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Abstract

The main aim of this thesis is to provide a holistic comprehension of strongest-

postcondition-style calculus and weakest-precondition-style calculus for quanti-

tative program analysis.

To achieve this goal, the thesis will present novel concepts that deepen the

understanding of program correctness and incorrectness, paving the way for

the creation of new program logics. For example, it will define new predicate

transformers such as the strongest liberal post, along with their quantitative

variants, and demonstrate their applications in Information Flow Analysis.

Furthermore, by bridging the gap between quantitative forward and back-

ward transformers, the thesis will progressively elevate the reasoning to a more

general setting, making the calculi parametrized to a class of semirings. This

parametrization will enable a deeper understanding of the fundamental rela-

tionships between forward and backward, correctness and incorrectness, as well

as nontermination and unreachability.

Finally, the thesis will delve into the study of hyperproperties and integrate

predicate transformers reasoning into them, and beyond. It will demonstrate

that their quantitative variants enable reasoning about hyperquantities, thus

facilitating analyses involving expected values, variance, and other quantitative

metrics. Moreover, the exploration of higher-order predicate transformers

will provide insights into their limitations and advantages, allowing for the

instantiation of simpler predicate transformers when reasoning about less

complex properties.



Impact Statement

Impact Outside Academia.

The increasing complexity of hardware and software systems necessitates more

advanced verification methodologies. While testing remains an invaluable tool, it

is inherently limited and cannot guarantee the detection of all bugs, as famously

noted by Dijkstra [1]. Consequently, traditional formal methods [2; 3; 4; 5] have

focused on proving safety properties. However, these approaches often prove

impractical for everyday programmers, as they can generate false positives [6; 7],

which conflicts with the fundamental static analysis axiom: “Don’t spam the

developer” [8].

This thesis tackles these challenges by developing new theoretical frame-

works that bridge the gap between tools for correctness and those for incorrect-

ness. Our work introduces novel predicate transformers applicable across a wide

range of scenarios, including safety and bug-finding, (probabilistic) nontermi-

nation, unreachability, and hyperproperties such as Information Flow Analysis.

These frameworks are compositional [4], a key feature that contributes to the

scalability of industrial static analyses, as demonstrated at Meta [9; 10; 11] and

in broader industry contexts [12]. By enhancing the precision and applicabil-

ity of these methodologies, this thesis aims to make formal verification more

accessible and effective for real-world software development.

Impact Inside Academia.

Existing efforts in quantitative program verification have predominantly focused

on weakest-precondition-style calculi [13; 14; 15; 16]. This thesis expands
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the academic conversation by providing a comprehensive understanding of

both strongest-postcondition and weakest-precondition calculi in the context of

quantitative program analysis. We introduce new concepts, such as the strongest

liberal postcondition and its quantitative variants [17], and examine their

potential to improve the analysis of program correctness and incorrectness [18].

In a similar vein to how Zilberstein et al. [19, 20]; Clarkson and Schnei-

der [21] extended Hoare Logic to handle hyperproperties [21], we extend this

approach to predicate transformers, demonstrating how predicate transformer

reasoning can be applied in this context. Our work illustrates that quantita-

tive variants of predicate transformers are powerful tools for reasoning about

hyperquantities, such as expected values and variance [18]. Through the ex-

amination of more general transformers, we identify conditions that lead to

the development of simplified frameworks for analyzing more straightforward

properties.

Just as traditional predicate transformers and Hoare-like logics empower

programmers to verify program correctness, we contend that our framework

provides researchers with a deeper insight into existing logics. Indeed, our

calculus reveals novel dualities between forward and backward transformers,

correctness and incorrectness, as well as nontermination and unreachability.

Publications.

The findings of this thesis have been showcased at several major conferences,

including the Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA) in both 2022 and 2024 [17; 18], as well as at the workshop

“Formal Methods for Incorrectness 2024” co-located at POPL. Additionally,

although not included in this thesis, I have explored further applications of

Rice’s Theorem to control flow graphs with equality guards and affine assign-

ments. This research led to publications at the International Colloquium on

Automata, Languages, and Programming (ICALP) in 2021 [22], as well as in

the journal Information and Computation [23].



Acknowledgements

I am deeply grateful to my supervisors, Benjamin and Alexandra, for granting

me this opportunity and for their unwavering support throughout my PhD

journey, through both its challenges and successes.

Benjamin, thank you for your sharp research instincts, intuition, and for

emphasizing the importance of explainability and simplicity. Alexandra, I sin-

cerely appreciate your balanced perspective and thoughtful guidance—without

it, I would not have completed this journey.

I am also thankful to Fredrik Dahlqvist for chairing my first-year and

transfer vivas, to Kevin, Lena and Tobias for the fruitful discussions at Schloss

Dagstuhl that sparked the initial ideas of this thesis, and to my collaborator

Noam, whose invaluable feedback and supervision have greatly enriched our

joint work.

As part of the Programming Principles, Logic, and Verification group, I

had the pleasure of meeting incredible colleagues: Jas, Lachlan, Leo, Louis,

Mateo, Robin, Stefan, Tao, Tiago, Todd, Will, Wojciech, and many others who

made our group such a unique and inspiring community.

Alongside my PhD, I’ve been working as a Teaching Assistant for various

courses, which has been a truly enjoyable experience—one I would highly

recommend to anyone. In particular, teaching Blockchain Technologies was

invaluable, as it introduced me to an entirely new field. Thank you Jiahua and

Silvia for giving me this opportunity.

Beyond my academic journey, I was fortunate to explore various industry

opportunities over the years. I began as a Software Engineer Intern at Meta,



Acknowledgements 7

working with the Static Analysis (Infer) team. Thank you, Jules, Sungkeun,

and Dulma, for your mentorship—this experience was so invaluable that it

inspired me to pursue full-time industry roles. Later, I joined Lacework

(subsequently acquired by Fortinet), where I worked with the exceptional

Code Security team and filed two patents. A special thank you to Peter for

bringing together the dream team—Christien, Patrice, Edoardo, Jérémy, Pascal,
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Chapter 1

Introduction

Reasoning about programs is a fundamental yet profoundly challenging aspect

of software engineering. As software systems become increasingly complex

and embedded in critical aspects of modern life, ensuring their correctness has

never been more crucial. The importance of formal verification—a rigorous

methodology for proving the correctness of programs through mathematical

means—has been recognized since the early days of computing and remains a

critical area of research and practice today.

In the modern world, software systems are ubiquitous, controlling essential

functions such as airplane flight systems [25], nuclear power plant emergency

protocols [26], and car engines [27]. The increasing complexity of these systems,

including ever-expanding machine learning models, increases the likelihood of

introducing errors, which can lead to substantial economic losses [28; 29; 30]

or, in severe cases, endanger human lives [31; 32].

As software systems become more integrated into critical infrastructure

and daily operations, the challenges of ensuring their correctness intensify.

Formal verification provides a crucial tool for addressing these challenges by

offering a systematic approach to proving the reliability and safety of software

through mathematical rigor. This approach is indispensable in mitigating the

risks associated with software errors and ensuring the robustness of systems

that are integral to modern life.
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1.1 Historical Context

The quest for program correctness dates back to the early 20th century. In 1941,

Konrad Zuse built the Z3, widely regarded as the world’s first programmable

computer. Zuse’s design intentionally avoided loops and conditional branching,

opting instead for a straightforward, linear control flow. His choice was driven by

concerns over the complexity introduced by such constructs, which he believed

could hinder comprehensibility and reasoning about program behavior [33].

This concern about program complexity was echoed by Edsger Dijkstra

in 1968. Dijkstra criticized the “goto” statement for its potential to create

convoluted code, advocating instead for structured programming constructs

like “while” loops. He believed that such constructs would promote clearer,

more understandable code, thereby facilitating more effective reasoning Dijkstra

[34]. Both Zuse and Dijkstra highlighted the challenges of comprehending and

reasoning about program behavior, setting the stage for the development of

formal verification techniques.

The evolution of computing has introduced even more complexities. The

notion of probabilistic programs, which incorporate random elements and condi-

tional branching based on probabilistic outcomes, adds a new layer of difficulty.

Randomization in computing has been explored since the early days, with signif-

icant contributions such as Tony Hoare’s randomized Quicksort algorithm [35]

and Michael Rabin’s probabilistic automata [36]. Despite these advances, rea-

soning about probabilistic programs remains an active area of research and

development, reflecting the ongoing challenges of formal verification [37; 16].

The formal study of probabilistic programs gained momentum with Dexter

Kozen’s foundational work in the late 1970s and early 1980s, which laid the

groundwork for understanding the semantics of probabilistic computations [38;

39]. Subsequent contributions by Sergiu Hart, Micha Sharir, and Amir Pnueli,

as well as further work by Kozen himself, advanced the verification techniques

for probabilistic programs [40; 41; 42; 13]. Despite these seminal advances,

the techniques for formal reasoning about probabilistic programs are still



1.2. Formal Methods 25

less developed compared to those for deterministic programs. As argued by

Kaminski, it is likely that part of the reason for this discrepancy is that reasoning

about probabilistic programs is harder from a computability perspective [43;

44; 15].

With the rapid advances in machine learning and the abundance of avail-

able data, machine-learned software is increasingly important in assisting or

even autonomously making decisions that impact our lives. As a result, formal

methods is gaining further momentum, when applied to machine learning

models [45]. One key property of interest is the robustness of neural networks,

ensuring that they behave correctly even when the input is perturbed. This

problem is addressed by several established methods, including precise meth-

ods based on solvers [46; 47], abstract interpretation [48; 49; 50; 51], or a

combination of both [52].

Another important aspect is the fairness of machine learning models [53],

which can be seen as a form of verification. Fairness in neural networks,

specifically ensuring that certain inputs do not lead to biased outcomes [53], is

related to the study of information flow [54; 55; 56].

As we delve into the realm of formal verification, this thesis will investigate

the general methodologies and challenges associated with reasoning about

deterministic, non-deterministic and probabilistic programs. The goal is to

enhance our understanding of verification techniques and address the gaps that

exist.

1.2 Formal Methods

To address software errors before deployment, traditional methods such as

testing are employed. Testing involves running programs with a finite set of

inputs and verifying their correctness through assertions. However, as Dijkstra

noted, “testing can be quite effective for showing the presence of bugs, but

is hopelessly inadequate for showing their absence” [1]. Testing alone cannot

guarantee the absence of all bugs, as it is limited by the scope and number of
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test cases.

Formal methods provide a more rigorous approach to ensuring software

correctness and, more recently, incorrectness [6] as well. By creating a precise

mathematical model of a program’s behavior, formal methods enable the formal

proof of properties. However, Rice’s undecidability theorem and its intensional

generalizations [57; 22; 23] present a significant challenge, asserting that many

non-trivial properties of programs are undecidable, meaning no algorithm can

decide whether these properties hold for all possible programs. This does

not mean that such properties are impossible to solve, but rather that they

require trade-offs, because they cannot be solved automatically in all cases.

As a result, formal methods must balance between completeness (proving

all true facts), soundness (ensuring conclusions are correct under specified

assumptions), and automation (the extent to which proofs can be automated).

To motivate why formal methods work, a more recent characterization of

the undecidability of formal methods is provided in [58]. They demonstrate

that many existing properties, including those undecidable by Rice’s Theorem,

are so-called witnessable: although it is impossible to solve these properties

precisely, it is always possible to improve any decidable approximation to make

it closer to the precise solution, motivating the efforts in this area.

1.3 Background

1.3.1 Correctness Reasoning

Program analysis and formal verification have been studied for over 70 years,

beginning with early foundational work by Alan Turing [59]. One of the pivotal

developments in this field is Hoare Logic (HL) [2], a proof system used to

establish the partial correctness of programs. HL employs logical assertions to

reason about the state of a program at specific points in its execution, typically

in the form of Hoare triples |= {φ } C {ψ }. This triple intuitively expresses

that if the precondition φ holds before executing the program C, then the

postcondition ψ will hold after C executes, provided C terminates.
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A key technique in this domain is overapproximation, used to prove safety

specifications. Overapproximation involves considering a broader set of possible

program behaviors than the program might actually exhibit. By doing so, we

can ensure that if no errors are found within this broad set, the program is

certainly correct [3; 6]. This is because the actual set of program behaviors,

being a subset of the overapproximation, will also be error-free.

1.3.2 Incorrectness Reasoning

While correctness logics such as Hoare Logic focus on properties over all

executions, these overapproximate logics can be limiting when it comes to

identifying bugs. O’Hearn [6] highlights this limitation, advocating for the

development of new program logics that emphasize bug-finding, similar to

approaches in symbolic execution literature described by Godefroid et al. [60].

Unlike traditional correctness reasoning, which uses overapproximation, the

focus here is on underapproximation [6]. This technique is crucial for identifying

bugs and proving the presence of errors in programs. By concentrating on a

subset of program behaviors, underapproximation ensures that if an error is

found within this subset, the program is definitely incorrect.

One notable approach in this direction is Incorrectness Logic (IL). Proposed

by O’Hearn [6] and independently by de Vries and Koutavas [61] (under the

name reverse Hoare logic), IL provides a formal framework for reasoning about

program errors. In IL, a triple [φ ] C [ψ ] expresses that the postcondition ψ is

an underapproximation of the set of states reachable by executing the program

C starting from a state satisfying the precondition φ. This stands in contrast

to Hoare Logic, where the focus is on ensuring that all executions from a given

precondition lead to a desired postcondition. IL, on the other hand, is used

to demonstrate that specific erroneous states are reachable, thus proving the

presence of bugs in the program.
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1.3.3 Predicate Transformers

The logics developed for correctness [2; 62] and incorrectness [61; 6] intro-

duce sufficient preconditions so that the postconditions are, respectively, an

overapproximation and an underapproximation of the reachable states.

A different approach was introduced originally by Dijkstra [63; 1], where

he presented the so-called weakest precondition calculus. Given a postcondition,

this method finds a necessary and sufficient precondition so that, if satisfied,

the program will definitely terminate in a state satisfying the postcondition. In

other words, once the weakest precondition wp of a program C with respect to a

postcondition ψ is computed, one can easily check the validity of a Hoare triple

by checking an implication with the weakest precondition. This is also useful

for understanding exactly what conditions need to be true before execution

to ensure a desired outcome. Notably, wp is a backward-moving technique,

working from the desired postcondition back to the initial preconditions.

An analogous calculus, but forward-moving, is the strongest postcondition

calculus [64]. The strongest postcondition sp of a program C with respect to

a precondition φ describes the most precise set of states that can result from

executing C starting from any state satisfying φ. This helps in determining

the exact reachable states, which can then be underapproximated to prove

incorrectness specifications or overapproximated for correctness reasoning [6].

1.3.4 Quantitative Weakest Pre Transformer

Backward moving weakest-precondition-style calculi have been generalized to

real-valued-function transformers, first by Kozen [13], to reason about proba-

bilistic programs. Intuitively, classical weakest pre anticipates the truth of a

given postcondition - whether it will hold after the execution of the program, or

not. Kozen [13] extends the analysis from simply checking whether a postcondi-

tion holds (a boolean truth value) to anticipating numerical values, such as the

probability that some postcondition will be satisfied after program termination,

given an initial state. This approach was further extended by McIver and
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Morgan [14]; Hark et al. [15]; Kaminski [16] to reason about expected values of

general random variables, after the execution of a program. These generaliza-

tions enable the calculation of various quantities, such as the expected value of

a given program variable or the program runtime.

1.3.5 Program Logics for Hyperproperties

Hoare Logic (HL) [2] and Incorrectness Logic (IL) [6] are foundational proof

systems designed to establish properties of programs based on individual exe-

cutions. While powerful, these logics fall short in addressing properties that

inherently involve relationships between multiple executions, such as security

properties related to confidentiality, integrity, or authenticity. These properties,

known as hyperproperties, require reasoning beyond single execution traces, as

they may be violated through the analysis of multiple execution traces by an

attacker [21].

To bridge this gap, Benton [65] introduced a relational extension of Hoare

Logic (RHL), enabling reasoning about pairs of executions and thereby allowing

the verification of hyperproperties. This relational approach is crucial for

expressing and proving properties that depend on the comparison of different

execution traces, even for potentially different programs. RHL has subsequently

been extended by many researchers [66; 67; 68; 69] to prove security properties

of single programs. On the incorrectness side, the relational extension of IL

has been put forward by Murray [70] to prove insecurity in a program, such as

disproving non-interference.

1.3.6 Unified Program Logics

The aforementioned theories of incorrectness (IL) diverge significantly from

theories of correctness (HL), meaning that entirely separate analysis must

be done for verification and bug-finding. To overcome this limitation, new

theories for unified reasoning about both correctness and incorrectness have

been proposed [71; 72; 19; 73; 20; 74]. These include logics not only for

individual program traces but also on hyperproperties [73]. Outcome Logic
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(OL) [60; 19; 20; 74] and Hyper Hoare Logic (HHL) [73]—which advocate that

a single logic can be used to prove (or disprove) a wide variety of properties,

including hyperproperties.

1.4 Main aims

The main aim of this thesis is to provide a holistic comprehension of strongest-

postcondition-style calculus and weakest-precondition-style calculus for quanti-

tative program analysis.

To this goal, the thesis will introduce novel concepts that enrich the un-

derstanding of program correctness and incorrectness, thereby suggesting the

development of new program logics. For instance, new predicate transformers

such as strongest liberal post will be defined, along with their quantitative vari-

ants (Definitions 3.4.1 and 3.4.2), showcasing their applications in Information

Flow Analysis (Section 3.8).

Furthermore, by bridging the gap between quantitative forward and back-

ward transformers, the thesis will progressively elevate the reasoning to a

more general setting, making the calculi parametrized to a class of semirings

(Definitions 4.3.1 and 4.4.1). This parametrization will enable a deeper un-

derstanding of the fundamental relationships between forward and backward

reasoning (Theorem 4.7.4), correctness and incorrectness (Section 4.5), as well

as nontermination and unreachability (Section 4.6).

Finally, the thesis will delve into the study of hyperproperties and integrate

predicate transformer reasoning into them and beyond. It will demonstrate

that their quantitative variants enable reasoning about hyperquantities (Def-

inition 5.2.1), thus facilitating analyses involving expected values, variance,

and other quantitative metrics (Example 5.2.4). Moreover, the exploration

of higher-order predicate transformers (Definitions 5.3.3, 5.4.3 and 5.5.1) will

provide insights into their limitations and advantages, allowing for the instan-

tiation of simpler predicate transformers when reasoning about less complex

properties (Definition 5.6.1).
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1.5 Overview

• Chapter 1: This chapter offers an introduction to the topics covered in

the thesis, setting the stage for the overall objectives and direction of the

research.

• Chapter 2: This chapter reviews prior fundamental research and presents

the mathematical background necessary to understand the main results

of the thesis. Topics include Hoare Logic, Incorrectness Logic, Weakest

Precondition and Strongest Postcondition calculi, along with a brief overview

of their quantitative counterparts.

• Chapter 3: Based on the paper by Zhang and Kaminski [17]. This chap-

ter presents a novel strongest-postcondition-style calculus for quantitative

reasoning about non-deterministic programs with loops. Whereas existing

quantitative weakest pre allows reasoning about the value of a quantity after

a program terminates on a given initial state, quantitative strongest post

allows reasoning about the value that a quantity had before the program

was executed and reached a given final state. It demonstrates how strongest

post enables reasoning about the flow of quantitative information through

programs.

Similarly to weakest liberal preconditions, a quantitative strongest liberal

post is also developed. As a byproduct, the notion of strongest liberal

postconditions is obtained, and it shows how these foreshadow a potential

new program logic — partial incorrectness logic — which would be a more

liberal version of O’Hearn’s incorrectness logic [6].

• Chapter 4: Based on the paper (and extensions of) Zhang et al. [18,

Sections 4.1, 5.1, 5.2, 5.3]. This chapter presents a novel strongest post

calculus for reasoning about quantitative properties over weighted programs,

including both nondeterministic and probabilistic variants. By developing this

calculus, we aim to facilitate forward reasoning about optimization problems,
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formal languages, and other domains where quantitative properties play a

crucial role. Additionally, this approach will uncover novel dualities between

forward and backward transformers, correctness and incorrectness, as well

as nontermination and unreachability, shedding new light on fundamental

aspects of program semantics and reasoning.

• Chapter 5: Based on the paper (and extensions of) Zhang et al. [18]. This

chapter presents a novel weakest pre calculus for reasoning about quantitative

hyperproperties over nondeterministic and probabilistic programs. Whereas

existing calculi allow reasoning about the expected value that a quantity

assumes after program termination from a single initial state, it does so for

initial sets of states or initial probability distributions. It thus (i) obtains a

weakest pre calculus for hyper Hoare logic and (ii) enables reasoning about

so-called hyperquantities which include expected values but also quantities

(e.g. variance) out of scope of previous work. Furthermore, the chapter will

explore a forward variant of whp, denoted as shp, with the goal of offering

a comprehensive perspective on quantitative hyperpredicate transformer

reasoning and beyond.

• Chapter 6: Concludes the thesis by providing a discussion, a survey of

related work, and outlining the ideas and directions for future work.
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Preliminaries

2.1 Hoare Logic

Hoare logic (HL) is a formal system used to reason about the correctness of

programs. Developed by Hoare [2] and building on earlier work by Floyd [62],

Hoare logic uses a notation called Hoare triples. A Hoare triple is written as

|= {φ } C {ψ }, where:

• φ is the precondition that must be true before executing the program C.

• C is the program or command being executed. In this chapter, we consider

deterministic programs, meaning that the execution of C will always produce

the same output given the same input.

• ψ is the postcondition that will be true after execution, assuming the precon-

dition φ was true.

For example, consider a simple program C that increments a variable x by

1. A possible Hoare triple could be |= {x = n } C {x = n+ 1 }, which means

that if x starts with the value n, then after executing C, x will be n+ 1. Here,

n is a logical variable that does not occur in C, meaning it is used to represent

a fixed value that x holds before the execution of C and is not modified by C.

Notice the aspect of overapproximation: the triple |= {x = n } C {x ≥ n+ 1 }

would also be valid, since starting from x = n, we end exactly with x = n+ 1,

which satisfies the postcondition x ≥ n+ 1.
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Hoare logic distinguishes between partial correctness and total correctness

(in the sense of [75]).

2.1.1 Partial Correctness

A triple in HL for partial correctness (denoted |=pc {φ } C {ψ }) ensures that

if the precondition φ is true, the program C will either terminate with the

postcondition ψ being true or it will not terminate (diverge). More precisely,

the triple |=pc {φ } C {ψ } is valid for partial correctness if:

Every initial state satisfying φ, after the execution of program C,

will end up in a final state satisfying ψ or will diverge.

Example 2.1.1 (Partial Correctness). Let C = while (x > 10 ) {x := x+ 1 }.

The triple |=pc {x > 5 } C {x > 0 } is valid because the postcondition x > 0 is

an overapproximation of the state of x after executing C from an initial state

where x > 5. In other words, if x starts with a value greater than 5, then x will

still be greater than 0 after C executes (since any operation within the program

C will not decrease x), assuming the program terminates. Nonterminating

states are simply ignored and treated as acceptable behavior.

2.1.2 Total Correctness

A triple in HL for total correctness (denoted |=tc {φ } C {ψ }) ensures that

if the precondition φ is true before executing the program C, the program

will terminate and the postcondition ψ will be true. Formally, the triple

|=tc {φ } C {ψ } is valid for total correctness if:

Every initial state satisfying φ, after the execution of program C,

will end up in a final state satisfying ψ.

Example 2.1.2 (Total Correctness). Let C = while (x > 10 ) {x := x+ 1 }.

The triple |=tc {x > 5 } C {x > 0 } is not valid because starting from the

precondition x > 5, the program might not terminate (e.g., if x = 6). However,

the triple |=tc { 10 > x > 5 } C {x > 0 } is valid, as the program is guaranteed

to terminate (since the guard of the loop does not hold initially) with x > 0.
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Both examples Examples 2.1.1 and 2.1.2 demonstrate overapproximation

in Hoare logic. The postcondition x > 0 is a broader condition than the exact

state of x after executing C. We are not concerned with the precise value

of x, but rather with a condition (x > 0) that is certainly true given our

preconditions.

2.2 Incorrectness Logic

The roots of incorrectness logic can be traced back to the work of de Vries and

Koutavas [61], who introduced reverse Hoare logic to reason about reachability

properties. Independently, O’Hearn [6] developed a closely related logic known

as Incorrectness Logic (IL), which extends the principles of reverse Hoare

logic to create a formal theory for bug-finding. Since then, several similar

logics and extensions of IL for heaps and concurrent programs have been

proposed [76; 77; 78; 79; 80; 81]. In IL, a triple |=ti [φ ] C [ψ ] expresses that

the postcondition ψ is an underapproximation of the set of reachable states

when executing the program C on a state satisfying the precondition φ. More

precisely, a triple in IL |=ti [φ ] C [ψ ] is valid if:

Every final state satisfying ψ is reachable by executing C

on some initial state satisfying φ.

Example 2.2.1 (Incorrectness Logic). Let C = while (x > 10 ) {x := x+ 1 }.

The triple |=ti [ true ] C [x < 5 ] is valid because all states satisfying the post-

condition x < 5 are reachable from some initial state satisfying true.

Here, observe that one can prove incorrectness by using an undesired

property (e.g., a bug) as the postcondition ψ. In particular, Example 2.2.1

demonstrates underapproximation: the postcondition x < 5 represents a subset

of the exact reachable states of x after executing C. We are not focused on the

precise value of x, but rather on a condition (x < 5) that is entirely reachable.

Unlike Hoare Logic, we do not guarantee that the program will always terminate

with x < 5, which is clearly not the case in this example.
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In this sense, IL can witness the reachability of specific properties (e.g.,

bad outcomes) by proving that there exists some execution that ends in that

specific property. However, unlike HL, IL cannot be used to prove properties

over all executions, such as guaranteeing that the program will always terminate

with the correct outcome.

In the rest of the thesis we will also refer to IL as total incorrectness, to

differentiate with our definition of partial incorrectness ( Definition 3.6.2).

2.3 Predicate Transformer Semantics

The logics developed for partial correctness [2; 62] and incorrectness [61; 6]

introduce sufficient preconditions so that the postconditions are, respectively,

an overapproximation and an underapproximation of the reachable states.

2.3.1 Weakest Preconditions

A different approach was originally introduced by Dijkstra [63; 1], who presented

the weakest precondition calculus. Given a postcondition, this calculus allows us

to find a necessary and sufficient precondition such that, if satisfied, the program

will definitely terminate in a state that satisfies the postcondition. Symbolically,

we denote by wp JCK (ψ) the weakest precondition of a postcondition ψ, which

is the largest precondition φ making the Hoare triple |=tc {φ } C {ψ } valid.

By having the weakest precondition, the validity of Hoare triples can be reduced

to an implication check, as for all predicates φ and ψ we have:

φ =⇒ wp JCK (ψ) iff |=tc {φ } C {ψ } is valid .

We remark the fundamental difference with respect to Hoare triples for

total correctness: if an initial state σ does not satisfy wp JCK (ψ), then executing

program C from σ will definitely not terminate in a state satisfying ψ. Instead,

if |= {φ } C {ψ } is valid and σ does not satisfy φ, then we have no information

about the execution of program C from σ.

An alternative predicate transformer has also been proposed by Dijkstra [1]:
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the so-called weakest liberal precondition (wlp), differently from its non-liberal

version, includes in the precondition all the states that lead to nontermination,

and thus is related to Hoare triples for partial correctness. Put formally, we

have:

φ =⇒ wlpJCK (ψ) iff |=pc {φ } C {ψ } is valid .

The key difference between wp and wlp is in their handling of nontermi-

nation. The weakest precondition wp JCK (ψ) strictly requires termination in

a state satisfying ψ, making it suitable for reasoning about total correctness.

Conversely, wlpJCK (ψ) includes states from which C may not terminate, re-

flecting partial correctness. This means that wlp is more permissive, allowing

us to reason about the correctness of C even if C might not terminate. This

distinction is critical when analyzing programs where termination cannot be

guaranteed, as wlp still provides meaningful insights into the program’s behavior

under partial correctness criteria.

2.3.2 Strongest Postconditions

While weakest-precondition-style calculi are backward-moving, in the sense that

they start from a postcondition and compositionally work backward through

the program’s instructions to derive an initial precondition, there also exists a

forward-moving counterpart known as the strongest postcondition [64, Section

12]. The strongest postcondition calculus takes a precondition and returns the

most precise (i.e., smallest) postcondition after the execution of a given program,

which is exactly the set of all states that are reachable for the given precondition.

Using Dijkstra’s terminology [64, Section 11], the strongest postcondition is

the converse transformer of the weakest liberal precondition; more concretely,

denoted sp JCK (φ) the strongest postcondition of a precondition φ, the following

duality holds:

φ =⇒ wlpJCK (ψ) iff sp JCK (φ) =⇒ ψ .
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In the literature, there has been a significant focus on quantitative weakest

preconditions, which generalize the weakest precondition to reason about

probabilistic and quantitative aspects of programs. Seminal work by Kozen

[42, 13] on probabilistic programs laid the foundation for this area, and further

extensions by McIver and Morgan [14] and others [16] explored expected values

and other quantitative measures. Despite these advancements, the study of

strongest postconditions has remained relatively underexplored.

In this thesis, we address this gap by introducing the concept of the

strongest liberal postcondition (slp) in Section 3.4, demonstrating its rela-

tionship to unreachable states in a manner analogous to how wlp relates to

nonterminating states. Furthermore, we will provide novel quantitative exten-

sions for both sp and slp, which have not been developed previously. These

contributions will significantly enhance the theoretical framework for program

analysis, offering new tools for reasoning about both deterministic and non-

deterministic program behaviors.

For a more detailed introduction to predicate transformer semantics, we

recommend [64]. Additionally, [16] offers a comprehensive overview of their

quantitative extensions.

2.4 Domain Theory

Domain theory is a significant field in mathematics and computer science that

focuses on the study of specific types of partially ordered sets (posets) to model

the semantics of computation. Originally developed by Dana Scott in the

late 1960s [82], domain theory provides a rigorous mathematical foundation

for understanding the semantics of programming languages, especially those

involving recursion and infinite data structures.

The concepts of partially ordered sets and lattices are fundamental to

defining the semantics of programming languages [83; 84]. For instance, these

structures are commonly employed in denotational semantics [85], Abstract

Interpretation [3] and Morphology [86].
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For a more in-depth treatment of domain theory, readers are referred to

the introduction provided in the Handbook of Logic in Computer Science [87].

However, to ensure that this thesis remains self-contained, we will briefly review

some of the fundamental concepts that are critical for the discussions that

follow.

2.4.1 Basics

A relation R over two sets X and Y is a subset of X×Y , namely R ∈ P(X×Y )

where P(X × Y ) denotes the powerset of X × Y , i.e., the set of all subsets of

X × Y . The composition of two relations R1 ∈ P(X × Y ), R2 ∈ P(Y × Z) is

defined as

R1 ◦R2 ≜ {(x, z) | ∃(x, y) ∈ R1 ∧ ∃(y, z) ∈ R2}.

A relation R ∈ P(X × Y ) is total if

∀x ∈ X : ∃y ∈ Y : (x, y) ∈ R.

Let R be a relation on X2.

• R is reflexive if ∀x ∈ X : (x, x) ∈ R.

• R is transitive if ∀x1, x2, x3 ∈ X : (x1, x2) ∈ R ∧ (x2, x3) ∈ R =⇒ (x1, x3) ∈

R.

• R is symmetric if ∀x1, x2 ∈ X : (x1, x2) ∈ R ⇐⇒ (x2, x1) ∈ R.

• R is antisymmetric if ∀x1, x2 ∈ X : (x1, x2) ∈ R ∧ (x2, x1) ∈ R =⇒ x1 = x2.

If R is reflexive, transitive, and symmetric, we say that R is an equivalence

relation. If R is reflexive, transitive, and antisymmetric, we say that R is a

partial order. If R is reflexive and transitive, we say that R is a quasiorder (or

preorder).
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A function is a relation R ∈ P(X × Y ) where any element of X is in

relation with at most one element of Y , that is

∀x ∈ X : ∀y1, y2 ∈ Y : (x, y1) ∈ R ∧ (x, y2) ∈ R =⇒ y1 = y2.

If f ∈ P(X × Y ) is a function from X to Y , we write f : X → Y .

2.4.2 Orders and Lattices

Definition 2.4.1 (Partial order). A partial order on a set X is a relation

≤ ⊆ X ×X such that the following properties hold:

• Reflexivity: ∀x ∈ X, (x, x) ∈ ≤

• Anti-symmetry: ∀x, y ∈ X, (x, y) ∈ ≤ and (y, x) ∈ ≤ =⇒ x = y

• Transitivity: ∀x, y, z ∈ X, (x, y) ∈ ≤ and (y, z) ∈ ≤ =⇒ (x, z) ∈ ≤

Given a partial order ≤, we will use ≥ to denote the converse relation

{(y, x) | (x, y) ∈ ≤} and < to denote {(x, y) | (x, y) ∈ ≤ and x ̸= y}.

From now on we will use the notation xRy to indicate (x, y) ∈ R.

Definition 2.4.2 (Partially ordered set). A partially ordered set (or poset) is

a pair (X,≤) in which ≤ is a partial order on X.

We will use partially ordered sets to encode collections of program states.

A particularly important structure over posets are adjunctions [87, Def-

inition 3.1.11]. Adjunctions have various equivalent definitions across the

literature [87, Proposition 3.1.10] and are commonly referred to as Galois

Connections in the context of programming languages [28, Definition 11.1],

which is the term we will use throughout this thesis.

Definition 2.4.3 (Galois connection). Let (C,⊑) and (A,≤) be two partially

ordered sets. The pair ⟨α, γ⟩ of functions α : D → A (lower adjoint) and

γ : A→ D (upper adjoint) is a Galois connection (GC) if and only if:

∀c ∈ C : ∀a ∈ A : α(c) ≤ a ⇐⇒ c ⊑ γ(a)
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In this case, we write ⟨C,⊑⟩
γ←−−
α−−→ ⟨A,≤⟩.

An example of Galois connection is the well-known duality between wlp

and sp, see Section 3.6.1 for more.

We should note that our definition of a Galois connection is sometimes

referred to as a monotonic Galois Connection [86, Definition 165], in contrast

to an Antitone Galois Connection [86, Definition 166]. The terminology arises

because, within our framework, we can establish the following lemma.

Lemma 2.4.1 (Lemma 11.28, [28]). If ⟨C,⊑⟩
γ←−−
α−−→ ⟨A,≤⟩ then α, γ are

monotonic.

Definition 2.4.4 (Meet-semilattice). A meet-semilattice is a partially ordered

set (L,≤) such that for every pair of elements a, b ∈ L, there exists an element

c ∈ L satisfying the following conditions:

1. c ≤ a and c ≤ b

2. ∀d ∈ L, if d ≤ a and d ≤ b, then d ≤ c

The element c is called the meet or greatest lower bound of a and b, and is

denoted by a ∧ b.

Definition 2.4.5 (Join-semilattice). A join-semilattice is a partially ordered

set (L,≤) such that for every pair of elements a, b ∈ L, there exists an element

c ∈ L satisfying the following conditions:

1. c ≥ a and c ≥ b

2. ∀d ∈ L, if d ≥ a and d ≥ b, then d ≥ c

The element c is called the join or least upper bound of a and b, and is denoted

by a ∨ b.

Both join and meet operations are idempotent, associative, and commuta-

tive.
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Definition 2.4.6 (Lattice). A poset (L,≤) is a lattice if it is both a join-

semilattice and a meet-semilattice.

Definition 2.4.7 (Complete lattice). A partially ordered set (L,≤) is called a

complete lattice if for every subset S ⊆ L, there exist elements supS and inf S

in L such that:

1. supS (the supremum or least upper bound of S) is an element of L satisfying:

• For all s ∈ S, s ≤ supS.

• For any u ∈ L, if s ≤ u for all s ∈ S, then supS ≤ u.

2. inf S (the infimum or greatest lower bound of S) is an element of L satisfying:

• For all s ∈ S, inf S ≤ s.

• For any l ∈ L, if l ≤ s for all s ∈ S, then l ≤ inf S.

Every complete lattice possesses a least element (or bottom), denoted by

⊥ = inf L, and a greatest element (or top), denoted by ⊤ = supL. Importantly,

a complete lattice cannot be empty, as it must include at least the supremum

of the empty set, sup ∅. Additionally, every ascending or descending sequence

within a complete lattice forms a subset, which ensures that these sequences

converge, having a least upper bound or greatest lower bound, respectively.

2.4.3 Fixed Points

Fixed points play a crucial role in formalizing the semantics of programs

and defining predicate transformers, which are key tools in reasoning about

program correctness and behavior. The concept of a fixed point provides

a foundation for understanding recursive definitions and iterative processes

within a mathematical framework. In this section, we introduce the fundamental

definitions and theorems related to fixed points that will be utilized throughout

this thesis.

Definition 2.4.8 (Fixed Points). Given a function f : X → X, a fixed point

of f is an element x ∈ X such that x = f(x).
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The set of all fixed points of f is denoted by fix(f), defined as

fix(f) = {x ∈ X | x = f(x)}.

The notions of least and greatest fixed points are particularly important in

the context of lattices and monotonic functions, as they allow us to characterize

the minimal and maximal solutions to recursive equations.

Definition 2.4.9 (Least and Greatest Fixed Points). Given a partially ordered

set (X,≤) and a function f : X → X,

• The least fixed point of f , denoted by lfp(f), is defined as the smallest element

a∗ ∈ fix(f) such that a∗ ≤ a for all a ∈ fix(f).

• The greatest fixed point of f , denoted by gfp(f), is defined as the largest

element a∗ ∈ fix(f) such that a∗ ≥ a for all a ∈ fix(f).

The structures we consider in this thesis, particularly the sets on which

predicate transformers operate, are typically complete lattices. This structure

is essential, as it ensures the existence of least and greatest fixed points for

certain classes of functions. Specifically, functions that are Scott-continuous,

or simply continuous, are guaranteed to have these fixed points, making them

highly relevant in the study of domain theory and fixed-point semantics [87].

Definition 2.4.10 (Continuity [87]). Let (D,≤) be a complete lattice and let

Φ: D → D. Let Φ(S) denote the set {Φ(a) | a ∈ S}. The function Φ is called:

1. continuous if and only if for every ascending chain S = {s0 ≤ s1 ≤ s2 ≤

. . .} ⊆ D,

Φ(supS) = sup Φ(S),

2. co-continuous if and only if for every descending chain S = {s0 ≥ s1 ≥ s2 ≥

. . .} ⊆ D,

Φ(inf S) = inf Φ(S).
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The notion of continuity employed here, known as ω-(co)continuity, requires

that the function preserves the supremum (infimum) of chains of countable

length (ω). It is worth noting that under this definition, continuity implies

monotonicity.

Lemma 2.4.2 (Monotonicity of continuous and co-continuous functions). Every

continuous or cocontinuous function is monotonic.

Proof. Let a, b such that a ≤ b. Consider a continuous function Φ. We have:

Φ(a) ≤ sup {Φ(a),Φ(b)}

= sup Φ({a, b})

= Φ(sup {a, b}) (by continuity of Φ)

= Φ(b)

and hence Φ is monotonic. Similarly, consider now a co-continuous function Ψ;

we have:

Ψ(a) = Ψ(inf {a, b})

= inf Ψ({a, b}) (by co-continuity of Ψ)

= inf {Ψ(a),Ψ(b)}

≤ Ψ(b)

and hence Ψ is monotonic.

With these fundamental concepts established, we are now prepared to

discuss two important fixed-point theorems extensively utilized in this thesis.

The origins of these theorems trace back to Bronis law Knaster’s work in 1928,

who proved a weaker result in set theory [88; 89]. Subsequent theorems were

proved by Tarski [90] for arbitrary suprema-preserving functions and later

extended by Scott [91] and Cousot and Cousot [92]. Erroneously attributed to

Stephen Cole Kleene [93], it is often referred to as a folk theorem [89].
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Theorem 2.4.3 (Kleene Fixed Point Theorem, [87; 89]). Let (D,≤) be a

complete lattice with a least element ⊥ and a greatest element ⊤. Moreover, let

Φ: D → D be continuous and Ψ: D → D be co-continuous (therefore, Φ,Ψ are

monotonic). Then Φ has a least fixed point lfp Φ and Ψ a greatest fixed point

gfp Ψ, given by:

lfp Φ = sup
n∈N

Φn(⊥) and gfp Ψ = inf
n∈N

Ψn(⊤).

The Kleene Fixed Point Theorem will be employed to constructively

demonstrate the existence of least fixed points, which are heavily utilized

in our definitions of transformers for while loops. Additionally, we will rely

on an induction principle known as Park’s Lemma, Park’s Theorem, or Park

induction—also referred to as Fixpoint Induction [28, Theorem 22.1]—originally

attributed to David Park.

Lemma 2.4.4 (Park’s Lemma, [94]). Let (D,≤) be a complete lattice, let

d ∈ D, and let Φ: D → D be a monotonic function. Then:

Φ(d) ≤ d implies lfp Φ ≤ d,

and dually,

d ≤ Φ(d) implies d ≤ gfp Ψ.

The correctness of many induction rules for loops presented in this thesis

follows directly from Park’s Lemma. This concludes our overview of the

domain-theoretical concepts necessary for this work.



Chapter 3

Quantitative Strongest Post

This chapter is essentially a verbatim of the paper by Zhang and Kaminski

[17], with minor adaptations to fit the thesis format. We introduce a novel

strongest-postcondition-style calculus for quantitative reasoning about

non-deterministic programs with loops. Whereas existing quantitative weakest

pre allows reasoning about the value of a quantity after a program terminates

on a given initial state, quantitative strongest post allows reasoning about the

value that a quantity had before the program was executed and reached a given

final state. We show how strongest post enables reasoning about the flow of

quantitative information through programs.

Similarly to weakest liberal preconditions, we also develop a quantitative

strongest liberal post. As a byproduct, we obtain the notion of strongest

liberal postconditions and show how these foreshadow a potential new

program logic — partial incorrectness logic — which would be a more

liberal version of O’Hearn’s Incorrectness logic [6].

3.1 Introduction

Partial Correctness

Already in one of the earliest works on program verification, Turing [59] sepa-

rates reasoning about partial correctness and termination. Partial correctness

means that the program is correct, if it terminates. Nontermination is in that

sense deemed “correct” behavior. Hoare triples [2] capture partial correctness
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formally: Given program C and predicates G,F , we say that |= {G } C {F }

is valid for partial correctness, if from every state σ satisfying precondition G,

C either terminates in some state satisfying postcondition F , or C does not

terminate on σ.

A different approach to partial correctness are the weakest liberal precon-

ditions of Dijkstra [63]: Given program C and postcondition F , the weakest

liberal precondition is the weakest (largest) predicate wlpJCK (F ), such that

starting from any state σ satisfying the precondition wlpJCK (F ), C either ter-

minates in some state satisfying the postcondition F , or C does not terminate

on σ. wlpJCK ( ) is a called a backward-moving predicate transformer seman-

tics, because it transforms a postcondition (a predicate) F into a precondition

(another predicate) wlpJCK (F ).

A different predicate transformer semantics are the forward-moving

strongest postconditions of Dijkstra and Scholten [64]: they transform a precon-

dition G into the strongest (smallest) predicate sp JCK (G), such that sp JCK (G)

contains all states that can be reached by executing C on some state satisfying

the precondition G. Hoare triples, weakest liberal preconditions, and strongest

postconditions are strongly related by the following well-known fact:

|= {G } C {F } is valid for partial correctness

iff

G =⇒ wlpJCK (F )

iff

sp JCK (G) =⇒ F .

Having a choice between wlp and sp is beneficial because sometimes the partial

correctness proof can be easier in the, say, forward direction than in the

backward direction.

Quantitative Verification

Backward-moving predicate transformers have been generalized to real-valued-

function transformers, first by Kozen [13], in order to reason about probabilistic

programs, e.g. about the probability that some postcondition will be satisfied
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after program termination. For the forward direction, Jones [95] presented

a counterexample to the existence of probabilistic strongest postconditions.

While we will defer reasoning about probabilistic programs in Chapter 4, we will

in this chapter develop a quantitative strongest post transformer for reasoning

about nondeterministic programs.

Intuitively, quantitative predicate-transformer-style calculi lift reasoning

from predicates F : States→ {true, false}

to quantities f : States→ R±∞ ,

i.e. functions f that associate a real number (or +∞ or −∞) to each state.

Given a postquantity f associating a number to final states, our backward-

moving weakest liberal pre transformer wlpJCK (f) : States→ R±∞ associates

numbers to initial states, so that wlpJCK (f) (σ) anticipates what value f

will have after C terminates on σ (and wlp anticipates +∞ if C does not

terminate on σ).

(( 2x + 2

x := x+ 1

(( 2x

For example, what is the anticipated value of 2x after

executing the assignment x := x+ 1? Our quantitative weakest

liberal pre calculus will push the “assertion” 2x backward

through the program, obtaining the annotations on the right

(read from bottom to top).

Indeed, given an initial value xσ = 5 for the program variable x, the final

value of the expression 2x will be 2xσ + 2 = 2 · 5 + 2 = 12.

While counterintuitive — since wlp moves backwards —, wlp acts

like a weather forecast : Given the current state σ of the global atmo-

sphere, a function f mapping atmosphere state to the temperature in Auck-

land, and an (algorithmic) description C of how the atmosphere evolves

within 24 hours, wlpJCK (f) (σ) anticipates now what the temperature in

Auckland will be tomorrow .

In this chapter, we develop a quantitative strongest post transformer sp with

as strong a connection (more precisely: a Galois connection) to quantitative
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wlp as in the qualitative case, namely

g ⪯ wlpJCK (f) iff sp JCK (g) ⪯ f .

Dually to wlp, our forward-moving strongest post transformer acts like a

weather backcast : Given the current global atmosphere state τ , sp JCK (f) (τ)

retrocipates now what the temperature in Auckland was yesterday. Speaking in

terms of programs and quantities, given a prequantity f associating a number

to initial states, sp JCK (f) : States→ R±∞ associates numbers to final states,

such that sp JCK (f) (τ) retrocipates what value f had in an initial state before

C terminated in τ (and sp retrocipates −∞ if τ is not reachable by executing

C on some initial state).

(( 2x

x := x+ 1

(( 2x − 2

For example, what is the retrocipated value of 2x before

the assignment x := x + 1? Our quantitative strongest post

calculus will push the “assertion” 2x forward through the

program, obtaining the annotations on the right (read from

top to bottom). Indeed, given a final value xτ = 5 for the

program variable x, the initial value of the expression 2x must have been

2xτ − 2 = 2 · 5− 2 = 8.

Notably, our quantitative strongest post transformer provides some notion

of flow of quantitative information through the program: If we start the above

program with initial value xσ = 4 for x, then we have initially 2xσ = 2 · 4 = 8.

After the execution of the program, the final value of x is xτ = 5. The

expression 2x− 2 evaluated in xτ is again 2 · xτ = 2 · 5− 2 = 8. In that sense,

our quantitative sp takes a quantity — for instance: a secret value — and

propagates through the program an expression which preserves the value of

the initial quantity. Given some final state, we can hence read off what the

quantity was initially and so reason about quantitative flow and leakage of

information.
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Contributions and Organization

Not being our main contribution, we present in Sec. 3.3 quantitative wp and

wlp. Differently from [14; 96; 16], our quantitative transformers act on signed

unbounded quantities in R±∞, whereas traditional probabilistic wlp act on

[0, 1] and wp on R∞
≥0.

In Section 3.4, we present our main contribution: a novel quantitative

strongest post transformer sp as described above. Moreover, we provide a

quantitative strongest liberal post transformer slp, which gives a different value

than sp to unreachable states (whereas wlp gives a different value than wp to

nonterminating states). We study essential properties of all our transformers in

Section 3.5 and show how they embed reasoning about predicates à la Dijkstra

and Scholten [64].

In Section 3.6, we show that slp has as tight a (Galois) connection to wp

as sp to wlp, namely

wp JCK (f) ⪯ g iff f ⪯ slpJCK (g) .

When restricting to predicates, our slp transformer yields the novel notion of

strongest liberal postconditions, later investigated by Verscht et al. [97]; Oda

[98] among others. While it is known that strongest postconditions are tightly

connected with the recent incorrectness logic of O’Hearn [6], we show how slp

foreshadows a new program logic — partial incorrectness logic. We also hint at

two further new program logics: one of necessary liberal preconditions and one

of necessary liberal postconditions.

In Section 3.7, we present proof rules for loops for all four quantitative

transformers. In Section 3.8 we demonstrate efficacy of sp and slp for reasoning

about the flow of quantitative information.
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3.2 Nondeterministic Programs

The syntax of the nondeterministic guarded command language (nGCL) à la

Dijkstra is given by

C ::= skip (effectless statement)

| x := e (assignment)

| C # C (sequential composition)

| {C } □ {C } (nondeterministic choice)

| if (φ ) {C } else {C } (conditional choice)

| while (φ ) {C } , (loop)

where x ∈ Vars is a variable, e is an arithmetic expression and φ is a predicate.

A program state σ is a function that assigns an integer to each program variable.

The set of program states is given by

Σ = {σ | σ : Vars→ Z } .

Given a program state σ, we denote by σ(ξ) the evaluation of an arithmetic or

Boolean expression ξ in σ, i.e. the value that is obtained by evaluating ξ after

replacing any occurrence of any variable x in ξ by the value σ(x). Moreover, we

denote by σ [x/v] a new state that is obtained from σ by setting the valuation

of the variable x ∈ Vars to v ∈ Z. Formally:

σ [x/v] = λy :

v if y = x

σ(y) otherwise .

We assign meaning to our nondeterministic nGCL-statements in terms

of a denotational collecting semantics (as is standard in program analysis,

see [3; 99; 100]), i.e. we have as input a set of initial states and as output the

set of reachable states.
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Definition 3.2.1 (Collecting Semantics for nGCL Programs). Let Conf = P(Σ)

be the set of program configurations, i.e. a single configuration is a set of

program states; and let JφKS = {σ | σ ∈ S ∧ σ |= φ} be a filtering of a

program configuration to only those states where the predicate φ holds.

The collecting semantics JCK : Conf → Conf of an nGCL program C is

defined inductively by

JskipKS = S (effectless program)

Jx := eKS = {σ [x/σ(e)] | σ ∈ S} (assignment)

JC1 # C2KS = (JC2K ◦ JC1K)S (sequential composition)

Jif (φ ) {C1 } else {C2 }KS = (JC1K ◦ JφK)S ∪ (JC2K ◦ J¬φK)S

(conditional choice)

Jwhile (φ ) {C }KS = J¬φK
(
lfp X : S ∪

(
JCK ◦ JφK

)
X
)

(loop)

J{C1 } □ {C2 }KS = JC1KS ∪ JC2KS . (nondeterministic choice)

By slight abuse of notation, we write JCK(σ) for JCK{σ}. △

Let us explain the semantics of while (φ ) {C }. Let S again be the set of

input states. First, we denote by FS the function

FS(X) = S ∪
(
JCK ◦ JφK

)
X ,

i.e. FS first applies the filtering with respect to the loop guard φ to its input X,

then applies the semantics of the loop body C to the filtered set, and finally

unions that result with the given set of input states S. Using FS, the collecting

semantics for while loops can be expressed as

Jwhile (φ ) {C }KS = J¬φK
(
lfp X : FS(X)

)
,

where the least fixed point above is understood with respect to the partial

order of set inclusion, which renders the structure ⟨Conf, ⊆⟩ a complete lattice
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with least element ∅. The least fixed point above filtered by ¬φ expresses

exactly the set Jwhile (φ ) {C }KS of final states reachable after termination

of while (φ ) {C } starting from any initial state in S. We remark that to

determine the least fixed point of the continuous function FS, it is sufficient

to apply Kleene’s fixpoint theorem and, as a result, we have that the infinite

ascending chain ∅ ⊆ F 1
S(∅) ⊆ F 2

S(∅) ⊆ . . . F ω
S (∅), where F i+1

S (X) = FS(F i
S(X)),

converges in at most ω iterations.

Example 3.2.1 (Collecting Semantics of While Loops). Assume there is only

a single program variable x and consider the configuration S = {{x 7→ 0}, {x 7→

8}}. We now want to execute the loop while (x > 5 ) {x := x+ 1 } on this

configuration and collect the reachable states. By our definition above, we have

Jwhile (x > 5 ) {x := x+ 1 }KS = Jx ≤ 5K
(
lfp X : FS(X)

)
, where

FS(X) = S ∪
(
JCK ◦ JφK

)
X

= {{x 7→ 0}, {x 7→ 8}} ∪ {σ [x/x+ 1] | σ ∈ X, σ(x) > 5 } .

The Kleene iterates are:

F (∅) =
{
{x 7→ 0}, {x 7→ 8}

}
∪ ∅

F 2(∅) =
{
{x 7→ 0}, {x 7→ 8}

}
∪
{
{x 7→ 9}

}
F 2(∅) =

{
{x 7→ 0}, {x 7→ 8}

}
∪
{
{x 7→ 9}, {x 7→ 10}

}
...

F ω(∅) =
{
{x 7→ 0}

}
∪
{
{x 7→ i}

∣∣ i ≥ 9
}

After filtering F ω(∅) by the negation of the loop guard, we obtain the loop’s

collecting semantics

Jwhile (x > 5 ) {x := x+ 1 }KS = Jx ≤ 5K
(
F ω(∅)

)
=
{
{x 7→ 0}

}
. △
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3.3 Weakest Pre

We develop novel weakest (liberal) pre calculi á la Dijkstra [63] for quantitative

reasoning about nondeterministic programs. While we repeat that the weakest

pre calculi are not our main contribution (that being the quantitative strongest

post calculi), we believe that weakest pre calculi are easier to understand and

provide the necessary intuition for moving from the Boolean to the quantitative

realm. We first shortly recap Dijkstra’s classical weakest preconditions before

we lift them to a quantitative setting. Thereafter, we lift weakest liberal

preconditions to quantities.

3.3.1 Classical Weakest Preconditions

Dijkstra’s weakest precondition calculus employs predicate transformers of type

wpJCK : B → B , where B = {0, 1}Σ ,

which associate to each nondeterministic program C a mapping from predicates

(sets of program states) to predicates. Somewhat less common, we consider here

an angelic setting, where the nondeterminism is resolved to our advantage.1

Specifically, the angelic weakest precondition transformer wpJCK maps a post-

condition ψ over final states to a precondition wp JCK (ψ) over initial states,

such that executing the program C on an initial state satisfying wp JCK (ψ)

guarantees that C can2 terminate in a final state satisfying ψ. More symbolically,

recalling that JCK(σ) is the set of all final states reachable after termination of

C on σ,

σ |= wp JCK (ψ) iff ∃ τ ∈ JCK(σ) : τ |= ψ .

1Considering an angelic setting allows us not only to show that our transformers enjoy
several properties, but also to provide tight connections between quantitative weakest
preconditions and quantitative strongest postconditions.

2Recall that C is a nondeterministic program. For the (standard) demonic setting as well
as for deterministic programs, we can replace “can” by “will”.
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σ

□

□

• • • . . .
ψ(τ1)

ψ(τ2) ψ(τ3)

∨ [ ]C

wp JCK (ψ)

(a) Weakest preconditions: Given ini-
tial state σ, wp JCK (ψ) determines all
final states τi reachable from execut-
ing C on σ, evaluates ψ in those states,
and returns the disjunction (∨) over
all these truth values.

σ

□

□

• • • . . .
f(τ1)

f(τ2) f(τ3)

b [ ]C

wp JCK (f )

(b) Quantitative weakest pre: Given
initial state σ, wp JCK (f) determines
all final states τi reachable from exe-
cuting C on σ, evaluates f in those
states, and returns the supremum (⋎)
over all these quantities.

Figure 3.1: (Angelic) weakest precondition and quantitative weakest precondition

While the above is a set perspective on wp, an equivalent perspective on wp

is a map perspective, see Figure 3.1a: The postcondition ψ : Σ→ {0, 1} maps

program states to truth values. The predicate wp JCK (ψ) is then a map that

takes as input an initial state σ, determines for each reachable final state

τ ∈ JCK(σ) the (truth) value ψ(τ), takes a disjunction over all these truth

values, and finally returns the truth value of that disjunction. More symbolically,

wp JCK (ψ) (σ) =
∨

τ∈JCK(σ)

ψ(τ) .

It is this map perspective which we will now gradually lift to a quantitative

setting. For that, we first need to leave the realm of Boolean valued predicates

and move to real-valued functions.

3.3.2 Quantities

For our development here, we are interested in signed quantities. Such quantities

form — just like first-order logic for weakest preconditions — the assertion

“language” of our quantitative calculi.
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Definition 3.3.1 (Quantities). The set of all quantities is defined by

A =
{
f
∣∣ f : Σ→ R±∞ }

i.e. the set of all functions f : Σ → R±∞ associating an extended real (i.e.

either a proper real number, or −∞, or +∞) to each program state. The

point-wise order

f ⪯ g iff ∀σ ∈ Σ: f(σ) ≤ g(σ)

renders ⟨A, ⪯⟩ a complete lattice with join ⋏ and meet ⋎, given point-wise by

f ⋏ g = λσ : min
{
f(σ), g(σ)

}
and f ⋎ g = λσ : max

{
f(σ), g(σ)

}
.

Joins and meets over arbitrary subsets exist. When we write a ⋎ b ⋏ c, we

assume that ⋏ binds stronger than ⋎, so we read that as a⋎ (b⋏ c). △

Remark 3.3.1 (Signed Quantities). Kozen [13] also considers signed functions

for reasoning about probabilistic programs. However, Kozen’s induction rule for

while loops only applies to non-negative functions, see [13, page 168]. Kaminski

and Katoen [101] have rules for probabilistic loops and signed functions, but

their machinery is quite involved and their rule for loops is more involved than

simple induction. Our development in this chapter is — on the plus-side —

comparatively simple, but — as a trade-off — we cannot handle probabilistic

programs. △

3.3.3 Quantitative Weakest Pre

We now define a calculus á la Dijkstra for formal reasoning about the value of

a quantity f ∈ A after execution of a nondeterministic program. For that, we

generalize the map perspective of weakest preconditions to quantities. Instead

of a postcondition, we now have a postquantity f : Σ→ R±∞ mapping (final)

program states to extended reals. wp JCK (f) : Σ → R±∞ is then a function

that takes as input an initial state σ, determines all final states τ reachable
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from executing C on σ, evaluates the postquantity f(τ) in each final state τ ,

and finally returns the supremum over all these so-determined quantities, see

Figure 3.1b. If the program is completely deterministic and if C terminates

on input σ, then wp JCK (f) (σ) anticipates the single possible value that f will

have, evaluated in the final state that is reached after executing C on σ.

One of the main advantages of Dijkstra’s calculus is that the weakest

preconditions can be defined by induction on the program structure, thus allow-

ing for compositional reasoning. Indeed, the same applies to our quantitative

setting.

Definition 3.3.2 (Quantitative Weakest Pre). The weakest pre transformer

wp : nGCL→ (A→ A)

is defined inductively according to the rules in Table 3.1. We call the function

Φf (X) = [¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (X) ,

whose least fixed point defines the weakest pre wp Jwhile (φ ) {C }K (f), the

wp–characteristic function (of while (φ ) {C } with respect to f). △

Let us show for some of the rules how the quantitative weakest pre semantics

can be developed and understood analogously to Dijkstra’s classical weakest

preconditions.

Effectless Program.

For the effectless program skip, what is the anticipated value of f after

executing skip? It is again just f , and so wp JskipK (f) = f .

Assignment.

The weakest precondition of an assignment is given by

wp Jx := eK (ψ) = ψ [x/e] ,
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C wp JCK (f)

skip f

diverge −∞

x := e f [x/e]

C1 # C2 wp JC1K
(
wp JC2K (f)

)
{C1 } □ {C2 } wp JC1K (f) ⋎ wp JC2K (f)

if (φ ) {C1 } else {C2 } [φ] ⋏ wp JC1K (f) ⋎ [¬φ] ⋏ wp JC2K (f)

while (φ ) {C ′ } lfp X : [¬φ] ⋏ f ⋎ [φ] ⋏ wp JC ′K (X)

Table 3.1: Rules for the weakest pre transformer. Here, lfp f : Φ(f) denotes the
least fixed point of Φ.

where ψ [x/e] is the replacement of every occurrence of variable x in the

postcondition ψ by the expression e. For quantitative weakest pre, we can do

something completely analogous, except that we do not have a syntax like

first-order logic for the postquantities at hand.3 Still, we can define semantically

what it means to “syntactically replace” every “occurrence” of x in f by e —

and with it the quantitative weakest pre of an assignment — as follows:

wp Jx := eK (f) = f [x/e] := λσ : f
(
σ [x 7→ σ(e)]

)
.

So what is the value of f in the final state reached after executing the assign-

ment x := e on initial state σ? It is precisely f , but evaluated at the final state

σ [x 7→ σ(e)] — the state obtained from σ by updating variable x to value σ(e).

Nondeterministic Choice.

When “executing” the nondeterministic choice {C1 } □ {C2 } on some initial

state σ, either C1 or C2 will be executed, chosen nondeterministically. Hence,

the execution will reach either a final state in which executing C1 on σ terminates

or a final state in which executing C2 on σ terminates (or no final state if both

computations diverge).

3For probabilistic programs, an expressive and relatively complete (with respect to taking
weakest preexpectations) syntax for expressing functions (expectations) of type Σ→ R∞

≥0

has been presented in [102].
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Denotationally, the angelic weakest precondition of {C1 } □ {C2 }

is given by

wp J{C1 } □ {C2 }K (ψ) = wp JC1K (ψ) ∨ wp JC2K (ψ) .

Indeed, whenever an initial state σ satisfies the precondition wp JC1K (ψ) ∨

wp JC2K (ψ), then — either by executing C1 or by executing C2 — it is pos-

sible that the computation will terminate in some final state satisfying the

postcondition ψ.

Quantitatively, what is the anticipated value of f after termination of

either C1 or C2? Since C1 and C2 could both terminate but very well yield

different values for f , we need to accommodate for two different numbers. In

the maximizing spirit of angelic wp, we also maximize and select as quantitative

weakest pre of {C1 } □ {C2 } the largest possible final value of f via the join

wp J{C1 } □ {C2 }K (f) = wp JC1K (f) ⋎ wp JC2K (f) .

Diverge.

diverge is a shorthand for while ( true ) { skip } — the certainly diverging

loop. Denotationally, the weakest precondition of diverge is given by

wp JdivergeK (ψ) = false .

As there is no initial state that satisfies false, this simply tells us that there is

no initial state on which diverge could possibly terminate in any final state

satisfying ψ.

Note that the predicate false is the least element in the Boolean lattice.

When lifting this to a quantitative setting, we also assign the least element.

Hence,

wp JdivergeK (f) = −∞ .
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Another explanation goes by considering again the angelic, i.e. maximizing,

aspect of quantitative weakest pre: What is the maximal value that we can an-

ticipate for f after diverge has terminated? Since diverge does not terminate

at all (but we are still forced to assign some “number” to this situation), the

largest value that we can possibly anticipate is the absolute minimum: −∞.

Remark 3.3.2 (Quantitative Weakest Pre and Nontermination). In some

sense, −∞ is the value of nontermination in quantitative wp. Note that it

is more tedious to detect nontermination by standard weakest preconditions:

Consider e.g. the program diverge and postcondition “x is odd”. Then

wp JdivergeK (x is odd) = false .

On the other hand, for the terminating program x := 2 · x, we also have

wp Jx := 2 · xK (x is odd) = 2 · x is odd = false .

Thus, wp JCK (ψ) (σ) = false is not a sufficient criterion for detecting nonter-

mination of C on σ. false merely tells us that the program either does not

terminate or it fails to establish the postcondition. To distinguish the two

cases, one needs to check, additionally, whether σ terminates, i.e., whether

wp JCK (true) (σ) holds.

In our quantitative wp calculus, given any non-infinite postquantity f , our

wp transformer distinguishes whether the program terminates or not in one

go. Indeed, if −∞ ⪯ f ⪯ +∞ and wp JCK (f) (σ) = 0, then definitely

C terminates on σ and f assumes value 0 after termination of C on σ. For

instance, for postquantity x we have

wp JdivergeK (x) = −∞ and wp Jx := 2 · xK (x) = 2 · x ,

and can thus read off that the program diverge indeed does not terminate,

whereas, since x > −∞, we can see that x := 2 · x does always terminate. △
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Conditional Choice.

When executing if (φ ) {C1 } else {C2 } on some initial state σ, the branch

C1 is executed σ satisfies the predicate φ and otherwise C2 is executed.

Denotationally, the weakest precondition of if (φ ) {C1 } else {C2 } is

given by

wp Jif (φ ) {C1 } else {C2 }K (ψ) = φ ∧ wp JC1K (φ) ∨ ¬φ ∧ wp JC2K (φ) ,

where — as usual — ∧ binds stronger than ∨. Indeed, whenever an initial

state σ satisfies the above precondition then either σ |= φ and then — since then

σ must also satisfy wp JC1K (ψ) — executing C1 can terminate in a final state

satisfying φ, or σ ̸|= φ and then — since then σ must also satisfy wp JC2K (ψ)

— executing C2 can terminate in a final state satisfying φ.

In order to mimic the above in a quantitative setting, we make use of

so called Iverson brackets [103]. Usually, these turn a predicate φ into an

indicator function [φ]
std

: Σ→ {0, 1}, which map a state σ to 1 or 0, depending

on whether σ |= φ or not. In our extended real setting, however, we need to

slightly adapt the Iverson brackets as follows:

Definition 3.3.3 (Extended Iverson Brackets). For a predicate φ, we define

the extended Iverson bracket [φ] : Σ→ {−∞, +∞} by

[φ] (σ) =


+∞ if σ |= φ

−∞ otherwise. △

Intuitively, this choice is motivated by the fact that −∞,+∞ are respectively

the bottom and top element of the lattice, and equipped with ⋎,⋏, they behave

exactly as the boolean values true, false with ∨,∧. Using these Iverson brackets,

we define the quantitative weakest pre of conditional choice by

wp Jif (φ ) {C1 } else {C2 }K (f) = [φ] ⋏ wp JC1K (f) ⋎ [¬φ] ⋏ wp JC2K (f)
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(Recall that ⋏ binds stronger than ⋎.) If the current program state σ satisfies φ,

then [φ] evaluates to +∞ — the greatest element of A. Taking a minimum

(⋏) with wp JC1K (f) will thus yield exactly wp JC1K (f). [¬φ], on the other

hand, then evaluates to −∞ — the smallest element of A. Taking a minimum

with any other lattice element will again yield −∞. Finally, we then take

a maximum (⋎) between wp JC1K (f) and −∞, yielding wp JC1K (f). This is

precisely the quantity that we would expect to anticipate for f , if σ |= φ,

because then C1 is executed and wp JC1K (f) anticipates the value of f after

execution of C. The situation for σ ̸|= φ is completely dual, yielding wp JC2K (f).

Indeed, depending on whether an initial state satisfies φ or not, the quantitative

weakest pre anticipates either wp JC1K (f) or wp JC2K (f).

Remark 3.3.3. We note that our wp rule for conditional choice is different

from e.g. [13; 104; 16], who use standard instead of extended Iverson brackets,

multiplication instead of minimum, and summation instead of maximum, i.e.

wp Jif (φ ) {C1 } else {C2 }K (f) = [φ]
std
· wp JC1K (f) + [¬φ]

std
· wp JC2K (f)

This rule, however, would fail in our context of signed quantities because of

issues with +∞ · −∞. △

Sequential Composition.

What is the anticipated value of f after executing C1 # C2, i.e. the value of f

after first executing C1 and then C2? To answer this, we first anticipate the

value of f after execution of C2 which gives wp JC2K (f). Then, we anticipate the

value of the intermediate quantity wp JC2K (f) after execution of C1, yielding

wp JC1 # C2K (f) = wp JC1K (wp JC2K (f)) .

Looping.

The quantitative weakest pre of a loop while (φ ) {C } is defined as a least

fixed point of the wp–characteristic function Φf : A → A. This function is
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chosen in a way so that iterating Φf on the least element of the lattice −∞

essentially yields an ascending chain of loop unrollings

Φf (−∞) = wp Jif(φ){diverge}K (f)

Φ2
f (−∞) = wp Jif(φ){C # if(φ){diverge}}K (f)

Φ3
f (−∞) = wp Jif(φ){C # if(φ){C # if(φ){diverge}}}K (f)

and so on, whose supremum is the least fixed point of Φf .

Let us now state in which sense our weakest pre semantics is sound:

Theorem 3.3.1 (Characterization of wp). For all programs C and initial states

σ,

wp JCK (f) (σ) =
j

τ∈JCK(σ)

f(τ) .

Intuitively, for a given postquantity f and initial state σ, wp JCK (f) (σ) is

the supremum over all the values that f can assume measured in the final

states reached after successful termination of the program C on initial state

σ. In case of no terminating state, i.e. JCK(σ) = ∅, that supremum be-

comes −∞ — the absolute minimal value. In particular, if ∀ τ : f(τ) > −∞,

then wp JCK (f) (σ) = −∞ unambiguously indicates nontermination of C on

input σ.

3.3.4 Weakest Liberal Pre

Besides weakest preconditions, Dijkstra also defines weakest liberal precondi-

tions. The weakest liberal precondition transformer is again of type

wlpJCK : B → B ,

associating to each nondeterministic program C a mapping from predicates

to predicates. For reasons of duality, we now consider a demonic setting,

where the nondeterminism is resolved to our disadvantage. The difference from
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nonliberal weakest preconditions, however, is that nonterminating behavior is

deemed good behavior (i.e. as if the program terminated in a state satisfying

the postcondition). Specifically, the demonic weakest liberal precondition

transformer wlpJCK maps a postcondition ψ over final states to a precondition

wlpJCK (ψ) over initial states, such that executing C on an initial state satisfying

wlpJCK (ψ) guarantees that C will either not terminate, or terminate in a final

state satisfying ψ. More symbolically, recalling that JCK(σ) is the set of all

final states reachable after termination of C on σ,

σ |= wlpJCK (ψ) iff ∀ τ ∈ JCK(σ) : τ |= ψ ,

where the right-hand-side of the implication is vacuously true if JCK(σ) = ∅,

i.e. if C does not terminate on σ. From the map perspective, wlpJCK (ψ) is a

function that takes as input an initial state σ, determines for each reachable

final state τ ∈ JCK(σ) the (truth) value ψ(τ), and returns a conjunction over

all these truth values. More symbolically,

wlpJCK (ψ) (σ) =
∧

τ∈JCK(σ)

ψ(τ) ,

where the conjunction over an empty set is — as is standard — given by true.

Just like a conjunction in some sense minimizes truth values, our quantita-

tive weakest liberal pre should also minimize, while at the same time assigning a

maximal value to nontermination. This is captured by the following transformer:

Definition 3.3.4 (Quantitative Weakest Liberal Pre). The quantitative weak-

est liberal pre transformer

wlp : nGCL→ (A→ A)

is defined inductively according to the rules in Table 3.2 (right column). We
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C wlp JCK (f)

skip f

diverge +∞

x := e f [x/e]

C1 # C2 wlpJC1K
(
wlpJC2K (f)

)
{C1 } □ {C2 } wlpJC1K (f) ⋏ wlpJC2K (f)

if (φ ) {C1 } else {C2 } [φ] ⋏ wlpJC1K (f) ⋎ [¬φ] ⋏ wlpJC2K (f)

while (φ ) {C ′ } gfp X : [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJC ′K (X)

Table 3.2: Rules for the weakest liberal pre transformer. Here, gfp f : Φ(f) denotes
the greatest fixed point of Φ.

call the function

Φf (X) = [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (X) ,

whose greatest fixed point defines wlpJwhile (φ ) {C }K (f), the wlp–

characteristic function (of while (φ ) {C } with respect to f). △

The rules for assignments, sequential composition, and conditional choice are

the same as for wp. This is unsurprisingly so, since those rules pertain neither

to nontermination nor to nondeterminism. Let us thus go over the rules for

the language constructs, where the rules for wlp and wp differ.

Diverge.

Since diverge is certainly nonterminating and liberal preconditions deem this

good behavior, the weakest liberal precondition of diverge is given by

wlpJdivergeK (ψ) = true .

Note that true is the greatest element in the Boolean lattice. When moving to

quantities, we also assign to nonterminating behavior the greatest element, i.e.

wlpJdivergeK (f) = +∞ .
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Remark 3.3.4 (Quantitative Weakest Liberal Pre and Nontermination). Anal-

ogously to −∞ being the the value of nontermination in wp (see Remark 3.3.2),

+∞ is the value of nontermination in wlp. △

Nondeterministic Choice.

Since weakest liberal pre is demonic, we ask in wlp for the minimal anticipated

value of f after termination of C1 or C2. Hence the rule is dually given by the

meet

wlpJ{C1 } □ {C2 }K (f) = wlpJC1K (f) ⋏ wlpJC2K (f) .

Notice that if either C1 or C2 yield +∞ because of nontermination, the wlp

above will select as value the respective other branch if that one terminates.

Looping.

The weakest liberal pre of a loop while (φ ) {C } is defined as a greatest fixed

point of the wlp–characteristic function Φf : A→ A. This function is chosen in

a way so that iterating Φf on the greatest element of the lattice +∞ essentially

yields a descending chain of loop unrollings

Φf (+∞) = wlpJif(φ){diverge}K (f)

Φ2
f (+∞) = wlpJif(φ){C # if(φ){diverge}}K (f)

Φ3
f (+∞) = wlpJif(φ){C # if(φ){C # if(φ){diverge}}}K (f)

and so on, whose infimum is the greatest fixed point of Φf .

After having provided an intuition, let us now state in which sense our

weakest liberal pre semantics is sound:

Theorem 3.3.2 (Characterization of wlp). For all programs C and states
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σ ∈ Σ,

wlpJCK (f) (σ) =
k

τ∈JCK(σ)

f(τ) .

Intuitively, for a given postquantity f and initial state σ, the quantitative

weakest liberal pre wlpJCK (f) (σ) is the infimum over all values that f can

assume measured in the final states after termination of the program C on

initial state σ. In case of no terminating state, i.e. JCK(σ) = ∅, that infimum

automatically becomes +∞ — the absolute maximal value. In particular,

if ∀ τ : f(τ) < +∞, then wlpJCK (f) (σ) = +∞ unambiguously indicates non-

termination of C on input σ.

3.4 Strongest Post

We now present our main contribution: A lifting of the strongest postcondition

calculus of Dijkstra and Scholten [64] to quantities and a completely novel

(quantitative) strongest liberal post calculus. To the best of our knowledge, a

strongest liberal post(condition) has never been proposed before, not even in

the qualitative setting.4 We again start by recapping the classical calculus.

3.4.1 Classical Strongest Postconditions

Dijkstra and Scholten’s strongest postcondition calculus employs predicate

transformers of type

spJCK : B → B , where B = Σ→ {0, 1} ,

which associate to each nondeterministic program C a mapping from predicates

(sets of program states) to predicates. Strongest post transformers, analogously

to the collecting semantics, characterize the set states that can be reached, so

that an angelic setting is chosen to resolve nondeterminism to our advantage.

Concretely, the angelic strongest postcondition transformer spJCK maps a pre-

4Although some authors do use the term “strongest liberal postcondition”, see Section 3.9
for a comparison.



3.4. Strongest Post 68

τ

□ •

• • • . . .

. . .

ψ(σ1) ψ(σ2) ψ(σ3)

∨ [ ]

C

sp JCK (ψ)

(a) Strongest postconditions: Given
final state τ , sp JCK (ψ) determines all
initial states σi that can reach τ by ex-
ecuting C, evaluates ψ in those states,
and returns the disjunction over all
these truth values.

τ

□ •

• • • . . .

. . .

f(σ1) f(σ2) f(σ3)

b [ ]

C

sp JCK (f )

(b) Quantitative strongest post:
Given final state τ , sp JCK (f)
determines all initial states σi
that can reach τ by executing C,
evaluates f in those states, and
returns the supremum (⋎) over all
these quantities.

Figure 3.2: Angelic strongest postconditions and quantitative strongest posts.

condition ψ over initial states to a postcondition sp JCK (ψ) over final states,

such that every state in the postcondition is reachable from some initial state

satisfying ψ. This corresponds exactly with the definition of the collecting

semantics JCK(σ): In fact,

τ |= sp JCK (ψ) iff ∃σ with τ ∈ JCK(σ) : σ |= ψ .

As we did for weakest pre, let us provide a map perspective on strongest

postconditions, see Figure 3.2a. From this perspective, the precondition ψ : Σ→

{0, 1} maps program states to truth values. The predicate sp JCK (ψ) is then a

map that takes as input a final state τ , determines for all initial states σ that

can reach τ the (truth) value ψ(σ), and returns the disjunction (∨) over all

these truth values:

sp JCK (ψ) (τ) =
∨

σ with τ∈JCK(σ)

ψ(σ) .

In other words: Given a final state τ , sp JCK (ψ) (τ) retrodicts whether before

executing C the predicate ψ could have been true. In the following, we define

quantitative strongest post and strongest liberal post calculi which retrocipate
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values of signed quantities before the execution of a nondeterministic program

(whereas wp and wlp anticipate values after the execution).

3.4.2 Quantitative Strongest Post

Let us generalize the map perspective of strongest postconditions to quan-

tities. Instead of a precondition, we now have a prequantity f : Σ → R±∞.

sp JCK (f) : Σ → R±∞ is then a function that takes as input a final state τ ,

determines all initial states σ that can reach τ by executing C, evaluates the

prequantity f(σ) in each of those initial states σ, and finally returns the supre-

mum over all these so-determined quantities, see Figure 3.2b. As a transformer,

we obtain the following:

Definition 3.4.1 (Quantitative Strongest Post). The strongest post trans-

former

sp : nGCL→ (A→ A)

is defined inductively according to the rules in Table 3.3. We call the function

Ψf (X) = f ⋎ sp JCK ([φ] ⋏X) ,

whose least fixed point is used to define sp Jwhile (φ ) {C }K (f), the sp–charac-

teristic function of while (φ ) {C } with respect to f . △

Again, let us go over some of the rules for quantitative sp and show how they

can be developed and understood analogously to strongest postconditions.

Effectless Program

What is the retrocipated value of f before executing skip? It is again just f .

sp JskipK (f) is hence the identity function.
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C sp JCK (f)

skip f

diverge −∞

x := e Sα : [x = e [x/α]] ⋏ f [x/α]

C1 # C2 sp JC2K
(
sp JC1K (f)

)
{C1 } □ {C2 } sp JC1K (f) ⋎ sp JC2K (f)

if (φ ) {C1 } else {C2 } sp JC1K ([φ] ⋏ f) ⋎ sp JC2K ([¬φ] ⋏ f)

while (φ ) {C ′ } [¬φ] ⋏
(
lfp Y : f ⋎ sp JC ′K ([φ] ⋏ Y )

)
Table 3.3: Rules for the strongest post transformer. Here, lfp f : Φ(f) denotes the

least fixed point of Φ and Sα : f(α) denotes a supremum of f(α) ranging
over all values of α.

Assignment.

Dijkstra and Scholten’s strongest postcondition of an assignment is given by

sp Jx := eK (ψ) = ∃α : x = e [x/α]︸ ︷︷ ︸
(1)

∧ ψ [x/α]︸ ︷︷ ︸
(2)

.

Intuitively, the quantified α represents an initial value that x could have had

before executing the assignment. (If at all possible), the α is chosen in a way

so that

1. x has in the final state the value of expression e but evaluated using x’s

initial value α, and

2. the precondition ψ was true in the initial state where x had value α.

For quantities, we note that, regarding (1), there could have been multiple

valid initial values α for x; for instance, before the execution of x := 10, any

initial value α is valid. Our intuition is that, in order to preserve backward

compatibility, we substitute the existential quantifier with a supremum (denoted

by the S“quantifier”, cf. [102]), thus obtaining the supremum of f [x/α] ranging
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over all valid initial values α of x:

sp Jx := eK (f) = Sα : [x = e [x/α]] ⋏ f [x/α] .

Let us consider a few examples. First, consider

sp Jx := x+ 1K (x) = Sα : [x = α + 1] ⋏ α

= Sα : [α = x− 1] ⋏ α

= x− 1 .

For a final state τ(x) = 10, this gives us τ(x)− 1 = 10− 1 = 9 which is indeed

the initial value that the prequantity x must have had if the final state after

executing x := x+ 1 is τ(x) = 10.

As another example, consider

sp Jx := 10K (x) = Sα : [x = 10] ⋏ α

= [x = 10] ⋏ ∞

= [x = 10] .

For the final state τ(x) = 10, this gives us [10 = 10] = [true] = +∞ which is

indeed the least upper bound (angelic!) on the initial value of x if the final

state after executing x := 10 is τ . In other words: by evaluating [x = 10] in τ ,

we know that τ was reachable, but we have no information on what maximal

value x could have had initially, which is sensible because x := 10 forgets

any initial value of x. For final state τ ′(x) = 9, on the other hand, we get

[9 = 10] = [false] = −∞ which is the value of unreachability in sp (cf. also the

next paragraph on divergence). Indeed, the final state after executing x := 10

cannot ever be τ ′.
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Diverge.

The strongest postcondition of diverge is given by

sp JdivergeK (ψ) = false ,

the least element in the Boolean lattice. Since there is no state that satifies

false, this simply tells us that there is no final state reachable by executing

diverge.

For quantities, we also assign the least element and hence get

sp JdivergeK (f) = −∞ .

Another explanation goes by considering again the angelic, i.e. maximizing,

aspect of strongest post: What is the maximal value that we can retrocipate

for f before diverge has terminated in some final state τ? Since diverge does

not terminate at all and hence no such τ could have been reached (but we are

still forced to assign some “number” to this situation), the largest value that

we can possibly retrocipate is the absolute minimum: −∞.

Remark 3.4.1 (Quantitative Strongest Post and Unreachability). Dually to

values of nontermination in w(l)p (see Remarks 3.3.2 and 3.3.4), −∞ is in

that sense the value of unreachability in sp. △

Nondeterministic Choice.

The angelic strongest postcondition of {C1 } □ {C2 } is given by

sp J{C1 } □ {C2 }K (ψ) = sp JC1K (ψ) ∨ sp JC2K (ψ) .

Indeed, the set of reachable states starting from initial states satisfying ψ is the

union of the reachable set after executing C1 and the ones after executing C2.

In a quantitative setting, where we want to retrocipate the value of a

quantity f before executing either C1 or C2, we angelically maximize between
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the two retrocipated quantities:

sp J{C1 } □ {C2 }K (f) = sp JC1K (f) ⋎ sp JC2K (f) .

Conditional Choice.

The strongest postcondition of if (φ ) {C1 } else {C2 } is given by

sp Jif (φ ) {C1 } else {C2 }K (ψ) = sp JC1K (φ ∧ ψ) ∨ sp JC2K (¬φ ∧ ψ) ,

So to determine the set of reachable states starting from precondition ψ, we

split the precondition into two disjoint ones — φ ∧ ψ assumes that the guard

is true and we execute C1, whereas ¬φ ∧ ψ assumes the guard to be false and

we execute C2. Thereafter, we union the so-obtained reachable sets.

Similarly for our quantitative strongest post calculi, we make use of the

extended Iverson brackets and thus, the denotational strongest post of the

conditional choice is:

sp Jif (φ ) {C1 } else {C2 }K (f) = sp JC1K ([φ] ⋏ f) ⋎ sp JC2K ([¬φ] ⋏ f) .

Intuitively, sp JC1K ([φ] ⋏ f) is the supremum of f measured in all initial states

before the execution of C1 satisfying φ; and analogously for sp JC2K ([¬φ] ⋏ f).

By then taking ⋎, we finally obtain the maximum initial quantity that f could

have had before the execution of the conditional choice.

Sequential Composition.

What is the retrocipated value of f before executing C1 # C2? For this, we first

retrocipate the value of f before executing C1 which gives sp JC1K (f). Then,

we retrocipate the value sp JC1K (f) before executing C2, yielding

sp JC1 # C2K (f) = sp JC2K (sp JC1K (f)) .
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Looping.

The strongest post of a loop while (φ ) {C } is characterized using the least

fixed point of the so-called sp–characteristic function Ψf : A → A. As for

weakest pre, the function is chosen so that by Kleene’s fixpoint theorem, the

least fixed point corresponds to iterating on the least element of the lattice

−∞, which yields an ascending chain of loop unrollings

[¬φ] ⋏ Ψf (−∞) = sp Jif(φ){diverge}K (f)

[¬φ] ⋏ Ψ2
f (−∞) = sp Jif(φ){C # if(φ){diverge}}K (f)

[¬φ] ⋏ Ψ3
f (−∞) = sp Jif(φ){C # if(φ){C # if(φ){diverge}}}K (f)

and so on, where the guard is needed to filter only those states that exit the

loop; we finally obtain as strongest post

sp Jwhile (φ ) { CK (f) = [¬φ] ⋏ lfp Ψf .

After having provided an intuition, let us now state in which sense our

quantitative strongest post semantics is sound:

Theorem 3.4.1 (Characterization of sp). For all programs C and final states

τ ,

sp JCK (f) (τ) =
j

σ with τ∈JCK(σ)

f(σ) .

Intuitively, for a given prequantity f and final state τ , spJfK(τ) is the supremum

over all the values that f can assume in those initial states σ from which

executing C terminates in τ . In case that the final state τ is unreachable, i.e.

∀σ : τ /∈ JCK(σ), that supremum automatically becomes −∞ — the absolute

minimal value. In particular, if ∀σ : f(σ) > −∞, then sp JCK (f) (τ) = −∞

unambiguously indicates unreachability of τ by executing C on any input σ.
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3.4.3 Quantitative Strongest Liberal Post

Although Dijkstra does not define strongest liberal postconditions, we believe

that a reasonable choice for a quantitative strongest liberal post transformer

is to take the infimum over all prequantities. Restricting to predicates, we

thereby also obtain a novel strongest liberal postcondition transformer of type

slpJCK : B→ B

associating to each nondeterministic program C a mapping from predicates

to predicates. Since slp is associated with the infimum, we will consider a

demonic setting, where the nondeterminism is resolved to our disadvantage.

Whereas weakest liberal pre, in contrast to the non-liberal transformers, deems

nontermination good behavior, strongest liberal post deems unreachability good

behavior.

Specifically, the demonic strongest liberal postcondition transformer slpJCK

maps a precondition ψ over initial states to a postcondition slpJCK (ψ) over

final states, such that for a given final state τ satisfying slpJCK (ψ), all initial

states that can reach τ satisfy the precondition ψ. More symbolically, recalling

that JCK(σ) is the set of all final states reachable after termination of C on σ,

τ |= slpJCK (ψ) iff ∀σ with τ ∈ JCK(σ) : σ |= ψ ,

where the right-hand-side of the implication is vacuously true if τ is unreachable.

From a map perspective on slp, the predicate slpJCK (ψ) is a function that takes

as input a final state τ , determines for each initial state σ that can reach τ ,

i.e., τ ∈ JCK(σ), the (truth) value ψ(σ), takes a conjunction over all these

truth values, and finally returns the truth value of that conjunction. More

symbolically,

slpJCK (ψ) (τ) =
∧

σ with τ∈JCK(σ)

ψ(σ) ,



3.4. Strongest Post 76

C slp JCK (f)

skip f

diverge +∞

x := e Jα : [x ̸= e [x/α]] ⋎ f [x/α]

C1 # C2 slpJC2K
(
slpJC1K (f)

)
{C1 } □ {C2 } slpJC1K (f) ⋏ slpJC2K (f)

if (φ ) {C1 } else {C2 } slpJC1K ([¬φ] ⋎ f) ⋏ slpJC2K ([φ] ⋎ f)

while (φ ) {C ′ } [φ] ⋎
(
gfp Y : f ⋏ slpJC ′K ([¬φ] ⋎ Y )

)
Table 3.4: Rules for the strongest liberal post transformer. Here, gfp f : Φ(f)

denotes the greatest fixed point of Φ and Jα : f(α) denotes an infimum
of f(α) ranging over all values of α.

where the conjunction over an empty set is defined — as is standard — as

true. For quantities, we essentially replace ∧ by ⋏ and define the following

quantitative strongest liberal post transformer:

Definition 3.4.2 (Quantitative Strongest Liberal Post). The quantitative

strongest liberal post transformer

slp : nGCL→ (A→ A)

is defined inductively according to the rules in Table 3.4 (right column). We

call the function

Ψf (X) = f ⋏ sp JCK ([¬φ] ⋎X) ,

whose greatest fixed point is used to define slpJwhile (φ ) {C }K (f), the slp–

characteristic function of while (φ ) {C } with respect to f . △

Let us thus go over the language constructs where the rules for slp and sp differ

and explain both strongest liberal postconditions and quantitative strongest

liberal post.
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Assignment.

The strongest liberal postcondition of an assignment is given by

slpJx := eK (ψ) = ∀α : x ̸= e [x/α]︸ ︷︷ ︸
(1)

∨ ψ [x/α]︸ ︷︷ ︸
(2)

.

Intuitively, the quantified α represents candidates for initial values of x before

executing the assignment. For each such candidate α, it must be true that

1. α is in fact not a valid initial value for x, i.e. x does not have in the final

state the value of expression e evaluated using the candidate value α for x,

or

2. α is valid and the precondition ψ was true in the initial state where x had

value α.

Intuitively, (1) captures that strongest liberal postconditions deem unreachabil-

ity good behavior, because if some state is not reachable by executing x := e,

then x ̸= e [x/α] is true for all α and hence the strongest liberal post evaluates

to true.

For quantities, dually to the strongest non-liberal post, we now substitute

the universal quantifier with an infimum (denoted by the J “quantifier” [102])

and the ∨ with a ⋎, thus obtaining

slpJx := eK (f) = Jα : [x ̸= e [x/α]] ⋎ f [x/α]

Let us again consider a few examples. First, one can convince oneself that

slpJx := x+ 1K (x) = x− 1 = sp Jx := x+ 1K (x) .

slp = sp is not surprising in this case, because every state τ(x) = β is reachable

by executing x := x+ 1, namely by starting from initial state σ(x) = β − 1. As
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another example, consider

slpJx := 10K (x) = Jα : [x ̸= 10] ⋎ α

= [x ̸= 10] ⋎ ∞

= [x ̸= 10] .

For the final state τ(x) = 10, this gives us [10 ̸= 10] = [false] = −∞ which is

indeed the greatest lower bound (demonic!) on the initial value of x if the final

state after executing x := 10 is τ . In other words: by evaluating [x ̸= 10] in τ ,

we know that τ was reachable, but we have no information on what minimal

value x could have had initially, which is sensible because x := 10 forgets

any initial value of x. For final state τ ′(x) = 9, on the other hand, we get

[9 ̸= 10] = [true] = +∞ which is the value of unreachability in slp (cf. also the

next paragraph on divergence). Indeed, the final state after executing x := 10

cannot ever be τ ′.

Diverge.

Since diverge is certainly nonterminating, i.e. it reaches no final state, and since

liberal post deems nonreachability good behavior, the quantitative strongest

liberal post assigns the greatest element, i.e.

slpJdivergeK (f) = +∞ .

Remark 3.4.2 (Quantitative Strongest Liberal Post and Unreachability).

Analogously to −∞ being the value of unreachability in sp (cf. Remark 3.4.1),

+∞ is the value of unreachability in slp. △

Nondeterministic Choice.

The demonic strongest liberal postcondition of {C1 } □ {C2 } is

slpJ{C1 } □ {C2 }K (ψ) = slpJC1K (ψ) ∧ slpJC2K (ψ) .
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Indeed, slpJCiK (ψ) contains all final states τ such that all initial states σ

that can reach τ by executing Ci satisfy ψ. By intersecting sp JC1K (ψ) and

sp JC2K (ψ) we ensure the stronger requirement that all initial states σ that can

reach τ by executing C1 or C2 satisfy ψ.

In a quantitative setting, where we want to retrocipate the value of a

quantity f before executing C1 or C2, we demonically minimize the possible

initial value and hence take as strongest post

slpJ{C1 } □ {C2 }K (f) = slpJC1K (f) ⋏ slpJC2K (f) .

Conditional Choice

The demonic strongest liberal postcondition of {C1 } □ {C2 } is given by

slpJif (φ ) {C1 } else {C2 }K (ψ) = slpJC1K (¬φ ∨ ψ) ∧ slpJC2K (φ ∨ ψ) ,

Indeed, since the disjunction can be seen as an implication, slpJC1K (¬φ ∨ ψ)

contains all final states τ such that, all initial states that satisfy φ (sic!) and

that can reach τ by executing C1 do also satisfy ψ. Similarly, slpJC2K (φ ∨ ψ)

contains all final states τ such that, all initial states that satisfy ¬φ (sic!)

and that can reach τ by executing C2 do also satisfy ψ. By intersecting the

postconditions slpJC1K (¬φ ∨ ψ) and slpJC2K (φ ∨ ψ), we obtain exactly all those

final states τ such that, all initial states that, either satisfy φ and can reach τ

by executing C1, or satisfy ¬φ and can reach τ by executing C2 do also satisfy

the precondition ψ.

Similarly for our quantitative strongest post calculi, we make use of the

extended Iverson brackets and thus, the quantitative strongest liberal post of

the conditional choice is

slpJif (φ ) {C1 } else {C2 }K (f) = slpJC1K ([¬φ] ⋎ f) ⋏ slpJC2K ([φ] ⋎ f) .

Intuitively, slpJC1K ([¬φ] ⋎ f) characterizes the infimum of f measured in all
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initial states before the execution of C1 satisfying φ; and analogously for

slpJC2K ([φ] ⋎ f). By taking ⋏, we obtain exactly the minimum initial quantity

that f could have had before executing the conditional choice.

Looping

For a loop while (φ ) {C }, slp is characterized using the greatest fixed point of

the so-called slp–characteristic function Ψf : A→ A. As for weakest liberal pre,

the function is chosen so that by Kleene’s fixpoint theorem, the greatest fixed

point corresponds to iterating on the top element of the lattice +∞, which

yields a descending chain of loop unrollings

[φ] ⋎ Ψf (+∞) = slpJif(φ){diverge}K (f)

[φ] ⋎ Ψ2
f (+∞) = slpJif(φ){C # if(φ){diverge}}K (f)

[φ] ⋎ Ψ3
f (+∞) = slpJif(φ){C # if(φ){C # if(φ){diverge}}}K (f)

and so on. Since our strongest liberal postcondition considers unreachability as

“good behavior”, we join the Kleene’s iterates with all the final states where

the guard still hold and obtain as strongest liberal post:

slpJwhile (φ ) {C }K (f) = [φ] ⋎ gfp Ψf .

After having provided an intuition, let us now state soundness of our strongest

liberal post semantics:

Theorem 3.4.2 (Characterization of slp). For all programs C and states τ ∈ Σ,

slpJCK (f) (τ) =
k

σ with τ∈JCKσ

f(σ)

Intuitively, for a given prequantity f and final state τ , the slpJCK (f) (τ) is

the infimum over all values that f can assume measured in the initial states

σ, so that executing C on σ terminates in τ . In case that the final state τ is

unreachable, i.e. ∀σ : τ /∈ JCK(σ), that infimum becomes +∞ — the absolute
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maximum value. In particular, if ∀σ : f(σ) < +∞, then sp JCK (f) (τ) = +∞

unambiguously indicates unreachability of τ by executing C on any input σ.

3.5 Properties of Quantitative Transformers

In reasoning about quantitative program properties, certain so-called “healthi-

ness conditions” emerge as key properties that ensure the validity and robust-

ness of the underlying mathematical frameworks. These conditions—continuity,

strictness, monotonicity, and others—guarantee that transformers maintain

well-defined behaviors, such as fixed-point existence for loops. In this section,

we formalize these healthiness properties for our quantitative transformers

in nondeterministic programming, some of which are analogous to Dijkstra’s,

Kozen’s, or McIver & Morgan’s calculi. We furthermore present several dual-

ities between our transformers and how to embed classical into quantitative

reasoning.

3.5.1 Healthiness Properties

We begin by stating our formal healthiness theorem, followed by a detailed

examination of its specific properties.

Theorem 3.5.1 (Healthiness Properties of Quantitative Transformers). For

all programs C, all quantitive transformers are monotonic, i.e.

f ⪯ g implies ttt JCK (f) ⪯ ttt JCK (g) , for ttt ∈ {wp, wlp, sp, slp} .

The non-liberal transformers wpJCK and spJCK satisfy the following prop-

erties:

1. Quantitative universal disjunctiveness: For any set of quantities S ⊆ A,

wp JCK (⋎S) = ⋎ wp JCK (S) and sp JCK (⋎S) = ⋎ sp JCK (S) .

2. Strictness: wp JCK (−∞) = −∞ and sp JCK (−∞) = −∞ .

The liberal transformers wlpJCK and slpJCK satisfy the following properties:
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3. Quantitative universal conjunctiveness: For any set of quantities S ⊆ A,

wlpJCK (⋏S) = ⋏ wlpJCK (S) and slpJCK (⋏S) = ⋏ slpJCK (S) .

4. Costrictness: wlpJCK (+∞) = +∞ and slpJCK (+∞) = +∞ .

Monotonicity

A crucial healthiness property for quantitative transformers is monotonicity.

Definition 3.5.1 (Monotonicity). A transformer T : A→ A is monotonic if,

for any two functions f, g ∈ A, we have:

f ⪯ g =⇒ T (f) ⪯ T (g) .

△

Monotonicity guarantees that if one function is pointwise less than or equal

to another, the transformer will preserve this order in their respective images.

This property can be utilized, for instance, to derive the consequence rule of

various logics, such as Hoare Logic and Incorrectness Logic.

All our transformers are monotonic, see Theorem 3.5.1.

Continuity, Disjunctiveness and Conjunctiveness

Continuity plays a crucial role in ensuring that our quantitative transformers

can handle infinite sequences or chains of computations smoothly. Formally,

we define continuity as follows.

Definition 3.5.2 (Continuity and Co-continuity). A transformer T : A→ A

is:

• continuous if it commutes with the suprema of ascending chains, i.e., for any

countable chain of functions f1 ⪯ f2 ⪯ . . . in A, continuity guarantees that
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the transformer preserves their least upper bound:

T

(
j

i

fi

)
=

j

i

T (fi).

• co-continuous if it commutes with the infima of descending chains, i.e., for

any countable descending chain of functions f1 ⪰ f2 ⪰ . . . in A, co-continuity

guarantees that the transformer preserves their greatest lower bound:

T

(
k

i

fi

)
=

k

i

T (fi).

△

This property is particularly significant for reasoning about loops and

recursive constructs. Programs with loops can often be modeled as limits

of successive approximations, where each step corresponds to an iteration

of the loop. Continuity ensures that the limit of these iterations exists and

converges exactly to particular fixed points. In fact, (co)continuity is related

to the Kleene Fixed Point Theorem 2.4.3, which guarantees the existence of

a least (greatest) fixed point for continuous functions on a complete lattice,

thereby making our transformers well-defined. Monotonicity is a consequence

of continuity and co-continuity, and it also ensures the existence of fixed points.

However, fixed point iteration may only stabilize at ordinals higher than ω for

non-(co)continuous functions [92].

In Theorem 3.5.1 (3, 1) we show that not only our transformers are

(co)continuous, but they preserve arbitrary suprema (infima). More specifically,

this property is sometimes referred as quantitative universal disjunctiveness

(conjunctiveness), and are quantitative analogues to Dijkstra and Scholten’s

original calculi, whereas conjunctiveness of slp is novel (since slp is novel) and fits

well into this picture of duality. Note that quantitative universal disjunctiveness

(conjunctiveness) implies (co)continuity.
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Strictness

In the context of classical wp, strictness (also known as the “Law of the Excluded

Miracle” [63]) ensures that no initial state can terminate in a state satisfying

“false”. Quantitative generalisations of strictness [16, Definition 4.13], defined

as wp JCK (0) = 0, mean that the expected value of the constantly 0 random

variable after executing a program C is 0.

Formally, in our context employing mixed real values, quantitative strict-

ness and costrictness are defined as follows:

Definition 3.5.3 (Strictness and Costrictness). Let T : A→ A be a quantitative

transformer. Then:

1. T is called strict, if T (−∞) = −∞.

2. T is called costrict, if T (+∞) = +∞.

△

Analogously to Dijkstra’s predicate transformers, liberal transformers

are costrict and their nonliberal versions are strict, see Theorem 3.5.1 (2, 4).

Strictness of wp, i.e. wp JCK (−∞) = −∞, states that the anticipated value

of −∞ after executing C is −∞ if the program terminates, and otherwise yields

wp’s value of nontermination: −∞. Strictness of sp, i.e. sp JCK (−∞) = −∞,

indicates that −∞ retrocipates the value of −∞ if the final state is reachable,

and otherwise yields sp’s value of unreachability: −∞. Explanations for

costrictness are analogous.

The predicate interpretation of (co)strictness is also preserved: Since−∞ =

[false] and +∞ = [true] and hence wp JCK ([false]) = [false] and wlpJCK ([true]) =

[true], strictness of quantitative wpJCK means that C cannot terminate in some

τ ∈ ∅; strictness of spJCK that no τ is reachable by executing C on any

σ ∈ ∅; costrictness of wlpJCK that on all states C either terminates or not; and

costrictness of slpJCK (novelly) that all states are either reachable by executing

C or unreachable.
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Linearity

Another fundamental property of quantitative transformers is linearity, which

is fundamental for compositional reasoning. Sub- and superlinearity have been

studied by Kozen, McIver & Morgan, and Kaminski for probabilistic w(l)p

transformers. Our transformers also obey to analogous rules.

Theorem 3.5.2 (Linearity). For all programs C, wpJCK and spJCK are sub-

linear, and wlpJCK and slpJCK are superlinear, i.e. for all f, g ∈ A and non-

negative constants r ∈ R≥0,

wp JCK (r · f + g) ⪯ r · wp JCK (f) + wp JCK (g) ,

sp JCK (r · f + g) ⪯ r · sp JCK (f) + sp JCK (g) ,

r · wlpJCK (f) + wlpJCK (g) ⪯ wlpJCK (r · f + g) , and

r · slpJCK (f) + slpJCK (g) ⪯ slpJCK (r · f + g) .

3.5.2 Relationship between Qualitative and

Quantitative Transformers

Our calculi subsume both the classical ones of Dijkstra and Scholten [64] and

our definition of strongest liberal postcondition for predicates by means of our

extended Iverson brackets:

Theorem 3.5.3 (Embedding Classical into Quantitative Transformers). For

all deterministic programs C and predicates ψ, we have

wp JCK ([ψ]) = [wp JCK (ψ)] and wlpJCK ([ψ]) = [wlp JCK (ψ)] ,

and for all programs C and predicates ψ, we have

sp JCK ([ψ]) = [sp JCK (ψ)] and slpJCK ([ψ]) = [slpJCK (ψ)] .

From a predicate perspective, sp JCK (ψ) contains final states τ that are reach-
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able from at least one initial state satisfying ψ, whereas slpJCK (ψ) requires that

every initial state that may end in τ satisfies ψ. Hence, we have a fundamentally

dual meaning of the word liberal :

• wlp, differently from wp, provides preconditions containing all diverging initial

states, but contains no state that can terminate outside the postcondition.

• slp, differently from sp, provides postconditions containing all unreachable

final states, but contains no state that can be reached from outside the

precondition.

Let us also consider two other examples: sp JCK ([true]) is the indicator function

of the reachable states. If sp JCK ([true]) = [false] (i.e. sp JCK (+∞) = −∞), no

state is reachable and hence C diverges on every input. Similarly, slpJCK ([false])

is the indicator function of all states that are either reachable from an initial

state satisfying false (of which there are none) or which are unreachable. Thus, if

slpJCK ([false]) = [true] (i.e. slpJCK (−∞) = +∞) then all states are unreachable,

meaning C diverges on every input. Put shortly,

sp JCK (+∞) = −∞ iff slpJCK (−∞) = +∞ .

Finally, we note that the quantitative weakest pre calculi of Kaminski [16,

Section 2.3], restricted to deterministic non-probabilistic programs are even

simply subsumed by the fact that we consider a larger lattice, namely quantities

of type f : Σ→ R±∞ instead of f : Σ→ R∞
≥0.

3.5.3 Relationship between Liberal and Non-liberal

Transformers

Theorem 3.5.4 (Liberal–Non-liberal Duality). For any program C and quantity

f , we have

wp JCK (f) = − wlpJCK (−f) and sp JCK (f) = − slpJCK (−f) .
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The duality for weakest pre is very similar to wp JCK (ψ) = ¬wlpJCK (¬ψ) in

Dijkstra’s classical calculus and wp JCK (f) = 1−wlpJCK (1− f) for 1-bounded

functions f in Kozen’s and McIver & Morgans development for probabilistic

programs.

When considering only deterministic programs C (i.e. syntactically with-

out nondeterministic choices), then executing C on initial state σ will either

terminate in a single final state (i.e. JCK(σ) = {τ}, for some τ), or diverge (i.e.

JCK(σ) = ∅), meaning that JCK( ) becomes a proper (partial) function. Hence,

in case of termination, supremum and infimum of the final values of f coincide:

Corollary 3.5.4.1. If a deterministic program C terminates on an input σ,

then for all quantities f ,

wp JCK (f) (σ) = wlpJCK (f) (σ) ,

and otherwise

wp JCK (f) (σ) = −∞ and wlpJCK (f) (σ) = −∞ .

Proof. Direct consequence of Theorems 3.3.1 and 3.3.2.

As a direct consequence of Corollary 3.5.4.1, for postquantities everywhere

smaller than +∞ (which is not restrictive since values of program variables are

finite), we can precisely detect whether a given initial state has terminated or

not. Kaminski [16, Remark 2.12], in contrast, cannot easily distinguish whether

a certain initial state does not terminate, or whether the anticipated value is 0.

Note that dual results for sp and slp do not hold since even for deterministic

programs the fiber of the concrete semantics is not a function: multiple initial

states can terminate in a single final state τ .
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3.6 Correctness and Incorrectness Reasoning

3.6.1 Galois Connections between Weakest Pre and

Strongest Post

The classical strongest postcondition is the left adjoint to the weakest liberal

precondition [64, Section 12], i.e. the transformers wlp and sp form the Galois

connection

G =⇒ wlpJCK (F ) iff sp JCK (G) =⇒ F , (†)

which intuitively is true because G =⇒ wlp JCK (F ) means that starting from

G the program C will either diverge or terminate in a state satisfying F , and

sp JCK (G) =⇒ F means that starting from G any state reachable by executing

C satisfies F .

The above Galois connection is preserved in our quantitative setting; in

fact, by substituting the partial order =⇒ on predicates with the partial order

⪯ on A we obtain:

Theorem 3.6.1 (Galois Connection between wlp and sp). For all C ∈ nGCL

and g, f ∈ A:

g ⪯ wlpJCK (f) iff sp JCK (g) ⪯ f .

As wlp is for partial correctness, Theorem 3.6.1 shows that sp is also suitable

for partial correctness. One may now wonder whether there exists a strongest

post transformer that is tightly related to wp, and hence, to total correctness.

Unfortunately, Dijkstra and Scholten [64, Section 12] show that there cannot

exist a predicate transformer stp — a “strongest total postcondition” — such

that

G =⇒ wp JCK (F ) iff stp JCK (G) =⇒ F .
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Categorically, that negative result is a consequence of the fact that we are

requiring wp to be a right adjoint functor, and a necessary condition for that

is to preserve all infima, but this is not true since wp is not costrict. Despite

this negative result, since wp preserves all suprema (cf. Theorem 3.5.1 (1)), we

argue that wp is instead a left adjoint functor and show that its right adjoint

is exactly slp:

Theorem 3.6.2 (Galois Connection between wp and slp). For all C ∈ nGCL

and g, f ∈ A:

wp JCK (f) ⪯ g iff f ⪯ slpJCK (g)

Let us provide an intuition on this connection, for simplicity only with “predi-

cates” [F ] and [G]: [F ] ⪯ slpJCK ([G]) means that every final state satisfying F

is either reached only by states satisfying G or unreachable. This is equivalent

to saying that all initial states terminating in F must satisfy G, which is

precisely expressed by wp JCK ([F ]) ⪯ [G].

3.6.2 Resolving Nondeterministic Choice: Angelic

vs. Demonic

Our choices of how to resolve nondeterminism are motivated by establishing

dualities between weakest pre and strongest post presented in Section 3.6.1.

The only thing we take for granted is that the standard definition of sp is angelic,

thus characterizing the “set of reachable states”. Indeed, if sp is angelic, then

we are (provably) also forced to make wp angelic, and both wlp and slp demonic

– otherwise, duality would break. We can also come up with an intuition for

these choices: Both, angelic wp and demonic wlp transformers try to avoid

nontermination, if at all possible, whereas angelic sp and demonic slp try to

avoid unreachability.

By dualizing all resolutions of nondeterminism one would obtain the

following intuition: Demonic wp and angelic wlp transformers try to drive

the execution towards nontermination (more standard for both wp and wlp),
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whereas demonic sp and angelic slp try to establish unreachability (less standard

for sp, whereas slp is novel anyway). We leave it as future work to study whether

this dual situation would also preserve the Galois connections of Section 3.6.1.

3.6.3 Strongest Post and Incorrectness Logic

A Hoare triple |= {G } C {F } is valid for partial correctness iff G =⇒

wlpJCK (F ) or (equivalently, see (†) in Section 3.6.1) sp JCK (G) =⇒ F holds.

Somewhat recently, a different kind of triples have been proposed, first by

de Vries and Koutavas [61] under the name reverse Hoare logic for studying

reachability specifications. A few years ago, O’Hearn [6] rediscovered those

triples under the name incorrectness logic and used them for explicit error

handling. Bruni et al. [71] provide a logic parametrized by an abstract interpre-

tation that, through a notion of local completeness, can prove both correctness

and incorrectness.

In this section we show, first, the relationship between our strongest

post transformer and incorrectness triples [61; 6]; then, more importantly, we

argue that such triples deal with total incorrectness and hint at novel partial

incorrectness triples.

(Total) Incorrectness Logic

In the sense of de Vries and Koutavas [61], an incorrectness triple

[G ] C [F ] is valid iff ∀ τ |= F ∃σ with τ ∈ JCK(σ) : σ |= G .

In other words, the set of states F is an underapproximation of the set of

states reachable by executing C on some state in G, i.e., F ⊆ sp JCK (G) [6,

Definition 1]. The term incorrectness logic originates from the fact that if

[G ] C [F ] is valid and F contains an error state, then this error state is

guaranteed to be reachable from G. Since our quantitative strongest post

transformer subsumes the classical one, we can (re)define incorrectness triples

by substituting predicates with extended Iverson brackets and obtain the

following equivalent definition:
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Definition 3.6.1 (Incorrectness Triples). For predicates G,F and program C,

the incorrectness triple

[G ] C [F ] is valid for (total) incorrectness iff [F ] ⪯ sp JCK ([G]) .

△

Partial Incorrectness

We argue that the aforementioned triples deal with total incorrectness by

providing novel triples for partial incorrectness. Recall that a Hoare triple

|= {G } C {F } is valid for total correctness if G =⇒ wp JCK (F ). By replacing

wp with wlp, we can define partial correctness triples: |= {G } C {F } is valid

for partial correctness if G =⇒ wlpJCK (F ). By mimicking the above, we

define partial incorrectness by replacing sp with slp in Definition 3.6.1:

Definition 3.6.2 (Partial Incorrectness). For predicates G,F and program C,

the incorrectness triple

[G ] C [F ] is valid for partial incorrectness iff [F ] ⪯ slpJCK ([G]) .

△
By definition of slp,

[G ] C [F ] is valid for partial incorrectness

iff

∀ τ |= F ∀σ with τ ∈ JCK(σ) : σ |= G .

In other words, only if the state τ is reachable, then the triple guarantees that τ

is reached only from initial states σ that satisfy G. Note that this is dual to the

relationship between total and partial correctness: with partial incorrectness,

to have full information on initial states we require an additional proof of

reachability on final states (whereas with partial correctness, to obtain full

information on final states we require an additional proof of termination on
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initial states).

We also note that, due to the Galois between wp and slp (Theorem 3.6.2)

we have

[G ] C [F ] is valid for partial incorrectness iff wp JCK ([F ]) ⪯ [G] .

This implies that G is an overapproximation of the set of states that end up in

F , and corresponds to the notion of necessary preconditions studied by Cousot

et al. [105]. In particular, if an initial state σ ̸|= G, then σ is guaranteed to not

terminate in F (σ could also diverge).

Other Triples

implication defines

G =⇒ wp JCK (F ) total correctness
G =⇒ wlpJCK (F ) partial correctness

wp JCK (F ) =⇒ G partial incorrectness
wlpJCK (F ) =⇒ G ???

F =⇒ sp JCK (G) (total) incorrectness
F =⇒ slpJCK (G) partial incorrectness

sp JCK (G) =⇒ F partial correctness
slpJCK (G) =⇒ F ¿¿¿

We note that the naming conventions correctness and incorrectness may

not necessarily always be appropriate. First of all, we argue that incorrect-

ness triples [61; 6] can be used to prove good behavior : for instance, a triple

[G ] C [F ] where F contains good states, ensures that every (good) state in F

is reachable from precondition G. Rather than correctness versus incorrectness,

we believe that the fundamental difference between the triples is that correct-

ness triples provide information on the behavior of initial states satisfying

preconditions, whereas incorrectness triples guarantee reachability properties

on final states satisfying postconditions.

Secondly, note that our transformers can define two additional triples other

than total (partial) correctness (incorrectness), for which the current naming

conventions are insufficient. So far, we have the picture depicted in the table



3.6. Correctness and Incorrectness Reasoning 93

above. The two blue and the two orange lines define the same notion due to

the Galois connections between wlp/sp and wp/slp. For ??? and ¿¿¿, however,

there are no appropriate names (let alone program logics) yet. We can say,

however, that ??? gives rise to a notion of necessary liberal preconditions, in

the sense that (1) G contains all initial states σ that diverge, and (2) whenever

σ ̸|= G, then σ is guaranteed to terminate in a state τ ̸|= F . ¿¿¿, on the other

hand, provides necessary liberal postconditions, meaning that (1) F contains all

unreachable states, and every final state τ ̸|= F is guaranteed to be reachable

from some initial state σ ̸|= G.

Following the terminology from above, which is inspired from the naming

necessary preconditions of Cousot et al. [105], we can state that

• total correctness triples provide sufficient preconditions ;

• total incorrectness triples provide sufficient postconditions ;

• partial correctness triples provide sufficient liberal preconditions (or necessary

postconditions);

• partial incorrectness triples provide sufficient liberal postconditions (or nec-

essary preconditions).

We also note that even the terminology for the predicate transformers, strongest

post- and weakest precondition, might be imprecise. Indeed, as pointed

by O’Hearn [6], such terminology is tied with the classical aim of Hoare logic

to find either the smallest (strongest) set of necessary (overapproximating)

postconditions or the largest (weakest) set of sufficient (underapproximating)

preconditions. The strongest postcondition can be seen also as the weakest

sufficient postcondition, whereas the weakest precondition is the strongest

necessary precondition. Switching to our liberal predicate transformers, our

strongest liberal post computes the strongest necessary liberal postcondition or,

equivalently, the weakest sufficient liberal postcondition. Finally, our weakest

liberal pre computes the weakest sufficient liberal precondition or the strongest

necessary liberal precondition.
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Duality

As a consequence of the liberal–non-liberal duality of Theorem 3.5.4, we have

G =⇒ wp JCK (F ) iff wlpJCK (¬F ) =⇒ ¬G .

In other words, the triples connected to ??? are the contrapositive of total

correctness triples. Similarly, ¿¿¿ is the contrapositive of total incorrectness,

whereas partial incorrectness is the contrapositive of partial correctness. This

implies (interestingly) that only three kind of triples fundamentally cannot

be stated in terms of other triples. Nevertheless, we would argue that it is

still useful to work with, e.g. ??? triples, depending on the verification aim,

especially in the context of explainable verification: For example, if one is

interested in inferring necessary preconditions, it would certainly appear easier

and more natural to work and think directly with partial incorrectness, instead

of complementing both the sufficient liberal preconditions obtained via partial

correctness and the original postcondition. The resulting proof and annotations,

directly in terms of necessary preconditions, will be much easier to understand

for a working programmer.

3.7 Loops Rules

Reasoning about loops is one of the most challenging tasks in verification. We

provide novel rules for quantitative forward and backward reasoning about

loops.

Theorem 3.7.1 (Induction Rules for Loops). For any quantities i, f, g ∈ A,

boolean expression φ and program C, the following proof rules for loops are

valid:

g ⪯ i ⪯ [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (i)

g ⪯ wlpJwhile (φ ) {C }K (f)
while−wlp

g ⋎ sp JCK ([φ] ⋏ i) ⪯ i and [¬φ] ⋏ i ⪯ f

sp Jwhile (φ ) {C }K (g) ⪯ f
while−sp
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[¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (i) ⪯ i ⪯ g

wp Jwhile (φ ) {C }K (f) ⪯ g
while−wp

i ⪯ g ⋏ slpJCK ([¬φ] ⋎ i) and f ⪯ [φ] ⋎ i

f ⪯ slpJwhile (φ ) {C }K (g)
while−slp

The rule while−sp is novel. The while−wlp rule has already been investigated

in [16, Section 5] in a probabilistic setting, but in a more restricted lattice where

quantities map to the unit interval. Our definition of wlp is not probabilistic but

for a more general lattice of unbounded signed quantities. Notice that while−wlp

and while−sp are tightly connected by a Galois connection (cf. Theorem 3.6.1),

and by taking g = [G] and f = [F ] for predicates G,F , we conclude for both

rules the validity of the Hoare triple |= {G } while (φ ) {C } {F } for partial

correctness. Indeed, as standard in literature, the rule while−wlp requires to

find an invariant that satisfy two conditions:

1. [G] ⪯ [I], meaning that whenever precondition G holds, then the invariant

I also holds.

2. [I] ⪯ [¬φ] ⋏ [F ] ⋎ [φ] ⋏ wlpJCK ([I]), meaning that whenever I holds, either

the loop guard φ does not hold, but then postcondition F holds; or φ does

hold, but then I still holds after one iteration of the loop body (or the loop

body itself diverges (think: nested loops)).

By induction, (2) ensures that, starting from I and no matter how many

loop iterations are executed, I can only terminate in states that again satisfy

I. Assuming termination, eventually ¬φ will hold and thus I implies the

postcondition F . (1) guarantees that the initial precondition G implies I. Hence

any state initially satisfying G and on which the loop eventually terminates

will do so in a final state satisfying postcondition F . The rule while−sp is

analogous, but for forward reasoning.

The rule while−wp has also been investigated by Kaminski [16] in a

probabilistic setting but again in a more restricted lattice where quantities map

to unsigned positive extended reals. The rule while−slp is completely novel
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(since slp is novel). Again, by Galois connection and by taking as quantities the

Iverson bracket of predicates G,F , we obtain for the last two rules as conclusion

the validity of the triple [G ] while (φ ) {C } [F ] for partial incorrectness in

the sense of Definition 3.6.2. As for an intuition, recall that validity for partial

incorrectness means here that G is a necessary precondition to end in a final

state satisfying F after termination of while (φ ) {C }. For proving this, the

rule while−wp requires to find an invariant I, such that:

1. [I] ⪯ [G], meaning that whenever invariant I holds, then the precondition

G also holds.

2. [¬φ] ⋏ [F ] ⪯ [I], meaning that if the loop has terminated in postcondition

F , then I holds;

3. [φ]⋏wp JCK ([I]) ⪯ [I], meaning that if the loop is in some state σ in which

the loop guard holds (i.e. the loop is about to be executed once more) and

one loop iteration will terminate in some state where I holds again, then I

holds for σ.

By induction, (2) and (3), which represent the first premise of while−wp, imply

that I is a necessary precondition for the loop to terminate in F . Indeed,

starting from the base case (2), for the inductive step we assume that I

overapproximates those states terminating in F after n loop iterations. By

(3), I also contains [φ]⋏wp JCK ([I]), i.e., an overapproximation of those states

terminating in F after n+ 1 iterations. (1) guarantees that the precondition G

contains I and hence G is a necessary precondition for the loop to terminate in

F . Again, the rule while−slp is analogous, but forward.

Example 3.7.1 (Inductive Reasoning). Consider the program

while (x < 10 ) {x := x+ 4 } .

In order to show that x | 4 (read: x is divisible by 4) is a necessary precondition

to terminate in postcondition x = 12, it is sufficient to prove the partial
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incorrectness triple [x = 12] ⪯ slpJCK ([x | 4]). If we apply the inductive rule we

obtain:

i ⪯ [x | 4] ⋏ slpJx := x+ 4K ([x ≥ 10] ⋎ i) [x = 12] ⪯ [x < 10] ⋎ i

[x = 12] ⪯ slpJwhile (x < 10 ) {x := x+ 4 }K ([x | 4])
while−slp

Now take as invariant i = [x | 4]. As for the right premise, we can easily

convince ourselves that [x = 12] ⪯ [x < 10] ⋎ [x | 4] holds. As for the left

premise, we have

[x | 4] ⋏ slpJx := x+ 4K ([x ≥ 10] ⋎ [x | 4])

= [x | 4] ⋏
(
[x− 4 ≥ 10] ⋎ [x− 4 | 4]

)
= [x | 4] ⋏

(
[x ≥ 14] ⋎ [x | 4]

)
= [x | 4] ⪰ [x | 4]

= i .

Hence we can infer the conclusion of while–slp and we have proven that [x | 4]

is a necessary precondition for the loop to terminate in [x = 12]. △

The forward transformers sp and slp come with an additional induction rule:

under certain premises, it allows to immediately conclude that the fixpoint of

the characteristic function for a quantity f is precisely f itself, i.e. the second

Kleene iterate.

Proposition 3.7.2. The following proof rules for loops are valid:

sp JCK (f) ⪯ f

sp Jwhile (φ ) {C }K (f) = [¬φ] ⋏ f

f ⪯ slpJCK (f)

slpJwhile (φ ) {C }K (f) = [φ] ⋎ f

An intuition of Proposition 3.7.2 for sp is the following: for a loop

while (φ ) {C }, the premise sp JCK (f) ⪯ f means that the value of f retro-

cipated for one iteration is lower than the original value of f . By induction,
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retrocipating f for any number of iterations leads to a decreasing quantity. So

what is the maximum initial value that f could have had? It is the initial

quantity f , i.e. sp “gets away” with not even entering the loop. The guard [¬φ]

in the conclusion is needed to ensure reachability. For slp, retrocipating the

execution of the loop increases the initial quantity f - and hence the minimum

initial value of f is again f itself.

Example 3.7.2. Consider the program

C = while (x < 10 ) { {x := x+ 1 } □ {x := x+ 2 } }

and the precondition x ≥ 0. To determine the set of states reachable from

precondition x ≥ 0, i.e. to determine sp JCK ([x ≥ 0]), we first check the premise

sp J{x := x+ 1 } □ {x := x+ 2 }K ([x ≥ 0])

= [x− 1 ≥ 0] ⋎ [x− 2 ≥ 0]

= [x ≥ 1] ⋎ [x ≥ 2]

= [x ≥ 1] ⪯ [x ≥ 0]

and thus conclude by Proposition 3.7.2 that

sp JCK ([x ≥ 0]) ⪯ [x ≥ 10] ⋏ [x ≥ 0] = [x ≥ 10]

This allows to include immediately that x ≥ 10 is the strongest necessary post-

condition or, equivalently, the weakest sufficient postcondition. In particular,

this result verifies that precisely those final states with x ≥ 10 are reachable

from initial states with x ≥ 0. △

3.8 Case Studies
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(( f

C

(( g

=(( g′

In this section, we demonstrate the efficacy of quantitative

strongest (liberal) post reasoning. We use the annotation style on

the right to express that g = sp JCK (f) (or that g = slpJCK (f),

depending on the context) and furthermore that g′ = g. Full

calculations of strongest posts are provided in Appendix A.6.

3.8.1 Quantitative Information Flow — Loop Free

Consider the program Cflow = if ( hi > 7 ) { lo := 99 } else { lo := 80 }. As

usual in quantitative information flow, hi is a secret and we want to ensure that,

by observing the variable lo, one cannot infer information about hi. Below, we

show sp (Figure 3.3) and slp (Figure 3.4) annotations for prequantity hi, i.e.

we indeed show how the initial value of hi flows from the top to the bottom of

the computation.

(( hi

if ( hi > 7 ) {

(( [hi > 7] ⋏ hi

lo := 99

(( Sα : [lo = 99] ⋏ [hi > 7] ⋏ hi

=(( [lo = 99] ⋏ [hi > 7] ⋏ hi

} else {

(( [hi ≤ 7] ⋏ hi

lo := 80

(( Sα : [lo = 80] ⋏ [hi ≤ 7] ⋏ hi

=(( [lo = 80] ⋏ [hi ≤ 7] ⋏ hi

}

((
(
[lo = 99] ⋏ [hi > 7] ⋏ hi

)
⋎
(
[lo = 80] ⋏ [hi ≤ 7] ⋏ hi

)
Figure 3.3: Full calculations of sp JCflow K (hi).
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(( hi

if ( hi > 7 ) {

(( [hi ≤ 7] ⋎ hi

lo := 99

(( Jα : [lo ̸= 99] ⋎ [hi ≤ 7] ⋎ hi

=(( [lo ̸= 99] ⋎ [hi > 7] ⋎ hi

} else {

(( [hi > 7] ⋎ hi

lo := 80

(( Jα : [lo ̸= 80] ⋎ [hi > 7] ⋎ hi

=(( [lo ̸= 80] ⋎ [hi > 7] ⋎ hi

}

((
(
[lo ̸= 99] ⋎ [hi ≤ 7] ⋎ hi

)
⋏
(
[lo ̸= 80] ⋎ [hi > 7] ⋎ hi

)
Figure 3.4: Full calculations of slpJCflow K (hi).

Let us first note that we can precisely infer the set of states that are

reachable after executing Cflow by recalling that for a prequantity f strictly

larger than −∞, sp JCK (f) (τ) = −∞ if and only if τ is unreachable. When

does the (left) expression
(
[lo = 99]⋏ [hi > 7]⋏hi

)
⋎
(
[lo = 80]⋏ [hi ≤ 7]⋏hi

)
evaluate to something larger than −∞? This is precisely the case if either the

final value of lo is 99 and hi is larger than 7, or if lo is 80 and hi smaller or

equal 7. The reachable states are thus given by

{τ | sp JCK (hi) (τ) ̸= −∞}

= {τ | τ(lo) = 99 ∧ τ(hi) > 7 ∨ τ(lo) = 80 ∧ τ(hi) ≤ 7} .

The same insight could have been achieved with slp by computing

{τ : slpJCK (hi) (τ) ̸= +∞}.
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Secondly, we can — in a principled way — construct from the sp and slp

annotations a function ξ that, given the final value of only the observable variable

lo (which we denote lo ′), returns the set containing an overapproximation of

all possible initial values of the quantity hi , namely:

ξ(lo ′) = {α | τ ∈ Σ, τ(lo) = lo′, slpJCflowK (hi) (τ) ≤ α ≤ sp JCflowK (hi) (τ) }

=


{α | 7 < α } , if lo′ = 99

{α | α ≤ 7 } , if lo′ = 80

∅, otherwise.

Now, what can we infer about the secret initial value of hi by observing only

the final value lo ′? If lo′ = 99, then hi must be larger than 7; if lo = 90, then hi

must be smaller or equal 7, and otherwise this state was actually unreachable

(and hence such a situation could have not been observed in the first place).

Hence, observing the final value of lo leaks information about the secret hi . In

fact, by having used both sp and slp, the above gave us precisely the entire

information that is leaked about hi from observing the final value of lo.

3.8.2 Quantitative Information Flow for Loops

Consider the program Cwhile = hi := hi + 5 # while ( lo < hi ) { lo := lo+ 1 }.

Again, we show below the sp (Figure 3.3) and slp (Figure 3.4) annotations for

prequantity hi .
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(( hi

hi := hi + 5

(( hi − 5

while ( lo < hi ) {

lo := lo+ 1

}

(( [lo ≥ hi ] ⋏ (hi − 5)

Figure 3.5: Full calculations of
sp JCwhileK (hi).

(( hi

hi := hi + 5

(( hi − 5

while ( lo < hi ) {

lo := lo+ 1

}

(( [lo < hi ] ⋎ (hi − 5)

Figure 3.6: Full calculations of
slpJCwhileK (hi).

For sp and slp of the loop, the Kleene iteration stabilizes after 2 iterations,

see Appendix A.6 for detailed computations. There is no need for invariant,

nor reasoning about limits, or anything alike. Even more conveniently, we

can alternatively apply Proposition 3.7.2: indeed, for instance for sp we have

sp Jlo := lo + 1K (hi − 5) = hi − 5 ⪯ hi − 5 and thus Proposition 3.7.2 yields

that sp of the loop is precisely [lo ≥ hi ] ⋏ (hi − 5).

We construct (again) the function ξ that, given the final value lo ′ of the

variable lo, returns an overapproximation of all possible initial values of the

quantity hi , and obtain ξ(lo ′) = {α | α ≤ lo′ − 5 }. Hence, by observing only

the final value lo ′ we infer that hi must be at most lo′ − 5. In fact, any of such

value α ≤ lo′ − 5 after being incremented by 5 leads to a value that α′ ≤ lo′,

so without entering the loop, Cwhile terminates with the correct final value lo ′.

Again, using both sp and slp, we obtain precisely the entire information that is

leaked about hi from observing the final value of lo.

Quantitative Information Flow for Loops using wp.

The set ξ(lo ′) could have alternatively been determined with classical weakest

preconditions: In fact, wp JCK ([lo = lo ′]) is the set of all initial states that will

end with a final state where lo = lo′, and by projecting only to the values

of the variable hi we obtain all initial values of hi . However, aside from a
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(perhaps subjective) elegance perspective, we point out that the computation

of wp JCK ([lo = lo ′]) is actually more involved: the Kleene’s iterates of the loop

for wp stabilize only at ω – not 2:

Φ(false) = [lo ≥ hi ] ∧ [lo = lo′]

Φ2(false) = [lo ≥ hi ] ∧ [lo = lo′] ∨ [lo′ − 1 < hi ≤ lo′] ∧ [lo = lo′ − 1]

Φ3(false) = [lo ≥ hi ] ∧ [lo = lo′] ∨ [lo′ − 1 < hi ≤ lo′] ∧ [lo = lo′ − 1]

∨ [lo′ − 1 < hi ≤ lo′] ∧ [lo = lo′ − 2]...

Φω(false) = [hi ≤ lo] ∧ [lo = lo′] ∨

(
ω∨
n=1

[lo′ − 1 < hi ≤ lo′] ∧ [lo = lo′ − n]

)

Reasoning about this requires some form of creativity or advanced technique:

either reasoning about the limit, or finding an invariant plus a termination prove.

Only after determining Φω(false), one can perform the wp for the assignment,

which again results in a huge formula. For sp and slp, the Kleene’s iterates

stabilize after 2 iterations (Appendix A.6): no need for invariant nor reasoning

about limits nor projections of huge formulas.

3.8.3 Automation

Our calculi, in their full generality, cannot be fully automated, which is not

surprising since our calculi can express both termination and reachability

properties for a Turing-complete computational model – both of which are well

known to be undecidable [106; 57]. Nevertheless, we believe that our calculi

are at least syntactically mechanizable. For this aim, we plan to investigate

an expressive “assertion” language for quantities, such as the one proposed

by Batz et al. [102] for quantitative reasoning about probabilistic programs.

This would allow showing relative completeness in the sense of Cook [107], i.e.,

decidability modulo checking whether g ⪯ f holds, where g, f may contain

suprema and infima. Similar problems (decidability modulo checking a logical

implication) exist for classical predicate transformers and Hoare logic [107].

We also point out that the main goal of our calculi is to provide a framework,
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on which future tools for (partially) automating quantitative wlp/sp/slp proofs

can ground. For example, it may well be possible to fully automate the

transformers for some syntactic (e.g. linear) fragments of nGCL.

3.8.4 Partial Incorrectness Reasoning

We now show an application of partial incorrectness triples and, hence, of

our strongest liberal postconditions. Consider a program/system Clogin that

takes as input a variable password. If password contains the correct password,

say "oopsla2022", then Clogin terminates in a final state containing a boolean

variable “access” storing the value true; otherwise, the program terminates

with value access = false. Now, recall that

slpJCloginK ([password = "oopsla2022"])

is a predicate characterizing those final states which are reached only by initial

states σ with the correct password, i.e. initial states with σ(password) =

"oopsla2022". If the partial incorrectness triple [ access = true ] Clogin

[ password = "oopsla2022" ], which translates to

[access = true] =⇒ slpJCK ([password = "oopsla2022"]) ,

holds, then knowing the correct password is a necessary precondition to access

the system. In other words, validity of the partial incorrectness triple guarantees

that no user without knowledge of the correct password can end up in a final

state τ where τ(access) = true.

We also note that, by the Galois Connection of Theorem 3.6.2, one can

check whether the partial incorrectness triple holds also by employing wp:

wp JCK ([access = true]) =⇒ [password = "oopsla2022"]

However, reasoning with slp may well (1) be more feasible in practice (as

demonstrated in Section 3.8.2) as well as (2) more intuitive when reasoning
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about necessary preconditions to access a system.

3.9 Related Work

More General Predicate Transformers.

Aguirre and Katsumata [108] focus on an abstract theory of wp for loop-

free programs. In particular, our w(l)p, restricted to the fragment of loop-free

programs, can be derived by instantiating their Corollary 4.6. In fact, consider:

• the powerset monad P ;

• the lattice of extended reals R±∞;

• the Eilenberg-Moore algebra sup: P(R±∞)→ R±∞.

As a consequence of [108, Corollary 4.6], we obtain an abstract operation

awp : (A→ P(B))→ (B → R±∞)→ (A→ R±∞) such that:

awp(C)(f)(a) = sup
b∈C(a)

f(b)

Note that awp preserves all joins in the position of f . By taking as monad the

collecting semantics starting from a single state JCK : Σ→ P(Σ) which maps

states into set of states, for all loop-free programs C, f ∈ A, σ ∈ Σ we have:

awp(JCK)(f)(σ) = sup
τ∈JCK(σ)

f(τ) = wp JCK (f) .

Similarly, if we consider the Eilenberg-Moore algebra inf, we obtain an abstract

operator awlp such that:

awlp(JCK)(f)(σ) = inf
τ∈JCK(σ)

f(τ) = wlpJCK (f) .

Aguirre and Katsumata [108, Section 4.1] also define an abstract strongest post-

condition as a left adjoint of their weakest precondition (without constructing

it); we believe that, due to our Theorem 3.6.2, an abstract strongest liberal

post can be defined dually as a right adjoint of their weakest precondition. On
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the other hand, our definition of strongest post is explicitly given by induction

on the program structure and not implicitly as an adjoint. The difficulties with

finding strongest posts for probabilistic programs demonstrate that an explicit

definition of a strongest post is more than desirable.

Strongest Liberal Post

The term “strongest liberal postcondition” is sometimes used in the literature for

the original non-liberal strongest postcondition, see e.g. [109, Section 2.2], [110,

Section 0], or [111, Definition 8]. In fact, [109, Section 2.2] argues that the

strongest postcondition is often denoted also as strongest liberal postcondition

due to the relationship between weakest liberal pre. However, since wlp “allows”

nontermination whereas wp does not, and analogously slp “allows” unreachabil-

ity whereas sp does not, we believe that our naming convention of slp and sp is

more appropriate and natural.

Information Flow Analysis

Some previous work on information flow analysis use type systems [56;

112]. However, these are imprecise and may reject safe programs such as

lo := hi # lo := 0 due to a potential flow from hi to lo [113]. A Hoare-like

logic combined with abstract interpretation has been proposed by Amtoft

and Banerjee [113], but fails for simple programs such as [113, Section 9],

which instead can be easily detected with our s(l)p analysis. Other abstract

interpretation-based techniques focus on the trace semantics [114; 115]. Urban

et al. [53] verify dependency fairness of neural networks by applying a back-

ward analysis to compute the set of input values that lead to a certain ouput

value; this approach is similar to a wp-based calculus with ghost variables, as

shown in Example 3.8.2, and we speculate that sp-based approaches could also

be applied and potentially lead to better performances (as shown in Exam-

ple 3.8.2). The work of Mazzucato et al. [116], which quantifies the impact of

input variables on other outputs, also employs a backward analysis approach.

In Security Concurrent Separation logic [69] the authors provide an extension

of concurrent separation logic [117; 118] by adding sensitivity assertions which,
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roughly, assigns to a certain variable a certain degree of security; however, their

proof system deals only with partial correctness and restricts to conditional

statements and loops that cannot use sensitive variables, so that our exam-

ples from Section 3.8 cannot be covered by their logic. Differently from the

aforementioned works, our framework provides quantitative details about the

amount of information flow, instead of a single boolean output, see [119] for an

overview.

3.10 Conclusion & Future Work

We have presented a novel quantitative strongest post calculus that subsumes

classical strongest postconditions. Moreover, we developed a novel quantitative

strongest liberal post calculus. Restricted to a Boolean setting, we obtain

the – to the best of our knowledge – unexplored notion of strongest liberal

postconditions which ultimately lead to our definition of partial incorrectness.

The latter connection is justified by the fundamental Galois connection between

slp and wp, and the strong duality between total and partial correctness, but

where we replace nontermination with unreachability. Finally, we notice that

there are three additional Hoare-style triples that can be naturally defined

using our transformers, and we identify a precise connection between partial

incorrectness and the so-called necessary preconditions [105].

As future work, we plan to investigate the newly observed Hoare triples

and to provide novel proof systems for them. We also plan to extend our

quantitative strongest calculi with heap manipulation, similarly to the work

of [96] for weakest pre calculi; this could lead to connections with incorrectness

separation logic [76].

Finally, we plan to deepen the applications of quantitative strongest post

calculi to quantitative information flow, perhaps by establishing connections

with abstract interpretation [3]. In fact, we believe that our s(l)p transformers

can be viewed as sound approximations of the fiber of the concrete semantics.

Examples 3.8.1, 3.8.2 go into this direction after-all, since the combination of
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our strongest and strongest liberal post calculi can be viewed as an interval

abstraction [120] of the possible initial values of a certain pre-quantity.



Chapter 4

Quantitative Transformers For

Weighted Programs

Sections 4.2, 4.4, 4.5, and 4.6 of this chapter are based on the paper [18]. This

chapter builds upon the quantitative strongest postcondition calculus for non-

deterministic programs introduced in the previous chapter Section 3.4, lifting

it to the realm of weighted programs, including both nondeterministic and

probabilistic variants. While backward reasoning via weakest precondition style

has been established for weighted programs [24], the goal here is to facilitate

forward reasoning in various domains where quantitative properties are crucial,

such as optimization problems and formal languages. As stated by Batz et al.

[24], forward reasoning is far from trivial:

An interesting direction for future work is to explicitly construct

a strongest postcondition transformer for weighted programming,

which Aguirre and Katsumata [108] define non-constructively as an

adjoint to wp. Problems with defining strongest postexpectations for

probabilistic programs, see [95], demonstrate that giving a concrete

strongest post semantics is far less easy, even if it can be defined

abstractly as an adjoint.

Our novel weighted strongest post transformer uncovers new dualities

between forward and backward transformers, correctness and incorrectness, as

well as nontermination and unreachability. These dualities provide new insights
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into fundamental aspects of program semantics and reasoning, offering a robust

framework for addressing complex quantitative questions in program analysis.

In subsequent sections, we will delve into Weighted Programming, which

roughly can be seen as a generalisation of probabilistic programming. We

will present a weakest precondition calculus similar to [24], which enables

quantitative reasoning about programs in a weighted programming language

and more originally we will later present our novel quantitative strongest post.

4.1 Introduction

4.1.1 Probabilistic Programming

The semantics of structured probabilistic programs were first rigorously studied

by Kozen in the late 1970s and early 1980s [38; 39; 42; 13]. In contrast to

Dijkstra’s Guarded Command Language, which incorporates nondeterministic

choice similarly to our earlier discussion in Section 3.2, Kozen replaced non-

determinism with probabilistic choice. Building upon Kozen’s foundational

work, McIver and Morgan later reintroduced nondeterministic choices into the

probabilistic framework [121; 14], developing a programming language that ac-

counts for both randomness and nondeterminism. A comprehensive overview of

these concepts can be found in [16]. Here, we adopt their approach and present

a variant of their probabilistic Guarded Command Language (pGCL), which

effectively models both types of uncertainty: randomness and nondeterminism.

Beyond its role in randomized algorithms for accelerating the solution

of computationally intractable problems, probabilistic programming has seen

rapidly increasing interest in machine learning over the past decade. In this

domain, probabilistic programs serve as intuitive algorithmic descriptions of

complex probability distributions. As Gordon et al. [122] aptly stated:

The goal of probabilistic programming is to enable probabilistic

modeling [. . . ] to be accessible to the working programmer, who

has sufficient domain expertise, but perhaps not enough expertise

in probability theory [. . . ].
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The distinction between probabilistic and nondeterministic uncertainty

is illustrated using the example of a fair coin. In probabilistic uncertainty,

such as flipping a fair coin, we can assign a specific probability (e.g., 50%) to

each outcome, enabling quantitative reasoning. For instance, the probability of

flipping ten heads in a row is extremely low (about 0.1%), making it a safe bet

to take.

In contrast, with nondeterministic uncertainty—where an unknown oracle

determines the outcome—we cannot assign a meaningful probability to the

events. This type of uncertainty only allows us to state whether an outcome is

possible, without quantifying it.

In summary, randomness represents a form of uncertainty that allows for

quantitative reasoning by assigning probabilities to outcomes. Nondeterminism,

on the other hand, only permits qualitative reasoning, as we can only determine

whether an outcome is possible or not, without quantifying it. Combining

probabilistic and nondeterministic behaviors within a single computational

process introduces significant difficulties and is an ongoing area of research [123;

124; 125; 126; 127; 128]. Similarly to our approach in Chapter 3, we will adopt

an angelic method, which tackles these difficulties by resolving nondeterminism

in the most advantageous manner.

4.1.2 Weighted Programming

In this work, we will focus on weighted programming, a generalization of

probabilistic programming that relies on weights beyond simple probabilities.

Weighted programming is a versatile paradigm designed to specify a broad

spectrum of mathematical models. As highlighted by Batz et al. [24], weighted

programs are characterized by two distinctive features: (1) nondeterministic

branching and (2) the ability to assign weights to execution traces. These

weights are not confined to numerical values but can also include words from

an alphabet, polynomials, formal power series, or even cardinal numbers. This

flexibility allows weighted programming to extend its applicability beyond the

realm of probabilistic programming, which primarily deals with probability
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distributions, enabling the modeling of a wider array of mathematical constructs.

Similar to probabilistic programming, weighted programming is particularly

advantageous for individuals with a programming background who may lack

extensive expertise in advanced mathematical theory. By providing a structured

and accessible framework, weighted programming facilitates the modeling of

diverse mathematical phenomena directly through code, making mathematical

modeling more intuitive and practical.

It is important to recognize that Weighted Programs have been the fo-

cus of prior research. Brunel et al. [129] explored functional languages with

weightings and developed a static analysis technique for proving upper bounds

on these weights. Aguirre and Katsumata [108] developed an abstract weakest

precondition calculus for loop-free programs. Independently, Batz et al. [24]

focused on a concrete setting, offering constructive definitions for a weakest

precondition calculus that includes loops and demonstrating a wide range of

applications. Gaboardi et al. [130] introduced Graded Hoare Logic, which can

be viewed as a Hoare logic specifically tailored for weighted programming,

although it is restricted to bounded loops.

Weighted Strongest Postcondition

One of our key advances is to anticipate the strongest postcondition (sp) rather

than use a standard operational semantics such as that of Batz et al. [24, Section

3.3]. To achieve this, we developed a novel forward weighted sp transformer;

it is interesting that within our framework (1) we subsume both sp and slp

(arguably the main contributions of Zhang and Kaminski [17]), and (2) the

order of factors changes in some rules.

To demonstrate this, we use the ⊙ operator, which represents multiplica-

tion in semirings. Semirings provide the mathematical foundation for reasoning

about various program behaviors (further details in Section 4.2.1). In our pro-

gramming language, these semiring elements are used as weights for traces. For

example, Boolean weights can be used to describe which traces are possible in a

nondeterministic program, whereas real-valued weights quantify the likelihoods
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of probabilistic outcomes.

In commutative semirings, the order of multiplication does not matter;

that is, a⊙ b = b⊙ a for any elements a and b. However, in non-commutative

semirings—which deal with sequences and order-sensitive operations—a⊙b may

not equal b⊙ a. An example is the formal languages semiring in Example 4.7.1,

where ⊙ corresponds to word concatenation, which is clearly order dependent.

Now, we investigate the predicate transformer semantics of these weighting

constructs. Below, we see that sp weights the result in the opposite order as

compared to wp.

sp J⊙ eK (f) = f ⊙ e wp J⊙ eK (f) = e⊙ f

Our loop rule, while similar to those in [17, Table 2], features a slightly different

factor order as well. These differences, while subtle, are crucial, and the correct-

ness of our rules is supported by the novel dualities presented in Theorem 4.7.4

and Example 4.7.1. This underscores that previous rules [64; 17] were accurate

only because they used commutative semirings. Indeed, in commutative semir-

ings, the order of multiplication does not matter. However, in non-commutative

semirings such as the formal languages semiring in Example 4.7.1 where mul-

tiplication corresponds to word concatenation, the order of multiplication is

relevant.

4.2 Syntax and Semantics

We introduce a language of commands wReg, which encompasses nondetermin-

istic imperative constructs similar to those found in the Guarded Command

Language [1]. Furthermore, we adopt the weighting assertion as in [24; 74],

which enables representation of general weights over states. This includes rea-

soning of expected values over probability distributions, as studied in [16; 14].
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4.2.1 Algebraic Preliminaries for Weights

We begin by reviewing some algebraic structures, starting with the weights of

computation traces.

Definition 4.2.1 (Naturally Ordered Semirings). A monoid ⟨U, ⊕, 0⟩ consists

of a set U , an associative binary operation ⊕ : U × U → U , and an identity

element 0 ∈ U (with u⊕0 = 0⊕u = u). The monoid is partial if ⊕ : U×U ⇀ U

is partial, and commutative if ⊕ is commutative (i.e. u⊕ v = v ⊕ u). △

Definition 4.2.2 (Semirings). A semiring ⟨U, ⊕, ⊙, 0, 1⟩ is an algebraic struc-

ture such that ⟨U, ⊕, 0⟩ is a commutative monoid, ⟨U, ⊙, 1⟩ is a monoid, and

the following additional properties hold:

1. Distributivity:

u ⊙ (v ⊕ w) = u⊙ v ⊕ u⊙ w

(u⊕ v) ⊙ w = u⊙ w ⊕ v ⊙ w

2. Annihilation:

0⊙ u = u⊙ 0 = 0

The semiring is partial if ⟨U, ⊕, 0⟩ is a partial monoid (but ⊙ is total). △
Unlike [24] which exclusively focused on total semirings, our framework ac-

commodates partial semirings where addition may be undefined for certain

elements. We will rely on this extension to model probabilistic computations

where probabilities cannot exceed 1, aligning with the approach taken in [19].

Definition 4.2.3 (Complete semirings [131]). A (partial) semiring

⟨U,⊕,⊙, 0, 1⟩ is complete if there is a sum operator
⊕

i∈I with the follow-

ing properties:

1. If I = {i1, . . . , in} is finite, then
⊕

i∈I ui = ui1 + · · ·+ uin.

2. If
⊕

i∈I xi is defined, then v ⊙
⊕

i∈I ui =
⊕

i∈I v ⊙ ui and (
⊕

i∈I ui)⊙ v =⊕
i∈I ui ⊙ v.
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3. Let (Jk)k∈K be a family of nonempty disjoint subsets of I (I =
⋃
k∈K Jk and

Jk ∩ Jl = ∅ if k ̸= l), then
⊕

k∈K
⊕

j∈Jk uj =
⊕

i∈I ui.

Definition 4.2.4 (Scott Continuity [132]). A (partial) semiring with order ≤

is Scott Continuous if for any directed set D ⊆ X (where all pairs of elements

in D have a supremum), the following hold:

sup
x∈D

(x⊕ y) = (supD)⊕ y

sup
x∈D

(x⊙ y) = (supD)⊙ y

sup
x∈D

(y ⊙ x) = y ⊙ supD

Definition 4.2.5 (Natural order). On a (partial) semiring ⟨U,⊕,⊙, 0, 1⟩, we

define a relation ≤ by

u ≤ v ⇐⇒ ∃w : u⊕ w = v.

The semiring is called naturally ordered if ≤ is a complete partial order. △
As shown later in Figure 4.1, semirings will serve as the structure from which

we draw weights of computation traces in our semantics. To this end, we

extend the definition of quantities [17, Definition 3.1] to any semiring, similar

to Zilberstein [74, Definition 2.3].

Definition 4.2.6 (Quantities). Given a partial semiring A = ⟨U, ⊕, ⊙, 0, 1⟩,

the set AA(X) of all quantities is defined as the set of all functions f : X → U ,

i.e.

AA(X) = { f | f : X → U } .

We will write A instead of AA(X) when A and X are clear from context.

Semiring addition, scalar multiplication, and constants are lifted pointwise to
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quantities as follows:

(m1 ⊕m2)(x) ≜ m1(x)⊕m2(x)

(u⊙m)(x) ≜ u⊙m(x)

u(x) ≜ u

For example, by taking X as the set of program states Σ and the semiring

⟨R±∞, max, min, −∞, +∞⟩ one can represent the quantities of Zhang and

Kaminski [17, Definition 3.1]. Other instances of semirings encode other

computations. For example:

• Nondeterministic computation employs the Boolean semiring Bool =

⟨{0, 1}, ∨, ∧, 0, 1⟩.

• Randomization in OL [19] adopts probabilities in the partial semiring Prob =

⟨[0, 1], +, ·, 0, 1⟩, where x+ y is undefined if x+ y > 1.

• Expectations in quantitative weakest pre [14; 15] adopts non-negative values

in the semiring PosReals = ⟨R≥0, +, ·, 0, +∞⟩.

• Optimization problems (e.g., the path with minimum weight) can be encoded

via the tropical semiring Tropical = ⟨[0,+∞], min, +, +∞, 0⟩ which utilises

non-negative real-valued weights with minimum and addition operations.

We refer to Batz et al. [24, Table 1] and Zilberstein [74, Section 2] for more

examples and details.

4.2.2 Program States and Quantities

A state σ is a function that assigns a natural-numbered value to each variable.

To ensure that the set of states is countable, we restrict to a finite set of program

variables Vars (which is not restrictive as every program in our language admits

a finite number of variables).

The set of program states is given by
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Σ = {σ | σ : Vars→ N } 1.

The semantics of an arithmetic, boolean or weight expression e is denoted by

JeK : Σ→ N ∪ U and is obtained in a state σ, by evaluating e after replacing

all occurrences of variables x by σ(x). We occasionally write σ(e) ≜ JeK(σ)

following existing conventions [16; 17; 24], to denote the evaluation of an

expression in a state σ. Moreover, we denote by σ [x/v] a new state obtained

from σ by setting the valuation of x ∈ Vars to v ∈ N. Formally:

σ [x/v] = λy :

v if y = x

σ(y) otherwise .

A particular useful quantity is the Iverson bracket [103]: denoted as [φ]

for a given predicate φ, it takes as input a state σ and evaluates to 1 if the

statement is true and 0 if the statement is false. We generalise it to arbitrary

semirings, subsuming other quantitative generalisations such as [17, Definition

3.5].

Definition 4.2.7 (Iverson Brackets). For any semiring A = ⟨U, ⊕, ⊙, 0, 1⟩

and a predicate φ over program states Σ, the Iverson bracket [φ] : Σ → U is

defined as

[φ] (σ) ≜

1 if σ |= φ

0 otherwise .

△

When the context is clear, for a constant φ we will occasionally write

[φ] =

1 if φ holds

0 otherwise .

Every quantity f : Σ → U can be seen as a set of states via its support

1Following [24], we restrict Σ a priori to avoid technical issues.
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supp (f) = {σ : f(σ) ̸= 0}, whereas every set can be converted into a quantity

via Iverson brackets. For example, the set of reachable states starting from

ϕ ⊆ Σ is given by supp (sp JCK ([ϕ])).

Remark 4.2.1 (Quantities as sets). In quantitative literature [16; 14] every set

P can be uniquely identified via its Iverson brackets. Here, multiple quantities

may be associated with the same set of states, as the semiring may contain

more than just 0 and 1. This is because in our framework we weight the states

in a set, rather than just considering whether they are in the set or not.

4.2.3 Weighted Programs

Throughout the thesis, we denote A = ⟨U, ⊕, ⊙, 0, 1⟩ as a naturally ordered,

complete, Scott continuous, partial semiring with a top element ⊤ ∈ U such

that ⊤ ≥ u for all u ∈ U . We assign meaning to wReg-statements in terms

of a denotational semantics, taking as input an initial state σ and a final

state τ , and returning the sum of the weights of all paths starting from σ and

terminating in τ after the execution of C. The syntax of the weighted regular

command language (wReg) is below:

C ::= x := e (assignment)

| x := nondet() (nondeterministic assignment)

| ⊙ e (weighting)

| C # C (sequencing)

| {C } □ {C } (nondeterministic choice)

| C⟨e,e′⟩ (iteration)

where ⊙ e weights the current computation branch. Similarly to [17; 24], we

do not provide an explicit syntax for weights because we focus on semantic

assertions. Our weighting construct is more expressive than Batz et al. [24];

Zilberstein [74]: not only we can represent values u ∈ U and Boolean tests
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(via Iverson brackets), but we also reason about intensional properties of the

computation. The iteration construct C⟨e,e′⟩, introduced in [74], represents

a fundamental weighted control flow structure that either terminates with

weight e′ or executes the body C with weight e before continuing the iteration.

This construct elegantly unifies several common programming patterns: while

loops can be expressed as while (φ ) {C } = C⟨φ,¬φ⟩, probabilistic iterations as

C⟨p,1−p⟩ (where p represents execution probability), and Kleene’s star operation

as C⟨1,1⟩ (allowing arbitrary repetition). The construct is particularly valuable

in the context of partial semirings, where traditional approaches to defining

loops through Kleene star operations become problematic due to the inherently

nondeterministic nature of such operations, which are not well-defined in

general [74, Footnote 1].

We show below a list of common constructs defined as syntactic sugar.

assume φ ≜ ⊙φ diverge ≜ ⊙ 0

if (φ ) {C1 } else {C2 } ≜ { assume φ # C1 } □ { assume ¬φ # C2 }

{C1 } [ p ] {C2 } ≜ {⊙ p # C1 } □ {⊙ 1− p # C1 }

while (φ ) {C } ≜ C⟨φ,¬φ⟩ C⋆ ≜ C⟨1,1⟩

The semantics is shown in Figure 4.1 and is described below.

Assignment:

The semantics for assignment asserts that the weight of transitioning from σ

to τ after executing x := e is 1 if τ is equal to σ with the value of x updated to

σ(e), or 0 otherwise.

Nondeterministic Assignment:

The denotational semantics for x := nondet(),

Jx := nondet()K(σ, τ) =
⊕
α∈N

[σ [x/α] = τ ] ,
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Jx := eK(σ, τ) ≜ [σ [x/σ(e)] = τ ] (assignment)

Jx := nondet()K(σ, τ) ≜
⊕
α∈N

[σ [x/α] = τ ] (nondeterministic assignment)

J⊙ eK(σ, τ) ≜ JeK(σ)⊙ [σ = τ ] (weighting)

JC1 # C2K(σ, τ) ≜
⊕
ι∈Σ

JC1K(σ, ι)⊙ JC2K(ι, τ)

(sequential composition)

J{C1 } □ {C2 }K(σ, τ) ≜ JC1K(σ, τ) ⊕ JC2K(σ, τ) (nondeterministic choice)

JC⟨e,e′⟩K(σ, τ) ≜ (lfp X : ΦC,e,e′(X))(σ, τ) (iteration)

where

ΦC,e,e′(X)(σ, τ) = JeK(σ)⊙

(⊕
ι∈Σ

JCK(σ, ι)⊙X(ι, τ)

)
⊕ Je′K(σ)⊙ [σ = τ ]

△

Figure 4.1: Denotational semantics JCK : (Σ× Σ)→ U of wReg programs, where
A = ⟨U, ⊕, ⊙, 0, 1⟩ is a semiring and the least fixed point is defined
via point-wise extension of the natural order ≤ such that f ≤ f ′ iff
f(σ1, σ2) ≤ f ′(σ1, σ2) for all σ, σ′ ∈ Σ.

indicates that the weight of transitioning from initial state σ to final state τ

after executing x := nondet() is 1 if σ and τ differ only in the value of x, and

0 otherwise. This is achieved by treating
⊕

akin to an existential quantifier.

Specifically, given σ, we consider all possible values that x may take after the

execution of x := nondet().

Assume/Weighting:

The semantics for assume φ indicates that the weight of transitioning from σ

to σ is determined by the evaluation of φ in σ: an initial state σ is unchanged

and has weight 1 if the guard holds, and 0 otherwise. If τ ̸= σ, then the weight

of the transition is 0.

The intuition of the weighting statement in Batz et al. [24] is to weight

arbitrary constant values u ∈ U , which does not generalize assume φ (but only

assume true and assume false). In our setting, weight can be any expression,
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so ⊙ e is a proper generalization of the assume rule and is defined as

J⊙ eK(σ, τ) = JeK(σ)⊙ [σ = τ ] .

Here, the weighting rule expresses that the weight of transitioning from σ to

itself after a weighting operation is determined by the weight JeK(σ).

Sequential Composition:

The semantics for C1 # C2 calculates the weight of transitioning from σ to

τ after executing a sequence of C1 followed by C2, considering all possible

intermediate states σ′.

Nondeterministic Choice:

The semantics for {C1 } □ {C2 } captures the weight of transitioning from

σ to τ after executing either C1 or C2, with the weight being the sum of the

individual weights.

Iteration:

The recursive semantics of C⟨e,e′⟩ is captured by the equation C⟨e,e′⟩ ={
⊙ e # C # C⟨e,e′⟩ } □ {⊙ e′ }, which expresses the intuition that a loop either

executes its body C (weighted by condition e) and then recurses, or terminates

(weighted by condition e′). By introducing a variable X to stand for the recur-

sive occurrence, we obtain the functional ΦC,e,e′(X) = {⊙ e # C # X } □ {⊙ e′ }.

This functional is Scott-continuous when ΦC,e,e′ is a total function (see Sec-

tion 4.2.4 for well-definedness conditions). By Kleene’s fixpoint theorem, the

loop’s semantics is then given by the least fixed point of ΦC,e,e′ , computed

as the supremum of the ascending chain beginning with the bottom element

0 (representing divergence). Each step in this chain corresponds to a finite

unrolling of the loop, gradually approximating its full behavior as demonstrated

in the following sequence:

ΦC,e,e′(0)(σ, τ) = J{⊙ e # diverge } □ {⊙ e′ }K(σ, τ)

Φ2
C,e,e′(0)(σ, τ) = J{⊙ e # C # {⊙ e # diverge } □ {⊙ e′ } } □ {⊙ e′ }K(σ, τ)
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Φ3
C,e,e′(0)(σ, τ) =

J{⊙ e # C # {⊙ e # C # {⊙ e # diverge } □ {⊙ e′ } } □ {⊙ e′ } } □ {⊙ e′ }K(σ, τ)

and so on, whose supremum is the least fixed point of ΦC,e,e′ .

4.2.4 Well-definedness of the Denotational Semantics

We argue that the denotational semantics defined in Figure 4.1 is well-defined

when ΦC,e,e′(X) is a total function. This totality condition holds for any total

semirings (such as Bool,Tropical), rendering our semantics more general than

several others [73; 24; 17]. For partial semirings, extra caution is necessary as

⊕ may not always be well-defined. Hence:

1. We restrict the assignment x := nondet(), Kleene’s star C⋆ and nondeter-

ministic choices {C1 } □ {C2 } to total semi-rings only.

2. We allow only nondeterministic choices of the form {⊙ e # C1 } □

{⊙ e′ # C2 } and loops C⟨e,e′⟩ where the expressions are compatible [74,

Section A.3], that is, JeK(σ)⊕ Je′K(σ) is defined for any σ ∈ Σ.

Restricting to compatible expressions allows the use of syntactic constructs

if (φ ) {C1 } else {C2 } and the guarded loop while (φ ) {C } for every

semiring. Additionally, the probabilistic choice {C1 } [ p ] {C2 } remains well-

defined for the partial semiring Prob. For the remainder of the chapter, we

assume that programs are constructed in this manner, ensuring they are always

well-defined. Proofs of well-definedness are in Appendix A.7.

4.3 Quantitative Weakest Pre for Weighted

Programs

Although this is not our primary contribution, we will adapt the weakest

preweighting calculus presented by Batz et al. [24, Section 4.3] to our framework,

which allows for nondeterministic assignments and more generalized loops. The

resulting calculus is a Dijkstra-style approach for formal reasoning about the

value of a quantity f ∈ A after the execution of a weighted program. For
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simplicity, we will refer to this as the quantitative weakest pre, which serves as

a direct generalization of the calculus we introduced in Section 3.3.

To achieve this, we generalize the map perspective of weakest preconditions

to quantities. Recall that in Section 3.3, we extended Dijkstra’s original

calculus,

from wpJCK : (Σ→ {0, 1}) → (Σ→ {0, 1}) ,

to wpJCK : (Σ→ R±∞) → (Σ→ R±∞) .

i.e., from traditional pre and postconditions mapping states to Boolean values

0, 1, to more general pre and postquantities mapping program states to extended

real values in R±∞. This generalization enables quantitative reasoning about

program behavior beyond simple truth values. In our weighted setting, we

employ a more general definition of quantities, as given in Definition 4.2.6,

where wp JCK (f) : A → A, with A = Σ → U , and U being the set of values

from an arbitrarily chosen semiring A. Intuitively, we obtain a function wpJCK

that takes an initial state σ as input, and for each path starting in σ and

terminating in some final state τi, it computes the semiring product of all

weights along the path, including the additional postweight f(τi) at the end.

Finally, it returns the semiring sum of these values; see Figure 4.2a for a

graphical representation.

If the program has no weights, and if C terminates on input σ, then

wp JCK (f) (σ) anticipates the possible values that f will take, evaluated in the

final state that is reached after executing C on σ. Subsequently, wp JCK (f) (σ)

performs the semiring sum over these values, which could represent, for example,

the supremum or infimum. This process intuitively subsumes both our quanti-

tative weakest precondition and its liberal version, as defined in Section 3.3.

As pointed in Section 3.3.3, one of the main advantages of Dijkstra’s

calculus is that the weakest preconditions can be defined inductively based

on the program structure, which allows for compositional reasoning. We will
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demonstrate how the same principles apply to our weighted setting.

σ

⊕

⊕

• • • . . .
f(τ1)

f(τ2) f(τ3)

⊕ [ ]

bwp JCK (f )

a

b

a

a

a b

a

b

b

(a) Weighted Weakest Pre: Given an
initial state σ, wp JCK (f) computes
the semiring product of all weights
along each path starting in σ and ter-
minating in some final state τi, in-
cluding the postquantity f(τi), and
returns the semiring sum of these val-
ues.

τ

⊕ •

• • • . . .

. . .

f(σ1) f(σ2) f(σ3)

⊕ [ ]

b

b

a

b

b

a

b
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a
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sp JCK (f )

(b) Weighted Strongest Post: Given
a final state τ , sp JCK (f) computes
the semiring product of all weights
along each path starting from an ini-
tial state σi that can reach τ , includ-
ing the prequantity f(σi), and returns
the semiring sum of these values.

Definition 4.3.1 (Quantitative Weakest Pre for Weighted Programs). The

weakest pre transformer

wp : nGCL→ (A→ A)

is defined inductively according to the rules in Table 4.1. We call the function

Φf (X) = Je′K⊙ f ⊕ JeK⊙ wp JCK (X) ,

whose least fixed point defines the weakest pre wp JC⟨e,e′⟩K (f), the wp–

characteristic function (of C⟨e,e′⟩ with respect to f). △

Let us show for some of the rules how the quantitative weakest pre se-

mantics can be developed and understood as a generalization or our calculus

in Section 3.3.

Assignment:

The weighted weakest precondition of an assignment is given by

wp Jx := eK (f) = f [x/e] ,
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C wp JCK (f)

x := e f [x/e]

x := nondet()
⊕

α f [x/α]

⊙w w ⊙ f

C1 # C2 wp JC1K
(
wp JC2K (f)

)
{C1 } □ {C2 } wp JC1K (f)⊕ wp JC2K (f)

C⟨e,e′⟩ lfp X : Je′K⊙ f ⊕ JeK⊙ wp JCK (X)

Table 4.1: Rules for the weakest pre transformer. Here, lfp f : Φ(f) denotes the
least fixed point of Φ. While the rules for x := nondet() and C⟨e,e′⟩ are
newly introduced, the remaining rules have been previously presented
in [24, Table 2].

where f [x/e] is the replacement of every occurrence of variable x in the

postquantity f by the expression e. This rule is analogous to our quantitative

weakest pre, as no weights are involved at all, so the only weight we have is

given by the postquantity f evaluated at the final state σ [x 7→ σ(e)] — the

state obtained from σ by updating variable x to value σ(e).

Nondeterministic Assignment:

The statement x := nondet() is analogous to x := e, but without any restriction

on the final value of x. Since the assignment is entirely nondeterministic, we can-

not deterministically anticipate the final value of x. The weakest precondition

is thus given by:

wp Jx := nondet()K (f) =
⊕
α

f [x/α] .

Here, for each possible value α of x, we have a different anticipated quantity

f [x/α]. These quantities are aggregated via the semiring sum, reflecting the

nondeterministic nature of the assignment.

Assume/Weighting:

In the assume statement assume φ, the weakest pre is given by:
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wp Jassume φK (f) = [φ] · f.

For predicates, this indicates that if the initial state satisfies φ∧f , then ex-

ecuting assume φ ensures that the state will satisfy f . Quantitatively, assume φ

acts as a filter, preserving f only if the initial state satisfies φ. This behavior

is achieved using our semiring-parametrized Iverson bracket Definition 4.2.7.

In weighted programming, we generalize this concept to more general

weighting functions w, yielding the rule:

wp J⊙wK (f) = w ⊙ f.

Here, a⊙ f represents the scaling of f by the weight w. This generalizes

the notion of filtering to accommodate various use cases, such as probabilities.

The apparent inversion between program syntax notation ⊙w and se-

mantic denotation w⊙ serves a precise mathematical purpose, especially in

non-commutative settings. When programs execute, they process states sequen-

tially from program entry to exit—encountering a weight w during execution

effectively appends this value to the right end of the accumulated trace of

weights, constituting a natural right-multiplication operation.

Conversely, weakest precondition calculus are backward-moving: they

traverse programs in reverse, from postconditions toward preconditions. As our

backward analysis encounters a weighting instruction, we must incorporate this

weight at the beginning of our postquantity f , which may anticipate the effects

of subsequent computations. We thus prepend w to the current postquantity

f , yielding a left-multiplication w ⊙ f in the denotations.

Sequential Composition:

For sequential composition C1 # C2, the quantitative weakest pre is computed

via:

wp JC1 # C2K (f) = wp JC1K (wp JC2K (f)) .
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This reflects the process where we first compute the weakest pre for C2

with respect to f , resulting in wp JC2K (f). We then use this result as the input

to compute the weakest pre for C1, thereby anticipating the overall weight.

Nondeterministic Choice:

For the nondeterministic choice {C1 } □ {C2 }, where either C1 or C2 may be

executed, the weakest pre is given by the semiring sum of the weakest pre for

C1 and C2:

wp J{C1 } □ {C2 }K (f) = wp JC1K (f)⊕ wp JC2K (f) .

This captures the need to account for the possibility of either C1 or C2

being executed. The semiring sum combines the results, allowing us to compute

suprema or infima, thereby encompassing our previous quantitative calculi

defined in Section 3.3.

Iteration:

The weakest pre for the iteration C⟨e,e′⟩ is an extension to the one in Section 3.3,

but generalised to arbitrary weights e, e′. The intended meaning of C⟨e,e′⟩ is

to be equal to
{
⊙ e # C # C⟨e,e′⟩ } □ {⊙ e′ }. Replacing the recursive instance

of C⟨e,e′⟩ with X, we get ΦC,e,e′(X), and so by Kleene’s fixpoint theorem, the

least fixed point corresponds to iterating on the least element 0, which yields

an ascending chain of loop unrollings:

Φf (0) = wp J{⊙ e # diverge } □ {⊙ e′ }K (f)

Φ2
f (0) = wp J{⊙ e # C # {⊙ e # diverge } □ {⊙ e′ } } □ {⊙ e′ }K (f)

Φ3
f (0) =

wp J{⊙ e # C # {⊙ e # C # {⊙ e # diverge } □ {⊙ e′ } } □ {⊙ e′ } } □ {⊙ e′ }K (f)

which converge to the least fixed point of Φf (X) = Je′K⊙ f ⊕ JeK⊙wp JCK (X),

yielding the rule wp JC⟨e,e′⟩K (f) =
(
lfp X : Je′K⊙ f ⊕ JeK⊙ wp JCK (X)

)
Let us show what wp computes semantically.
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Theorem 4.3.1 (Characterization of wp). For all programs C ∈ wReg and

final states τ ∈ Σ, the following equality holds:

wp JCK (f) (σ) =
⊕
τ∈Σ

JCK(σ, τ)⊙ f(τ) .

The result above is a generalization of the characterization result for the

quantitative weakest pre in Theorem 3.3.1 and Theorem 3.3.2, which can be

obtained by choosing the semirings ⟨R±∞, max, min, −∞, +∞⟩ respectively.

In the context of probability distributions, the well known duality theorem

of Kozen [13] can be seen as instantiation of Theorem 4.3.1 as well, by tak-

ing the semiring Prob. Indeed, the following can be proved as a corollary

of Theorem 4.3.1.

Corollary 4.3.1.1 (Kozen [13] Duality). For all programs C, probability

distributions µ : Σ→ [0, 1], and all functions f ∈ A, we have

wp JCK (f) (σ) =
∑
τ∈Σ

JCK(σ, τ) · f(τ).

To demonstrate the generality of our calculus, we illustrate in Table 4.2 that by

applying different semirings, our calculus encompasses several existing weakest

precondition calculi, including those presented in Section 3.3.

Calculus Semiring

Quantitative Weakest Preexpectation [14; 16]2 ⟨R∞
≥0, +, ·, 0, 1⟩

Weakest Precondition [64] ⟨{0, 1},∨,∧, 0, 1⟩

Weakest Liberal Precondition [64] ⟨{0, 1},∧,∨, 1, 0⟩

(Angelic) Quantitative Weakest Pre [17] ⟨R±∞,max,min,−∞,+∞⟩

(Demonic) Quantitative Weakest Liberal Pre [17] ⟨R±∞,min,max,+∞,−∞⟩

Table 4.2: Existing weakest pre calculi subsumed via our quantitative weighted pre.
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4.4 Quantitative Strongest Post for Weighted

Programs

We now present our main contribution: A lifting of our quantitative strongest

post calculus to weighted programs, which we will subsume both our quantita-

tive strongest post and its liberal version.

To achieve this, we generalize the map perspective of strongest postcondi-

tions to quantities. Recall that in Section 3.4, we extended Dijkstra’s original

calculus,

from spJCK : (Σ→ {0, 1}) → (Σ→ {0, 1}) ,

to spJCK : (Σ→ R±∞) → (Σ→ R±∞) .

Similarly to how we did for weighted wp, we now generalize the strongest

post transformer to work with quantities over arbitrary semirings. Given a

prequantity f : Σ → U , the weighted strongest post sp JCK (f) : Σ → U is a

function that takes as input a final state τ , determines all initial states σ that

can reach τ by executing C, evaluates the prequantity f(σ) in each of these

initial states, combines it with the weight of the execution path from σ to τ

using the semiring product ⊙, and finally aggregates all these values using

the semiring sum ⊕. See Figure 4.2b for a graphical representation. As a

transformer, we obtain the following:

We define a novel quantitative strongest post transformer for wReg.

Definition 4.4.1 (Quantitative Strongest Post). The strongest post trans-

former

sp : wReg→ (A→ A)
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C sp JCK (f)

x := e
⊕

α f [x/α]⊙ [x = e [x/α]]

x := nondet()
⊕

α f [x/α]

⊙w f ⊙ w

C1 # C2 sp JC2K (sp JC1K (f))

{C1 } □ {C2 } sp JC1K (f)⊕ sp JC2K (f)

C⟨e,e′⟩ (
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(f)

Table 4.3: Rules for the strongest post transformer. Here, lfp f : Φ(f) denotes the
least fixed point of Φ.

is defined inductively according to the rules in Table 4.3. We call the function

Φ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K ,

whose least fixed point is used to define sp JC⟨e,e′⟩K (f), the sp–characteristic

function (of C⟨e,e′⟩). △

Let us show for some of the rules how the weighted strongest post seman-

tics can be developed and understood analogously to our previously defined

quantitative strongest post in Section 3.4.

Assignment:

The quantitative strongest post for an assignment x := e is given by:

sp Jx := eK (f) =
⊕
α

f [x/α]⊙ [x = e [x/α]] .

This rule reflects that we need to consider all possible values α that x

could have had before the assignment and summing all evaluations of quantity

f under those possible α.

Nondeterministic Assignment:

The nondeterministic assignment x := nondet() allows x to take any possible

value, without constraints on its initial state. Since the assignment does not

depend on a specific initial value of x, any initial value is considered valid.
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Importantly, the semantics of x := nondet() remain consistent whether the

assignment is evaluated forward or backward. Consequently, the rule for the

strongest postcondition is identical to that of the weakest precondition:

sp Jx := nondet()K (f) =
⊕
α

f [x/α] .

Assume/Weighting:

In the assume statement, the strongest post is given by [φ] · f , where [φ] acts

as a filter, nullifying states for which the predicate does not hold.

The weighting statement ⊙w extends the assume rule by allowing any

weighting function w.

The strongest post for weighting involves scaling the initial quantity f by

the weight w, obtaining:

sp J⊙wK (f) = f ⊙ w.

Here, f ⊙w indicates that the initial quantity f is scaled by the weight w,

reflecting how the weighting modifies the state.

The order of the rule is particularly important in non-commutative semir-

ings, where the sequence of operations cannot be interchanged without affecting

the result. In strongest post calculi, the order of multiplication is reversed

compared to the backward-moving weakest pre calculi. Specifically, in strongest

post calculi, f represents a prequantity that abstracts or summarizes the ef-

fects of preceding computations. As we move from the front to the back of a

program, encountering a weighting by w requires us to append w to the current

prequantity f , resulting in a right-multiplication f ⊙w in the denotations. This

right-multiplication correctly captures the cumulative impact of the weighting

on the initial quantity, preserving the intended semantics in a non-commutative

context.
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Sequential Composition:

For sequential composition, the quantitative strongest postcondition is given

by:

sp JC1 # C2K (f) = sp JC2K (sp JC1K (f)) .

This process begins by computing the strongest postcondition for the initial

command C1, and then uses the resulting postcondition as the input for

evaluating the second command C2. The expression sp JC1K (f) represents the

possible states and associated weights after executing C1. These states serve

as the starting point for C2, ensuring that the final weights are the combined

effect of executing both commands in sequence.

Nondeterministic Choice:

For the nondeterministic choice {C1 } □ {C2 }, where either C1 or C2 may be

executed, the strongest post is given by the semiring sum of the strongest post

for C1 and C2:

sp J{C1 } □ {C2 }K (f) = sp JC1K (f)⊕ sp JC2K (f) .

This reflects the fact that either command might be executed, and therefore

the overall strongest post must account for the outcomes of both possibilities.

The semiring sum aggregates the weights in different ways, including the

suprema or infima of the results. This approach thus generalizes and subsumes

the methods used in our previous calculi in Section 3.4.

Iteration:

The strongest post for the iteration C⟨e,e′⟩ is an extension to the one in Sec-

tion 3.4, but generalised to arbitrary weights e, e′ instead of predicates. It is

thus obtained via loop unrollings

Ψf (0)⊙ Je′K = sp J{⊙ e # diverge } □ {⊙ e′ }K (f)

Ψ2
f (0)⊙ Je′K = sp J{⊙ e # C # {⊙ e # diverge } □ {⊙ e′ } } □ {⊙ e′ }K (f)
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Ψ3
f (0)⊙ Je′K = .

sp J{⊙ e # C # {⊙ e # C # {⊙ e # diverge } □ {⊙ e′ } } □ {⊙ e′ } } □ {⊙ e′ }K (f)

Similarly to our previous strongest post calculus defined in Section 3.4, it

may be tempting to conclude that the loop unrollings converge to the least

fixed point of Sf (X) = f⊕ sp JCK (X ⊙ JeK), yielding the rule sp JC⟨e,e′⟩K (f) =(
lfp X : f ⊕ sp JCK (X ⊙ JeK)

)
⊙ Je′K. However, this would be wrong in the

context of partial semirings. In fact, for partial semirings, the operation ⊕ is not

always defined for arbitrary elements, which means the fixed point computation

may encounter undefined additions during intermediate steps, that we would

not encounter if we were to weight by e′ each addend.

Let us illustrate this with an example.

Example 4.4.1. Let us consider the semiring Prob = ⟨[0, 1],+, ·, 0, 1⟩ of

probabilities. The addition operation is only defined for values in [0, 1]. Consider

the program Cskiploop = skip⟨0.5,0.5⟩. If we were to compute sp JCskiploopK (1x=0)

via (lfp X : 1x=0⊕ sp JskipK (X ⊙ JeK))⊙ Je′K, we would rely on Kleene’s Fixed

Point Theorem, obtaining the following iterates:

S1x=0(0) = 1x=0

S2
1x=0

(0) = 1x=0 ⊕ 1x=0 ⊙ 0.5 = undefined
△

The previous example demonstrates that a naive approach to defining the

loop rule would not work. However, this does not preclude the possibility of

defining the strongest post in a meaningful way. Indeed, we would expect that

the strongest post of Cskiploop should coincide with that of skip, which is the

prequantity 1x=0. To achieve this, we reformulate the loop rule as the least

solution of the following recursive equation:

spJC⟨e,e′⟩K
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= spJ
{
⊙ e # C # C⟨e,e′⟩

}
□
{
⊙ e′

}
K

= λf : sp J⊙ e # C # C⟨e,e′⟩K (f)⊕ sp J⊙ e′K (f)

= λf : sp JC⟨e,e′⟩K (sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K ,

which corresponds to the least fixpoint of the higher order function

Ψ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K .

We thus obtain the rule:

sp JC⟨e,e′⟩K (f) =
(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(f) .

Example 4.4.2. Let us consider again the semiring Prob = ⟨[0, 1],+, ·, 0, 1⟩

of probabilities, and the program Cskiploop = skip⟨0.5,0.5⟩. We compute

sp JCskiploopK (1x=0) =
(
lfp trnsf : Ψ(trnsf)

)
(1x=0), and relying on Kleene’s Fixed

Point Theorem, obtain the following iterates:

Ψ(λg : 0) = λf : f ⊙ 0.5

Ψ2(λg : 0) = λf : f ⊙ 0.5⊙ 0.5⊕ f ⊙ 0.5

...

Ψn(λg : 0) = λf :
n⊕
i=1

f ⊙ 0.5i

This allows us to conclude that:

sp JCskiploopK (1x=0) =
(
lfp trnsf : Ψ(trnsf)

)
(1x=0)

=
∞⊕
i=1

1x=0 ⊙ 0.5i

= 1x=0 .
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△

In general, for total semirings, the simplified loop rule is also correct, as

shown in the following theorem.

Theorem 4.4.1 (Loop rule for total semirings). For all programs C ∈ wReg,

if the ambient semiring is a total semiring, the simplified loop rule:

sp JC⟨e,e′⟩K (f) =
(
lfp X : f ⊕ sp JCK (X ⊙ JeK)

)
⊙ Je′K

holds for all f ∈ A.

The order X ⊙ JeK rather than JeK⊙X in the fixed point equation reflects the

operational semantics of the loop: we first compute the accumulated effect

X from previous iterations, and then scale it by the guard condition JeK to

determine which states continue in the iteration. This contrasts with wp, where

the order is reversed (JeK ⊙ wp JCK (X)) because weakest pre are backward

moving from postquantities, whereas our strongest post pushes prequantities

forward.

Let us show what sp computes semantically.

Theorem 4.4.2 (Characterization of sp). For all programs C ∈ wReg and final

states τ ∈ Σ,

sp JCK (µ) (τ) =
⊕
σ∈Σ

µ(σ)⊙ JCK(σ, τ) .

Theorem 4.4.2 guarantees the correct behavior of sp by asserting that it appro-

priately maps initial weighted quantities to final weighted quantities, including

probability distributions and program sets of states. Our characterization of sp

is different compared to the one disproven by [95, p. 135]. The latter focuses

on identifying the most precise assertion for the triples defined in [95, p. 124].

In particular, Table 4.4 shows that by instantiating our calculus with

different semirings we subsume several existing strongest post calculi, such

as those introduced in Section 3.4. Additionally, similarly to [24, Table 1],
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weighted strongest post can handle optimization and combinatorial problems

as well, with the main difference to be our calculus moving forward instead of

backward.

Calculus Semiring

Strongest Postcondition [64] ⟨{0, 1},∨,∧, 0, 1⟩

Strongest Liberal Postcondition [17] ⟨{0, 1},∧,∨, 1, 0⟩

Quantitative Strongest Post [17] ⟨R±∞,max,min,−∞,+∞⟩

Quantitative Strongest Liberal Post [17] ⟨R±∞,min,max,+∞,−∞⟩

Table 4.4: Existing strongest post calculi subsumed via our quantitative strongest
post.

4.5 Expressivity

In the preceding sections, we characterized our quantitative weighted transform-

ers: wp and sp. In this section, we aim to illustrate the expressive capabilities

of the calculus by demonstrating that it subsumes several other logics and

calculi.

4.5.1 An Overview of Several Hoare-Like Logics

We illustrate how several program logics, namely partial correctness, angelic

total correctness, partial incorrectness, and total incorrectness (according to

the terminology in [17]), can be represented via classical predicate transformers,

see Table 4.5. As a byproduct, they are subsumed by our weighted transformers

as well.

4.5.2 Disproving Hoare-Like Triples

Reasoning about predicate transformers is useful to define new triples that are

not expressible in classical Hoare-like logics. For example, we can semantically

define new triples by falsifying the triples of Table 4.5, see Table 4.6.

Let us provide an intuition for the falsifying triples in Table 4.6.

• ̸|=pc {P } C {Q }: there is some state in P that can terminate in ¬Q, and
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Logic Syntax Semantics

Hoare Logic (partial correctness) |=pc {P } C {Q } P ⊆ wlpJCK (Q)

Lisbon Logic (angelic total correctness) |=atc {P } C {Q } P ⊆ wp JCK (Q)

Partial Incorrectness Logic |=pi [P ] C [Q ] Q ⊆ slpJCK (P )

Incorrectness Logic/Reverse Hoare Logic |=ti [P ] C [Q ] Q ⊆ sp JCK (P )

Table 4.5: Partial and total (in)correctness using classical predicate transformers,
according to the terminology of [17]. Our weighted wp and sp subsume
these logics as well.

Syntax Semantics

̸|=pc {P } C {Q } P ∩ wp JCK (¬Q) ̸= ∅

̸|=atc {P } C {Q } P ∩ wlpJCK (¬Q) ̸= ∅

̸|=pi [P ] C [Q ] Q ∩ sp JCK (¬P ) ̸= ∅

̸|=ti [P ] C [Q ] Q ∩ slpJCK (¬P ) ̸= ∅

Table 4.6: Disproving partial and total (in)correctness using classical predicate
transformers. Non-liberal transformers can be expressed via liberal
transformers and vice versa by duality [17, Section 5.3]

hence it is false that every state in P terminates only in Q (if it terminates

at all)

• ̸|=atc {P } C {Q }: there is some state in P that terminates only in ¬Q (if it

terminates at all), and hence it is false that every state in P can terminate

in Q

• ̸|=pi [P ] C [Q ]: there is some state in Q that is reachable from ¬P , and

hence it is false that every state in Q is reachable only from P

• ̸|=ti [P ] C [Q ]: there is some state in Q that is reachable only from ¬P (if

it is reachable at all), and hence it is false that every state in Q is reachable

from P

It remains to define program logics for the newly defined falsifying triples. To

this end, one can prove that the existing program logics are actually falsifying
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program logics for other triples. More precisely:

Theorem 4.5.1 (Falsifying correctness triples via correctness triples).

|=pc {P } C {Q } iff ∀σ ∈ P : ̸|=atc { {σ} } C {¬Q }

|=atc {P } C {Q } iff ∀σ ∈ P : ̸|=pc { {σ} } C {¬Q }

|=pi [P ] C [Q ] iff ∀σ ∈ Q : ̸|=ti [¬P ] C [ {σ} ]

|=ti [P ] C [Q ] iff ∀σ ∈ Q : ̸|=pi [¬P ] C [ {σ} ]

An intuition for Theorem 4.5.1 is as follows.

• |=pc {P } C {Q }: every state in P can only terminate in Q (if it terminates

at all), and hence by starting on any of those state it is false that it can

terminate in ¬Q

• |=atc {P } C {Q }: every state in P can terminate in Q, and hence by

starting on any of those states it is false that it can terminates only in ¬Q

(if it terminates at all)

• |=pi [P ] C [Q ]: every state in Q is reachable only from P , and hence from

any of those states it is false that it is reachable from ¬P

• |=ti [P ] C [Q ]: every state in Q is reachable from P , and hence from any of

those states it is false that it is reachable only from ¬P

Theorem 4.5.1 not only demonstrates that existing program logics can gen-

erate proofs to falsify other triples but also establishes a crucial “if and only

if” relationship. This indicates that not only the current logics are sound,

but they are complete as well: the existence of an invalid triple implies the

presence of a corresponding valid triple that renders the original one invalid.

Restating Theorem 4.5.1 from a negative perspective as below might make it

more clear how to practically falsify triples.
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Corollary 4.5.1.1.

̸|=pc {P } C {Q } iff ∃σ ∈ P : |=atc { {σ} } C {¬Q }

̸|=atc {P } C {Q } iff ∃σ ∈ P : |=pc { {σ} } C {¬Q }

̸|=pi [P ] C [Q ] iff ∃σ ∈ Q : |=ti [¬P ] C [ {σ} ]

̸|=ti [P ] C [Q ] iff ∃σ ∈ Q : |=pi [¬P ] C [ {σ} ]

As highlighted by Zhang and Kaminski [17, p. 20, “Other Triples”], the use

of the terms “correctness” and “incorrectness” in naming conventions may be

imprecise. Correctness triples can be seen as ∀-properties over preconditions,

whereas incorrectness triples exhibit characteristics of ∀-properties over post-

conditions. Furthermore, it is noteworthy that the falsification of such ∀-triples

can be interpreted as ∃-triples, a result that aligns with the expectation that

disproving these properties involves finding at least one counterexample. This

perspective concurs with the observation made by Cousot [93, Logic 23] that

Incorrectness Logic provides sufficient (though not necessary) conditions to

falsify partial correctness triples, thereby demonstrating its greater-than-needed

power. Let us show how to practically falsify triples.

Example 4.5.1 (Backward-Moving Assignment Rule for (Total) Incorrectness

Logic). Consider the triple |=ti [ y = 42 ] x := 42 [ y = x ], obtained by taking

as precondition the syntactic replacement of x = 42 from the post. As shown

in [6] with a counterexample, this is not valid. We can prove it by computing a

partial incorrectness triple with precondition y ̸= 42.

Using the rules defined in [17, Table 2, Column 2], we have:

|=pi [ y ̸= 42 ] x := 42 [ y ̸= 42 ∨ x ̸= 42 ]

This post clearly contains at least one state with y = x (e.g., take a state

where σ(x) = σ(y) = 0), which implies ̸|=ti [ y = 42 ] x := 42 [ y = x ] (by

Corollary 4.5.1.1). △
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4.6 Semantics of Nontermination and

Unreachability

As discussed in Ascari et al. [78, Section 5.4], we also show how existing triples

capture properties such as must-nontermination, may-termination, unreachabil-

ity, and reachability, but within our setting. Our initial focus is on illustrating

∀-properties, see Table 4.7. It is noteworthy that the transition from partial

Triple Semantics Property

|=pc {P } C { false } ∀σ ∈ P : ̸ ∃τ : τ ∈ JCK(σ) Must-Nontermination

|=atc {P } C { true } ∀σ ∈ P : ∃τ : τ ∈ JCK(σ) May-Termination

|=pi [ false ] C [Q ] ∀τ ∈ Q : ̸ ∃σ : τ ∈ JCK(σ) Unreachability

|=ti [ true ] C [Q ] ∀τ ∈ Q : ∃σ : τ ∈ JCK(σ) Reachability

Table 4.7: ∀-properties on nontermination and unreachability.

(in)correctness to total (in)correctness involves the negation of the properties

under consideration. Specifically, the negation of may-termination corresponds

to must-nontermination, and unreachability is the negation of reachability.

Another useful perspective that has been observed by many [78; 93; 133],

is to view reachability as the may-termination of the reverse semantics, while

unreachability can be conceptualized as its must-nontermination.

By examining their falsification, we derive their dual counterparts, charac-

terized as ∃-properties, see Table 4.8.

Triple Semantics Property

̸|=pc {P } C { false } ∃σ ∈ P : ∃τ : τ ∈ JCK(σ) May-Termination

̸|=atc {P } C { true } ∃σ ∈ P : ̸ ∃τ : τ ∈ JCK(σ) Must-Nontermination

̸|=pi [ false ] C [Q ] ∃τ ∈ Q : ∃σ : τ ∈ JCK(σ) Reachability

̸|=ti [ true ] C [Q ] ∃τ ∈ Q : ̸ ∃σ : τ ∈ JCK(σ) Unreachability

Table 4.8: ∃-properties on nontermination and unreachability.
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In the preceding sections, we have demonstrated the capabilities and

strengths of our framework, showcasing its effectiveness for proving a variety of

program properties. Despite these achievements, our framework has certain

limitations that should be acknowledged. Notably, we are unable to prove must-

termination properties—a concept closely related to demonic total correctness,

where a program is guaranteed to terminate for all possible non-deterministic

choices. Beyond must-termination, our framework faces challenges with several

other significant properties of interest in program verification. These properties,

which remain beyond the scope of our current approach, are systematically

categorized and presented in Table 4.9. The table provides a comprehensive

overview of these limitations, clarifying the boundaries of our framework’s

applicability while identifying existing individual logics that can successfully

prove each of these properties that lie beyond our approach.

Triple Property

|=apc {P } C { false } May-Nontermination

|=dtc {P } C { true } Must-Termination

̸|=apc {P } C { false } Must-Termination

̸|=dtc {P } C { true } May-Nontermination

Table 4.9: Nontermination and unreachability.

The reason our logics are unable to express scenarios where a pro-

gram might not terminate or must terminate stems from the underlying

program semantics, where looping is defined via a least fixed point and

only represents an accumulation of the terminating traces. As a result, we

cannot identify whether additional nonterminating traces exist, since, e.g.,

J{ while ( true ) { skip } } □ { skip }K(σ) = JskipK(σ) for all σ. The semantics

could be adjusted to also indicate whether nontermination is possible (e.g., see

Cousot and Cousot [134]; Cousot [93]), but we leave a complete exploration for

future work. However, in the following section, we will briefly investigate how

nontermination analysis fits into our framework.
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4.6.1 Proving may nontermination

Raad et al. [81] defined a sound and complete proof system to prove may

nontermination, by combining (angelic) total correctness and total incorrectness

logics. We start by comparing the nontermination program logics developed in

Raad et al. [81] to show how our framework could not only subsume and prove

every rule, but we also define several novel interpretations of nontermination.

Raad et al. [81] introduce a triple notation |=unter {P } C⋆ {∞} to for-

malize may-divergence: for any state satisfying precondition P , there exists at

least one diverging execution trace of C⋆. We will refer this to may nontermi-

nation, since here we do not require all paths to diverge. We observe that this

definition can be expressed in our framework as an angelic partial correctness

triple |=apc {P } C⋆ { false }. Using our terminology, their fundamental rule

can be formulated as:

|=atc {P } C {P }
∀σ ∈ P : JC⋆K(σ) may diverge

Whilst [81, Section 1, “Formal Interpretation of Divergent Triples”] focuses

on a stronger interpretation of triples where |=atc {P } C {∞} means every

state σ ∈ P have at least a diverging trace, our framework allows to express a

novel interpretation as well, namely must divergence. Unlike may divergence,

must divergence asserts that all traces originating from a given initial state

must diverge. We highlight the inadequacy of C⋆ due to its semantics implicitly

assuming that must divergence never happen. Consequently, our subsequent

exploration will revolve around while (φ ) {C }, and we will present rules for

both interpretations, see Figure 4.3.
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|=atc {P } C {P } P ⊆ φ

∀σ ∈ P : Jwhile (φ ) {C }K(σ) may diverge

|=pc {P } C {P } P ⊆ φ

∀σ ∈ P : Jwhile (φ ) {C }K(σ) must diverge

Figure 4.3: Nontermination rules for the while (φ ) {C } construct using existing
program logics.

The duality between angelic total correctness and partial correctness is

influenced by the choices made in our interpretation of nondeterminism, which

bears resemblance to the one highlighted in [17].

4.6.2 More on angelic partial correctness and demonic

total correctness

As pointed in Table 4.9, angelic partial correctness and demonic total correctness

have a key role in proving may-nontermination and must-termination. It is

thus surprising that [81] chose to combine (angelic) total correctness and total

incorrectness logics for their sound and complete proof system that allows to

prove may-nontermination.

In this section, we show how a standard angelic partial correctness proof

system relates with the rules in [81]. We consider guarded imperative languages

with nondeterministic choices (i.e., with while constructs instead of Kleene star),

and the rules for angelic partial correctness as analogous to those for standard

partial correctness, except for the nondeterministic choice [16, Definition 4.5].

In particular, it is well known that by coinduction, the following rule holds:

|=apc {P ∧ φ } C {P }
|=apc {P } while (φ ) {C } {¬φ ∧ P }

We shall observe that angelic partial correctness is a complete proof system
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(for guarded imperative languages), and this already means that every may-

nontermination triple can be proved. However, let us show how we can derive

simpler rules (analogous to those in [81]) without the need to add explicit rules

for may-nontermination.

Theorem 4.6.1. The following rules are valid in angelic partial correctness

logic:

|=apc {P } C1 { false }
|=apc {P } C1 # C2 { false }
|=apc {P } C1 {Q } |=apc {Q } C2 { false }

|=apc {P } C1 # C2 { false }
|=apc {P } Ci { false } for some i ∈ {1, 2}
|=apc {P } {C1 } □ {C2 } { false }
|=apc {P ∧ φ } C {P ∧ φ }

|=apc {P ∧ φ } while (φ ) {C } { false }

The rules above resemble to those in [81], but again we stress that here

we are not developing a new complex logic. It is also easy to show that the

loop rule for while loops in [81] can be very easily proved:

|=atc {P ∧ φ } C {P ∧ φ }
|=apc {P ∧ φ } C {P ∧ φ }

|=apc {P ∧ φ } while (φ ) {C } { false }

4.6.3 Nontermination and Unreachability

It is worth noting that in all rules mentioned in the previous section, we

were concerned with correctness triples rather than incorrectness ones. This

emphasis is due to our focus on the termination of the forward semantics. An

analogous rule for total incorrectness triples would facilitate the identification

of nonterminating states in the backward semantics:

|=ti [P ] C [P ]

∃σ ∈ P : JC⋆K−1(σ) may diverge



4.6. Semantics of Nontermination and Unreachability 145

The premise |=ti [P ] C [P ] ensures that every final state in P is reachable

by executing C on some initial state in P . In other words, for any state we

pick in P , we can find a backward trace that leads to another state in P , by

reversing C. It is straightforward to show by induction that we can continue

the backward trace from P to P as many times as we wish (i.e., we can reach P

from P in 0, 1, 2, 3, . . . steps) by just executing C backwards (i.e., JC⋆K−1(σ)).

The rule can be used in the context of program inversion to assess whether one

could compute the pre-image by simply executing the inverted program.

The correlation between nontermination and unreachability, as highlighted

in [17], may lead one to question whether proving states as unreachable is

related to demonstrating nontermination. However, when considering backward

semantics, a single nonterminating trace does not provide enough informa-

tion to establish unreachability. It is essential for all backward traces to be

nonterminating, aligning with the concept of must-termination in backward

semantics, precisely corresponding to what is conventionally meant by unreach-

ability. This insight strengthens the connection described in [17], where their

dualities between nontermination and unreachability arise from the resolution

of nondeterministic choices. In other words, when [17] refers to nontermination,

they essentially mean must-nontermination.

We conclude by examining whether backward must-nontermination rules

would be useful. For C⋆, we previously excluded this from forward must-

nontermination analysis because arbitrary iterations always allow terminating

executions. The same limitation applies to backward reasoning: since C⋆

can execute zero times, there is always a terminating execution path, making

backward must-nontermination impossible. For while loops while (φ ) {C },

the analysis is equally trivial: a potential final state τ where τ |= φ cannot

be reached by normal termination, while a state where τ |= ¬φ is reached

in zero iterations without executing the loop body. In both cases, backward

must-nontermination analysis is trivial.
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4.7 Properties of Quantitative Weighted

Transformers

Similar to the transformers discussed in Section 3.5, which satisfy various

healthiness conditions such as continuity, linearity and monotonicity, aiding in

concrete reasoning about nondeterministic programs and forming a foundation

for compositional reasoning, we will explore such properties in our weighted

setting.

More in details, we demonstrate that our weighted transformers possess

analogous healthiness properties. We will show how they encompass existing

properties discussed in Section 3.5 and highlight novel dualities.

4.7.1 Healthiness Properties

We start by presenting the healthiness properties of wp, which have been

explored by Batz et al. [24, Theorem 4.8], and novel healthiness properties of

sp.

Theorem 4.7.1 (Healthiness Properties of Weighted Transformers). For all

programs C, wpJCK and sp satisfy the following properties:

1. Monotonicity:

f ⪯ g implies ttt JCK (f) ⪯ ttt JCK (g) , for ttt ∈ {wp, sp} .

2. Quantitative universal disjunctiveness: For any set of quantities S ⊆ A,

wp JCK (⋎S) = ⋎ wp JCK (S) and sp JCK (⋎S) = ⋎ sp JCK (S) .

3. Strictness:

wp JCK (0) = 0 and sp JCK (0) = 0 .
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Monotonicity

Monotonicity of weighted wp and sp, defined in Theorem 4.7.1 (1), is a funda-

mental property that is subsumed by continuity. It aids compositional reasoning

and ensures that larger input quantities result in larger output quantities.

Continuity and Disjunctiveness

Similar to the quantitative wp and sp defined in Sections 3.3 and 3.4, our

weighted transformers exhibit quantitative universal disjunctiveness, see The-

orem 4.7.1 (2). This property ensures that our transformers preserve ar-

bitrary suprema of quantities, which in turn implies their continuity and

well-definedness. It is important to note that disjunctiveness in the weighted

setting subsumes both quantitative universal disjunctiveness and conjunctive-

ness as described in Theorem 3.5.1 (3, 1), by simply considering the semirings

⟨R±∞,max,min,−∞,+∞⟩ and ⟨R±∞,min,max,+∞,−∞⟩ respectively.

Strictness

Strictness of wp and sp, defined in Theorem 4.7.1 (3) generalise the notion of

strictness and costrictness as defined in Section 3.5, ensuring that if the input

is the bottom element 0, the output is also the bottom element. In fact, recall

that 0 ≜ +∞ in the semirings used by wlp and slp (Tables 4.2 and 4.4), which

leads to co-strictness.

Linearity

Sub- and superlinearity, extensively studied by Kozen, McIver & Morgan, and

Kaminski for probabilistic w(l)p transformers, are subsumed in our weighted

setting as well, if the chosen semiring is commutative, as shown in Batz et al.

[24, Theorem 4.8] for wp. More in general, we show a more general result

for non-commutative semirings, which is dual to the one for sp. We start by

splitting linearity into two more fine-grained properties, namely additivity and

homogeneity.
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Definition 4.7.1 (Additivity). A transformer T : A → A is additive if, for

any two quantities f, g ∈ A,

T (f ⊕ g) = T (f)⊕ T (g).

△

Definition 4.7.2 (Homogeneity). For any scalar a ∈ U and any quantity

f ∈ A, a transformer T : A→ A is:

• left homogeneous if

T (a⊙ f) = a⊙ T (f),

• right homogeneous if

T (f ⊙ a) = T (f)⊙ a,

• homogeneous if it is both left and right homogeneous.

△

Both additivity and homogeneity allow a complex property to be broken

down into simpler ones, which can be proved separately. The results can

then be soundly recombined to complete the proof of the original complex

property. Left and right homogeneity are particularly useful in the context of

non-commutative semirings, where the order of multiplication matters. We can

prove the following.

Theorem 4.7.2 (Extended Healthiness Properties on Weighted Transformers).

For all programs C, wpJCK and sp satisfy the following properties:

1. Additivity: For all f, g ∈ A, we have

wp JCK (f ⊕ g) = wp JCK (f)⊕ wp JCK (g) and

sp JCK (f ⊕ g) = sp JCK (f)⊕ sp JCK (g) .
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2. Right-homogeneity: For all a ∈ U, f ∈ A, we have

wp JCK (f ⊙ a) = wp JCK (f)⊙ a .

3. Left-homogeneity: For all a ∈ U, f ∈ A, we have

sp JCK (a⊙ f) = a⊙ sp JCK (f) .

While additivity has been proved in Batz et al. [24, Theorem 4.8] (only

for wp), we remark that right-homogeneity and left-homogenity are novel and

essential to understand the behaviour of the two transformers. An intuition is

the following:

• sp prepends the prequantity, so that sp JCK (a⊙ f) corresponds to prepending

a⊙f before the weights collected during the execution of C. This is equivalent

to a⊙ sp JCK (f) since sp JCK (f) will prepend f before all the weights of the

program C, resulting in a⊙ f followed by all other weights.

• wp appends the postquantity, so that wp JCK (f ⊙ a) corresponds to append-

ing f ⊙ a after the weights collected during the execution of C. This is

equivalent to wp JCK (f) ⊙ a since wp JCK (f) will append f after all the

weights of the program C, resulting in all other weights followed by f ⊙ a.

The properties above allow us to reason about more general linearity

properties for wp and sp, which we present next.

Theorem 4.7.3 (Linearity). For all programs C, wpJCK is right-linear spJCK

is left-linear. That is, for all f, g ∈ A and a ∈ U , we have:

wp JCK (f ⊙ a⊕ g) = wp JCK (f)⊙ a⊕ wp JCK (g) ,

sp JCK (a⊙ f ⊕ g) = a⊙ sp JCK (f)⊕ sp JCK (g) .

Right-linearity and left-linearity show, again, the differences between

backward and forward reasoning, respectively, for non-commutative semiring.
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In the simpler setting of commutative semirings, we can prove the following

result, subsuming the one for wp in Batz et al. [24, Theorem 4.8].

Corollary 4.7.3.1 (Linearity). For all programs C, if ⊙ is commutative, both

wpJCK and spJCK are linear. That is, for all f, g ∈ A and a ∈ U , we have:

wp JCK (a⊙ f ⊕ g) = a⊙ wp JCK (f)⊕ wp JCK (g) ,

sp JCK (a⊙ f ⊕ g) = a⊙ sp JCK (f)⊕ sp JCK (g) .

4.7.2 Dualities

We contend that our definition of sp is inherently intuitive, extending the

classical concept of “reachable sets” to final distributions where the binary

notion of reachability is substituted with real values. This inherent intuitiveness

is additionally justified by the close connection between weakest pre and

strongest post in our framework. We can also prove that the following more

symmetrical duality between our sp and wp holds:

Theorem 4.7.4 (Weighted sp-wp Duality). For all programs C and all functions

µ, g ∈ A, we have

⊕
τ∈Σ

sp JCK (µ) (τ)⊙ g(τ) =
⊕
σ∈Σ

µ(σ)⊙ wp JCK (g) (σ) .

In essence, Theorem 4.7.4 establishes a novel equivalence between forward and

backward transformers. An intuition for the probabilistic semiring Prob is

that computing the expectation of a quantity g after the program execution—

captured in the final distribution sp JCK (µ)—is analogous to calculating the

expected value through wp JCK (g) (σ) but with the added nuance of being

weighted by the initial distribution µ. In the case of other semirings, the

idea is that on the left-hand side all terminating traces originating from µ

are aggregated and then g appended. Conversely, on the right-hand side, the

process is reversed: we initiate from g and move backward until we reach µ.
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Example 4.7.1. Consider the semiring of formal languages A =

⟨P({a, b}∗),∪,⊙, ∅, {ϵ}⟩ and the program C = {⊙{a} } □ {⊙{b} }. Let

µ = λσ : {a} and g = λσ : {b} represent the prequantity we aim to prepend and

the postquantity we intend to append at the end of the execution, respectively.

This results in the following language:

⊕
σ∈Σ

µ(σ)⊙ wp JCK (g) (σ)

=
⊕
σ∈Σ

{a} ⊙ (wp J⊙{a}K (g) (σ)⊕ wp J⊙{b}K (g) (σ))

= {a} ⊙ ({ab} ⊕ {bb}) = {aab, abb}

which is exactly

⊕
τ∈Σ

sp JCK (µ) (τ)⊙ g(τ)

=
⊕
τ∈Σ

(sp J⊙{a}K (µ) (σ)⊕ sp J⊙{b}K (µ) (σ))⊙ {b}

= ({aa} ⊕ {ab})⊙ {b} = {aab, abb} △
We conclude the section by observing that we have the following connection as

well.

Proposition 4.7.5 (wp / sp Connection). For every predicate P,Q and program

C, we have:

P ∩ wp JCK (Q) ̸= ∅ iff Q ∩ sp JCK (P ) ̸= ∅ .

A simple consequence of the above is the duality ̸|=pc {P } C {¬Q } iff

̸|=pi [¬P ] C [Q ], which is not surprising, as the duality |=pc {P } C {Q } iff

|=pi [¬P ] C [¬Q ] has already been explored in [17, p.22, “Duality”] and again

in [78].
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4.7.3 Loop Rules

Similarly to Section 3.7, we can derive inductive invariant based rules for loops

in our weighted setting. We start by the induction rule for wp presented in [24,

Theorem 5.1], but adapted to our more general setting.

Theorem 4.7.6 (Quantitative Inductive Reasoning for wp, Batz et al. [24]).

For any program C and any quantities i, f ∈ A, we have:

Φf (i) ⪯ i =⇒ wp JC⟨e,e′⟩K (f) ⪯ i,

where Φf (X) = Je′K⊙ f ⊕ JeK⊙ wp JCK (X) is the characteristic function of

C⟨e,e′⟩ w.r.t. f . △

The inductive rule for sp is similar to the one for wp, but works with a

higher-order invariant since the loop semantics is defined as a least fixed point

of a higher-order function.

Theorem 4.7.7 (Quantitative Inductive Reasoning for sp). For any program

C and any quantities i, f ∈ A, we have:

Ψ(i) ⪯ i =⇒ sp JC⟨e,e′⟩K (f) ⪯ i(f),

where Φ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK)) is the characteristic function of

C⟨e,e′⟩. △

For total semirings, we can also prove a simpler version of the above

theorem, which provides more direct reasoning similar to the wp rule in Theo-

rem 4.7.6.

Theorem 4.7.8 (Quantitative Inductive Reasoning for sp (total semirings)).

For any program C and any quantities i, f ∈ A, if the ambient semiring is a

total semiring, we have:

Ψf (i) ⪯ i =⇒ sp JC⟨e,e′⟩K (f) ⪯ i⊙ Je′K,
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where Ψf (X) = f ⊕ sp JCK (X ⊙ JeK). △

Depending on the choice of the semiring, we subsume all rules presented

in Theorem 3.7.1.

4.8 A Case Study: The Ski Rental Problem

Weighted Programming, as demonstrated by Batz et al. [24], is a versatile

formalism that can be applied to a wide range of problems. In this section, we

revisit the well-known Ski Rental Problem [135], a classic problem in competitive

analysis: Imagine embarking on a ski trip for an unknown number of days

n ≥ 1 without owning a pair of skis. At the start of each day, you must decide

whether to rent skis for one day (cost: 1 Euro) or to buy a pair of skis (cost: y

Euros). The goal is to minimize the total cost over the entire trip.

If we knew the duration n of the trip a priori, the optimal solution would

be rather obvious: If n ≥ y, we buy the skis. Otherwise, we are better off

renting every day. This situation corresponds to an offline setting, with both n

and y known, allowing for an optimal solution. Conversely, if the trip duration

n is unknown and only the cost y of the skis is known, we are in an online

setting of the Ski Rental Problem. Lacking knowledge about the entire input a

priori often comes at the cost of non-optimality.

Specifically, we will model both the optimal solution to the Ski Rental

Problem and the optimal deterministic online algorithm, using our forward

transformer sp, to illustrate how we can model optimization problems and

reason about the competitive ratios of online algorithms [136; 137]. A backward

approach using wp has already been explored in [24]. In fact, as highlighted

by Batz et al. [24], weighted programs using the tropical semiring Tropical

provide an effective framework for analyzing the competitive performance of

infinite-state online algorithms. This is because (1) nondeterministic programs

naturally represent algorithmic problems and solutions, and (2) reasoning at

the source code level allows for the analysis of infinite-state models. Modeling

online algorithms as weighted programs builds on the work of [138; 139], who
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use finite-state weighted automata for the automated competitive analysis of

finite-state online algorithms. Our approach is more general, as it removes

the finite-state restriction, though this comes at the cost of limiting the full

automation of verification.

4.8.1 Optimal Algorithm

(( [n = 0 ∧ c ̸= 0 ∧ y > 0]

while ( c ̸= 0 ) {

{⊙ y # n := nondet() # assume n ≥ 0 # c := 0}

□ {⊙ 1 # n := n+ 1}

□ {c := 0}

}

(( [y > 0 ∧ n ≥ 0 ∧ c = 0] + (n ⋏ y)

Figure 4.4: Program Copt modelling the optimal solution of the offline version of
the Ski Rental Problem.

The program Copt depicted in Figure 4.4 models the optimal solution to

the Ski Rental Problem. The loop in Copt iterates as long as the trip continues

(c ̸= 0). We begin with the assumptions: we start from day n = 0, have c = 0

(to enter the loop), and assume that the cost of buying skis is positive (y > 0).

At each iteration, we have the following three options:

1. Buy the skis: In this case, we record the cost (⊙ y) and no further

decisions are needed. We can continue skiing for as many days as we wish

(n := nondet() # assume n ≥ 0), and the loop terminates (c := 0).

2. Rent the skis: Here, we increase the cost (⊙ 1) and increment the day

counter (n := n+ 1) to proceed to the next day.

3. End the trip: If we decide to end the trip, no additional costs are incurred,

and the loop terminates (c := 0).
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This model captures the essence of the Ski Rental Problem by providing

a structured way to evaluate the costs associated with each decision. Each

day, we non-deterministically explore all options, allowing us to determine

the path with the lowest weight and thereby identify the optimal strategy to

minimize the total cost over the duration of the trip. Operationally, we rely on

the tropical semiring Tropical = ⟨[0,+∞], min, +, +∞, 0⟩, where the weight

of a terminating computation path is the sum of the weights along the path,

representing the cost of a possible strategy. By taking the minimum of all costs,

we can solve the problem. This can be achieved by computing the strongest

postcondition of Copt with respect to the prequantity [n = 0 ∧ c ̸= 0 ∧ y > 0],

which corresponds to our initial reasonable assumptions.

In fact, Theorem 4.4.2 instantiated to the tropical semiring Tropical

guarantees that the strongest postcondition of Copt with respect to

[n = 0 ∧ c ̸= 0 ∧ y > 0] is precisely:

sp JCoptK ([n = 0 ∧ c ̸= 0 ∧ y > 0])

=
⊕
σ∈Σ

µ(σ)⊙ JCK(σ, τ)

=
k

σ∈Σ

[n = 0 ∧ c ̸= 0 ∧ y > 0] (σ) + JCK(σ, τ) ,

which is exactly the optimal cost of the Ski Rental Problem. By taking

the minimum of all JCK(σ, τ) (i.e., the cost of every possible strategy) and

enforcing our initial assumptions [n = 0 ∧ c ̸= 0 ∧ y > 0] (σ), we can determine

the optimal strategy.

Before we proceed with the analysis, we shall remark a fundamental

difference compared to the program studied by Batz et al. [24], depicted below:
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while (n > 0 ) {

n := n− 1#

{⊙ 1} □ {⊙ y # n := 0}

}

Our program directly models the Ski Rental Problem by starting from day

0 and non-deterministically generating strategies for every possible number of

days. We choose to solve our program using sp, which allows us to map states

after the execution of the program to costs. This ensures that by the end of the

execution, our program has accounted for any possible valid number of days.

In contrast, the approach taken by [24] is reversed: it starts from any

number of days n and iterates down to 0, effectively defining an algorithm to

solve the problem rather than modeling the problem itself. This method aligns

with wp, as it maps initial states (any number of days) to costs.

While we argue that both programs and approaches can effectively solve the

Ski Rental Problem, the choice between forward and backward reasoning might

depend on the specific problem at hand. For example, in Section 3.8.2, sp proved

to be simpler for the problem at hand. The complexity of different transformers

remains an open problem, as acknowledged by Verscht and Kaminski [140,

Section 7]. Therefore, it is advantageous to have both tools at our disposal,

allowing us to choose the most appropriate method for each specific scenario.

Going back to the proper analysis, we can now compute the optimal cost of

the Ski Rental Problem by evaluating the strongest postcondition of Copt with

respect to the prequantity [n = 0 ∧ c ̸= 0 ∧ y > 0]. Since the tropical semiring

Tropical is a total semiring, we can apply the simplified rule for total semirings

from Theorem 4.4.1. Therefore, we define the loop characteristic function:

Ψ(X) = [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK (X + [c ̸= 0])
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and compute the fixed point lfp X : Ψ(X). The Kleene’s iterates are as

follows:

Ψ(+∞) = [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK (+∞+ [c ̸= 0])

= [n = 0 ∧ c ̸= 0 ∧ y > 0]

Ψ2(+∞) = [n = 0 ∧ c ̸= 0 ∧ y > 0]

⋏ sp JCK ([n = 0 ∧ c ̸= 0 ∧ y > 0] + [c ̸= 0])

= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK ([n = 0 ∧ c ̸= 0 ∧ y > 0])

= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ ([n ≥ 0 ∧ c = 0 ∧ y > 0] + y)

⋏ ([n = 1 ∧ c ̸= 0 ∧ y > 0] + 1) ⋏ ([n = 0 ∧ y > 0 ∧ c = 0])

Ψ3(+∞) = [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK
(
Ψ2(+∞) + [c ̸= 0]

)
= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ ([n ≥ 0 ∧ c = 0 ∧ y > 0] + y)

⋏ ([n = 1 ∧ c ̸= 0 ∧ y > 0] + 1) ⋏ ([n = 0 ∧ y > 0 ∧ c = 0])

⋏ ([n ≥ 0 ∧ c = 0 ∧ y > 0] + 1 + y) ⋏ ([n = 2 ∧ c ̸= 0 ∧ y > 0] + 2)

⋏ ([n = 1 ∧ c = 0 ∧ y > 0] + 1)

= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ ([n ≥ 0 ∧ c = 0 ∧ y > 0] + y)

⋏ ([n = 1 ∧ c ̸= 0 ∧ y > 0] + 1) ⋏ ([n = 0 ∧ y > 0 ∧ c = 0])

⋏ ([n = 2 ∧ c ̸= 0 ∧ y > 0] + 2) ⋏ ([n = 1 ∧ c = 0 ∧ y > 0] + 1)

Ψm(+∞) = [y > 0] +(
([n ≥ 0 ∧ c = 0] + y) ⋏ ([n = m− 1 ∧ c ̸= 0] +m− 1)

m−2k

i=0

([n = i ∧ c ̸= 0] + i) ⋏ ([n = i ∧ c = 0] + i)
)

...

Ψω(+∞) = [y > 0] +
(
([n ≥ 0 ∧ c = 0] + y)

⋏ ([n ≥ 0 ∧ c ̸= 0] + n) ⋏ ([n ≥ 0 ∧ c = 0] + n)
)

= [y > 0 ∧ n ≥ 0] +
(
([c = 0] + (n⋏ y)) ⋏ ([c ̸= 0] + n)

)
.
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We finally obtain:

sp JCoptK ([n = 0 ∧ c ̸= 0 ∧ y > 0])

=
(
lfp X : Ψ(X)

)
+ [c = 0]

= [y > 0 ∧ n ≥ 0] +
(
([c = 0] + (n⋏ y)) ⋏ ([c ̸= 0] + n)

)
+ [c = 0]

= [y > 0 ∧ n ≥ 0 ∧ c = 0] + (n⋏ y)

In other words, [y > 0 ∧ n ≥ 0 ∧ c = 0] ensures that the assumptions hold,

and the optimal cost of the Ski Rental Problem is n⋏ y, which is the expected

result: we either rent every day, leading to a cost of n, if that is lower than

buying the skis directly; otherwise, we buy the skis at the beginning.

4.8.2 Optimal Online Algorithm

Online algorithms perform their computation without knowing the entire input

a priori. Rather, parts of the input are revealed to the online algorithm during

the course of the computation. An online algorithm typically performs worse

than the optimal offline algorithm.

(( [n = 0 ∧ c ̸= 0 ∧ y > 0]

while ( c ̸= 0 ) {

{c := 0} □ {

if (n+ 1 < y ) {

⊙ 1 # n := n+ 1

} else {

⊙ y # n := nondet() # assume n ≥ 0 # c := 0

}

}

}

(( [n ≥ 0 ∧ c = 0] +
(
([y > n] + n) ⋏ ([y > 0] + 2y − 1)

)
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Figure 4.5: Program Conl modelling the optimal solution of the online version of
the Ski Rental Problem.

The program Conl depicted in Figure 4.5 models the optimal solution to

the online version of the Ski Rental Problem. Unlike in Figure 4.4, here we

cannot non-deterministically rent and buy the skis at the same time. Instead,

as long as the duration of the trip is expected to be less than the cost of the skis

(n+ 1 < y), we continue to rent. Otherwise, we buy the skis. The assumptions

are similar: we start from day n = 0, have c ̸= 0 (to enter the loop), and

assume that the cost of buying skis is positive (y > 0).

To evaluate the strongest postcondition of Conl with respect to the pre-

quantity [n = 0 ∧ c ̸= 0 ∧ y > 0], we start by defining the loop characteristic

function for total semirings (Theorem 4.4.1):

Ψ(X) = [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK (X + [c ̸= 0])

and compute the fixed point lfp X : Ψ(X). The Kleene’s iterates are as

follows:

Ψ(+∞) = [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK (+∞+ [c ̸= 0])

= [n = 0 ∧ c ̸= 0 ∧ y > 0]

Ψ2(+∞) = [n = 0 ∧ c ̸= 0 ∧ y > 0]

⋏ sp JCK ([n = 0 ∧ c ̸= 0 ∧ y > 0] + [c ̸= 0])

= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK ([n = 0 ∧ c ̸= 0 ∧ y > 0])

= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ ([n = 0 ∧ c = 0 ∧ y > 0])

⋏ ([n = 1 ∧ c ̸= 0 ∧ y > 1] + 1) ⋏ ([n ≥ 0 ∧ c = 0 ∧ y = 1] + y)

Ψ3(+∞) = [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ sp JCK
(
Ψ2(+∞) + [c ̸= 0]

)
= [n = 0 ∧ c ̸= 0 ∧ y > 0] ⋏ ([n = 0 ∧ c = 0 ∧ y > 0])

⋏ ([n = 1 ∧ c ̸= 0 ∧ y > 1] + 1) ⋏ ([n ≥ 0 ∧ c = 0 ∧ y = 1] + y)



4.8. A Case Study: The Ski Rental Problem 160

⋏ ([n = 1 ∧ c = 0 ∧ y > 1] + 1) ⋏ ([n = 2 ∧ c ̸= 0 ∧ y > 2] + 2)

⋏ ([n ≥ 0 ∧ c = 0 ∧ y = 2] + 1 + y)

Ψm(+∞) = ([n = m− 1 ∧ c ̸= 0 ∧ y > m− 1] +m− 1)⋏

m−2k

i=0

(
([n = i ∧ c ̸= 0 ∧ y > i] + i) ⋏ ([n = i ∧ c = 0 ∧ y > i] + i)

⋏ ([n ≥ 0 ∧ c = 0 ∧ y = i+ 1] + i+ y)
)

Ψω(+∞) = ([n ≥ 0 ∧ c ̸= 0 ∧ y > n] + n) ⋏ ([n ≥ 0 ∧ c = 0 ∧ y > n] + n)

⋏ ([n ≥ 0 ∧ c = 0 ∧ y > 0] + 2y − 1)

= [n ≥ 0] +
(
([c ̸= 0 ∧ y > n] + n)

⋏ ([c = 0 ∧ y > n] + n) ⋏ ([c = 0 ∧ y > 0] + 2y − 1)
)

We finally obtain:

sp JConlK ([n = 0 ∧ c ̸= 0 ∧ y > 0])

=
(
lfp X : Ψ(X)

)
+ [c = 0]

= [n ≥ 0] +
(
([c ̸= 0 ∧ y > n] + n) ⋏ ([c = 0 ∧ y > n] + n)

⋏ ([c = 0 ∧ y > 0] + 2y − 1)
)

+ [c = 0]

= [n ≥ 0 ∧ c = 0] +
(
([y > n] + n) ⋏ ([y > 0] + 2y − 1)

)
In summary, [n ≥ 0 ∧ c = 0] ensures that the assumptions hold and the

program terminates. The optimal cost of the Ski Rental Problem is n (renting

every day) if y > n, and otherwise it is 2y− 1. This cost corresponds to renting

for y − 1 days (as long as the number of days does not exceed the cost of the

skis) and buying the skis on the following day. This is the expected result:

the online algorithm performs worse than the optimal offline algorithm, but it

remains competitive.

4.8.3 Competitive Analysis

An online algorithm generally does not perform as well as the optimal offline

algorithm. Competitive analysis [136] is a method used to evaluate how close
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an online algorithm is to the optimal solution. The key concept in this analysis

is the competitive ratio of an online algorithm. Using the notation of Batz et al.

[24, Section 6.1.3], for a given problem instance ρ, let ONL(ρ) represent the

cost incurred by an online algorithm ONL, and let OPT(ρ) represent the cost

incurred by its optimal offline counterpart OPT. The competitive ratio of ONL

is defined as

cONL ≜ sup
ρ

ONL(ρ)

OPT(ρ)

i.e., the smallest constant that upper-bounds the ratio between the cost of ONL

and OPT for all problem instances ρ. We determine such competitive ratios

by sp-reasoning on weighted programs as follows below. For simplicity, let us

assume both n > 0 and y > 0. This assumption is reasonable since the problem

becomes trivial if the trip ends immediately or the skis are free. We conclude

that the competitive ratio is 2 since:

cONL

= sup
ρ

ONL(ρ)

OPT(ρ)

= sup
τ∈Σ: τ(c)=0

sp JConlK ([n = 0 ∧ c ̸= 0 ∧ y > 0]) (τ)

sp JCoptK ([n = 0 ∧ c ̸= 0 ∧ y > 0]) (τ)

= sup
τ∈Σ: τ(c)=0

(
[n ≥ 0 ∧ c = 0] +

(
([y > n] + n) ⋏ ([y > 0] + 2y − 1)

)
[y > 0 ∧ n ≥ 0 ∧ c = 0] + (n⋏ y)

)
(τ)

= sup
τ∈Σ: τ(c)=0

(
([y > n] + n) ⋏ (2y − 1)

n⋏ y

)
(τ)

= sup
τ∈Σ: τ(c)=0

((
[n ≥ y] + 2− 1

y

)
⋏ ([n < y] + 1)

)
(τ)

= 2 .
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4.9 Related Work

Generalized Predicate Transformers and Hoare Logics

The closest work to ours is [24], which introduced wp and wlp for weighted

programming. Our work, in contrast, focuses on sp and its connections with

wp. Generalizations of predicate transformers, such as potential functions

Φ : Σ → R≥0, have been used in amortized complexity analysis [141] and in

resource bound verification systems [142; 143]. These approaches, excluding

procedures and recursion, can be seen as instances of our framework.

Aguirre and Katsumata [108] introduced a general monad-parametrized

strongest post, but they do not provide a constructive definition. Gaboardi et al.

[130] introduced graded categories over partially ordered monoids, allowing the

modeling of probabilities or weights, but their framework is limited to bounded

loops.

Outcome Logic and its variations [19; 20; 74; 144; 145] are more general

as they allow relating multiple program executions, but they are more complex

and do not support weakest-precondition-style or strongest-postcondition-style

reasoning.

Other triples and predicate transformers, incorporating different forms

of non-determinism, have been explored recently by Verscht and Kaminski

[146, 140]. Their work delves into a broader range of dualities, connections,

and asymmetries across various logics but does not address weighted programs.

Algebras and Semirings

O’Conner [147] and Dolan [148] showed that computational problems such as

shortest paths can be reduced to linear algebra over a suitable semiring. In

particular, they compute the so-called star or closure x∗ = 1 + x + x2 + . . .,

where x is a matrix over the semiring. They demonstrate that x∗ is the least

solution of the equation x∗ = 1 + x · x∗, which is closely related to the fixed

points we use in our wp and sp. However, our framework extends this to infinite

state spaces and allows reasoning in a symbolic fashion. The techniques by
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O’Conner [147] and Dolan [148] are limited to finite-state problems and shortest

paths in finite graphs. Laird et al. [149] and Brunel et al. [129] considered

functional languages parameterized by a semiring, allowing reasoning about

resource consumption, reachability probabilities, or expected values. However,

Brunel et al. [129] do not deal with infinite computations.

Kleene Algebras with Tests (KAT) and their variations [150; 151; 152] can

model imperative programs in an abstract fashion by identifying them with

objects from a Kleene algebra that includes an embedded Boolean subalgebra.

ProbGKAT extends KAT to allow probabilistic transitions [153], while Graded

KAT [154] replaces the Boolean subalgebra with a more general object that can

be viewed as a semiring with additional operations and axioms. The elements

of this semiring constitute the graded (or weighted) outcomes of the tests.

However, (Graded) KAT are not concrete programming languages; their main

purpose is to prove general results about imperative languages with loops and

conditionals in an abstract fashion. Investigating which of our transformers

and invariant-based proof rules can be derived in Graded KAT is an appealing

direction for future work.

4.10 Conclusions

We developed a strongest postcondition-style calculus for reasoning about

weighted programs, complementing the weakest precondition-style calculus

developed by [24] and showcasing novel dualities and healthiness properties.

Future work includes exploring several existing techniques within our

weighting setting, such as k-induction [155; 156], program synthesis [157; 158],

and separation logics [118; 5; 96]. Additionally, we aim to further investigate

rules for termination and nontermination proving [159; 81; 160], potentially

by considering more general program semantics that can handle weighted

non-terminating traces [93; 144]. Similar to [146; 140; 145; 161], we also

want to explore our transformers in the context of demonic non-determinism.

Finally, a promising direction for future work is to generalize the verification



4.10. Conclusions 164

infrastructure for probabilistic programs introduced by Schröer et al. [162] to

weighted programs.



Chapter 5

Quantitative Hyper

Transformers

Sections 5.1 to 5.3 and 5.6 to 5.10 of this chapter are based on the paper [18], but

extended to include our novel forward transformers. This chapter introduces

three novel quantitative transformers for hyperproperties: the weakest hyper pre

(whp), the strongest hyper post (shp), and the strongest liberal hyper post (slhp).

These transformers enable reasoning about quantitative hyperproperties over

both nondeterministic and probabilistic programs, extending well-established

program verification techniques to more complex domains.

Whereas existing calculi allow reasoning about the expected value that

a quantity assumes after program termination from a single initial state, our

transformers operate on initial sets of states or initial probability distributions.

Through these transformers, we (i) obtain comprehensive predicate transformers

for hyper Hoare logic and (ii) enable reasoning about so-called hyperquanti-

ties—including not only expected values but also quantities like variance that

were previously out of scope. Our framework reveals novel dualities between

forward and backward transformers, correctness and incorrectness, as well as

nontermination and unreachability.
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5.1 Introduction

Program logic has evolved from Hoare Logic [2] through relational extensions

for hyperproperties [65] and Incorrectness Logic for bug-finding [6], ultimately

leading to unified frameworks that can reason about both correctness and

incorrectness across single and multiple program traces. We build on two such

developments—Outcome Logic (OL) [19; 20; 74] and Hyper Hoare Logic (HHL)

[73]—which advocate that a single logic can be used to prove (or disprove) a

wide variety of properties, including hyperproperties, and we present a novel

(quantitative) weakest pre calculus perspective. Weakest precondition calculi

date back to the 1970’s when Dijkstra [63, 1] introduced them as predicate

transformer semantics for imperative programs. Given a command C and a

postcondition Q, the weakest liberal precondition is the weakest assertion P

such that running C in any state satisfying P will terminate in a state satisfying

Q or not terminate at all. Pratt [163] observed that these calculi have a close

connection to Hoare Logic and they were later used in a completeness proof for

Hoare Logic [164].1

Weakest liberal preconditions have been generalized to probabilistic pro-

grams to allow for reasoning about expected values of random variables in a

program that terminates from a single initial state. The core idea in these

quantitative calculi [13; 14; 16; 17] is that one can replace predicates over states

by real-valued functions. All these calculi, classical and quantitative, offer

predicate transformers that have two key benefits over program logics: First,

they discover the most precise assertions to make a triple valid. Second, they

provide a calculus with a clear path towards mechanizability.

In this chapter, we present a novel weakest pre calculus (whp) for reasoning

about quantitative hyperproperties over programs with effects that cause the

program execution to branch such as nondeterminism or probabilistic choice, in

the style of weighted programming [24] or OL [74] (Section 4.2). We generalize

1Although the original relative completeness proof of Cook [107] used the strongest
postcondition, a later, simplified proof by Clarke [164] used the weakest liberal precondition.
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existing work on quantitative weakest pre calculi [17] by considering program

termination from initial sets of states or initial probability distributions rather

than single initial states. We thus obtain weakest preconditions for HHL and

enable reasoning about so-called hyperquantities (Section 5.3), which include

expected values (considered in previous work), but also more general quantities

that were not supported before, e.g. variance. Unlike HHL, our whp supports

quantitative probabilistic reasoning, employing hyperquantities evaluated in

probability distributions. Moreover, we show that many existing logics are

subsumed by whp (Section 5.7), and how to prove (and disprove) properties in

those logics. whp is hence a single calculus for correctness and incorrectness

analysis, which enjoys expected healthiness and duality properties (Section 5.6).

whp can be applied in a variety of settings, which we illustrate through a range

of examples (Section 5.8).

Similarly to how predicate transformers and Hoare-like logics empower

programmers to demonstrate correctness, we contend that our framework offers

researchers a deeper comprehension of existing logics. Our calculus reveals

novel dualities between forward and backward transformers, correctness and

incorrectness, as well as nontermination and unreachability.

5.1.1 Main challenges

While we observe parallels with existing wp calculi [16; 121], HHL, and OL,

extending these frameworks to our setting of (quantitative) hyperproperties

involves several non-trivial steps, including lifting the calculus from initial states

to hyperproperties and weighted sets of states, and completely revisiting the

rules to handle our more expressive assertion language with hyperquantitites.

For example, we will show that our loop rule involves a fixpoint over a higher-

order function (Proposition 5.3.1), which is not considered in previous works.

A summary of these key technical insights follows.
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Quantitative Reasoning over Hyperproperties

Defining the meaning of quantitative reasoning in a hyperproperty setting was

another challenge. We observed the similarity between hyperproperties and

weighted distributions, which necessitated the development of new rules and

interpretations to handle this complexity. Each of the whp rules are different

compared to those of Zhang and Kaminski [17]. In addition, the rule for

nondeterministic choice is different from those of Hyper Hoare Logic (HHL) and

Outcome Logic (OL), since we aim for completeness in a predicate transformer

semantics, whereas HHL and OL both require additional infinitary rules.

Restrictions of Hyperquantities

We investigated why reasoning over quantities—as in Kozen [13]; McIver and

Morgan [14]; Kaminski [16]; Batz et al. [24]; Zhang and Kaminski [17]—is

simpler, and studied the restrictions of hyperquantities to derive simpler rules

similar to the existing ones (Section 5.6.3). This involved identifying and

formalizing conditions under which our more general framework could simplify,

bridging the complexity gap between hyperproperties and traditional properties

while maintaining greater expressivity. In fact, even in restricted settings (e.g.,

the expected value hyperquantity), we can reason about initial probability

distributions rather than single initial states.

5.2 Overview: Strategies for Reasoning about

Hyperproperties

We begin our discussion by focusing on noninterference [54]—a hyperproperty

commonly used in information security applications. More precisely, noninter-

ference stipulates that any two executions of a program with the same public

inputs (but potentially different secret inputs) must have the same public out-

puts. This guarantees that the program does not leak any secret information

to unprivileged observers. As a demonstration, consider the following program,
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where the variable ℓ (for low) is publicly visible, but h (for high) is secret.

Cni = assume h > 0 # ℓ := ℓ+ h

While we will show shortly that Cni does not satisfy noninterference, we

first show how one might attempt to prove it does. Following the approach of

logics such as Hyper Hoare Logic (HHL), one can define low(ℓ) to mean that

the value of ℓ is equal in any pair of executions, and then attempt to establish

the validity of |=hh { low(ℓ) } Cni { low(ℓ) }, meaning that if Cni is executed

twice with the same initial ℓ, then ℓ will also have the same value in both

executions when (and if) the program finishes—hence, the initial values of h

cannot influence ℓ.

HHL is sound and complete, meaning that any true triples can be proven

in it. However, doing so is not always straightforward. For example, although

the specification of the triple above does not mention h, intermediary assertions

required to complete the proof must mention h, and introducing this information

cannot be done in a mechanical way, but rather requires inventiveness.

Furthermore, whereas HHL (analogously to OL) can disprove any of its

triples [73, Theorem 4], deriving either a positive or negative result—i.e.,

proving that a program is secure or not—requires one to know a priori which

spec they wish to prove, or trying both.

The predicate transformer approach we advocate in this chapter proves

highly advantageous as it only requires a single hyperpostcondition to determine

the most precise hyperprecondition that validates (or invalidates) a triple. In

that sense, it solves the two aforementioned issues by mechanically working

backward from the postcondition, discovering intermediary assertions along

the way, and finding the most precise precondition with respect to the desired

spec.

In this chapter, we define a novel whp calculus, and the validity of low(ℓ) ⊆

whp JCniK (low(ℓ)) is the answer to the noninterference problem, without the

risk of attempting to prove an invalid triple. In the case of the above example,
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our calculus leads us to a simple counterexample; if we have ℓ = 0 and h = 1

in the first execution and ℓ = 0 and h = 2 in the second execution, then clearly

low(ℓ) holds, but the values of ℓ will be distinguishable at the end. This means

that the program is insecure. In the remainder of this section, we will give an

overview of the technical ideas underlying our whp calculus.

5.2.1 Classical Weakest Pre

Dijkstra’s original weakest precondition calculus employs predicate transformers

of type

wpJCK : B → B , where B = Σ→ {0, 1} .

The set B of maps from program states (Σ) to Booleans ({0, 1}) can also be

thought of as predicates or assertions over program states. The angelic weakest

precondition transformer wpJCK maps a postcondition ψ to a precondition

wp JCK (ψ) such that executing C on an initial state in wp JCK (ψ) guarantees

that C can2 terminate in a final state in ψ. Given a semantics function JCK

such that JCK(σ, τ) = 1 iff executing C on initial state σ can terminate in τ ,

the angelic wp is so defined:

wp JCK (ψ) = {σ ∈ Σ | ∃τ : JCK(σ, τ) = 1 ∧ τ ∈ ψ}

This allows to check if an angelic total correctness triple holds via the well-known

fact

|=atc {G } C {F } is valid iff G =⇒ wp JCK (F ) .

While the above is a set perspective on wp, an equivalent perspective on wp

is a map perspective: the predicate wp JCK (ψ) is a map that takes as input

an initial state σ, determines for each reachable final state τ the (truth) value

2C is a nondeterministic program. For the demonic setting and for deterministic programs,
we can replace “can” by “will”.
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ψ(τ), takes a disjunction over all these truth values, and finally returns the

truth value of that disjunction. More symbolically, we have

wp JCK (ψ) (σ) =
∨

τ : JCK(σ,τ)=1

ψ(τ) .

5.2.2 Weakest Pre over Hyperproperties

To reason about hyperproperties [21], we lift our domain of discourse from sets

of states to sets of sets of states, i.e. we go

from wpJCK : B → B to whp JCK : BB → BB ,

where B = Σ→ {0, 1}, as before, and BB = P(Σ)→ {0, 1}.

Given a postcondition ψ ∈ B (i.e. a predicate ranging over states), classical

angelic wp JCK (ψ) anticipates for a single initial state σ whether running C on

σ can reach ψ. Given a hyperpostcondition ψψ ∈ BB (a predicate ranging over

sets of states), the weakest hyperprecondition whp JCK (ψψ) anticipates for a

given set of initial states ϕ (a precondition), whether the set of states reachable

from executing C on every state in ϕ satisfies ψψ. To define whp, we will rely

on sp JCK (ϕ), the classical strongest postcondition [64] of C with respect to

precondition ϕ; in other words: the set of all final states reachable by executing

C on any initial state in ϕ.

From a set perspective, we have:

whp JCK (ψψ) = {ϕ ∈ P(Σ) | sp JCK (ϕ) ∈ ψψ} ,

i.e., whp JCK (ψψ) is defined as the set of all preconditions ϕ such that their

strongest postconditions sp JCK (ϕ) satisfy the hyperpostcondition ψψ.

From a map perspective, whp JCK (ψψ) maps a hyperproperty ψψ over

postconditions to a hyperproperty whp JCK (ψψ) over preconditions. In other

words, we are anticipating whether the strongest postcondition of ϕ satisfies



5.2. Overview: Strategies for Reasoning about Hyperproperties 172

the hyperpostcondition ψψ:

whp JCK (ψψ) (ϕ) = ψψ(sp JCK (ϕ)) .

In particular, executing C on a precondition ϕ satisfying whp JCK (ψψ) guaran-

tees that the set of reachable states sp JCK (ϕ) will satisfy ψψ. Reasoning about

hyperproperties is strictly more expressive as it relates multiple executions. We

showcase this in the following examples.

Example 5.2.1 (Weakest Hyperpreconditions). Given some precondition ϕ, if

ϕ satisfies

1. whp JCK (λρ. |ρ| = 2), then the number of states reachable from ϕ by execut-

ing C is 2.

2. whp JCK (λρ. Bugs ⊆ ρ), where Bugs ⊆ Σ, then all states in the set Bugs are

reachable by running C on some state in ϕ (this amounts to Incorrectness

Logic [6]).

3. whp JCK (λρ. ρ ⊆ Good), where Good ⊆ Σ, then starting from ϕ only Good

can be reached or C does not terminate (this amounts to partial correct-

ness [2]).

We refer to Clarkson and Schneider [21] for more examples of hyperproperties.

△

Remark 5.2.1. Outcome Logic [19] and Hyper Hoare Logic [73] can handle

all of Example 5.2.1 via |= {ϕϕ } C {ψψ } triples, but are agnostic of pre-

conditions not satisfying ϕϕ since ϕ ̸∈ ϕϕ does not imply sp JCK (ϕ) ̸∈ ψψ. Predicate

transformers, on the other hand, yield the most precise assertions in the sense

that ϕ ∈ whp JF K (ψψ) iff sp JCK (ϕ) ∈ ψψ. △

Remark 5.2.2. Note that sp is deterministic, rendering the consideration of

angelic/demonic whp unnecessary.
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5.2.3 Strongest Post over Hyperproperties

We can reason about hyperproperties in a forward manner as well. Similarly to

whp, we lift our domain of discourse from sets of states to sets of sets of states,

i.e. we go

from spJCK : B → B to shp JCK : BB → BB ,

where B = Σ→ {0, 1} and BB = P(Σ)→ {0, 1}, as before.

Given a precondition ϕ ∈ B (i.e., a predicate ranging over states), the

classical strongest postcondition sp JCK (ϕ) determines, for a single final state

τ , whether there exists any initial state satisfying the precondition ϕ that

terminates in τ .

Given a hyperprecondition ϕϕ ∈ BB (a predicate ranging over sets of states),

the strongest hyperpostcondition shp JCK (ϕϕ) determines, for a given set of

final states ψ (a postcondition), whether there exists any initial set of states

satisfying the hyperprecondition ϕϕ such that executing C yields the set of final

states ψ.

From a set perspective, we have:

shp JCK (ϕϕ) = {sp JCK (ϕ) | ϕ ∈ ϕϕ} ,

i.e., is defined as the set of all postconditions ψ that we can obtain by computing

the strongest postconditions sp JCK (ϕ) from any precondition satisfying the

hyperprecondition ϕϕ.

From a map perspective, shp JCK (ϕϕ) transforms a hyperproperty ϕϕ over

preconditions into a hyperproperty shp JCK (ϕϕ) over postconditions. Specif-

ically, shp JCK (ϕϕ) (ψ) identifies all initial preconditions ϕ that result in the

postcondition ψ after executing C (i.e., sp JCK (ϕ) = ψ). It then checks if

these preconditions satisfy the hyperprecondition ϕϕ, effectively determining

whether the hyperpredicate ψ could have been true before executing C, thereby
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retrocipating the truth of ϕϕ. Formally, we have:

shp JCK (ϕϕ) (ψ) =
∨

ϕ with sp JCK(ϕ)=ψ

ϕϕ(ϕ) ,

where
b

represents angelic nondeterminism (similarly to sp). We showcase its

expressivity this in the following examples.

Example 5.2.2 (Strongest Hyperpostconditions). Given some precondition ϕ,

if

1. shp JCK ({ϕ}) ⊆ λρ. |ρ| = 2, then the number of states reachable from ϕ by

executing C is 2.

2. shp JCK ({ϕ}) ⊆ λρ. Bugs ⊆ ρ, where Bugs ⊆ Σ, then all states in the

set Bugs are reachable by running C on some state in ϕ (this amounts to

Incorrectness Logic [6]).

3. shp JCK ({ϕ}) ⊆ λρ. ρ ⊆ Good, where Good ⊆ Σ, then starting from ϕ

only Good can be reached or C does not terminate (this amounts to partial

correctness [2]).

△
5.2.4 Quantitative Reasoning over Hyperproperties

As shown in [13; 14; 16], one can replace predicates over states by real-valued

functions, also known as quantities [17, Section 3]. These quantitative cal-

culi subsume the classical ones by mimicking predicates through the use of

Iverson brackets [103]. To design a calculus for quantitative reasoning over

hyperproperties, we lift quantities in A = { f | f : Σ→ R±∞ }, i.e. functions of

type Σ→ R±∞, to hyperquantities.

Definition 5.2.1 (Hyperquantities). The set of all hyperquantities is defined

by

AA =
{
ff
∣∣ ff : (Σ→ R±∞)→ R±∞ } ,
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AA is the set of all functions ff : A→ R±∞ associating an extended real (i.e.

either a non-negative real number or +∞) to each quantity in A. The point-wise

order

ff ⪯ gg iff ∀ f ∈ A : ff(f) ≤ gg(f)

renders ⟨AA, ⪯⟩ a complete lattice with join ⋎ and meet ⋏, given point-wise by

ff ⋎ gg = λf : max
{
ff(f), gg(f)

}
ff ⋏ gg = λf : min

{
ff(f), gg(f)

}
.

Joins and meets over arbitrary subsets exist (because suprema and maxima over

arbitrary sets of extended reals exist). For a⋎ b⋏ c, we assume that ⋏ binds

stronger than ⋎, so we read that as a⋎ (b⋏ c). △

To distinguish between quantities Definition 4.2.6 and hyperquantities, we

show some examples of both.

Example 5.2.3 (Quantities). Examples of quantities (not hyperquantities)

include:

• (sub)probability distributions over program states;

• extended measures over states;

• sets of states P ⊆ Σ, represented via the Iverson bracket:

[P ] (σ) =

1 if σ ∈ P

0 otherwise

△

Hyperquantities enable quantitative reasoning, e.g., measures over probability

distributions.
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Example 5.2.4 (Hyperquantities over Distributions). Given a quantity f : Σ→

R∞
≥0 ∈ A (think: random variable f), we define hyperquantities

E[f ] ≜ λµ.
∑
σ

f(σ) · µ(σ)

Var[f ] ≜ λµ. E[f 2](µ)−
(
E[f ](µ)

)2
Cov[f, g] ≜ λµ. E[fg](µ)− E[f ](µ) · E[g](µ) ,

that take as input quantities (interpreted as probability distributions) µ : Σ→

R∞
≥0. The above hyperquantities are then respectively expected value, variance

and covariance of f (and g) over µ. △

We now present as an example an adaptation of [73, Example 3] – showcasing

how Boolean Hyper Hoare Logic (HHL) would deal with statistical properties.

Example 5.2.5 (Mean Number of Requests). Consider a program Cdb where,

after termination, the variable n represents the number of database requests

performed. For a final set of states ρ ⊆ Σ, we define its mean number of

requests by meann(ρ) =
∑

σ∈ρ
σ(n)
|ρ| .

HHL allows to bound meann by a specific number, say 2, by taking

as hyperpostcondition Q = λρ.meann(ρ) ≤ 2. Proving the HHL triple

|=hh { true } Cdb {Q } then ensures that for every initial set of states, the

mean number of performed requests after the execution of Cdb is at most 2. △

Example 5.2.6 (Quantitative Information Flow). Consider a program, Cqif

containing lowly and highly sensitive variables. As outlined in [17, Section

8.1], we will demonstrate in Section 5.8.3, how our framework also enables

to determine, for instance, the maximum initial value allowable for the secret

variable h based on observing a specific final value for l. HHL allows reasoning

only about the existence of some information flow or about a bound over h. △

Using instead quantitative weakest hyper pre has two main advantages over

using HHL:
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Beyond Decision Problems

While HHL and Outcome Logic (OL) are capable of statistical reasoning, our

quantitative calculus can directly measure quantities of interest, such as the

information flow. For example, whp JCdbK (meann) gives us the mean number

of requests after executing Cdb rather than just bounding it.

Probability Distributions

Reasoning about means is restrictive, especially for infinite sets. As shown

in Example 5.2.4, hyperquantities assign numerical values such as expected val-

ues to distributions. For example, whp JCdbK (E[n]) (µ) maps every distribution

µ to the expected number of requests after executing Cdb on some initial state

drawn from µ.

5.2.5 Limitations

Hyperproperties over probability distributions

We can only reason about properties over probability distributions or hyper-

properties over single states (i.e., properties over sets of states) in our framework.

In other words, we cannot reason about hyperproperties over probability distri-

butions, such as probabilistic non-interference [165]. To illustrate what such

reasoning would entail, consider how we might formulate probabilistic non-

interference for observational programs (unlike Definition 3 from O’Neill et al.

[165], which addresses interactive programs). Intuitively, probabilistic non-

interference requires that for any two initial states with identical low-security

inputs l, the probability distribution of final low-security values must also be

identical. This yields the following formal definition:

λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l) =⇒

∀v : sp JCK (1σ1) ([l = v]) = sp JCK (1σ2) ([l = v]).

Now consider the program in Figure 5.1, which is the non-interactive
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analog of Program 4 from O’Neill et al. [165].

if ( h is even ) {

{ l := 0 } [ 0.99 ] { l := 1 }

} else {

{ l := 0 } [ 0.01 ] { l := 1 }

}

Figure 5.1: A program that does not satisfy probabilistic non-interference.

If the probabilistic choices were replaced with non-deterministic ones, then

the program would satisfy generalized non-interference, since we cannot infer

the value of h by observing the value of l. However, with probabilistic choices,

the situation changes; observing l = 0 means that it is more likely that the

first path has been chosen, i.e., that h is even. We can address this situation

with the above definition, and show that the program above does not satisfy

probabilistic non-interference. Unfortunately, such property is a hyperproperty

over probability distributions, and goes beyond our framework. Extending whp

to support probabilistic non-interference is an interesting future direction.

Demonic total correctness & angelic partial correctness

Similarly to Zhang and Kaminski [17]; Ascari et al. [78]; Zilberstein et al.

[19]; Dardinier and Müller [73], we subsume neither demonic Hoare logic

for total correctness, nor angelic Hoare logic for partial correctness, which

are subsumed respectively by existing demonic wp and angelic wlp [16]. This

limitation is due to how our whp anticipates an angelic sp (as usual in literature),

which only considers terminating states, and not the existence of divergent

ones. We stress that this limitation holds for Hyper Hoare Logic and Outcome

Logic, and that our initial objective was to establish a weakest precondition

calculus for them.
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5.3 Quantitative Weakest Hyper Pre

In the rest of the chapter we will employ a more general definition of hyper-

quantities that:

• is parametrised to arbitrary semi-rings;

• allows for mixed-sign hyperquantities, as opposed to our previous setting [18];

Definition 5.3.1 ((Weighted) Hyperquantities). Given a partial semiring

A = ⟨U, ⊕, ⊙, 0, 1⟩, the set AAA of all hyperquantities is defined as the set of

all functions ff : (Σ→ U)→ R±∞, i.e.

AAA = {ff : (Σ→ U)→ R±∞}

△

As with quantities, we will use the simplified notation AA when the underlying

semiring A is clear from context. Our formulation deliberately maps quantities

of type Σ → U to hyperquantities of type (Σ → U) → R±∞. While we

could have adopted a more general approach where hyperquantities have type

(Σ→ U)→ U ′ with U and U ′ potentially drawn from distinct semirings, we

have intentionally restricted ourselves to the codomain of real numbers R±∞.

This design choice follows the approach of [16], allowing us to leverage the

well-established theory of real-valued quantitative reasoning. The resulting

framework achieves a balance—extending beyond traditional hyperproperties

while maintaining sufficient concreteness to serve as a foundation for practical

verification tools.

First of all, we show in which sense we can represent hyperproperties via

functions. We have already seen that predicates can be encoded via Iverson

brackets (Definition 4.2.7), and decoded by the support set, since every quantity

f : Σ → U can be seen as a set of states via supp (f) = {σ : f(σ) ̸= 0}. For

example, the set of reachable states starting from ϕ ⊆ Σ is supp (sp JCK ([ϕ])).
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C whp JCK (ff)

x := e ff [x/e]

x := nondet() λf : ff(
⊕

α f [x/α])

⊙w ff ⊙ w

C1 # C2 whp JC1K
(
whp JC2K (ff)

)
{C1 } □ {C2 } Sν1, ν2 : ff(ν1 ⊕ ν2) ⋏ whp JC1K ([ν1]) ⋏ whp JC2K ([ν2])

C⟨e,e′⟩ λf : ff
((
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(f)
)

Table 5.1: Rules for defining the quantitative weakest hyper pre transformer.

To encode and decode hyperpredicates, we need to introduce hyper Iverson

brackets.

Definition 5.3.2 (Hyper Iverson Brackets). Given a semiring A =

⟨U,⊕,⊙, 0, 1⟩, for a hyperpredicate ϕϕ : P(P(Σ)) we define the hyper Iver-

son bracket [ϕϕ] : (Σ→ U)→ R±∞ by

[ϕϕ] (f) =

+∞ if supp (f) ∈ ϕϕ

−∞ otherwise .

△
For a hyperquantity ff , its corresponding hyperpredicate is defined by

supp (ff) = {f : ff(f) > 0}. We shall remark that hyperpredicates in our

setting can represent predicates over quantities, including hyperproperties and

predicates over probability distributions.

Definition 5.3.3 (Quantitative Weakest Hyper Pre). The quantitative weakest

hyper pre transformer

whp : wReg→ (AA→ AA)

is defined inductively according to the rules in Table 5.1. △

Let us show for some of the rules how the quantitative weakest hyper pre
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semantics can be developed and understood analogously to Dijkstra’s classical

weakest preconditions.

Assignment.

The weakest precondition of an assignment is given by

wp Jx := eK (ψ) = ψ [x/e]

where ψ [x/e] denotes the substitution of the variable x in ψ with the expression

e. From a semantic perspective, this replacement can be expressed as

ψ [x/e] := λσ : ψ
(
σ [x 7→ σ(e)]

)
.

In simpler terms, the weakest precondition operates by predicting the opera-

tional semantics: it examines whether, given an initial state σ, the final state

σ [x 7→ σ(e)] adheres to the condition ψ.

For quantitative weakest hyper pre, a similar approach is taken, but we

anticipate the strongest post rather than the operational semantics. Therefore,

the value of ff in the resulting distribution (or set of states) after the execution

of x := e on the initial distribution (or set) f corresponds to ff , but evaluated

at the final distribution sp Jx := eK (f) =
⊕

α f [x/α]⊙ [x = e [x/α]]. We thus

define the syntactic replacement of the variable x in a hyperquantity ff by

ff [x/e] := λf : ff(sp Jx := eK (f)), yielding the rule:

whp Jx := eK (ff) = ff [x/e] .

In fact, when we replace x with e in formula ff syntactically, we are

essentially modifying a function over a quantity (e.g., a distribution) f to an

updated function that treats x as a new variable with the evaluation e. We

provide a semantics definition, to avoid handling variable scoping, similarly to

other works on weakest preconditions (e.g. [16]).

Example 5.3.1. Consider the assignment x := x − 1 and the hyperquantity
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E[x]. We have:

whp Jx := x− 1K (E[x])

= whp Jx := x− 1K

(
λµ.

∑
σ

σ(x) · µ(σ)

)
= λµ.

∑
σ

σ(x− 1) · µ(σ)

= E[x− 1] ,

i.e., the anticipated expected value of x after the assignment is exactly the

expected value of x− 1 before the assignment.

Nondeterministic Assignment:

The nondeterministic assignment is analogous to the standard assignment, but

now with x ranging over any possible value. Therefore, the weakest hyper pre

of a nondeterministic assignment is given by:

whp Jx := nondet()K (ff) = λf : ff

(⊕
α

f [x/α]

)

Assume/Weighting.

For the classical weakest precondition, we have wp Jassume φK (ψ) = φ ∧ ψ.

Indeed, if the initial state σ satisfies the combined precondition φ ∧ ψ, the

execution of assume φ entails progression through the assumption of φ. Since

the assumption itself does not alter the program state, the process concludes in

state σ, which also satisfies the post ψ. Conversely, if σ fails to meet φ∧ψ, the

execution of assume φ results in either not progressing through the assumption

of φ or passing through the assumption but σ not satisfying the post ψ. The

quantitative weakest hyper pre on an initial distribution (set) f anticipates the

strongest post, yielding the rule whp Jassume φK (ff) = λf : ff([φ]⊙ f).

To simplify the notation, we introduce the product ⊙ between quantities
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and hyperquantities as:

ff ⊙ w = λf : ff(f ⊙ w) w ⊙ ff = λf : ff(w ⊙ f) ,

leading to the syntactically simpler rule whp Jassume φK (ff) = ff ⊙ [φ]. We

point out that the order of the arguments is reversed compared to weighted wp

( [24]). In our setting, whp anticipates the strongest post, which computes the

prequantity f before the weight w.

For the more general weighting statement, we obtain the rule:

whp J⊙wK (ff) = ff ⊙ w ,

where w can be any quantity.

Nondeterministic Choice.

When executing nondeterministic choice {C1 } □ {C2 } on some initial state

σ, operationally either C1 or C2 will be executed. Hence, the execution will

reach either a final state in which executing C1 on σ terminates or a final state

in which executing C2 on σ terminates (or no final state if both computations

diverge).

The angelic weakest precondition of {C1 } □ {C2 } is given by

wp J{C1 } □ {C2 }K (ψ) = wp JC1K (ψ) ∨ wp JC2K (ψ). Indeed, when-

ever an initial state σ satisfies the precondition wp JC1K (ψ) or wp JC2K (ψ),

then — either by executing C1 or C2 — it is possible that the computation

will terminate in some final state satisfying the postcondition ψ.

Moving to hyperquantities, a key insight emerges: nondeterminism is

effectively eliminated when computing the strongest post because spJ{C1 } □

{C2 }K operates deterministically. While operationally the nondeterministic

choice represents executing either C1 or C2, semantically spJ{C1 } □ {C2 }K

aggregates the results from both branches into a single combined distribution.

This semantic determinism means that given the same initial distribution (or set

of states), spJ{C1 } □ {C2 }K will always produce the same final distribution.
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Consequently, the value of ff in the resulting distribution (or set of states) after

executing either C1 or C2 on the initial distribution (or set) f is

whp J{C1 } □ {C2 }K (ff) =

Sν1, ν2 : Σ→ U : ff(ν1 ⊕ ν2) ⋏ whp JC1K ([ν1]) ⋏ whp JC2K ([ν2]) .

Recalling that the final distribution is the combination of sp JC1K (f) and

sp JC2K (f), identifying νi such that νi = sp JCiK (f) makes computing ff(ν1⊕ν2)

sufficient. By aggregating over every νi for which whp JCiK ([ν1]) (f) holds, we

ensure that only those νi where νi = sp JCiK (f) will contribute. Consequently,

ff(ν1 ⊕ ν2) precisely equals ff(sp J{C1 } □ {C2 }K (f)).

Remark 5.3.1. In the case of {C1 } □ {C2 }, OL and HHL exhibit forward-

style rules that are simpler but not complete, if taken separately. In fact,

while such rules maintain soundness, completeness necessitates the inclusion

of an additional existential rule. As our approach adopts a weakest pre style

calculus aiming for both soundness and completeness, the introduction of the

suprema quantification becomes imperative. This quantification mirrors the

existential rule utilized in OL and HHL, encompassing all relevant cases. Our

rule shares similarities with den Hartog [166, Definition 6.5.2], although they

provide multiple rules depending on the structure of the hyperquantity. Since

in our thesis we focus on semantic assertions, we refrain from analyzing the

syntactic structure of hyperquantities. However, we later introduce simpler rules

for the class of additive hyperquantities, as outlined in Definition 5.6.1.

Sequential Composition.

What is the anticipated value of ff after executing C1 # C2, i.e. the value of ff

after first executing C1 and then C2? To answer this, we first anticipate the

value of ff after execution of C2 which gives whp JC2K (ff). Then, we anticipate

the value of the intermediate quantity whp JC2K (ff) after execution of C1,
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yielding:

whp JC1 # C2K (ff) = whp JC1K (whp JC2K (ff)) .

Iteration

The rule for C⟨e,e′⟩ is obtained by anticipating the execution of C⟨e,e′⟩. More

precisely, for a given initial quantity f we want to anticipate the value of ff on

the final quantity after executing C⟨e,e′⟩. This is possible by computing ff on

sp JC⟨e,e′⟩K (f), yielding the rule:

whp
r
C⟨e,e′⟩

z
(ff) =

λf : ff
((
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(f)
)
.

At first, it might seem counterintuitive that the recursive variable X is computed

before evaluating the weight e, especially since this differs from wp where the

weight is evaluated before the postquantity. However, this approach directly

aligns with the definition of whp, which anticipates sp JC⟨e,e′⟩K (f). In the

strongest postcondition semantics (see Section 4.4), the weight e is applied after

computing the recursive quantity X, and our transformer faithfully preserves

this sequence of operations.

Our rule is consistent in the sense that it is a solution of the equation:

whp
r
C⟨e,e′⟩

z

= whp
r{
⊙ e # C # C⟨e,e′⟩

}
□
{
⊙ e′

}z
= λhhλf :

Sν1, ν2 : hh(ν1 ⊕ ν2) · whp
r
⊙ e # C # C⟨e,e′⟩

z
([ν1]) (f) · whp

q
⊙ e′

y
([ν2]) (f)

= λhhλf : Sν1, ν2 : hh(ν1 ⊕ ν2) · whp
r
C # C⟨e,e′⟩

z
([ν1]) (f ⊙ JeK) · [ν2] (f ⊙ Je′K)

= λhhλf : Sν : hh(ν ⊕ f ⊙ Je′K) · whp JCK
(
whp

r
C⟨e,e′⟩

z
([ν])

)
(f ⊙ JeK)

Indeed one can show the following.
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Proposition 5.3.1 (Consistency of iteration rule). Let

Φ(trnsf) = λhhλf : Sν : hh(ν ⊕ f ⊙ Je′K) · whp JCK (trnsf([ν])) (f ⊙ JeK)

Then, whp
q
C⟨e,e′⟩y is a fixpoint of the higher order function Φ(trnsf), that is:

Φ(λff λµ : ff(sp JC⟨e,e′⟩K (µ))) = λff λµ : ff(sp JC⟨e,e′⟩K (µ))

Remark 5.3.2. One might attempt a rule for C⟨e,e′⟩ by defining F (X) =

λf : X(f ⊕ sp JCK (f ⊙ JeK)). Intuitively, F takes as input a hyperquantity X,

but instead of applying it on a distribution f , it computes one iteration of

the loop sp JCK (f ⊙ JeK) and then pass all as argument of X. Recalling that

Ψf (X) = f ⊕ sp JCK (X ⊙ JeK), one can then observe that for every n ∈ N:

λf : ff(f ⊙ Je′K) = λf : ff(Ψf (0)⊙ Je′K)

F (λf : ff(f ⊙ Je′K)) = λf : ff(Ψ2
f (0)⊙ Je′K)

...

F n(λf : ff(f ⊙ Je′K)) = λf : ff(Ψn+1
f (0)⊙ Je′K)

However, it is important to note that in general, F n(λf : ff(f ⊙ Je′K)) does not

form an ascending or descending chain. For example, take ff = 1ν, where ν

is a probability distribution. it is very well possible that 1ν(Ψ
k
f(0)⊙ Je′K) = 1

for some k, µ: that is, we anticipate an incomplete proability distribution and

find out that it is equal ν. However, at the k + 1 iteration, the anticipated

probability distribution is refined, so that it could be Ψk+1
µ (0)⊙ Je′K ̸= ν, leading

to a decreasing iterate. Additionally, it is not always desirable to stop at the first

fixpoint - as multiple extra iterations might be needed to compute the correct

anticipated probability distribution. That said, it is entirely possible that simpler

rules exist when restricting ff , see e.g. Table 5.4. △

We also argue why we chose to use the least fixed point in the loop

rule, which aligns naturally with the definition of strongest postcondition
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(sp). Although a greatest fixed point formulation would theoretically be vi-

able—potentially leading to a novel transformer that anticipates the strongest

liberal postcondition (slp)—the practical utility of such an approach remains

questionable.

After having provided an intuition on the rules, let us show that whp does

actually anticipate sp.

Theorem 5.3.2 (Characterization of whp). For all programs C, hyperquantities

ff ∈ AA, and quantities f ∈ A

whp JCK (ff) (f) = ff(sp JCK (f)) .

For a given hyperquantity ff and initial quantity µ, whp JCK (ff) (µ) represents

the value assumed by ff in the final quantity reached after the termination

of C on µ. Unlike standard wp, which distinguishes between terminating and

nonterminating states, whp does not make this distinction. When there are

no terminating states, i.e., sp JCK (µ) = 0, the value of whp JCK (ff) (µ) is

determined by ff(0). The assignment of any desired value to the empty set of

states 0 by the hyperquantity ff allows us to express both weakest preconditions

and weakest liberal ones.

5.4 Quantitative Strongest Hyper Post

In this section, we define a forward transformer that complements the backward

moving weakest pre transformer introduced in Section 5.3. Before doing

so, we introduce a new construct, which can be viewed as an instantiation

of the separating conjunction (∗) from O’Hearn’s and Pym’s [167] logic of

bunched implications (BI). The separating conjunction has been extensively

used in formal verification across various domains, involving so-called resource

semantics [168]: in heaps in (Incorrectness) Separation Logic [5; 118; 76], where

it allows reasoning about disjoint memory regions; in its quantitative analogs [96;

169], where it handles quantitative properties over heap-manipulating programs;

in concurrent programming [170], where it helps in reasoning about parallel
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processes that operate on shared memory; in probabilistic scenarios [171], where

it is used to reason about probabilistic independence. Perhaps more relevantly

to our framework, the separating conjunction is employed in both Hyper

Hoare Logic [73, Definition 6] and Outcome Logic and its variants [19; 74; 172,

Outcome Conjunction] to reason about hyperproperties. Unsurprisingly, we will

also utilize this construct, extending its definition to our quantitative setting

in a manner similar to the quantitative lifting described in [96] for Separation

Logic. We will refer to it as the quantitative outcome conjunction, denoted by

⊠.

Definition 5.4.1 (Quantitative Outcome Conjunction). The quantitative out-

come conjunction ⊠ is defined as follows:

(ff ⊠ gg)(ν) ≜
j

µ1,µ2∈A : µ1⊕µ2=ν

ff(µ1) ⋏ gg(µ2) ,

where ⊕ represents the pointwise lifting of the semiring’s addition operation to

quantities, meaning (f ⊕ g)(x) = f(x)⊕ g(x) for all inputs x.

Intuitively, each hyperquantity ff, gg is evaluated separately in a split of the

quantity ν. The conjunction (ff ⊠ gg)(ν) finds the optimal way to partition

ν into two parts—µ1 and µ2—such that the minimum of ff(µ1) and gg(µ2) is

maximized. This separation allows us to reason about different properties

holding in different parts of our program state.

When reasoning about hyperproperties, the quantitative outcome conjunction

subsumes the Outcome Conjunction of Zilberstein et al. [19], and in turn, the

Hyper Conjunction of Dardinier and Müller [73, Definition 6] (which is an

instantiation of the former with the powerset monad). In fact, we can prove

the following.

Definition 5.4.2 (Outcome Conjunction for Powerset Monad [19]). Let

m1,m2,m ∈ P(Σ) be sets of states and P,Q ∈ P(P(Σ)) be hypersets of
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states. The Outcome Conjunction ⊗ is defined as follows:

m |= P ⊗Q ⇐⇒ ∃m1,m2 ∈ P(Σ) : m = m1 ⊕m2 and m1 |= P and m2 |= Q

△

Proposition 5.4.1 (Subsumption of Outcome Conjunction). Let ⊗ be the

Outcome Conjunction [19] instantiated to the powerset monad. Then, for any

P,Q ∈ P(P(Σ)) and m ∈ P(Σ), we have:

m |= P ⊗Q iff m ∈ supp ([P ] ⊠ [Q])

Proof.

m |= P ⊗Q

iff ∃m1,m2 ∈ P(Σ). m = m1 ⊕m2 and m1 |= P and m2 |= Q

iff ∃m1,m2 ∈ P(Σ). m = m1 ⊕m2 and [P ] (m1) > 0 and [Q] (m2) > 0

iff ([P ] ⊠ [Q])(m) > 0

iff m ∈ supp ([P ] ⊠ [Q])

The proposition above holds for the powerset monad and the probability

distribution monads, as defined in [19]. However, it could be very easily

extended to any monad, by considering a more general definition of Iverson

brackets. We decide to not do so, as we are only interested in the powerset

and probability distribution monads. Intuitively, S ∈ supp ([ϕϕ] ⊠ [ψψ]) asserts

that the hyperproperties ϕϕ and ψψ each hold in reachable executions: S can

be partitioned into two parts, S1 and S2, such that ϕϕ holds in S1 and ψψ

holds in S2. Our encoding, similar to Outcome Logic, extends beyond simple

hyperproperties. For example, given two properties ϕ and ψ over probability

distributions, we have that µ ∈ supp ([ϕ] ⊠ [ψ]) if µ can be split into two
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C shp JCK (ff)

x := e λf : Sµ : ff(µ) ⋏ [
⊕

α µ [x/α]⊙ [x = e [x/α]] = f ]

x := nondet() λf : Sµ : ff(µ) ⋏ [
⊕

α µ [x/α] = f ]

⊙w λf : Sµ : ff(µ) ⋏ [µ⊙ w = ν]

C1 # C2 shp JC2K
(
shp JC1K (ff)

)
{C1 } □ {C2 } Sµ : ff(µ) ⋏

(
shp JC1K ([µ]) ⊠ shp JC2K ([µ])

)
C⟨e,e′⟩ λf : Sµ : ff(µ) ⋏

[(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ) = f

]
Table 5.2: Rules for defining the quantitative strongest hyper post transformer.

subdistributions, µ1 and µ2, such that µ1 ∈ ϕ and µ2 ∈ ψ.

We are now ready to define our Quantitative Strongest Hyper Post.

Similarly to our Quantitative Strongest Post defined in Section 3.4,

shp JCK (ff) : (AA → AA) is a function that takes as input a final quan-

tity ν, determines all initial quantities µ that can reach ν by executing C, and

evaluates the hyperquantity ff(µ) in each of those initial quantities µ, and

finally returns the supremum over all these so-determined quantities. As a

transformer, we obtain the following:

Definition 5.4.3 (Quantitative Strongest Hyper Post). The quantitative

strongest hyper post transformer

shp : wReg→ (AA→ AA)

is defined inductively according to the rules in Table 5.2. △

Let us show for some of the rules how the quantitative strongest hyper

post semantics can be developed and understood analogously to Dijkstra’s

classical strongest postconditions.

Assignment.

The strongest postcondition of an assignment is given by

sp Jx := eK (ψ) = ∃α : x = e [x/α] ∧ ψ [x/α] .
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Intuitively, the quantified α represents an initial value that x could have had

before executing the assignment. This way, the strongest postcondition operates

by retrocipating the operational semantics: it examines whether, given a final

state τ , the initial state σ [x 7→ α] adheres to the precondition ψ.

For the quantitative strongest hyper post, a similar approach is taken, but

we consider the strongest postcondition rather than the operational semantics.

Therefore, given a final distribution (or set) f , the value of ff in the initial

distribution (or set of states) before the execution of x := e corresponds to ff ,

but evaluated at the initial distribution µ – this is possible by ensuring that

sp JCK (µ) = f . In general, we may have multiple initial distributions, so we

take the supremum over such values, yielding the rule:

shp Jx := eK (ff) = λf : Sµ : ff(µ) ⋏ [sp Jx := eK (µ) = f ]

= λf : Sµ : ff(µ) ⋏

[⊕
α

µ [x/α]⊙ [x = e [x/α]] = f

]

Nondeterministic Assignment:

The nondeterministic assignment is analogous to the standard assignment, but

now with x ranging over any possible value. Therefore, the strongest hyper

post of a nondeterministic assignment is given by:

shp Jx := nondet()K (ff) = λf : Sµ : ff(µ) ⋏

[⊕
α

µ [x/α] = f

]

Assume/Weighting.

For the classical strongest postcondition, we have sp Jassume φK (ψ) = φ ∧ ψ.

Indeed, if the final state τ satisfies the combined postcondition φ ∧ ψ, then the

state is definitely reachable starting from τ itself, which satisfies the precondition

φ. In fact, φ ∧ ψ is exactly the set of reachable states starting from ψ.

The quantitative strongest hyper post for a final distribution (or set) f

computes the maximum value of ff evaluated in the initial distribution (or set)
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µ (i.e., such that sp JCK (µ) = f), resulting in the following rule:

shp Jassume φK (ff) = λf : Sµ : ff(µ) ⋏ [sp Jassume φK (µ) = f ]

= λf : Sµ : ff(µ) ⋏ [µ⊙ [φ] = f ]

For the more general weighting statement, we obtain the rule:

shp J⊙wK (ff) = λf : Sµ : ff(µ) ⋏ [µ⊙ w = f ] ,

where w can be any quantity.

Nondeterministic Choice.

The angelic strongest postcondition of {C1 } □ {C2 } is given by

sp J{C1 } □ {C2 }K (ψ) = sp JC1K (ψ) ∨ sp JC2K (ψ) .

Indeed, the set of reachable states starting from initial states satisfying ψ is the

union of the reachable set after executing C1 and the ones after executing C2.

Moving to hyperquantities, we want to retrocipate the value of a hyper-

quantity ff before executing either C1 or C2. A first attempt would be:

shp J{C1 } □ {C2 }K (ff) = λf :
(
shp JC1K (ff) ⊠ shp JC2K (ff)

)
(f) .

However, as discussed by Zilberstein [74, p. 7], this rule is sound, but not

complete: it does not account for the relationships between the two branches.

The correct rule considers every possible partition of f into two parts, f1 and

f2, such that f1 is reachable by executing C1 and f2 is reachable by executing

C2 from the common initial distribution (or set) µ. This leads to the following

rule:
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shp J{C1 } □ {C2 }K (ff)

= λf : Sµ : ff(µ) ⋏
( j

f1,f2 : f1⊕f2=f

shp JC1K ([µ]) (f1) ⋏ shp JC2K ([µ]) (f2)
)
.

This means that µ is the initial distribution (or set) that leads to f1 after

executing C1 and to f2 after executing C2, with their semiring sum being f . In

other words, µ is a valid initial distribution (or set) for the nondeterministic

choice {C1 } □ {C2 }. We then take the supremum to compute the maximum

value of ff over all possible initial distributions µ.

By employing the quantitative outcome conjunction, we obtain the syntac-

tically simpler rule:

shp J{C1 } □ {C2 }K (ff) = Sµ : ff(µ) ⋏
(
shp JC1K ([µ]) ⊠ shp JC2K ([µ])

)
.

Remark 5.4.1. Similarly to our strongest hyper post, OL and HHL also have

a forward-style rule for {C1 } □ {C2 }, which utilizes the outcome conjunction.

While these rules preserve soundness, completeness requires an existential rule,

which we introduce by quantifying over µ. Our sound and complete rule has

already been studied by Zilberstein [74, p. 7], but in a classical (non-quantitative)

setting.

Sequential Composition.

What is the retrocipated value of ff before executing C1 # C2? For this, we

first retrocipate the value of ff before executing C1 which gives shp JC1K (ff).

Then, we retrocipate the value shp JC1K (ff) before executing C2, yielding:

shp JC1 # C2K (ff) = shp JC2K (shp JC1K (ff)) .

Iteration

The rule for C⟨e,e′⟩ is derived by retrocipating the execution of C⟨e,e′⟩. Specifi-

cally, for a given distribution (or set) f , we aim to find the maximum value
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of a hyperquantity ff computed in an initial quantity µ that terminates in f ,

resulting in the following rule:

shp
r
C⟨e,e′⟩

z
(ff)

= λf : Sµ : ff(µ)⋏
[(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ) = f

]
Similarly to whp, it is consistent in the sense that it is a solution of the

equation:

shp
r
C⟨e,e′⟩

z

= shp
r{
⊙ e # C # C⟨e,e′⟩

}
□
{
⊙ e′

}z
= λhhλf :

Sµ : ff(µ)⋏
(
shp

r
⊙ e # C # C⟨e,e′⟩

z
([µ])⊠ shp

q
⊙ e′

y
([µ])

)
(f)

= λhhλf :

Sµ : ff(µ)⋏
(
shp

r
C⟨e,e′⟩

z
(shp JCK (shp J⊙ eK ([µ])))⊠ shp

q
⊙ e′

y
([µ])

)
(f)

Indeed one can show the following.

Proposition 5.4.2 (Consistency of iteration rule). Let

Ψ(trnsf)

= λhhλf : Sµ : hh(µ) ⋏
(
trnsf(shp JCK (shp J⊙ eK ([µ]))) ⊠ shp J⊙ e′K ([µ])

)
(f)

Then, shp
q
C⟨e,e′⟩y is a fixpoint of the higher order function Ψ(trnsf), that is:

Ψ
(
λff λf : Sµ : ff(µ) ⋏

[
sp JC⟨e,e′⟩K (µ) = f

] )
= λff λf : Sµ : ff(µ) ⋏

[
sp JC⟨e,e′⟩K (µ) = f

]
After having provided an intuition on the rules, let us show that shp does

actually retrocipate sp.
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Theorem 5.4.3 (Characterization of shp). For all programs C, hyperquantities

ff ∈ AA and quantities f ∈ A

shp JCK (ff) (f) =
j

µ : sp JCK(µ)=f

ff(µ) .

For a given hyperquantity ff and final quantity f , shp JCK (ff) (f) is the

supremum over all the values that ff can assume in those initial quantities µ

from which executing C terminates in f . Similarly to our quantitative strongest

post, in case that the final quantity f is unreachable, i.e. ∀µ : sp JCK (µ) ̸= f ,

that supremum automatically becomes 0 — the absolute minimal value. In

particular, if ∀ f : ff(f) ̸= 0, then shp JCK (ff) (f) = 0 unambiguously indicates

unreachability of f by executing C on any input µ.

5.5 Quantitative Strongest Liberal Hyper

Post

In Section 5.6, we will demonstrate that whp has no liberal variant because

it already provides a precise anticipation of the strongest postcondition sp.

However, this one-to-one correspondence does not extend to shp. The in-

verse operation—computing the initial quantities that produce a specific final

quantity through sp execution—is inherently non-unique. This is because

multiple distinct initial quantities µ can lead to the same final quantity f when

transformed by spJCK.

Drawing inspiration from our Quantitative Strongest Liberal Post defined

in Section 3.4, we propose a natural liberal variant of shp by taking the infimum

over all evaluations of the hyperquantity ff . This approach yields a novel

strongest liberal hyper postcondition transformer denoted slhp JCK with type

slhp JCK : BB→ BB

associating to each program C a mapping from hyperproperties to hyperprop-
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erties. Since slhp is associated with the infimum, we will consider a demonic

setting, where the nondeterminism is resolved to our disadvantage. Analogously

to slp, strongest liberal post deems unreachability good behavior.

Specifically, the demonic strongest liberal hyper post transformer slhp JCK

maps a hyper precondition ϕϕ over initial preconditions to a hyper postcondition

slhp JCK (ϕϕ) over final postconditions, such that for a given final postcondition

ψ satisfying slhp JCK (ϕϕ), all initial preconditions that reach ψ satisfy the hyper

precondition ϕϕ. More symbolically, recalling that sp JCK (ϕ) is the set of all

final states reachable after termination of C on all states in ϕ,

ψ |= slhp JCK (ϕϕ) iff ∀ϕ with sp JCK (ϕ) = ψ : ϕ |= ϕϕ ,

where the right-hand-side of the implication is vacuously true if ψ is unreachable.

This is in constrast with shp, where if restricted to a boolean setting, it is

associated with the existential quantifier, and thus deems unreachability bad

behavior:

ψ |= shp JCK (ϕϕ) iff ∃ϕ with sp JCK (ϕ) = ψ : ϕ |= ϕϕ .

From a map perspective, slhp JCK (ϕϕ) (ψ) identifies all initial preconditions

ϕ that result in the postcondition ψ after executing C (i.e., sp JCK (ϕ) = ψ). It

then checks if these preconditions satisfy the hyperprecondition ϕϕ, effectively

determining whether the hyperpredicate ψ must have been true before executing

C, thereby retrocipating the truth of ϕϕ. Formally, we have:

slhp JCK (ϕϕ) (ψ) =
∧

ϕ with sp JCK(ϕ)=ψ

ϕϕ(ϕ) ,

where the conjunction over an empty set is defined — as is standard —

as true. For quantities, we essentially replace ∧ by ⋏ and define the following

quantitative strongest liberal hyper post transformer:
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C slhp JCK (ff)

x := e λf : Jµ : ff(µ) ⋎ [
⊕

α µ [x/α]⊙ [x = e [x/α]] ̸= f ]

x := nondet() λf : Jµ : ff(µ) ⋎ [
⊕

α µ [x/α] ̸= ν]

⊙w λf : Jµ : ff(µ) ⋎ [µ⊙ w ̸= f ]

C1 # C2 slhp JC2K
(
slhp JC1K (ff)

)
{C1 } □ {C2 } Jµ : ff(µ) ⋎

(
slhp JC1K ([¬µ]) ⊞ slhp JC2K ([¬µ])

)
C⟨e,e′⟩ λf : Jµ : ff(µ) ⋎

[(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ) ̸= f

]
Table 5.3: Rules for defining the quantitative strongest hyper post transformer.

Definition 5.5.1 (Quantitative Strongest Liberal Hyper Post). The quantita-

tive strongest liberal hyper post transformer

slhp : wReg→ (AA→ AA)

is defined inductively according to the rules in Table 5.3. △

Let us thus go over the language constructs where the rules for slhp and shp

differ and explain both strongest liberal hyper post and quantitative strongest

liberal hyper post.

Assignment.

The strongest liberal post of an assignment is given by

slpJx := eK (ψ) = ∀α : x ̸= e [x/α]︸ ︷︷ ︸
(1)

∨ ψ [x/α]︸ ︷︷ ︸
(2)

.

Intuitively, the disjunction can be interpreted as an implication stating that

if α is a valid initial candidate value for x before the assignment, then the

precondition ψ evaluated on the initial state before the assignment must hold.

In other words, slp retrocipates the operational semantics of the assignment, to

compute all initial states, and verify if the precondition hold on all such states.

For the quantitative strongest liberal hyper post, we retrocipate the strongest

postcondition rather than the operational semantics. Therefore, given a final

distribution (or set) f , the value of ff in the initial distribution (or set of states)

before the execution of x := e corresponds to ff , but evaluated at the initial
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distribution µ – this is possible by ensuring that sp JCK (µ) = f . In general,

we may have multiple initial distributions, so differently to whp, we take the

infimum over such values, yielding the rule:

shp Jx := eK (ff) = λf : Jµ : ff(µ) ⋎ [sp Jx := eK (µ) ̸= f ]

= λf : Jµ : ff(µ) ⋎

[⊕
α

µ [x/α]⊙ [x = e [x/α]] ̸= f

]
,

where [sp Jx := eK (µ) ̸= f ] ensures that initial quantities µ for which sp Jx :=

eK (µ) = f are excluded from the infimum, unless f is not reachable, in which

case we yield +∞.

Nondeterministic Assignment:

The quantitative strongest liberal hyper post of a nondeterministic assignment

is given by:

slhp Jx := nondet()K (ff) = λf : Jµ : ff(µ) ⋎

[⊕
α

µ [x/α] ̸= f

]
,

which is a straightforward extension of the assignment rule by taking into

account that now x could be assigned to any value of α.

Assume/Weighting.

For the quantitative strongest liberal hyper post, for a final distribution (or set)

f it computes the minimum value of ff evaluated in the initial distribution (or

set) µ (i.e., such that sp JCK (µ) = f), resulting in the following rule:

slhp Jassume φK (ff) = λf : Jµ : ff(µ) ⋎ [sp Jassume φK (µ) ̸= f ]

= λf : Jµ : ff(µ) ⋎ [µ⊙ [φ] ̸= f ]

For the more general weighting statement, we obtain the rule:

slhp J⊙wK (ff) = λf : Jµ : ff(µ) ⋎ [µ⊙ w ̸= f ] ,
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where w can be any quantity.

Nondeterministic Choice.

For the nondeterministic choice, the quantitative strongest liberal hyper post

computes the infimum of all ff(µ) where µ is an initial distribution (or set) that

leads to a final distribution (or set) f after executing {C1 } □ {C2 }. More

precisely, the rule is:

slhp J{C1 } □ {C2 }K (ff)

= Jµ : λf : ff(µ) ⋎
( k

f1,f2 : f1⊕f2=f

slhp JC1K ([¬µ]) (f1) ⋎ slhp JC2K ([¬µ]) (f2)
)

︸ ︷︷ ︸
(1)

If µ is not a valid initial distribution that terminates in f , then for every

partition of f into f1 and f2, either µ will not reach f1 or µ will not reach f2

(or both). This is exactly represented by the braced expression (1), which in

this case will be evaluated to +∞, and hence such µ will not be considered

in the infimum. While for shp we used the outcome conjunction to derive a

syntactically simpler rule, here for slhp we define a novel connective, namely

the quantitative outcome disjunction.

Definition 5.5.2 (Quantitative Outcome Disjunction). The quantitative out-

come disjunction ⊞ is defined as follows:

(ff ⊞ gg)(ν) ≜
k

µ1,µ2∈A : µ1⊕µ2=ν

ff(µ1) ⋎ gg(µ2)

△

Unsurprisingly, there is a duality between the quantitative outcome dis-

junction ⊞ and the quantitative outcome conjunction ⊠.

Theorem 5.5.1 (Duality of Quantitative Outcome Conjunction and Dis-

junction). The quantitative outcome disjunction ⊞ is the De Morgan dual of
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the quantitative outcome conjunction ⊠. Formally, for any hyperquantities

ff, gg ∈ AA,

−(ff ⊠ gg) = (−ff) ⊞ (−gg) .

Proof. For all ν ∈ A we have:

− (ff ⊠ gg)(ν)

= −
j

µ1,µ2∈A : µ1⊕µ2=ν

ff(µ1) ⋏ gg(µ2)

=
k

µ1,µ2∈A : µ1⊕µ2=ν

−(ff(µ1) ⋏ gg(µ2))

=
k

µ1,µ2∈A : µ1⊕µ2=ν

(−ff(µ1)) ⋎ (−gg(µ2))

= (−ff ⊞−gg)(ν) .

By employing the quantitative outcome disjunction, we obtain the rule:

slhp J{C1 } □ {C2 }K (ff) = Jµ : ff(µ) ⋎
(
slhp JC1K ([¬µ]) ⊞ slhp JC2K ([¬µ])

)
Iteration

Similarly to shp, the rule for C⟨e,e′⟩ is derived by retrocipating the execution

of C⟨e,e′⟩. Specifically, for a given distribution (or set) f , we aim to find the

minimum value of a hyperquantity ff computed in an initial quantity µ that

terminates in f , resulting in the following rule:

slhp
r
C⟨e,e′⟩

z
(ff)

= λf : Jµ : ff(µ)⋎
[(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ) ̸= f

]︸ ︷︷ ︸
(1)

,

where the underlined expression (1) ensures that the final distribution (or set)

f is reachable from the initial distribution (or set) µ after executing C⟨e,e′⟩, and

if not, it yields +∞ which is ignored by the infimum. We also show that slhp

is consistent in the sense that it is a solution of the equation:
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slhp
r
C⟨e,e′⟩

z

= slhp
r{
⊙ e # C # C⟨e,e′⟩

}
□
{
⊙ e′

}z
= λhhλf : Jµ :

ff(µ)⋎
(
slhp

r
⊙ e # C # C⟨e,e′⟩

z
([¬µ])⊞ shp

q
⊙ e′

y
([¬µ])

)
(f)

= λhhλf : Jµ :

ff(µ)⋎
(
slhp

r
C⟨e,e′⟩

z
(slhp JCK (slhp J⊙ eK ([¬µ])))⊞ slhp

q
⊙ e′

y
([¬µ])

)
(f)

Indeed one can show the following.

Proposition 5.5.2 (Consistency of iteration rule). Let

Ψ(trnsf) = λhhλf : Jµ :

hh(µ) ⋎
(
trnsf(slhp JCK (shp J⊙ eK ([¬µ]))) ⊞ shp J⊙ e′K ([¬µ])

)
(f)

Then, slhp
q
C⟨e,e′⟩y is a fixpoint of the higher order function Ψ(trnsf), that is:

Ψ
(
λff λf : Jµ : ff(µ) ⋎

[
sp JC⟨e,e′⟩K (µ) ̸= f

] )
= λff λf : Jµ : ff(µ) ⋎

[
sp JC⟨e,e′⟩K (µ) ̸= f

]
After having provided an intuition on the rules, let us show that slhp does

actually retrocipate sp.

Theorem 5.5.3 (Characterization of slhp). For all programs C, hyperquantities

ff ∈ AA and quantities f ∈ A

slhp JCK (ff) (f) =
k

µ : sp JCK(µ)=f

ff(µ) .

For a given hyperquantity ff and final quantity f , slhp JCK (ff) (f) is the

infimum over all the values that ff can assume in those initial quantities

µ from which executing C terminates in f . Similarly to our quantitative
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strongest liberal post, in case that the final quantity f is unreachable, i.e.

∀µ : sp JCK (µ) ̸= f , that infimum automatically becomes 1 — the absolute

maximal value. In particular, if ∀ f : ff(f) ̸= 1, then shp JCK (ff) (f) = 1

unambiguously indicates unreachability of f by executing C on any input µ.

5.6 Properties

5.6.1 Hyper Galois Connections

The classical strongest postcondition is the left adjoint to the weakest liberal

precondition [64, Section 12], i.e. the transformers wlp and sp form the Galois

connection

G =⇒ wlpJCK (F ) iff sp JCK (G) =⇒ F , (†)

which intuitively is true because G =⇒ wlp JCK (F ) means that starting

from G the program C will either diverge or terminate in a state satisfying

F , and sp JCK (G) =⇒ F means that starting from G any state reachable

by executing C satisfies F . Quantitative Galois connections between forward

and backward transformers have been studied in [17]. We show that the above

Galois connection is preserved in our hyper quantitative setting; in fact, by

substituting the partial order =⇒ on predicates with the partial order ⪯ on

AA we obtain:

Theorem 5.6.1 (Hyper Galois Connection). For all C ∈ Reg and gg, ff ∈ AA:

gg ⪯ whp JCK (ff) iff shp JCK (gg) ⪯ ff ,

whp JCK (ff) ⪯ gg iff ff ⪯ slhp JCK (gg) .

It is noteworthy that whp functions as both a left and right adjoint in

these Galois connections. This dual role stems from the unique nature of whp,

which behaves simultaneously as both a liberal and non-liberal transformer. In
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fact, according to Theorem 5.3.2, whp JCK (ff) (µ) precisely computes sp JCK (µ)

enabling it to capture both suprema and infima of the singleton {sp JCK (µ)}.

We will continue to demonstrate this in the remainder of this section.

5.6.2 Relationship between Liberal and Non-liberal

Transformers

Various dualities between wp and wlp have been extensively explored in the

literature. In Dijkstra’s classical calculus, the duality relationship is expressed

as wp JCK (ψ) = ¬wlpJCK (¬ψ). In quantitative settings, particularly in the

work of Kozen and McIver & Morgan on probabilistic programs, this duality

extends to wp JCK (f) = 1 − wlpJCK (1− f) for 1-bounded functions f . This

concept is further generalized to wp JCK (f) = −wlpJCK (−f) in the case of non-

probabilistic programs and unbounded quantities, as demonstrated in Zhang and

Kaminski [17, Theorem 5.3], which also showcases dualities between strongest

post transformers: sp JCK (f) = −slpJCK (−f).

Our whp calculus exhibits a unique duality property that distinguishes it

from classical predicate transformers. Unlike traditional calculi that are either

liberal or non-liberal, whp exhibits characteristics of both, as demonstrated by

the following duality relationship:

Theorem 5.6.2 (Liberal–Non-liberal Duality, whp). For any program C and

any k-bounded hyperquantity ff , we have whp JCK (ff) = k−whp JCK (k − ff).

Unsurprisingly, our strongest hyper post calculi enjoy the following duality.

Theorem 5.6.3 (Liberal–Non-liberal Duality, shp and slhp). For any program

C and hyperquantity ff , we have

shp JCK (ff) = − slhp JCK (−ff) .

As a consequence of the liberal–non-liberal duality of Theorems 5.6.2

and 5.6.3, for hyperproperties we have:

ϕϕ =⇒ whp JCK (ψψ) iff whp JCK (¬ψψ) =⇒ ¬ϕϕ.
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5.6.3 Healthiness Properties

Similarly to Sections 3.5 and 4.7, our quantitative hyper transformers also

exhibit several healthiness properties, some of which are analogous to those

found in the calculi of Dijkstra, Kozen, and McIver & Morgan.

We will begin by showcasing the properties that whp enjoys, arguing that

there exists only one backward hyperpredicate transformer. This is because

whp possesses several properties and dualities that are characteristic of both

liberal and non-liberal weakest precondition calculi. Following this, we will

explore our strongest hyper post transformers, providing motivation for why

the characterization of shp and slhp is consistent.

Theorem 5.6.4 (Healthiness Properties of whp). For all programs C, whp JCK

satisfies the following properties:

1. Monotonicity: ff ⪯ gg implies whp JCK (ff) ⪯ whp JCK (gg) .

2. Quantitative universal conjunctiveness and disjunctiveness: For any set of

hyperquantities S ⊆ AA,

whp JCK (⋏S) =
k

ff∈S

whp JCK (ff) and

whp JCK (⋎S) =
j

ff∈S

whp JCK (ff)

3. k-Strictness: For any k ∈ R±∞, whp JCK (λf : k) = λf : k.

△

Quantitative universal conjunctiveness and strictness in the context of

wp, as well as the notions of disjunctiveness and co-strictness for wlp, serve

as quantitative analogues of Dijkstra and Scholten’s original calculi. These

properties have been explored in [17, Section 5.1]. We demonstrate that

whp exhibits all these characteristics, as the k-strictness of whp implies both

strictness and co-strictness. This observation aligns with our intuition that

whp functions as both a liberal and a non-liberal calculus.
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On the other hand, our Strongest Post calculi exhibit similar healthiness

properties to those in Section 3.5, differentiating between liberal and non-liberal.

More precisely, our non-libel transformers sp, shp enjoy of disjunctiveness and

strictness, whereas our liberal ones slp, slhp enjoy of the conjunctiveness and

strictness.

Theorem 5.6.5 (Healthiness Properties of shp, slhp). Both shp and slhp satisfy

the following property:

5. Monotonicity:

ff ⪯ gg implies ttt JCK (ff) ⪯ ttt JCK (gg) , for ttt ∈ {shp, slhp}

For all programs C, shp satisfies the following properties:

1. Quantitative universal disjunctiveness: For any set of hyperquantities

S ⊆ AA,

shp JCK (⋎S) =
j

ff∈S

shp JCK (ff) .

2. Strictness:

slhp JCK (λf : −∞) = λf : −∞ .

The liberal transformer slhp JCK satisfies the following properties:

1. Quantitative universal conjunctiveness: For any set of hyperquantities

S ⊆ AA,

slhp JCK (⋏S) =
k

ff∈S

slhp JCK (ff) .

2. Co-strictness:

slhp JCK (λf : +∞) = λf : +∞ .
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△

Healthiness properties are mainly beneficial for conducting compositional

proofs. Some of the key properties are outlined below:

Monotonicity

Larger (hyper)quantities as inputs yield larger (hyper)quantity as results.

Monotonicity is a fundamental property that allows compositional reasoning and,

for classical predicate transformers, it is closely related to the rule of consequence

in Hoare logic. An in-depth treatment of this particular connection can be

found in Kaminski [16, p.95]. In our context, unsurprisingly, monotonicity

enables the proof of the Cons rule from Dardinier and Müller [73, Fig. 2].

Continuity, Disjunctiveness and Conjunctiveness

This property allows a complex (hyper)property to be broken down into simpler

ones, which can be proved separately. The results can then be soundly recom-

bined to complete the proof of the original complex (hyper)property. Contrary

to our previously defined transformers, here continuity and co-continuity do not

related with well-definedness. In fact, our transformers are always well-defined

just because they rely on the well-definedness of the underlying semantics, i.e.,

sp.

Strictness, Co-strictness and k-strictness

In the context of classical wp, strictness (also known as the “Law of the Excluded

Miracle” [63]) ensures that no initial state can terminate in a state satisfying

“false”. Quantitative generalisations of strictness [16, Definition 4.13], defined

as wp JCK (0) = 0, mean that the expected value of the constantly 0 random

variable after executing a program C is 0.

In our setting, we show that our whp enjoys of a novel property, namely

k-strictness (see Theorem 5.6.4, item 3), which generalises strictness and co-

strictness. In fact, we can represent strictness by taking k = −∞: for predicates,
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it means it is impossible to terminate in a set of states that satisfies the

hyperpostcondition “false”. Conversely, for k = +∞, we have a generalisation

of the so-called co-strictness: any initial precondition will terminate in a

postcondition that satisfies the hyperpostcondition “true”.

Our shp and slhp, on the other hand, enjoy of strictness and co-strictness,

respectively. The difference between forward and backward transformers is

that the underlying semantics, sp, is deterministic, so whp JCK is always able to

anticipate the exact postcondition spJCK. In contrast, shp and slhp cannot do so,

because the inverse of spJCK is non-deterministic. In the context of probability

distributions, strictness of shp ensures that starting from no distribution we

end in no distributiion again, whereas co-strictness of slhp ensures that for

all distributions, they are either reachable by an initial distribution or not

reachable at all.

Linearity

Sub- and superlinearity, extensively studied by Kozen, McIver & Morgan, and

Kaminski for probabilistic w(l)p transformers, also find applications in our

hyper setting. Our whp obeys to linearity.

Theorem 5.6.6 (Linearity). For all programs C, whp JCK is linear, i.e. for all

ff, gg ∈ AA and non-negative constants r ∈ R≥0,

whp JCK (r · ff + gg) = r · whp JCK (ff) + whp JCK (gg) .

△

Our forward hyper transformers shp and slhp do not enjoy linearity, but

similarly to what we showed in Section 3.5, they exhibit sub- and superlinearity,

respectively.

Theorem 5.6.7 (Linearity). For all programs C, shp JCK is sublinear and
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slpJCK is superlinear, i.e. for all ff, gg ∈ AA and constants r ∈ U ,

shp JCK (r · ff + gg) ⪯ r · shp JCK (ff) + shp JCK (gg) , and

r · slhp JCK (ff) + slhp JCK (gg) ⪯ slhp JCK (r · ff + gg) .

△

Multiplicativity

We additionally show that our hyper transformers enjoy of a novel property,

namely, multiplicativity.

Theorem 5.6.8 (Multiplicativity). For all programs C, whp JCK is multiplica-

tive, i.e. for all ff, gg ∈ AA and non-negative constants r ∈ R≥0,

whp JCK (r · ff · gg) = r · whp JCK (ff) · whp JCK (gg) .

△

Similarly to linearity, multiplicativity also aids compositional reasoning.

Let us show an example of its validity.

Example 5.6.1 (Validity of Multiplicativity for whp). Consider the program

C = {x := 0 } [ 0.5 ] {x := 1 } that assigns 0 to x with probability 0.5 and 1

with probability 0.5. Let’s verify the multiplicativity property of whp using two

hyperquantities: ff = gg = E[x] and considering an initial distribution µ = 1x=1.

We start by computing whp JCK (ff) (µ) for any generic hyperquantity ff , and

then we compute the left and right-hand side of Theorem 5.6.8.

whp JCK (ff) (µ)

= Sν1, ν2 : ff(ν1 + ν2)

⋏ whp J⊙ 0.5 # x := 0K ([ν1]) (µ) ⋏ whp J⊙ 0.5 # x := 1K ([ν2]) (µ)
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= ff(0.5 · 1x=0 + 0.5 · 1x=1)

Now, let’s compute the left-hand side of Theorem 5.6.8

whp JCK (E[x] · E[x]) (µ)

= (E[x] · E[x])(0.5 · 1x=0 + 0.5 · 1x=1)

= E[x](0.5 · 1x=0 + 0.5 · 1x=1) · E[x](0.5 · 1x=0 + 0.5 · 1x=1)

=
1

4
.

Finally, we can compute the right-hand side of Theorem 5.6.8 to see that

it coincides with the result above:

whp JCK (E[x]) (µ) · whp JCK (E[x]) (µ)

= E[x](0.5 · 1x=0) · E[x](0.5 · 1x=0)

=
1

4
.

△

In general, it is easy to see that multiplicativity does not hold for wp.

Example 5.6.2 (Invalidity of Multiplicativity for wp). Let C = {x := 0 } [ 0.5 ]

{x := 1 }. Then:

wp JCK (x · x)

=
1

2
· wp Jx := 0K (x · x) +

1

2
· wp Jx := 1K (x · x)

=
1

2
· 0 +

1

2
· 1

=
1

2
.
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However,

wp JCK (x) · wp JCK (x)

=

[
1

2
· wp Jx := 0K (x) +

1

2
· wp Jx := 1K (x)

]2
=

[
1

2
· 0 +

1

2
· 1
]2

=
1

4
.

△

Similarly, multiplicativity does not hold for sp and slp.

Example 5.6.3 (Invalidity of Multiplicativity for sp, slp). Let C =

{x := x− 1 } [ 0.5 ] {x := x+ 1 }. Then:

sp JCK (x · x)

=
1

2
· sp Jx := x− 1K (x · x) +

1

2
· sp Jx := x+ 1K (x · x)

=
1

2
· (x+ 1) · (x+ 1) +

1

2
· (x− 1) · (x− 1)

= x2 + 1 .

However,

sp JCK (x) · sp JCK (x)

=

[
1

2
· sp Jx := x− 1K (x) +

1

2
· sp Jx := x+ 1K (x)

]2
=

[
1

2
· (x+ 1) +

1

2
· (x− 1)

]2
= x2 ,

and analogously for slp. △

On the other hand, we conclude by stating that our strongest hyper transformers

obey a restricted form of multiplicativity.
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Theorem 5.6.9 (Multiplicativity). For all programs C, shp JCK is submul-

tiplicative and slhp JCK is supermultiplicative, i.e. for all ff, gg ∈ AA and non-

negative constants r ∈ R≥0,

shp JCK (r · ff · gg) ⪯ r · shp JCK (ff) · shp JCK (gg) , and

r · slhp JCK (ff) · slhp JCK (gg) ⪯ slhp JCK (r · ff · gg) .

△

By combining these properties, we can extend our reasoning to encompass

other important statistical measures within whp. Covariance, which measures

how two random variables vary together, is a fundamental concept in statistics

and probabilistic reasoning about programs. Our framework allows us to derive

them compositionally from simpler properties.

Example 5.6.4 (Computing Covariance Compositionally).

whp JCK (Cov[f, g]) = whp JCK (E[fg]− E[f ] · E[g])

= whp JCK (E[fg])− whp JCK (E[f ] · E[g])

(by Theorem 5.6.6)

= whp JCK (E[fg])− whp JCK (E[f ]) · whp JCK (E[g])

(by Theorem 5.6.8)
△

This decomposition allows us to compute the covariance between random

variables f and g after program execution by computing simpler expected

values and combining them. We will demonstrate the practical utility of this

approach in Section 5.8.3, where we compute the variance of a random variable

representing the outcome of a probabilistic game.

5.6.4 Additive Hyperquantities

In this section, we explore a specific category of hyperquantities from which we

can deduce simplified rules akin to established wp calculi.
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C whp JCK (ff)

x := e ff [x/e]

x := nondet() λf : ff(
⊕

α f [x/α])

⊙w ff ⊙ w

C1 # C2 whp JC1K
(
whp JC2K (ff)

)
{C1 } □ {C2 } whp JC1K (ff) +∗ whp JC2K (ff)

C⟨e,e′⟩ lfp X : Φff (X)

if (φ ) {C1 } else {C2 } whp JC1K (ff)⊙ [φ] +∗ whp JC2K (ff)⊙ [¬φ]

{C1 } [ p ] {C2 } whp JC1K (ff)⊙ p+∗ whp JC2K (ff)⊙ (1− p)

while (φ ) {C } lfp X : ff ⊙ [¬φ] +∗ whp JCK (X)⊙ [φ]

Table 5.4: Rules for the weakest hyper pre transformer for additive posts ff . Here,
lfp f : Φ(f) denotes the least fixed point of Φ.

Definition 5.6.1 (Additive Hyperquantities). A hyperquantity ff ∈ AA is

additive if for any quantity g, f ∈ A, there exists a binary operator +∗ : R±∞ ×

R±∞ → R±∞ such that:

ff(g ⊕ f) = ff(g) +∗ ff(f) .

Theorem 5.6.10 (Weakest Hyper Pre for Additive Hyperquantities). For

additive hyperquantities ff ∈ AA, the simpler rules in Table 5.4 are valid.

Similarly to other quantitative settings [14; 16; 17], the loop rule can be defined

via a least fixed point of the characteristic function.

Definition 5.6.2 (whp–characteristic function). The whp–characteristic func-

tion (of C⟨e,e′⟩ w.r.t. ff) is:

Φff (X) = ff ⊙ Je′K +∗ whp JCK (X)⊙ JeK. △

When examining the semiring ⟨R±∞,max,min,−∞,+∞⟩, our cal-

culus closely resembles the quantitative wp as described in Zhang and



5.6. Properties 213

Kaminski [17], albeit in a more expressive context. Further, by adopting

⟨R±∞,min,max,+∞,−∞⟩, we derive rules analogous to quantitative wlp

from Zhang and Kaminski [17]. Notably, in the latter semiring, the natural

order is reversed compared to the semiring ⟨R±∞,max,min,−∞,+∞⟩. In

essence, for ⟨R±∞,min,max,+∞,−∞⟩, the least fixed point resulting from

our iteration rule aligns with the rule of wlp defined through the greatest fixed

point in Zhang and Kaminski [17].

Among additive hyperquantities we have all those in Example 5.2.4 and

of Section 5.7.3.

5.6.5 Loops Rules for Additive Hyperquantities

Reasoning about loops is undecidable, even for classical properties. Previously,

we have shown that our whp calculus uses least fixed points, which is often

impractical. In this section, we show how to derive simpler rules that can

aid in whp reasoning for loops. For additive hyperquantities, we obtain an

inductive invariant based rule similar to the existing ones for quantitative

transformers [17, Theorem 7.1].

Theorem 5.6.11 (Quantitative Inductive Reasoning for whp). For any program

C and any additive hyperquantity ff , we have:

Φff (ii) ⪯ ii =⇒ whp
r
C⟨e,e′⟩

z
(ff) ⪯ ii,

where Φff (X) = ff ⊙ Je′K +∗ whp JCK (X)⊙ JeK is the characteristic function of

C⟨e,e′⟩ w.r.t. ff . △

As a corollary, one can derive simpler rules for guarded loops, for example,

the analogue of Theorem 5.4 of Kaminski [16], but in our hyper setting.

Corollary 5.6.11.1 (Quantitative Inductive Rule for while).

ff ⊙ [¬φ] +∗ whp JCK (ii)⊙ [φ] ⪯ ii ⪯ gg ff is additive

whp Jwhile (φ ) {C }K (ff) ⪯ gg
while−whp

△
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We shall observe that Corollary 5.6.11.1 subsumes both while-wp

and while-wlp of Zhang and Kaminski [17, Theorem 7.1]. This depends

on the choice of the semiring: ⟨R±∞,min,max,+∞,−∞⟩ for wp, and

⟨R±∞,max,min,−∞,+∞⟩ for wlp.

Let us provide an intuition over while−whp in our quantitative hyper

setting, for example taking into account the semiring Prob = ⟨[0, 1],+, ·, 0, 1⟩

and the expected value hyperquantity ff = E[f ]. Intuitively, the rule while−whp

requires finding an invariant ii that satisfies three conditions:

1. ii ⪯ gg, meaning that gg is overapproximating the invariant ii;

2. E[f ] · [¬φ] ⪯ ii, meaning that the expected value of f , when evaluated in the

filtered probability distribution (i.e., the loop is executed at most 0 times),

is bounded by ii;

3. whp JCK (ii) · [φ] ⪯ ii, meaning that for any initial probability distribution µ,

the value of ii computed over this initial distribution will be greater than or

equal to the value of ii after performing one more iteration and computing

it over the resulting distribution.

By induction, conditions (2) and (3), which represent the first premise of

while-whp, imply that ii overapproximates the expected value E[f ] computed in

the final probability distribution after the loop execution. Indeed, starting from

the base case in (2), we assume for the inductive step that ii over-approximates

the expected value after n loop iterations. By condition (3), ii is also an

upper bound for whp JCK (ii) · [φ] ⪯ ii, meaning that it over-approximates the

probability distribution obtained after n+ 1 iterations.

Condition (1) ensures that the initial expected value gg overapproximates

ii, and thus gg computed in the initial probability distribution overapproximates

the final expected value E[f ].

We showcase an example of induction reasoning that extends [16, Example

5.5] by taking into account probability distributions instead of single states.
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Example 5.6.5 (Upper Bounds on whp). Consider the probabilistic loop Cgeo =

x := x+ 1⟨0.5,0.5⟩ modeling a geometric distribution. We want to prove that

E[x+ 1] is an upper bound of the expected value E[x] after executing Cgeo. We

have:

E[x] · J0.5K + whp Jx := x+ 1K (E[x+ 1]) · J0.5K

= E[x · 0.5] + E[(x+ 2) · 0.5]

= E[x+ 1],

and hence by Corollary 5.6.11.1 we conclude that whp JCgeoK (E[x]) ⪯ E[x+ 1],

i.e., E[x+ 1] (evaluated in the initial probability distribution) is an upper bound

on E[x] (evaluated in the final probability distribution) after executing Cgeo.

5.7 Expressivity

In the preceding sections, we characterized our quantitative hyper transformers.

In this section, we aim to illustrate the expressive capabilities of the calculi by

demonstrating that they subsume several other logics and calculi.

5.7.1 An Overview of Several Hoare-Like Logics

We subsume Hyper Hoare Logic for non-probabilistic programs (since HHL is

non-probabilistic).

Theorem 5.7.1 (Subsumption of HHL). For hyperpredicates ψψ, ϕϕ and non-

probabilistic program C:

|=hh {ψψ } C {ϕϕ }

iff supp ([ψψ]) ⊆ supp (whp JCK ([ϕϕ]))

iff supp (shp JCK ([ϕϕ])) ⊆ supp ([ψψ])

iff supp ([¬ψψ]) ⊆ supp (slhp JCK ([¬ϕϕ]))

As a byproduct, all our hyper transformers subsume demonic partial correct-

ness, angelic total correctness, partial incorrectness, and total incorrectness
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(according to the terminology in [17]). To highlight this, we will utilize the

following modality syntax introduced in [74]:

□P = λρ : [ρ ⊆ P ] and ♢P = λρ : [P ∩ ρ ̸= ∅]

These modalities provide a concise notation for expressing universal (□)

and existential (♢) properties over execution traces, enabling elegant formula-

tions of various program logics without the verbosity of lambda expressions.

When reasoning about hyperproperties, we can further simplify the nota-

tion by omitting Iverson brackets and writing ψψ ⊆ whp JCK (ϕϕ) instead of

supp ([ψψ]) ⊆ supp (whp JCK ([ϕϕ])). In Table 5.5, we demonstrate how our

whp transformer subsumes various existing verification logics, providing a uni-

fied framework for reasoning about them. Moreover, as shown in Table 5.6,

whp elegantly represents the falsification conditions for these logics as well.

While Theorem 5.7.1 guarantees that analogous rules can be derived for shp

and slhp, we focus our presentation on whp for brevity.

Logic Syntax Semantics Semantics via whp

Hoare Logic (partial correctness) |=pc {P } C {Q } P ⊆ wlpJCK (Q) □P ⊆ whp JCK (□Q)

Lisbon Logic |=atc {P } C {Q } P ⊆ wp JCK (Q) ♢P ⊆ whp JCK (♢Q)

Partial Incorrectness Logic |=pi [P ] C [Q ] Q ⊆ slpJCK (P ) {¬P} ⊆ whp JCK (□(¬Q))

Incorrectness Logic |=ti [P ] C [Q ] Q ⊆ sp JCK (P ) {P} ⊆ whp JCK (λρ. Q ⊆ ρ)

Table 5.5: Partial and total (in)correctness using classical predicate transformers
and whp.

Syntax Semantics Semantics via whp

̸|=pc {P } C {Q } P ∩ wp JCK (¬Q) ̸= ∅ {P} ⊆ whp JCK (♢(¬Q))

̸|=atc {P } C {Q } P ∩ wlpJCK (¬Q) ̸= ∅ ∃σ ∈ P : {{σ}} ⊆ whp JCK (□¬Q)

̸|=pi [P ] C [Q ] Q ∩ sp JCK (¬P ) ̸= ∅ {¬P} ⊆ whp JCK (♢Q)

̸|=ti [P ] C [Q ] Q ∩ slpJCK (¬P ) ̸= ∅ {P} ⊆ whp JCK (λρ. Q ∩ ¬ρ ̸= ∅)

Table 5.6: Disproving partial and total (in)correctness using classical predicate
transformers and whp. Non-liberal transformers can be expressed via
liberal transformers and vice versa by duality [17, Section 5.3]
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Arguably, Hoare-like logics are designed to be accessible to programmers

to prove correctness, whereas reasoning about whp (and HHL, OL) enables

better understanding of relationships between different program logics, leading

to definitions of new logics, as we will show in the following.

We conclude by noting that the aforementioned logics are capable of

proving nontermination, as shown in Figure 4.3. Consequently, our whp calculus

can also be used to prove nontermination, as demonstrated by the rules for

while (φ ) {C } in Figure 5.2.

P ⊆ φ ♢P ⊆ whp JCK (♢P )

∀σ ∈ P : Jwhile (φ ) {C }K(σ) may diverge

P ⊆ φ {P} ⊆ whp JCK (□P )

∀σ ∈ P : Jwhile (φ ) {C }K(σ) must diverge

Figure 5.2: Nontermination rules for the while (φ ) {C } construct using whp.

5.7.2 Designing (Falsifying) Hoare-Like Logics via

Hyperpredicate Transformers

The observations above indicate that there is no advantage for new program

logics to falsify triples from an expressivity point of view, as they can be

converted into existing triples via Theorem 4.5.1. However, one may wonder

whether it is possible to design triples that are more useful in practice. In this

regard, we emphasize that the design of program logics should follow predicate

transformer reasoning. We provide an intuition on how whp aids in reasoning

about designing logics (rather than triples). We illustrate this with an example

of partial correctness.
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Partial Correctness as Classical Predicate Transformers

Partial correctness amounts to a logic that takes Q ⊆ P(Σ) and proves every

P such that P ⊆ wlpJCK (Q).

Partial Correctness as a Hyperproperty

We observe that partial correctness, as a logic, is a hyperproperty. Indeed,

P ⊆ wlpJCK (Q) iff P ∈ {S | S ⊆ wlpJCK (Q)}, and this is a predicate over sets

of states. Also, by Galois connection, this is equivalent to proving sp JCK (P ) ⊆

Q iff sp JCK (P ) ∈ {S | S ⊆ Q}, explaining why our whp captures partial

correctness (via P ∈ whp JCK (λρ : ρ ⊆ Q)).

(Dis)proving Partial Correctness, Practically

One may wonder why partial correctness is much easier than our whp calculus.

At first glance, it seems that, for a given post Q, one may want to find {S |

S ⊆ wlpJCK (Q)}. However, the actual logic aims to find just wlpJCK (Q) since

wlpJCK (Q) fully characterizes the original hyperproperty. Even if wlpJCK (Q)

itself is not found, any S ⊆ wlpJCK (Q) allows soundly proving |=pc {P } C {Q }

by checking P ⊆ S. The same reasoning applies to falsify partial correctness

triples. Our key insight is that it is enough to find any wlpJCK (Q) ⊆ S and

then prove ̸|=pc {P } C {Q } by checking P ̸⊆ S. With this in mind, we argue

that the most sensible proof system to falsify partial correctness should aim for

wlpJCK (Q) ⊆ P .

So we obtain the following sound and complete falsifying partial correctness

logic, which is the same as partial correctness except for the following different

rules:

G⇐= G′ |= {G′ } C {F ′ } F ′ ⇐= F

|= {G } C {F } Antecedence3

∀n : |= { p(n+ 1) } C { p(n) }
|= { ∀n.p(n) } C⋆ { p(0) } Kleene
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We argue that by similar reasoning, it is easy to find falsifying logics for the

other triples.

Do we need falsifying logics?

It is known from [17, p.22] that wlpJCK (Q) ⊆ S corresponds to the contrapos-

itive of Lisbon Logic, i.e., amounts to ¬S ⊆ wp JCK (¬Q). This means that,

to prove ̸|=pc {P } C {Q }, one should prove |=atc {¬S } C {¬Q } (possibly

keeping ¬S large) and then check P ̸⊆ S. Similar reasoning applies if we want

to apply Theorem 4.5.1, and so we argue that reasoning via contrapositive is a

lot harder to do for the average programmer.

5.7.3 Expressing Quantitative Weakest Pre

In this section we show that our calculus subsumes several existing calculi. We

define 1σ(τ) = 1 if τ = σ and 1σ(τ) = 0 otherwise.

Nondeterministic Programs

We start by defining hyperquantities subsuming existing angelic weakest pre

and demonic weakest liberal pre [17].

Definition 5.7.1 (Hyper Suprema and Infima). For a given semiring A =

⟨U,⊕,⊙, 0, 1⟩ and a quantity f : Σ→ U , we define hyperquantities

j
[f ] ≜ λµ.

j

σ∈supp(µ)

f(σ) ,

k
[f ] ≜ λµ.

k

σ∈supp(µ)

f(σ) ,

that take as input quantities µ : Σ→ U . Intuitively,
b

[f ] and
c

[f ] map a given

µ to the maximum (minimum) value of f(σ) where σ is drawn from the support

set supp (µ). △

3Which replaces the rule of consequence.
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Theorem 5.7.2 (Subsumption of Quantitative wp, wlp for Nondeterministic

Programs [17]). Let A = ⟨R±∞,max,min, 0, 1⟩. For any quantities g, f and

any program C satisfying the syntax of [17, Section 2]:

whp JCK
(k

[f ]
)

(1σ) = wlpJCK (f) (σ) ,

whp JCK
(j

[f ]
)

(1σ) = wp JCK (f) (σ) .

The result follows from the fact that whp JCK (
c

[f ]) (1σ) and

whp JCK (
b

[f ]) (1σ) compute respectively the maximum and the minimum

value of f in the support of sp JCK (1σ), which is the set of reachable states

starting from σ. Our calculus is strictly more expressive than [17] as our syntax

is richer and allows to reason about weighted programs as well.

Probabilistic Programs

By employing the expected value hyperquantity, we show how whp subsumes

wp and wlp for deterministic and probabilistic programs [16] as well.

Theorem 5.7.3 (Subsumption of Quantitative wp, wlp for Probabilistic Pro-

grams [16]). Let Prob = ⟨[0, 1],+, ·, 0, 1⟩. For any quantities g, f and any

non-nondeterministic (possibly probabilistic) program C:

whp JCK (E[f ]) (1σ) = wp JCK (f) (σ)

whp JCK (E[f ] + 1− E[1]) (1σ) = wlpJCK (f) (σ) .

The results stem from our calculus, which computes E[f ] on the final distribu-

tion sp JCK (1σ) using the expected values hyperquantity, which precisely yields

wp JCK (f) (σ). Additionally, it is known [16, Theorem 4.25] that for nondeter-

ministic programs wlpJCK (f) (σ) calculates the expected value of f in the final

distribution sp JCK (1σ) , but adjusted for the probability of nontermination.

This latter probability is in our setting the hyperquantity 1− E[1].
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Probabilistic Termination

Since our calculus subsumes many existing quantitative wp calculi such as those

of McIver and Morgan [14]; Zhang and Kaminski [17], we know that is can also

prove probabilistic termination (see Kaminski [16, Section 6] for a comprehensive

overview). For example, almost-sure termination amounts to proving that

wp JCK (1) (σ) = 1, which in our setting is just whp JCK (E[1]) (1σ) = 1. Bounds

over expected values, such as those in Hark et al. [15], are easily handled as

well; for example, whp JCK (E[f ]) (µ) < k checks whether the expected value

of f after execution of the program is less than k. While at first one may

argue that this expressiveness comes at the cost of more complex rules, we will

show in Section 5.6.3 that when using additive hyperquantities (Section 5.6.4),

reasoning via whp is indeed very similar to reasoning via wp.

Nondeterminism, Regular Languages, and Schedulers

While the results above highlight that many existing wp are mere specializations

of whp for single initial pre-states, we claim that there are some limitations

as well, particularly in how nondeterminism is resolved. The main reason is

that all of our transformers, being related to the strongest post sp, cannot

detect whether a program C starting from σ diverges for at least one possible

execution. Therefore we cannot express demonic wp and angelic wlp. The

closest attempt is to define the following hyperquantities.

Definition 5.7.2 (Demonic Weakest Pre and Angelic Weakest Liberal Pre).

Let the ambient semiring be A = ⟨R±∞,max,min,−∞,+∞⟩. Given a quantity

f : Σ→ R±∞, we define hyperquantities

k
[f ]⇓ ≜ λµ :

k

σ∈supp(µ)

f(σ) ⋏
j

σ∈supp(µ)

+∞

j
[f ]⇑ ≜ λµ :

j

σ∈supp(µ)

f(σ) ⋎
k

σ∈supp(µ)

−∞ .
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One can define two novel transformers:

wpinfJCK (f) (σ) ≜ whp JCK
(k

[f ]⇓

)
(1σ) and

wlpsupJCK (f) (σ) ≜ whp JCK
(j

[f ]⇑

)
(1σ) △

Intuitively, wpinfJCK (f) (σ) operates akin to a demonic weakest pre calculus by

determining the minimum value of f after the execution of program C starting

from σ. However, unlike the demonic weakest pre calculus in [16], we do not

necessarily assign the value bottom 0 if the program has a single diverging

trace; instead, we do so only when all traces are diverging. Similarly, for wlpsup,

our calculus outputs 1 if all traces are diverging. In other words, both our wpinf

and angelic wlpsup attempt to avoid termination whenever possible, mirroring

the behavior of the angelic wp and demonic wlp as discussed in [17, Section

6.2]. To the best of our knowledge these transformers are novel and have not

been considered in existing works such as [16; 93; 140].

Let us demonstrate how our demonic weakest pre (wpinf) and angelic

weakest liberal pre (wlpsup) transformers differ from those in [16] through an

example.

Example 5.7.1 (Comparing Nondeterminism). Let dwp and awlp be the

demonic weakest pre and angelic weakest liberal pre in [16], and let C =

{ diverge } □ { skip }. Then:

• dwpJCK ([true]) = [false] ̸= [true] = wpinfJCK ([true])

• awlpJCK ([false]) = [true] ̸= [false] = wlpsupJCK ([false]) △

Conventional treatment of nondeterministic programs in established weak-

est pre calculi inherently involve schedulers [16, Definition 3.7] designed to

resolve nondeterminism, seeking the maximum or minimum expected value

across all possible schedulers. In contrast, our approach aligns with the In-

correctness Logic literature, using Kleene Algebra and strongest-post-style

calculi as program semantics [6; 19; 73; 17]: for nondeterministic programs,
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we treat all choices as if they were executed. To further highlight the differ-

ences between our approach and scheduler-based semantics, we observe that

extending dwp in the sense of Kaminski [16] would invalidate common syntactic

sugar for control structures. Most notably, the standard equivalence between

if (φ ) {C1 } else {C2 } and { assume φ # C1 } □ { assume ¬φ # C2 } breaks

down under demonic weakest pre and angelic weakest liberal pre semantics.

Example 5.7.2. Let dwp and awlp be the demonic weakest pre and angelic

weakest liberal pre of Kaminski [16]. We extend both for the assume statement,

obtaining:

dwpJassume φK (f) = φ⋏ f and awlpJassume φK (f) = [¬φ] ⋎ f

We have dwpJif ( true ) { skip } else { skip }K ([true]) = [true], whereas for

the seemingly equivalent { assume true # skip } □ { assume false # skip } we

have:

dwpJ{ assume true # skip } □ { assume false # skip }K ([true])

= dwpJassume true # skipK ([true]) ⋏ dwpJassume false # skipK ([true])

= dwpJassume trueK (dwpJskipK ([true]))⋏ dwpJassume falseK (dwpJskipK ([true]))

= dwpJassume trueK ([true])⋏ dwpJassume falseK ([true])

= [true]⋏ [false] = [false]

Similarly, awlpJif ( true ) { skip } else { skip }K ([false]) = [false] but:

awlpJ{ assume true # skip } □ { assume false # skip }K ([false])

= awlpJassume true # skipK ([false]) ⋎ awlpJassume false # skipK ([false])

= awlpJassume trueK (awlpJskipK ([false]))

⋎ awlpJassume falseK (awlpJskipK ([false]))

= awlpJassume trueK ([false])⋎ awlpJassume falseK ([false])

= [false]⋎ [true] = [true] △
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Whilst the fact that demonic total correctness is inexpressible in KAT [173]

because it lacks a way of reasoning about nontermination [174], here we argue

that also angelic partial correctness in the sense of [16] is inexpressible. This

highlights the fact that regular languages, such as KAT variants, are not

equivalent to guarded imperative languages in general.

5.8 Case Studies

=(( gg′

(( gg

C

(( ff

(( ff

C

(( gg
=(( gg′

Figure 5.3: Annotation styles used to express that gg = whp JCK (ff) and gg′ = gg
(left), and gg = shp JCK (ff) and gg = gg′ (right).

In this section, we demonstrate the efficacy of our quantitative hyper

transformers. We use the annotation style on the left to express that gg =

shp JCK (ff) and that gg = gg′. We use the one on the right to express that

gg = whp JCK (ff) and gg′ = gg.

5.8.1 Proving Hyperproperties

In this section we show how to prove noninterference [54] and generalized

noninterference [175; 176] within whp and shp.

Proving Noninterference

Noninterference, also known as observational nondeterminism [177, Equation

6], amounts to proving that any two executions of the program with the

same low-sensitivity inputs must have the same low outputs. This can be

formalised by defining low(l) ≜ λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l) and proving

low(l) ⊆ whp JCK (low(l)). For example consider the program and the whp

annotations in Figure 5.4. The program satisfies NI since low(l) ⊆ λS : ∀σ1, σ2 ∈

S : σ1(h) > 0 ∧ σ2(h) > 0 =⇒ σ1(l) = σ2(l).
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=(( λS : ∀σ1, σ2 ∈ S : σ1(h) > 0 ∧ σ2(h) > 0

=⇒ σ1(l) = σ2(l)

(( λS : ∀σ1, σ2 ∈ (h > 0)(S) : σ1(l) = σ2(l)

assume h > 0

=(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

(( λS : ∀σ1, σ2 ∈ S : σ1(l + 1) = σ2(l + 1)

l := l + 1

(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

Figure 5.4: Proving noninterference via whp

By Theorem 5.6.1, we can prove NI via shp as well. In fact, start-

ing from the hyperprecondition low(l), we obtain that shp JCK (low(l)) =

λS : ∃S ′ : (∀σ1, σ2 ∈ S ′ : σ1(l + 1) = σ2(l + 1)) ∧ (h > 0)(S ′) = S from the

annotations in Figure 5.5, and hence shp JCK (low(l)) ⊆ low(l).

(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

assume h > 0

(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ (h > 0)(S′) = S

l := l + 1

(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l − 1) = σ2(l − 1)) ∧ (h > 0)(S′) = S

Figure 5.5: Proving noninterference via shp

Proving Generalized Noninterference

Generalized noninterference is a weaker property of NI: it permits two executions

of the program with identical low-sensitivity inputs to yield different low outputs,

provided that the discrepancy does not arise from their secret input. This

concept can be formally expressed by defining glow(l) ≜ λS : ∀σ1, σ2 ∈ S : ∃σ ∈
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S : σ(h) = σ1(h) ∧ σ(l) = σ2(l), where σ denotes a potential third execution

sharing the same secret input as σ1 but producing the same low output as

σ2. GNI can be proved by checking low(l) ⊆ whp JCK (glow(l)). For example

consider the program and the whp annotations in Figure 5.6. The program

satisfies GNI since low(l) ⊆ λS : ∀σ1, σ2 ∈ {σ [y/α] | σ ∈ S} : ∃σ ∈ x{σ [y/α] |

σ ∈ S} : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h).

=(( λS : ∀σ1, σ2 ∈ {σ [y/α] | σ ∈ S} :

∃σ ∈ {σ [y/α] | σ ∈ S} : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h)

(( λS : ∀σ1, σ2 ∈ ∃α S [y/α] :

∃σ ∈ ∃α S [y/α] : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h)

y := nondet()

(( λS : ∀σ1, σ2 ∈ S : ∃σ ∈ S : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h)

l := y + h

(( λS : ∀σ1, σ2 ∈ S : ∃σ ∈ S : σ(h) = σ1(h) ∧ σ(l) = σ2(l)

Figure 5.6: Proving generalized noninterference (GNI) via whp

By Theorem 5.6.1, we can prove GNI via shp as well. In fact, start-

ing from the hyperprecondition low(l), we obtain that shp JCK (low(l)) =

λS : ∃S ′ : (∀σ1, σ2 ∈ S ′ : σ1(l) = σ2(l)) ∧ ∃α,β(S ′ [y/α] [l/β]) ∧ l = y + h = S

from the annotations in Figure 5.7, and hence shp JCK (low(l)) ⊆ glow(l).

(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

y := nondet()

(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ ∃α(S
′ [y/α]) = S

l := y + h

(( λS : ∃S′′ : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ ∃α(S
′ [y/α]) = S′′

∧ ∃α(S
′′ [l/α] ∧ l = y + h) = S
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=(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l))

∧ (∃α,β(S
′ [y/α] [l/β]) ∧ l = y + h) = S

Figure 5.7: Proving generalized noninterference (GNI) via shp

5.8.2 Disproving Hyperproperties

As pointed in Section 5.2, evaluating whether a program satisfies a specific

hyperproperty necessitates proving two HHL triples. For instance, when tackling

noninterference, one must attempt to establish both |=hh { low(l) } Cni { low(l) }

and |=hh {Q } Cni {¬low(l) } (for some Q ⇒ low(l)). In this section, we

illustrate the advantage of our calculus by disproving NI and GNI.

Disproving Noninterference

Disproving NI amounts to proving low(l) ̸⊆ whp JCK (low(l)), which is true

for the program in Figure 5.8. For example, take S = {σ1, σ2} such that

σ1(l) = σ2(l) = 0 and σ1(h) = 1 ̸= σ2(h) = 2. Clearly S ∈ low(l) but

S ̸∈ whp JCK (low(l)).

=(( λS : ∀σ1, σ2 ∈ S : σ1(h) > 0 ∧ σ2(h) > 0 =⇒ σ1(l + h) = σ2(l + h)

(( λS : ∀σ1, σ2 ∈ (h > 0)(S) : σ1(l + h) = σ2(l + h)

assume h > 0

(( λS : ∀σ1, σ2 ∈ S : σ1(l + h) = σ2(l + h)

l := l + h

(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

Figure 5.8: Disproving noninterference (NI) via whp

Via shp, one can reach similar conclusions. In fact, consider shp JCK (low(l))

in Figure 5.9. The program does not satisfy NI since shp JCK (low(l)) ̸⊆ low(l).

For example, take S = {σ1, σ2} such that σ1(l) = 1, σ2(l) = 2 and σ1(h) =

1, σ2(h) = 2. Clearly S ∈ shp JCK (low(l)) but S ̸∈ low(l).
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(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

assume h > 0

(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ (h > 0)(S′) = S

l := l + h

(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l − h) = σ2(l − h)) ∧ (h > 0)(S′) = S

Figure 5.9: Disproving noninterference (NI) via shp

Disproving Generalized Noninterference

Disproving GNI amounts to prove low(l) ̸⊆ whp JCK (glow(l)), which is true

for the program in Figure 5.10. For example, take S = {σ1, σ2} such that

σ1(l) = σ2(l) = 0 and σ1(h) = 0 ̸= σ2(h) = 100. Clearly S ∈ low(l) but

S ̸∈ whp JCK (glow(l)).

(( λS : ∀σ1, σ2 ∈ A = {σ [y/α] | σ ∈ S, α ∈ [0, 10]} :

∃σ ∈ A : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h)

y := nondet()

(( λS : ∀σ1, σ2 ∈ A = {σ | σ ∈ S ∧ σ(y) ∈ [0, 10]} :

∃σ ∈ A : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h)

assume 0 ≤ y ≤ 10

(( λS : ∀σ1, σ2 ∈ S : ∃σ ∈ S : σ(h) = σ1(h) ∧ σ(y + h) = σ2(y + h)

l := y + h

(( λS : ∀σ1, σ2 ∈ S : ∃σ ∈ S : σ(h) = σ1(h) ∧ σ(l) = σ2(l)

Figure 5.10: Disproving generalized noninterference (GNI) via whp

Via shp, one can reach similar conclusions. In fact, consider shp JCK (low(l))

in Figure 5.11. The program does not satisfy GNI since shp JCK (low(l)) ̸⊆

glow(l). For example, take S = {σi, σ′
i | 0 ≤ i ≤ 10} such that σi(l) =
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i, σ′
i(l) = i+ 100 and σi(h) = 0, σ′

i(h) = 100. Clearly S ∈ shp JCK (glow(l)) but

S ̸∈ low(l).

(( λS : ∀σ1, σ2 ∈ S : σ1(l) = σ2(l)

y := nondet()

(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ ∃α(S
′ [y/α]) = S

assume 0 ≤ y ≤ 10

(( λS : ∃S′′ : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ ∃α(S
′ [y/α]) = S′′

∧ (S′′ ∧ 0 ≤ y ≤ 10) = S

=(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ ∃0≤α≤10(S
′ [y/α]) = S

l := y + h

(( λS : ∃S′′ : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l)) ∧ ∃0≤α≤10(S
′ [y/α]) = S′′

∧ ∃α(S
′′ [l/α] ∧ l = y + h) = S

=(( λS : ∃S′ : (∀σ1, σ2 ∈ S′ : σ1(l) = σ2(l))

∧ (∃0≤α≤10,β(S
′ [y/α] [l/β]) ∧ l = y + h) = S

Figure 5.11: Disproving generalized noninterference (GNI) via shp

5.8.3 Quantitative reasoning

In this section, we demonstrate how whp enables quantitative reasoning.

Quantitative Information Flow

Consider the program Cqif in Figure 5.12. Similarly to [17, Section 8.1], we

want to infer what is the maximum initial value that the secret variable h can

have, by observing a final value l′ for the low-sensitive variable l. By using whp,

it is sufficient to consider the hyperpostquantity ffl′ = λf :
b
τ ([l = l′]⊙ f)(τ).

Indeed, whp JCqifK (ffl′) (h) tells, what is the maximum value of sp JCqifK (h) (τ)

among those final states τ where the value l′ has been observed. Since we know

from [17] that sp JCqifK (f) (τ) produces the maximum initial value of h, we

have that whp JCqifK (ffl′) (h) correctly yields the maximum initial value of h.
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For example, whp JCqifK (ff80) (h) = 7, meaning that if we observe 80 as the

value of l, we know that initially h would have been at most 7.

(( λf : ⋎σ (
[
99 = l′

]
⊙ [h > 7] ⋎

[
80 = l′

]
⊙ [h ≤ 7])(σ) ⊙ f(σ)

if ( h > 7 ) { (( λf : ⋎ τ (
[
99 = l′

]
⊙ f)(τ )

l := 99

} else { (( λf : ⋎τ (
[
80 = l′

]
⊙ f)(τ )

l := 80

}

(( λf :
j

τ

(
[
l = l′

]
⊙ f)(τ )

Figure 5.12: Computing quantitative information flow

We conclude by remarking that the main advantage of whp over sp in

this setting is that we can reuse whp JCqifK (ffl′) to infer any computation of

sp JCqifK (f) for any quantity f we are interested in. With sp, we would need to

repeat the computation for each quantity we are interested in reasoning about.

Variance

We show how to compute the variance of a random variable using whp. Let’s

consider the following gaming scenario: a player flips a fair coin continuously

until a head appears. To assess the variance in the number of flips required to

conclude the game, we model this scenario with the program in Figure 5.13.

((
⊕
n∈N

E[(1 + n)2] ⊙ 0.5n+1 −
(⊕
n∈N

E[1 + n] ⊙ 0.5n+1
)2

x := 1

((
⊕
n∈N

E[(x + n)2] ⊙ 0.5n+1 −
(⊕
n∈N

E[x + n] ⊙ 0.5n+1
)2

(x := x+ 1)⟨
1
2
, 1
2
⟩

(( E[x2] − E[x]2
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(( Cov[x, x]

Figure 5.13: Computing the variance of a random variable

We leverage Example 5.6.4 to compute whp
r
x := x+ 1⟨ 1

2
, 1
2
⟩
z

(Cov[x, x]) com-

positionally. We first compute whp
r
x := x+ 1⟨ 1

2
, 1
2
⟩
z

(E[x2]) via subsequent

Kleene’s iterates, obtaining:

W 0
0.5(E[x2]⊙ 0.5) = E[x2]⊙ 0.5

W 1
0.5(E[x2]⊙ 0.5) = whp Jx := x+ 1K

(
E[x2]⊙ 0.5

)
⊙ 0.5

= E[(x+ 1)2]⊙ 0.52

W 2
0.5(E[x2]⊙ 0.5) = E[(x+ 2)2]⊙ 0.53

...

W n
0.5(E[x2]⊙ 0.5) = E[(x+ n)2]⊙ 0.5n+1

This leads to:

whp
r
x := x+ 1⟨ 1

2
, 1
2
⟩
z (

E[x2]
)

=
⊕
n∈N

W n
0.5(E[x2]⊙ 0.5)

=
⊕
n∈N

E[(x+ n)2]⊙ 0.5n+1

Now we compute whp
r
x := x+ 1⟨ 1

2
, 1
2
⟩
z

(E[x]), again via subsequent

Kleene’s iterates obtaining:

W 0
0.5(E[x]⊙ 0.5) = E[x]⊙ 0.5

W 1
0.5(E[x]⊙ 0.5) = whp Jx := x+ 1K (E[x]⊙ 0.5)⊙ 0.5 = E[x+ 1]⊙ 0.52

W 2
0.5(E[x]⊙ 0.5) = E[x+ 2]⊙ 0.53

...
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W n
0.5(E[x]⊙ 0.5) = E[x+ n]⊙ 0.5n+1

This leads to:

whp
r
x := x+ 1⟨ 1

2
, 1
2
⟩
z (

E[x]2
)

=
(⊕
n∈N

W n
0.5(E[x]⊙ 0.5)

)2
=
(⊕
n∈N

E[x+ n]⊙ 0.5n+1
)2

whp
r
x := x+ 1⟨ 1

2
, 1
2
⟩
z (

E[x2]− E[x]2
)

=
⊕
n∈N

W n
0.5(E[x2]⊙ 0.5)−

(⊕
n∈N

W n
0.5(E[x]⊙ 0.5)

)2
=
⊕
n∈N

E[(x+ n)2]⊙ 0.5n+1 −
(⊕
n∈N

E[x+ n]⊙ 0.5n+1
)2

Finally, we take as input any probability distribution µ and compute the

variance via:

whp JCK (Cov[x, x]) (µ)

=
(⊕
n∈N

E[(1 + n)2]⊙ 0.5n+1 −
(⊕
n∈N

E[1 + n]⊙ 0.5n+1
)2)

(µ)

=
∑

(1 + n)2 · 0.5n+1 − (
∑

(1 + n) · 0.5n+1)2 = 6− 4 = 2 .

We contend that employing whp offers the advantage of mechanization and

compositional computation without necessitating specialized knowledge of

probability theory.

5.8.4 Conditional expected values

You decide to play a coin-toss game where winning yields 1, and losing results

in a loss of 5. You plan ahead by adding specially crafted fake coins to your

pocket that guarantee a win when tossed. In addition, you ensure you have
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some genuine fair coins to display to your opponent. How many coins must be

in your pocket (at least) to have a non-negative expected return?

(( [c = 0] · E[1] + [c ̸= 0] · (
1

2
E[−5] +

1

2
E[1])

if ( c = 0 ) {

(( E[1]

x := 1

(( E[x]

} else {

((
1

2
E[−5] +

1

2
E[1]

{x := −5 }
[

1

2

]
{x := 1 }

(( E[x]

}

(( E[x]

With an input boolean variable c we represent whether we have a fair or a

fake coin. We represent the game with the simple program C above and

compute whp JCK (E[x]) which yields the expected return for a given input

distribution. We observe that the shape of the input distribution must be

µ = n−1
n
· 1c=0 + 1

n
· 1c=1 and solve: whp JCK (E[x]) (µ) ≥ 0, leading to:

whp JCK (E[x])

(
n− 1

n
· 1c=0 +

1

n
· 1c=1

)
≥ 0(

[c = 0] · E[1] + [c ̸= 0] ·
(

1

2
E[−5] +

1

2
E[1]

))(
n− 1

n
· 1c=0 +

1

n
· 1c=1

)
≥ 0

([c = 0] · E[1])

(
n− 1

n
· 1c=0 +

1

n
· 1c=1

)
+

(
[c ̸= 0] ·

(
1

2
E[−5] +

1

2
E[1]

))(
n− 1

n
· 1c=0 +

1

n
· 1c=1

)
≥ 0

n− 1

n
− 2

n
≥ 0
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n− 3

n
≥ 0

n ≥ 3

The result obtained implies that you need at least 3 coins in your pocket (at

least two fake coins and one fair coin) to guarantee a non-negative expected

return in this coin-toss game.

5.8.5 Automation

Unsurprisingly, our whp calculus (in its full generality) cannot be fully au-

tomated, since we generalize existing undecidable calculi, expressing both

termination and reachability properties for a Turing-complete computational

model—both of which are known to be undecidable [106; 57].

For this reason, we have proposed a fully theoretical framework, providing

a holistic view of different program logics and serving as a foundation for

future tools to automate quantitative proofs. This approach is common in

foundational program logic research such as Hoare Logic, Probabilistic PDL,

Incorrectness Logic, Hyper Hoare Logic, and Outcome Logic.

Nevertheless, we believe that our calculi are at least syntactically mechaniz-

able. Accordingly, we plan to investigate an expressive “assertion” language for

hyperquantities, such as the one proposed by Batz et al. [102] for quantitative

reasoning about probabilistic programs. This would allow us to prove relative

completeness in the sense of Cook [107], i.e., decidability modulo checking

whether gg ⪯ ff holds, where gg, ff may contain suprema and infima. A similar

result (decidability modulo checking a logical implication) is well known for

classical predicate transformer and Hoare Logic [107]. Once such a relatively

complete language is found, we expect it will be possible to fully automate

whp reasoning for syntactic fragments of the programming and the assertion

language.
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5.9 Related Work

Relational program logics

Relational Hoare Logics were initially introduced by Benton [65]. Subsequently,

several extensions emerged, including to reason about probabilistic programs

via couplings [178]. Later, Maillard et al. [179], proposed a general framework

for developing relational program logics with effects based on Dijkstra Monads

[180]. While effective, this framework is limited to 2-properties and thus does

not apply to, e.g., monotonicity and transitivity, which are properties of more

than two executions.

Sousa and Dillig [181]; D’Osualdo et al. [182] introduced logics for k-safety

properties, but they cannot prove liveness. Dickerson et al. [183] introduced the

first logic tailored for ∀∗∃∗-hyperproperties, enabling, among others, proof and

disproof of k-safety properties. Nonetheless, it has limited under-approximation

capabilities: e.g., it does not suport incorrectness à la O’Hearn [6], and cannot

disprove triples within the same logic. For instance, it cannot disprove GNI, a

task which can only be completed by—to the best of our knowledge—HHL, OL,

and our framework.

Unified Program Logics

Similar to Outcome Logic (OL) [19; 20] and Weighted Programming [24], our

calculus utilizes semirings to capture branch weights. This approach enables

the development of a weakest-pre style calculus for Outcome Logic. While OL is

relatively complete [74], the derivations are not always straightforward. Weakest

hyper pre can be used to mechanically derive OL triples with the weakest

precondition for a given postcondition. Weakest hyper pre also subsumes Hyper

Hoare Logic [73], which is similar to OL, but specialized to nondeterministic

programs.

Our approach surpasses Weighted Programming by facilitating reasoning

about multiple outcomes. Our calculus also supports quantitative reasoning,

demonstrating its versatility by encompassing various existing quantitative wp
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instances through the adaptation of hyperquantities.

Predicate Transformers

These were first introduced by Dijkstra [1]; Dijkstra and Scholten [64], who

created propositional weakest pre- and strongest postcondition calculi. Kozen

[13]; McIver and Morgan [14] lifted these to a quantitative setting, introducing

Probabilistic Propositional Dynamic Logic and weakest preexpectations for

computing expected values over probabilistic programs. Many variants of

weakest preexpectation now exist [16; 96]. We build on this line of work by

extending these predicate transformers to hyperproperties. This gives us the

flexibility to express a broader range of quantitative properties, as shown in

Section 5.8.

Hyper Predicate Transformers

The notion of Hyper Collecting Semantics [184; 185] is similar to our Strongest

Hyper Postcondition in that it can prove valid Hyper Hoare Triples. However,

it is not complete, as it does not provide the most precise hyper postcondition

and is limited to non-quantitative properties.

5.10 Conclusion

Recent years have seen a focus on logics for proving properties other than

classical partial correctness. E.g., program security is a hyperproperty, and

incorrectness must witness a faulty execution.

Recent work on Outcome Logic [19; 74; 20] and Hyper Hoare Logic [73]

has shown that all of these properties can be captured via a single proof system.

In this chapter, we build upon those logics, but approach the problem using

quantitative predicate transformers. This has allowed us to create a single

calculus that can be used to prove, but also disprove, a variety of correctness

properties. In addition, it can be used to derive advanced quantitative properties

for programs too, such as variance in probabilistic programs.

The predicate transformer approach has two key benefits. First, it provides

a calculus to mechanically derive specifications. Second, it finds the most
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precise pre, so as to remove guesswork around obtaining a precondition in the

aforementioned logics. As we have demonstrated, this brings about new ways

of proving—and disproving—hyperproperties for a variety of program types.



Chapter 6

Conclusions & Future Work

This thesis has provided a holistic view of strongest-postcondition-style calcu-

lus and weakest-precondition-style calculus for quantitative program analysis,

progressively elevating the reasoning to a more general setting by making the

calculi parametrized to a class of semirings and to hyperproperties.

The primary goal of our research was to develop a quantitative strongest-

post calculus for probabilistic programs, which we achieved in Chapter 4

(Definition 4.4.1). This achievement is validated by the numerous dualities we

established between wp and sp. Building on this foundation, we identified an

opportunity to extend our framework even further. Specifically, we aimed to

create a calculus that could compute the initial expected value of a quantity

before program execution, given final state information—complementing the

existing weakest precondition calculus (Definition 4.3.1) that computes final

expected values from initial states.

This extension required more sophisticated transformers capable of han-

dling probability distributions rather than individual states. In fact, by ob-

serving a single final state without further information, it is neither possible

nor meaningful to compute the initial expected value of a quantity. This led

to our development of quantitative hyper transformers in Chapter 5 (Defi-

nitions 5.3.3, 5.4.3, and 5.5.1), which successfully address this challenge by

computing expected values bidirectionally across program execution.

The complexity of the rules for these hyper transformers, particularly for
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shp and slhp, increased significantly compared to our weighted calculi. This

increased complexity stems from the inherent challenge of reversing program

semantics through forward transformers. Despite this complexity, we believe

that the calculi developed in this thesis are a significant step forward in the

comprehension of predicate transformers.

For most chapters in this thesis, individual conclusions and directions

for future work have already been provided. Rather than repeating those

conclusions here, we will focus on drawing a broader picture and outlining

several promising directions for future research that emerge from the themes

explored throughout this thesis.

The Intensional Approach

In this thesis, we have adopted an extensional approach to develop our calculi,

focusing on semantic assertions to concentrate on the key mathematical prop-

erties of the objects studied in our framework. This approach is commonly

followed by quantitative predicate transformer calculi [42; 13; 14; 16; 96; 24],

as well as by program logics such as [73; 19; 74]. While the extensional ap-

proach often yields elegant formalisms, it is unsuitable for developing practical

verification tools, which ultimately rely on some syntax.

Intensional approaches, on the other hand, rely on the actual assertion lan-

guage syntax used to reason about program verification. The main complexity

when reasoning about syntactic assertions is to preserve expressiveness, ensuring

that the assertion language is sufficiently expressive to represent the properties

of interest. This, in conjunction with the soundness and completeness of the

assertion language, is a challenging problem that requires careful analysis [186].

For example, most probabilistic program verification techniques either take the

extensional approach or do not aim for completeness.

Relative completeness of Hoare logic was shown by Cook [107]. Winskel

[187] and Loeckx et al. [188] proved the expressiveness of first-order arithmetic

for Dijkstra’s weakest precondition calculus. For separation logic [118], ex-
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pressiveness was demonstrated by Tatsuta et al. [189, 190], almost a decade

after the logic was originally developed. For loop-free probabilistic programs

and restricted postconditions, den Hartog and de Vink [191] proved relative

completeness, leaving the expressiveness for loops as an open problem that has

been solved only recently by Batz et al. [102].

We believe that the intensional approach is a promising direction for fu-

ture research, as it can bridge the gap between the theoretical elegance of

extensional approaches and the practicality of verification tools. In particular,

we believe that developing an expressive and complete assertion language for

our quantitative calculi is an open problem. Our weighted calculi (Chapter 4)

support non-deterministic choices (even unbounded non-deterministic assign-

ment!), which are not supported by Batz et al. [102]. Our hyperproperty calculi

(Chapter 5) are even more expressive, and while some attempts to derive simpler

syntactic rules have been put forward by Dardinier and Müller [73, Section 4],

the problem of relative completeness when reasoning about syntactic assertions

remains open.

Compositional Program Analysis

In our work, we have developed a compositional approach to program analysis,

where the analysis of a composite program is derived from the analysis of its

components. This approach is particularly useful for modular verification, where

the verification of a program is divided into smaller, more manageable parts.

However, our compositional approach is currently limited to the analysis of

programs that are composed sequentially or through non-deterministic choices,

and is restricted to an intraprocedural setting.

A promising future direction is to extend our compositional approach

to an interprocedural setting, as seen in works like [60; 192; 193]. In such

a setting, the results of the analysis of smaller procedures can be evaluated,

potentially in a distributed manner, and stored for on-demand and incremental

querying [194].
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Additionally, we believe that combining backward and forward reasoning

may help to scale software verification. Similar to how tree pruning optimizes

the search process in various algorithms, particularly in decision trees and search

trees, we believe that weakest-precondition-style reasoning can be used to prune

the search space of strongest-postcondition-style reasoning (and vice versa).

Each calculus has unique advantages depending on the scenario: backward

reasoning is fundamental when the postcondition is known, for example, when

it represents some safety property or an incorrectness specification. On the

other hand, forward reasoning is useful to determine what is reachable, for

example, to determine if a bug is exploitable from the user. By combining

these two approaches, we can leverage the strengths of each to develop a

more efficient verification framework. Practically, this means using backward

reasoning to eliminate infeasible paths early and forward reasoning to explore

feasible paths more effectively. To the best of our knowledge, this has not been

explored in the context of program verification; the closest work is [71], which

is the first program logic that combines correctness and incorrectness (over and

underapproximation), but does not consider forward and backward reasoning

together. Another dimension that can be combined to achieve better precision

is dynamic and static analysis, as seen in [195].

Simpler Fragments of Quantitative Program Analysis

In Section 5.6.4, we have studied a class of hyperquantities—namely additive

hyperquantities—that enable simpler rules for our calculi. Unfortunately, the

same class does not work for our forward hyper transformers, shp and slhp.

An open problem is to identify fragments that facilitate forward reasoning

as well. By doing so, we could automatically develop specialized techniques

for reasoning about these fragments. For example, in the realm of computing

initial expected values, this could aid in solving problems such as Bayesian

reasoning.

In general, while our hyper transformers are expressive, they are also
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complex, particularly our loop rules. It is still unclear whether simpler rules

that can be defined as convergence of Kleene’s iterates exist. If not, identify-

ing simpler fragments that are still expressive enough to capture interesting

properties remains a promising direction for future research.

Higher-order Predicate Transformers

While hyperproperties offer a powerful framework for reasoning about complex

program properties, there is potential to extend beyond their current scope.

Future research could explore frameworks that encompass hyperhyperpredicates.

In fact, the primary impediment that prevents common regular languages

from accommodating demonic total correctness and angelic partial correctness,

as defined in [16], stems from their use of the set of reachable states sp as

semantics. This choice results in a loss of the ability to discern whether an

initial state terminates or not, as the reachable states are merely aggregated.

An open problem would be to extend our framework to consider unbounded

hypernproperties of type P(. . . (P(Σ))). Exploring the theoretical limits of

hyperproperties is not only a theoretical challenge but also a practical one.

By pushing the boundaries of what hyperproperties can express, we may gain

deeper insights into existing program logics and uncover new patterns and

properties that can be leveraged to develop more efficient verification tools.
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Appendix

A.1 Proofs of Section 3.3

A.1.1 Proof of Soundness for wp, Theorem 3.3.1

Theorem 3.3.1 (Characterization of wp). For all programs C and initial states

σ,

wp JCK (f) (σ) =
j

τ∈JCK(σ)

f(τ) .

Proof. We prove Theorem 3.3.1 by induction on the structure of C. For the

induction base, we have the atomic statements:

The effectless program skip:

We have

wp JskipK (f) (σ) = f(σ)

= sup
τ∈{σ}

f(τ)

= sup
τ∈JskipK(σ)

f(τ) .
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The assignment x := e:

We have

wp Jx := eK (f) (σ) = f [x/e] (σ)

= f(σ [x/σ(e)])

= sup
τ∈{σ[x/σ(e)]}

f(τ)

= sup
τ∈Jx:=eK(σ)

f(τ) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

wp JC1 # C2K (f) (σ) = wp JC1K (wp JC2K (f)) (σ)

= sup
τ ′∈JC1K(σ)

wp JC2K (f) (τ ′) (by I.H. on C1)

= sup
τ ′∈JC1K(σ)∧τ∈JC2K(τ ′)

f(τ) (by I.H. on C2)

= sup
τ∈JC2K(JC1K(σ))

f(τ)

= sup
τ∈JC1 # C2K(σ)

f(τ) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

wp Jif (φ ) {C1 } else {C2 }K (f) (σ)
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=
(
[φ] ⋏ wp JC1K (f) ⋎ [¬φ] ⋏ wp JC2K (f)

)
(σ)

=

wp JC1K (f) (σ) if σ |= φ

wp JC2K (f) (σ) otherwise

=

supτ∈JC1K(σ) f(τ) if σ |= φ

supτ∈JC2K(σ) f(τ) otherwise

(by I.H. on C1, C2)

= sup
τ∈(JC1K◦JφK)(σ)∪(JC2K◦J¬φK)(σ)

f(τ)

= sup
τ∈Jif (φ ) {C1 } else {C2 }K(σ)

f(τ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

wp J{C1 } □ {C2 }K (f) (σ) =
(
wp JC1K (f) ⋎ wp JC2K (f)

)
(σ)

= sup
τ∈JC1K(σ)

f(τ) ⋎ sup
τ∈JC2K(σ)

f(τ)

(by I.H. on C1, C2)

= sup
τ∈JC1K(σ)∪JC2K(σ)

f(τ)

= sup
τ∈J{C1 }□{C2 }K(σ)

f(τ) .

The loop while (φ ) {C }:

Let

Φf (X) = [¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (X) ,

be the wp-characteristic functions of the loop while (φ ) {C } with respect to

postanticipation f and

FS(X) = S ∪ (JCK ◦ JφK)X ,
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be the collecting semantics characteristic functions of the loop while (φ ) {C }

with respect to any input S ∈ P(Conf). We now prove by induction on n that,

for all σ ∈ Σ

Φn
f (−∞)(σ) = sup

τ∈J¬φKFn
{σ}(∅)

f(τ) . (A.1)

For the induction base n = 0, consider the following:

Φ0
f (−∞)(σ) = −∞

= sup ∅

= sup
τ∈∅

f(τ)

= sup
τ∈J¬φKF 0

{σ}(∅)
f(τ) .

As induction hypothesis, we have for arbitrary but fixed n and all σ ∈ Σ,

Φn
f (−∞)(σ) = sup

τ∈J¬φKFn
{σ}(∅)

f(τ) .

For the induction step n −→ n+ 1, consider the following:

Φn+1
f (−∞)(σ)

= ([¬φ] ⋏ f) (σ) ⋎
(
[φ] ⋏ wp JCK

(
Φn
f (−∞)

))
(σ)

= ([¬φ] ⋏ f)(σ) ⋎ sup
τ∈JCK(σ)∧σ |= φ

Φn
f (−∞)(τ) (by I.H. on C)

=

supτ∈JCK(σ) Φn
f (−∞)(τ) if σ |= φ

f(σ) otherwise

=

supτ∈JCK(σ) supτ ′∈J¬φK Fn
{τ}(∅)

f(τ ′) if σ |= φ

f(σ) otherwise

(by I.H. on n)

=

supτ ′∈J¬φK Fn
JCK(σ)

(∅) f(τ ′) if σ |= φ

f(σ) otherwise
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=

supτ ′∈J¬φK Fn
(JCK◦[φ])(σ)

(∅) f(τ ′) if σ |= φ

f(σ) otherwise

= sup
τ ′∈J¬φK({σ}∪Fn

(JCK◦JφK)(σ)
(∅))

f(τ ′)

= sup
τ∈J¬φKFn+1

{σ} (∅)
f(τ) .

This concludes the induction on n. Now we have:

wp Jwhile (φ ) {C }K (f) (σ) =
(
lfp X : [¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (X)

)
(σ)

= sup
n∈N

Φn
f (−∞)(σ)

(By Kleene’s fixpoint theorem)

= sup
n∈N

sup
τ∈J¬φKFn

{σ}(∅)
f(τ) (by Equation A.1)

= sup
τ∈∪n∈N(J¬φKFn

{σ}(∅))
f(τ)

= sup
τ∈J¬φK(∪n∈NFn

{σ}(∅))
f(τ)

(by continuity of J¬φK)

= sup
τ∈J¬φK(lfp X : {σ}∪(JCK◦JφK)X)

f(τ)

(by Kleene’s fixpoint theorem)

= sup
τ∈Jwhile(φ ){C }K(σ)

f(τ) ,

and this concludes the proof.

A.1.2 Proof of Soundness for wlp, Theorem 3.3.2

Theorem 3.3.2 (Characterization of wlp). For all programs C and states

σ ∈ Σ,

wlpJCK (f) (σ) =
k

τ∈JCK(σ)

f(τ) .

Proof. We prove Theorem 3.3.2 by induction on the structure of C. For the
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induction base, we have the atomic statements:

The effectless program skip:

We have

wlpJskipK (f) (σ) = f(σ)

= inf
τ∈{σ}

f(τ)

= inf
τ∈JskipK(σ)

f(τ) .

The assignment x := e:

We have

wlpJx := eK (f) (σ) = f [x/e] (σ)

= f(σ [x/σ(e)])

= inf
τ∈{σ[x/σ(e)]}

f(τ)

= inf
τ∈Jx:=eK(σ)

f(τ) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

wlpJC1 # C2K (f) (σ) = wlpJC1K (wlpJC2K (f)) (σ)

= inf
τ ′∈JC1K(σ)

wlpJC2K (f) (τ ′) (by I.H. on C1)

= inf
τ ′∈JC1K(σ)∧τ∈JC2K(τ ′)

f(τ) (by I.H. on C2)
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= inf
τ∈JC2K(JC1K(σ))

f(τ)

= inf
τ∈JC1 # C2K(σ)

f(τ) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

wlpJif (φ ) {C1 } else {C2 }K (f) (σ)

=
(
[φ] ⋏ wlpJC1K (f) ⋎ [¬φ] ⋏ wlpJC2K (f)

)
(σ)

=

wlpJC1K (f) (σ) if σ |= φ

wlpJC2K (f) (σ) otherwise

=

infτ∈JC1K(σ) f(τ) if σ |= φ

infτ∈JC2K(σ) f(τ) otherwise

(by I.H. on C1, C2)

= inf
τ∈(JC1K◦JφK)(σ)∪(JC2K◦J¬φK)(σ)

f(τ)

= inf
τ∈Jif (φ ) {C1 } else {C2 }K(σ)

f(τ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

wlpJ{C1 } □ {C2 }K (f) (σ) =
(
wlpJC1K (f) ⋏ wlpJC2K (f)

)
(σ)

= inf
τ∈JC1K(σ)

f(τ) ⋏ inf
τ∈JC2K(σ)

f(τ)

(by I.H. on C1, C2)

= inf
τ∈JC1K(σ)∪JC2K(σ)

f(τ)

= inf
τ∈J{C1 }□{C2 }K(σ)

f(τ) .
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The loop while (φ ) {C }:

Let

Φf (X) = [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (X) ,

be the wlp-characteristic functions of the loop while (φ ) {C } with respect to

postanticipation f and

FS(X) = S ∪ (JCK ◦ JφK)X ,

be the collecting semantics characteristic functions of the loop while (φ ) {C }

with respect to any input S ∈ P(Conf). We now prove by induction on n that,

for all σ ∈ Σ

Φn
f (+∞)(σ) = inf

τ∈J¬φKFn
{σ}(∅)

f(τ) . (A.2)

For the induction base n = 0, consider the following:

Φ0
f (+∞)(σ) = +∞

= inf ∅

= inf
τ∈∅

f(τ)

= inf
τ∈J¬φKF 0

{σ}(∅)
f(τ) .

As induction hypothesis, we have for arbitrary but fixed n and all σ ∈ Σ,

Φn
f (+∞)(σ) = inf

τ∈J¬φKFn
{σ}(∅)

f(τ) .

For the induction step n −→ n+ 1, consider the following:

Φn+1
f (+∞)(σ)

= ([¬φ] ⋏ f) (σ) ⋎
(
[φ] ⋏ wlpJCK

(
Φn
f (+∞)

))
(σ)

= ([¬φ] ⋏ f)(σ) ⋎ [φ] (σ) ⋏ inf
τ∈JCK(σ)

Φn
f (+∞)(τ) (by I.H. on C)
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=

infτ∈JCK(σ) Φn
f (+∞)(τ) if σ |= φ

f(σ) otherwise

=

infτ∈JCK(σ) infτ ′∈J¬φK Fn
{τ}(∅) f(τ ′) if σ |= φ

f(σ) otherwise

(by I.H. on n)

=

infτ ′∈J¬φK Fn
JCK(σ)

(∅) f(τ ′) if σ |= φ

f(σ) otherwise

=

infτ ′∈J¬φK Fn
(JCK◦[φ])(σ)

(∅) f(τ ′) if σ |= φ

f(σ) otherwise

= inf
τ ′∈J¬φK({σ}∪Fn

(JCK◦JφK)(σ)
(∅))

f(τ ′)

= inf
τ∈J¬φKFn+1

{σ} (∅)
f(τ) .

This concludes the induction on n. Now we have:

wlpJwhile (φ ) {C }K (f) (σ) =
(
gfp X : [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (X)

)
(σ)

= inf
n∈N

Φn
f (+∞)(σ)

(by Kleene’s fixpoint theorem)

= inf
n∈N

inf
τ∈J¬φKFn

{σ}(∅)
f(τ) (by Equation A.2)

= inf
τ∈∪n∈N(J¬φKFn

{σ}(∅))
f(τ)

= inf
τ∈J¬φK(∪n∈NFn

{σ}(∅))
f(τ)

(by continuity of J¬φK)

= inf
τ∈J¬φK(lfp X : {σ}∪(JCK◦JφK)X)

f(τ)

(by Kleene’s fixpoint theorem)

= inf
τ∈Jwhile(φ ){C }K(σ)

f(τ) ,

and this concludes the proof.
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A.2 Proofs of Section 3.4

A.2.1 Proof of Soundness for sp, Theorem 3.4.1

Theorem 3.4.1 (Characterization of sp). For all programs C and final states

τ ,

sp JCK (f) (τ) =
j

σ with τ∈JCK(σ)

f(σ) .

Proof. We prove Theorem 3.4.1 by induction on the structure of C. For the

induction base, we have the atomic statements:

The effectless program skip:

We have

sp JskipK (f) (τ) = f(τ)

= sup
σ∈Σ,τ∈{σ}

f(σ)

= sup
σ∈Σ,τ∈JskipK(σ)

f(σ) .

The assignment x := e:

We have

sp Jx := eK (f) (τ) = ( Sα : [x = e [x/α]] ⋏ f [x/α])(τ)

= (sup
α

[x = e [x/α]] ⋏ f [x/α])(τ)

= sup
α : τ(x)=τ(e[x/α])

(f [x/α])(τ)

= sup
α : τ(x)=τ(e[x/α])

f(τ [x/α])

= sup
α : τ [x/α][x/τ(e[x/α])]=τ

f(τ [x/α])

= sup
α : τ [x/α][x/τ [x/α](e)]=τ

f(τ [x/α])
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= sup
σ∈Σ,σ[x/σ(e)]=τ

f(σ) (By taking σ = τ [x/α])

= sup
σ∈Σ,τ∈{σ[x/σ(e)]}

f(σ)

= sup
σ∈Σ,τ∈Jx:=eK(σ)

f(σ) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

sp JC2 # C1K (f) (τ) = sp JC2K (sp JC1K (f)) (τ)

= sup
σ′∈Σ,τ∈JC2K(σ′)

sp JC1K (f) (σ′) (by I.H. on C2)

= sup
σ∈Σ,τ∈JC2K(σ′)∧σ′∈JC1K(σ)

f(σ) (by I.H. on C2)

= sup
σ∈Σ,τ∈JC2K(JC1K(σ))

f(σ)

= sup
σ∈Σ,τ∈JC1 # C2K(σ)

f(σ) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

sp Jif (φ ) {C1 } else {C2 }K (f) (τ)

=
(
sp JC1K ([φ] ⋏ f) ⋎ sp JC2K ([¬φ] ⋏ f)

)
(τ)

= sup
σ∈Σ,τ∈JC1K(σ)

([φ] ⋏ f)(σ) ⋎ sup
σ∈Σ,τ∈JC2K(σ)

([¬φ] ⋏ f)(σ)

(by I.H. on C1, C2)
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= sup
σ∈Σ,τ∈(JC1K◦JφK)(σ)

f(σ) ⋎ sup
σ∈Σ,τ∈(JC2K◦J¬φK)(σ)

f(σ)

= sup
σ∈Σ,τ∈(JC1K◦JφK)(σ)∪(JC2K◦J¬φK)(σ)

f(σ)

= sup
σ∈Σ,τ∈Jif (φ ) {C1 } else {C2 }K(σ)

f(σ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

sp J{C1 } □ {C2 }K (f) (τ) =
(
sp JC1K (f) ⋎ sp JC2K (f)

)
(τ)

= sup
σ∈Σ,τ∈JC1K(σ)

f(σ) ⋎ sup
σ∈Σ,τ∈JC2K(σ)

f(σ)

(by I.H. on C1, C2)

= sup
σ∈Σ,τ∈JC1K(σ)∪JC2K(σ)

f(σ)

= sup
σ∈Σ,τ∈J{C1 }□{C2 }K(σ)

f(σ) .

The loop while (φ ) {C }:

Let

Ψf (X) = f ⋎ sp JCK ([φ] ⋏X) ,

be the sp-characteristic functions of the loop while (φ ) {C } with respect to

preanticipation f and

FS(X) = S ∪ (JCK ◦ JφK)X ,

be the collecting semantics characteristic functions of the loop while (φ ) {C }

with respect to any input S ∈ P(Conf). We now prove by induction on n that,

for all τ ∈ Σ

Ψn
f (−∞)(τ) = sup

σ∈Σ,τ∈Fn
{σ}(∅)

f(σ) . (A.3)
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For the induction base n = 0, consider the following:

Ψ0
f (−∞)(τ) = −∞

= sup ∅

= sup
σ∈Σ,τ∈∅

f(σ)

= sup
σ∈Σ,τ∈F 0

{σ}(∅)
f(σ) .

As induction hypothesis, we have for arbitrary but fixed n and all τ ∈ Σ

Ψn
f (−∞)(τ) = sup

σ∈Σ,τ∈Fn
{σ}(∅)

f(σ) .

For the induction step n −→ n+ 1, consider the following:

Ψn+1
f (−∞)(τ)

=
(
f ⋎ sp JCK

(
[φ] ⋏ Ψn

f (−∞)
))

(τ)

= f(τ) ⋎ sup
σ∈Σ,τ∈JCK(σ)

(
[φ] ⋏ Ψn

f (−∞)
)
(σ) (by I.H. on C)

= f(τ) ⋎ sup
σ∈Σ,τ∈JCK(σ)

sup
σ′∈Σ,σ∈JφKFn

{σ′}(∅)
f(σ′) (by I.H. on n)

= f(τ) ⋎ sup
σ′∈Σ,τ∈(JCK◦JφK)Fn

{σ′}(∅)
f(σ′)

= sup
σ′∈Σ,τ∈(JCK◦JφK)Fn

{σ′}(∅)∪{σ
′}
f(σ′)

= sup
σ∈Σ,τ∈Fn+1

{σ} (∅)
f(σ) .

This concludes the induction on n. Now we have:

sp Jwhile (φ ) {C }K (f) (τ) =
(
[¬φ] ⋏

(
lfp X : f ⋎ sp JCK ([φ] ⋏X)

))
(τ)

=
(
[¬φ] ⋏ sup

n∈N
Ψn
f (−∞)

)
(τ)

(by Kleene’s fixpoint theorem)
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= sup
n∈N

(
[¬φ] ⋏ Ψn

f (−∞)
)
(τ)

(by continuity of λX : [¬φ] ⋏X)

= sup
n∈N

sup
σ∈Σ,τ∈J¬φKFn

{σ}(∅)
f(σ) (by Equation A.3)

= sup
σ∈Σ,τ∈∪n∈N(J¬φKFn

{σ}(∅))
f(σ)

= sup
σ∈Σ,τ∈J¬φK(∪n∈NFn

{σ}(∅))
f(σ)

(by continuity of J¬φK)

= sup
σ∈Σ,τ∈J¬φK(lfp X : {σ}∪(JCK◦JφK)X)

f(σ)

(by Kleene’s fixpoint theorem)

= sup
σ∈Σ,τ∈Jwhile(φ ){C }K(σ)

f(σ) ,

and this concludes the proof.

A.2.2 Proof of Soundness for slp, Theorem 3.4.2

Theorem 3.4.2 (Characterization of slp). For all programs C and states τ ∈ Σ,

slpJCK (f) (τ) =
k

σ with τ∈JCKσ

f(σ)

Proof. We prove Theorem 3.4.2 by induction on the structure of C. For the

induction base, we have the atomic statements:

The effectless program skip:

We have

slpJskipK (f) (τ) = f(τ)

= inf
σ∈Σ,τ∈{σ}

f(σ)

= inf
σ∈Σ,τ∈JskipK(σ)

f(σ) .
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The assignment x := e:

We have

slpJx := eK (f) (τ) = ( Jα : [x ̸= e [x/α]] ⋎ f [x/α])(τ)

= (inf
α

[x ̸= e [x/α]] ⋎ f [x/α])(τ)

= inf
α : τ(x)=τ(e[x/α])

(f [x/α])(τ)

= inf
α : τ(x)=τ(e[x/α])

f(τ [x/α])

= inf
α : τ [x/α][x/τ(e[x/α])]=τ

f(τ [x/α])

= inf
α : τ [x/α][x/τ [x/α](e)]=τ

f(τ [x/α])

= inf
σ∈Σ,σ[x/σ(e)]=τ

f(σ) (By taking σ = τ [x/α])

= inf
σ∈Σ,τ∈{σ[x/σ(e)]}

f(σ)

= inf
σ∈Σ,τ∈Jx:=eK(σ)

f(σ) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

slpJC2 # C1K (f) (τ) = slpJC2K (slpJC1K (f)) (τ)

= inf
σ′∈Σ,τ∈JC2K(σ′)

slpJC1K (f) (σ′) (by I.H. on C2)

= inf
σ∈Σ,τ∈JC2K(σ′)∧σ′∈JC1K(σ)

f(σ) (by I.H. on C2)

= inf
σ∈Σ,τ∈JC2K(JC1K(σ))

f(σ)



A.2. Proofs of Section 3.4 258

= inf
σ∈Σ,τ∈JC1 # C2K(σ)

f(σ) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

slpJif (φ ) {C1 } else {C2 }K (f) (τ)

=
(
slpJC1K ([¬φ] ⋎ f) ⋏ slpJC2K ([φ] ⋎ f)

)
(τ)

= inf
σ∈Σ,τ∈JC1K(σ)

([¬φ] ⋎ f)(σ) ⋏ inf
σ∈Σ,τ∈JC2K(σ)

([φ] ⋎ f)(σ)

(by I.H. on C1, C2)

= inf
σ∈Σ,τ∈(JC1K◦JφK)(σ)

f(σ) ⋏ inf
σ∈Σ,τ∈(JC2K◦J¬φK)(σ)

f(σ)

= inf
σ∈Σ,τ∈(JC1K◦JφK)(σ)∪(JC2K◦J¬φK)(σ)

f(σ)

= inf
σ∈Σ,τ∈Jif (φ ) {C1 } else {C2 }K(σ)

f(σ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

slpJ{C1 } □ {C2 }K (f) (τ) =
(
slpJC1K (f) ⋏ slpJC2K (f)

)
(τ)

= inf
σ∈Σ,τ∈JC1K(σ)

f(σ) ⋏ inf
σ∈Σ,τ∈JC2K(σ)

f(σ)

(by I.H. on C1, C2)

= inf
σ∈Σ,τ∈JC1K(σ)∪JC2K(σ)

f(σ)

= inf
σ∈Σ,τ∈J{C1 }□{C2 }K(σ)

f(σ) .

The loop while (φ ) {C }:

Let

Ψf (X) = f ⋏ slpJCK ([¬φ] ⋎X) ,
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be the slp-characteristic functions of the loop while (φ ) {C } with respect to

preanticipation f and

FS(X) = S ∪ (JCK ◦ JφK)X ,

be the collecting semantics characteristic functions of the loop while (φ ) {C }

with respect to any input S ∈ P(Conf). We now prove by induction on n that,

for all τ ∈ Σ

Ψn
f (+∞)(τ) = inf

σ∈Σ,τ∈Fn
{σ}(∅)

f(σ) . (A.4)

For the induction base n = 0, consider the following:

Ψ0
f (+∞)(τ) = +∞

= inf ∅

= inf
σ∈Σ,τ∈∅

f(σ)

= inf
σ∈Σ,τ∈F 0

{σ}(∅)
f(σ) .

As induction hypothesis, we have for arbitrary but fixed n and all τ ∈ Σ

Ψn
f (+∞)(τ) = inf

σ∈Σ,τ∈Fn
{σ}(∅)

f(σ) .

For the induction step n −→ n+ 1, consider the following:

Ψn+1
f (+∞)(τ)

=
(
f ⋏ slpJCK

(
[¬φ] ⋎ Ψn

f (+∞)
))

(τ)

= f(τ) ⋏ inf
σ∈Σ,τ∈JCK(σ)

(
[¬φ] ⋎ Ψn

f (+∞)
)
(σ) (by I.H. on C)

= f(τ) ⋏ inf
σ∈Σ,τ∈JCK(σ)

inf
σ′∈Σ,σ∈JφKFn

{σ′}(∅)
f(σ′) (by I.H. on n)

= f(τ) ⋏ inf
σ′∈Σ,τ∈(JCK◦JφK)Fn

{σ′}(∅)
f(σ′)

= inf
σ′∈Σ,τ∈(JCK◦JφK)Fn

{σ′}(∅)∪{σ
′}
f(σ′)
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= inf
σ∈Σ,τ∈Fn+1

{σ} (∅)
f(σ) .

This concludes the induction on n. Now we have:

slpJwhile (φ ) {C }K (f) (τ) =
(
[φ] ⋎

(
gfp X : f ⋏ slpJCK ([¬φ] ⋎X)

))
(τ)

=
(
[φ] ⋎ inf

n∈N
Ψn
f (+∞)

)
(τ)

(by Kleene’s fixpoint theorem)

= inf
n∈N

(
[φ] ⋎ Ψn

f (+∞)
)
(τ)

(by co-continuity of λX : [φ] ⋎X)

= inf
n∈N

inf
σ∈Σ,τ∈J¬φKFn

{σ}(∅)
f(σ) (by Equation A.4)

= inf
σ∈Σ,τ∈∪n∈N(J¬φKFn

{σ}(∅))
f(σ)

= inf
σ∈Σ,τ∈J¬φK(∪n∈NFn

{σ}(∅))
f(σ)

(by continuity of J¬φK)

= inf
σ∈Σ,τ∈J¬φK(lfp X : {σ}∪(JCK◦JφK)X)

f(σ)

(by Kleene’s fixpoint theorem)

= inf
σ∈Σ,τ∈Jwhile(φ ){C }K(σ)

f(σ) ,

and this concludes the proof.

A.3 Proofs of Section 3.5

A.3.1 Proof of Healthiness Properties of Quantitative

Transformers, Theorem 3.5.1

Theorem 3.5.1 (Healthiness Properties of Quantitative Transformers). For

all programs C, all quantitive transformers are monotonic, i.e.

f ⪯ g implies ttt JCK (f) ⪯ ttt JCK (g) , for ttt ∈ {wp, wlp, sp, slp} .
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The non-liberal transformers wpJCK and spJCK satisfy the following prop-

erties:

1. Quantitative universal disjunctiveness: For any set of quantities S ⊆ A,

wp JCK (⋎S) = ⋎ wp JCK (S) and sp JCK (⋎S) = ⋎ sp JCK (S) .

2. Strictness: wp JCK (−∞) = −∞ and sp JCK (−∞) = −∞ .

The liberal transformers wlpJCK and slpJCK satisfy the following properties:

3. Quantitative universal conjunctiveness: For any set of quantities S ⊆ A,

wlpJCK (⋏S) = ⋏ wlpJCK (S) and slpJCK (⋏S) = ⋏ slpJCK (S) .

4. Costrictness: wlpJCK (+∞) = +∞ and slpJCK (+∞) = +∞ .

Proof. Each of the properties is proven individually below.

• Quantitative universal disjunctiveness: Theorems A.3.1 and A.3.2;

• Quantitative universal conjunctiveness: Theorems A.3.3 and A.3.4;

• Strictness: Corollaries A.3.4.1 and A.3.4.2;

• Costrictness: Corollaries A.3.4.3 and A.3.4.4;

• Monotonicity: Corollary A.3.4.5

Theorem A.3.1 (Quantitative universal disjunctiveness of wp). For any set

of quantities ⊆ A,

wp JCK (supS) = sup wp JCK (S) .

Proof. We prove Theorem A.3.1 by induction on the structure of C. For the

induction base, we have the atomic statements:
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The effectless program skip:

We have

wp JskipK (supS) = supS

= sup
g∈S

g

= sup
g∈S

wp JskipK (g)

= sup wp JskipK (S) .

The assignment x := e:

We have

wp Jx := eK (supS) = (supS) [x/e]

=

(
λσ : sup

g∈S
g(σ)

)
[x/e]

=

(
λσ : sup

g∈S
g [x/e] (σ)

)
= sup

g∈S
g [x/e]

= sup
g∈S

wp Jx := eK (g)

= sup wp Jx := eK (S) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, Theorem A.3.1 holds.

We proceed with the inductive step on the composite statements.
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The sequential composition C1 # C2:

We have

wp JC1 # C2K (supS) = wp JC1K (wp JC2K (supS))

= wp JC1K (sup wp JC2K (S)) (by I.H. on C2)

= sup wp JC1K (wp JC2K (S)) (by I.H. on C1)

= sup wp JC1 # C2K (S) .

The nondeterministic choice {C1 } □ {C2 }:

We have

wp J{C1 } □ {C2 }K (supS) = wp JC1K (f) ⋎ wp JC2K (f)

= sup
g∈S

wp JC1K (g) ⋎ sup
g∈S

wp JC2K (g)

(by I.H. on C1, C2)

= sup
g∈S

wp JC1K (g) ⋎ wp JC2K (g)

= sup
g∈S

wp J{C1 } □ {C2 }K (g) .

The conditional branching if (φ ) {C1 } else {C2 }:

Here we reason in the reverse direction from the cases before. We have

wp Jif (φ ) {C1 } else {C2 }K (supS)

= [φ] ⋏ wp JC1K (supS) ⋎ [¬φ] ⋏ wp JC2K (supS)

= [φ] ⋏ sup wp JC1K (S) ⋎ [¬φ] ⋏ sup wp JC2K (S)

(by I.H. on C1 and C2)

= sup
(
[φ] ⋏ wp JC1K (S)

)
⋎ sup

(
[¬φ] ⋏ wp JC2K (S)

)
= sup

(
[φ] ⋏ wp JC1K (S) ⋎ [¬φ] ⋏ wp JC2K (S)

)
= sup wp Jif (φ ) {C1 } else {C2 }K (S) .
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The loop while (φ ) {C }:

Let

Φf (X) = [¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (X) ,

be the wp-characteristic function of the loop while (φ ) {C } with respect to

any postanticipation f ∈ A. Observe that Φf(X) is continuous by inductive

hypothesis on C and by composition of continuous functions. We now prove

by induction on n that

Φn
supS(−∞) = sup

g∈S
Φn
g (−∞) . (A.5)

For the induction base n = 0, consider the following:

Φ0
supS(−∞) = −∞

= sup
g∈S
−∞

= sup
g∈S

Φ0
g(−∞) .

As induction hypothesis, we have for arbitrary but fixed n

Φn
supS(−∞) = sup

g∈S
Φn
g (−∞) .

For the induction step n −→ n+ 1, consider the following:

Φn+1
supS(−∞)

= [¬φ] ⋏ supS ⋎ [φ] ⋏ wp JCK
(
Φn

supS(−∞)
)

= [¬φ] ⋏ supS ⋎ [φ] ⋏ wp JCK
(

sup
g∈S

Φn
g (−∞)

)
(by I.H. on n)

= [¬φ] ⋏ supS ⋎ [φ] ⋏ sup
g∈S

wp JCK
(
Φn
g (−∞)

)
(by I.H. on C)

= sup
g∈S

([¬φ] ⋏ g) ⋎ sup
g∈S

(
[φ] ⋏ wp JCK

(
Φn
g (−∞)

))
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= sup
g∈S

(
[¬φ] ⋏ g ⋎ [φ] ⋏ wp JCK

(
Φn
g (−∞)

))
= sup

g∈S
Φn+1
g (−∞) .

This concludes the induction on n. Now we have:

wp Jwhile (φ ) {C }K (supS) = lfp X : [¬φ] ⋏ supS ⋎ [φ] ⋏ wp JCK (X)

= sup
n∈N

Φn
supS(−∞)

(by Kleene’s fixpoint theorem)

= sup
n∈N

sup
g∈S

Φn
g (−∞) (by Equation A.5)

= sup
g∈S

sup
n∈N

Φn
g (−∞)

= sup
g∈S

wp Jwhile (φ ) {C }K (g)

(by Kleene’s fixpoint theorem)

= supwp Jwhile (φ ) {C }K (S) ,

and this concludes the proof.

Theorem A.3.2 (Quantitative universal disjunctiveness of sp). For any set of

quantities ⊆ A,

sp JCK (supS) = sup sp JCK (S) .

Proof. We prove Theorem A.3.2 by induction on the structure of C. For the

induction base, we have the atomic statements:

The effectless program skip:

We have

sp JskipK (supS) = supS
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= sup
g∈S

g

= sup
g∈S

sp JskipK (g)

= sup sp JskipK (S) .

The assignment x := e:

We have

sp Jx := eK (supS) = Sα : [x = e [x/α]] ⋏ (supS) [x/α]

= Sα : [x = e [x/α]] ⋏

(
λσ : sup

g∈S
g(σ)

)
[x/α]

= Sα : [x = e [x/α]] ⋏

(
λσ : sup

g∈S
g [x/α] (σ)

)
= Sα : [x = e [x/α]] ⋏ sup

g∈S
g [x/α]

= Sα : sup
g∈S

[x = e [x/α]] ⋏ g [x/α]

= sup
g∈S

Sα : [x = e [x/α]] ⋏ g [x/α]

= sup
g∈S

sp Jx := eK (g)

= sup sp Jx := eK (S) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, Theorem A.3.2 holds.

We proceed with the inductive step on the composite statements.

The sequential composition C1 # C2:

We have

sp JC1 # C2K (supS) = sp JC2K (sp JC1K (supS))
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= sp JC2K (sup sp JC1K (S)) (by I.H. on C1)

= sup sp JC2K (sp JC1K (S)) (by I.H. on C2)

= sup sp JC1 # C2K (S) .

The nondeterministic choice {C1 } □ {C2 }:

We have

sp J{C1 } □ {C2 }K (supS) = sp JC1K (f) ⋎ sp JC2K (f)

= sup
g∈S

sp JC1K (g) ⋎ sup
g∈S

sp JC2K (g)

(by I.H. on C1, C2)

= sup
g∈S

sp JC1K (g) ⋎ sp JC2K (g)

= sup
g∈S

sp J{C1 } □ {C2 }K (g) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

sp Jif (φ ) {C1 } else {C2 }K (supS)

= sp JC1K ([φ] ⋏ supS) ⋎ sp JC2K ([¬φ] ⋏ supS)

= sp JC1K (sup [φ] ⋏ S) ⋎ sp JC2K (sup [¬φ] ⋏ S)

= sup sp JC1K ([φ] ⋏ S) ⋎ sup sp JC2K ([¬φ] ⋏ S)

(by I.H. on C1 and C2)

= sup
(
sp JC1K ([φ] ⋏ S) ⋎ sp JC2K ([¬φ] ⋏ S)

)
= sup sp Jif (φ ) {C1 } else {C2 }K (S) .
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The loop while (φ ) {C }:

Let

Ψf (X) = f ⋎ sp JCK ([φ] ⋏X) ,

be the sp-characteristic function of the loop while (φ ) {C } with respect to

any preanticipation f ∈ A. Observe that Ψf(X) is continuous by inductive

hypothesis on C and by composition of continuous functions. We now prove

by induction on n that

Ψn
supS(−∞) = sup

g∈S
Ψn
g (−∞) . (A.6)

For the induction base n = 0, consider the following:

Ψ0
supS(−∞) = −∞

= sup
g∈S
−∞

= sup
g∈S

Ψ0
g(−∞) .

As induction hypothesis, we have for arbitrary but fixed n

Ψn
supS(−∞) = sup

g∈S
Ψn
g (−∞) .

For the induction step n −→ n+ 1, consider the following:

Ψn+1
supS(−∞)

= supS ⋎ sp JCK
(
[φ] ⋏ Ψn

supS(−∞)
)

= supS ⋎ sp JCK
(

[φ] ⋏ sup
g∈S

Ψn
g (−∞)

)
(by I.H. on n)

= supS ⋎ sp JCK
(

sup
g∈S

[φ] ⋏ Ψn
g (−∞)

)
= supS ⋎ sup

g∈S
sp JCK

(
[φ] ⋏ Ψn

g (−∞)
)

(by I.H. on C)
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= sup
g∈S

g ⋎ sup
g∈S

sp JCK
(
[φ] ⋏ Ψn

g (−∞)
)

= sup
g∈S

(
g ⋎ sp JCK

(
[φ] ⋏ Ψn

g (−∞)
))

= sup
g∈S

Ψn+1
g (−∞) .

This concludes the induction on n. Now we have:

sp Jwhile (φ ) {C }K (supS) = [¬φ] ⋏
(
lfp X : supS ⋎ sp JCK ([φ] ⋏X)

)
= [¬φ] ⋏ sup

n∈N
Ψn

supS(−∞)

(by Kleene’s fixpoint theorem)

= [¬φ] ⋏ sup
n∈N

sup
g∈S

Ψn
g (−∞)

(by Equation A.6)

= [¬φ] ⋏ sup
g∈S

sup
n∈N

Ψn
g (−∞)

= [¬φ] ⋏ sup
g∈S

sup
n∈N

Ψn
g (−∞)

= sup
g∈S

([¬φ] ⋏ sup
n∈N

Ψn
g (−∞))

= sup
g∈S

sp Jwhile (φ ) {C }K (g)

(by Kleene’s fixpoint theorem)

= sup sp Jwhile (φ ) {C }K (S) ,

and this concludes the proof.

Theorem A.3.3 (Quantitative universal conjunctiveness of wlp). For any set

of quantities ⊆ A,

wlpJCK (inf S) = inf wlpJCK (S) .

Proof. We prove Theorem A.3.3 by induction on the structure of C. For the

induction base, we have the atomic statements:
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The effectless program skip:

We have

wlpJskipK (inf S) = inf S

= inf
g∈S

g

= inf
g∈S

wlpJskipK (g)

= inf wlpJskipK (S) .

The assignment x := e:

We have

wlpJx := eK (inf S) = (inf S) [x/e]

=

(
λσ : inf

g∈S
g(σ)

)
[x/e]

=

(
λσ : inf

g∈S
g [x/e] (σ)

)
= inf

g∈S
g [x/e]

= inf
g∈S

wlpJx := eK (g)

= inf wlpJx := eK (S) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, Theorem A.3.3 holds.

We proceed with the inductive step on the composite statements.

The sequential composition C1 # C2:

We have

wlpJC1 # C2K (inf S) = wlpJC1K (wlpJC2K (inf S))
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= wlpJC1K (inf wlpJC2K (S)) (by I.H. on C2)

= inf wlpJC1K (wlpJC2K (S)) (by I.H. on C1)

= inf wlpJC1 # C2K (S) .

The nondeterministic choice {C1 } □ {C2 }:

We have

wlpJ{C1 } □ {C2 }K (inf S) = wlpJC1K (f) ⋏ wlpJC2K (f)

= inf
g∈S

wlpJC1K (g) ⋏ inf
g∈S

wlpJC2K (g)

(by I.H. on C1, C2)

= inf
g∈S

wlpJC1K (g) ⋏ wlpJC2K (g)

= inf
g∈S

wlpJ{C1 } □ {C2 }K (g) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

wlpJif (φ ) {C1 } else {C2 }K (inf S)

= [φ] ⋏ wlpJC1K (inf S) ⋎ [¬φ] ⋏ wlpJC2K (inf S)

= [φ] ⋏ inf wlpJC1K (S) ⋎ [¬φ] ⋏ inf wlpJC2K (S)

(by I.H. on C1 and C2)

= inf
(
[φ] ⋏ wlpJC1K (S)

)
⋎ inf

(
[¬φ] ⋏ wlpJC2K (S)

)
= λσ :

inf
(
wlpJC1K (S)

)
if σ |= φ

inf
(
wlpJC2K (S)

)
otherwise

= inf
(
[φ] ⋏ wlpJC1K (S) ⋎ [¬φ] ⋏ wlpJC2K (S)

)
= inf wlpJif (φ ) {C1 } else {C2 }K (S) .
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The loop while (φ ) {C }:

Let

Φf (X) = [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (X) ,

be the wlp-characteristic function of the loop while (φ ) {C } with respect to

any postanticipation f ∈ A. Observe that Φf(X) is continuous by inductive

hypothesis on C and by composition of continuous functions. We now prove

by induction on n that

Φn
inf S(+∞) = inf

g∈S
Φn
g (+∞) . (A.7)

For the induction base n = 0, consider the following:

Φ0
inf S(+∞) = +∞

= inf
g∈S

+∞

= inf
g∈S

Φ0
g(+∞) .

As induction hypothesis, we have for arbitrary but fixed n

Φn
inf S(+∞) = inf

g∈S
Φn
g (+∞) .

For the induction step n −→ n+ 1, consider the following:

Φn+1
inf S(+∞)

= [¬φ] ⋏ inf S ⋎ [φ] ⋏ wlpJCK (Φn
inf S(+∞))

= [¬φ] ⋏ inf S ⋎ [φ] ⋏ wlpJCK
(

inf
g∈S

Φn
g (+∞)

)
(by I.H. on n)

= [¬φ] ⋏ inf S ⋎ [φ] ⋏ inf
g∈S

wlpJCK
(
Φn
g (+∞)

)
(by I.H. on C)

= inf
g∈S

([¬φ] ⋏ g) ⋎ inf
g∈S

(
[φ] ⋏ wlpJCK

(
Φn
g (+∞)

))
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= λσ :

infg∈S
(
wlpJCK

(
Φn
g (+∞)

))
if σ |= φ

infg∈S (g) otherwise

= inf
g∈S

(
[¬φ] ⋏ g ⋎ [φ] ⋏ wlpJCK

(
Φn
g (+∞)

))
= inf

g∈S
Φn+1
g (+∞) .

This concludes the induction on n. Now we have:

wlpJwhile (φ ) {C }K (inf S) = gfp X : [¬φ] ⋏ inf S ⋎ [φ] ⋏ wlpJCK (X)

= inf
n∈N

Φn
inf S(+∞)

(by Kleene’s fixpoint theorem)

= inf
n∈N

inf
g∈S

Φn
g (+∞) (by Equation A.7)

= inf
g∈S

inf
n∈N

Φn
g (+∞)

= inf
g∈S

wlpJwhile (φ ) {C }K (g)

(by Kleene’s fixpoint theorem)

= inf wlpJwhile (φ ) {C }K (S) ,

and this concludes the proof.

Theorem A.3.4 (Quantitative universal conjunctiveness of slp). For any set

of quantities ⊆ A,

slpJCK (inf S) = inf slpJCK (S) .

Proof. We prove Theorem A.3.4 by induction on the structure of C. For the

induction base, we have the atomic statements:



A.3. Proofs of Section 3.5 274

The effectless program skip:

We have

slpJskipK (inf S) = inf S

= inf
g∈S

g

= inf
g∈S

slpJskipK (g)

= inf slpJskipK (S) .

The assignment x := e:

We have

slpJx := eK (inf S) = Jα : [x ̸= e [x/α]] ⋎ (inf S) [x/α]

= Jα : [x ̸= e [x/α]] ⋎

(
λσ : inf

g∈S
g(σ)

)
[x/α]

= Jα : [x ̸= e [x/α]] ⋎

(
λσ : inf

g∈S
g [x/α] (σ)

)
= Jα : [x ̸= e [x/α]] ⋎ inf

g∈S
g [x/α]

= Jα : inf
g∈S

[x ̸= e [x/α]] ⋎ g [x/α]

= inf
g∈S

Jα : [x ̸= e [x/α]] ⋎ g [x/α]

= inf
g∈S

slpJx := eK (g)

= inf slpJx := eK (S) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, Theorem A.3.4 holds.

We proceed with the inductive step on the composite statements.
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The sequential composition C1 # C2:

We have

slpJC1 # C2K (inf S) = slpJC2K (slpJC1K (inf S))

= slpJC2K (inf slpJC1K (S)) (by I.H. on C1)

= inf slpJC2K (slpJC1K (S)) (by I.H. on C2)

= inf slpJC1 # C2K (S) .

The conditional branching if (φ ) {C1 } else {C2 }:

We have

slpJif (φ ) {C1 } else {C2 }K (inf S)

= slpJC1K ([¬φ] ⋎ inf S) ⋏ slpJC2K ([φ] ⋎ inf S)

= slpJC1K (inf [¬φ] ⋎ S) ⋏ slpJC2K (inf [φ] ⋎ S)

= inf slpJC1K ([¬φ] ⋎ S) ⋏ inf slpJC2K ([φ] ⋎ S) (by I.H. on C1 and C2)

= inf
(
slpJC1K ([¬φ] ⋎ S) ⋏ slpJC2K ([φ] [¬φ]S)

)
= inf slpJif (φ ) {C1 } else {C2 }K (S) .

The nondeterministic choice {C1 } □ {C2 }:

We have

slpJ{C1 } □ {C2 }K (inf S) = slpJC1K (f) ⋏ slpJC2K (f)

= inf
g∈S

slpJC1K (g) ⋏ inf
g∈S

slpJC2K (g)

(by I.H. on C1, C2)

= inf
g∈S

slpJC1K (g) ⋏ slpJC2K (g)

= inf
g∈S

slpJ{C1 } □ {C2 }K (g) .
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The loop while (φ ) {C }:

Let

Ψf (X) = f ⋏ slpJCK ([¬φ] ⋎X) ,

be the slp-characteristic function of the loop while (φ ) {C } with respect to

any preanticipation f ∈ A. Observe that Ψf(X) is continuous by inductive

hypothesis on C and by composition of continuous functions. We now prove

by induction on n that

Ψn
inf S(+∞) = inf

g∈S
Ψn
g (+∞) . (A.8)

For the induction base n = 0, consider the following:

Ψ0
inf S(+∞) = +∞

= inf
g∈S

+∞

= inf
g∈S

Ψ0
g(+∞) .

As induction hypothesis, we have for arbitrary but fixed n

Ψn
inf S(+∞) = inf

g∈S
Ψn
g (+∞) .

For the induction step n −→ n+ 1, consider the following:

Ψn+1
inf S(+∞)

= inf S ⋏ slpJCK ([¬φ] ⋎ Ψn
inf S(+∞))

= inf S ⋏ slpJCK
(

[¬φ] ⋎ inf
g∈S

Ψn
g (+∞)

)
(by I.H. on n)

= inf S ⋏ slpJCK
(

inf
g∈S

[¬φ] ⋎ Ψn
g (+∞)

)
= inf S ⋏ inf

g∈S
slpJCK

(
[¬φ] ⋎ Ψn

g (+∞)
)

(by I.H. on C)
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= inf
g∈S

g ⋏ inf
g∈S

slpJCK
(
[¬φ] ⋎ Ψn

g (+∞)
)

= inf
g∈S

(
g ⋏ slpJCK

(
[¬φ] ⋎ Ψn

g (+∞)
))

= inf
g∈S

Ψn+1
g (+∞) .

This concludes the induction on n. Now we have:

slpJwhile (φ ) {C }K (inf S) = [φ] ⋎
(
gfp X : inf S ⋏ slpJCK ([¬φ] ⋎X)

)
= [φ] ⋎ inf

n∈N
Ψn

inf S(+∞)

(by Kleene’s fixpoint theorem)

= [φ] ⋎ inf
n∈N

inf
g∈S

Ψn
g (+∞) (by Equation A.8)

= [φ] ⋎ inf
g∈S

inf
n∈N

Ψn
g (+∞)

= [φ] ⋎ inf
g∈S

inf
n∈N

Ψn
g (+∞)

= inf
g∈S

([φ] ⋎ inf
n∈N

Ψn
g (+∞))

= inf
g∈S

slpJwhile (φ ) {C }K (g)

(by Kleene’s fixpoint theorem)

= inf slpJwhile (φ ) {C }K (S) ,

and this concludes the proof.

Corollary A.3.4.1 (Strictness of wp). For all programs C, wpJCK is strict,

i.e.

wp JCK (−∞) = −∞ .

Proof.

wp JCK (−∞) = λσ : sup
τ∈JCK(σ)

−∞(τ) (by Theorem 3.3.1)
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= −∞ .

Corollary A.3.4.2 (Strictness of sp). For all programs C, spJCK is strict, i.e.

sp JCK (−∞) = −∞ .

Proof.

sp JCK (−∞) = λτ : sup
σ∈Σ,τ∈JCKσ

−∞(σ) (by Theorem 3.4.1)

= −∞ .

Corollary A.3.4.3 (Co-strictness of wlp). For all programs C, wpJCK is

co-strict, i.e.

wlpJCK (+∞) = +∞ .

Proof.

wlpJCK (+∞) = λσ : inf
τ∈JCK(σ)

+∞(τ) (by Theorem 3.3.2)

= +∞ .

Corollary A.3.4.4 (Co-strictness of slp). For all programs C, slpJCK is co-

strict, i.e.

slpJCK (+∞) = +∞ .
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Proof.

slpJCK (+∞) = λτ : inf
σ∈Σ,τ∈JCKσ

+∞(σ) (by Theorem 3.4.2)

= +∞ .

Corollary A.3.4.5 (Monotonicity of Quantitative Transformers). For all

programs C, f, g ∈ A, we have

f ⪯ g implies ttt JCK (f) ⪯ ttt JCK (g) , for ttt ∈ {wp, wlp, sp, slp}

Proof. Direct consequence of universal conjunctiveness and universal disjunc-

tiveness.

A.3.2 Proof of Linearity, Theorem 3.5.2

Theorem 3.5.2 (Linearity). For all programs C, wpJCK and spJCK are sub-

linear, and wlpJCK and slpJCK are superlinear, i.e. for all f, g ∈ A and non-

negative constants r ∈ R≥0,

wp JCK (r · f + g) ⪯ r · wp JCK (f) + wp JCK (g) ,

sp JCK (r · f + g) ⪯ r · sp JCK (f) + sp JCK (g) ,

r · wlpJCK (f) + wlpJCK (g) ⪯ wlpJCK (r · f + g) , and

r · slpJCK (f) + slpJCK (g) ⪯ slpJCK (r · f + g) .

Proof. For wp we have:

wp JCK (r · f + g)

= λσ : sup
τ∈JCKσ

(r · f + g)(τ) (by Theorem 3.3.1)

= λσ : sup
τ∈JCKσ

(
(r · f)(τ) + g(τ)

)
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⪯ λσ : sup
τ∈JCKσ

(r · f)(τ) + sup
τ∈JCKσ

g(τ)

= λσ : r · sup
τ∈JCKσ

f(τ) + sup
τ∈JCKσ

g(τ)

(sup(r · A) = r · supA for A ⊆ R, r ∈ R≥0)

= r · λσ : sup
τ∈JCKσ

f(τ) + λσ : sup
τ∈JCKσ

g(τ)

= r · wp JCK (f) + wp JCK (g) . (by Theorem 3.3.1)

For wp we have:

sp JCK (r · f + g)

= λτ : sup
σ∈Σ,τ∈JCKσ

(r · f + g)(σ) (by Theorem 3.4.1)

= λτ : sup
σ∈Σ,τ∈JCKσ

(
(r · f)(σ) + g(σ)

)
⪯ λτ : sup

σ∈Σ,τ∈JCKσ
(r · f)(σ) + sup

σ∈Σ,τ∈JCKσ
g(σ)

= λτ : r · sup
σ∈Σ,τ∈JCKσ

f(σ) + sup
σ∈Σ,τ∈JCKσ

g(σ)

(sup(r · A) = r · supA for A ⊆ R, r ∈ R≥0)

= r · λτ : sup
σ∈Σ,τ∈JCKσ

f(σ) + λτ : sup
σ∈Σ,τ∈JCKσ

g(σ)

= r · sp JCK (f) + sp JCK (g) . (by Theorem 3.4.1)

For wlp we have:

r · wlpJCK (f) + wlpJCK (g)

= r · λσ : inf
τ∈JCKσ

f(τ) + λσ : inf
τ∈JCKσ

g(τ) (by Theorem 3.3.2)

= λσ : r · inf
τ∈JCKσ

f(τ) + inf
τ∈JCKσ

g(τ)

= λσ : inf
τ∈JCKσ

(r · f)(τ) + inf
τ∈JCKσ

g(τ)

(inf(r · A) = r · inf A for A ⊆ R, r ∈ R≥0)

⪯ λσ : inf
τ∈JCKσ

(
(r · f)(τ) + g(τ)

)
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= λσ : inf
τ∈JCKσ

(r · f + g)(τ)

= wlpJCK (r · f + g) ; (by Theorem 3.3.2)

For slp we have:

r · slpJCK (f) + slpJCK (g)

= r · λτ : inf
σ∈Σ,τ∈JCKσ

f(σ) + λτ : inf
σ∈Σ,τ∈JCKσ

g(σ) (by Theorem 3.4.2)

= λτ : r · inf
σ∈Σ,τ∈JCKσ

f(σ) + inf
σ∈Σ,τ∈JCKσ

g(σ)

= λτ : inf
σ∈Σ,τ∈JCKσ

(r · f)(σ) + inf
σ∈Σ,τ∈JCKσ

g(σ)

(inf(r · A) = r · inf A for A ⊆ R, r ∈ R≥0)

⪯ λτ : inf
σ∈Σ,τ∈JCKσ

(
(r · f)(σ) + g(σ)

)
= λτ : inf

σ∈Σ,τ∈JCKσ
(r · f + g)(σ)

= slpJCK (r · f + g) . (by Theorem 3.4.2)

A.3.3 Proof of Embedding Classical into Quantitative

Transformers, Theorem 3.5.3

Theorem 3.5.3 (Embedding Classical into Quantitative Transformers). For

all deterministic programs C and predicates ψ, we have

wp JCK ([ψ]) = [wp JCK (ψ)] and wlpJCK ([ψ]) = [wlp JCK (ψ)] ,

and for all programs C and predicates ψ, we have

sp JCK ([ψ]) = [sp JCK (ψ)] and slpJCK ([ψ]) = [slpJCK (ψ)] .
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Proof. For wp we have:

wp JCK ([F ]) = λσ :

[F ] (τ) if JCK(σ) = {τ}

−∞ otherwise

(by Corollary 3.5.4.1)

= λσ :

+∞ if JCK(σ) = {τ} ∧ τ |= F

−∞ otherwise

= [wp JCK (F )] .

For wlp we have:

wlpJCK ([F ]) = λσ :

[F ] (τ) if JCK(σ) = {τ}

+∞ otherwise

(by Corollary 3.5.4.1)

= λσ :

−∞ if JCK(σ) = {τ} ∧ τ ̸|= F

+∞ otherwise

= [wlp JCK (F )] .

For sp we have:

sp JCK ([G]) = λτ : sup
σ∈Σ,τ∈JCKσ

[G] (σ) (by Theorem 3.4.1)

= λτ :

+∞ if ∃σ ∈ Σ, τ ∈ JCK(σ) ∧ σ |= G

−∞ otherwise

= [sp JCK (G)] ,

For slp we have:

slpJCK ([G]) = λτ : inf
σ∈Σ,τ∈JCKσ

[G] (σ) (by Theorem 3.4.2)

= λτ :

−∞ if ∃σ ∈ Σ, τ ∈ JCK(σ) ∧ σ ̸|= G

+∞ otherwise
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= λτ :

+∞ if ∀σ ∈ Σ, τ /∈ JCK(σ) ∨ σ |= G

−∞ otherwise

= λτ :

+∞ if ∀σ ∈ Σ, τ ∈ JCK(σ) =⇒ σ |= G

−∞ otherwise

= [slpJCK (ψ)] .

A.3.4 Proof of Liberal-Non-liberal Duality,

Theorem 3.5.4

Theorem 3.5.4 (Liberal–Non-liberal Duality). For any program C and quantity

f , we have

wp JCK (f) = − wlpJCK (−f) and sp JCK (f) = − slpJCK (−f) .

Proof. For wp and wlp we have:

wp JCK (f) = λσ : sup
τ∈JCKσ

f(τ) (by Theorem 3.3.1)

= λσ : − inf
τ∈JCKσ

−f(τ) (supA = − inf(−A))

= − wlpJCK (−f) .

For sp and slp we have:

sp JCK (g) = λτ : sup
σ∈Σ,τ∈JCKσ

g(σ) (by Theorem 3.4.1)

= λτ : − inf
σ∈Σ,τ∈JCKσ

−g(σ) (supA = − inf(−A))

= − slpJCK (−g) .
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A.4 Proofs of Section 3.6

A.4.1 Proof of Galois Connection between wlp and sp,

Theorem 3.6.1

Theorem 3.6.1 (Galois Connection between wlp and sp). For all C ∈ nGCL

and g, f ∈ A:

g ⪯ wlpJCK (f) iff sp JCK (g) ⪯ f .

Proof.

g ⪯ wlpJCK (f) ⇐⇒ ∀σ ∈ Σ: g(σ) ≤ wlpJCK (f) (σ)

⇐⇒ ∀σ ∈ Σ: g(σ) ≤ inf
τ∈JCK(σ)

f(τ) (by Theorem 3.3.2)

⇐⇒ ∀σ, τ ∈ Σ: τ ∈ JCK(σ) : g(σ) ≤ f(τ)

⇐⇒ ∀τ ∈ Σ: sup
σ∈Σ,τ∈JCK(σ)

g(σ) ≤ f(τ)

⇐⇒ ∀τ ∈ Σ: sp JCK (g) (τ) ≤ f(τ) (by Theorem 3.4.1)

⇐⇒ sp JCK (g) ⪯ f .

A.4.2 Proof of Galois Connection between wp and slp,

Theorem 3.6.2

Theorem 3.6.2 (Galois Connection between wp and slp). For all C ∈ nGCL

and g, f ∈ A:

wp JCK (f) ⪯ g iff f ⪯ slpJCK (g)
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Proof.

wp JCK (f) ⪯ g ⇐⇒ ∀σ ∈ Σ: wp JCK (f) (σ) ≤ g(σ)

⇐⇒ ∀σ ∈ Σ: sup
τ∈JCK(σ)

f(τ) ≤ g(σ) (by Theorem 3.3.1)

⇐⇒ ∀σ, τ ∈ Σ: τ ∈ JCK(σ) : f(τ) ≤ g(σ)

⇐⇒ ∀τ ∈ Σ: f(τ) ≤ inf
σ∈Σ,τ∈JCK(σ)

g(σ)

⇐⇒ ∀τ ∈ Σ: f(τ) ≤ slpJCK (g) (τ) (by Theorem 3.4.1)

⇐⇒ f ⪯ slpJCK (g) .

A.5 Proofs of Section 3.7

A.5.1 Proof of Induction Rules for Loops,

Theorem 3.7.1

Theorem 3.7.1 (Induction Rules for Loops). For any quantities i, f, g ∈ A,

boolean expression φ and program C, the following proof rules for loops are

valid:

g ⪯ i ⪯ [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (i)

g ⪯ wlpJwhile (φ ) {C }K (f)
while−wlp

g ⋎ sp JCK ([φ] ⋏ i) ⪯ i and [¬φ] ⋏ i ⪯ f

sp Jwhile (φ ) {C }K (g) ⪯ f
while−sp

[¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (i) ⪯ i ⪯ g

wp Jwhile (φ ) {C }K (f) ⪯ g
while−wp

i ⪯ g ⋏ slpJCK ([¬φ] ⋎ i) and f ⪯ [φ] ⋎ i

f ⪯ slpJwhile (φ ) {C }K (g)
while−slp

Proof. We prove each rule individually.
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For while−wlp we have:

i ⪯ [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (i) (Premise of the rule)

=⇒ i ⪯ gfp X : [¬φ] ⋏ f ⋎ [φ] ⋏ wlpJCK (X) (by Park’s Induction [94])

=⇒ i ⪯ wlpJwhile (φ ) {C }K (f) (by Definition 3.3.4)

=⇒ g ⪯ wlpJwhile (φ ) {C }K (f) (g ⪯ i and transitivity of ⪯ )

For while−sp we have:

g ⋎ sp JCK ([φ] ⋏ i) ⪯ i (Premise of the rule)

=⇒ lfp X : g ⋎ sp JCK ([φ] ⋏X) ⪯ i (by Park’s Induction [94])

=⇒ [¬φ] ⋏ lfp X : g ⋎ sp JCK ([φ] ⋏X) ⪯ [¬φ] ⋏ i

(by monotonicity of λX. [¬φ] ⋏X)

=⇒ sp Jwhile (φ ) {C }K (g) ⪯ [¬φ] ⋏ i (by Definition 3.4.1)

=⇒ sp Jwhile (φ ) {C }K (g) ⪯ f

([¬φ] ⋏ i ⪯ f and transitivity of ⪯ )

For while−wp we have:

[¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (i) ⪯ i (Premise of the rule)

=⇒ lfp X : [¬φ] ⋏ f ⋎ [φ] ⋏ wp JCK (X) ⪯ i (by Park’s Induction [94])

=⇒ wp Jwhile (φ ) {C }K (f) ⪯ i (by Definition 3.3.2)

=⇒ wp Jwhile (φ ) {C }K (f) ⪯ g (i ⪯ g and transitivity of ⪯ )

For while−slp we have:

i ⪯ g ⋏ slpJCK ([¬φ] ⋎ i) (Premise of the rule)

=⇒ i ⪯ gfp X : g ⋏ slpJCK ([¬φ] ⋎X) (by Park’s Induction [94])

=⇒ [φ] ⋎ i ⪯ [φ] ⋎ gfp X : g ⋏ slpJCK ([¬φ] ⋎X)

(by monotonicity of λX. [φ] ⋎X)
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=⇒ [φ] ⋎ i ⪯ slpJwhile (φ ) {C }K (g) (by Definition 3.4.2)

=⇒ f ⪯ slpJwhile (φ ) {C }K (g) (f ⪯ [φ] ⋎ i and transitivity of ⪯ )

A.5.2 Proof of Proposition 3.7.2

Proposition 3.7.2. The following proof rules for loops are valid:

sp JCK (f) ⪯ f

sp Jwhile (φ ) {C }K (f) = [¬φ] ⋏ f

f ⪯ slpJCK (f)

slpJwhile (φ ) {C }K (f) = [φ] ⋎ f

Proof. We prove each statement individually. Let spΨf and slpΨf be, respec-

tively, the sp–characteristic and slp–characteristic functions of while (φ ) {C }.

For sp we have:

[φ] ⋏ f ⪯ f

sp JCK ([φ] ⋏ f) ⪯ sp JCK (f) (by Monotonicity of sp)

sp JCK ([φ] ⋏ f) ⪯ f (by hypothesis and transitivity of ⪯ )

f ⋎ sp JCK ([φ] ⋏ f) ⪯ f (by Monotonicity of λX : f ⋎X)

spΨ2
f (−∞) ⪯ spΨf (−∞) (by Definition 3.4.1)

Hence, the Kleene’s iterates have converged immediately and the least fixpoint

is exactly:

lfp X : spΨf (X) = spΨf (−∞) = f ,

and thus we conclude:

sp Jwhile (φ ) {C }K (f) = [¬φ] ⋏ lfp X : spΨf (X) (by Definition 3.4.1)

= [¬φ] ⋏ f . (lfp X : spΨf (X) = f)
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For slp we have:

f ⪯ [¬φ] ⋎ f (†)

slpJCK (f) ⪯ slpJCK ([¬φ] ⋎ f) (by Monotonicity of slp)

f ⪯ slpJCK ([¬φ] ⋎ f) (by hypothesis and transitivity of ⪯ )

f ⪯ f ⋏ slpJCK ([¬φ] ⋎ f) (by Monotonicity of λX : f ⋏X)

slpΨf (+∞) ⪯ slpΨ2
f (+∞) (by Definition 3.4.2)

Hence, the Kleene’s iterates have converged immediately and the greatest

fixpoint is exactly:

gfp X : slpΨf (X) =slp Ψf (+∞) = f ,

and thus we conclude:

sp Jwhile (φ ) {C }K (f) = [φ] ⋎ gfp X : slpΨf (X) (by Definition 3.4.2)

= [φ] ⋎ f . (gfp X : slpΨf (X) = f)

A.6 Full calculations of Section 3.8

A.6.1 Full calculations of Example 3.8.1

Example A.6.1. The strongest post of

C = if (hi > 7 ) { lo := 99 } else { lo := 80 }

for the preanticipation hi = λσ : σ(hi) are:

sp Jif (hi > 7 ) { lo := 99 } else { lo := 80 }K (hi)

= sp Jlo := 99K ([hi > 7] ⋏ hi) ⋎ sp Jlo := 80K ([hi ≤ 7] ⋏ hi)
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= Sα : [lo = 99] ⋏ ([hi > 7] ⋏ hi) [lo/α] ⋎

Sα : [lo = 80] ⋏ ([hi ≤ 7] ⋏ hi) [lo/α]

= [lo = 99] ⋏ [hi > 7] ⋏ hi ⋎ [lo = 80] ⋏ [hi ≤ 7] ⋏ hi

and

slpJif (hi > 7 ) { lo := 99 } else { lo := 80 }K (hi)

= slpJlo := 99K ([hi ≤ 7] ⋎ hi) ⋏ slpJlo := 80K ([hi > 7] ⋎ hi)

=
(

Jα : [lo ̸= 99] ⋎ ([hi ≤ 7] ⋎ hi) [lo/α]
)

⋏
(

Jα : [lo ̸= 80] ⋎ ([hi > 7] ⋎ hi) [lo/α]
)

=
(
[lo ̸= 99] ⋎ [hi ≤ 7] ⋎ hi

)
⋏
(
[lo ̸= 80] ⋎ [hi > 7] ⋎ hi

)
.

A.6.2 Full calculations of Example 3.8.2

Example A.6.2. The strongest post of

C = hi := hi+ 5 # while ( lo < hi ) { lo := lo+ 1 }

for the preanticipation hi = λσ : σ(hi) are:

sp JCK (hi) = [lo ≥ hi] ⋏ (hi− 5)

slpJCK (hi) = [lo < hi] ⋎ (hi− 5)

In fact, we have:

sp Jhi := hi+ 5 # while ( lo < hi ) { lo := lo+ 1 }K (hi)

= sp Jwhile ( lo < hi ) { lo := lo+ 1 }K (sp Jhi := hi+ 5K (hi))

= sp Jwhile ( lo < hi ) { lo := lo+ 1 }K ( Sα : [hi = α + 5] ⋏ α)

= sp Jwhile ( lo < hi ) { lo := lo+ 1 }K (hi− 5) (α = hi− 5 is selected)

= [lo ≥ hi] ⋏ lfp X : Ψhi−5(X)
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= [lo ≥ hi] ⋏ Ψω
hi−5(−∞) (by Kleene’s fixpoint theorem)

Let us compute some Kleene’s iterates:

Ψhi−5(−∞) = (hi− 5) ⋎ sp Jlo := lo+ 1K ([lo < hi] ⋏−∞)

= (hi− 5) ⋎ sp Jlo := lo+ 1K (−∞)

= (hi− 5) ⋎ (−∞) (by Theorem 3.5.1 (2))

= (hi− 5)

Ψ2
hi−5(−∞) = (hi− 5) ⋎ sp Jlo := lo+ 1K ([lo < hi] ⋏ (hi− 5))

= (hi− 5) ⋎ ( Sα : [lo = α + 1] ⋏ [α < hi] ⋏ (hi− 5))

= (hi− 5) ⋎ ([lo < hi+ 1] ⋏ (hi− 5))

(α = lo− 1 is selected)

= (hi− 5)

The iteration sequence has converged (in just 2 iterations), so we obtain:

sp Jhi := hi+ 5 # while ( lo < hi ) { lo := lo+ 1 }K (hi)

= [lo ≥ hi] ⋏ Ψω
hi−5(−∞)

= [lo ≥ hi] ⋏ (hi− 5)

Similarly, for slp we have:

slpJhi := hi+ 5 # while ( lo < hi ) { lo := lo+ 1 }K (hi)

= slpJwhile ( lo < hi ) { lo := lo+ 1 }K (slpJhi := hi+ 5K (hi))

= slpJwhile ( lo < hi ) { lo := lo+ 1 }K ( Jα : [hi ̸= α + 5] ⋎ α)

= slpJwhile ( lo < hi ) { lo := lo+ 1 }K (hi− 5) (α = hi− 5 is selected)

= [lo < hi] ⋎ gfp X : Ψhi−5(X)

= [lo < hi] ⋎ Ψω
hi−5(+∞) (by Kleene’s fixpoint theorem)
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Let us compute some Kleene’s iterates:

Ψhi−5(+∞) = (hi− 5) ⋏ slpJlo := lo+ 1K ([lo ≥ hi] ⋎ +∞)

= (hi− 5) ⋏ slpJlo := lo+ 1K (+∞)

= (hi− 5) ⋏ +∞ (by Theorem 3.5.1 (4))

= (hi− 5)

Ψ2
hi−5(+∞) = (hi− 5) ⋏ slpJlo := lo+ 1K ([lo ≥ hi] ⋎ (hi− 5))

= (hi− 5) ⋏ ( Jα : [lo ̸= α + 1] ⋎ [α ≥ hi] ⋎ (hi− 5))

= (hi− 5) ⋏ ([lo ≥ hi+ 1] ⋎ (hi− 5))

(α = lo− 1 is selected)

= (hi− 5)

Again, the iteration sequence has converged in 2 iterations, so we conclude:

slpJhi := hi+ 5 # while ( lo < hi ) { lo := lo+ 1 }K (hi)

= [lo < hi] ⋎ Ψω
hi−5(+∞)

= [lo < hi] ⋎ (hi− 5)

A.7 Well-definedness of the Semantics for

Weighted Programs

In this section we prove that the denotational semantics of Figure 4.1 is a total

function. We assume that the operations ⊕, ⊙ belong to a complete, Scott

continuous, naturally ordered, partial semiring with a top element.

A.7.1 Fixed point existence

Proposition A.7.1. Let

ΦC,e,e′(X)(σ, τ) = JeK(σ)⊙ (
⊕

ι : JCK(σ,ι)̸=0

JCK(σ, ι)⊙X(ι, τ))⊕ Je′K(σ)⊙ [σ = τ ]
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If ΦC,e,e′ is a total function, the semantics of loops:

JC⟨e,e′⟩K(σ, τ) = (lfp X : ΦC,e,e′(X))(σ, τ)

is well-defined, i.e., the least fixed point of ΦC,e,e′ exists.

Proof. It is sufficient to show that ΦC,e,e′ is Scott-continuous and rely on

Kleene’s fixpoint theorem to conclude that the fixpoint exists. For all directed

sets D ⊆ (Σ× Σ→ U) we have:

sup
f∈D

ΦC,e,e′(f)(σ, τ)

= sup
f∈D

JeK(σ)⊙
(⊕
ι∈Σ

JCK(σ, ι)⊙ f(ι, τ)
)
⊕ Je′K(σ)⊙ [σ = τ ]

= JeK(σ)⊙
(

sup
f∈D

⊕
ι∈Σ

JCK(σ, ι)⊙ f(ι, τ)
)
⊕ Je′K(σ)⊙ [σ = τ ]

(by continuity of ⊕ and ⊙)

= JeK(σ)⊙
(⊕
ι∈Σ

JCK(σ, ι)⊙ sup D(ι, τ)
)
⊕ Je′K(σ)⊙ [σ = τ ]

(by [74, Lemma A.4] with fι(X) = JCK(σ, ι)⊙X(ι, τ) for ι ∈ Σ)

= ΦC,e,e′(sup D)(σ, τ)

And hence we conclude by Kleene’s fixpoint theorem.

A.7.2 Syntactic restrictions for partial semirings

Proposition A.7.1 ensures the well-definedness of the iteration rule, provided

that ΦC,e,e′ is total. In this section, we investigate syntactic constraints to

ensure the totality of ΦC,e,e′ (and all other statements). Notably, challenges

arise in partial semirings only, where ⊕ might be undefined. The constraints

and results above are adapted from [74, Appendix A.3] to our framework.

Definition A.7.1 (Compatibility [74]). The expressions e1 and e2 are com-

patible in semiring A = ⟨U,⊕,⊙, 0, 1⟩ if Je1K(σ) ⊕ Je2K(σ) is defined for any

σ ∈ Σ.
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Proposition A.7.2. If e1, e2 are compatible and JC1K, JC2K are total functions,

then

J{⊙ e1 # C1 } □ {⊙ e2 # C2 }K

is a total function.

Proof.

J{⊙ e1 # C1 } □ {⊙ e2 # C2 }K(σ)

= J⊙ e1 # C1K(σ, τ) ⊕ J⊙ e2 # C2K(σ, τ)

=
⊕

ι : J⊙ e1K(σ,ι) ̸=0

J⊙ e1K(σ, ι)⊙ JC1K(ι, τ)

⊕
⊕

ι : J⊙ e2K(σ,ι) ̸=0

J⊙ e2K(σ, ι)⊙ JC2K(ι, τ)

=
⊕

ι : Je1K(σ)⊙[σ=ι]̸=0

Je1K(σ)⊙ [σ = ι]⊙ JC1K(ι, τ)

⊕
⊕

ι : Je2K(σ)⊙[σ=ι]̸=0

Je2K(σ)⊙ [σ = ι]⊙ JC2K(ι, τ)

= Je1K(σ)⊙ JC1K(σ, τ)⊕ Je2K(σ)⊙ JC2K(σ, τ)

which is well-defined by [74, Lemma A.5] (since Je1K(σ) ⊕ Je2K(σ) is well-

defined).

Proposition A.7.3 (Well-definedness of C⟨e,e′⟩). If e, e′ are compatible and

JCK is a total function, then JC⟨e,e′⟩K is a total function.

Proof. Let ΦC,e,e′(X)(σ, τ) = JeK(σ)⊙
(⊕

ι∈Σ JCK(σ, ι)⊙X(ι, τ)
)
⊕ Je′K(σ)⊙

[σ = τ ]. By [74, Lemma A.5], ΦC,e,e′(X)(σ, τ) is well-defined, ensuring the

well-definedness of JC⟨e,e′⟩K as well (as per Proposition A.7.1).
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A.8 Proofs of Section 4.3

A.8.1 Proof of Soundness for wp, Theorem 4.3.1

Theorem 4.3.1 (Characterization of wp). For all programs C ∈ wReg and

final states τ ∈ Σ, the following equality holds:

wp JCK (f) (σ) =
⊕
τ∈Σ

JCK(σ, τ)⊙ f(τ) .

Proof. We prove Theorem 4.3.1 by induction on the structure of C. For the

induction base, we have the atomic statements:

The assignment x := e:

We have

wp Jx := eK (f) (σ) = f [x/e] (σ)

= f(σ [x/σ(e)])

=
⊕
τ∈Σ

[σ [x/σ(e)] = τ ]⊙ f(τ)

=
⊕
τ∈Σ

Jx := eK(σ, τ)⊙ f(τ) .

The nondeterministic assignment x := nondet():

We have

wp Jx := nondet()K (f) (σ) =
(⊕

α

f [x/α]
)
(σ)

=
⊕
α

f(σ [x/α])

=
⊕

τ∈Σ,∃α : σ[x/α]=τ

f(τ) (by taking τ = σ [x/α])

=
⊕
τ∈Σ

⊕
α∈N

[σ [x/α] = τ ]⊙ f(τ)
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=
⊕
τ∈Σ

Jx := nondet()K(σ, τ)⊙ f(τ) .

The weighting ⊙w:

We have

wp J⊙wK (f) (σ) = (w ⊙ f)(σ)

= w(σ)⊙ f(σ)

=
⊕
τ∈Σ

w(σ)⊙ [σ = τ ]⊙ f(σ)

=
⊕
τ∈Σ

w(σ)⊙ [σ = τ ]⊙ f(τ)

=
⊕
τ∈Σ

J⊙wK(σ, τ)⊙ f(τ) .

This concludes the proof for the atomic statement.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

wp JC1 # C2K (f) (σ) = wp JC1K (wp JC2K (f)) (σ)

=
⊕
σ′∈Σ

JC1K(σ, σ′)⊙ wp JC2K (f) (σ′) (by I.H. on C1)

=
⊕
σ′∈Σ

JC1K(σ, σ′)⊙
⊕
τ∈Σ

JC2K(σ′, τ)⊙ f(τ)

(by I.H. on C2)

=
⊕
σ′∈Σ

⊕
τ∈Σ

JC1K(σ, σ′)⊙ JC2K(σ′, τ)⊙ f(τ)

(by distributivity of ⊙)
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=
⊕
τ∈Σ

(⊕
σ′∈Σ

JC1K(σ, σ′)⊙ JC2K(σ′, τ)
)
⊙ f(τ)

(by commutativity of ⊕)

=
⊕
τ∈Σ

JC1 # C2K(σ, τ)⊙ f(τ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

wp J{C1 } □ {C2 }K (f) (σ) = wp JC1K (f)⊕ wp JC2K (f)

=
⊕
τ∈Σ

JC1K(σ, τ)⊙ f(τ)⊕
⊕
τ∈Σ

JC2K(σ, τ)⊙ f(τ)

(by I.H. on C1, C2)

=
⊕
τ∈Σ

(JC1K(σ, τ)⊕ JC2K(σ, τ))⊙ f(τ)

(by distributivity of ⊙)

=
⊕
τ∈Σ

J{C1 } □ {C2 }K(σ, τ)⊙ f(σ) .

The Iteration C⟨e,e′⟩:

Let

Φf (X) = Je′K⊙ f ⊕ JeK⊙ wp JCK (X) ,

be the wp-characteristic function of the iteration C⟨e,e′⟩ with respect to any

preanticipation f and

F (X)(σ, τ) = σ(e)⊙

(⊕
σ′∈Σ

JCK(σ, σ′)⊙X(σ′, τ)

)
⊕ σ(e′)⊙ [σ = τ ] ,
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be the denotational semantics characteristic function of the loop C⟨e,e′⟩ for any

input σ, τ ∈ Σ. We first prove by induction on n that, for all σ ∈ Σ, f ∈ A

Φn
f (0)(σ) =

⊕
τ∈Σ

F n(0)(σ, τ)⊙ f(τ) . (A.9)

For the induction base n = 0, consider the following:

Φn
f (0)(σ) = 0

=
⊕
τ∈Σ

F 0(0)(σ, τ)⊙ f(τ) .

As induction hypothesis, we have for arbitrary but fixed n and all τ ∈ Σ, f ∈ A

Φn
f (0)(σ) =

⊕
τ∈Σ

F n(0)(σ, τ)⊙ f(τ) .

For the induction step n −→ n+ 1, consider the following:

Φn+1
f (0)(σ)

=
(
Je′K⊙ f ⊕ JeK⊙ wp JCK

(
Φn
f (0)

))
(σ)

= Je′K(σ)⊙ f(σ)⊕ JeK(σ)⊙ wp JCK
(
Φn
f (0)

)
(σ)

= σ(e′)⊙ f(σ)⊕ σ(e)⊙
⊕
σ′∈Σ

JCK(σ, σ′)⊙ Φn
f (0)(σ′) (by I.H. on C)

= σ(e′)⊙ f(σ)⊕ σ(e)⊙
⊕
σ′∈Σ

JCK(σ, σ′)⊙
⊕
τ∈Σ

F n(0)(σ′, τ)⊙ f(τ)

(by I.H. on n)

= σ(e′)⊙ f(σ)⊕
⊕
τ∈Σ

(
σ(e)⊙

⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)
)
⊙ f(τ)

(by distributivity of ⊙, commutativity and associativity of ⊕)

=
(⊕
τ∈Σ

σ(e′)⊙ [σ = τ ]⊙ f(τ)
)

⊕
⊕
τ∈Σ

(
σ(e)⊙

⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)
)
⊙ f(τ)

=
⊕
τ∈Σ

(
σ(e)⊙

⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)
)
⊙ f(τ)
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⊕
(⊕
τ∈Σ

σ(e′)⊙ [σ = τ ]⊙ f(τ)
)

(by commutativity of ⊕)

=
⊕
τ∈Σ

(
σ(e)⊙

⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)⊕ σ(e′)⊙ [σ = τ ]
)
⊙ f(τ)

(by associativity of ⊕ and distributivity of ⊙)

=
⊕
τ∈Σ

F n+1(0)(σ, τ)⊙ f(τ) .

This concludes the induction on n. Now we have:

wp JC⟨e,e′⟩K (f) (σ) =
(
lfp X : Je′K⊙ f ⊕ JeK⊙ wp JCK (X)

)
(σ)

= sup
n∈N

Φn
f (0)(σ) (by Kleene’s fixpoint theorem)

= sup
n∈N

⊕
τ∈Σ

F n(0)(σ, τ)⊙ f(τ) (by Equation A.9)

=
⊕
τ∈Σ

sup
n∈N

F n(0)(σ, τ)⊙ f(τ)

(by continuity of λX :
⊕

τ X(σ, τ)⊙ f(τ))

=
⊕
τ∈Σ

JC⟨e,e′⟩K(σ, τ)⊙ f(τ) .

(by Kleene’s fixpoint theorem)

and this concludes the proof.

A.9 Proofs of Section 4.4

A.9.1 Proof of Soundness for sp, Theorem 4.4.2

Theorem 4.4.2 (Characterization of sp). For all programs C ∈ wReg and final

states τ ∈ Σ,

sp JCK (µ) (τ) =
⊕
σ∈Σ

µ(σ)⊙ JCK(σ, τ) .

Proof. We prove Theorem 4.4.2 by induction on the structure of C. For the

induction base, we have the atomic statements:
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The assignment x := e:

We have

sp Jx := eK (f) (τ) =
(⊕

α

f [x/α]⊙ [x = e [x/α]]
)
(τ)

=
⊕

α : τ(x)=τ(e[x/α])

f [x/α] (τ)

=
⊕

α : τ(x)=τ(e[x/α])

f(τ [x/α])

=
⊕

α : τ [x/α][x/τ(e[x/α])]=τ

f(τ [x/α])

=
⊕

α : τ [x/α][x/τ [x/α](e)]=τ

f(τ [x/α])

=
⊕

σ∈Σ,σ[x/σ(e)]=τ

f(σ) (by taking σ = τ [x/α])

=
⊕
σ∈Σ

f(σ)⊙ [σ [x/σ(e)] = τ ]

=
⊕
σ∈Σ

f(σ)⊙ Jx := eK(σ, τ) .

The nondeterministic assignment x := nondet():

We have

sp Jx := nondet()K (f) (τ) =
(⊕

α

f [x/α]
)
(τ)

=
⊕
α

f(τ [x/α])

=
⊕

σ∈Σ,∃α : τ [x/α]=σ

f(σ) (by taking σ = τ [x/α])

=
⊕
σ∈Σ

f(σ)⊙
⊕
α∈N

[σ [x/α] = τ ]

=
⊕
σ∈Σ

f(σ)⊙ Jx := nondet()K(σ, τ) .
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The weighting ⊙w:

We have

sp J⊙wK (f) (τ) = (f ⊙ w)(τ)

= f(τ)⊙ w(τ)

=
⊕
σ∈Σ

f(σ)⊙ w(τ)⊙ [σ = τ ]

=
⊕
σ∈Σ

f(σ)⊙ w(σ)⊙ [σ = τ ]

=
⊕
σ∈Σ

f(σ)⊙ J⊙wK(σ, τ) .

This concludes the proof for the atomic statement.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

sp JC1 # C2K (f) (τ) = sp JC2K (sp JC1K (f)) (τ)

=
⊕
σ′∈Σ

sp JC1K (f) (σ′)⊙ JC2K(σ′, τ) (by I.H. on C2)

=
⊕
σ′∈Σ

⊕
σ∈Σ

f(σ)⊙ JC1K(σ, σ′)⊙ JC2K(σ′, τ)

(by I.H. on C1)

=
⊕
σ∈Σ

⊕
σ′∈Σ

f(σ)⊙ JC1K(σ, σ′)⊙ JC2K(σ′, τ)

(by commutativity of ⊕)

=
⊕
σ∈Σ

f(σ)⊙
⊕
σ′∈Σ

JC1K(σ, σ′)⊙ JC2K(σ′, τ)

(by distributivity of ⊙)
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=
⊕
σ∈Σ

f(σ)⊙ JC1 # C2K(σ, τ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

sp J{C1 } □ {C2 }K (f) (τ) = sp JC1K (f)⊕ sp JC2K (f)

=
⊕
σ∈Σ

f(σ)⊙ JC1K(σ, τ)⊕
⊕
σ∈Σ

f(σ)⊙ JC2K(σ, τ)

(by I.H. on C1, C2)

=
⊕
σ∈Σ

f(σ)⊙ (JC1K(σ, τ)⊕ JC2K(σ, τ))

(by distributivity of ⊙)

=
⊕
σ∈Σ

f(σ)⊙ J{C1 } □ {C2 }K(σ, τ) .

The Iteration C⟨e,e′⟩:

Let

Ψ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K .

be the sp-characteristic function of the iteration C⟨e,e′⟩ and

F (X)(σ, τ) = σ(e)⊙

(⊕
σ′∈Σ

JCK(σ, σ′)⊙X(σ′, τ)

)
⊕ σ(e′)⊙ [σ = τ ] ,

be the denotational semantics characteristic function of the loop C⟨e,e′⟩ for any

input σ, τ ∈ Σ. We prove by induction on n that, for all τ ∈ Σ, f ∈ A

Ψn(λg : 0)(f)(τ) =
⊕
σ∈Σ

f(σ)⊙ F n(0)(σ, τ) . (A.10)
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For the induction base n = 0, consider the following:

Ψ0(λg : 0)(f)(τ) = 0

=
⊕
σ∈Σ

f(σ)⊙ F 0(0)(σ, τ) .

As induction hypothesis, we have for arbitrary but fixed n and all τ ∈ Σ, f ∈ A

Ψn(λg : 0)(f)(τ) =
⊕
σ∈Σ

f(σ)⊙ F n(0)(σ, τ) .

For the induction step n −→ n+ 1, consider the following:

Ψn+1(λg : 0)(f)(τ)

= (Ψn(λg : 0)(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K)(τ)

= (f ⊙ Je′K)(τ)⊕Ψn(λg : 0)(sp JCK (f ⊙ JeK))(τ)

= f(τ)⊙ τ(e′)⊕Ψn(λg : 0)(sp JCK (f ⊙ JeK))(τ)

= f(τ)⊙ τ(e′)⊕
⊕
σ′∈Σ

sp JCK (f ⊙ JeK) (σ′)⊙ F n(0)(σ′, τ) (by I.H. on n)

= f(τ)⊙ τ(e′)⊕
⊕
σ′∈Σ

⊕
σ∈Σ

f(σ)⊙ σ(e)⊙ JCK(σ, σ′)⊙ F n(0)(σ′, τ)

(by I.H. on C)

= f(τ)⊙ τ(e′)⊕
⊕
σ∈Σ

⊕
σ′∈Σ

f(σ)⊙ σ(e)⊙ JCK(σ, σ′)⊙ F n(0)(σ′, τ)

= f(τ)⊙ τ(e′)⊕
⊕
σ∈Σ

f(σ)⊙ σ(e)⊙
⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)

(by distributivity of ⊙)

=
(⊕
σ∈Σ

f(σ)⊙ σ(e′)⊙ [σ = τ ]
)

⊕
(⊕
σ∈Σ

f(σ)⊙ σ(e)⊙
⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)
)

=
(⊕
σ∈Σ

f(σ)⊙ σ(e)⊙
⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)
)

⊕
(⊕
σ∈Σ

f(σ)⊙ σ(e′)⊙ [σ = τ ]
)

(by commutativity of ⊕)
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=
⊕
σ∈Σ

f(σ)⊙

((
σ(e)⊙

⊕
σ′∈Σ

JCK(σ, σ′)⊙ F n(0)(σ′, τ)
)
⊕ σ(e′)⊙ [σ = τ ]

)
(by associativity of ⊕ and distributivity of ⊙)

=
⊕
σ∈Σ

f(σ)⊙ F n+1(0)(σ, τ) .

This concludes the induction on n. Now we have:

sp JC⟨e,e′⟩K (f) (τ) =
(
lfp X : f ⊕ sp JCK (X ⊙ JeK)

)
(τ)⊙ Je′K(τ)

=
(

sup
n∈N

Ψn
f (0)(τ)

)
⊙ τ(e′) (by Kleene’s fixpoint theorem)

= sup
n∈N

Ψn
f (0)(τ)⊙ τ(e′)

= sup
n∈N

⊕
σ∈Σ

f(σ)⊙ F n(0)(σ, τ) (by Equation A.10)

=
⊕
σ∈Σ

f(σ)⊙ sup
n∈N

F n(0)(σ, τ)

(by continuity of λX :
⊕

σ f(σ)⊙X(σ, τ))

=
⊕
σ∈Σ

f(σ)⊙ JC⟨e,e′⟩K(σ, τ) .

(by Kleene’s fixpoint theorem)

sp JC⟨e,e′⟩K (f) (τ) =
(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(f)(τ)

= (sup
n∈N

Ψn(λg : 0))(f)(τ) (by Kleene’s fixpoint theorem)

= sup
n∈N

(Ψn(λg : 0))(f)(τ)

= sup
n∈N

⊕
σ∈Σ

f(σ)⊙ F n(0)(σ, τ) (by Equation A.10)

=
⊕
σ∈Σ

f(σ)⊙ sup
n∈N

F n(0)(σ, τ)

(by continuity of λX :
⊕

σ f(σ)⊙X(σ, τ))
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=
⊕
σ∈Σ

f(σ)⊙ JC⟨e,e′⟩K(σ, τ) .

(by Kleene’s fixpoint theorem)

and this concludes the proof.

A.9.2 Proof of Loop rule for total

semirings, Theorem 4.4.1

Theorem 4.4.1 (Loop rule for total semirings). For all programs C ∈ wReg,

if the ambient semiring is a total semiring, the simplified loop rule:

sp JC⟨e,e′⟩K (f) =
(
lfp X : f ⊕ sp JCK (X ⊙ JeK)

)
⊙ Je′K

holds for all f ∈ A.

Proof. We define the general characteristic function Ψ as:

Ψ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K .

We define the characteristic function for total semirings Sf as:

Sf (X) = f ⊕ sp JCK (X ⊙ JeK) .

We prove by induction on n that, for all f ∈ A

Ψn(λg : 0)(f) = Snf (0)⊙ Je′K . (A.11)

For the induction base n = 0, consider the following:

Ψ0(λg : 0)(f) = 0

= 0⊙ Je′K

= S0
f (0)⊙ Je′K .
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As induction hypothesis, we have for arbitrary but fixed n and all f ∈ A

Ψn(λg : 0)(f) = Snf (0)⊙ Je′K .

For the induction step n −→ n+ 1, consider the following:

Ψn+1(λg : 0)(f) = Ψ(Ψn(λg : 0))(f)

= Ψn(λg : 0)(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K

= Snsp JCK(f⊙JeK)(0)⊙ Je′K⊕ f ⊙ Je′K (by I.H. on n)

=
(
Snsp JCK(f⊙JeK)(0)⊕ f

)
⊙ Je′K

(by distributivity; total semiring)

= Sn+1
f (0)⊙ Je′K .

This concludes the induction on n. Now we have:

sp JC⟨e,e′⟩K (f) =
(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(f)

= (sup
n∈N

Ψn(λg : 0))(f) (by Kleene’s fixpoint theorem)

= sup
n∈N

(Ψn(λg : 0))(f)

= sup
n∈N

Snf (0)⊙ Je′K (by Equation A.11)

=
(
lfp X : f ⊕ sp JCK (X ⊙ JeK)

)
⊙ Je′K,

(by Kleene’s fixpoint theorem)

and this concludes the proof.
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A.10 Proofs of Section 4.5

A.10.1 Proof of Falsifying correctness triples via

correctness triples, Theorem 4.5.1

Theorem 4.5.1 (Falsifying correctness triples via correctness triples).

|=pc {P } C {Q } iff ∀σ ∈ P : ̸|=atc { {σ} } C {¬Q }

|=atc {P } C {Q } iff ∀σ ∈ P : ̸|=pc { {σ} } C {¬Q }

|=pi [P ] C [Q ] iff ∀σ ∈ Q : ̸|=ti [¬P ] C [ {σ} ]

|=ti [P ] C [Q ] iff ∀σ ∈ Q : ̸|=pi [¬P ] C [ {σ} ]

Proof. First, let us observe that

A ⊆ B iff ∀x ∈ A : {x} ∩B ̸= ∅

Now, we have:

1.

|=pc {P } C {Q } iff P ⊆ wlpJCK (Q)

iff ∀σ ∈ P : {σ} ∩ wlpJCK (Q) ̸= ∅

iff ∀σ ∈ P : ̸|=atc { {σ} } C {¬Q }

2.

|=atc {P } C {Q } iff P ⊆ wp JCK (Q)

iff ∀σ ∈ P : {σ} ∩ wp JCK (Q) ̸= ∅

iff ∀σ ∈ P : ̸|=pc { {σ} } C {¬Q }
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3.

|=pi [P ] C [Q ] iff Q ⊆ slpJCK (P )

iff ∀σ ∈ Q : {σ} ∩ slpJCK (P ) ̸= ∅

iff ∀σ ∈ Q ̸|=ti [¬P ] C [ {σ} ]

4.

|=ti [P ] C [Q ] iff Q ⊆ sp JCK (P )

iff ∀σ ∈ Q : {σ} ∩ sp JCK (P ) ̸= ∅

iff ∀σ ∈ Q ̸|=pi [¬P ] C [ {σ} ]

A.11 Proofs of Section 4.7

A.11.1 Proof of Healthiness Properties of Weighted

Transformers, Theorem 4.7.1

Theorem 4.7.1 (Healthiness Properties of Weighted Transformers). For all

programs C, wpJCK and sp satisfy the following properties:

1. Monotonicity:

f ⪯ g implies ttt JCK (f) ⪯ ttt JCK (g) , for ttt ∈ {wp, sp} .

2. Quantitative universal disjunctiveness: For any set of quantities S ⊆ A,

wp JCK (⋎S) = ⋎ wp JCK (S) and sp JCK (⋎S) = ⋎ sp JCK (S) .

3. Strictness:

wp JCK (0) = 0 and sp JCK (0) = 0 .
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Proof. Each of the properties is proven individually below.

• Quantitative universal disjunctiveness: Theorems A.11.1 and A.11.2;

• Strictness: Corollaries A.11.2.1 and A.11.2.2;

• Monotonicity: Corollary A.11.2.3.

Theorem A.11.1 (Quantitative Universal Disjunctiveness). For all programs

C, wpJCK preserve all suprema, i.e. for all S ⊆ A,

wp JCK (supS) = sup
g∈S

wp JCK (g) .

Proof. We prove Theorem A.11.1 by induction on the structure of C. For the

induction base, we have the atomic statements:

The assignment x := e:

We have

wp Jx := eK (supS) = (supS) [x/e]

=

(
λσ : sup

g∈S
g(σ)

)
[x/e]

=

(
λσ : sup

g∈S
g [x/e] (σ)

)
= sup

g∈S
g [x/e]

= sup
g∈S

wp Jx := eK (g) .

The nondeterministic assignment x := nondet():

We have

wp Jx := nondet()K (supS) =
⊕
α

(supS) [x/α]
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=
⊕
α

(
λσ : sup

g∈S
g(σ)

)
[x/α]

=
⊕
α

(
λσ : sup

g∈S
g [x/α] (σ)

)
= sup

g∈S

⊕
α

g [x/α] (by continuity of ⊕)

= sup
g∈S

wp Jx := nondet()K (g) .

The weighting ⊙w:

We have

wp J⊙wK (supS) = w ⊙ supS

= w ⊙ sup
g∈S

g

= sup
g∈S

(w ⊙ g) (by continuity of ⊙)

= sup
g∈S

wp J⊙wK (g) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

wp JC1 # C2K (supS) = wp JC1K (wp JC2K (supS))

= wp JC1K
(

sup
g∈S

wp JC2K (g)

)
(by I.H. on C2)

= sup
g∈S

wp JC1K (wp JC2K (g)) (by I.H. on C1)

= sup
g∈S

wp JC1 # C2K (g) .
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The nondeterministic choice {C1 } □ {C2 }:

We have

wp J{C1 } □ {C2 }K (supS) = wp JC1K (f)⊕ wp JC2K (f)

= sup
g∈S

wp JC1K (g)⊕ sup
g∈S

wp JC2K (g)

(by I.H. on C1, C2)

= sup
g∈S

wp JC1K (g)⊕ wp JC2K (g)

(by continuity of ⊕)

= sup
g∈S

wp J{C1 } □ {C2 }K (g) .

The Iteration C⟨e,e′⟩:

Let

Φf (X) = Je′K⊙ f ⊕ JeK⊙ wp JCK (X) ,

be the wp-characteristic function of the iteration C⟨e,e′⟩ with respect to any

postquantity f . Observe that Ψf (X) is continuous by inductive hypothesis on

C and by composition of continuous functions. We now prove by induction on

n that

Φn
supS(0) = sup

g∈S
Φn
g (0) . (A.12)

For the induction base n = 0, consider the following:

Φ0
supS(0) = 0

= sup
g∈S

0

= sup
g∈S

Φ0
g(0) .
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As induction hypothesis, we have for arbitrary but fixed n

Φn
supS(0) = sup

g∈S
Φn
g (0) .

For the induction step n −→ n+ 1, consider the following:

Φn+1
supS(0)

= Je′K⊙ supS ⊕ JeK⊙ wp JCK
(
Φn

supS(0)
)

= Je′K⊙ supS ⊕ JeK⊙ wp JCK
(

sup
g∈S

Φn
g (0)

)
(by I.H. on n)

= Je′K⊙ supS ⊕ JeK⊙ sup
g∈S

wp JCK
(
Φn
g (0)

)
(by I.H. on C)

= sup
g∈S

Je′K⊙ g ⊕ sup
g∈S

JeK⊙ wp JCK
(
Φn
g (0)

)
(by continuity of ⊙)

= sup
g∈S

Je′K⊙ g ⊕ JeK⊙ wp JCK
(
Φn
g (0)

)
(by continuity of ⊕)

= sup
g∈S

Φn+1
g (0) .

This concludes the induction on n. Now we have:

wp JC⟨e,e′⟩K (supS) = lfp X : Je′K⊙ supS ⊕ JeK⊙ wp JCK (X)

= sup
n∈N

Φn
supS(0) (by Kleene’s fixpoint theorem)

= sup
n∈N

sup
g∈S

Φn
g (0) (by Equation A.12)

= sup
g∈S

sup
n∈N

Φn
g (0)

= sup
g∈S

wp JC⟨e,e′⟩K (g) , (by Kleene’s fixpoint theorem)

and this concludes the proof.

Theorem A.11.2 (Quantitative Universal Disjunctiveness). For all programs

C, spJCK preserve all suprema, i.e. for all S ⊆ A,

sp JCK (supS) = sup
g∈S

sp JCK (g) .
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Proof. We prove Theorem A.11.2 by induction on the structure of C. For the

induction base, we have the atomic statements:

The assignment x := e:

We have

sp Jx := eK (supS) = Sα : [x = e [x/α]] ⋏ (supS) [x/α]

= Sα : [x = e [x/α]] ⋏

(
λσ : sup

g∈S
g(σ)

)
[x/α]

= Sα : [x = e [x/α]] ⋏

(
λσ : sup

g∈S
g [x/α] (σ)

)
= Sα : [x = e [x/α]] ⋏ sup

g∈S
g [x/α]

= Sα : sup
g∈S

[x = e [x/α]] ⋏ g [x/α]

= sup
g∈S

Sα : [x = e [x/α]] ⋏ g [x/α]

= sup
g∈S

sp Jx := eK (g)

= sup sp Jx := eK (S) .

sp Jx := eK (supS) =
⊕
α

(supS) [x/α]⊙ [x = e [x/α]]

=
⊕
α

(
λσ : sup

g∈S
g(σ)

)
[x/α]⊙ [x = e [x/α]]

=
⊕
α

(
λσ : sup

g∈S
g [x/α] (σ)

)
⊙ [x = e [x/α]]

=
⊕
α

sup
g∈S

(g [x/α])⊙ [x = e [x/α]]

=
⊕
α

sup
g∈S

g [x/α]⊙ [x = e [x/α]] (by continuity of ⊙)

= sup
g∈S

⊕
α

g [x/α]⊙ [x = e [x/α]] (by continuity of ⊕)

= sup
g∈S

sp Jx := eK (g) .
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The nondeterministic assignment x := nondet():

We have

sp Jx := nondet()K (supS) =
⊕
α

(supS) [x/α]

=
⊕
α

(
λσ : sup

g∈S
g(σ)

)
[x/α]

=
⊕
α

(
λσ : sup

g∈S
g [x/α] (σ)

)
= sup

g∈S

⊕
α

g [x/α] (by continuity of ⊕)

= sup
g∈S

sp Jx := nondet()K (g) .

sp Jx := nondet()K (supS) =
⊕
α

(supS) [x/α]

=
⊕
α

(
λσ : sup

g∈S
g(σ)

)
[x/α]

=
⊕
α

(
λσ : sup

g∈S
g [x/α] (σ)

)
=
⊕
α

sup
g∈S

g [x/α]

= sup
g∈S

⊕
α

g [x/α] (by continuity of ⊕)

= sup
g∈S

sp Jx := nondet()K (g) .

The weighting ⊙w:

We have

sp J⊙wK (supS) = supS ⊙ w

= (sup
g∈S

g)⊙ w

= sup
g∈S

(g ⊙ w) (by continuity of ⊙)
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= sup
g∈S

sp J⊙wK (g) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

sp JC1 # C2K (supS) = sp JC2K (sp JC1K (supS))

= sp JC2K
(

sup
g∈S

sp JC1K (g)

)
(by I.H. on C1)

= sup
g∈S

sp JC1K (sp JC2K (g)) (by I.H. on C2)

= sup
g∈S

sp JC1 # C2K (g) .

The nondeterministic choice {C1 } □ {C2 }:

We have

sp J{C1 } □ {C2 }K (supS) = sp JC1K (supS)⊕ sp JC2K (supS)

= sup
g∈S

sp JC1K (g)⊕ sup
g∈S

sp JC2K (g)

(by I.H. on C1, C2)

= sup
g∈S

sp JC1K (g)⊕ sp JC2K (g)

(by continuity of ⊕)

= sup
g∈S

sp J{C1 } □ {C2 }K (g) .
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The Iteration C⟨e,e′⟩:

Let

Ψ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K ,

be the sp-characteristic function of the iteration C⟨e,e′⟩. We first show that Ψ

is continuous, i.e., for all directed sets D ⊆ (A→ A) and functions we have:

sup
trnsf∈D

Ψ(trnsf)(f)

= sup
trnsf∈D

(λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K)(f)

= sup
trnsf∈D

(trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K)

=
(

sup
trnsf∈D

trnsf(sp JCK (f ⊙ JeK))
)
⊕ f ⊙ Je′K (by continuity of ⊕)

= ( sup
trnsf∈D

trnsf)(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K

= Ψ( sup
trnsf∈D

trnsf)(f)

We now prove by induction on n that

Ψn(λg : 0)(supS) = sup
f∈S

Ψn(λg : 0)(f) . (A.13)

For the induction base n = 0, consider the following:

Ψ0(λg : 0)(supS) = λg : 0

= sup
f∈S

(λg : 0)(f)

= sup
f∈S

Ψ0(λg : 0)(f) .

As induction hypothesis, we have for arbitrary but fixed n

Ψn(λg : 0)(supS) = sup
f∈S

Ψn(λg : 0)(f) .
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For the induction step n −→ n+ 1, consider the following:

Ψn+1(λg : 0)(supS)

= Ψn(λg : 0)(sp JCK (supS ⊙ JeK))⊕ supS ⊙ Je′K

= Ψn(λg : 0)(sup
f∈S

sp JCK (f ⊙ JeK))⊕ supS ⊙ Je′K (by I.H. on C)

= sup
f∈S

Ψn(λg : 0)(sp JCK (f ⊙ JeK))⊕ supS ⊙ Je′K (by I.H. on n)

= sup
f∈S

Ψn(λg : 0)(sp JCK (f ⊙ JeK))⊕ sup
f∈S

f ⊙ Je′K

= sup
f∈S

(Ψn(λg : 0)(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K) (by continuity of ⊕)

= sup
f∈S

Ψn+1(λg : 0)(f) .

This concludes the induction on n. Now we have:

sp JC⟨e,e′⟩K (supS)

=
(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(supS)

= (sup
n∈N

Ψn(λg : 0))(supS) (by Kleene’s fixpoint theorem)

= sup
n∈N

(Ψn(λg : 0))(supS)

= sup
n∈N

sup
f∈S

Ψn(λg : 0)(f) (by Equation A.13)

= sup
f∈S

sup
n∈N

Ψn(λg : 0)(f)

= sup
f∈S

sp JC⟨e,e′⟩K (f) , (by Kleene’s fixpoint theorem)

and this concludes the proof.

Corollary A.11.2.1 (Strictness of wp). For all programs C, wpJCK is strict,

i.e.

wp JCK (0) = 0 .
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Proof.

wp JCK (0) = λσ :
⊕
τ∈Σ

JCK(σ, τ)⊙ 0(τ) (by Theorem 4.3.1)

= 0 .

Corollary A.11.2.2 (Strictness of sp). For all programs C, spJCK is strict,

i.e.

sp JCK (0) = 0 .

Proof.

sp JCK (0) = λσ :
⊕
τ∈Σ

0(τ)⊙ JCK(τ, σ) (by Theorem 4.4.2)

= 0 .

Corollary A.11.2.3 (Monotonicity of Weighted Transformers). For all pro-

grams C, f, g ∈ A, we have

f ⪯ g implies ttt JCK (f) ⪯ ttt JCK (g) , for ttt ∈ {wp, sp}

Proof. Direct consequence of universal disjunctiveness.

A.11.2 Proof of Extended Healthiness Properties of

Weighted Transformers, Theorem 4.7.2

Theorem 4.7.2 (Extended Healthiness Properties on Weighted Transformers).

For all programs C, wpJCK and sp satisfy the following properties:
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1. Additivity: For all f, g ∈ A, we have

wp JCK (f ⊕ g) = wp JCK (f)⊕ wp JCK (g) and

sp JCK (f ⊕ g) = sp JCK (f)⊕ sp JCK (g) .

2. Right-homogeneity: For all a ∈ U, f ∈ A, we have

wp JCK (f ⊙ a) = wp JCK (f)⊙ a .

3. Left-homogeneity: For all a ∈ U, f ∈ A, we have

sp JCK (a⊙ f) = a⊙ sp JCK (f) .

Proof. Each of the properties is proven individually below.

• Additivity: Theorems A.11.3 and A.11.4;

• Right-homogeneity: Theorem A.11.5;

• Left-homogeneity: Theorem A.11.6;

Theorem A.11.3 (Additivity of wp). For all programs C, f, g ∈ A, we have

wp JCK (f ⊕ g) = wp JCK (f)⊕ wp JCK (g) .

Proof.

wp JCK (f ⊕ g) = λσ :
⊕
τ∈Σ

JCK(σ, τ)⊙ (f ⊕ g)(τ) (by Theorem 4.3.1)

= λσ :
⊕
τ∈Σ

JCK(σ, τ)⊙ (f(τ)⊕ g(τ)) (by definition of ⊕)

= λσ :
⊕
τ∈Σ

(JCK(σ, τ)⊙ f(τ)⊕ JCK(σ, τ)⊙ g(τ))

(by distributivity of ⊙ over ⊕)
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= λσ :

(⊕
τ∈Σ

JCK(σ, τ)⊙ f(τ)⊕
⊕
τ∈Σ

JCK(σ, τ)⊙ g(τ)

)
(by associativity and commutativity of ⊕)

= λσ : (wp JCK (f) (σ)⊕ wp JCK (g) (σ)) (by Theorem 4.3.1)

= wp JCK (f)⊕ wp JCK (g) (by definition of ⊕)

Theorem A.11.4 (Additivity of sp). For all programs C, f, g ∈ A, we have

sp JCK (f ⊕ g) = sp JCK (f)⊕ sp JCK (g) .

Proof.

sp JCK (f ⊕ g) = λτ :
⊕
σ∈Σ

(f ⊕ g)(σ)⊙ JCK(σ, τ) (by Theorem 4.4.2)

= λτ :
⊕
σ∈Σ

(f(σ)⊕ g(σ))⊙ JCK(σ, τ) (by definition of ⊕)

= λτ :
⊕
σ∈Σ

(f(σ)⊙ JCK(σ, τ)⊕ g(σ)⊙ JCK(σ, τ))

(by distributivity of ⊙ over ⊕)

= λτ :

(⊕
σ∈Σ

f(σ)⊙ JCK(σ, τ)⊕
⊕
σ∈Σ

g(σ)⊙ JCK(σ, τ)

)
(by associativity and commutativity of ⊕)

= λτ : (sp JCK (f) (τ)⊕ sp JCK (g) (τ)) (by Theorem 4.4.2)

= sp JCK (f)⊕ sp JCK (g) (by definition of ⊕)

Theorem A.11.5 (Right-homogeneity of wp). For all a ∈ U, f ∈ A, we have

wp JCK (f ⊙ a) = wp JCK (f)⊙ a .
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Proof.

wp JCK (f ⊙ a) = λσ :
⊕
τ∈Σ

JCK(σ, τ)⊙ f(τ)⊙ a (by Theorem 4.3.1)

= λσ :

(⊕
τ∈Σ

JCK(σ, τ)⊙ f(τ)

)
⊙ a

(by distributivity of ⊙ over ⊕)

= wp JCK (f)⊙ a (by Theorem 4.3.1)

Theorem A.11.6 (Left-homogeneity of sp). For all a ∈ U, f ∈ A, we have

sp JCK (a⊙ f) = a⊙ sp JCK (f) .

Proof.

sp JCK (a⊙ f) = λτ :
⊕
σ∈Σ

a⊙ f(σ)⊙ JCK(σ, τ) (by Theorem 4.4.2)

= λτ : a⊙
⊕
σ∈Σ

f(σ)⊙ JCK(σ, τ)

(by distributivity of ⊙ over ⊕)

= a⊙ sp JCK (f) (by Theorem 4.4.2)

A.11.3 Proof of Right-linearity of wp and Left-linearity

of sp, Theorem 4.7.3

Theorem 4.7.3 (Linearity). For all programs C, wpJCK is right-linear spJCK

is left-linear. That is, for all f, g ∈ A and a ∈ U , we have:

wp JCK (f ⊙ a⊕ g) = wp JCK (f)⊙ a⊕ wp JCK (g) ,

sp JCK (a⊙ f ⊕ g) = a⊙ sp JCK (f)⊕ sp JCK (g) .
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Proof.

wp JCK (f ⊙ a⊕ g) = wp JCK (f ⊙ a)⊕ wp JCK (g) (by Additivity)

= wp JCK (f)⊙ a⊕ wp JCK (g) (by Right-homogeneity)

sp JCK (a⊙ f ⊕ g) = sp JCK (a⊙ f)⊕ sp JCK (g) (by Additivity)

= a⊙ sp JCK (f)⊕ sp JCK (g) (by Left-homogeneity)

A.11.4 Proof of Linearity, Corollary 4.7.3.1

Corollary 4.7.3.1 (Linearity). For all programs C, if ⊙ is commutative, both

wpJCK and spJCK are linear. That is, for all f, g ∈ A and a ∈ U , we have:

wp JCK (a⊙ f ⊕ g) = a⊙ wp JCK (f)⊕ wp JCK (g) ,

sp JCK (a⊙ f ⊕ g) = a⊙ sp JCK (f)⊕ sp JCK (g) .

Proof. Direct consequence of Theorem 4.7.3 and commutativity of ⊙.

A.11.5 Proof of Weighted sp-wp Duality, Theorem 4.7.4

Theorem 4.7.4 (Weighted sp-wp Duality). For all programs C and all functions

µ, g ∈ A, we have

⊕
τ∈Σ

sp JCK (µ) (τ)⊙ g(τ) =
⊕
σ∈Σ

µ(σ)⊙ wp JCK (g) (σ) .

Proof.

⊕
τ∈Σ

sp JCK (µ) (τ)⊙ g(τ) =
⊕
τ∈Σ

⊕
σ∈Σ

µ(σ)⊙ JCK(σ, τ)⊙ g(τ)

(by Theorem 4.4.2)

=
⊕
σ∈Σ

⊕
τ∈Σ

µ(σ)⊙ JCK(σ, τ)⊙ g(τ)
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=
⊕
σ∈Σ

µ(σ)⊙
⊕
τ∈Σ

JCK(σ, τ)⊙ g(τ)

=
⊕
σ∈Σ

µ(σ)⊙ wp JCK (g) (σ) .

(by Theorem 4.3.1)

A.11.6 Proof of Quantitative Inductive Reasoning for

wp, Theorem 4.7.6

Theorem 4.7.6 (Quantitative Inductive Reasoning for wp, Batz et al. [24]).

For any program C and any quantities i, f ∈ A, we have:

Φf (i) ⪯ i =⇒ wp JC⟨e,e′⟩K (f) ⪯ i,

where Φf (X) = Je′K⊙ f ⊕ JeK⊙ wp JCK (X) is the characteristic function of

C⟨e,e′⟩ w.r.t. f . △

Proof.

Φf (i) ⪯ i (Premise of the rule)

=⇒ lfp X : Φf (X) ⪯ i (by Park’s Induction [94])

=⇒ wp JC⟨e,e′⟩K (f) ⪯ i (by Definition 4.3.1)

A.11.7 Proof of Quantitative Inductive Reasoning for

sp, Theorem 4.7.7

Theorem 4.7.7 (Quantitative Inductive Reasoning for sp). For any program

C and any quantities i, f ∈ A, we have:

Ψ(i) ⪯ i =⇒ sp JC⟨e,e′⟩K (f) ⪯ i(f),
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where Φ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK)) is the characteristic function of

C⟨e,e′⟩. △

Proof.

Ψ(i) ⪯ i (Premise of the rule)

=⇒ lfp trnsf : Ψ(trnsf) ⪯ i (by Park’s Induction [94])

=⇒ spJC⟨e,e′⟩K ⪯ i (by Definition 4.4.1)

=⇒ sp JC⟨e,e′⟩K (f) ⪯ i(f)

A.11.8 Proof of Quantitative Inductive Reasoning for

sp (total semirings), Theorem 4.7.8

Theorem 4.7.8 (Quantitative Inductive Reasoning for sp (total semirings)).

For any program C and any quantities i, f ∈ A, if the ambient semiring is a

total semiring, we have:

Ψf (i) ⪯ i =⇒ sp JC⟨e,e′⟩K (f) ⪯ i⊙ Je′K,

where Ψf (X) = f ⊕ sp JCK (X ⊙ JeK). △

Proof.

Ψf (i) ⪯ i (Premise of the rule)

=⇒ lfp X : Ψf (X) ⪯ i (by Park’s Induction [94])

=⇒ (lfp X : Ψf (X))⊙ Je′K ⪯ i⊙ Je′K (by monotonicity)

=⇒ sp JC⟨e,e′⟩K (f) ⪯ i⊙ Je′K (by Definition 4.4.1)
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A.12 Proofs of Section 5.3

A.12.1 Proof of Soundness for whp, Theorem 5.3.2

Theorem 5.3.2 (Characterization of whp). For all programs C, hyperquantities

ff ∈ AA, and quantities f ∈ A

whp JCK (ff) (f) = ff(sp JCK (f)) .

Proof. We prove Theorem 5.3.2 by induction on the structure of C. For the

induction base, we have the atomic statement:

The assignment x := e:

We have

whp Jx := eK (ff) (µ) = ff(
⊕
α

[x = e [x/α]]⊙ µ [x/α])

= ff(sp Jx := eK (µ)) .

The nondeterministic assignment x := nondet():

We have

whp Jx := nondet()K (ff) (µ) = ff(
⊕
α

µ [x/α])

= ff(sp Jx := nondet()K (µ)) .

The weighting ⊙w:

We have

whp J⊙wK (ff) (µ) = (ff ⊙ w)(µ)

= ff(µ⊙ w)

= ff(sp J⊙wK (µ)) .
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This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

whp JC1 # C2K (ff) (µ) = whp JC1K (whp JC2K (ff)) (µ)

= whp JC2K (ff) (sp JC1K (µ)) (by I.H. on C1)

= ff(sp JC2K (sp JC1K (µ))) (by I.H. on C2)

= ff(sp JC1 # C2K (µ))

The nondeterministic choice {C1 } □ {C2 }:

We have

whp J{C1 } □ {C2 }K (ff) (µ)

= Sν1, ν2 : ff(ν1 ⊕ ν2) · whp JC1K ([ν1]) (µ) · whp JC2K ([ν2]) (µ)

= Sν1, ν2 : ff(ν1 ⊕ ν2) · [ν1] (sp JC1K (µ)) · [ν2] (sp JC2K (µ))

(by I.H. on C1, C2)

= ff(sp JC1K (µ)⊕ sp JC2K (µ))

= ff(sp J{C1 } □ {C2 }K (µ)) .

The Iteration C⟨e,e′⟩:

whp
r
C⟨e,e′⟩

z
(ff) (µ)

= ff
((
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ)
)
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= ff(sp JC⟨e,e′⟩K (µ)) .

and this concludes the proof.

A.12.2 Proof of Consistency of iteration

rule, Proposition 5.3.1

Proposition 5.3.1 (Consistency of iteration rule). Let

Φ(trnsf) = λhhλf : Sν : hh(ν ⊕ f ⊙ Je′K) · whp JCK (trnsf([ν])) (f ⊙ JeK)

Then, whp
q
C⟨e,e′⟩y is a fixpoint of the higher order function Φ(trnsf), that is:

Φ(λff λµ : ff(sp JC⟨e,e′⟩K (µ))) = λff λµ : ff(sp JC⟨e,e′⟩K (µ))

Proof.

Φ(λff λµ : ff(sp JC⟨e,e′⟩K (µ)))

= λhhλf : Sν : hh(ν ⊕ f ⊙ Je′K)·

whp JCK
(
λµ : [ν] (sp JC⟨e,e′⟩K (µ))

)
(f ⊙ JeK)

= λhhλf : Sν : hh(ν ⊕ f ⊙ Je′K) · [ν] (sp JC⟨e,e′⟩K (sp JCK (f ⊙ JeK)))

(by Theorem 5.3.2)

= λhhλf : hh(sp JC⟨e,e′⟩K (sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K)

= λhhλf : hh(sp JC⟨e,e′⟩K (f))

(spJC⟨e,e′⟩K is a fixpoint of Ψ(X) = λf : X(sp JCK (f ⊙ JeK)⊕ f ⊙ Je′K))

= λff λµ : ff(sp JC⟨e,e′⟩K (µ)) .
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A.13 Proofs of Section 5.4

A.13.1 Proof of Soundness for shp, Theorem 5.4.3

Theorem 5.4.3 (Characterization of shp). For all programs C, hyperquantities

ff ∈ AA and quantities f ∈ A

shp JCK (ff) (f) =
j

µ : sp JCK(µ)=f

ff(µ) .

Proof. We prove Theorem 5.4.3 by induction on the structure of C. For the

induction base, we have the atomic statement:

The assignment x := e:

We have

shp Jx := eK (ff) (ν) = Sµ : ff(µ) ⋏

[⊕
α

µ [x/α]⊙ [x = e [x/α]] = ν

]
= Sµ : ff(µ) ⋏ [sp Jx := eK (µ) = ν]

=
j

µ : sp Jx:=eK(µ)=ν

ff(µ) .

The nondeterministic assignment x := nondet():

We have

shp Jx := nondet()K (ff) (ν) = Sµ : ff(µ) ⋏

[⊕
α

µ [x/α] = ν

]
= Sµ : ff(µ) ⋏ [sp Jx := nondet()K (µ) = ν]

=
j

µ : sp Jx:=nondet()K(µ)=ν

ff(µ) .
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The weighting ⊙w:

We have

shp J⊙wK (ff) (ν) = Sµ : ff(µ) ⋏ [µ⊙ w = ν]

= Sµ : ff(µ) ⋏ [sp J⊙wK (µ) = ν]

=
j

µ : sp J⊙wK(µ)=ν

ff(µ) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

shp JC1 # C2K (ff) (ν) = shp JC2K (shp JC1K (ff)) (ν)

=
j

µ′ : sp JC2K(µ′)=ν

shp JC1K (ff) (µ′) (by I.H. on C2)

=
j

µ′ : sp JC2K(µ′)=ν

j

µ : sp JC1K(µ)=µ′
ff(µ)

(by I.H. on C1)

=
j

µ : sp JC2K(sp JC1K(µ))=ν

ff(µ)

=
j

µ : sp JC1 # C2K(µ)=ν

ff(µ) .

The nondeterministic choice {C1 } □ {C2 }:

We have

shp J{C1 } □ {C2 }K (ff) (ν)
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= Sµ : ff(µ) ⋏
(
shp JC1K ([µ]) ⊠ shp JC2K ([µ])

)
(ν)

= Sµ : ff(µ) ⋏
j

ν1,ν2 : ν1⊕ν2=ν

shp JC1K ([µ]) (ν1) ⋏ shp JC2K ([µ]) (ν2)

= Sµ : ff(µ)

⋏
j

ν1,ν2 : ν1⊕ν2=ν

j

µ′ : sp JC1K(µ′)=ν1

[µ] (µ′) ⋏
j

µ′ : sp JC2K(µ′)=ν2

[µ] (µ′)

(by I.H. on C1, C2)

= Sµ : ff(µ) ⋏
j

ν1,ν2 : ν1⊕ν2=ν

[sp JC1K (µ) = ν1] ⋏ [sp JC2K (µ) = ν2]

= Sµ : ff(µ) ⋏ [sp JC1K (µ)⊕ sp JC2K (µ) = ν]

=
j

µ : sp JC1K(µ)⊕sp JC2K(µ)=ν

ff(µ)

=
j

µ : sp J{C1 }□{C2 }K(µ)=ν

ff(µ) .

The Iteration C⟨e,e′⟩:

shp
r
C⟨e,e′⟩

z
(ff) (ν)

= Sµ : ff(µ) ⋏
[(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ) = ν

]
=

j

µ : sp JC⟨e,e′⟩K(µ)=ν

ff(µ) .

A.13.2 Proof of Consistency of iteration

rule, Proposition 5.4.2

Proposition 5.4.2 (Consistency of iteration rule). Let

Ψ(trnsf)

= λhhλf : Sµ : hh(µ) ⋏
(
trnsf(shp JCK (shp J⊙ eK ([µ]))) ⊠ shp J⊙ e′K ([µ])

)
(f)
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Then, shp
q
C⟨e,e′⟩y is a fixpoint of the higher order function Ψ(trnsf), that is:

Ψ
(
λff λf : Sµ : ff(µ) ⋏

[
sp JC⟨e,e′⟩K (µ) = f

] )
= λff λf : Sµ : ff(µ) ⋏

[
sp JC⟨e,e′⟩K (µ) = f

]

Proof.

Ψ
(
λff λf : Sµ : ff(µ) ·

[
sp JC⟨e,e′⟩K (µ) = f

] )
= λhhλf : Sµ : hh(µ) ·

(
λf ′ : Sµ′ : shp JCK (shp J⊙ eK ([µ])) (µ′)

·
[
sp JC⟨e,e′⟩K (µ′) = f ′

]
⊠ shp J⊙ e′K ([µ])

)
(f)

= λhhλf : Sµ : hh(µ)

·
j

µ1,µ2∈A : µ1⊕µ2=f

Sµ′ : shp J⊙ e # CK ([µ]) (µ′) ·
[
sp JC⟨e,e′⟩K (µ′) = µ1

]
· shp J⊙ e′K ([µ]) (µ2)

= λhhλf : Sµ : hh(µ)

·
j

µ1,µ2∈A : µ1⊕µ2=f

Sµ′ :
j

sp J⊙ e # CK(µ)=µ′∧sp JC⟨e,e′⟩K(µ′)=µ1

+∞

·
j

sp J⊙ e′K(µ)=µ2

+∞ (by Theorem 5.4.3)

= λhhλf : Sµ : hh(µ)

·
j

µ1,µ2∈A : µ1⊕µ2=f

j

sp JC⟨e,e′⟩K(sp J⊙ e # CK(µ))=µ1∧sp J⊙ e′K(µ)=µ2

+∞

= λhhλf : Sµ : hh(µ) ·
[
sp JC⟨e,e′⟩K (sp J⊙ e # CK (µ))⊕ sp J⊙ e′K (µ) = f

]
= λhhλf : Sµ : hh(µ) ·

[
sp JC⟨e,e′⟩K (sp JCK (µ⊙ e′))⊕ µ⊙ e′ = f

]
= λhhλf : Sµ : hh(µ) ·

[
sp JC⟨e,e′⟩K (µ) = f

]
(spJC⟨e,e′⟩K is a fixpoint of Ψ(X) = λf : X(sp JCK (f ⊙ JeK)⊕ f ⊙ Je′K))
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A.13.3 Proof of Soundness for slhp, Theorem 5.5.3

Theorem 5.5.3 (Characterization of slhp). For all programs C, hyperquantities

ff ∈ AA and quantities f ∈ A

slhp JCK (ff) (f) =
k

µ : sp JCK(µ)=f

ff(µ) .

Proof. We prove Theorem 5.5.3 by induction on the structure of C. For the

induction base, we have the atomic statement:

The assignment x := e:

We have

slhp Jx := eK (ff) (ν) = Jµ : ff(µ) ⋎

[⊕
α

µ [x/α]⊙ [x = e [x/α]] ̸= ν

]
= Jµ : ff(µ) ⋎ [sp Jx := eK (µ) ̸= ν]

=
k

µ : sp Jx:=eK(µ)=ν

ff(µ) .

The nondeterministic assignment x := nondet():

We have

slhp Jx := nondet()K (ff) (ν) = Jµ : ff(µ) ⋎

[⊕
α

µ [x/α] ̸= ν

]
= Jµ : ff(µ) ⋎ [sp Jx := nondet()K (µ) ̸= ν]

=
k

µ : sp Jx:=nondet()K(µ)=ν

ff(µ) .

The weighting ⊙w:

We have

slhp J⊙wK (ff) (ν) = Jµ : ff(µ) ⋎ [µ⊙ w ̸= ν]
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= Jµ : ff(µ) ⋎ [sp J⊙wK (µ) ̸= ν]

=
k

µ : sp J⊙wK(µ)=ν

ff(µ) .

This concludes the proof for the atomic statements.

Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

slhp JC1 # C2K (ff) (ν) = slhp JC2K (slhp JC1K (ff)) (ν)

=
k

µ′ : sp JC2K(µ′)=ν

slhp JC1K (ff) (µ′) (by I.H. on C2)

=
k

µ′ : sp JC2K(µ′)=ν

k

µ : sp JC1K(µ)=µ′
ff(µ)

(by I.H. on C1)

=
k

µ : sp JC2K(sp JC1K(µ))=ν

ff(µ)

=
k

µ : sp JC1 # C2K(µ)=ν

ff(µ) .

slhp J{C1 } □ {C2 }K (ff) (ν)

= Jµ : ff(µ) ⋎
(
slhp JC1K ([¬µ]) ⊞ slhp JC2K ([¬µ])

)
(ν)

= Jµ : ff(µ) ⋎
k

ν1,ν2 : ν1⊕ν2=ν

slhp JC1K ([¬µ]) (ν1) ⋎ slhp JC2K ([¬µ]) (ν2)

= Jµ : ff(µ)

⋎
k

ν1,ν2 : ν1⊕ν2=ν

k

µ′ : sp JC1K(µ′)=ν1

[¬µ] (µ′) ⋎
k

µ′ : sp JC2K(µ′)=ν2

[¬µ] (µ′)

(by I.H. on C1, C2)
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= Jµ : ff(µ) ⋎
k

ν1,ν2 : ν1⊕ν2=ν

[sp JC1K (µ) ̸= ν1] ⋎ [sp JC2K (µ) ̸= ν2]

= Jµ : ff(µ) ⋎ [sp JC1K (µ)⊕ sp JC2K (µ) ̸= ν]

=
k

µ : sp JC1K(µ)⊕sp JC2K(µ)=ν

ff(µ)

=
k

µ : sp J{C1 }□{C2 }K(µ)=ν

ff(µ) .

The Iteration C⟨e,e′⟩:

slhp
r
C⟨e,e′⟩

z
(ff) (ν)

= Jµ : ff(µ) ⋎
[(
lfp trnsf : λX : trnsf(sp JCK (X ⊙ JeK))⊕X ⊙ Je′K

)
(µ) ̸= ν

]
=

k

µ : sp JC⟨e,e′⟩K(µ)=ν

ff(µ) .

A.13.4 Proof of Consistency of iteration

rule, Proposition 5.5.2

Proposition 5.5.2 (Consistency of iteration rule). Let

Ψ(trnsf) = λhhλf : Jµ :

hh(µ) ⋎
(
trnsf(slhp JCK (shp J⊙ eK ([¬µ]))) ⊞ shp J⊙ e′K ([¬µ])

)
(f)

Then, slhp
q
C⟨e,e′⟩y is a fixpoint of the higher order function Ψ(trnsf), that is:

Ψ
(
λff λf : Jµ : ff(µ) ⋎

[
sp JC⟨e,e′⟩K (µ) ̸= f

] )
= λff λf : Jµ : ff(µ) ⋎

[
sp JC⟨e,e′⟩K (µ) ̸= f

]
Proof.

Ψ
(
λff λf : Jµ : ff(µ)⋎

[
sp JC⟨e,e′⟩K (µ) ̸= f

] )
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= λhhλf : Jµ : hh(µ)⋎
(
λf ′ : Jµ′ : slhp JCK (slhp J⊙ eK ([¬µ])) (µ′)

⋎
[
sp JC⟨e,e′⟩K

(
µ′
)
̸= f ′

]
⊞ slhp

q
⊙ e′

y
([¬µ])

)
(f)

= λhhλf : Jµ : hh(µ)

⋎
k

µ1,µ2∈A : µ1⊕µ2=f
Jµ′ : slhp J⊙ e # CK ([¬µ]) (µ′)⋎

[
sp JC⟨e,e′⟩K

(
µ′
)
̸= µ1

]
⋎ slhp

q
⊙ e′

y
([¬µ]) (µ2)

= λhhλf : Jµ : hh(µ)

⋎
k

µ1,µ2∈A : µ1⊕µ2=f
Jµ′ :

k

sp J⊙ e # CK(µ′′)=µ′
[¬µ] (µ′′)⋎

[
sp JC⟨e,e′⟩K

(
µ′
)
̸= µ1

]
⋎

k

sp J⊙ e′K(µ′)=µ2

[¬µ] (µ′) (by Theorem 5.4.3)

= λhhλf : Jµ : hh(µ)

⋎
k

µ1,µ2∈A : µ1⊕µ2=f

[
sp JC⟨e,e′⟩K (sp J⊙ e # CK (µ)) ̸= µ1

]
⋎
[
sp J⊙ e′K (µ) ̸= µ2

]
= λhhλf : Jµ : hh(µ)⋎

[
sp JC⟨e,e′⟩K (sp J⊙ e # CK (µ))⊕ sp J⊙ e′K (µ) ̸= f

]
= λhhλf : Jµ : hh(µ)⋎

[
sp JC⟨e,e′⟩K

(
sp JCK

(
µ⊙ e′

))
⊕ µ⊙ e′ ̸= f

]
= λhhλf : Jµ : hh(µ)⋎

[
sp JC⟨e,e′⟩K (µ) ̸= f

]
(spJC⟨e,e′⟩K is a fixpoint of Ψ(X) = λf : X(sp JCK (f ⊙ JeK)⊕ f ⊙ Je′K))

A.14 Proofs of Section 5.6

A.14.1 Proof of Healthiness Properties of whp,

Theorem 5.6.4

Each of the properties is proven individually below.

• Quantitative universal conjunctiveness: Theorem A.14.1;

• Quantitative universal disjunctiveness: Theorem A.14.2;

• k-strictness: Corollary A.14.2.1;
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• Monotonicity: Corollary A.14.2.2.

Theorem A.14.1 (Quantitative universal conjunctiveness of whp). For any

set of quantities S ⊆ AA,

whp JCK
(k

S
)

=
k

ff∈S

whp JCK (ff) .

Proof.

whp JCK
(k

S
)

= λµ : (
k

S)(sp JCK (µ)) (by Theorem 5.3.2)

= λµ :
k

ff∈S

ff(sp JCK (µ))

=
k

ff∈S

whp JCK (ff) . (by Theorem 5.3.2)

Theorem A.14.2 (Quantitative universal disjunctiveness of whp). For any

set of quantities S ⊆ AA,

whp JCK
(j

S
)

=
j

ff∈S

whp JCK (ff) .

Proof.

whp JCK
(j

S
)

= λµ : (
j

S)(sp JCK (µ)) (by Theorem 5.3.2)

= λµ :
j

ff∈S

ff(sp JCK (µ))

=
j

ff∈S

whp JCK (ff) . (by Theorem 5.3.2)

Corollary A.14.2.1 (k−strictness of whp). For all programs C, whp JCK is
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k-strict, i.e.

whp JCK (λf : k) = λf : k .

Proof.

whp JCK (λf : k) = λµ : (λf : k)(sp JCK (µ)) (by Theorem 5.3.2)

= λf : k .

Corollary A.14.2.2 (Monotonicity of Quantitative Transformers). For all

programs C, ff, gg ∈ AA, we have

ff ⪯ gg implies whp JCK (ff) ⪯ whp JCK (gg)

Proof.

whp JCK (ff) = λµ : ff(sp JCK (µ)) (by Theorem 5.3.2)

⪯ λµ : gg(sp JCK (µ)) (ff ⪯ gg)

= whp JCK (gg) (by Theorem 5.3.2)

A.14.2 Proof of Healthiness Properties of shp, slhp,

Theorem 5.6.5

Each of the properties is proven individually below.

• Quantitative universal disjunctiveness: Theorem A.14.3;

• Quantitative universal conjunctiveness: Theorem A.14.4;

• Strictness: Corollary A.14.4.1;

• Costrictness: Corollary A.14.4.2;
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• Monotonicity: Corollary A.14.4.3.

Theorem A.14.3 (Quantitative universal disjunctiveness of shp). For any set

of quantities S ⊆ AA,

shp JCK
(j

S
)

=
j

ff∈S

shp JCK (ff) .

Proof.

shp JCK
(j

S
)

= λf :
j

µ : sp JCK(µ)=f

(
j

S)(µ) (by Theorem 5.4.3)

= λf :
j

µ : sp JCK(µ)=f

(
j

ff∈S

ff)(µ)

= λf :
j

ff∈S

j

µ : sp JCK(µ)=f

ff(µ)

=
j

ff∈S

shp JCK (ff) . (by Theorem 5.4.3)

Theorem A.14.4 (Quantitative universal conjunctiveness of slhp). For any

set of quantities S ⊆ AA,

slhp JCK
(k

S
)

=
k

ff∈S

slhp JCK (ff) .

Proof.

slhp JCK
(k

S
)

= λf :
k

µ : sp JCK(µ)=f

(
k

S)(µ) (by Theorem 5.5.3)

= λf :
k

µ : sp JCK(µ)=f

(
k

ff∈S

ff)(µ)

= λf :
k

ff∈S

k

µ : sp JCK(µ)=f

ff(µ)

=
k

ff∈S

slhp JCK (ff) . (by Theorem 5.5.3)
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Corollary A.14.4.1 (Strictness of shp). For all programs C, shp JCK is strict,

i.e.

shp JCK (λf : −∞) = λf : −∞ .

Proof.

shp JCK (λf : −∞) = λν :
j

µ : sp JCK(µ)=f

(λf : −∞)(µ) (by Theorem 5.4.3)

= λf : −∞ .

Corollary A.14.4.2 (Co-strictness of slhp). For all programs C, slhp JCK is

co-strict, i.e.

slhp JCK (λf : +∞) = λf : +∞ .

Proof.

slhp JCK (λf : +∞) = λν :
k

µ : sp JCK(µ)=f

(λf : +∞)(µ) (by Theorem 5.5.3)

= λf : +∞ .

Corollary A.14.4.3 (Monotonicity of Quantitative Transformers). For all

programs C, ff, gg ∈ AA, we have

ff ⪯ gg implies shp JCK (ff) ⪯ shp JCK (gg)
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and

ff ⪯ gg implies slhp JCK (ff) ⪯ slhp JCK (gg)

Proof.

shp JCK (ff) = λν :
j

µ : sp JCK(µ)=f

ff(µ) (by Theorem 5.5.3)

⪯ λν :
j

µ : sp JCK(µ)=f

gg(µ) (ff ⪯ gg)

= shp JCK (gg) (by Theorem 5.4.3)

slhp JCK (ff) = λν :
k

µ : sp JCK(µ)=f

ff(µ) (by Theorem 5.5.3)

⪯ λν :
k

µ : sp JCK(µ)=f

gg(µ) (ff ⪯ gg)

= slhp JCK (gg) (by Theorem 5.5.3)

A.14.3 Proof of Linearity, Theorem 5.6.6

Theorem 5.6.6 (Linearity). For all programs C, whp JCK is linear, i.e. for all

ff, gg ∈ AA and non-negative constants r ∈ R≥0,

whp JCK (r · ff + gg) = r · whp JCK (ff) + whp JCK (gg) .

△

Proof.

whp JCK (r · ff + gg)

= λµ : (r · ff + gg)(sp JCK (µ)) (by Theorem 5.3.2)

= λµ : (r · ff)(sp JCK (µ)) + gg(sp JCK (µ))
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= λµ : r · ff(sp JCK (µ)) + gg(sp JCK (µ))

= r · whp JCK (ff) + whp JCK (gg) . (by Theorem 5.3.2)

A.14.4 Proof of Multiplicativity, Theorem 5.6.8

Theorem 5.6.8 (Multiplicativity). For all programs C, whp JCK is multiplica-

tive, i.e. for all ff, gg ∈ AA and non-negative constants r ∈ R≥0,

whp JCK (r · ff · gg) = r · whp JCK (ff) · whp JCK (gg) .

△

Proof.

whp JCK (r · ff · gg)

= λµ : (r · ff · gg)(sp JCK (µ)) (by Theorem 5.3.2)

= λµ : r · ff(sp JCK (µ)) · gg(sp JCK (µ))

= r · whp JCK (ff) · whp JCK (gg) . (by Theorem 5.3.2)

A.14.5 Proof of Liberal-Non-liberal Duality,

Theorem 5.6.2

Theorem 5.6.2 (Liberal–Non-liberal Duality, whp). For any program C and

any k-bounded hyperquantity ff , we have whp JCK (ff) = k−whp JCK (k − ff).

Proof.

whp JCK (ff) = λµ : ff(sp JCK (µ))f(τ) (by Theorem 5.3.2)

= k − λµ : k − ff(sp JCK (µ))

= k − whp JCK (k − ff) .
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A.14.6 Proof of Linearity, Theorem 5.6.7

Theorem 5.6.7 (Linearity). For all programs C, shp JCK is sublinear and

slpJCK is superlinear, i.e. for all ff, gg ∈ AA and constants r ∈ U ,

shp JCK (r · ff + gg) ⪯ r · shp JCK (ff) + shp JCK (gg) , and

r · slhp JCK (ff) + slhp JCK (gg) ⪯ slhp JCK (r · ff + gg) .

△

Proof. For shp we have:

shp JCK (r · ff + gg)

= λν : sup
µ∈A,ν=sp JCK(µ)

(r · ff + gg)(µ) (by Theorem 5.4.3)

= λν : sup
µ∈A,ν=sp JCK(µ)

(r · ff(µ) + gg(µ))

⪯ λν : sup
µ∈A,ν=sp JCK(µ)

(r · ff)(µ) + sup
µ∈A,ν=sp JCK(µ)

gg(µ)

= λν : r · sup
µ∈A,ν=sp JCK(µ)

ff(µ) + sup
µ∈A,ν=sp JCK(µ)

gg(µ)

(sup(r · A) = r · supA for A ⊆ R, r ∈ R≥0)

= r · λν : sup
µ∈A,ν=sp JCK(µ)

ff(µ) + λν : sup
µ∈A,ν=sp JCK(µ)

gg(µ)

= r · shp JCK (ff) + shp JCK (gg) . (by Theorem 5.4.3)

For slhp we have:

r · slhp JCK (ff) + slhp JCK (gg)

= r · λν : inf
µ∈A,ν=sp JCK(µ)

ff(µ) + λν : inf
µ∈A,ν=sp JCK(µ)

gg(µ) (by Theorem 5.5.3)

= λν : r · inf
µ∈A,ν=sp JCK(µ)

ff(µ) + inf
µ∈A,ν=sp JCK(µ)

gg(µ)
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= λν : inf
µ∈A,ν=sp JCK(µ)

(r · ff)(µ) + inf
µ∈A,ν=sp JCK(µ)

gg(µ)

(inf(r · A) = r · inf A for A ⊆ R, r ∈ R≥0)

⪯ λν : inf
µ∈A,ν=sp JCK(µ)

(
(r · ff)(µ) + gg(µ)

)
= λν : inf

µ∈A,ν=sp JCK(µ)
(r · ff + gg)(µ)

= slhp JCK (r · ff + gg) . (by Theorem 5.5.3)

A.14.7 Proof of Multiplicativity, Theorem 5.6.9

Theorem 5.6.9 (Multiplicativity). For all programs C, shp JCK is submul-

tiplicative and slhp JCK is supermultiplicative, i.e. for all ff, gg ∈ AA and non-

negative constants r ∈ R≥0,

shp JCK (r · ff · gg) ⪯ r · shp JCK (ff) · shp JCK (gg) , and

r · slhp JCK (ff) · slhp JCK (gg) ⪯ slhp JCK (r · ff · gg) .

△
Proof. For shp we have:

shp JCK (r · ff · gg)

= λν : sup
µ∈A,ν=sp JCK(µ)

(r · ff · gg)(µ) (by Theorem 5.4.3)

= λν : sup
µ∈A,ν=sp JCK(µ)

(
(r · ff)(µ) · gg(µ)

)
⪯ λν : sup

µ∈A,ν=sp JCK(µ)
(r · ff)(µ) · sup

µ∈A,ν=sp JCK(µ)
gg(µ)

= λν : r · sup
µ∈A,ν=sp JCK(µ)

ff(µ) · sup
µ∈A,ν=sp JCK(µ)

gg(µ)

(sup(r · A) = r · supA for A ⊆ R, r ∈ R≥0)

= r · λν : sup
µ∈A,ν=sp JCK(µ)

ff(µ) · λν : sup
µ∈A,ν=sp JCK(µ)

gg(µ)

= r · shp JCK (ff) · shp JCK (gg) . (by Theorem 5.4.3)
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For slhp we have:

r · slhp JCK (f) · slhp JCK (g)

= r · λν : inf
µ∈A,ν=sp JCK(µ)

ff(µ) · λν : inf
µ∈A,ν=sp JCK(µ)

gg(µ) (by Theorem 5.5.3)

= λν : r · inf
µ∈A,ν=sp JCK(µ)

ff(µ) · inf
µ∈A,ν=sp JCK(µ)

gg(µ)

= λν : inf
µ∈A,ν=sp JCK(µ)

(r · ff)(µ) · inf
µ∈A,ν=sp JCK(µ)

gg(µ)

(inf(r · A) = r · inf A for A ⊆ R, r ∈ R≥0)

⪯ λν : inf
µ∈A,ν=sp JCK(µ)

(
(r · ff)(µ) · gg(µ)

)
= λν : inf

µ∈A,ν=sp JCK(µ)
(r · ff · gg)(µ)

= slhp JCK (r · ff · gg) . (by Theorem 5.5.3)

A.14.8 Proof of Liberal-Non-liberal Duality,

Theorem 5.6.3

Theorem 5.6.3 (Liberal–Non-liberal Duality, shp and slhp). For any program

C and hyperquantity ff , we have

shp JCK (ff) = − slhp JCK (−ff) .

Proof.

shp JCK (ff) = λν : sup
µ∈Σ,ν=sp JCK(µ)

ff(µ) (by Theorem 5.4.3)

= λν : − inf
µ∈Σ,ν=sp JCK(µ)

−ff(µ) (supA = − inf(−A))

= − slpJCK (−ff) . (by Theorem 5.5.3)
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A.14.9 Proof of Galois Connection between whp, shp

and slhp, Theorem 5.6.1

Theorem 5.6.1 (Hyper Galois Connection). For all C ∈ Reg and gg, ff ∈ AA:

gg ⪯ whp JCK (ff) iff shp JCK (gg) ⪯ ff ,

whp JCK (ff) ⪯ gg iff ff ⪯ slhp JCK (gg) .

Proof.

gg ⪯ whp JCK (ff) ⇐⇒ ∀µ ∈ A : gg(µ) ≤ whp JCK (ff) (µ)

⇐⇒ ∀µ ∈ A : gg(µ) ≤ ff(sp JCK (µ)) (by Theorem 5.3.2)

⇐⇒ ∀µ, ν ∈ A : ν = sp JCK (µ) : gg(µ) ≤ ff(ν)

⇐⇒ ∀ν ∈ A : sup
µ∈A,ν=sp JCK(µ)

gg(µ) ≤ ff(ν)

⇐⇒ ∀ν ∈ A : shp JCK (gg) (ν) ≤ ff(ν)

(by Theorem 5.4.3)

⇐⇒ shp JCK (gg) ⪯ ff .

whp JCK (ff) ⪯ gg ⇐⇒ ∀µ ∈ A : whp JCK (ff) (µ) ≤ gg(µ)

⇐⇒ ∀µ ∈ A : ff(sp JCK (µ)) ≤ gg(µ) (by Theorem 5.3.2)

⇐⇒ ∀µ, ν ∈ A : ν = sp JCK (µ) : ff(ν) ≤ gg(µ)

⇐⇒ ∀ν ∈ A : ff(ν) ≤ inf
µ∈A,ν=sp JCK(µ)

gg(µ)

⇐⇒ ∀ν ∈ A : ff(ν) ≤ slhp JCK (gg) (ν)

(by Theorem 5.5.3)

⇐⇒ ff ⪯ slhp JCK (gg) .
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A.14.10 Proof of whp rules for additive hyperquantities,

Theorem 5.6.10

Theorem 5.6.10 (Weakest Hyper Pre for Additive Hyperquantities). For

additive hyperquantities ff ∈ AA, the simpler rules in Table 5.4 are valid.

Proof. We prove Theorem 5.3.2 by induction on the structure of C. For the

induction base, we have the atomic statement:

The assignment x := e:

We have

whp Jx := eK (ff) (µ) =
⊕
α

ff([x = e [x/α]]⊙ µ [x/α])

= ff(
⊕
α

[x = e [x/α]]⊙ µ [x/α])

= ff(sp Jx := eK (µ)) .

The nondeterministic assignment x := nondet():

We have

whp Jx := nondet()K (ff) (µ) = ff(
⊕
α

µ [x/α])

= ff(sp Jx := nondet()K (µ)) .

The weighting ⊙ a:

We have

whp J⊙wK (ff) (µ) = (ff ⊙ w)(µ)

= ff(µ⊙ w)

= ff(sp J⊙wK (µ)) .

This concludes the proof for the atomic statements.
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Induction Hypothesis:

For arbitrary but fixed programs C, C1, C2, we proceed with the inductive step

on the composite statements.

The sequential composition C1 # C2:

We have

whp JC1 # C2K (ff) (µ) = whp JC1K (whp JC2K (ff)) (µ)

= whp JC2K (ff) (sp JC1K (µ)) (by I.H. on C1)

= ff(sp JC2K (sp JC1K (µ))) (by I.H. on C2)

= ff(sp JC1 # C2K (µ))

The nondeterministic choice {C1 } □ {C2 }:

We have

whp J{C1 } □ {C2 }K (ff) (µ)

= whp JC1K (ff) (µ)⊕ whp JC2K (ff) (µ)

= ff(sp JC1K (µ))⊕ ff(sp JC2K (µ)) (by I.H. on C1, C2)

= ff(sp JC1K (µ)⊕ sp JC2K (µ)) (by Definition 5.6.1)

=
⊕
ν1,ν2

ff(ν1 ⊕ ν2)⊙ [ν1] (sp JC1K (µ))⊙ [ν2] (sp JC2K (µ))

= ff(sp JC1K (µ)⊕ sp JC2K (µ))

= ff(sp J{C1 } □ {C2 }K (µ)) .

The Iteration C⟨e,e′⟩:

Let

Φff (trnsf) = ff ⊙ Je′K +∗ whp JCK (trnsf)⊙ JeK
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be the whp-characteristic function of the iteration C⟨e,e′⟩ with respect to any

hyperquantity ff . Let

Ψ(trnsf) = λf : trnsf(sp JCK (f ⊙ JeK))⊕ f ⊙ Je′K

be the sp-characteristic function of the iteration C⟨e,e′⟩.

We first prove by induction on n that:

Φn
ff (λg : ff(0))(µ) = ff(Ψn(λg : 0)(µ)) (A.14)

For the induction base n = 0, consider the following:

Φ0
ff (λg : ff(0))(µ) = ff(0)

= ff(Ψ0(λg : 0)(µ)) .

As induction hypothesis, we have for arbitrary but fixed n and all µ

Φn
ff (λg : ff(0))(µ) = ff(Ψn(λg : 0)(µ))

For the induction step n −→ n+ 1, consider the following:

Φn+1
ff (λg : ff(0))(µ) = Φff (Φn

ff (λg : ff(0)))(µ)

= (ff ⊙ Je′K +∗ whp JCK
(
Φn
ff (λg : ff(0))

)
⊙ JeK)(µ)

= ff(µ⊙ Je′K) +∗ whp JCK
(
Φn
ff (λg : ff(0))

)
(µ⊙ JeK)

= ff(µ⊙ Je′K) +∗ Φn
ff (λg : ff(0))(sp JCK (µ⊙ JeK))

(by I.H. on C)

= ff(µ⊙ Je′K) +∗ ff(Ψn(λg : 0)(sp JCK (µ⊙ JeK)))

(by I.H. on n)

= ff(µ⊙ Je′K⊕Ψn(λg : 0)(sp JCK (µ⊙ JeK)))

(by additivity)
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= ff(Ψn(λg : 0)(sp JCK (µ⊙ JeK))⊕ µ⊙ Je′K)

(by commutativity)

= ff(Ψn+1(λg : 0)(µ)) .

This concludes the induction on n. Now we have:

whp
r
C⟨e,e′⟩

z
(ff) (µ) =

(
lfp trnsf : Φff (trnsf)

)
(µ)

= sup
n∈N

Φn
ff (ff(0))(µ) (by Kleene’s fixpoint theorem)

= sup
n∈N

ff(Ψn(λg : 0)(µ)) (by Equation (A.14))

= ff(sup
n∈N

Ψn(λg : 0)(µ))

= ff(sp JC⟨e,e′⟩K (µ)) . (by Kleene’s fixpoint theorem)

A.15 Proofs of Section 5.7

A.15.1 Proof of Subsumption of HHL, Theorem 5.7.1

Theorem 5.7.1 (Subsumption of HHL). For hyperpredicates ψψ, ϕϕ and non-

probabilistic program C:

|=hh {ψψ } C {ϕϕ }

iff supp ([ψψ]) ⊆ supp (whp JCK ([ϕϕ]))

iff supp (shp JCK ([ϕϕ])) ⊆ supp ([ψψ])

iff supp ([¬ψψ]) ⊆ supp (slhp JCK ([¬ϕϕ]))

Proof.

|=hh {ψψ } C {ϕϕ } iff ∀S ∈ P(Σ) : S ∈ ψψ =⇒ JCK(S) ∈ ϕϕ
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iff ∀S ∈ P(Σ) : S ∈ ψψ =⇒ supp (sp JCK ([S])) ∈ ϕϕ

iff ∀S ∈ P(Σ) : [ψψ] ([S]) ≤ [ϕϕ] (sp JCK ([S]))

iff ∀S ∈ P(Σ) : [ψψ] ([S]) ≤ whp JCK ([ϕϕ]) ([S])

iff ∀µ ∈ A : [ψψ] (µ) ≤ whp JCK ([ϕϕ]) (µ)

iff supp ([ψψ]) =⇒ supp (whp JCK ([ϕϕ]))

A.15.2 Proof of Subsumption of Quantitative wp, wlp

for Nondeterministic Programs, Theorem 5.7.2

Theorem 5.7.2 (Subsumption of Quantitative wp, wlp for Nondeterministic

Programs [17]). Let A = ⟨R±∞,max,min, 0, 1⟩. For any quantities g, f and

any program C satisfying the syntax of [17, Section 2]:

whp JCK
(k

[f ]
)

(1σ) = wlpJCK (f) (σ) ,

whp JCK
(j

[f ]
)

(1σ) = wp JCK (f) (σ) .

Proof.

whp JCK
(j

[f ]
)

(1σ) =
j

[f ](sp JCK (1σ))

=
j

τ : sp JCK(1σ)(τ)>0

f(τ)

= wp JCK (f) (σ)

whp JCK
(k

[f ]
)

(1σ) =
k

[f ](sp JCK (1σ))

=
k

τ : sp JCK(1σ)(τ)>0

f(τ)

= wlpJCK (f) (σ)
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A.15.3 Proof of Subsumption of Quantitative wp, wlp

for Probabilistic Programs, Theorem 5.7.3

Theorem 5.7.3 (Subsumption of Quantitative wp, wlp for Probabilistic Pro-

grams [16]). Let Prob = ⟨[0, 1],+, ·, 0, 1⟩. For any quantities g, f and any

non-nondeterministic (possibly probabilistic) program C:

whp JCK (E[f ]) (1σ) = wp JCK (f) (σ)

whp JCK (E[f ] + 1− E[1]) (1σ) = wlpJCK (f) (σ) .

Proof.

whp JCK (E[f ]) (1σ) = E[f ](sp JCK (1σ))

= wp JCK (f) (σ)

whp JCK (E[f ] + 1− E[1]) (1σ) = (E[f ] + 1− E[1])(sp JCK (1σ))

= wp JCK (f) (σ) + 1− wp JCK (1) (σ)

= wlpJCK (f) (σ)
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and Philippa Gardner. Exact Separation Logic: Towards Bridging the

Gap Between Verification and Bug-Finding. In Karim Ali and Guido Sal-

vaneschi, editors, 37th European Conference on Object-Oriented Program-

ming (ECOOP 2023), volume 263 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 19:1–19:27, Dagstuhl, Germany, 2023. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-281-5. doi:

https://doi.org/10.1145/1111037.1111046
https://doi.org/10.1145/3591289
https://api.semanticscholar.org/CorpusID:212644477


BIBLIOGRAPHY 362

10.4230/LIPIcs.ECOOP.2023.19. URL https://drops.dagstuhl.de/

entities/document/10.4230/LIPIcs.ECOOP.2023.19.

[73] Thibault Dardinier and Peter Müller. Hyper hoare logic: (dis-)proving

program hyperproperties. Proc. ACM Program. Lang., 8(PLDI), jun 2024.

doi: 10.1145/3656437. URL https://doi.org/10.1145/3656437.

[74] Noam Zilberstein. A relatively complete program logic for effectful

branching, 2024.

[75] Zohar Manna and Amir Pnueli. Axiomatic approach to total correctness of

programs. Acta Informatica, 3:243–263, 1974. doi: 10.1007/BF00288637.

URL https://doi.org/10.1007/BF00288637.

[76] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter

O’Hearn, and Jules Villard. Local reasoning about the presence of

bugs: Incorrectness separation logic. In Shuvendu K. Lahiri and Chao

Wang, editors, Computer Aided Verification, pages 225–252, Cham, 2020.

Springer International Publishing. ISBN 978-3-030-53291-8.
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