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Abstract

Current regional seismic risk modeling approaches predominantly emphasize direct
financial loss as the primary measure of earthquake impact. Integrating recovery
time into these models can better support decisions toward community resilience
and a shift toward more people-centered and equitable disaster risk modeling.
Although advanced probabilistic models for estimating recovery times of individual
buildings are becoming more common, regional-scale quantification for community-
level simulations remains overly simplified, often relying on low-fidelity approaches
without the explicit consideration of key underlying drivers of recovery. This study
proposes a methodological approach to improve recovery time consequence
models in regional simulations by leveraging high-fidelity, building-specific recovery
simulations. We employ downtime fragility functions and consequence models to
characterize key elements of the recovery process, such as impeding factor delays
and repair times. This approach provides a probabilistic estimation of post-
earthquake recovery time to achieve two distinct recovery states, that is, shelter-in-
place and functional recovery. The proposed methodology enables a more efficient
quantification of recovery time at the building portfolio scale by leveraging
simulation-based recovery time consequence models that could be seamlessly
integrated into regional risk assessments. The proposed consequence models are
trained based on 50,000 TREADS (Tool for Recovery Estimation And Downtime
Simulation) recovery simulation results of modern high-rise (8-24 stories)
reinforced concrete shear wall buildings at various ground-shaking intensity levels

'Department of Civil, Environmental, and Geomatic Engineering, University College London, London, UK
2Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada

Corresponding author:

Pouria Kourehpaz, Department of Civil, Environmental, and Geomatic Engineering, University College London,
Chadwick Building, Gower Street, London WCIE 6BT, UK.

Email: p.kourehpaz@ucl.ac.uk


https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/87552930251344981
journals.sagepub.com/home/eqs
http://crossmark.crossref.org/dialog/?doi=10.1177%2F87552930251344981&domain=pdf&date_stamp=2025-06-24

2 Earthquake Spectra 00(0)

and applied, for illustrative purposes, to a portfolio of 218 buildings across Metro
Vancouver, BC, under a magnitude-9 Cascadia subduction zone earthquake.
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Introduction

The performance-based earthquake engineering (PBEE) framework, as proposed by
Cornell and Krawinkler (2000) and further elaborated by Moechle and Deierlein (2004), is
now practically implemented in the Federal Emergency Management Agency (FEMA) P-
58 methodology (FEMA, 2018). Such implementation facilitates probabilistic seismic per-
formance assessments for individual buildings by deriving various decision variables or
loss measures, such as repair cost. Quantifying the economic impacts of earthquakes can
inform planners, policymakers, and other end users about underlying risks and potential
risk mitigation strategies (e.g. Gentile et al., 2022). Nevertheless, assessing post-disaster
recovery of the built environment is vital for quantifying (and eventually enhancing) com-
munity resilience, which in turn can inform more equitable recovery planning decisions
(Galasso and Opabola, 2024). Proper quantification of building recovery within the built
environment is essential and, when combined with household socioeconomic factors, can
provide a deeper understanding of inequities in recovery across neighborhoods in a region
(Costa et al., 2021). To this end, researchers have attempted to quantify post-earthquake
recovery times by developing high-fidelity models to account for repair time as well as
delays incurred prior to the start of repairs, that is, impeding factor (IF) delays (e.g.
Almufti and Willford, 2013; Cook et al., 2022; Molina Hutt et al., 2022b; Terzic et al.,
2021).

While the original PBEE framework and resulting recovery models were developed for
individual buildings, extending it to a regional scale is essential to help bridge the gap
between a single structure’s performance assessment and a community’s seismic resilience
(Krawinkler and Deierlein, 2014). The PBEE framework enables building-specific compo-
nent-level probabilistic risk assessments, that is, high-fidelity risk modeling. However, sim-
plifications are necessary for a more efficient seismic risk assessment on a regional scale.
The challenges at a regional scale can often be associated with limited computational
resources and insufficient detailed exposure information (Papadopoulos et al., 2024), as
well as excessive levels of uncertainty in vulnerability modeling (Silva, 2016). As a result,
regional risk models generally employ a single, generic building archetype (or index build-
ing) for each building type (i.e. a specific building class) within a given building portfolio.
This archetype represents the average (or modal) characteristics of that class. This
approach contrasts with the detailed (i.e. building-specific) structural and nonstructural
inventories used in the building-specific PBEE framework. The extension of the original
PBEE framework to a regional scale can be further facilitated by employing simplified
structural models for response simulations, as well as low-fidelity damage and conse-
quence models, that is, building-level rather than component-level fragility and conse-
quence models (e.g. Heresi and Miranda, 2023). Such models have been implemented in
well-established, state-of-practice seismic risk assessment computational tools such as
Hazus (FEMA, 2020) and OpenQuake (Silva et al., 2014). Although these tools have
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provided consequence models for recovery time, they oversimplify recovery and, often,
provide deterministic values per damage state (DS) without accounting for key underlying
drivers of recovery, that is, IF delays and repair time. To address this limitation and pro-
vide more informed estimates of recovery time by building upon individual building-level
FEMA P-58 analyses, Burton et al. (2016) introduced a framework to perform a probabil-
istic evaluation of the post-carthquake recovery of buildings. Their framework defines dis-
crete limit states linked to various functionality levels. While the work offers valuable
insights into regional-scale recovery analyses by means of event trees for different limit
states, it does not provide guidance on obtaining the underlying data required to imple-
ment their framework, deriving downtime fragility functions, that is, the probability of
exceeding a building-level limit state as a function of earthquake-induced ground motion
intensity, or computing repair time and IF delays, which could limit its adoption in
regional risk assessments.

In this study, we propose a methodological approach to improve the recovery time con-
sequence models by leveraging high-fidelity building-specific recovery simulations. The
improved consequence models correspond to statistical distributions derived to character-
ize IF delays and building repair time, which are combined with exceedance probabilities
obtained from downtime fragility functions to provide a probabilistic estimation of recov-
ery time. This approach facilitates a more efficient recovery assessment of building portfo-
lios across a broad spectrum of ground motion intensity levels, eliminating the need for
time-consuming high-fidelity simulations. To illustrate the development procedure for the
proposed methodology to derive the recovery time consequence models, we leverage
detailed building-specific recovery simulations obtained from the Python-based implemen-
tation of Tool for Recovery Estimation And Downtime Simulation (TREADS)
(Kourehpaz, 2022) as proposed by Molina Hutt et al. (2022b). The TREADS results are
produced for a portfolio of modern high-rise reinforced concrete shear wall (RCSW)
archetypes comprising 8, 12, 16, 20, and 24 stories subjected to ground motion records at
five different hazard levels with a mean return period of 100, 475, 975, 2475, and
4975 years. Finally, the adoption of the proposed methodology in a regional risk assess-
ment is demonstrated, considering a portfolio of 218 modern high-rise RCSW buildings in
Metro Vancouver, BC, Canada subjected to 30 physics-based ground motion simulations
of magnitude-9 (M9) Cascadia megathrust interface earthquakes.

Methodology

This section describes the methodology for deriving downtime fragility functions and the
proposed recovery time consequence models to facilitate post-earthquake probabilistic
recovery assessments for building portfolios. Figure 1 illustrates the key steps of the pro-
posed methodology, which leverages high-fidelity building-specific recovery simulations
(built up on conventional PBEE assessments). According to the PBEE framework, for a
given building class represented by a given building archetype, a computational (struc-
tural) model is developed to perform nonlinear structural analyses under a given ground
motion intensity level. Using the engineering demand parameters obtained from response
simulations in conjunction with component-level fragility functions, a damage analysis is
performed. The resulting damage information is then translated into losses using the cor-
responding consequence functions. Using damage and loss analysis (in terms of compo-
nent repair times) results, high-fidelity recovery simulations are performed by accounting
for various construction constraints (e.g. repair sequencing and worker allocation) and the
contribution from IF delays (Step 1). These are the generic procedures to obtain inputs
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specified in Step 1. Any computational tool for nonlinear response analysis (e.g. OpenSees
(McKenna, 2016), LS-DYNA (LSTC, 2019)), loss analysis (e.g. PELICUN (Zsarnoczay
and Deierlein, 2020; Zsarnoczay and Kourechpaz, 2021), SP3 (2019)), and recovery analysis
(e.g. TREADS (Kourehpaz, 2022), ATC-138 (FEMA, 2021), F-Rec (Terzic et al., 2021))
can be used in Step 1 in order to produce the data required for the subsequent steps.
Building recovery realizations obtained in Step 1 are used to derive building class-level
downtime fragility functions for desired limit states (Step 2A). These functions link the
ground-shaking intensity to the probability of exceeding various post-earthquake limit
states, enabling a probabilistic evaluation of building performance. The desired limit states
entail target recovery states, as well as irreparable damage (IrD) and collapse (if applica-
ble), both of which could be regarded as non-recoverable states requiring full building
replacement. Deriving downtime fragility functions is crucial for assessing the contribu-
tions of negligible damage, repairable damage, IrD, and collapse to the overall recovery
time at a desired recovery state. It should be noted that the definitions and terminology of
limit states may vary across recovery time assessment frameworks (e.g. TREADS, ATC-
138). Although our methodology can be applied to derive downtime fragility functions for
any recovery state, it is crucial to clearly define the physical meaning of the recovery states
adopted.

Step 2B includes recovery time consequence models, which provide statistical distribu-
tions of inspection time for negligible damage, repair time/IF delays for repairable dam-
age, and replacement time for IrD or collapse realizations. For negligible damage and IrD
or collapse realizations, simple lognormal distributions are assumed, consistent with find-
ings from past earthquake events in the literature (Almufti and Willford, 2013; Marquis
et al., 2017). For repairable damage realizations, at a given ground motion intensity level,
statistical distributions are derived distinctively for IF delays and repair times for each
recovery state considered, using ground motion intensity as the model input. To determine
the best fit across various statistical distributions, the root mean squared error (RMSE) is
employed as the evaluation metric. RMSE is a statistical measure that quantifies the dis-
crepancy between observed data (represented by the high-fidelity recovery estimates) and
model predictions, with lower RMSE values indicating a better model fit (Li, 2010). While
RMSE is used to compare the fitting error across various probability distributions, maxi-
mum likelihood estimation (MLE), as outlined by Baker (2015), is employed to estimate
the parameters of the fitted distributions, consistent with the assumptions used to derive
the parameters of downtime fragility functions. Per the MLE methodology, the parameters
of the assumed distribution are determined by maximizing the likelihood function, ensur-
ing that the resulting distribution best explains the observed (i.e. high-fidelity simulation)
data. To mitigate estimation bias, k-fold cross-validation (Cawley and Talbot, 2010) is also
employed, which partitions the original dataset into training and test sets.

In cases where no limit state is exceeded, that is, instances of negligible damage, the total
recovery time is taken as the inspection time, which is typically relatively short and can
occur within a few days. By aggregating realizations of negligible damage, repairable dam-
age, IrD, and collapse (Step 2B), per their percentage contribution to the total recovery
time derived from downtime fragility functions (Step 2A), a full probabilistic distribution
of a building’s recovery time for a given building class could be generated for a desired
recovery state under a given ground motion intensity (Step 3). The process of transitioning
from individual building outcomes (Step 1) to building classes (Step 3) requires generating
recovery simulations across a wide range of ground motion intensities and building charac-
teristics (i.e. height) within a desired building class to develop robust consequence models.
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Figure 1. Methodology for deriving the proposed recovery time consequence models for a given
building class.

The workflow outlined in Figure 1 would be repeated for each building class to develop
recovery consequence models specific to that class. Building class-level recovery estimates
across all classes could then be aggregated to generate a recovery trajectory for an entire
building portfolio, enabling its application in regional risk assessment, once recovery time
consequence models are developed for all building classes. In summary, Step 1 outlines the
input data required for training, Step 2 describes the development process of recovery time
consequence models for one building class, and Step 3 demonstrates a potential application
of the proposed methodology to building portfolios.

lllustrative implementation of the proposed methodology

To demonstrate the implementation of the methodology presented in the previous section,
we use case-study archetypes along with specific computational tools employed for each
step outlined in Figure 1. The following sections provide detailed information on the simu-
lation results of the high-fidelity recovery analyses (Step 1), as well as the derivation of
downtime fragility functions (Step 2A) and recovery time consequence models (Step 2B).

Database of seismic performance assessments

The dataset used to illustrate the implementation of the proposed methodology comprises
a set of modern residential high-rise RCSW archetypes with 8, 12, 16, 20, and 24 stories.
These archetypes were designed by Marafi et al. (2020a) for a case-study location in the
Pacific Northwest (47.60° N, —122.30° W) to satisfy the minimum seismic design require-
ments of the ASCE 7-16 standard (ASCE, 2016). Their design had a maximum drift limit
of 2%under the design basis earthquake, and a 1.0 flexural demand-to-capacity ratio at
the base of the walls. Marafi et al. (2020a) developed the archetypes as special RCSWs in
compliance with ACI 318-14 (ACI, 2014) requirements, considering a seismic force-
reduction factor (R) of 6 and employing a modal response spectrum analysis procedure.
The archetype buildings have a typical floor size of 30.5 m X 30.5 m (100 ft X 100 ft), with
a story height of 3.05 m (10 ft). Each archetype’s lateral force-resisting system includes a
symmetrical central core with two C-shaped walls, coupled in one direction and cantilev-
ered in the opposite direction.

A multiple stripe analysis (MSA) procedure (Jalayer and Cornell, 2009) was adopted
by Marafi et al. (2020a) to evaluate the structural response of the archetypes subjected to
ground motion records representing 100-, 475-, 975-, 2475-, and 4975-year intensity levels
according to the 2014 National Seismic Hazard Model (NSHM) (Petersen et al., 2014) for
the considered location. Marafi et al. (2020a) performed a nonlinear response analysis for
all structural models in OpenSees (McKenna, 2016). They performed response analyses in
the cantilevered direction of the buildings only; thus, the impacts of torsion and
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bidirectional loading on structural response were not taken into account. A conditional
mean spectrum (CMS) was utilized to characterize the anticipated demand, considering
the target Spectral Acceleration (SA) at the fundamental period of each archetype. The
target CMS for each return period was determined based on a site-specific probabilistic
seismic hazard analysis. At each hazard level, 100 ground motion records were selected to
account for the contribution from three types of seismic source mechanisms, that is, crus-
tal, intraslab, and interface. The acceleration time histories were scaled to match the mean
of the site-specific target spectrum (Jayaram et al., 2011). Additional information on the
modeling strategy and ground motion selection process can be found in Marafi et al.
(2019, 2020b). The building performance models for the archetype buildings, developed by
Kourehpaz et al. (2021), include an exhaustive list of structural and nonstructural compo-
nents such as shear walls, slab-column connections, facade, fitouts, elevators, and
Mechanical, Electrical, and Plumbing (MEP) systems. Utilizing the response simulation
results (i.e. engineering demand parameters) and a comprehensive inventory of structural
and nonstructural components, as well as the corresponding component-level fragility and
vulnerability functions, damage and loss assessments are performed using PELICUN
(Zsarndczay and Deierlein, 2020; Zsarnoczay and Kourehpaz, 2021), that is, an open-
source loss estimation tool developed by the SimCenter (the Natural Hazards Engineering
Research Infrastructure (NHERI) program’s computational modeling and simulation cen-
ter) that implements the FEMA P-58 methodology. The dataset comprises 50,000 data
points, representing five archetype buildings assessed across five intensity levels, with 2000
Monte Carlo simulations per case derived from PELICUN to account for the uncertain-
ties influencing the seismic performance of the building archetypes.

TREADS analysis (Step 1)

TREADS is an open-source software package (Kourehpaz, 2022) for the probabilistic eva-
luation of a building’s temporal recovery trajectory. It enables high-fidelity recovery time
or downtime simulations using detailed component-level damage and loss information.
This tool implements the recovery time estimation framework developed by Molina Hutt
et al. (2022b). TREADS assessments are carried out using FEMA P-58 damage and loss
assessment results obtained from PELICUN, along with component repair class, floor
repair phasing, and sequencing assumptions, as outlined in Blowes et al. (2023). For
instance, building repairs are assumed to happen concurrently on every two or three floors.
TREADS estimates earthquake-induced downtime to achieve various recovery states, such
as shelter-in-place (SiP) and functional recovery (FR). A building’s ability to continue ser-
ving its primary function after an earthquake, even if all necessary repairs are not yet com-
plete, is referred to as FR. In contrast, the SiP recovery state allows for relaxed post-
earthquake habitability standards, allowing significant nonstructural damage and some
structural damage, provided that occupant safety is maintained. According to TREADS,
the FR recovery state only allows cosmetic damage and is hindered by damage to any
structural, exterior fagade, elevator, staircase, or interior components (e.g. water piping
and Heating, Ventilation, and Air-Conditioning (HVAC) systems). On the other hand, in
the SiP recovery state, a more significant extent of damage is anticipated, and, for exam-
ple, SiP can be hindered if the number of damaged structural and staircase components at
moderate to high damage levels exceeds 50% of the total number of components on every
story. These represent current default assumptions in TREADS, which can be easily
updated based on a user’s needs. More details about these assumptions can be found in
Molina Hutt et al. (2022b). In addition, Kourchpaz et al. (2025) provides insight into key
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parameters that could significantly impact SiP and FR estimates, which can serve as a use-
ful starting point for users looking to revisit specific assumptions.

In estimating the total recovery time, this methodology considers delays caused by IFs,
as well as the building’s repair time. The building’s repair time is calculated by aggregating
component repair times, considering detailed repair phasing, sequencing, and labor alloca-
tion schemes. TREADS uses consequence functions for components exceeding a certain
repair class, associated with FR and SiP, to compute the component’s repair time. The
concept of a repair class was first introduced in the REDi guidelines (Almufti and
Willford, 2013), which is employed to identify the necessary repairs needed to achieve a
specific recovery state. Each DS in each building component is assigned a repair class to
represent whether the extent of damage would hinder achieving a target recovery state.
For instance, all components assigned a repair class of two or higher hinder FR, and those
assigned four or higher hinder SiP. The concept of a repair class is, in a way, an implicit
fault tree (similar to what is used by other recovery time estimation methods, e.g. ATC-
138) to determine whether the extent and criticality of damage to certain building compo-
nents hinders recovery. Those systems are then flagged as needed (or not) to achieve a cer-
tain recovery state. The IF delays encompass a range of potential (external) factors that
could delay the commencement of repair activities. These factors encompass activities
related to building inspection, engineering, permitting, financing, stabilization (applicable
when the building is deemed unstable), and contractor mobilization associated with vari-
ous component groups, including structural, interior, exterior, MEP, elevator, and stair-
case. In instances where damage is minimal, and no recovery state is hindered, that is,
negligible damage cases, the total recovery time is taken as the inspection time, which fol-
lows a lognormal distribution with a median of five days and a dispersion of 0.54, as out-
lined in the REDi guidelines.

TREADS also accounts for building replacement scenarios due to IrD and collapse.
The probability of IrD is calculated based on residual drifts using the methodology out-
lined in FEMA P-58. The contribution of collapse instances to the total recovery time can
also be accounted for in TREADS assessments by using collapse probabilities derived
from the building’s collapse fragility function. In the event of IrD or collapse, the recovery
time is taken as the building’s total replacement time, which includes reconstruction time
and delays due to engineering, financing, and demolition activities. The reconstruction
time is assumed to be two weeks per story for residential buildings, regardless of the struc-
tural system, which is consistent with the range considered in past studies (e.g. Du et al.,
2021; Jarrett et al., 2015; Molina Hutt et al., 2019). The reconstruction delays are primar-
ily determined by the demolition time, which follows a lognormal distribution with a med-
ian of 445 days and a dispersion of 0.57, obtained based on empirical data on multi-story
concrete buildings from the 2011 Christchurch earthquake (Marquis et al., 2017). These
are the baseline assumptions currently used in TREADS, but could be adjusted based on
region-specific and empirical data. A summary of ground motion intensity measures, story
drift ratios, expected repair costs, expected repair times, and recovery times for all building
archetypes across all hazard levels is provided in Electronic Supplement I.

Downtime fragility function derivation (Step 2a)

Building class-level downtime fragility functions based on post-earthquake usability sta-
tus, that is, SiP and FR, are derived by lumping together analysis results of modern high-
rise (eight to 24 stories) RCSW buildings. For the shaking intensity range considered in



8 Earthquake Spectra 00(0)

1.0 1
Q
o
c
8 0.8 A
]
8
X 0.6
5 — FR
047 — sip
a — ID
@© ]
S 0.2 —-=- DS1
@ -—- DS2
0.0 A1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
AvgSA [g]

Figure 2. Downtime and damage fragility functions for modern high-rise reinforced concrete shear wall
buildings derived based on analysis results of eight- to 24-story archetypes. FR, functional recovery; SiP,
shelter-in-place; IrD, irreparable damage; DS, damage state; AvgSA, average spectral acceleration.

this study, collapse cases are not observed, as the probability of collapse is negligible for
the modern, code-compliant buildings examined (Kourehpaz et al., 2021). To enable the
use of consistent fragility functions for a building class representing buildings of different
heights and, as a result, different fundamental periods (7}), the average spectral accelera-
tion (AvgSA) is used as a ground motion intensity measure. 4vgSA4 is computed by calcu-
lating the geometric mean of the ground motion SA4 across the range 0.2 T} to 2 7. Here,
T, is taken as the fundamental period associated with the average height of the archetype
buildings in the dataset, where the average height corresponds to a 16-story archetype
building with a 7} of 3.5 s. This enables consistent damage and fragility characterization
across buildings within a class. AvgSA4 accounts for spectral shape effects and is consid-
ered a more efficient and sufficient intensity measure than SA at a single fundamental
period for characterizing seismic damage across a building class, as commonly assumed in
conventional regional risk assessment frameworks (e.g. Eads et al., 2015; Minas and
Galasso, 2019). While SA(T;) would require careful record selection and may lead to sig-
nificant site-to-site variability in seismic loss, 4vgSA can mitigate the site-dependence
effects of ground motion record selection on seismic risk estimates for building portfolios
as outlined by Kohrangi et al. (2017). Their findings also suggest that using AvgSA results
in smaller ground motion scale factors in the conditional spectrum method compared to
using SA(T}), which can enhance fidelity while preserving hazard consistency.

In Figure 2, downtime fragility functions are derived by fitting a cumulative lognormal
distribution to the data (the probability of exceeding FR or SiP immediately post-
earthquake and of experiencing IrD as a function of AvgSA, which can enhance fidelity
while preserving hazard consistency) using the MLE procedure. At a given ground motion
intensity level, the exceedance probability obtained from the downtime fragility functions
represents the percentage of realizations where components are tagged with a certain
repair class that hinders achieving the corresponding recovery state. In addition, the excee-
dance probabilities of recovery states are treated as indicators of a building’s robustness,
i.e. the likelihood of a building not achieving a target recovery state immediately after an
earthquake (Molina Hutt et al., 2022b). Figure 2 also compares the downtime fragility
functions and the building class-level fragility functions for different DSs obtained for
RCSWs as a function of story drift ratios as outlined in Appendix C, Volume 1 of FEMA
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P-58. DS1 is derived based on a story drift ratio threshold of 1%, corresponding to scenar-
i0s where moderate nonstructural damage may be observed. DS2 is based on a story drift
ratio threshold of 2.2%, which may lead to significant nonstructural damage and moder-
ate structural damage, such as concrete spalling at some locations and diagonal cracks on
shear wall surfaces. The figure shows that the SiP downtime fragility function aligns well
with the DS1 fragility function. Given that building DS functions are commonly included
in regional risk models, this finding suggests that the DS1 fragility function could poten-
tially be used as a proxy for the SiP downtime fragility function. By definition, the build-
ing condition in SiP is characterized by moderate structural and nonstructural damage
that poses no safety threat to residents, making it loosely comparable to the definition of
DSI1. However, similar analyses should be conducted for building portfolios from other
regions and construction eras with other structural materials, lateral-load resisting sys-
tems, and heights to generalize this conclusion.

While a lognormal cumulative distribution is also used to derive the FR fragility func-
tion, the fitted function resembles a step function, where the exceedance probability is 1.0
for almost all ground motion intensities. This can be partially attributed to certain assump-
tions within the TREADS framework, which hinder the FR state even under low-ground
motion shaking intensities. The primary contributing factor to such a high exceedance
probability is related to the assumption that damage to any elevator or utility system com-
ponents (e.g. water piping and HVAC) on each floor of the building can hinder the FR
state. As a result, exploring alternative probability distributions for this recovery state
could be beneficial in providing a more realistic representation of the underlying trend,
given the absence of data points in the lower tail of the curve. For instance, zero-inflated
probability distributions have demonstrated desirable performance in the seismic vulner-
ability modeling of building portfolios (Bessason et al., 2020). In our case, a Zero-inflated
Poisson distribution (Lambert, 1992) could be a viable option to model the probability of
non-exceedance of the FR recovery state since it accounts for frequent zero-valued obser-
vations; however, the detailed examination of the most appropriate distribution for the
FR recovery state is beyond the scope of this study.

Consequence model development (Step 2b)

A series of probabilistic models are explored to estimate the distribution of building repair
times and IF delays as a function of ground motion intensity level by leveraging high-
fidelity recovery simulation results obtained from TREADS. According to the TREADS
framework, the repair time and IF delays are treated as indicators of a building’s rapidity,
that is, the probability of not achieving a target recovery state within a specified time
frame. The probabilistic models considered in this study encompass various distributions,
including normal, lognormal, exponential, Weibull, gamma, log-gamma, t, beta, and gen-
eralized extreme value (GEV). The optimal model is determined based on the minimum
RMSE attained. A Python code used to generate probabilistic models is provided in
Electronic Supplement II.

Since the consequences are very distinct from one hazard level to another (and only a
small number of discrete hazard levels are available due to using the MSA procedure for
demand estimation), the fitting process is performed separately for each intensity level and
recovery state, using 10,000 simulation data points. This approach provides greater flexi-
bility in capturing the unique characteristics of the consequences at each intensity level, as
fitting a single distribution to the entire dataset as a function of ground motion intensity
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Figure 3. Distribution of repair times along with the fitted beta distribution across the building heights
considered under the 975-year hazard level: (a) shelter-in-place (SiP) and (b) functional recovery (FR).

did not yield a suitable distribution among the parametric models evaluated in this study.
We initially considered fitting a single parametric distribution to recovery time; however,
since the recovery time distribution did not consistently conform to a unique or conven-
tional parametric form across hazard levels, we chose not to pursue this approach. The
results indicate that, on average, among the parametric models considered in this study,
beta and GEV distributions are the optimal models for repair time and IF delays, respec-
tively. While other distributions may be more suitable in some cases, for simplicity, we
adopt a single distribution for IF delays and another for repair time, applicable across all
hazard levels and both recovery states; however, this assumption can be easily refined if
further adjustment is desired. The primary reason for this is to achieve a good tradeoff
between the accuracy and simplicity of the models and their applicability in regional risk
assessments. The selection of beta distribution for repair time was also suggested by
Aljawhari et al. (2023) as the optimal choice. In their study, they leveraged FEMA P-58
high-fidelity seismic performance assessment results to derive statistical models for global
(i.e. building-level) repair times as a function of building-level DSs. Figure 3 illustrates the
repair time distribution across eight- to 24-story archetypes under the 975-year hazard
level. The figure also illustrates the fitted beta distributions for both recovery states,
namely, FR and SiP. Similarly, Figure 4 presents the distribution of IF delays, along with
the fitted GEV functions.

Since the simulation results are derived from five distinct ground motion intensity
stripes, the probability distribution parameters are exclusively determined at those five
specific hazard levels, that is, hazard levels with mean return periods of 100, 475, 975,
2475, and 4975 years. Logarithmic extrapolation between adjacent mean return periods is
employed to estimate probability distribution parameters at intermediate hazard levels or
ground motion intensities (e.g. lervolino et al., 2010). For ground motion intensities that
fall outside the range of the known data (e.g. below the 100-year return period or above
the 4975-year return period), the parameters are set to be the same as those at the nearest
known data points: the 100-year return period values for lower intensities and the 4975-
year return period values for higher intensities. Tables 1 and 2 summarize the distribution
parameters derived when all buildings are lumped together for IF delays and repair times,
respectively, for FR and SiP recovery states. In Table 1, a negative ¢ in the GEV distribu-
tions indicates that the IF delay distributions are always left-skewed across all hazard lev-
els, and therefore, they correspond to the Weibull distribution family. Also, the larger o at
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Figure 4. Distribution of impeding factor (IF) delays along with the fitted generalized extreme value
(GEV) distribution across the building heights considered under the 975-year hazard level for (a) shelter-
in-place (SiP) and (b) functional recovery (FR).

Table I. Impeding factor (IF) delays probability distribution parameters® for shelter-in-place (SiP) and
functional recovery (FR)

Return period (years) AvgSA (g) GEV distribution parameters
® o 3
IF delays -SiP 100 0.023 21.13 2.88 -0.03
475 0.071 56.13 23.73 -0.33
975 0.107 102.08 33.95 -0.26
2475 0.166 191.17 73.84 -0.27
4975 0213 237.75 143.87 -0.78
IF delays -FR 100 0.023 73.35 46.33 -0.65
475 0.071 115.26 58.86 -0.35
975 0.107 152.51 56.06 -0.30
2475 0.166 233.23 79.72 -0.24
4975 0213 275.03 102.57 -0.18

u, o, and ¢ denote location, scale, and shape parameters, respectively.

higher hazard levels indicates an increased scale factor relative to the lower hazard levels.
In Table 2, comparing shape parameters @ and 8 across different hazard levels reveals that
their values become more similar as the hazard level increases. As a result, at higher
hazard levels, the beta distribution tends to be more symmetric with a higher standard
deviation. In contrast, at lower hazard levels, the distribution is heavily left-skewed with a
much lower standard deviation. This can be attributed to greater uncertainty at higher
hazard levels, due to more extensive damage.

The vulnerability-type functions for repair time and IF delays are derived by computing
the AvgSA (ranging from 0.023 g to 0.123 g) associated with each return period. Figure 5
illustrates these vulnerability functions along with the probability distributions fitted at
each hazard level for repair time and IF delays for both SiP and FR recovery states. The
figure also indicates the mean values for the repair time and IF delay estimates, with a
logarithmic interpolation shown as a dashed line. The figure demonstrates that the uncer-
tainty associated with IF delays for both recovery states at all hazard levels is significant.
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Table 2. Repair time probability distribution parameters® for shelter-in-place (SiP) and functional
recovery (FR)

Return period (years) AvgSA (g) Beta distribution parameters
Min Max @ B
Repair Time -SiP 100 0.023 0.08 24.66 2.85 8.95
475 0.071 0.08 70.90 2.85 8.95
975 0.107 0.08 140.25 1.90 6.99
2475 0.166 10.76 225.85 4.37 3.90
4975 0.213 49.85 249.07 2.14 2.32
Repair Time -FR 100 0.023 0.01 97.98 0.50 2.88
475 0.071 0.93 141.30 4.42 5.40
975 0.107 33.70 233.93 5.74 8.50
2475 0.166 91.13 39847 7.59 8.11
4975 0.213 146.71 438.74 4.48 423

®a and B denote first and second shape parameters, respectively.

The IF delays considered in TREADS are less sensitive to hazard intensity and can be
triggered by even minor damage. There are various components of IF delays that contrib-
ute to the significant uncertainties observed in these repair estimates. Although IF delay
estimates above 500 days are rare, they can still be observed. For example, at the 2475-
year hazard level (4vgSA4 = 0.166 g), 95% of IF delays for SiP and FR fall below 530
and 590 days, respectively. At the 475-year hazard level (4vgSA4 = 0.071 g), although the
uncertainty remains substantial, the 95th percentile values of IF delays for SiP and FR are
180 and 410 days, respectively. As a result, Figure 5c and d exclusively illustrates the IF
delay distributions up to the 95th percentile.

Performance assessment of the recovery time predictive model (Step 3)

To assess the performance of the predictive model per the proposed methodology against
high-fidelity recovery estimates, we carry out five-fold cross-validation by partitioning the
original dataset into training and test sets five times. In each fold, various permutations of
building heights are evaluated. Specifically, one building height (e.g. eight-story) is
excluded to be used as the test set, while the remaining heights (e.g. 12, 16, 20, and 24 stor-
ies) are used for training. To measure the predictive performance of the models, we use
the mean and the coefficient of variation (CoV) as the metrics to compare predictions
against observations (i.e. TREADS results). We also follow a similar procedure to evalu-
ate predictive performance on the test set within each fold to ensure the effectiveness of
the predictive models. Figure 6 presents a comparison of the average across five folds for
the mean recovery time and the CoV against TREADS estimates at all hazard levels for
the SiP and FR recovery states. The mean recovery times at five hazard levels are com-
puted as a weighted average of the probabilistic model predictions for repairable cases
(including negligible damage cases) and replacement time for IrD cases. The results
demonstrate that the predictive model estimates are within 10% of the TREADS estimates
in all cases except for the CoV of functional recovery time at the 100-year hazard level. At
the 100-year hazard level, the repair time cannot be modeled with a single probability dis-
tribution, and alternative mixture probability distributions may be more appropriate.
However, exploring such models is beyond the scope of this study. Thus, the predictive
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Figure 5. Fitted probability distributions and mean estimates for (a) repair time for shelter-in-place
(SiP), (b) repair time for functional recovery (FR), (c) impeding factor (IF) delays for SiP, and
(d) IF delays for FR across the building heights considered. AvgSA, average spectral acceleration.

model does not provide adequate predictive performance and leads to significant discre-
pancies compared to the TREADS estimates.

Application for regional seismic risk assessment

To showcase its applicability in regional seismic risk assessments, the proposed
methodology—utilizing the trained models from previous sections— is implemented in a
portfolio of modern high-rise RCSW buildings (equivalent to the C2H building class) in
Metro Vancouver, BC subjected to 30 scenarios of simulated magnitude-9 (M9) Cascadia
subduction zone (CSZ) earthquakes generated by Frankel et al. (2018). The portfolio com-
prises 218 RCSW buildings, ranging from eight to 24 stories, constructed after 2005 across
various municipalities in Metro Vancouver (Emporwis, 2018). The building portfolio
includes every height within the prescribed range; however, we have intentionally focused
only on buildings up to 24 stories to remain consistent with the original training dataset
and avoid the issue of extrapolation beyond the training set, that is, generalizability, which
may lead to poor predictive performance (e.g. Kourehpaz and Molina Hutt, 2022; Zaker
Esteghamati et al., 2025). According to Canada’s national seismic risk model, buildings
constructed after 2005 are assigned to the high-code (HC) seismic design level (Hobbs
et al., 2023). Figure 7 displays the locations of the case-study modern high-rise RCSW
buildings and the nearest stations where M9 CSZ earthquakes are simulated. Although
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Figure 6. Comparison of estimates obtained from the proposed methodology and TREADS averaged
across fivefolds: (a) mean recovery times for shelter-in-place (SiP), (b) mean recovery times for
functional recovery (FR), (c) coefficient of variation (CoV) for SiP, and (d) CoV for FR.

these buildings are designed according to US design standards for a site in Seattle, WA,
both the National Building Code of Canada (NBCC, 2020) and ASCE 7-16 seismic provi-
sions aim to provide sufficient strength and ductility to ensure life safety under extreme
earthquake events (DeVall, 2003; Eksir Monfared et al., 2021). Both US and Canadian
design standards share similar goals; however, there may be some differences in the seismic
performance of buildings designed under these codes. Although this is a limitation, it is
not a concern for our regional case study, as the main objective is to illustrate the applica-
tion of the methodology.

To quantify the recovery time for each building across Metro Vancouver, the proposed
methodology—trained on the dataset of archetype buildings discussed in the previous
section—is applied here. Per this procedure, the AvgSA for each building is calculated at
the nearest M9 station. Using the downtime fragility functions derived previously, we
determine the percentage of realizations resulting in negligible, irreparable, and repairable
damage. For negligible damage and IrD cases, recovery times are estimated by sampling
from the lognormal distributions outlined in the TREADS assumptions. For the repair-
able damage scenarios, the recovery time for both recovery states, that is, SiP and FR, is
calculated by adding the IF delays to the repair time estimates derived from the proposed
probabilistic models, which follow GEV and beta probability distributions (refer back to
Table 1 and 2), respectively.
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Figure 7. Locations of modern high-rise reinforced concrete shear wall buildings and nearest stations
for simulated magnitude-9 (M9) Cascadia subduction zone earthquakes in four Metro Vancouver cities.
Note: The number of buildings in each city is indicated in the legend

The expected FR and SiP times are computed for each building under the 30 scenarios
of the M9 CSZ interface earthquake by generating 10,000 realizations of building recovery
times for each scenario. Figure 8 illustrates the median recovery time in the region as a
function of the percentage of buildings recovered. The figure highlights the significant
uncertainty in recovery time estimates across different M9 earthquakes, as they represent
30 scenarios of a full CSZ rupture with variations in rupture characteristics, such as hypo-
center location and inland extent of the rupture plane (Frankel et al., 2018). For example,
the median FR time of the building portfolio can range from approximately 100 to
600 days. The estimates for the median scenario, shown in bold, are approximately
160 days to achieve SiP and 300 days to achieve FR across all buildings in the region. It is
important to note that these recovery trajectories assume that repair activities for all build-
ings at all sites can commence simultaneously and proceed in parallel, with damage and
consequences across buildings considered independent. However, this may be an optimis-
tic scenario as post-earthquake regional resource constraints could limit the available
repair workforce (Blagojevic et al., 2023). In addition, the recovery trajectories would be
affected by the number of workers allocated to each building or by the repair phasing
assumptions within each building, which would require retraining probabilistic models
using updated TREADS recovery simulations. A Python code used to carry out recovery
analysis for the case-study building portfolio, along with the input dataset, is provided in
Electronic Supplement III.
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Figure 8. Functional recovery (FR) and shelter-in-place (SiP) recovery times for the building portfolio
considered under 30 simulated magnitude-9 (M9) Cascadia subduction zone earthquake scenarios. Bold
lines indicate the recovery time for the median M9 scenario.

The M9 CSZ earthquakes considered in this study are characterized by damaging spec-
tral shapes and long durations. Furthermore, all the locations considered are basin or
basin-edge sites, resulting in further amplification of ground motions shaking. The SA of
the median M9 CSZ earthquake scenario considered, at long periods (greater than 1 s), lies
between the 975- and 2475-year probabilistic seismic hazard estimates (Eksir Monfared
et al., 2021; Kakoty et al., 2021, 2023) These factors help explain the long recovery times
observed in the results. Past studies have reported similar results. For instance, Cook et al.
(2024) applied the ATC-138 methodology to estimate re-occupancy time (comparable to
our SiP state) and FR time for modern high-rise concrete frame buildings subjected to the
975-year intensity level. Their analysis found that for buildings designed in Los Angeles,
CA, re-occupancy and FR times were approximately five and nine months, respectively,
while for buildings in Seattle, WA, the estimated times were five and eight months, respec-
tively. Terzic and Kolozvari (2022) used F-Rec to assess the recovery of a modern high-rise
reinforced core wall building in Los Angeles, CA, finding FR times ranging from eight to
13 months under design-basis earthquakes and 12 to 16 months under maximum consid-
ered earthquakes. Molina Hutt et al. (2022a) applied REDi to assess the recovery of a
modern 42-story RCSW residential building in San Francisco, CA, where they estimated
functional recovery times of over six months under the design earthquake and over
12 months under the risk-targeted maximum considered earthquake. The lengthy recovery
time estimates are also consistent with real-world catastrophic earthquake events. For
instance, after the 1994 Northridge earthquake, the mean re-occupancy time of yellow-
tagged multi-family residential buildings in Los Angeles, CA, exceeded 24 months
(Comerio and Blecher, 2010). While we benchmark our results against past studies, the pri-
mary objective of this section is not to provide the absolute recovery time estimates.
Instead, the focus is on the methodology, which can be effectively applied to regional
assessments, with the underlying models continuously refined and validated using empiri-
cal data from both historical and future earthquakes.

To better understand the risk across the region, Figure 9 illustrates the breakdown of
median recovery times to achieve FR and SiP for the median M9 scenario across four cit-
ies, again assuming that repair activities for all buildings can commence simultaneously



Kourehpaz et al. 17

3 1001 k- i === Richmond
] == ! === Burnaby
> 80 41 5
3 i~ ==== Vancouver
m —
¥ 60 ! ——— North Vancouver
@a |
g i
5 40 - |
-5 :
E 20 7 I
o __
¥ g b===C
T

0 50 100 150 200 250 300 350
Recovery Time [days]

Figure 9. Median SiP (dashed lines) and FR (solid lines) times as a function of the percentage of
buildings recovered across four cities in the region. SiP, shelter-in-place; FR, functional recovery.

and proceed in parallel. The median scenario is defined as the scenario that results in the
median SiP time for the building portfolio. The figure shows that Richmond has the long-
est recovery times for both SiP and FR. This is due to its higher basin depth compared to
other cities (e.g. 34 km in Richmond vs 1-2 km in Vancouver), which amplifies ground
motion intensities, especially for periods greater than 1 s. For example, in the median M9
scenario, the mean of AvgSA across sites ranges from approximately 0.04 g in North
Vancouver to 0.12 g in Richmond. The figure also demonstrates that the recovery trajec-
tories for Vancouver and Burnaby are quite similar, except at higher percentages of portfo-
lio recovery (above 90%), where Vancouver surpasses Burnaby. This behavior is attributed
to several buildings within the city of Vancouver that are in the vicinity of Richmond,
which experience higher SA4s due to greater basin depths.

Although this figure shows the recovery of cities exclusively from a physical damage
perspective by explicit consideration of modern high-rise RCSW buildings, disaster recov-
ery is complex and influenced by other factors, such as household demographics and other
socioeconomic factors, which also affect disaster-induced short and long-term population
displacements (Paul et al., 2024). The results of this section can be used to provide insights
into the people-centered decision-making process (Cremen et al., 2022) for disaster risk
assessments. For instance, in scenarios where an evacuation order is enforced by authori-
ties (e.g. Gerber, 2010), the SiP time can be used to represent the duration of the evacua-
tion order, which can be combined with the population characteristics of the city to
provide deeper insights into the consequences of a disaster. Furthermore, these results can
inform decisions on pre-event retrofits and policies or help prioritize repairs across the
region after an earthquake. For instance, from a policymaker’s perspective, pre-event
actions and policy decisions (with a particular focus on prioritizing vulnerable commu-
nities) to expedite recovery could include offering affordable and effective public insurance
schemes. Although Richmond may appear to be the most critical and should be the first
city to recover, a multi-criteria decision-making process could be adopted to account for
various recovery drivers (e.g. access to healthcare facilities and socioeconomic factors) and
inform decision-making for resource allocation (e.g. Gentile and Galasso, 2021; Opabola
and Galasso, 2024). Since the results are presented only for modern high-rise buildings, a
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broader consideration of the people-centered decision-making procedure should also
include buildings of varying construction ages and heights in the analysis.

Conclusion

This article presented a methodology to enhance recovery time consequence models for
application in building portfolio recovery analyses by leveraging high-fidelity building-spe-
cific recovery simulations. The proposed methodology accounted for a contribution from
negligible, repairable, and irreparable damage instances and estimated recovery time at
two distinct recovery states: shelter-in-place and functional recovery. An application of
the proposed approach employed the high-fidelity recovery simulation results obtained
from TREADS to develop (a) building class-level downtime fragility functions; and (b)
statistical models (i.e. probability distributions) for repair time and impeding factor (IF)
delays. For negligible and irreparable damage cases, the building inspection and replace-
ment times were computed using the corresponding lognormal cumulative distributions
stated in TREADS. To showcase the application of the proposed methodology, a portfo-
lio of modern high-rise (eight to 24 stories) reinforced concrete shear wall (RCSW) build-
ings was employed. These buildings were subjected to ground motion records representing
earthquake return periods of 100 to 4975 years, as per the 2014 US national seismic
hazard model for a site in the Pacific Northwest. Finally, the methodology was implemen-
ted in a portfolio of modern high-rise RCSW buildings across Metro Vancouver, BC, sub-
jected to 30 simulated ground motions of magnitude-9 Cascadia subduction zone interface
earthquakes.

For the portfolio of modern high-rise RCSW buildings considered in this study, the
optimal probabilistic models for repair time and IF delays were the beta and GEV distri-
butions, respectively. Using the proposed model, the expected recovery time and CoV
estimates were within 10% of the TREADS results across all hazard levels, except at the
100-year hazard level, for both recovery states. At the 100-year hazard level, the repair
time for functional recovery could not be adequately represented by a single probability
distribution, and thus, resulted in a significant discrepancy in the coefficient of variation
compared to the TREADS results. Future studies could explore the use of mixture prob-
ability distributions for this scenario, as they may provide a more suitable alternative. In
addition, future studies could also revisit the assumptions of what damage states in what
components trigger function loss. While recommendations for potential probability distri-
butions for repair time and IF delays were provided, this study does not claim to have
identified the most appropriate probability distribution in all cases. Instead, the emphasis
was on the proposed methodology, which was generic and could be extended to building
portfolios with various structural materials, systems, heights, geographic locations, and
construction eras. In addition, the probability distributions proposed in this study do not
account for correlations between IF delays, and future studies could explore multivariate
probability distribution models to capture these correlations at a regional scale. Although
PELICUN and TREADS were used for building loss and recovery assessments, the meth-
odology is generic and could leverage other computational tools to obtain the input
required for developing recovery time consequence models.

This article highlighted the potential benefits of utilizing simulation-based enhanced
recovery time consequence models for efficient quantification of recovery in building port-
folios. While the proposed consequence models could be seamlessly integrated into
regional seismic risk assessments, the regional-scale application demonstrated in this study
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is limited to a class of modern high-rise RCSW buildings up to 24 stories. Given the preva-
lence of buildings significantly taller than 24 stories in major metropolitan areas such as
Metro Vancouver, risk models should ideally be expanded to explicitly account for super
high-rise building types to better reflect their distinct behavior under a new building class
with revised height ranges. The extension to a comprehensive regional-scale assessment is
contingent on a database of high-fidelity recovery simulations of a broader range of build-
ing types (e.g. steel braced frame, light frame wood). Although constructing this database
can be computationally intensive, once established, it enables efficient regional-scale recov-
ery assessments for large building portfolios under various ground motion intensities. The
regional recovery time estimates provided herein should not be viewed as definitive metrics,
but rather, the approach used to derive them can be considered a robust framework for
improving regional recovery time assessments. These estimates could be continuously
improved as additional empirical data becomes available to improve high-fidelity building-
specific recovery simulations, such as those provided by TREADS.

The key benefit of our proposed approach over existing models for recovery time (e.g.
those specified in Hazus) is its calibration using high-fidelity simulations, explicit consider-
ation of key drivers of recovery time, such as IF delays and repair times, and its ability to
distinguish between different recovery states such as functional recovery and shelter-in-
place. Furthermore, the proposed methodology can facilitate the development of regional-
level risk mitigation strategies (e.g. a city-wide expedited post-earthquake permitting
process) explicitly targeting IF delays and repair times by adjusting assumptions within
high-fidelity simulations and modifying the resulting consequence models based on specific
mitigation goals. To streamline the development of such strategies, future research could
explore potential surrogate models for recovery time that account for variability in build-
ing features within a building class (e.g. structural characteristics and height), regional
supply-demand constraints (e.g. availability of workers), and various components of IF
delays (e.g. financing and contractor mobilization). Although the enhanced recovery time
consequence models derived from the proposed methodology are valuable for regional
recovery assessments, they cannot replace high-fidelity simulations when the goal is to
investigate the underlying drivers controlling the recovery time or to design/implement
building-specific resilience-enhancing policies and decisions, particularly for single, high-
importance buildings.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/
or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or
publication of this article: This research was funded by Canada’s Natural Sciences and Engineering
Research Council under Discovery Grant No. RGPIN-2019-04599, as well as Alliance Grant
ALLRP 567555-2021. This research was also partly supported by the European Union’s Horizon
Europe project “Multi-hazard and risk-informed system for Enhanced local and regional Disaster
risk management (MEDiate)” under grant agreement no. 101074075 (UKRI reference number:
10049469—Horizon Europe Guarantee).



20 Earthquake Spectra 00(0)

ORCID iDs

Pouria Kourehpaz () https://orcid.org/0000-0003-1080-7089
Carlos Molina Hutt () https://orcid.org/0000-0003-2116-1201

Data and resources

The electronic supplement compiled as a companion to this paper can be found in the GitHub reposi-
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