, we use the independence of the entries to fac-
torise the average,〈

M∏
i=1

N∏
j=1

exp

(
βXji

n∑
a=1

viauja

)〉
=

M∏
i=1

N∏
j=1

〈
exp

(
βcK

n∑
a=1

viauja

)〉
c,K

, (B.3)

where ⟨·⟩c,K denotes averaging over a single instance of the random variables c and K. Next,

we average over the c’s and take the q≪
√
NM limit to obtain〈

M∏
i=1

N∏
j=1

exp

(
βXji

n∑
a=1

viauja

)〉
=

M∏
i=1

N∏
j=1

[
1+

q√
NM

(〈
eβK

∑n
a=1 viauja

〉
K
− 1
)]

≃ exp

 q√
NM

M∑
i=1

N∑
j=1

(〈
eβK

∑n
a=1 viauja

〉
K
− 1
) , (B.4)

which matches the result in (13).
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