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Of all men’s miseries the bitterest is this: to know so much and to have control

over nothing.

Herotodus, Histories.



Abstract

Reinforcement Learning (RL) has made significant progress in a variety of

domains, from playing games to controlling robots. However, while RL works

reasonably well in problems when rewards are dense and immediate, it becomes

significantly harder when these are sparse and delayed. This is the case of most

real-world decision problems: they take a long time to complete, and they

seldom provide immediate feedback, but often with delay and little insight as

to which actions caused it.

The problem of learning to associate actions with their long-term, outcomes

is known as the temporal Credit Assignment Problem (CAP): to distribute the

credit of success among the multitude of decisions involved (Minsky, 1961).

This dissertation stems from the idea that improving the ability to predict –

i.e., to assign credit – is the most effective way to enhance the agents’ ability to

make optimal decisions – to control – in a broad range of tasks. The manuscript

is then a collection of experiments and theoretical contributions with two aims:

to better understand the CAP, and to propose new methods to address it.

We provide a comprehensive survey of the field, the first after the CAP was

first introduced by Minsky (1961). We realign the original CAP to Deep RL,

organise the set of methods into a coherent perspective, and define a call for

action for scaling RL to real-world problems. On this call, we then investigate

AI-assisted RL, using the prior knowledge and reasoning capabilities of Large

Language Models (LLMs) to assist and supervise RL training. Finally, we

focus on closing the gap between the infeasible computational demand of RL

and the limited resources available in academia, reimplementing MiniGrid, a

popular RL benchmark, in a more efficient and scalable way.



Impact

This dissertation aims make a small step towards the development of more

efficient and scalable RL algorithms, with the ultimate goal of enabling the

deployment of RL in real-world, complex problems.

The work is motivated by the observation that RL works well in problems

with dense and immediate rewards, but it struggles in problems with sparse

and delayed rewards. This is, in fact, the case of most real-world decision

problems, which are usually composed of a large number of sequential, often

hierarchical, decisions, and where the feedback is often but only at the end of

the task.

To contribute to this challenge, the manuscript first reviews the current state

of the field, providing a comprehensive survey of the literature on the CAP

in RL: What is the CAP that we are actually trying to solve? Are we all

solving the same problem, or is it unambiguously defined? What are the main

methods that have been proposed to address it? What are the main challenges

that we face when trying to scale RL to real-world problems?

Having established and formalised the problem, it then identifies a major ob-

stacle to the scaling of RL to real-world problems: human decision-making

often works at a higher level of abstraction than the low-level actions that RL

algorithms are trained on. This gap is usually met with the introduction of

temporally extended actions (options), which provide a way to search into an
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action (option) space that is more aligned with the human decision-making

process. However, these are often hard to learn, must be specified by humans

ex-ante and require a large amount of computational resources to train.

To address this, the manuscript proposes a new approach to the problem, where

the prior knowledge and reasoning capabilities of LLMs are used to assist and

supervise the training of RL algorithms. This introduces a promising direction

for future RL training, where the agent can learn in a higher-level action space,

and where the human intervention is reduced to a minimum.

Finally, a key impact is in the evaluation protocol of RL algorithms, which

often require a large amount of computational resources to train. In its last

chapters, the dissertation analyses the computational bottlenecks of RL algo-

rithms, and identifies the interface with the environment as a major bottleneck.

To address this, it proposes NAVIX, a new, more efficient and scalable imple-

mentation of MiniGrid, a popular RL benchmark. Thanks to a substantial

increase of throughput, NAVIX obtains over 200 000× speedup compared to

the original MiniGrid implementation. This speedup, allows not only to train

RL algorithms faster, but it opens a whole new paradigm of research for RL

agents.
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Chapter 1

Introduction

1.1 A science of decision-making

There is abundant literature trying to understand how humans make decisions,

and its corpus is inherently multidisciplinary. Multiple domains explore the

topic from various angles, such as economics, psychology, neuroscience, or phi-

losophy, resulting in a palimpsest that transcends them all (Buchanan, 2005).

Psychologists observe associations between individual choices and their con-

textual needs (Thorndike, 1898; Pavlov, 1927; Skinner, 1953). Neuroscientists

analyse the internal phenomena that allow for the acquisition, organisation,

processing, and retrieval of information (Shiv et al., 2005; Fellows, 2004; Var-

tanian & Mandel, 2011). Economists resort to discounted utility theory and

mechanism design to explain how preferences are formed and how these gener-

ate rational choices (Samuelson, 1937; Edwards, 1954; Simon, 1959b). Western

philosophers ponder the assumptions under decision-making, questioning how

to reconcile the naturalism of physics with the intentionality of consciousness

(Deacon, 2012). The field is vast, and the literature is abundant, but the core

question remains the same: How do we make decisions?

The complexity of the question constantly stimulated cross-disciplinary inter-

actions, and, when cross-fertilisation has been prolific, a new theory merged
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two subfields into a whole new one, such as behavioural economics (Simon,

1957; 1959b), neuropsychology (Klopf, 1972), or cognitive psychology (Piaget,

1962).

Today, this interdisciplinary apparatus is not only a way to solve problems

that are too complex for a single discipline, but also a way to better specify

the problem itself, which, as we will see later in the manuscript, is not always

unambiguously defined. These disciplines benefit from mutual confirmation:

psychology resorts to evidence from neurobiology to consolidate their results;

economists motivate micro-economic decisions on psychologist’s questions and

experimental methods; philosophers start from the assumptions of physics to

integrate meaning into reality. In short, to understand how agencies make

decisions, we cannot limit the investigation to a single field, and to find answers

it is important to analyse the problem from multiple angles.

Upon this multidisciplinary backdrop lay the foundations of decision-making

in machines, and the science of the ifs and hows machines can learn to make

decisions. The field of Artificial Intelligence (AI) – the art of computers

acquiring the ability to make decisions similar and eventually better to human

intelligence – has for long harvested from this interdisciplinary compound of

knowledge. RL has arisen as a contribution to the debate, and now blends

elements from control theory (Bellman, 1957), such as the Bellman equations;

utility theory (Sutton, 1984) and economics (Samuelson, 1937) to quantify sec-

ondary rewards; neuroscience (Quartz et al., 1993; Schultz et al., 1997; Glim-

cher, 2011) to explain, interpret and design reward-based algorithms; physiol-

ogy (Barto, 1995; Houk & Adams, 1995) and psychology (Kamin, 1969; Recorla

& Wagner, 1972; Sutton & Barto, 1981) to induce useful biases in computer

algorithms.
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Figure 1.1: The modern formulation of a reinforcement learning problem as sum-
marised by Sutton (Sutton & Barto, 2018). The agent observes the environment
and takes suitable action, which, in turn, modifies the environment itself. After the
interaction, the agent reads the reward signal, which the environment emits, provid-
ing him with information on the directions of actions. This exchange is sequential
and recursive, and can be infinite or finite, respectively in continuing and episodic
settings.

1.2 Reinforcement Learning

Reinforcement Learning (Sutton & Barto, 2018) formalises the problem

of animal learning in mathematical and computational terms, as shown in

Figure 1.1. A program (the agent) interacts with its surroundings (the envi-

ronment) by making a decision (the action). The action is the agent’s interface

with the environment. Before each action, the agency may use its sensory ap-

paratus to observe the environment and take suitable decisions. After each

action, the agent may read a feedback signal from the environment (the re-

ward), whose state it just modified. The goal of the agent is to learn a rule of

behaviour (the policy) that maximises a sum of rewards.

Let us develop a better intuition with an example. Every dog owner knows

how to reinforce aspects of their pet’s behaviour with rewards. For instance,

imagine that we present the dog with a button, and every time it pushes the

button, we reward our friend with a tasty snack. After repeated interactions,

the dog learns to press the button when it is hungry, associating and antic-

ipating the receipt of food. In this example, the dog is the agent, acting in
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the surroundings of its environment. The behaviour “pressing the button” is

the operant ; the act of collecting food, the reinforcer ; and the rule by which it

presses the button to receive the food when it perceives hunger is the policy.

Notice that these are not reflexes, but cognitive responses resulting from the

ability of the dog to predict the effects of its action, and the awareness to

modify its own behaviour to receive a prize.

Today, the field of RL is a vibrant and active area of research. RL is poised to

impact many real-world problems that require specialistic sequential decision

making, such as strategy (Silver et al., 2016; 2018; Schrittwieser et al., 2020;

Anthony et al., 2020; Vinyals et al., 2019; Perolat et al., 2022) and arcade

video games (Mnih et al., 2013; 2015; Badia et al., 2020; Wurman et al., 2022),

climate control (Wang & Hong, 2020), energy management (Gao, 2014), car

driving (Filos et al., 2020) and stratospheric balloon navigation (Bellemare

et al., 2020), designing circuits (Mirhoseini et al., 2020), cybersecurity (Nguyen

& Reddi, 2021), robotics (Kormushev et al., 2013), or physics (Degrave et al.,

2022), aligning LLMs to human preferences (Christiano et al., 2017; Brown

et al., 2020; Ouyang et al., 2022).

1.3 The Credit Assignment Problem

One fundamental mechanism allowing RL agents to succeed in the scenarios

above is their ability to predict the effects of their actions over outcomes –

e.g., a win, a loss, a particular event, a payoff. Often, these outcomes are

consequences of isolated decisions taken in a very remote past: actions can have

long-term effects. The problem of learning to associate actions with distant,

future outcomes is known as the temporal Credit Assignment Problem (CAP):

to distribute the credit of success among the multitude of decisions involved

(Minsky, 1961). Overall, the influence that an action has on the achievement

of an outcome represents knowledge in the form of associations between world

states, actions and outcomes (Sutton et al., 2011; Zhang et al., 2020a). These
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associations constitute the scaffolding that agencies can use to deduce, reason,

improve and act to address decision-making problems.

To visualise the CAP, let us re-consider the dog example. To exacerbate the

problem, let us assume that the tasty snack is not delivered immediately after

the button is pressed, but the day after. The dog must now learn to associate

button presses with receiving a snack, even if the action responsible for the

reward is delayed and separated from it by a long sequence of irrelevant events

and other actions, like staying quiet, going outside, or chasing a squirrel. This

is the essence of the CAP: to learn to associate actions with outcomes separated

by a long sequence of irrelevant events.

Significance. While RL works reasonably well when rewards are dense and

immediate, it becomes significantly harder when these are sparse and de-

layed. Yet, this is the case of most real-world decision problems: they take a

long time to complete, and they seldom provide immediate feedback, but often

with delay and little insight as to which actions caused it. Since the purpose

of the CAP is exactly that to deal with delayed rewards, it becomes clear that

advancing the CAP is paramount to solve RL: to build an AI able to solve a

broad variety of real-world tasks safely and reliably.

These conditions materialise in RL with task completion (Efroni et al., 2021)

settings, where the agent receives a reward signal only at termination. Here the

learning signal is weak, noisy, or deceiving, and the ability to separate serendip-

itous outcomes from those caused by informed decision-making becomes a hard

challenge. In such scenarios, rewarding events are rare, and Deep RL agents

often struggle to convert occasional successes due to random exploration1 into

a robust decision-making process. Furthermore, as these environments grow in

complexity with the aim to scale to real-world tasks (Rahmandad et al., 2009;

Luoma et al., 2017), the actions taken by an agent affect an increasingly van-

ishing part of the outcome, and it becomes even harder to accurately identify

1or, rather, according to their exploration rule.
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the causes of success or failure.

As a result, tasks that are usually easy to solve for humans become hard to

address for RL agents, and there is a large gap in the literature between the

two. This dissertation aims to work towards bridging this gap, from a better

understanding of the problem to proposing new methods to address it, and to

evaluate it.

1.4 A case for model-free RL

RL scholars agree on two major avenues to evaluate actions of RL agents,

advance the field and bring them to equate and eventually surpass human

performance in everyday tasks:

(a) Model-based RL aims to learn a model of the environment by predict-

ing its next state, after the agent has taken a certain action. This usually

leads to choosing the best action by planning in a goal-oriented way: to

simulate the outcome of as many decisions as possible up to a remote

future and choose the one yielding the highest sum of rewards.

(b) Model-free RL, instead, aims to model only a partial future, one specific

statistic of it: the sum of all rewards. This usually leads to value-based

RL, which, instead, chooses the best actions based on predictions alone.

Values simulate a form of habitual behaviour: the agent knows imme-

diately2 which is the best decision, without simulating the final, future

state.

In the next paragraphs, we discuss the dichotomy between model-based and

model-free methods, and briefly summarise the arguments for employing one

or the other.

2We may say instinctively, were we talking about humans.
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Model-based RL fundamentally aims to model the evolution of the state of

the world, given (a) its governing laws, and (b) the agent’s decisions. To

model this exactly, one requires modelling information that may not be useful

to the agent’s decision-making process, since not all the information in the

state contributes to decision-making. For example, imagine having to choose

the dessert at a restaurant. Whether outside is raining or not will not (for

the most of us) have any influence on our decision. We may focus on other

characteristics, such as how hungry we are, how much we are craving for a

sweet treat, or prior personal preferences. Despite that, if we were to follow

a model-based approach, a model of the world would also include whether it

is raining or not, resulting in a potentially waste of knowledge capacity and

computation resources for something that does not impact the agent’s decision

making.

On the contrary, a predictive model of the reward represents the bare mini-

mum information for optimal decisions (Silver et al., 2021). Indeed, were we

to model only the reward, free from any other information about world-state

transitions, we could avoid paying the price of modelling useless information,

and focus only on the features of the world that affect our decision making.

This is the case of model-free RL, at whose core is the CAP.

One argument against model-free RL is that this useless information – for

example, the weather in the previous example – is not useful right now, but it

could be later, should the agent decide to pursue a new, different goal. This is a

valid argument if we had a perfect model of the environment readily available,

which is rarely the case in RL problems, and especially in the real world: world

models are often learnt from experience themselves (Kaiser et al., 2020). In

these conditions, modelling also all the non-useful information, with the hope

that they will be useful someday, somehow, is a problem too large to tackle.

Finally, to further argue for model-free methods, evidence from neuropsychol-

ogy and philosophical studies suggest that humans do not represent the world
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as it is, and this biased representation inherently expresses preferences over

something that is possible in the future (Hoffman, 2016; Prakash et al., 2021;

Le Lan et al., 2022). In other words, it is suboptimal to represent the world

exactly as it evolves, and because natural agents evolved this way, this is likely

beneficial also to artificial agents.

As with many other problems, it is very likely that virtus media vox, and that

a mixture of model-based and model-free RL is the most effective way to scale

decision making to the real world. In this dissertation, we assume that RL

requires both approaches, but we focus on model-free methods, at whose

core is the CAP.

1.5 Frontiers

Having established our focus on model-free approaches, and their significance

in scaling RL to the real world, in this section, we discuss the challenges that

the field of RL faces today, and how the CAP is at the core of these challenges.

This provides a clear picture of the research frontiers, and sets the stage for

the research questions that we aim to address in this dissertation. This list is

not exhaustive, but it is representative of the current state of the field, and

informative to where to direct future research efforts. We identify five, large

categories of challenges.

Challenge 1 (The problem is ambiguously defined.). First, the literature of-

fers no formal definition of credit, credit assignment, and credit assignment

method. Many works claim to work on the CAP, but it is yet not clear what

mathematical problem these works are referring to. What is credit? What does

it mean to assign credit? How can we quantify the influence of an action on an

outcome? What is the mathematical form of the CAP? What do these terms

mean mathematically? What does “assigning credit” mean formally? Are we

all solving the same problem, or is the science misled by multiple undercover
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problems with the same name?

Challenge 2 (Temporal CA is inefficient.). Second, current methods still

struggle to assign credit for long sequences. State-of-the-art algorithms in RL,

such as Proximal Policy Optimisation (PPO) (Schulman et al., 2017), Deep

Q-Network (DQN) (Mnih et al., 2015), or Asynchronous Advantage Actor-

Critic (A3C) (Mnih et al., 2016), rely on Temporal Difference (TD) errors, or,

more in general, to use the temporal vicinity between the action and the re-

ward to quantify the contribution of an action. In our one-day delayed snack,

dog example, these methods would assign large credit to the actions taken

just before the reward, including waking up, roaming around. By experiment

construction, these are irrelevant – even potentially detrimental – to receiv-

ing the reward. On the contrary, since the action press the button had been

taken at the very beginning of the sequence, separated by a full day from the

reward, canonical RL methods would assign very small credit to the action,

even if that is the one action that caused the reward. Overall, this causes the

agent to learn slowly, and to be sample-inefficient (Ye et al., 2021; Kapturowski

et al., 2023); solutions are often brittle to the hyperparameter choice (Hender-

son et al., 2018), inelastic to generalise zero-shot to different tasks (Kirk et al.,

2023), and prone to overfitting (Behzadan & Hsu, 2019; Wang et al., 2022).

Challenge 3 (Existing methods do not scale.). Third, there exist CA methods

that are very promising, but that do not scale to complex problems, either

because they are computationally expensive, or because they require human

interventions. For example, some frameworks, such as options (Sutton et al.,

1999) and reward shaping (Ng et al., 1999), offer great promises to advance the

CA problem. These methods rely on human labels. A shaping function or an

option should be carefully designed to provide useful guidance without leading

to unintended behaviours. This often calls for incorporating domain knowledge

or heuristics about the task. Such knowledge may not be readily available

or easily codifiable, limiting the applicability of reward shaping in diverse or
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unknown environments. This process is complex and time-consuming, and

it might not always be possible to devise a reward function that incentivizes

learning, is computationally cheap, and general enough to adapt to various

tasks. A set of new methods (Buesing et al., 2019; Mesnard et al., 2021; 2023)

is promising, but has not yet been tested at scale, in particular to understand

their limitations and advantages in building a foundation model for RL.

Challenge 4 (RL lacks a foundation model.). Fourth, methods often learn

tabula rasa, i.e., from scratch. This is a significant drawback, as RL agents

typically begin with no prior knowledge, and it requires them to learn the

nuances and intricacies of complex tasks from scratch, often hindering the

learning process. In these settings, the lack of controlled experimental condi-

tions, such as the ability to observe counterfactuals, makes it difficult for them

to distinguish between correlation and causation, and without a prior under-

standing of the task, learning is very sample inefficient. A foundation model

for RL – that is, a general, robust and efficient value function for a broad

range of observations and tasks – is a fundamental, and yet missing element

in the puzzle to scale RL to the real world.

Challenge 5 (Evaluations are inconclusive.). Fifth, the literature offers a set

of interesting benchmarks, each with its own subset of perks, but it overall lacks

a precise protocol to combine them for an appropriate evaluation (Agarwal

et al., 2021). Are efforts well coordinated to provide a comprehensive view of

the problem? Or are methods tested on a subset of tasks that do not reflect the

complexity of the problem? Are the benchmarks used to evaluate the methods

representative of the real-world challenges?

1.5.1 Explicit research questions

With these challenges in mind, we start our investigation. This dissertation

sets out to investigate how the ability to predict – i.e., to assign credit – affects
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the agents’ ability to make optimal decisions – to control. The manuscript is a

collection of studies and experiments to better understand the CAP, to address

it, and to evaluate the proposed solutions.

Formally, the investigation attends to the following three questions.

Question 1. What is credit? What does it mean to assign credit? How can we

quantify the influence of an action on an outcome? What is the mathematical

form of the CAP? Are methods all solving the same problem, or is researched

misled by multiple problems under the same name?

Answering Question 1 helps to shed light on Challenges 1 and 2. In Chapters 4-

8 we propose a unifying formalism for the CAP that takes into account the

most recent methods to assign credit. This enables a fairer comparison between

the methods, to better identify their strengths and weaknesses.

Question 2. What is the most significant drawback of current methods? Why

do they not scale? What are they missing, and how can we address this?

Answering Question 2 contributes to address Challenges 2, 4, and 4. Chap-

ter 6 identifies the most impactful shortcomings of current CA methods, and

Chapter 9 advances a proposal for a new method to address those.

Question 3. Experiments are slow and bounded by the computational re-

sources available. Can we improve the evaluation of credit assignment meth-

ods by improving the speed at which we can iterate on an algorithm? How? Is

there a way to expedite the benchmarking of CA methods?

Answering Question 3 contributes to address Challenge 5. Chapter 7 surveys

the current protocols and environments to evaluate CA methods, and Chap-

ter 10 proposes a new, high-throughput environment to expedite the bench-

marking.
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1.6 Goals, aims and scope

This dissertation proposes potential answers to the questions above, and sets

out to realign the fundamental issue raised by Minsky (1961) to the Deep RL

framework we know today. In addition, it prepares the future works around

the CAP to intersect the latest developments in the broader AI field, such as

high-throughput training, alignment, the development of a foundation model

for RL, and the problem of AI safety.

Goals. The first goal is to provide an overview of the field to new-entry prac-

titioners and researchers, and, for scholars looking to develop the field further,

to put the Ì set of works into a comprehensive, coherent perspective. Lastly,

we aim to reconnect works whose findings are relevant for CAP, but that do

not refer to it directly. To the best of our knowledge, the work by Ferret

(2022, Chapter 4) is the only effort in this direction, and the literature offers

no explicit surveys on the temporal CA problem in Deep RL. This contributes

to answer Question 1.

Having established the problem we aim to solve, we them aim to investigate

why current methods do not scale, and how we can address this. We select

two promising methods, options and reward shaping, and design a new method

that transfers the prior knowledge of an LLM about a game into the agent’s

value function using reward shaping and options discovery. This contributes

to answer Question 2.

Finally, we aim to improve the evaluation of credit assignment methods by im-

proving the speed and the throughput at which we can iterate on an algorithm.

This not only speeds up existing benchmarks, but due to the magnitude of the

improvement in speed, it proposes a whole new paradigm for RL training, al-

lowing to perform experiments that would be otherwise impossible due to the

long time required to run them. This contributes to answer Question 3.
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Scope. The thesis focuses on temporal CA in single-agent Deep RL, and the

problems of (i) quantifying the influence of an action mathematically and

formalising a mathematical objective for the CA problem (ii) defining its chal-

lenges, and categorising the existing methods to learn the quantities above,

(iii) defining a suitable evaluation protocol to monitor the advancement of

the field. We do not discuss structural CA in Deep Neural Networks (DNNs),

that is, the problem of assigning credit or blame to individual parameters of a

DNN (Schmidhuber, 2015; Balduzzi et al., 2015). We also do not discuss CA in

multi-agent RL, that is, to ascertain which agents are responsible for creating

good reinforcement signals (Chang et al., 2003; Foerster et al., 2018). When

credit (assignment) is used without any preceding adjective, we always refer

to temporal credit (assignment). In particular, with the adjective temporal we

refer to the fact that “each ultimate success is associated with a vast number

of internal decisions” (Minsky, 1961) and that these decisions, together with

states and rewards, are arranged to form a temporal sequence.

The thesis focuses on Deep RL. In surveying existing formalisms and methods,

we only look at the Deep RL literature, and when proposing new ones, we

tailor them to Deep RL theories and applications. We exclude from the review

methods specifically designed to solve decision problems with linear or tabular

RL, as they do not bode well for scaling to complex problems. In designing

new methods, we focus on a Deep RL framework, for its promise to scale with

data and model size. In designing benchmarks and evaluation methods, we

tailor them to Deep RL applications.

1.7 Outline, contributions, and publications

The dissertation is structured in three parts: Contexts, Understanding,

and Solving. Each part is composed of chapters that address the research

questions we set out to answer.
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Part II (Contexts) provides the foundational concepts and the notation at

the base of the manuscript. In particular, Chapter 2 describes the required

background on RL, and Chapter 3 defines the set of assumptions for our

studies.

Part III (Understanding) seeks for a better understanding of the prob-

lem. We provide an extensive survey of the field, which stands out as a novel

contribution in itself and provides a novel, coherent formalism on the CAP.

In particular, Chapter 4 defines the assumption at the base of the problem,

clarifies what is the credit of an action, how does the literature quantify it, and

discusses interesting properties that a measure of credit should have. Chap-

ter 6 formalises a CA method, provides a taxonomy of existing methods and

uses the formalism from Chapter 4 to draw a fair comparison between them.

In Chapter 7 we review the protocols and benchmarks to evaluate a credit

assignment method. This is necessary to be able to track progress, distinguish

it from non-progress, and to define a shared protocol to monitor advancements

in the field.

Having clearly defined the problem, Part IV (Solving) sets out to address

the limitations of the solutions and evaluation methods.

In Chapter 9, we set out to address the limitations of some of the most

promising methods to assign credit and scale RL to the real world: options

and reward shaping. We go beyond methods that learn tabula rasa and design

a new one that transfers the prior knowledge of an LLM about a game into

the agent’s value function using reward shaping and options discovery. The

method provides a way to save the costs of human labelling, usually necessary

for options and reward shaping, allowing to scale them to highly complex

environments.

In Chapter 10, we look at the evaluation problem, and at how we can shorten

the long iteration cycles of RL algorithm design. We propose NAVIX, a reim-
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plementation of MiniGrid in JAX, that shortens experiment times from 1 week

to 15 minutes. This allows not only faster algorithm verifications, enabling

faster design iterations, but also it allows performing experiments that would

be otherwise impossible due to the long time required to run them.

Contributions. This corpus provides the following contributions:

i. A comprehensive review of the field, providing a novel, coherent formal-

ism for the CAP. We review and discuss how existing works quantify

action influences in RL, propose a unifying formalism to compare them

and identify the most appropriate contexts to use them.

ii. Based on this novel framework, a taxonomy of the existing methods to

assign credit that brings together works that are relevant to the CAP, but

that do not refer to it explicitly. This allows to draw a fair comparison

between them.

iii. A review and discussion of the existing protocols and benchmarks to

evaluate a CA method, highlighting their perks and drawbacks. The

review is instrumental to set the stage for the development of a shared

protocol to monitor advancements in the field.

iv. Overall, items i., ii., and iii. constitute a survey that stands out as a

novel contribution in itself. To the best our knowledge, it is the first

coherent survey on the topic since Minsky’s seminal work in 1961, and

proposes a view on the current gaps to close to advance the field and

scale RL to very complex problems.

v. We propose a new method to assign credit that aims to bridge the gap

between human and RL agents by transferring the prior knowledge of

an LLM into the agent’s value function via reward shaping and options

discovery.
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vi. Finally, we focus on the evaluation problem and propose a reimplemen-

tation of MiniGrid in JAX, that shortens experiment times from 1 week

to 15 minutes.

Publications. The work in this dissertation has been published in the follow-

ing venues:

• Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard,

Hado van Hasselt, and Laura Toni. A survey of temporal credit assign-

ment in deep reinforcement learning. Transactions on Machine Learn-

ing Research, 2024a. ISSN 2835-8856. URL https://openreview.net/

forum?id=bNtr6SLgZf. Survey Certification

• Eduardo Pignatelli, Johan Ferret, Davide Paglieri, Samuel Coward,

Tim Rocktäschel, Edward Grefenstette, and Laura Toni. Assessing

the zero-shot capabilities of LLMs for action evaluation in RL. In

ICML Workshop on Automated Reinforcement Learning, 2024b. URL

https://openreview.net/forum?id=MFw8K5705I

• Eduardo Pignatelli, Jarek Liesen, Robert Tjarko Lange, Chris Lu,

Pablo Samuel Castro, and Laura Toni. Navix: Scaling minigrid environ-

ments with jax. arXiv preprint arXiv:2407.19396, 2024c. In submission

to ICML 2025

https://openreview.net/forum?id=bNtr6SLgZf
https://openreview.net/forum?id=bNtr6SLgZf
https://openreview.net/forum?id=MFw8K5705I
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Chapter 2

Reinforcement Learning

We owe to Sutton and Barto (Sutton & Barto, 2018), who have drawn on the

research by Klopf (Klopf, 1972; 1975; 1982; 1988) and Watkins (Watkins, 1989;

Watkins & Dayan, 1992), the systematisation of RL into the computational

framework we acknowledge today. This chapter describes this formal approach

– the reader familiar with this paradigm can skip this chapter, except for

Section 2.1.

2.1 Notations

We use calligraphic characters to denote sets and the corresponding lowercases

to denote their elements, for example, x ∈ X . For a measurable space (X ,Σ),

we denote the set of probability measures over X with ∆(X ). We use an

uppercase letter X to indicate a random variable, and the notation PX to

denote its distribution over the sample set X , for example, PX : X → ∆(X ).

When we mention a random event X (for example, a random action) we refer

to a random draw of a specific value x ∈ X from its distribution PX and we

write, X ∼ PX . When a distribution is clear from the context, we omit it from

the subscript and write P(X) instead of PX(X). We use 1Y(x) for the indicator

function that maps an element x ∈ X to 1 if x ∈ Y ⊂ X and 0 otherwise. We

use R to denote the set of real numbers and B = {0, 1} to denote the Boolean
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domain. We use `∞(x) = ‖x‖∞ = supi |xi| to denote the `-infinity norm of a

vector x of components xi. We write the Kullback-Leibler divergence between

two discrete probability distributions PP (X) and PQ(X) with sample space X

as: DKL(PP (X)||PQ(X)) =
∑

x∈X [PP (x) log(PP (x)/PQ(x))].

2.2 Markov decision processes

MDPs formalise decision-making problems. This thesis focuses on the most

common MDP settings for Deep RL. Formally, a discounted MDP (Howard,

1960; Puterman, 2014) is defined by a tuple

M = (S,A, R, µ, γ) . (2.1)

S is a finite set of states (the state space) and A is a finite set of actions (the

action space). R : S × A → [rmin, rmax] is a deterministic, bounded reward

function that maps a state-action pair to a scalar reward r. γ ∈ [0, 1] is a

discount factor and µ : S × A → ∆(S) is a transition kernel, which maps a

state-action pair to probabilities over states. We refer to an arbitrary state

s ∈ S with s, an action a ∈ A with a and a reward r ∈ [rmin, rmax] with r.

Given a state-action tuple (s, a), the probability of the next random state St+1

being s′ depends on a state-transition distribution: Pµ(St+1 = s′|St = s, At =

a) = µ(s′|s, a),∀s, s′ ∈ S. We refer to St as the random state at time t. The

probability of the action a depends on the agent’s policy, which is a stationary

mapping π : S → ∆(A), from a state to a probability distribution over actions.

These settings give rise to a discrete-time, stateless (Markovian), Random

Process (RP) with the additional notions of actions to represent decisions and

rewards for a feedback signal. Given an initial state distribution Pµ0(S0), the

process begins with a random state s0 ∼ Pµ0 . Starting from s0, at each time t

the agent interacts with the environment by choosing an action At ∼ Pπ(·|st),

observing the reward rt ∼ Rt(St, At) and the next state st+1 ∼ Pµ. If a state st
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is also an absorbing state (s ∈ S ⊂ S), the MDP transitions to the same state

st with probability 1 and reward 0, and we say that the episode terminates.

We refer to the union of each temporal transition (st, at, rt, st+1) as a trajectory

or episode d = {st, at, rt, : 0 ≤ t ≤ T}, where T is the horizon of the episode.

We mostly consider episodic settings where the probability of ending in an

absorbing state in finite time is 1, resulting in the random horizon T . We

consider discrete action spaces A = {ai : 1 ≤ i ≤ n} only.

A trajectory is also a random variable in the space of all trajectories D =

(S×A×R)T , and its distribution is the joint of all of its components PD(D) =

PA,S,R(s0, a1, r1, . . . , sT ). Given an MDP M = (S,A, R, µ, γ) and fixing a

policy π produces a Markov Process (MP)Mπ and induces a distribution over

trajectory Pµ,π(D).

We refer to the return random variable Zt as the sum of discounted rewards

from time t to the end of the episode

Zt =
T∑
k=t

γk−tR(Sk, Ak). (2.2)

The control objective of an RL problem is to find a policy π∗ that maximises

the expected return,

π∗ ∈ argmax
π

Eµ,π

[
T∑
t=0

γtR(St, At)

]
= E [Z0] . (2.3)

MDPs are abstractions. Because MDPs are considerable abstractions of de-

cision problems, decisions are modelled as abstract concepts, and their meaning

can arbitrarily vary in scale, from low to high level acts. For example, the co-

ordinated choreography of decisions performed to “grab a glass” can be broken

down either into a sequence of small muscular movements, such as “bend the

bicep, stretch the triceps”, or higher level intentions, such as “extend the arm,
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rotate the wrist”, as well as a standalone action itself. This flexibility allows

treating the anecdotal situations described in the introduction with investiga-

tive rigour and precise theoretical statements. In fact, many fundamental

theorems underpinning RL solutions assume the formulation of an MDP.

What does Markovian mean? Stateless processes respect the Markov prop-

erty: the future is independent of the past, and it is determined only by the

present state of the system. In other words, the present holds all the informa-

tion from the history that is required to propagate the current state further in

time. Once the present is known, the history can be disposed of. Given the

present, the probability that a particular state-reward event occurs in the fu-

ture depends on the specification of a state-transition distribution. Sampling

from this distribution yields a temporal sequence composed of intertwined

packets – states, actions, and rewards 〈st, at, rt, 〉 – the trajectory.

Episodic and continuing settings. An MDP, and so a trajectory, can be

finite or infinite in time. There exists a particular subset of states, whose only

possible transition is to themselves with probability 1: the set of absorbing

states. Absorbing states define the termination of a decision process, and

their reward is, by definition, always zero. Termination is a natural notion for

tasks that intuitively break down into segments of time, such as the level or

the turn of a game. In these settings, the trajectory takes the name of episode,

and the task, the adjective episodic. Each episode is considered an independent

compartment of experience and information across episodes may, or may not

be shared. There exists the analogous notion for decision problems that are

intuitively infinite, named continuing tasks. Their formal treatment presents

additional problems, except, because it is possible to unify their notation, we

defer to (Sutton & Barto, 2018) for details, and assume in the rest of the

manuscript that any task is an episodic task.
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2.2.1 Policies

In Section 1.1, we introduced the concept of policy, as a rule of behaviour, here

we formalise it. By formatting experience into different rules of behaviour,

the agent can tune its performance and modulate its interactions with the

environment. Formally, a policy π(s) that spans a policy space Π, is a mapping

from a single state to probabilities over actions.

Since a policy reacts to each observation with an action programmatically, it

modifies the probability to visit a certain state. In other words, policies induce

a state-visitation probability, denoted as ρπ(s), on top of the state-transition

probability distribution, altering the likelihood of sampling a specific state.

ρπ(s) = (1− γ)
∞∑
t=0

γtPµ(st = s|π) (2.4)

Because the expected sequence of rewards depends on the state-visitation prob-

ability, the return is an intrinsic property of the policy as well as of the MDP.

There are many ways to represent policies, depending on the problem setup.

Often, when the state space or the action space are large, policies are pa-

rameterised with a vector θ with dimensionality smaller than the number of

all possible states. Since we assume dim(θ) < |S|, the parameterised policy

cannot represent all behaviours. The set of policies Π is restricted to include

only the set of representable policies Πθ ⊂ Π. Different parameterisation tech-

niques, e.g., tables, linear polynomials, or deep neural networks, yield different

declensions of RL, respectively tabular, linear, and deep RL. Sutton (Sutton

& Barto, 2018) offers extensive material on tabular and linear methods, while

we briefly describe deep RL in Section 2.7.
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2.3 Partially-observable Markov decision pro-

cesses

Partially Observable Markov Decision Processes (POMDPs) are a generalisa-

tion of MDPs introduced to relax the assumption of complete information to

one of incomplete information (Åström, 1965; Kaelbling et al., 1998). In a

POMDP, the system dynamics are governed by an underlying Hidden Markov

Model, except that the agent cannot access the full MDP state. The par-

tially observed state is the result of a mapping from true state to observation:

the observation function. Because the agent cannot access the true present,

it must form its own belief on the environment, and take its decisions under

uncertainty.

Formally, a POMDP is defined by the tuple:

E = 〈S, P,A,R, γ, O,O〉 (2.5)

Here, the tuple 〈S, P,A,R, γ〉 is the same as for the definition of the MDP.

O is the set of all observations and O is the observation function, where

PO(ot+1, rt+1|ot, at) is the probability of reading the observation-reward pair

〈ot+1, rt+1〉, given the observation-action pair 〈ot, at〉. It is not uncommon to

use the terms state and observation interchangeably, while inferring the exact

meaning from context: the type of decision process involved. This is also the

notation and terminology we use in this manuscript.

2.3.1 State aliasing

While in MDPs a state can unequivocally define the present, this is not the

case for POMDPs. State aliasing is a common symptom of partially observable

environments, and occurs when two or more distinct states degenerate into

the same observation. Two states s1, s2 ∈ S are said to be aliased in the
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(a) (b)

Figure 2.1: The four-room GridWorld (Chevalier-Boisvert et al., 2018) is a popular
testbed for RL algorithms. The task is for the agent – the red arrow – to navigate
to a goal position – the green square. The agent can choose among the following
actions: i) turn counterclockwise; ii) turn clockwise; iii) move forward; iv) pick up
an object; v) drop an object; vi) toggle object; vii) wait. (a) The observation of
this POMDP is a partial RGB view of the environment centred around the agent’s
perspective. (b) The underlying MDP state, showing the agent’s global position.
The lighter area corresponds to the agent’s field of view, while the rest is considered
darkness or not visible.

(a) (b)

Figure 2.2: An example of state aliasing. The figure shows the same POMDP
described in Figure 2.1, but in a different MDP state, and its corresponding obser-
vation. Notice how the observation in (b) is exactly the same as the observation
in Figure 2.1(a), while the underlying MDP state is different. While the optimal
action in Figure 2.1(b) would be to move forward, it is to turn counterclockwise for
the state in (b). However, this information is not available to the agent, which will
receive the same observations Figure 2.1(b) and (b).
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observation o = o1 = o2 ∈ O if:



o1 = O(s1)

o2 = O(s2)

s1 6= s2

o1 = o2 = o

(2.6)

Because the policy in an MDP is a mapping from observation to action, when

two states are aliased into one observation, but they attend to two different op-

timal actions, the policy does not have enough information to discern between

the two. It therefore assigns, suboptimally, the same action to two different

underlying states. For example, consider the task – shown in Figure 2.1 and

Figure 2.2– of navigating a partially dark room, with the objective to reach

the desired goal. When standing in the middle of any room, darkness does not

allow to tell the global direction towards which we are facing, since all around

us looks exactly the same. However, if we are facing east – such as in Figure 2.1

right – the optimal action would be to turn around by 90 degrees clockwise,

and then swing ahead. Instead, in case we face south – such as in Figure 2.2

right – the same policy results in suboptimal behaviour, for it points to the

wall. Notice that what we see is exactly the same in both cases, and only

additional information can help us differentiate between the two, and turn our

belief state into the true state of the underlying decision problem. One way to

complement this information is to consider the history of observations, what-

ever long. For example, remembering where we come from could be enough.

For this reason, while MDP policies are a mapping from a single state to action

probabilities, a POMDP policy is a mapping from a history of observations to

probabilities of actions. The history of observations constitutes a single state

of our decision problem, and policies update accordingly:

π(x) = Pπ(a|x) (2.7)
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where x = {ot, ot+1..., ot+k} is the history of observations; k ∈ N is an arbitrary

length of the history, and k = 0 recovers the definition of policy in an MDP,

given that O(s) = s.

2.4 The value problem

As detailed in the previous section, different policies acting in an environment

define different trajectory random variables, and, in turn, different returns.

The concept of utility, borrowed from economics and optimal control, pro-

poses a model of the returns – the value – that allows modelling preferences

mathematically. In RL, the value of a state is the device that formalises the

notion of utility, and a central quantity. Given a policy π, the state value

function maps a starting state st to its expected return Gt. Intuitively, values

measure how much reward the agent can expect to collect in the future, thus

allowing to evaluate policies. Formally, the value of a state is defined as:

vπ(s) = E
ρ

[Gt|St = s] , ∀s ∈ S (2.8)

Here, the expectation Eρ is over the state visitation distribution, comprising

the environment dynamics µ, and the stochasticity of policy π.

Since value functions v(s) are models of returns G(s), they can be estimated

from experience following a process called policy evaluation. One fundamental

property of returns and values is that they satisfy a recursive relationship in

time. By the law of iterated expectations, one can write the value at time v(st)

by referring to the value of its immediate successor state v(st+1). In particular,

the value of a state v(st) is, in expectation, equal to the reward collected after

taking an action a ∼ π(st), plus the discounted value of the next state v(st+1).

This relationship yields one of the most central equations in RL: the Bellman
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Expectation Equation.

vπ(st) = E
π,µ

[rt + γvπ(st+1)] (2.9)

=
∑
a

π(a|s)
∑
st+1,r

Pµ(st+1, r|st, a) [rt + γvπ(st+1)] (2.10)

= ρπ [rt + γvπ(st+1)] . (2.11)

Nonetheless, despite state values being a useful metric to evaluate a policy,

they do not provide information on how to value individual actions. There

exists a second type of value function, called the state-action value function,

which represents the value of taking a particular action at when starting from

a state st, and following π afterwards. State-action values are a key quantity

to define and solve the optimal policy problem:

qπ(s, a) = E
π,µ

[Gt|St = s, At = a] , ∀s ∈ S,∀a ∈ A (2.12)

Importantly, they satisfy an analogous recursive relationship, defining the Bell-

man Expectation Equation for state-action values:

qπ(st, at) = E
π,µ

[rt + γqπ(st+1|π(st+1)]

=
∑
a

π(a|s)
∑
st+1,r

Pµ(st+1, r|st, a) [rt + γqπ(st+1|π(st+1)]

= ρπ [rt + γqπ(st+1|π(st+1)]

(2.13)

Finally, a third quantity, function of the previous two values, is of high inter-

est for credit assignment: the advantage function. Advantages measure how

convenient it is to take one action a with respect to the other actions in the

action set A. Its importance is paramount since, by providing a relative mea-

sure among actions, it requires knowledge about the values of all actions in

the action set. Arguably, this is the quantity we care the most about, but in
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practice, estimating it is far more expensive. Formally:

kπ(s, a) = qπ(s, a)− vπ(s) (2.14)

Here, kπ(s, a) is the advantage function of the policy π, and qπ(s, a) and vπ(s)

are the state-action and state value functions, respectively.

2.5 The optimal policy problem

Solving a RL problem means finding a policy that collects the maximal re-

turn G, in expectation1. Value functions are at the core of this problem, for

their capacity to represent expected returns. RL exploits three fundamental

properties of value functions.

(I) Ordering. Value functions induce a partial ordering over policies. A policy

π is said to be greater (better) than or equal to another policy π
′

if and only

if its expected return is greater than or equal to that of π
′
:

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′ (s), ∀s ∈ S. (2.15)

(II) Optimal set. Secondly, in the partially ordered set Πθ there is at least

one policy that is greater than or equal to all other policies in the representable

set. This set of policies is called the set of optimal policies, denoted as Π∗,

whereas any optimal policy is represented as π∗. Even if there is no guarantee

that Π∗ is a singleton, all optimal policies evaluate to a unique, shared value

function, called the optimal value function. Formally one can write:

v∗(s) = vπ
∗
(s) = max

π
vπ(s) ∀s ∈ S (2.16)

q∗(s, a) = qπ
∗
(s, a) = max

π
qπ(s, a) ∀s ∈ S,∀a ∈ A (2.17)

1There are also works aiming to maximise the return random variable (Bellemare et al.,
2017; Dabney et al., 2018).
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where v∗(s) and q∗(s, a) are the optimal state and state-action value functions,

respectively. Intuitively, the optimal state value function is the state-action

value where the action has the highest value:

vπ
∗
(s) = max

a

[
qπ
∗
(s, a)

]
, ∀a ∈ A (2.18)

Because optimal value functions respect the same recursive relationship of any

value function, substituting (2.9) into (2.18) leads to:

v∗(s) = max
a
E
π,µ

[rt + γv∗(st+1)] (2.19)

q∗(s, a) = max
a
E
π,µ

[rt + γq∗(st+1, π
∗(st+1)] (2.20)

The arrangements of equations (2.16) and (2.17) into equations (2.19) and (2.20)

constitute the Bellman Optimality Equations for, state and state-action value

functions, respectively.

(III) Existence. Finally, notice that not every pair of policies (value func-

tions) is comparable because the set of policies (value functions), is only par-

tially ordered. Two policies π and π
′

can be in only one of the following four

relationships: i) π > π
′
; ii) π < π

′
; iii) π = π

′
; finally iv) π � π

′
, where

� denotes non-comparable items. This is overt if the value of a policy vπ(s)

is greater than the value of a second policy vπ′ (s) in some states, but not in

others. If not all policies can be compared, how can we be sure that an optimal

policy even exists? In other words, that Π∗ 6= ∅? None of the above formu-

lations have yet provided a mathematical proof of the intuition. RL theory

resorts to the Banach fixed-point theorem to prove that the Bellman Optimal-

ity operator T : Π → Π is a contraction mapping in the metric space (Π, v),

and its unique fixed point ensures the existence of one optimal value function.

Analogously, the existence of at least one optimal policy is always guaranteed

by the existence of an optimal value function. Also, notice that the uniqueness

of optimal policies is not guaranteed and the set of optimal policies might not
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be a singleton. This distinction is key for the concept of credit, since not all

optimal policies assign credit optimally. The next section discusses solutions

for optimal policies and optimal value function.

2.6 Solving the optimal policy problem

Before the discussion delves into a taxonomy of methods for solving prediction

and control problems, we zoom-out to reconnect with the broader problem

of decision making. For an artificial agent, we identify tree main sources of

knowledge 2.

Priors. Priors constitute the non-acquired knowledge deriving from a par-

ticular configuration of starting conditions. This kind of knowledge can be

interpreted as the reduction of uncertainty about the environment that is not

conditioned to any experience. A key, denoting factor of priors is that they

are a property of one specific instance of the agency (e.g., yourself), and not

of a class of agencies (e.g., humans). Genotypes are one example of priors in

biology, for they define the starting point of human knowledge accumulation.

The equivalent notion in machine learning is initialisations.

Experience. Experience is at the core of any learning systems. It can be inter-

preted as the perpetual digestion of external sensory data into general, more

abstract statements about the world. As a result, all else being the same,

different experiences strongly influence what knowledge an agent possesses.

Curricula are a clear example of this interaction. For example, canonical ed-

ucation presents additions before multiplications, and equations, and, again,

linear algebra. Experiencing these concepts backwards would, most likely,

result in weaker learning experiences. In RL, this phenomenon is not only

particularly relevant, but also a trait that distinguishes this form of learning

2There exist many definitions of knowledge and its definition is not a subject of this dis-
sertation. Here we assume a, probably simpler, information theoretic definition of knowledge
using entropy: the reduction of uncertainty about a random variable. The random variable
we refer to is the environment.
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(a) (b)

Figure 2.3: Backup diagrams for a state value function update. Hollow circles
signify states, whereas solid circles denote actions. (a) State value – v(s) – backup
to evaluate a policy according to the Bellman expectation equation. (b) State value
backup for the optimal state value function – v∗(s). The arc over the branches
represents a maximisation operation. Here s is the state, π is the policy, a is a
potential action, r is the reward, p is the state-transition probability and s

′
is a

possible next state.

(a) (b)

Figure 2.4: Backup diagrams for a state-action value function update. Hollow
circles signify states, whereas solid circles denote actions. (a) State-action value
backup – q(s) – to evaluate a policy according to the Bellman expectation equation.
(b) State-action value backup for the optimal state-action value function – q∗(s).
The arc over the branches represents a maximisation operation. Here s is the state,
π is the policy, a is a potential action, r is the reward, p is the state-transition
probability and s

′
is a possible next state. Notice how the root of the backup tree

in a state-action value function is a state-action pair, unlike in a state value backup.
Also notice how, after evaluating the chosen action, the following action is sampled
from π(s

′
). This allows to evaluate “how good” is the action a, when the agent is

in a state s.
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from others, such as supervised learning: the decisions of the present strongly

affect the parts of the world experienced in the future.

Learning biases. Learning or inductive biases, are the assumptions at the

base of a type of learners. Unlike priors, biases are a property of a class of

agencies (e.g., humans), usually fixed by some higher order mechanism, such

as evolution, or scientific innovation. Inductive biases include learning mecha-

nism, and describe how experience is baked into knowledge. They also include

perceptual components, such as the acquisition, storage, processing, and re-

trieval of experience. In humans, the neuroscientific literature offers numerous

models of learning biases, e.g., dopaminergic metabolism for goal-oriented be-

haviour. In RL, inductive biases strongly influence credit assignment: how is

experience transformed into knowledge? How is it transferred from the exter-

nal world into a different order of parameters?

The remainder of this section describes the fundamental methods to solve the

optimal policy problem. We start by introducing the policy iteration schema,

and then branch out to two main classes of algorithms: temporal difference

learning and policy gradient methods. Finally, we describe how these adapt

to approximate settings where knowledge acquisition is limited, and briefly

illustrate the notion of Deep RL.

2.6.1 Generalised policy iteration

Solving RL problems most often means to assume a set of learning biases and

to use experience to adapt prior knowledge to decide optimally. Combinations

of different learning biases (Mnih et al., 2015; Schulman et al., 2015; 2017;

Bellemare et al., 2017; Haarnoja et al., 2018), priors (Finn et al., 2017; Javed

& White, 2019) and experiences (Bellemare et al., 2013; Cobbe et al., 2020;

Samvelyan et al., 2021; Todorov et al., 2012; Jiang et al., 2021a) yield a sheer

variety of algorithms. Mathematically, they all follow the Generalised Policy

Iteration (GPI) schema. Policy Iteration is the process that initiates from an
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arbitrary policy and then exploits experience to alternate between steps of

policy evaluation and policy improvement.

Policy Evaluation (PE) is then the process that maps a policy π to its value

function. A canonical PE procedure starts from an arbitrary value function V0

and iteratively applies the Bellman expectation operator, Λ, such that:

v̂πk+1(St) = Λπ[v̂πk (St)] := Eπ,µ [R(St, At) + γv̂k(St+1)] , (2.21)

where v̂k denotes the value approximation at iteration k, At ∼ Pπ(·|St), and

St+1 ∼ Pµ,π(·|St, At). The Bellman operator is a γ-contraction in the `∞ and

the `2 norms, and its fixed point is the value of the policy π. Hence, succes-

sive applications of the Bellman expectation operator improve the prediction

accuracy because the current value gets closer to the true value of the policy.

We refer to the PE as the prediction objective (Sutton & Barto, 2018).

Policy improvement is the process of applying the Bellman optimality operator

Γ, maps a policy π to an improved policy:

πk+1(a|S) = Γ[πk, S] = 1{a}(argmax
u∈A

[R(S, u) + γvk(S
′)]) = 1{a}(argmax

u∈A
[qk(S, u)]).

(2.22)

Notice how an improvement step generates a new policy, which, in turn, needs

to be re-evaluated. Only when the current policy is optimal the two processes

agree to convergence. The Bellman optimality equation will produce the same

policy, and the expectation equation will not need to re-evaluate, as the value

function can already tell the returns of the current policy. In theory, the process

stops when both equations produce no changes: a fixed-point of both the

Bellman expectation and optimality equations. In practice, we often terminate

when policy improvement touches a stationary point.

We refer to GPI as a general method to solve the control problem (Sutton &
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Barto, 2018) deriving from the composition of PE and Policy Improvement

(PI). In particular, we refer to the algorithm that alternates an arbitrary num-

ber k of PE steps and one PI step as Modified Policy Iteration (MPI) (Put-

erman & Shin, 1978; Scherrer et al., 2015). For k = 1, MPI recovers Value

Iteration, while for k → +∞, it recovers Policy Iteration. For any value of

k ∈ [1,+∞), and under mild assumptions, MPI converges to an optimal policy

(Puterman, 2014).

Different specifications of the evaluation and improvement processes produce

different families of algorithms. The next two sections describe the main cate-

gories of algorithms, separated by whether they explicitly represent the policy

or not: action-value methods and policy gradients.

2.6.2 Action-value methods

Action-value methods include the class of techniques that consult state-action

value functions to select suitable actions. At the foundation of these methods

is Temporal difference learning (Samuel, 1959; Klopf, 1972). Here the value

estimate is updated at every new incoming experience, by measuring the dif-

ference between the current inference, and the actual, experienced outcome.

The actual (partial or not) outcome is called value target, and different target

specifications bring different action-value algorithms. A generic step of policy

improvement in action-value methods can be described as:

vπi+1(st) = vπi (st) + α
[
Ĝ(st)− vπi (st)

]
(2.23)

where vπi+1(st) is the value function under the policy π, at iteration i + 1 and

state st; v
π
i (st) is the value at iteration i; α is a step-size parameters to control

the importance of the sampled experience st; Ĝ(st) is the value target. The

quantity δt = Ĝ(st)− vπi (st) takes the name of temporal difference error.
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Depending on the value target, there exists a spectrum of algorithms, each

with their convergence properties. We refer the set of properties proposed

by Rowland (Rowland et al., 2020): fixed-point bias, contraction rate, and

variance. If the value target is the actual return of the full episode, we obtain

the Monte-Carlo methods for both prediction and control.

vπi+1(st) = vπi (st) + α [G(st)− vπi (st)] (2.24)

where Ĝ(st) = G(st). Monte-Carlo methods are unbiased. They converge to

the optimal policy exactly because the value target is the true return, but

produce learning routines with high variance.

On the other extreme, TD(0) only considers the immediate next transition

step to update its target, and accounts for the future expected sum of rewards

by adding the current estimate of the value function for the next state:

vπi+1(st) = vπi (st) + α [rt + γvπi (st+1)− vπi (st)] (2.25)

where Ĝ(st) = rt + γvπi (st+1). Unlike Monte-Carlo methods, TD(0) has lower

variance, but its update targets might be biased with respect to the true return

of the episode. In other words, the agent trades a slower process of knowing

the effect of the current action on the most remote outcome of the episode in

the future with a quick, one-step update based on limited knowledge. This in-

troduces the fundamental concept of bootstrapping. Learning from incomplete

episodes causes to formulate a guess from a guess: to produce expectations

over future values from expectations of current ones.

Between these two extremes there exists a gamma of targets that blends the gap

between Monte-Carlo and TD(0) methods. In particular, two main techniques

– n-step bootstrapping and eligibility traces – improve the value target by acting

on two different dimensions of experience, respectively, time and memory. n-

step bootstrapping works by considering a fixed n-step window to calculate
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the target. The agent starts in a state st, takes n steps following policy π(st),

calculates the return, and finally updates its policy:

vπi+1(st) = vπi (st) + α [Gt:t+n − vπi (st)] (2.26)

where:

Gt:t+n =
n−1∑
k=0

[
γkrt+k

]
+ γnvπi (st+n) (2.27)

By looking further into the future, the return of the starting state st is more

accurate than a method exploiting a smaller time window and the effects of

bootstrapping are less pronounced, but it is not as accurate as the full Monte-

Carlo return. Furthermore, all n actions taken along the trajectory are up-

dated, increasing the amount of information learned from one sample at the

cost of reducing the frequency of each update Overall, the main advantage of

n-step methods is the ability to trade off the bias caused by the bootstrapping

with variance brought by long trajectories.

Eligibility traces, on the other side, calibrate the importance of an update based

on a frequentist measure of the probability of a state-action event to happen.

The intuition behind them is that the more an event is likely to happen, the

more it is important to update its value estimate. The trace marks certain

parameters of the policy, and registers their importance for the update. λ-

returns are the core quantity under this view of eligibility traces, although

there exist also different formulations:

vπi+1(st) = vπi (st) + α
[
Gλ
t − vπi (st)

]
(2.28)

where:

Gλ
t = (1− λ)

T∑
k=1

λk−1Gt (2.29)
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Notice how also λ-returns blend the gap between Monte-Carlo and one-step

methods, but differ from n-step bootstrapping in the way they reduce the

variance. While n-step returns decrease the accumulation window of the target,

λ-returns re-weigh past returns exponentially less than newer ones.

Finally, n-step bootstrapping and λ-returns can be composed together to ob-

tain an algorithm with the virtues of both techniques: the truncated λ-return:

vπi+1(st) = vπi (st) + α
[
Gλ
t:t+n − vπi (st)

]
(2.30)

where:

Gλ
t:t+n = λn−1Gt:t+n + (1− λ)

n−1∑
k=0

λk−1Gt:t+k (2.31)

To summarise, action-value methods specify the policy improvement step by

defining a target and acting greedily with respect to it. In the process, these

methods must consult a value function to choose an action. In the next section

we analyse a different approach to policy improvement, based on explicitly

parameterising a policy and avoid consulting a value function.

2.6.3 Policy Gradient methods

Action-value methods work by searching for the optimal value function and

then acting greedily with respect to it. Another approach to policy improve-

ment is to explicitly parameterise the policy, and then directly search in the

policy space. A broadly used family of method are policy gradient methods.

Consider a differentiable policy π(a|s, θ), parameterised with a parameter vec-

tor θ. Policy gradient methods maximise the agent’s performance by perform-

ing gradient ascent on π(a|s, θ), in the direction of the return target Ĝ:

θi+1 = θi + α
∂Ĝ(s)

∂θ
(2.32)
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Here θi+1 is the policy parameter vector at iteration i+1, and θi follows; α is a

step-size parameter to ensure the convergence of the gradient descent; ∂Ĝ(s)
∂θ

is

the gradient of the maximisation objective Ĝ with respect to the policy param-

eters θ. One key obstacle of policy gradient methods is that the gradient Ĝ(s)

depends on the environment and requires knowledge of the state-transitions

distribution µ(s′, r|s, a), or an approximate model of it. The policy gradi-

ent theorem overcomes this problem by removing the dependency on µ, and

provides an analytical expression of the policy gradient without an explicit

reference to the environment:

∂Ĝ(s)

∂θ
= Eπ

[
Ĝ(s)γ

∂π(a|s, θ)
∂θ

]
(2.33)

As usual, different specification of Ĝ(s) produce different algorithms. For

example, considering the full Monte-Carlo return with Ĝ(s) = G(s), yields the

Monte-Carlo Policy Gradient, or REINFORCE Williams (1992), update:

θi+1 = θi +
α

π(at|st, θ)

[
G(st)γ

∂π(at|st, θ)
∂θ

]
(2.34)

Substituting the score function ∇x
x

= ∇ log x one gets the most common form

of policy gradient updates:

θi+1 = θi + αG(st)γ∇θ log π(at|st, θ) (2.35)

where ∇θ log π(a|s, θ) is another expression for ∂ log π(at|st,θ)
∂θ

. A key advantage

of policy gradient methods is the ability to represent stochastic policies, un-

like most action-value methods. One natural way to define parametric policies

is to use parameterised distributions. Softmax distributions are a standard

for discrete action spaces, while Gaussian distributions are preferred for con-

tinuous actions – another major advantage over action-value methods. Here,

the stochasticity is induced by sampling actions over action preferences. This

ability is key in decision problems where the optimal policies are inherently
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stochastic, such as in POMDPs. It is also key for credit assignment, since it

allows representing equiprobable actions when the advantage is always zero in

specific states.

2.6.3.1 Actor-critic methods

Until now, we described policy gradient methods where the return target was

a real observed outcome. When the return target is a learned estimate of the

full Monte-Carlo return, policy gradient methods take the name of actor-critic

methods : Actor-critic agents learn a dual model, one for the policy – the actor

– and one for the value function – the critic – that symbiotically interact.

θi+1 = θi + α
[
Q(s, π(s))γ∇θ log π(a|s, θ)

]
(2.36)

where Q(s, π(s)) is an approximation of the true return G(s). The properties of

an actor-critic implementation inherit from action-value methods, and mostly

depend on the properties of the critic. For example, a biased critic, such

as a one-step q-function produces a biased actor-critic algorithm, whereas a

full Monte-Carlo return translates into policy learning with high variance. One

interpretation of this architecture is that the actor learns to improve the policy,

based on the estimated expected returns – the critic. The critic, on the other

hand, uses temporal difference to approximate the value function of the actor.

This recursive dialogue allows to the critic to “critique“ the actor’s preferences

by communicating temporal difference errors. Another interpretation of actor-

critic algorithms comes from neuroscience. Speculations about the biophysical

significance of actor-critic have driven experimenters to investigate whether

the brain implements such dialectic. Preliminary evidence (O’Doherty et al.,

2004; Takahashi et al., 2008) suggests that two structures in the brain may

function one like an actor and the other as critic: respectively, the dorsolateral

and ventral striatum. Dopamine targets both areas, and modulates synaptic

plasticity differently in each of those, according to the function of the afferent
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structure.

2.7 Deep RL

In simple settings, the policy can be represented as a look-up table – with states

as keys and actions as values – or a linear combination of features. However,

when observations are high dimensional or actions spaces are large, these poli-

cies struggle to perform. On one hand, the memory required by tables is too

expensive even for the contemporary infrastructures, and tabular method do

not promise to scale up. On the other hand, linear representations are not

expressive enough, and often fail to encompass the information required to

act optimally, or require strong learning biases that diminish the autonomy of

the agents. With the reinstatement of dominance of learning over symbolic

methods, Deep RL scales up canonical RL methods to high dimensional prob-

lems. The combination of the non-linear behaviour of Deep Neural Networks,

gradient descent optimisation, and the strong learning biases of RL allowed

solving always more complex decision problems. Many of these environments

shift the problem to raw pixel observations, introducing the challenge to learn

to perceive other than only learn to act optimally.

The main interpretation of a deep RL architecture, and the one we assume in

this dissertation, is to view the network as two connected parts: (i) a non-linear

representation function z = φ(o), and (ii) a linear controller with parameters

θ. The final preferences π(a|s, θ, φ) write as follows:

π(a|s, θ, φ) = φ(o)ᵀθ, ∀o ∈ O (2.37)

Alongside sample efficiency, and the non-stationarity induced by the contin-

uously changing features, the problem that most affects credit assignment in

these settings is the tendency of the policy to overfit to one specific optimal

policy. The low sample efficiency of deep RL requires focusing on a small sub-
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set of behaviour. Often, some of these actions are not necessary to obtain a

reward, and the agent lacks the understanding that only a subset of its actions

affect returns.

2.8 Summary and conclusions

This chapter introduced the fundamental concepts of RL to understand the

rest of the manuscript. We started by defining the problem of decision making,

and then introduced the Markov Decision Process as a formalism to describe

it. We then described the optimal policy problem, and the main methods to

solve it. We introduced the GPI schema, and then branched out to two main

classes of algorithms: action-value methods and policy gradient methods. Fi-

nally, we described how these adapt to approximate settings where knowledge

acquisition is limited, and briefly illustrated the notion of Deep RL. The next

chapter introduces the set of fundamental assumptions that underpin the rest

of the dissertation.



Chapter 3

Influences

In this section, we describe the fundamental influences that shaped the field

of Reinforcement Learning today, and the assumptions that they bring to the

table. We describe the philosophical biases that underpin the field, the math-

ematical tools that are used to model decision-making, the psychological the-

ories that inspired the first learning algorithms, and the computational power

that made the field possible. Each of these influences will yield a fundamen-

tal assumption, which we will use to build on the theory of Reinforcement

Learning in the following chapters.

The set of influences is inherently multidisciplinary. Often, the very same

book (e.g., Pavlov’s “Conditioned Reflexes” (Pavlov, 1927)) is turned inside-

out by separate disciplines at once (e.g., psychologists, neuroscientists, physi-

cists, economists, managers). It is not a fortuity that Turing’s 1950 seminal

paper on thinking machines (Turing, 1950) was published in a philosophy jour-

nal, Mind. There exist several versions of this story (Buchanan, 2005; Haenlein

& Kaplan, 2019; Sutton & Barto, 2018; Smiley, 2010), depending on their fo-

cus and their interpretation of controversies (e.g., when was the first computer

invented?).

Here, we are interested in the part of the story that brought conspicuous
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innovations to defining Reinforcement Learning today. This is by no means

a comprehensive story, leaving aside many prominent events and actors, but

only a very brief overview.

We recognise four main threads, each corresponding to four major areas of

research today: (i) the neuropsychologists’ research on conditioning, and the

cognitive sciences concerned with understanding how information in the brain

is acquired, stored, processed and retrieved; (ii) the physics of optimal control;

(iii) the philosophical assumptions at the heart of behavioural studies; and

finally, (iv) computers.

3.1 Neuropsychology

Behavioural psychology and Thorndike’s connectionist theory pioneered

two main ideas: trial-and-error learning, and classical conditioning theory. The

law of effect (Thorndike, 1898) introduced the paradigm of stimulus-response

(S-R) pairing for learning: when a stimulus eliciting a response is followed

by satisfaction (or dissatisfaction), the probability of that very response, at

the occurrence of that very stimulus, increases (decreases). There exist two

major theories of conditioning. First, classical conditioning received its name

with Pavlov (Pavlov, 1927), who advanced and detailed Thornedike’s work on

reflexes. Second, Skinner’s operant conditioning (Skinner, 1963) is the hall-

mark of learning by reinforcements. While in the Pavlovian experiments a

reinforcer is paired with a stimulus, in operant behaviour it is contingent upon

a response. In other words, the operant - the elicited behaviour - anticipates

the reinforcement - the event that strengthens behaviour1. The importance of

this subtle difference is paramount. While stimulus-response pairing is a con-

dition for reflex, operant behaviour is an attempt to act, to increase (decrease)

one’s own satisfaction (dissatisfaction). For short, in classical conditioning re-

wards and punishments are independent of the actions. Instead, in operant

1Rewards are reinforcements.
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conditioning actions determine what reinforcement – hence what reward – is

provided. For example, imagine to smell the aroma of your favourite food. The

immediate joy, and the immediate excitement is a typical reflex explained by

classical conditioning. The event – the smell – produces reward – the joy – but

does not require any actions: just the neural acknowledgement of the sensory

information. On the other hand, consider an employer offering a fat bonus to

their employees because they reached a target. The reward – the bonus – re-

inforces the employees’ behaviour – reaching a target. In this case the reward

is contingent upon the action “working smart to reaching the target”.

In Neuroscience, Hebbian theory (Hebb, 1949) harmonised the biological

functions of the brain for learning with the higher level functioning of the

mind. Models of Hebbian learning are the first example of Artificial Neural

Network. At their foundation there is learning through Hebb’s law. Hebb

conjectured that if the activation of a neuron A often follows the one of neu-

ron B, the synapse between the two is strengthened. This is often popularly

paraphrased as “neurons that fire together, wire together”. Artificial neural

networks are now an indispensable component of the modern Reinforcement

Learning formulation, and capable to mimic (in principle) a substrate of bio-

logical neurotransmission in order to compose high level abstractions.

Much later, Dayan, Schultz, Montague and Sejnowsky discovered profound

connections between the dopaminergic metabolism in the ventral-tegmental

area of the brain and reinforcement learning. Experimental evidence in mon-

keys (Schultz, 1998) suggests that the phasic activity of dopaminergic neurons

conveys a peculiar error signal: the difference between an estimate of the ex-

pectation of satisfaction, and its true, realised outcome of satisfaction. This

hypothesis is regarded as the “reward prediction error hypothesis of dopamine

neuron activity” (Montague et al., 1996; Schultz et al., 1997). In other words,

when a reward is expected, but not collected – or vice versa – dopamine pro-

vides a prediction error signal for reward: surprise.
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From the influences of neuropsychology, we draw the following assumptions,

which we also summarise in Figure 3.1b.

Assumption 1 (Primary rewards.). There exists a primary reward signal

that the agent can sense and that is contingent upon the agent’s actions, and

the state of the world. From the agent’s point of view, the primary reward is a

function of the future, that is, the agent’s actions determine the reward. The

primary reward is external, innate, and independent from the agent.

Assumption 2 (Secondary reward.). There exists a secondary reward sig-

nal, which is instead learnt from experience, and depends on the agent. The

secondary reward actualises the primary reward, transporting it from the fu-

ture to the present. We refer to credit as the quantity that measures this

reward.

3.2 Optimal control theory

Despite the several points of contact between psychologists and neuroscien-

tists, the theory of optimal control developed an independent, parallel thread.

The term optimal control theory refers to the mathematical framework con-

cerned with finding the configuration of a dynamic system that minimises a

certain cost. Here a controller can intervene on a dynamic system, which is

formulated as a random process. We owe to Pontryagin (Boltyansky et al.,

1956) the bases of this field, who advanced the groundwork of Hamilton and

Jacobi in Hamiltonian mechanics. Its main contribution is his maximum prin-

ciple (Pontryagin et al., 1962), which made high dimensional problems more

tractable. Its significance lies in the fact that maximising over the Hamiltonian

converts an infinite-dimensional control problem – the function space of the

Hamiltonian – to a problem of space-discrete optimisation. Richard Bellman

(Bellman, 1957) extended Pontryagin’s work to time-discrete problems. The

new problem formulation took the name of MDP, and their solution – dubbed
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(a) One of the eleven original Thorndike’s cat puzzle box apparatus, used to replace the
coeval anecdotal reports on behaviour with experimental observations. The door of the box
is held in place by a string anchored to a lever. Each of the eleven versions of the box provide
different mechanisms to open the door. The image is adapted from the original publication
(Thorndike, 1898).

(b) Primary and secondary rewards in RL and their relationship. The primary reward is
external, innate, and independent from the agent. The secondary reward is learnt from
experience, and depends on the agent.
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dynamic programming – can be derived from the equation that later took Bell-

man’s name. Even today, Markov Decision Processes, the Bellman equation,

and dynamic programming are the workhorse of many Reinforcement Learning

formulations.

Assumption 3 (Optimal control.). From optimal control theory, we assume

that any decision-making problem can be formulated as a MDP, and that the

optimal policy can be derived from the Bellman equation.

Section 2 further elaborates on the topic.

3.3 Philosophy

With time, the field developed an independent identity, and nowadays, the

existence of a distinct science of human decision-making is an established fact.

The research has set the shared goal of understanding how preferences are

formed and their causes, and draws on many assumptions from the underly-

ing disciplines, despite often not explicitly (Andersen et al., 2019). One key

philosophical bias is that behaviour is lawful and determined (Skinner, 1953).

In behavioural studies that predate the 1900, the prevailing dualist and com-

patibilist philosophy (Clark, 1999) regarded behaviour as the product not of

specifiable antecedent conditions, but of an inner “will”: a causally privileged

device empowered to interfere with the naturalistic stream of events by means

of freedom2. Pity the natural compatibilists, for this is a major philosophi-

cal bias that affects modern decision-making theory, allowing science to claim

general laws from experimental results. Experimenters can expect that a deci-

sion is the result of specificable conditions, and if these factors are identified,

behaviour can be univocally predicted, and, to some extent, controlled. The

2The compatibilist view is not abandoned today, and debate is ongoing (Carroll, 2012).
However, the discussion has philosophy at its centre. Even if the reach of neuroscience,
physics, and behavioural psychology studies towards philosophy is strong, the practical
impacts of philosophy on those, are weak.
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Figure 3.2: The “look-ahead” move tree originally presented by Samuel (Samuel,
1959) in his preliminary studies on using machine learning to play checkers. The
squares show the look-ahead move for the first player, whereas circles represent the
board positions for the opponent. Dashed lines are branches removed from search.
The term “look-ahead” is now widely used in reinforcement learning.

premise of rationality (Samuelson, 1937) underpins this idea. The rational de-

cision maker has no limit to the amount of knowledge it may acquire, and it

is capable of ordering its preferences when complete information is available.

Alas, after 1950 scholars have gradually come to terms with the inability of

humans to make perfect, rational decisions, and a long history of how to make

decisions in the face of uncertainty has begun (Simon, 1957).

Assumption 4 (Naturalism and rationality.). From the naturalism and ra-

tionality, we assume that behaviour is lawful and determined. This means

that, given a set of conditions, the decision-maker will always make the same

decision. For this reason, behaviour is predictable and can be deterministically

controlled.

3.4 Computers
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Figure 3.3: The original “back-up” from Minsky (Minsky, 1961) for an arbitrary
game tree. The first three lines, from the left, fan out the first player ’s moves, while
the second level of branches the opponent ’s. To “back-up” a decision tree is the
process to evaluate a policy: how much reward will I collect, if I follow a specific set
of moves, in expectation to the opponent’s moves?

Figure 3.4: Contemporary “back-up” diagram from Sutton (Sutton & Barto, 2018)
for the game of Tic-Tac-Toe. The solid black line represents actions that the agent,
or the opponent, have taken. Starred moves are optimal moves, and red arrows are
“back-ups”. The move e was not optimal, but targeted exploration instead, and as
such, it is not “backed-up”, providing no reinforcement signal.
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While these threads of research proceeded with their goals, the era of comput-

ers was about to begin. In the first part of the 20th century, computers were

mostly specific-purpose machines. The first proposal for a general-purpose

computer – and Turing machine – has been Babbage’s analytical engine, later

published by Menabrea and Lovelace (Menabrea & Lovelace, 1843). These

computers are often not considered more than clockwork machinery, and of no

interest for the purpose of decision-making. When, in the second part of the

twentieth century, machines grew the power to replicate real experiments, the

quest of understanding the nature of intelligent behaviour began. In 1956, with

the Dartmouth Summer Research Project on Artificial Intelligence, Artificial

Intelligence officially acquired its name.

Research before 1960 was centred around the idea of heuristic search and how

to effectively reduce the breadth and depth of search (Minsky, 1968). Samuel’s

(Samuel, 1959) checkers program was the first effective use of heuristic search

for decision making. Learning is the central topic in these years. Samuel

(Samuel, 1967) itself introduced some of the concepts that will be systematised

much later in the reinforcement learning literature, such as temporal-difference

learning, and the evaluation of decision sequences by “backing-up” a decision,

shown in Figures 3.2, 3.3, and 3.4.

The 1960s saw a paradigm shift. The concern became less with learning, and

more with the problem of knowledge representation, however acquired. In

these years decisions are the result of the logical manipulation of symbols,

leading to the stagnation of statistical methods.

Finally, the Deep Learning – and the Deep Reinforcement Learning – revo-

lution is likely the last breakthrough in computer learning. In 2012, thanks

to the power of GPUs and the ubiquitous availability of data, artificial neural

networks made a comeback. AlexNet (Krizhevsky et al., 2012) re-established

the dominance of learning methods over the manipulation of symbols, and

became the state-of-the art for computer vision. Since then, deep learning
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has made huge leap forwards. In 2013 deep reinforcement learning was born

(Mnih et al., 2013), and in 2015 Deep Q-Networks surpassed human experts

in playing Atari video-games (Mnih et al., 2015).

Assumption 5 (Computational decision-making.). In this dissertation, we as-

sume that the decision-making problem can be formulated as a computational

problem, and that we can use computers to solve it.

3.5 Summary and conclusions

In this chapter, we have identified the main influences that have shaped the

field of Reinforcement Learning. We have identified four main threads of re-

search: neuropsychology, optimal control theory, philosophy, and computer

science. From these influences, we have drawn five fundamental assumptions

that will guide our development of the theory of Reinforcement Learning in

the following chapters.

From the neuropsychology, we have drawn the assumptions that there exists a

primary reward signal, and a secondary reward signal. The primary reward is

external, innate, and independent from the agent, while the secondary reward

is learnt from experience, and depends on the agent, laying the foundation for a

measure of credit. From the optimal control theory, we have assumed that any

decision-making problem can be formulated as a MDP, and that the optimal

policy can be derived from the Bellman equation. From the philosophy, we have

assumed that behaviour is predictable and deterministically controllable: given

a set of conditions, the decision-maker will always make the same decision.

Finally, from computer science, we have assumed to solve the decision-making

problem using computers, and in particular, Deep RL.
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Despite its central role, there is little discussion on the precise mathematical

nature of credit. While these proxies are sufficient to unlock solutions to com-

plex tasks, it remains unclear where to draw the line between a generic measure

of action influence and credit. Existing works focus on partial aspects or sub-

problems (Hung et al., 2019; Arjona-Medina et al., 2019; Arumugam et al.,

2021) and not all works refer to the CAP explicitly in their text (Andrychow-

icz et al., 2017; Nota et al., 2021; Goyal et al., 2019a), despite their findings

providing relevant contributions to address the problem. The resulting liter-

ature is fragmented and lacks a space to connect recent works and put their

efforts in perspective for the future.

In this Part, we aim to answer the Question 1 defined in Chapter 1.5.1, by

proposing a formalism to define credit and the CAP.

We split Question 1 in three sub-questions:

Question 1.1. What is the credit of an action? How is it different from an action value?

And what is the CAP? What in words, and what in mathematics?

Question 1.2. How do agents learn to assign credit? What are the main methods in

the literature and how can they be organised?

Question 1.3. How can we evaluate whether a method is improving on a challenge?

How can we monitor advancements?



Chapter 4

Quantifying action influences

We start by answering Question 1.1., which aims to address the problem

of what to measure, when referring to credit. Since Minsky (1961) raised

the Credit Assignment Problem (CAP), a multitude of works paraphrased his

words:

- “The problem of how to incorporate knowledge” and “given an outcome,

how relevant were past decisions?” (Harutyunyan et al., 2019),

- “Is concerned with identifying the contribution of past actions on observed

future outcomes” (Arumugam et al., 2021),

- “The problem of measuring an action’s influence on future rewards”

(Mesnard et al., 2021),

- “An agent must assign credit or blame for the rewards it obtains to past

states and actions” (Chelu et al., 2022),

- “The challenge of matching observed outcomes in the future to decisions

made in the past” (Venuto et al., 2022),

- “Given an observed outcome, how much did previous actions contribute

to its realization?” (Ferret, 2022, Chapter 4.1).

These descriptions converge to Minsky’s original question and show agreement
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Figure 4.1: A simplified MDP to develop an intuition of credit. The agent starts
in x0, and can choose between two actions, a′ and a′′ in each state; the reward
is 1 when reaching the upper, solid red square, and 0 otherwise. The first action
determines the outcome alone.

in the literature on an informal notion of credit. In this chapter, we propose

to reflect on the different metrics that exist in the literature to quantify it.

We generalise the idea of action value, which often only refers to q-values, to

that of action influence, which describes a broader range of metrics used to

quantify the credit of an action. While we do not provide a definitive answer

on what credit should be, we review how different works in the existing RL

literature have characterised it. We now start by developing an intuition of

the notion of credit.

Consider Figure 4.1, inspired to both Figure 1 of Harutyunyan et al. (2019)

and to the umbrella problem in Osband et al. (2020). The action taken at

x0 determines the return of the episode by itself. From the point of view of

control, any policy that always takes a′ in x0 (i.e., π∗ ∈ Π∗ : π∗(a′|x0) = 1), and

then any other action afterwards, is an optimal policy. From the CAP point

of view, some optimal actions, namely those after the first one, do not actually

contribute to optimal returns. Indeed, alternative actions still produce optimal

returns and contribute equally to each other to achieve the goal, so their credit

is equal. We can see that, in addition to optimality, credit not only identifies

optimal actions but informs them of how necessary they are to achieve an

outcome of interest.

From the example, we can deduce that credit evaluates actions for their poten-

tial to influence an outcome. The resulting CAP is the problem of estimating

the influence of an action over an outcome from experimental data and de-
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scribes a pure association between them.

Why solving the CAP? Action evaluation is a cornerstone of RL. In fact,

solving a control problem often involves running a GPI scheme. Here, the influ-

ence of an action drives learning, for it suggests a possible direction to improve

the policy. For example, the action-value plays that role in Equation (2.22). It

follows that the quality of the measure of influence fundamentally impacts the

quality of the policy improvement. Low quality evaluations can lead the pol-

icy to diverge from the optimal one, hinder learning, and slow down progress

(Sutton & Barto, 2018; van Hasselt et al., 2018). On the contrary, high qual-

ity evaluations provide accurate, robust and reliable signals that foster con-

vergence, sample-efficiency and low variance. While simple evaluations are

enough for specialised experiments, the real world is a complex blend of mul-

tiple, sometimes hierarchical tasks. In these cases, the optimal value changes

from one task to another, and these simple evaluations do not bode well to

adapt to general problem solving. Yet, the causal structure that underlies the

real word is shared among all tasks, and the modularity of its causal mecha-

nisms is often a valuable property to incorporate. In these conditions, learning

to assign credit in one environment becomes a lever to assign credit in another

(Ferret et al., 2021a), and ultimately makes learning faster, more accurate and

more efficient. For these reasons, and because an optimal policy only requires

discovering one single optimal trajectory, credit stores knowledge beyond that

expressed by optimal behaviours alone, and solving the control problem is not

sufficient to solve the CAP, with the former being an underspecification of the

latter.

4.1 Are all action values, credit?

As we stated earlier, most Deep RL algorithms use some form of action in-

fluence to evaluate the impacts of an action on an outcome. This is a fun-

damental requirement to rank actions and select the optimal one to solve
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complex tasks. For example, many model-free methods use the state-action

value function qπ(s, a) to evaluate actions (Mnih et al., 2015; van Hasselt

et al., 2016), where actions contribute as much as the expected return they

achieve at termination of the episode. Advantage Learning (AL) (Baird, 1999;

Mnih et al., 2016; Wang et al., 2016b, Chapter 5) uses the advantage function

Aπ(st, at) = qπ(st, at)−vπ(st)
1 to measure credit, while other works study the

effects of the action-gap (Farahmand, 2011; Bellemare et al., 2016; Vieillard

et al., 2020b) on it, that is, the relative difference between the expected return

of the best action and that of another action, usually the second best. Action

influence is also a key ingredient of actor-critic and policy gradient methods

(Lillicrap et al., 2015; Mnih et al., 2016; Wang et al., 2016a), where the policy

gradient is proportional to Eµ,π[Aπ(s, a)∇ log π(A|s)], with Aπ(s, a) estimating

the influence of the action A.

These proxies are sufficient to select optimal actions and unlock solutions to

complex tasks (Silver et al., 2018; Wang et al., 2016b; Kapturowski et al.,

2019; Badia et al., 2020; Ferret et al., 2021b). However, while many works

explicitly refer to the action influence as a measure of credit, the term is not

formally defined and, it remains unclear where to draw the line between credit

and other quantities. Key questions arise: What is the difference between these

quantities and credit? Do they actually represent credit as originally formulated

by Minsky (1961)? If so, under what conditions do they do? Without a clear

definition of what to measure, we do not have an appropriate quantity to target

when designing an algorithm to solve the CAP. More importantly, we do not

have an appropriate quantity to use as a single source of truth and term of

reference to measure the accuracy of other metrics of action influence, and how

well they approximate credit. To fill this gap, we proceed as follows:

• Section 4.2 formalises what is a goal or an outcome: what we evaluate

1To be consistent with the RL literature we abuse notation and denote the advantage
with a capital letter Aπ despite not being random and being the same symbol of the action
At.
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the action for;

• Section 4.3 unifies existing functions under a common formalism;

• Section 4.4 formalises the CAP following this definition;

• Section 4.6 analyses how different works interpreted and quantified action

influences and reviews them;

• Section 4.7 distils the properties that existing measures of action influ-

ence exhibit.

We suggest the reader only interested in the final formalism to directly skip to

Section 4.4, and to come back to the next sections to understand the motivation

behind it.

4.2 What is a goal?

Because credit measures the influence of an action upon achieving a certain

goal, to define credit formally we must be able to describe goals formally, and

without a clear understanding of what constitutes one, an agent cannot con-

struct a learning signal to evaluate its actions. Goal is a synonym for purpose,

which we can informally describe as a performance to meet or a prescription to

follow. Defining a goal rigorously allows making the relationship between the

action and the goal explicit (Ferret, 2022, Chapter 4) and enables the agent to

decompose complex behaviour into elementary ones in a compositional (Sutton

et al., 1999; Bacon et al., 2017), and possibly hierarchical way (Flet-Berliac,

2019; Pateria et al., 2021; Hafner et al., 2022). This idea is at the foundation of

many CA methods (Sutton et al., 1999; 2011; Schaul et al., 2015a; Andrychow-

icz et al., 2017; Harutyunyan et al., 2019; Bacon et al., 2017; Smith et al., 2018;

Riemer et al., 2018; Bagaria & Konidaris, 2019; Harutyunyan et al., 2018; Klis-

sarov & Precup, 2021). We proceed with a formal definition of goals in the

next paragraph, and review how these goals are represented in seminal works
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on CA in the one after. This will lay the foundation for a unifying notion of

credit later in Sections 4.3.

Defining goals. To define goals formally, we adopt the reward hypothesis,

which posits:

That all of what we mean by goals and purposes can be well thought

of as maximization of the expected value of the cumulative sum of

a received scalar signal (reward). (Sutton, 2004).

Here, the goal is defined as the behaviour that results from the process of

maximising the return. The reward hypothesis has been further advanced

by later studies (Abel et al., 2021b; Pitis, 2019; Shakerinava & Ravanbakhsh,

2022; Bowling et al., 2023). In the following text, we employ the goal definition

in Bowling et al. (2023), which we report hereafter:

Definition 1 (Goal). Given a distribution P(H) over a set of finite histories

H with H ∈ H, we define a goal as a partial ordering over elements of H, and

for all h, h′ ∈ H we write h % h′ to indicate that h is preferred to h′ or that

the two are indifferently preferred.

Here, H is a random history in the set of all histories H as described in

Chapter 2, and P(H) is an unknown distribution over histories, different

from that induced by the policy and the environment. An agent behaviour

and an environment then induce a new distribution over histories, and we

obtain Pµ,π(H) as described in Chapter 2. This in turn allows defining a

partial ordering over policies, rather than histories, and we write analogously

π % π′ to indicate the preference. For the Markov Reward Theorem (Bowling

et al., 2023, Theorem 4.1) and under mild conditions (Bowling et al., 2023),

there exists a deterministic, Markov reward function2 R : O×A → [0, 1] such

2We omit the transition dependent discounting for the sake of conciseness and because
not relevant to our problem. The reader can consult Pitis (2019); White (2017) for details.
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that the maximisation of the expected sum of rewards is consistent with the

preference relation over policies.

Subjective and objective goals. The Markov Reward Theorem holds both

if the preferences are defined internally by the agent itself – this is the case of

intrinsic motivation (Piaget et al., 1952; Chentanez et al., 2004; Barto et al.,

2004; Singh et al., 2009; Barto, 2013; Colas et al., 2022) – and in case they

originate from an external entity, such as an agent-designer. In the first case,

the agent doing the maximisation is the same as the one holding the ordering

over policies, and we refer to the corresponding goal as a subjective goal. In the

second case, an agent designer or an unknown, non-observable entity holds the

ordering and a separate learning agent is the one pursuing the optimisation

process. We refer to a goal as an objective goal in this latter case. These

settings usually correspond to the distinction between goals and sub-goals in

the literature (Liu et al., 2022).

Outcomes. A particularly interesting use of goals for CA is in hindsight

(Andrychowicz et al., 2017). Here the agent acts with a goal in mind, but

it evaluates a trajectory as if a reward function – one different from the orig-

inal one – was maximised in the current trajectory. We discuss the benefits

of these methods in Section 6.4. When this is the case, we use the term out-

come to indicate a realised goal in hindsight. In particular, given a history

H ∼ Pµ,π(H), there exists a deterministic, Markov reward function R that is

maximal in H. We refer to the corresponding H as an outcome. For example,

consider a trajectory h that ends in a certain state s. There exist a Markov

reward function that outputs always 0 and 1 only when the s is the final state

of h. We refer to h as an outcome.

In other words, this way of defining goals or outcomes corresponds to defining

a task to solve, which in turn can be expressed through a reward function

with the characteristics described above. Vice-versa, the reward function can

encode a task. When credit is assigned with respect to a particular goal or
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outcome, it then evaluates the influence of an action to solving that particular

task. As discussed above, this is key to decomposing and recomposing com-

plex behaviours and the definition aligns with that of other disciplines, such

as psychology where a goal . . . is a cognitive representation of something that

is possible in the future (Elliot & Fryer, 2008) or philosophy, where represen-

tations do not merely read the world as it is, but they express preferences over

something that is possible in the future (Hoffman, 2016; Prakash et al., 2021;

Le Lan et al., 2022).

Representing goals and outcomes. Expressing the relation between ac-

tions and goals explicitly, that is, when the function that returns the credit

of an action has a goal as an input, raises the problem of how to represent a

goal for computational purposes. This is important because among the CA

methods that define goals explicitly (Sutton et al., 2011; Schaul et al., 2015a;

Andrychowicz et al., 2017; Rauber et al., 2019; Harutyunyan et al., 2019; Tang

& Kucukelbir, 2021; Arulkumaran et al., 2022; Chen et al., 2021), not many

of them use the rigour of a general-purpose definition of goal such as that in

Bowling et al. (2023). In these works, the goal-representation space, which

we denote as g ∈ G, is arbitrarily chosen to represent specific features of a

trajectory. It denotes an object, rather than a performance or a prescription

to meet. For example, a goal-representation g can be a state (Sutton et al.,

2011; Andrychowicz et al., 2017) and g ∈ G = S. It can be a specific observa-

tion (Nair et al., 2018) with g ∈ G = O. Alternatively, it can be an abstract

features vector (Mesnard et al., 2021) that reports on some characteristics of a

history, and we have g ∈ G = Rd, where d is the dimensionality of the vector.

Even, a goal can be represented by a natural language instruction (Luketina

et al., 2019) and g ∈ G = Rd is the embedding of that piece of text. A goal

can be represented by a scalar g ∈ G = R (Chen et al., 2021) that indicates a

specific return to achieve, or even a full command (Schmidhuber, 2019), that

is a return to achieve is a specific window of time.
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While these representations are all useful heuristics, they lack formal rigour

and leave space for ambiguities. For example, saying that the goal is a state

might mean that visiting the state at the end of the trajectory is the goal or that

visiting it in the middle of it is the goal. This is often not formally defined, and

what is the reward function that corresponds to that specific representation

of a goal is not always clear. In the following text, when surveying a method

or a metric that specifies a goal, we refer to the specific goal representation

used in the work and make an effort to detail what is the reward function that

underpins that goal representation.

4.3 The influence function

Having established a formalism for goals and outcomes, we are now ready

to describe credit formally and we proceed with a formalism that unifies the

existing measures of action influence. We first describe a generic function

that generalises most CAs, and then proceed to formalise the CAP. Overall,

this formulation provides a term of reference for the quantities described in

Section 4.6. We now formalise an influence function:

Definition 2 (Influence function). Consider an action a ∈ A, a goal g ∈ G,

and a context c ∈ C. We use the term influence function to denote a function

K that maps a context, an action, and an outcome to a quantity y ∈ Y, which

we refer to as the influence of the action:

K : C × A× G → Y . (4.1)

Here, a context c ∈ C represents some input data and can be arbitrarily chosen

depending on the assignment in question. For example, c can be a state s.

A context must hold information about the present, for example, the current

state or the current observation; it may contain information about the past, for
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example, the sequence of past decisions that occurred until now for a POMDP;

to evaluate the current action, it can contain information about what future

actions will be taken in-potentia, for example by specifying a policy to follow

when a ∈ A is not taken, or a fixed trajectory, in which case the current action

is evaluated in hindsight (Andrychowicz et al., 2017).

In the general case, the action influence is a random variable Y ∈ Y ⊂ Rd. This

is the case, for example, of the action-value distribution (Bellemare et al., 2017)

as described in Equation 4.7, where the action influence is defined over the full

distribution of returns. However, most methods extract some scalar measures

of the full influence distribution, such as expectations (Watkins, 1989), and

the action influence becomes a scalar y ∈ R. In the following text, we mostly

consider scalar forms of the influence Y = R as these represent the majority

of the existing formulations.

In practice, an influence function provides a single mathematical form to talk

about the multitude of ways to quantify action influence that are used in the

literature. Influence functions work in forethought. They take an action a ∈ A,

the current context c ∈ C and a goal g ∈ G and map them to some measure

of action influence that expresses information about the future. While main-

taining the same mathematical form, different assignments can return different

values of action influence and steer the improvement in different directions.

Equation (4.1) also resembles the General Value Function (GVF) (Sutton et al.,

2011), where the influence y = qπ(s, a, g) is the expected return of the policy π

when taking action a in state s, with respect a goal g. However, in GVFs: (i) y

is an action value and a scalar, and does not generalise other forms of action

influence; (ii) the goal is only an MDP state g ∈ S and does not generalise to

our notion of goals in Section 4.2; (iii) the context is only the current state and

does not contain information about the future, as it happens, for example, with

hindsight (Andrychowicz et al., 2017). Table 4.1 at page 99 contains further

details on the comparison and further specifies the relationship between the
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most common functions and their corresponding assignment.

4.4 The assignment

The generality of the assignment formalism reflects the great heterogeneity of

action influence metrics, which we review later in Section 4.6. This hetero-

geneity shows that, even if most studies agree on an intuitive notion of credit,

they diverge in practice on how to quantify credit mathematically. Having

unified existing influence functions in the previous section, we now proceed

to formalise the CAP. This allows us to put the existing methods into a co-

herent perspective as a guarantee for a fair comparison, and to maintain the

heterogeneity of the existing measures of action influence.

Assumptions. We assume standard model-free, Deep RL settings and con-

sider an influence function represented as a neural networkKθ : C×A×G×Θ→

R with parameters θ ∈ Θ = Rn, with n � |S| × |A|, that can be used to ap-

proximate the influence of the actions. This usually represents the critic of an

RL algorithm.

We further assume that the agent has access to a set of experiences D and

that it can sample from it according to a distribution D ∼ PD. This can be a

pre-compiled set of external demonstrations, and PD = U sampling uniformly

over it, or a POMDP, where PD = Pµ,π, or even a fictitious model of a POMDP

PD = Pµ̃,π, where µ̃ is a function internal to the agent, of the same form of

µ. These are mild assumptions as they correspond to, respectively, offline

settings, online settings, and model-based settings where the model is learned.

We detail these settings in Appendix A.2.

We now define an assignment formally.

Definition 3 (Assignment). We use the term assignment to refer to an update

rule Λ : K×D → K that takes an influence function Kθ and some experience
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data D = (S × A ×R)T to return a new estimate of the assignment function

Kθ′.

The assignment effectively generalises the notion of backup (Sutton & Barto,

2018), which only considers temporal updates, to a more general form of update

that can consider any form knowledge acquisition from experience, for example,

sharing the update to states that differ from the one visited in features that

are not relevant to the current task (Schaul et al., 2015a).

In practice, in Deep RL, assignments apply Λ only to a small subset of the

experience data {dT} ∼ PD because environments are too complex to consider

the full, exhaustive set D. Then, an assignment outputs the influence y for all

the actions at in each trajectory dT , and Λ takes the form Λ : K × D → YT ,

with often YT = RT . We refer to the output yT ∈ YT as the target of the

assignment and use the term to assign credit to denote the application of Λ to

the data {dT} to get YT .

Notice that this formulation of an assignment is recursive. While this might

now always be the case, this is a mild assumption in Deep RL, since the vast

majority of assignments are formulated recursively This allows us to generalise

the notion of credit assignment to any form of knowledge acquisition from a

pair of experience and prior believes.

For example, consider TD learning with 3-step returns. Here, Kθ is the

action-value function qπ,g(s, a, θ). After experiencing 3 transitions by sam-

pling d3 ∼ Pµ,π, our assignment rule Λ calculates a 3-step return for each

state-action (st, at) ∈ dT , y = (z1, z2, z3). These values y become the tar-

get of the assignment, and Λ updates qπ,g(s, a, θ) using the assignment rule

qπ,g(st, at)← qπ,g(st, at) + α[zt − qπ,g(st, at)]. In the following text, we use the

two forms Λ : K × D → K and Λ : K × D → YT interchangeably, depending

on whether we include the function update in the operation.
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Unlike influence functions, assignments work in retrospection, by grounding

an influence function in actual experience, as shown in Figure 4.2 Starting

from a guess of influence, it then compares it with some factual data d ∼ D,

and adjusts the guess to better match the data. The update rule, and so the

target, is a key component of most (if not all) credit assignment formulations

in the literature, a main focus of study for improving the sample efficiency of

RL algorithms, and a main consideration when tuning reinforcement learning

algorithms for specific problems.

4.5 The Credit Assignment Problem

With this notion of assignment, we then cast the CAP as the problem of

grounding a measure of action influence in the experience.

Definition 4 (The credit assignment problem). We refer to the Credit Assign-

ment Problem as the problem of finding the set of parameters θ ∈ Θ such that,

repeatedly applying the operator Λ to Kθ returns the true influence function

K:

Λ[Kθ,D] = K. (4.2)

Notice that, once a particular choice of influence function is made – e.g., a

q-function, an advantage function (see Section 4.6 for more) – its value is

uniquely determined by its context, the goal and the environment’s trajectory

distribution. Because this value is grounded in experience – i.e., can be cal-

culated exactly – we refer to it as the true influence K. The CAP is then the

problem of finding a set of parameters θ such that the probabilistic estimates

of the influence function Kθ are exact with respect to the true influence K.

Each CA method specifies its own operator Λ. Despite many works in the
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(a) Diagram showing the mechanisms at the base of the influence function in a simple MDP
with only two actions.

(b) Diagram showing the mechanisms at the base of the assignment in the same MDP. Red
arrows represent assignments.

Figure 4.2: Difference between the influence function and the assignment, as
described in Definitions 2 and 3. The influence function works in forethought. It
applies a forward perspective to the problem: the influence function is a function of
the present and outputs a prediction of the future. This corresponds to a prediction
problem. On the contrary, the assignment works in retrospection. It applies a
backward perspective to the problem: the assignment is a function of the future,
with respect to the state that is updated. This corresponds to a credit assignment
problem. Notice that, while the schema only shows temporal updates for simplicity,
the red arrows can point to any state in the environments, according to the CA rule
used.
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literature of tabular and linear RL have characterised Λ, doing so in Deep

RL is more challenging because Kθ is non-linear and the CAP often does

not have closed form solution. For this reason, the studies are sparser, for

example, van Hasselt et al. (2018). Here, we limit the scope to assume that

an operator Λ : Θ × D → Θ can converge to the true influence Kθ with a

certain probability p. Furthermore, we assume that we can calculate empirical

statistics of a sequence of updates, such as the empirical variance, convergence

rate and fixed-point bias.

Different choices of influence functions have a great impact on the hardness

of the problem. In particular, there is a trade-off between: (a) how effective

the chosen measure of influence is to inform the direction of the policy im-

provement, (b) how easy it is to learn that function from experience, if that

is possible at all. For example, using causal influence (Janzing et al., 2013)

as a measure of action influence makes the CAP hard to solve in practice.

This is because discovering causal mechanisms from associations alone is no-

toriously challenging (Pearl, 2009; Bareinboim et al., 2022), and pure causal

relationships are rarely observed in nature (Pearl et al., 2000). However, causal

knowledge is reliable, robust to changes in the experience collected and effec-

tive, and causal mechanisms can be invariant to changes in the goal.

On the contrary, q-values are easier to learn as they represent a measure of

statistical correlation between state-actions and outcomes, but their knowledge

is limited to the bare minimum necessary to solve a control problem. This

makes them more brittle to sudden changes to the environment, for example,

in open-ended settings (Abel et al., 2023).

Which influence function to use for each specific problem, as well as properly

characterising the operator Λ in Deep RL, are still the subject of investigation

in the literature. Ideally, we should aim for the most effective measure of

influence that can be learned with the least amount of experience.
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Assignment Action influence Context Action Goal
State-action-value qπ(s, a) s ∈ S a ∈ A g ∈ R
Advantage qπ(s, a)− v(s) s ∈ S a ∈ A g ∈ R
General q-value function qπ,R(s, a) s ∈ S a ∈ A g ∈ S
Distributional action-value Qπ(s, a) s ∈ S a ∈ A g ∈ {0, . . . , n}
Distributional advantage DKL(Qπ(s, a)||V π(s, a)) s ∈ S a ∈ A g ∈ {0, . . . , n}
Hindsight advantage 1− π(At|s)

PD(At|st,Zt)
Zt s ∈ S, hT ∈ H a ∈ h g ∈ R

Counterfactual advantage PD(At = a|St = s, Ft = f)q(s, a, f) s ∈ S a ∈ h g ∈ R
Posterior value

∑T
t=0 Pµ,π(Ut = u|d)vπ(ot, xt) o ∈ O, u ∈ Rd, π A ∼ π g ∈ R

Policy-conditioned value q(s, a, π) s ∈ S, π ∈ Π a ∈ A g ∈ R

Table 4.1: A list of the most common action influences and their assignment
functions in the Deep RL literature analysed in this survey. For each function, the
table specifies the influence, the context representation, the action, and the goal
representation of the corresponding assignment function K ∈ K.

4.6 Existing influence functions

We now survey the most relevant influence functions from the literature. The

following list is not exhaustive, but rather it is representative of the key prop-

erties that an influence function can exhibit. For brevity, and without loss

of generality, we omit functions that do not explicitly evaluate actions (for

example, state-values), but we notice that it is still possible to reinterpret an

assignment to a state as an assignment to a set of actions for it affects all the

actions that led to that state.

State-action values (Shannon, 1950; Schultz, 1967; Michie, 1963; Watkins,

1989) are a hallmark of RL, and are described by the following expression:

qπ(s, a) = Eµ,π[Zt|St = s, At = a]. (4.3)

Here, the context c is a state s ∈ S in the case of MDPs or a history h ∈ H for

a POMDP. The q-function quantifies the credit of an action by the expected

return of the action in the context.

Among the simplest ways to quantify credit and offer a basic mechanism to

solve control problems there are q-values. However, while q-functions offer solid

theoretical guarantees in tabular RL, they can be unstable in Deep RL. When

paired with bootstrapping and off-policy learning, q-values are well known to
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diverge from the optimal solution (Sutton & Barto, 2018). van Hasselt et al.

(2018) provide empirical evidence of the phenomenon, investigating the re-

lationship between divergence and performance, and how different variables

affect divergence. In particular, the work shows that the DQN (Mnih et al.,

2015) is not guaranteed to converge to the optimal q-function. The diver-

gence rate on both evaluation and control problems increases depending on

specific mechanisms, such as the amount of bootstrapping, or the amount of

prioritisation of updates (Schaul et al., 2015b).

An additional problem arises when employing GPI schemes to solve control

problems. While during evaluation the policy is fixed, here the policy contin-

uously changes. It becomes more challenging to track the target of the update

while converging to it, as the change of policy makes the problem appear non-

stationary from the point of view of the value estimation. In fact, even if the

policy changes, there is no signal that informs the policy evaluation about the

change. To mitigate the issue, many methods either use a fixed network as an

evaluation target (Mnih et al., 2015), perform Polyak averaging of the target

network (Haarnoja et al., 2018), or clip the gradient update to a maximum cap

(Schulman et al., 2017). To further support the idea, theoretical and empiri-

cal evidence (Bellemare et al., 2016) shows that the q-function is inconsistent :

for any suboptimal action a, the optimal value function q∗(s, a) describes the

value of a non-stationary policy, which selects a different action π∗(s) (rather

than a) at each visit of s.

The non-stationarity of q-values for suboptimal actions has also been shown

empirically. Schaul et al. (2022) measure the per-state policy change

W (π, π′|s) =
∑

a∈A |π(a|s) − π′(a|s)| for several Atari 2600 games Arcade

Learning Environment (ALE) (Bellemare et al., 2013), and show that the

action-gap undergoes brutal changes despite the agent maintaining a constant

value of expected returns.

In practice, Deep RL algorithms often use q-targets to approximate the q-value,
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for example, n-step targets (Sutton & Barto, 2018, Chapter 7), or λ-returns

(Watkins, 1989; Jaakkola et al., 1993; Sutton & Barto, 2018, Chapter 12).

However, we consider them as methods, rather than quantities to measure

credit, since they all ultimately aim to converge to the q-value. For this reason,

we discuss them in Section 6.1.

Advantage (Baird, 1999) measures, in a given state, the difference between

the q-value of an action and the value of its state

Aπ(s, a) = qπ(s, a)− vπ(s). (4.4)

Here, the context c is the same as in Equation (4.3). Because vπ(s) =∑
a∈A q(s, a)π(a|s) and Aπ(s, a) = qπ(s, a)−Eπ[qπ(s, a)], the advantage quan-

tifies how much an action is better than average.

As also shown in Bellemare et al. (2016), using the advantage to quantify

credit can increase the action-gap. Empirical evidence has shown the con-

sistent benefits of advantage over q-values (Baird, 1999; Wang et al., 2016b;

Bellemare et al., 2016; Schulman et al., 2016), and the most likely hypothe-

sis is its regularisation effects (Vieillard et al., 2020b;a; Ferret et al., 2021a).

On the other hand, when estimated directly and not by composing state and

state-action values, for example in Pan et al. (2022), the advantage does not

permit bootstrapping. This is because advantage lacks an absolute measure of

action influence, and only maintains one that is relative to the other possible

actions.

Overall, in canonical benchmarks for both evaluation (Wang et al., 2016b)

and control (Bellemare et al., 2013), advantage has been shown to improve

over q-values (Wang et al., 2016b). In particular, policy evaluation experiences

faster convergence in large action spaces because the state-value vπ(s) can hold

information that is shared between multiple actions. For control, it improves

the score over several Atari 2600 games compared to both double q-learning
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(van Hasselt et al., 2016) and Prioritised Experience Replay (PER) (Schaul

et al., 2015b).

General Value Functions (GVFs) (Sutton et al., 2011; Schaul et al., 2015a)

are a set of q-value functions that predict returns for multiple reward functions:

qπ,R(s, a) = {Eµ,π

[
T∑
t

R(St, At)|St = s, At = a

]
: ∀R ∈ R}, (4.5)

where R is a pseudo-reward function and R is an arbitrary, pre-defined set of

reward functions. Notice that we omit the pseudo-termination and pseudo-

discounting terms that appear in their original formulation (Sutton et al.,

2011) to maintain the focus on credit assignment. The context c is the same

of q-values and advantage, and the goal that the pseudo-reward represents is

to reach a specific state g = s ∈ S.

When first introduced (Sutton et al., 2011), the idea of GVFs stemmed from

the observation that canonical value functions are limited to address only a

single task at a time. Solving a new task would require learning a value

function ex-novo. By maintaining multiple assignment functions at the same

time, one for each goal, GVFs can instantly quantify the influence of an action

for multiple goals simultaneously. However, while GVFs maintain multiple

assignments, the goal is still not an explicit input of the value function. Instead,

it is left implicit, and each assignment serves the ultimate goal to maximise a

different pseudo-reward function (Sutton et al., 2011).

Universal Value Functions Approximators (UVFAs) (Schaul et al., 2015a) scale

GVFs to Deep RL and advance their idea further by conflating these multiple

assignment functions into a single one, represented as a deep neural network.

Here, unlike for state-action values and GVFs, the goal is an explicit input of

the assignment:

qπ(s, a, g) = Eµ,π[Zt|St = s, At = a,Gt = g]. (4.6)



4.6. Existing influence functions 103

The action influence here is measured for a goal explicitly. This allows to

leverage the generalisation capacity of deep neural networks and to generalise

not only over the space of states but also over that of goals.

Distributional values (Jaquette, 1973; Sobel, 1982; White, 1988; Bellemare

et al., 2017) consider the full return distribution Zt instead of its expected

value:

Qπ(s, a) = Pµ,π(Zt|St = s, At = a), (4.7)

where Pµ,π(Zt) is the distribution over returns. Notice that we use uppercase

Q to denote the value distribution and the lowercase q for its expectation

(Equation (4.3)).

To translate the idea into a practical algorithm, Bellemare et al. (2017) pro-

poses a discretised version of the value distribution by projecting Pµ,π(Zt) on

a finite support C = {0 ≤ i ≤ C}. The discretised value distribution then

becomes Qπ(s, a) = PC(Zt|St = s, At = a), where PC is a categorical Bernoulli

that describes the probability that a return c ∈ C is achieved. Here, the con-

text is the current MDP state and the goal is the expected return. Notice

that while the optimal expected value function q∗(s, a) is unique, in general,

there are many optimal value distributions since different optimal policies can

induce different value distributions.

Experimental evidence (Bellemare et al., 2017) suggests that distributional val-

ues provide a better quantification of the action influence, leading to superior

results in well known benchmarks for control (Bellemare et al., 2013). How-

ever, it is yet not clear why distributional values improve over their expected

counterparts. One hypothesis is that predicting for multiple goals works as

an auxiliary task (Jaderberg et al., 2017), which often leads to better per-

formance. Another hypothesis is that the distributional Bellman optimality

operator proposed in Bellemare et al. (2017) produces a smoother optimisation
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problem, but the evidence remains weak or inconclusive (Sun et al., 2022).

Distributional advantage (Arumugam et al., 2021) proposes a distributional

equivalent of the advantage:

Aπ(s, a) = DKL(Qπ(s, a)||V π(s)), (4.8)

and borrows the properties of both distributional values and the expected

advantage. Intuitively, Equation (4.8) shows how much knowing the action

changes the value distribution. To do so, it measures the change of the value

distribution, for a given state-action pair, relative to the distribution for the

particular state only. The KL divergence between the two distributions can

then be interpreted as the distributional analogue of Equation (4.4), where the

two quantities appear in their expectation instead. The biggest drawback of

this measure of action influence is that it is only treated in theory, and there

is no empirical evidence that supports distributional advantage as a useful

proxy for credit in practice. Future works should consider providing empirical

evidence on how this measure of action influence behaves compared to q-values

and distributional values.

Hindsight advantage (Harutyunyan et al., 2019) stems from conditioning the

action influence on future states or returns. The return-conditional hindsight

advantage function can be written as follows:

Aπ(s, a, z) =

(
1− Pπ(At = a|St = s)

Pµ,π(At = a|St = s, Zt = z)

)
z. (4.9)

Here Aπ(s, a, z) denotes the return-conditional advantage and Pµ,π(at|St =

s, Zt = z) is the return-conditional hindsight distribution and describes the

probability that an action a has been taken in s, given that we observed the

return z at the end of the episode, after following π. The context is a state,

and the goal is the expected return, which, in this case, corresponds also to

the value of the return collected in the current trajectory.
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The idea of hindsight – initially presented in Andrychowicz et al. (2017) – is

that even if the trajectory does not provide useful information for the main

goal, it can be revisited as if the goal was the outcome just achieved. Hindsight

advantage brings this idea to the extreme and rather than evaluating only for

a pre-defined set of goals such as in Andrychowicz et al. (2017), it evaluates

for every experienced state or return. Here, the action influence is quantified

by that proportion of return determined by the ratio in Equation (4.9). To

develop an intuition of it, if the action a is relevant to achieving the return z

then Pµ,π(At = a|St = s, Zt = z) > Pπ(At|St = s), that is, the action is more

likely to be taken in the hindsight distribution than in the behaviour policy,

and the credit of the action is positive. Instead, if the action a is irrelevant to

achieving the return z then Pµ,π(At = a|St = s, Zt = z) < Pπ(At|St = s), that

is, the action is less likely to be taken in the hindsight distribution than in the

behaviour policy, and the credit of the action is negative. When the action is

irrelevant, then Pµ,π(At = a|St = s, Zt = z) = Pπ(At|St = s).

There exists also a state-conditional formulation rather than a return-

conditional one, and we refer to Harutyunyan et al. (2019) for details on it

to keep the description concise.

Future-conditional advantage (Mesnard et al., 2021) generalises hindsight

advantage to use an arbitrary property of the future:

Aπ(s, a, f) = Pµ,π(At = a|St = s, Ft = f)qπ(s, a, f). (4.10)

Here, F : DT → Rn is an n-dimensional feature of a trajectory d, and Ft is that

feature for a trajectory that starts at time t and ends at the random horizon

T . qπ(s, a, f) = Eµ,π[Zt|St = s, Ft = f, At = a] denotes the future-conditioned

state-action value function. The context is a tuple of state and feature (s, f);

the goal is the expected return observed at the end of the trajectory. Notice

that you can derive the hindsight advantage by setting F = Z.
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To develop an intuition, F can represent, for example, whether a day is rainy,

and the future-conditional advantage expresses the probability of an action a,

given that the day will be rainy.

Counterfactual advantage (Mesnard et al., 2021) proposes a specific choice

of F such that F is independent of the current action. This produces a future-

conditional advantage that factorises the influence of an action in two compo-

nents: the contribution deriving from the intervention itself (the action) and

the luck represented by all the components not under the control of the agent

at the time t, such as fortuitous outcomes of the state-transition dynamics,

exogenous reward noise, or future actions. The form is the same as that in

Equation 4.10, with the additional condition that the feature Ft is independent

of the action At and we have EF [DKL(P(At|St = s)||P(At|St = s, Ft = f)] = 0.

The main intuition behind counterfactual advantage is the following. While

to compute counterfactuals we need access to a model of the environment, in

model-free settings we can still compute all the relevant information Ft that

does not depend on this model. Once learned, a model of F can then represent

a valid baseline to compute counterfactuals in a model-free way. To stay in

the scope of this section, we detail how to learn this quantity in Section 6.4.

Posterior value functions (Nota et al., 2021) reflect on partial-observability

and propose a characterisation of the hindsight advantage bespoke to

POMDPs. The intuition behind Posterior Value Functions (PVFs) is that

the evaluated action only accounts for a small portion of the variance of re-

turns. The majority of the variance is often due to the part of the trajectory

that still has to happen. For this reason, incorporating in the baseline in-

formation of the future could have a greater impact in reducing the variance

of the policy gradient estimator. PVFs focus on the variance of a future-

conditional baseline (Mesnard et al., 2021) caused by the partial observability.

Nota et al. (2021) factorises a state s into an observable component o and an
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non-observable one u, and formalises the PVF as follows:

vπt (d) =
∑
u∈U

Pµ,π(Ut = u|d)vπ(ot, ut), (4.11)

where d = {ot, at, rt : 0 ≤ t ≤ T} is a trajectory comprising only observable

components of the POMDP; Ut ∈ U is the non-observable component of a

state St such that st = {ut, ot}.

Policy-conditioned values (Harb et al., 2020; Faccio et al., 2021) are

value functions that include the policy as an input. For example, a policy-

conditioned state-action value has the form:

q(s, π, a) = qπ(s, a), (4.12)

but a representation of the policy π is used as an explicit input of the influence

function. Here, the context is the union of the current MDP state s and the

policy π, and the goal is the expected return at termination.

The main difference with state-action values is that, all else being equal,

q(s, π, a, g) produces different values instantly when π varies, since π is now

an explicit input. For this reason, q(s, π, a) can generalise over the space of

policies, while qπ(s, a) cannot. Using the policy as an input raises the problem

of representing a policy in a way that can be fed to a neural network. Harb

et al. (2020) and Faccio et al. (2021) propose two methods to represent a pol-

icy. To keep our attention on the CAP, we refer to their works for further

details on possible ways to represent a policy (Harb et al., 2020; Faccio et al.,

2021). Here we limit to convey that the problem of representing a policy has

been already raised in the literature.
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Name Explicitness Recursivity Future-dependent Causality
State-action value ◦ • ◦ ◦
Advantage ◦ •◦ ◦ ◦
GVFs/UVFAs • • ◦ ◦
Distributional action-value •◦ • ◦ ◦
Distributional advantage •◦ ◦ ◦ •
Hindsight advantage •◦ ◦ •◦ ◦
Counterfactual advantage •◦ ◦ •◦ •
Posterior value ◦ ◦ • ◦
Observation-action value ◦ ◦ ◦ ◦
Policy-conditioned value ◦ • • ◦

Table 4.2: A list of the most common action influences and their assignment
functions in the Deep RL literature analysed in this survey, and the properties
they respect. Respectively, empty circles, half circles and bullets indicate that the
property is not respected, that it is only partially respected, and it is fully respected.
See Sections 4.6 and 4.7 for details.

4.7 Discussion

The sheer variety of assignment functions described above leads to an equally

broad range of metrics to quantify action influence. What is the best assign-

ment function for a specific problem remains an open question. While we do

not provide a definitive answer to the question of which properties are neces-

sary or sufficient for an assignment function to output a satisfactory measure of

credit, we set out to draw attention to the problem by abstracting out some of

the properties that the metrics above share or lack. We identify the following

properties of an assignment function and summarise our analysis in Table 4.2.

Explicitness. We use the term explicitness when the goal appears as an ex-

plicit input of the assignment and it is not left implicit or inferred from experi-

ence. Using the goal as an input allows generalising CA over the space of goals.

The decision problem can then more easily be broken down into subroutines

that are both independent of each other and independently useful to achieve

some superior goal g.

Overall, explicitness allows incorporating more knowledge because the assign-

ment spans each goal without losing information about others, only limited
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by the capacity of the function approximator. For example, UVFAs, hindsight

advantages, and future conditional advantages are explicit assignments. As

discussed in the previous section, distributional values can also be interpreted

as explicitly assigning credit for each atom of the quantised return distribution,

which is why we only partially consider them having this property in Table 4.2.

Likewise, hindsight and future-conditional advantage, while not conditioning

on a goal explicitly, can be interpreted as conditioning the influence on sub-

goals that are states or returns, and future statistics, respectively. For this

reason, we consider them as partially explicit assignments.

Recursivity. We use the term recursivity to characterise the ability of an as-

signment function to support bootstrapping (Sutton & Barto, 2018). When an

assignment is recursive, it respects a relationship of the type: K(ct+1, at+1, g) =

f(K(ct, at, g)), where f projects the influence from the time t to t + 1.

For example, goal-conditioned q-values can be written as: qπ(st+1, at+1, g) =

R(st, at, g)+γqπ(st, at, g), where R(st, at, g) is the reward function for the goal

g.

Recursivity provides key advantages when learning credit, which we discuss

more in detail in Section 6. In theory, it reduces the variance of the estimation

at the cost of a bias (Sutton & Barto, 2018): since the agent does not complete

the trajectory, the return it observes is imprecise but varies less. In practice,

bootstrapping is often necessary in Deep RL when the length of the episode

for certain environments makes full Monte-Carlo estimations intractable due

to computational and memory constraints.

When the influence function does not support bootstrapping, the agent must

obtain complete episodes to have unbiased samples of the return. For example,

Direct Advantage Estimation (DAE) (Pan et al., 2022) uses the advantage

function as a measure of credit, but it does not decompose the advantage into

its recursive components that support bootstrapping (q(s, a) and v(s)), and

requires full Monte-Carlo returns to approximate it. This is often ill-advised
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as it increases the variance of the estimate of the return. For this reason, we

consider the advantage to only partially satisfy recursivity.

Future-dependent. We use the term future-dependent for assignments that

take as input information about what actions will be or have been taken after

the time t at which the action At is evaluated. This is key because the influence

of the current action depends also on what happens after the action. For

example, picking up a key is not meaningful if the policy does not lead to

opening the door afterwards.

Future actions can be specified in-potentia, for example, by specifying a policy

to follow after the action. This is the case of policy-conditioned value function,

whose benefit is to explicitly condition on the policy such that, if the policy

changes, but the action remains the same, the influence of the action changes

instantly. They can also be specified in realisation. This is the case, for exam-

ple, of hindsight evaluations (Andrychowicz et al., 2017) such as the hindsight

advantage, the counterfactual advantage, and the PVF where the influence is

conditioned on some features of the future trajectory.

However, these functions only consider features of the future: the hindsight

advantage considers only the final state or the final return of a trajectory; the

counterfactual advantage considers some action-independent features of the

future; the posterior value function considers only the non-observable compo-

nents. Because futures are not considered fully, we consider these functions as

only partially specifying the future.

Furthermore, while state-action value functions, the advantage and their dis-

tributional counterparts specify a policy in principle, that information is not

an explicit input of the assignment, but only left implicit. In practice, in Deep

RL, if the policy changes, the output of these assignments does not change

unless retraining.
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Causality. We refer to a causal assignment when the influence that it pro-

duces is also a measure of causal influence (Janzing et al., 2013). For example,

the counterfactual advantage proposes an interpretation of the action influ-

ence closer to causality, by factorising the influence of an action in two. The

first factor includes only the non-controllable components of the trajectory

(e.g., exogenous reward noise, stochasticity of the state-transition dynamics,

stochasticity in the observation kernel), or those not under direct control of

the agent at time t, such as future actions. The second factor includes only

the effects of the action alone. The interpretation is that, while the latter is

due to causation, the former is only due to fortuitous correlations. This vicin-

ity to causality theory exists despite the counterfactual advantage not being a

satisfactory measure of causal influence as described in Janzing et al. (2013).

Distributional advantage in Equation 4.8 can also be interpreted as containing

elements of causality. In fact, we have that the expectation of the advan-

tage over states and actions is the Conditional Mutual Information (CMI)

between the policy and the return, conditioned on the state-transition dynam-

ics: Eµ,π[DKL(Qπ(s, a)||V π(s))] = I(Pπ(A|S = s);Z|Pµ(S)). The CMI (with

its limitations (Janzing et al., 2013)) is a known measure of causal influence.

Overall, these properties define some characteristics of an assignment, each one

bringing positive and negative aspects. Explicitness allows maintaining the in-

fluence of an action for multiple goals at the same time, promoting the reuse

of information and a compositional onset of behaviour. Recursivity ensures

that the influence can be learned via bootstrapping. Future-dependency sep-

arates assignments by whether they include information about future actions.

Finally, causality filters out the spurious correlations evaluating the effects of

the action alone.
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4.7.1 Optimal credit assignment

Despite the literature invoking the notion of optimal credit assignment (e.g.,

(Raposo et al., 2021; Mesnard et al., 2023)), it seldom provides a formal defini-

tion. Formally unifying or defining these perspectives in precise mathematical

terms lies beyond the scope of this thesis and would require extensive theoret-

ical work. Here, we limit to providing a useful discussion on the topic, in the

light of the framework we have just developed.

We identify two interpretations of the term “optimal credit assignment”:

1. Optimality with respect to the influence function: the optimal influence

function.

2. Optimality with respect to the optimal assignment function: the optimal

assignment.

In the next paragraphs we briefly discuss the two interpretations, and we

provide an intuition of what they could mean in the context of the CAP.

What is the “best” influence function is perhaps the underliying question be-

hind studies proposing more effective influence functions. For example, the

advantage function might be considered superior to q-values because it reduces

the action-gap. The distributional advantage might be considered superior to

the advantage because it reduces the variance of the estimate of the return.

The hindsight advantage might be considered superior to the distributional

advantage because it conditions the influence on the future. While we can

determine a partial ordering over these measures of credit by measuring their

impacts on the learning process (see Section 7), it remains hard to define a

formal notion of optimality. Is the optimal influence function unique? Has it

been already discovered.

Here we do answer to this question, but provide an intuition that derives
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from the framework described in this chapter. On one hand, a measure of

credit is as good as it is effective to inform policy improvements. This means

that the optimal influence function is the one that provides the most sample

efficient, variance-free, and accurate improvements: the best estimate of the

policy gradients. On the other hand, the best possible measure of a secondary

reward signal to inform the agent about the quality of its actions is often

discussed as the optimal reward problem (Sorg, 2011).

The second possible interpretation of the term “optimal credit assignment”

is that of the best possible method to learn credit. That is, given an influ-

ence function, the optimal assignment is the one that converges faster, with

less variance, and to the accurate influence. In pratice, an optimal assign-

ment function is one that is able to learn the influence function with the least

amount of data, in the shortest amount of time, and with the least amount of

computational resources. The methods presented in Section 6 are all attempts

to solve the CAP and to find an optimal assignment function.

4.8 Summary

In this section, we addressed Question 1.1. and discussed the problem of

how to quantify action influences. In Section 4.1 we formalised our question:

“How do different works quantify action influences?” and “Are these quantities

satisfactory measures of credit?”. We proceeded to answer the questions. In

Section 4.2, we formalised the concept of outcome as some arbitrary function

of a given history. In Section 4.3, we defined the assignment function as a

function that returns a measure of action influence. In Section 4.4, we used

this definition to formalise the CAP as the problem of learning a measure

of action influence from experience. We refer to the set of protocols of this

learning process as a credit assignment method. In Section 4.6, we surveyed

existing measures of action influence from literature, detailed the intuition

behind them, their advantages and drawbacks. Finally, in Section 4.7, we
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discussed how these measures of action influence relate to each other, the

properties that they share and those that are rarer in literature, but still

promising for future advancements. In the next sections, we proceed to address

Question 1.2.. Section 5 describes the obstacles to solving the CAP and

Section 6 surveys the methods to solve the CAP.



Chapter 5

The challenges to assign credit

in Deep RL

Having clarified what measures of action influence are available in the litera-

ture, we now look at the obstacles that arise to learn them and, together with

Section 6, answer Question 1.2.. We first survey the literature to identify

known issues to assign credit and then systematise the relevant issues into CA

challenges. These challenges provide a perspective to understand the principal

directions of development of CA methods and are largely independent of the

choice of action influence. However, using a measure of influence over another

can still impact the prominence of each challenge.

We identify the following issues to assign credit: (a) delayed rewards (Ra-

poso et al., 2021; Hung et al., 2019; Arjona-Medina et al., 2019; Chelu et al.,

2022): reward collection happens long after the action that determined it,

causing its influence to be perceived as faint; (b) sparse rewards (Arjon-

a-Medina et al., 2019; Seo et al., 2019; Chen & Lin, 2020; Chelu et al., 2022):

the reward function is zero everywhere, and rarely spikes, causing uninforma-

tive TD errors; (c) partial observability (Harutyunyan et al., 2019): where

the agent does not hold perfect information about the current state; (d) high

variance (Harutyunyan et al., 2019; Mesnard et al., 2021; van Hasselt et al.,
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2021) of the optimisation process; (e) the resort to time as a heuristic to

determine the credit of an action (Harutyunyan et al., 2019; Raposo et al.,

2021): (f) the lack of counterfactual CA (Harutyunyan et al., 2019; Foer-

ster et al., 2018; Mesnard et al., 2021; Buesing et al., 2019; van Hasselt et al.,

2021); (g) slow convergence (Arjona-Medina et al., 2019).

While these issues are all very relevant to the CAP, their classification is also

tailored to control problems. Some of these are described by the use of a par-

ticular solution, such as (e), or the lack thereof, like (f), rather than by a

characteristic of the decision or of the optimisation problem. Here, we system-

atise these issues and transfer them to the CAP. We identify three principal

characteristics of POMDPs, which we refer to as dimensions of the POMDP:

depth, density and breadth (see Figure 5.1). Challenges to CA emerge when

pathological conditions on depth, density, and breadth mask the learning sig-

nal, making it unreliable, inaccurate, or insufficient to correctly reinforce an

action. For example, very deep POMDPs can produce rewards that are de-

layed, while very sparse POMDPs can produce rewards that are improbable

to encounter. We now detail these three dimensions and the corresponding

challenges that arise.

5.1 Delayed effects due to high POMDP

depth

We refer to the depth of a POMDP as the number of temporal steps that in-

tervene between a highly influential action and an outcome (Ni et al., 2023).

When this happens, we refer to the action as a remote action, and to the

outcome as a delayed outcome. When outcomes are delayed, the increase of

temporal distance often corresponds to a combinatorial increase of possible

alternative futures and the paths to get to them. In these conditions, recog-

nising which action was responsible for the outcome is harder, since the space
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(a) Depth of the POMDP. (b) Density of the POMDP.

(c) Breadth of the POMDP.

Figure 5.1: Visual intuition of the three challenges to temporal CA and their
respective set of solutions, using the graph analogy. Nodes and arrows represent,
respectively, MDP states and actions. Blue nodes and arrows denote the current
episode. Black ones show states that could have potentially been visited, but have
not. Square nodes denote goals. Forward arrows (pointing right) represent environ-
ment interactions, whereas backward arrows (pointing left) denote credit propaga-
tion via state-action back-ups. From top left: (a) the temporal distance between
the accountable action and the target state requires propagating credit deep back
in time; (b) considering any state as a target increases the density of possible as-
sociations and reduces information sparsity; and finally, (c) the breadth of possible
pathways leading to the target state.

of possible associations is very large. We identify two main reasons for an

outcome to be delayed, depending on whether the decision after the remote

action influences the outcome or not.

The first reason for delayed effects is that the success of the action is not

immediate but requires a sequence of actions to be performed afterwards, which

causes the causal chain leading to success to be long. This issue originates from

the typical hierarchical structure of many POMDPs, where the agent must first

perform a sequence of actions to reach a subjective sub-goal, and then perform

another sequence to reach another. The key-to-door task (Hung et al., 2019)

is a good example of this phenomenon, where the agent must first collect a

key, to be able to open a door later.

The second reason is delayed reinforcements : outcomes are only observed after
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a long time horizon, and any decision taken after the remote action does

not influence the outcome significantly. The phenomenon was first noted in

behavioural psychology and is known as the delayed reinforcement problem

(Lattal, 2010),

Reinforcement is delayed whenever there is a period of time between

the response producing the reinforcer and its subsequent delivery.

(Lattal, 2010)

The main challenge with delayed reinforcements is in being able to ignore the

series of irrelevant decisions that are encountered between the remote action

and the delayed outcome, focus on the actions that are responsible for the

outcome, and assign credit accordingly. This is a key requirement because

most CA methods rely on temporal recency as a heuristic to assign credit

(Klopf, 1972; Sutton, 1988; Mahmood et al., 2015; Sutton et al., 2016; Jiang

et al., 2021a). When this is the case, the actions in the proximity of achieving

the goal are reinforced, even if not actually being responsible for the outcome

(only the remote action is), just because they are temporally close to the

outcome.

While recent works advance proposals on how to measure the POMDP depth,

for example, CA length (Ni et al., 2023), there is currently no formal agreement

in the literature on how to diagnose the presence of delayed effects.

5.2 Low action influence due to low POMDP

density

If delayed effects are characterised by a large temporal distance between an

action and the outcome, POMDP sparsity derives from a lack of influence be-

tween them. Even if the literature often confounds sparse and delayed rewards,

there is a substantial difference between them. With delayed effects, actions



5.2. Low action influence due to low POMDP density 119

can cause outcomes very frequently, except with delay. Here, actions have lit-

tle or no impact on the outcome, and outcomes do not vary regardless of the

actions taken, but in a few, rare instances. We identify two main reasons.

The first one is highly stochastic state-transition dynamics, which can be di-

agnosed by measuring the entropy of the state-transition distribution H(Pµ)

and/or of the reward functionH(P(R)). In highly stochastic POMDPs, actions

hardly affect the future states of the trajectory, the agent is unable to make

predictions with high confidence, and therefore cannot select actions that are

likely to lead to the goal.

The second reason is the low goal density. This is the canonical case of reward

sparsity in RL, where the goal is only achievable in a small subset of the state

space, or for a specific sequence of actions. Formally, we can measure the

sparsity of an POMDP using the notion of information sparsity (Arumugam

et al., 2021).

Definition 5 (POMDP sparsity). An POMDP is ε-information sparse if:

max
π∈Π

Eµ,π[DKL(Pµ,π(Z|s, a)||Pµ,π(Z|s))] ≤ ε, (5.1)

where Eµ,π denotes the expectation over the stationary distribution induced

by the policy and the state-transition dynamics. The information sparsity

of a POMDP is the maximum information gain that can be obtained by an

agent. When this is low everywhere, and only concentrated in a small subset of

decisions, CA methods often struggle to assign credit, because the probability

of behaving optimally is lower (Abel et al., 2021a), and there is rarely a signal

to propagate.



5.3. Low action influence due to high POMDP breadth 120

5.3 Low action influence due to high POMDP

breadth

We use the term breadth of an POMDP to denote the number of alternative

histories h that produce the same outcome g. We then use the term dilution of

credit, when many optimal pathways exist, and there is no bottleneck decision

that the agent has to necessarily make to achieve the goal. We formalise the

concept using the notion of the null space of a policy (Schaul et al., 2022):

Null(π) := {Ω|vπ(s) = vπ
′
(s)} ∀π, π′ ∈ Ω ⊆ Π,∀s ∈ S. (5.2)

Null(π) is the null space of a policy π, defined to be the subset of the space

of all policies Ω ⊂ Π such that two policies π, π′ ∈ Ω have the same expected

state-value vπ(s) = vπ
′
(s) in all the states of the POMDP s ∈ S.

Credit dilution is often not a challenge for control because optimal behaviours

are more probable. However, it can be problematic for CA. Most of the com-

mon baselines, such as Advantage Actor Critic (A2C) (Mnih et al., 2016)

or PPO (Schulman et al., 2017), stop exploring after a small subset of op-

timal histories is found (or after a certain amount of time). Indeed, when

diam(Null(π∗)) is large, there are many optimal histories. Yet, most of them

are not included in the experience set C since exploration stopped prematurely,

and credit will not be improved for those. This is particularly relevant for as-

signments that measure the influence of an action relative to another. For

example, the advantage Aπ(s, a) = qπ(s, a) − Ea′∼π[qπ(s, a′)] is inaccurate if

E′a[qπ(s, a)] is inaccurate, which requires taccurately evaluating q,∀a′ ∈ A.

This often results in a low diversity of behaviours (Parker-Holder et al., 2020),

and a poor robustness to changes in the environment (Eysenbach & Levine,

2022).
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5.4 Relationship with the POMDP’s stochas-

ticity

Up to this point, the three structural POMDP dimensions – depth, density,

and breadth – were treated as if the environment were essentially deterministic.

We now turn to the orthogonal issue of stochasticity and analyse how random-

ness in the transition and reward kernels perturbs the three formal objects

introduced in Sections 4.3, 4.4: the influence function K, the assignment

operator Λ, and the resulting credit-assignment problem (CAP).

Let d ∼ Pµ be a sampled transition, and yt = Kθ(ct, at, gt) the target of

the assignment operator Λ at time t, which, as defined in Section 4.3, is a

random variable due to the stochasticity of the environment Pµ, and of the

policy Pµ. Recall that we conflate the stochasticity of the reward function and

the transition kernel into a single distribution Pµ. When either Pµ(st+1|st, at)

or Pµ(rt+1|st, at) has larges entropy H, the variance of the random influence

Var[K] is high. The higher the variance, the more noisy are the estimate Kθ,

and the more samples are required for Kθ to converge to the exact statistics

of K.

Notice that conditions on depth, breadth and sparsity of the POMDP can

contribute to the noise in the influence function. For example, in a sparse

POMDP, the probability of observing a successful outcome is low, and the

variance of the influence function is high. When Pµ(rt+1|st, at) has high en-

tropy, the highest possible information gain tends to decrease. This, in turns,

decreases the information sparsity of the POMDP (Equation (5.1)), and exac-

erbates the problems discussed in Section 5.3. Likewise, in a deep POMDP,

the increase in temporal distance between the action and the outcome increases

the variance of the influence function, because the number of possible alterna-

tive histories increases. Finally, in a wide POMDP, where many alternative

actions can lead to the same outcome, it is less probable that the agent will
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observe the same action leading to the same outcome, and the variance of the

influence function increases.

5.5 Relationship with the exploration prob-

lem

One additional challenge in practical experiments is that it is often hard to

disentangle the impacts of CA from those of exploration. In fact, discerning

the effects of the two is often only done qualitatively. Here, we discuss the

connection between the two problems, if they can be studied independently,

and whether it is possible to find a way to diagnose and separate the effect of

one from the other.

We use the interpretation of exploration as the problem of acting in an unknown

environment to discover temporal sequences of states, actions and rewards with

the purpose of acquiring new information (Amin et al., 2021; Jiang et al.,

2023b). The acquired experiences then become part of the experience set C,

which is used to solve the CAP as described in Equation (4.2).

To visualise the difference between the exploration problem and the CAP,

consider the usual key-to-door environment, where the agent needs to pick up

a key, which opens a door, behind which lies a reward. While highly improbable

(Abel et al., 2021a), this successful event is the result of chance and random

behaviour1. Nevertheless, it is the responsibility of exploration to discover

for the first time an optimal history, and to keep feeding the set C with

useful discoveries. Then, once the successful experience C∗ is in the set C, it

becomes the responsibility of the CA method to consume that experience and

extract a measure of influence from the relationship context-action-outcome

(Equation (4.1)) that supports effective improvements.

1Or, rather, by the laws dictated by the exploration algorithm.
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This is a key difference because the very same behaviour has a different cause

whether it comes from exploration or from CA. If due to exploration, it happens

by chance, making it unlikely to occur again. If due to accurate CA, it is

the result of informed decision-making, and funded on the ability to forecast

(Sutton et al., 2011) the effects of an action. Then, when assignments start to

be accurate enough, policy improvement further increases the probability of

visiting optimal trajectories in a virtuous cycle that also improves CA. Many

studies show how common RL baselines often struggle to extract a reliable

signal from a small set of isolated successes. This is the case, for example, of

A2C (Oh et al., 2018), DQN (Schaul et al., 2015b) or PPO (Arjona-Medina

et al., 2019). To further support the claim, increasing the sampling probability

of a success, for example through PER (Schaul et al., 2015b) or Self-Imitation

Learning (SIL) (Oh et al., 2018), shows great improvements in CA.

We can draw two conclusions from the arguments above. On one hand, if there

is a minimum number of optimal trajectories C∗ ⊂ C in C, exploration has done

its job and failures can be attributed to poor CA. On the other hand, a natural

question arises: “What is the minimum rate of successes Gmin = |C∗|/|C| that

a CA method requires to start converging to an optimal policy?”. This is

a fundamental open question in the current literature, and an answer to it

can produce a valid tool to evaluate a CA method. All else being equal, the

lowest the ratio C∗/C, the better the method, because it requires exploration

to randomly collect optimal histories at a lower rate, and can solve harder

POMDPs (Abel et al., 2021a).

5.6 Summary

In this section, we surveyed the literature and discussed both the obstacles and

the current limitations to solving the CAP. These include delayed rewards,

sparse rewards, partial observability, high variance, the lack of counterfactual

CA, and sample efficiency. Then, we systematised these issues into challenges
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that emerge from specific properties of the decision problem, which we refer to

as dimensions of the POMDP: depth, density, and breadth. Challenges emerge

when pathological conditions on these dimensions produce specific phenomena

that mask the learning signal to be unreliable, inaccurate, or insufficient to

correctly reinforce an action: delayed effects, sparsity, and credit dilution.

We have provided an intuition of this classification with the aid of graphs

and proceeded to detail each challenge. Finally, we discussed the connection

between the CAP and the exploration problem, suggesting a way to diagnose

when a failure is caused by one or the other, and disentangling exploration

from CA.

With these challenges in mind, we now proceed to review the state of the art

in CA, and discuss the methods that have been proposed to address them.



Chapter 6

Learning to assign credit in

Deep RL: existing methods

In this section, we propose a general form of a CA method such that we can

survey existing algorithms, reconduce them to this form, and compare them.

What is the form a CA method? Following the definition of CAP in Sec-

tion 4.4, a credit assignment method is then an algorithm that takes an initial

guess K̃φ ∈ K and a finite set of experience D = (S ×A×R)T , and, by sam-

pling and learning from transitions D ∼ PD1, it recursively produces a better

approximation of the true assignment K.

We define a CA method according to how it specifies three elements:

(a) The influence function K.

(b) The assignment rule Λ : K×D → K that the method uses to approximate

Kθ.

(c) The distribution PD(d) sample from to collect experience data d ∈ D.

1To enhance the flow of the manuscript, we formalise contextual distributions in Ap-
pendix A.2, and since they are intuitive concepts, we describe them in words when surveying
the methods.
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This provides consistency with the framework just proposed and allows cate-

gorising each method by the mechanisms that it uses to assign credit. There-

fore, for each method, we report the three elements described above.

Taxonomy. Our classification aims to identify the principal directions of de-

velopment and to minimise the intersection between each class of methods.

We aim to understand the density around each set of approaches, to locate

the branches suggesting the most promising results, and to draw a trend of

the latest findings. This can be helpful to both the researchers on the CAP

who want to have a bigger picture of the current state of the art, to general

RL practitioners and research engineers to identify the most suitable methods

to use in their applications, and to the part of the scientific community that

focuses on different problems, but that can benefit from the insights on CA.

We identify the following categories:

1. Methods using time contiguity as a heuristic (Section 6.1).

2. Those decomposing returns into per-timestep utilities (Section 6.2).

3. Those conditioning on predefined goals explicitly (Section 6.3).

4. Methods conditioning the present on future outcomes in hindsight

(Section 6.4).

5. Modelling trajectories as sequences (Section 6.5).

6. Those planning or learning backwards from an outcome (Sec-

tion 6.6).

7. Meta-learning different proxies for credit (Section 6.7).

We do not claim that this list is exhaustive. Rather, as in Section 4.6, this tax-

onomy is representative of the main approaches becoming a tool to understand

the current state of the art in the field. We are keen to receive feedback on
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Publication Method Class Depth Density Breadth
Baird (1999) AL Time ◦ ◦ •
Wang et al. (2016b) DDQN Time ◦ ◦ •
Pan et al. (2022) DAE Time ◦ ◦ •
Klopf (1972) ET Time • ◦ ◦
Sutton et al. (2016) ETD Time • ◦ ◦
Bacon et al. (2017) Option-critic Time • ◦ ◦
Hung et al. (2019) TVT Return decomposition • ◦ ◦
Arjona-Medina et al. (2019) RUDDER Return decomposition • ◦ ◦
Ferret et al. (2021a) SECRET Return decomposition • ◦ ◦
Ren et al. (2022) RRD Return decomposition • ◦ ◦
Raposo et al. (2021) SR Return decomposition • ◦ ◦
Sutton et al. (2011) GVF Auxiliary goals ◦ • ◦
Schaul et al. (2015a) UVFA Auxiliary goals ◦ • ◦
Andrychowicz et al. (2017) HER Future-conditioning ◦ • ◦
Rauber et al. (2019) HPG Future-conditioning ◦ • ◦
Harutyunyan et al. (2019) HCA Future-conditioning ◦ • ◦
Schmidhuber (2019) UDRL Future-conditioning ◦ • ◦
Mesnard et al. (2021) CCA Future-conditioning ◦ • •
Nota et al. (2021) PPG Future-conditioning ◦ • ◦
Janner et al. (2021) TT Sequence modelling ◦ • ◦
Chen et al. (2021) DT Sequence modelling ◦ • ◦
Goyal et al. (2019a) Recall traces Backward planning ◦ • •
Edwards et al. (2018) FBRL Backward planning ◦ • •
Nair et al. (2020) TRASS Backward planning ◦ • •
van Hasselt et al. (2021) ET(λ) Learning predecessors • ◦ •
Xu et al. (2018) MG Meta-Learning • ◦ ◦
Yin et al. (2023) Distr. MG Meta-Learning • ◦ ◦

Table 6.1: List of the most representative algorithms for CA classified by the CA
challenge they aim to address. For each method, we report the publication that
proposed it, the class we assigned to it, and whether it is designed to address each
challenge described in Section 5. Hollow circles mean that the method does not
address the challenge, and the full circle represents the opposite.

missing methods from the list to improve further revisions of the manuscript.

We now proceed to describe the methods, which we also summarise in Ta-

ble 6.1.

6.1 Time as a heuristic

One common way to assign credit is to use time contiguity as a proxy for

causality: an action is as influential as it is temporally close to the outcome.

This means that, regardless of the action being an actual cause of the outcome,

if the action and the outcome appear temporally close in the same trajectory,
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the action is assigned high credit. At their foundation, there is TD learning

(Sutton, 1988), which we describe below.

TD learning. (Sutton, 1984; 1988; Sutton & Barto, 2018) iteratively updates

an initial guess of the value function according to the difference between ex-

pected and observed outcomes. More specifically, the agent starts with an

initial guess of values, acts in the environment, observes returns, and aligns

the current guess to the observed return. The difference between the expected

return and the observed one is the TD error δt:

δt = R(st, at) + γq̃π(st+1, at+1)− q̃π(st, at) (6.1)

where at+1 ∼ π and st+1 ∼ µ, and q̃π denotes the current guess of the action

value function. Because we focus on Deep RL, we omit the learning rate pa-

rameter. Notice that the reward R(st, at) is the only part of the information

grounded into the reality of the environment, while the rest of the information

is the agent’s guess. TD learning blends elements from Discounted Utility The-

ory (DUT) (Samuelson, 1937; Edwards, 1954; Simon, 1959a) where the credit

is the expected future utility of an action, and from neuropsychology, where

the error between the expected and the observed utility codes dopaminergic

interactions (Schultz et al., 1997; Schultz, 1998; Montague et al., 1996). This

strong temporal bias induces a propagation of the information that is local in

time: the credit is propagated between actions that are adjacent in time and

struggles to propagate to actions that are far apart in time.

Update rule. We can generalise the TD error to the difference of any influence

function, following the notation in Section 4.6:

δKt = R(st, at) + γK(st+1, at+1)− K̃(st, at) (6.2)

All methods in this section are characterised by the use of the this generalised
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TD error to update their influence function, and their assignments follow this

general structure of the update:

K(st, at) = Λ[K, d] = K̃(st, at) + δKt = R(st, at) + γK(st+1, at+1) (6.3)

where st, at, st+1, at+1 ∼ PD.

When the temporal distance between the goal and the action is high – a premise

at the base of the CAP – it is often improbable to observe very far rewards. As

time grows, so does the variance of the observed outcome, due to the intrinsic

stochasticity of the environment dynamics, and the policy. To mitigate the

issue, TD methods often replace the theoretical measure of influence with an

approximation: the TD target. In TD learning, the value function is updated

to approximate the target, and not the theoretical measure of action influence

underneath it. Since policy improvement uses the current approximation of

the value to update the policy, future behaviours are shaped according to it,

and the TD target drives the learning process.

We separate the methods in this category in three subgroups: those specifically

designed around the advantage function, those re-weighing updates to stabilise

learning, and those assigning credit to subsets of temporally extended courses

of actions.

6.1.1 Advantage-based approaches

The first subset of methods uses the advantage (see Section 4.6) as a measure

of action influence, but still uses time as a heuristic to learn it.

Actor-Critic (AC) methods with a baseline function (Sutton & Barto, 2018,

Chapter 13) approximate the action influence using some estimator of the

advantage function (Equation 4.4). In fact, the policy gradient is proportional

to Eµ,π[(Qπ(s, a) − b(s))∇ log π(a|s)] and if we choose vπ(s) as our baseline
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b(s), we get Eµ,π[(Aπ(s, a))∇ log π(a|s)] because qπ(s, a)− vπ(s, a) = Aπ(s, a).

The use of an action-independent baseline function usually helps to reduce the

variance of the evaluation, and thus of the policy gradients, while maintaining

an unbiased estimate of it (Sutton & Barto, 2018). What function to use as a

baseline is the subject of major studies, and different choices of baselines often

yield methods that go beyond using time as a heuristic (Harutyunyan et al.,

2019; Mesnard et al., 2021; Nota et al., 2021; Mesnard et al., 2023).

Advantage Learning (AL) Baird (1999) also uses time as a proxy for causal-

ity. There are many instances of AL in the Deep RL literature. The Dueling

Deep Q-Network (DDQN) (Wang et al., 2016b) improves on DQN by calculat-

ing the q-value as the sum between the state-value function and a normalised

version of the advantage. Even if this results in using the q-value as a mea-

sure of action influence and K(s, a) = vπ(s) + (Aπ(s, a) −
∑

aA
π(s, a′)/|A|),

approximating the advantage is a necessary step of it.

DAE (Pan et al., 2022) follows Wang et al. (2016b) with the same specification

of the advantage but provides better connections between the advantage and

causality theory. In particular, for fully observable POMDPs, the causal effect

of an action a upon a scalar outcome G is defined as E[G|s, a]− E[G|s]. If we

choose the return Z as outcome, this actually corresponds to the advantage

E[Z|s, a]−E[Z|s] = qπ(s, a)−vπ(s), which becomes an approximate expression

for the causal influence of an action upon the random return, as discussed also

in Arumugam et al. (2021). Here, the context is an POMDP state, the action

is the greedy action with respect to the current advantage estimation, and the

goal is the expected return at termination.

As explained in Section 5.3, advantage can be decomposed in two terms

Aπ(s, a) = qπ(s, a) − vπ(s, a). Since vπ(s) = Eπ[qπ(s, a)], it is clear that the

accuracy of the advantage depends on the accuracy of the q-values of all ac-

tions. It has been shown that, because of this, estimating and incorporating

the advantage in the q-value has a regularisation effect (Vieillard et al., 2020a).



6.1. Time as a heuristic 131

Another effect is increasing the action-gap (i.e. the difference in value between

the best and second-best action), which facilitates value learning. Because

evaluations are more accurate for a greater portion of the state-action space,

AL-based methods contribute to address POMDP breadth, as shown in Ta-

ble 6.1.

6.1.2 Re-weighing updates and compound targets

The second subset of methods in this category re-weighs temporal updates

according to some heuristics, which we detail below. Re-weighing updates can

be useful to emphasise or de-emphasise important states or actions to stabilise

learning in Deep RL (van Hasselt et al., 2018).

Eligibility Traces (ET) (Klopf, 1972; Singh & Sutton, 1996; Precup, 2000a;

Geist et al., 2014; Mousavi et al., 2017) credit the long-term impact of actions

on future rewards by keeping track of the influence of past actions on the

agent’s future reward. Specifically, an eligibility trace (Sutton & Barto, 2018,

Chapter 12) is a function that assigns a weight to each state-action pair, based

on the recency of the last visit to it. A trace et(s) spikes every time a state

(or state-action) is visited and decays exponentially over time until the next

visit or until it extinguishes. At each update, the TD error, which determines

the magnitude of the update, is scaled by the value of the trace at that state,

and δETt = δtet(s). There are several types of eligibility traces, depending on

the law of decay of the trace. For example, with accumulating traces (Klopf,

1972), every visit causes an increment of the trace. Replacing traces (Singh &

Sutton, 1996) are capped to a specific value, instead.

Deep Q(λ)-Networks (DQ(λ)Ns) (Mousavi et al., 2017) implement eligibility

traces on top of DQN (Mnih et al., 2015). Here, the eligibility trace is a vector

e ∈ Rd with the same number of components d as the parameters of the DNN,

and the action influence is measured by the q-value with parameters set θ ∈ Rd.

The context is an MDP state, the action is an off-policy action in a transition
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arbitrarily chosen from the buffer; the goal is the expected return. The ET

information is embedded in the parameters θ since they are updated according

to θ ← θ + δe. Here e is the eligibility trace, incremented at each update by

the value gradient (Sutton & Barto, 2018, Chapter 12): e← γλe+∇θq
π(s, a).

Finally, successive works advanced on the idea of ETs, and proposed different

updates for the eligibility vector (Singh & Sutton, 1996; van Hasselt & Sutton,

2015; Precup, 2000a).

Emphatic Temporal Differences (ETDs) (Sutton et al., 2016; Mahmood

et al., 2015; Jiang et al., 2021b) continue on the idea of ETs to weigh TD up-

dates with a trace. They aim to address the issue that canonical ETs may suffer

from early divergence when combined with non-linear function approximation

and off-policy learning. The re-weighing in ETD is based on the emphatic

trace, which encodes the degree of bootstrapping of a state.

Originating from tabular and linear RL, the intuition behind ETDs is that

states with high uncertainty – the states encountered long after the state-

action pair of evaluation – are more reliable, and vice versa. The main adap-

tation of the algorithm to Deep RL is by Jiang et al. (2021b), who propose

the Windowed Emphatic TD(λ) (WETD) algorithm. In this approach, ETD

is adapted to incorporate update windows of length n, introducing a mixed

update scheme where each state in the window is updated with a variable

bootstrapping length, all bootstrapping on the last state in the window. The

influence of an action in WETD is the same as for any other ET, but the trace

itself is different and measures the amount of bootstrapping of the current

estimate.

ETDs provide an additional mechanism to re-weigh updates, the interest func-

tion i : S → [0,∞). By emphasising or de-emphasising the interest of a state,

the interest function can be a helpful tool to encode the influence of the actions

that had led to that state. Because hand-crafting an interest function requires
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human interventions, allowing suboptimal and biased results, Klissarov et al.

(2022) proposes a method to learn and adapt the interest function at each

update using meta-gradients. Improvements on both discrete control, such as

ALE, and on continuous control problems, such as MuJoCo (Todorov et al.,

2012), suggest that the interest function can be helpful to assign credit faster

and more accurately.

Re-weighing updates includes a set of techniques to adjust the influence of past

actions based on their temporal proximity to the current state. Such methods

aim to mitigate the limitations of TD methods by dynamically adjusting the

weight assigned to past actions, thereby emphasizing or de-emphasizing their

contribution to future rewards. For this reason, these methods can be seen

as potential solutions to mitigate the impacts of delayed effects and improve

credit assignment in settings with high POMDP depth, as shown in Table 6.1.

6.1.3 Assigning credit to temporally extended actions

The third and last subset of methods in this category assigns credit to tempo-

rally extended actions rather than a single, atomic action. This is formalised

in the options framework (Sutton et al., 1999; Precup, 2000b).

For the purpose of CA, options, also known as skills (Haarnoja et al., 2017;

Eysenbach et al., 2018), can be described as the problem of achieving sub-goals,

such that an optimal policy can be seen as the composition of elementary

behaviours. For example, in a key-to-door environment, such as MiniGrid

(Chevalier-Boisvert et al., 2018) or MiniHack (Samvelyan et al., 2021) the agent

might select the option pick up the key, followed by open the door. Each of this

macro-action requires a lower level policy to be executed. For example, pick up

the key requires selecting the actions that lead to reach the key before grabbing

it. In the option framework, credit is assigned for each specific subgoal (the

macro-action), with the benefits already described for the explicitness property,

from Section 4.7. The idea stems from the intuition that it is easier to assign
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credit to macro-actions since a sequence of options is usually shorter than a

sequence of atomic actions, reducing the overall temporal distance to the time

of achieving the goal.

However, since the option literature often does not explicitly condition on

goals, but uses other devices to decompose the CA problem, we review works

about learning options next, and dedicate a separate section to auxiliary goal-

conditioning in Section 6.3.

The option-critic architecture (Bacon et al., 2017) scales options to Deep

RL and mirrors the actor-critic architecture but considering options rather

than actions. The option-critic architecture allows learning both how to exe-

cute a specific option, and which option to execute at each time simultaneously

and online. The option executes using the call-and-return model. Starting

from a state s, the agent picks an option ω according to its policy over op-

tions πΩ. This option then determines the primitive action selection process

through the intra-policy πω until the option termination function β signals to

stop. Learning options, and assigning credit to its actions, is then possible

using the intra-option policy gradient and the termination gradient theorems

(Bacon et al., 2017), which define the gradient (thus the corresponding up-

date) for all three elements of the learning process: the option ω ∈ Ω, their

termination function β(s) and the policy over options πΩ. Here, the context is

a state s ∈ S, the actions to assign credit to are both the intra-option action

a ∈ A and the option ω ∈ Ω, and the goal is to maximise the return.

On the same lines, Riemer et al. (2018) propose hierarchical option-critics,

which allows learning options at multiple hierarchical levels of resolution –

nested options – but still only on a fixed number of pre-selected options. Klis-

sarov & Precup (2021) further improve on this method by updating all options

with a single batch of experience.

In the context of the option-critic architecture, CA occurs at multiple levels
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of the hierarchy. At the lower, intra-option level, where individual actions are

taken, credit assignment involves determining the contribution of each action

to the achievement of sub-goals. This is essential for learning effective policies

for executing primitive actions within each option. At the higher level of the

hierarchy, credit assignment involves attributing credit to options for achieving

higher-level goals and involves identifying the contribution of each option to

achieving the overall task objective. The hierarchical structure of the option-

critic architecture facilitates credit assignment by decomposing the learning

problem into multiple levels of abstraction. For their ability to decompose a

bigger task into smaller sub-problems, these methods naturally improve credit

assignment when effects are delayed and in settings with high POMDP depth

(see Table 6.1).

6.1.4 Summary and discussion

The methods we covered in this section use the temporal distance between the

context-action pair and a reward to measure the action influence. The closer

is the action, the higher is its influence and vice versa. While this could maybe

be a reasonable assumption when the policy is optimal, it is not the case for the

early exploratory stages of learning. In fact, as described in Section 5.5, highly

influential actions are often taken long before their rewards are collected while

exploring. For example, in our usual key-to-door example, the agent would

pick up the key, perform hundreds of random, unnecessary actions, and the

goal-tile only reached after those. In these cases, the two events are separated

by a “multitude of [random and non-influential] decisions” (Minsky, 1961).

Because these non-influential actions are temporally closer to reaching the

goal-tile than that of picking up the key, these methods mistakenly assign

them high influence and, in particular, a higher influence than to pick up the

key.

Today, methods that assign credit only by looking at the temporal distance
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between the action and the outcome usually underperform on tasks with de-

layed effects (Arjona-Medina et al., 2019). Nevertheless, some of the branches

in this category improve assignments in condition of high POMDP depth by

re-weighing updates, using advantage or breaking down the task into multiple,

composable subtasks.

6.2 Decomposing return contributions

To improve CA in settings with high POMDP depth, the line of research we

describe next focuses on decomposing returns into per-timestep contributions.

These works interpret the CAP as a redistribution problem: the return ob-

served at termination is re-distributed to each time-step with an auxiliary

mechanism that depends on each method and complements TD learning.

Temporal Value Transport (TVT) (Hung et al., 2019) uses an external

long-term memory system to improve on delayed tasks. The memory mech-

anism is based on the Differentiable Neural Computer (DNC) (Grefenstette

et al., 2015; Graves et al., 2016), a neural network then reads events from

an external memory matrix, represented as the hidden state of a Long-Short-

Term-Memory (LSTM). The agent decides to read from and write into it. To

write, state-action-reward triples are projected to a lower dimensional space,

and processed by the DNC. During training, this works as a trigger: when a

past state-action pair is read from memory, it gets associated with the current

one, transporting the state-action value – credit – from the present to the re-

mote state. To read, the state-action-reward is reconstructed from the latent

code. During inference, this acts as a proxy for credit. If a past state-action-

reward triple is retrieved from the memory, it means that it is correlated with

the current return. This allows to use the retrieval score of a past transition

as a measure of the influence of its action.
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Return Decomposition for Delayer Rewards (RUDDER) (Arjona-

Medina et al., 2019) stems from the intuition that, if we can construct a reward

function that redistributes the rewards collected in a trajectory such that the

expected future reward is zero, we obtain an instantaneous signal that im-

mediately informs the agent about future rewards. The method proposes to

learn an influence function f : (S × A)→ R such that, given the state-action

pairs, it outputs the sum of discounted rewards, including the past, present

and future rewards:

f(st, at) =
T∑
k=0

γkR(sk, ak) (6.4)

Notice that this is different from an action-value function, as it also includes

past rewards. In practice, f is implemented as an LSTM, which is trained

to fit a subset of the whole experience set Dr ⊂ D. Dr is constructed to

contain only trajectories containing delayed rewards, and experience is sampled

proportionally to the current prediction error. The underlying hypothesis is

that, by fitting the return, the LSTM’s hidden state holds useful information

to redistribute the return to the most relevant transitions in the sequence.

Once K is accurate enough, at each iteration of the RL algorithm, RUD-

DER employs contribution analysis to redistribute the sum of rewards to each

state-action pair. It uses the difference between the inferred returns (i.e., the

redistributed returns) at two consecutive time steps as a reward to perform

canonical TD learning. Because two consecutive predictions share the same

past and the same future contributions, except for two immediate state-action

pairs, the difference of consecutive predictions contributions cancels out but

for the two immediate state-action pairs.

The corresponding assignment is straightforward:

K̃(st, at) = Λ[K̃, d] = f(st+1, at+1)− f(st, at) (6.5)
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Self-Attentional Credit Assignment for Transfer (SECRET) (Ferret

et al., 2021a) uses a causal Transformer-like architecture (Vaswani et al., 2017)

with a self-attention mechanism (Lin et al., 2017) in the standalone supervised

task of reconstructing the sequence of rewards from observations and actions.

It then views attention weights over past state-action pairs as credit for the

generated rewards. This was shown to help in settings of high POMDP depth

in a way that transfers to novel tasks when trained over a distribution of tasks.

We can write its measure of action influence as follows:

K(st, at) =
T∑
t=1

1{St = s, At = a}
T∑
i=t

αt←iR(si, ai). (6.6)

Here, αt←i is the attention weight on (oi, ai) when predicting the reward rj.

Synthetic returns (SR) (Raposo et al., 2021) assume only one state-action

to be responsible for the terminal reward. They propose a form of state pairs

association where the earlier state (the operant) is a leading indicator of the

reward obtained in the later one (the reinforcer). The association model is

learned with a form of episodic memory. Each entry in the memory buffer,

which holds the states visited in the current episode, is associated with a reward

– the synthetic reward – via supervised learning. At training time, this allows

propagating credit directly from the reinforcer to the operant, bypassing the

local temporal difference. When this reward model is accurately learned, each

time the operant is observed, the synthetic reward model spikes, indicating a

creditable state-action pair. Here the synthetic reward acts as a measure of

causal influence, and we write:

K̃(st, at) = Λ[K̃, d] = qπ(st, at) + f(st). (6.7)

Here f(s) is the synthetic reward function, and it is trained with value re-

gression on the loss ||rt− u(st)
∑t−1

k=0 f(st)− b(st)||2, where h(st) and b(st) are

auxiliary neural networks optimised together with f . As for Arjona-Medina
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et al. (2019), the context c is a history h from the assigned POMDP, the action

is an action from the trajectory a ∈ h, and the goal is the achieved return. This

method is, however, stable only within a narrow range of hyperparameters and

assumes that only one single action is to be credited.

6.2.1 Summary and discussion

The methods in this section assign credit by decomposing returns into per

time-step contributions and then learning values from this new, clearer reward

signal. For the purposes of this survey, they mainly differ by the method

used to redistribute the contributions to each context-action pair. TVT uses

an external memory system, RUDDER uses contribution analysis, SECRET

exploits the Transformer’s self-attention weights, SR use a gating function.

Their motivation stems from improving on delayed effects, which they often

state as an explicit goal, and for this reason, we report them as improving CA

in settings of high POMDP depth (Table 6.1).

Indeed, the empirical evidence they provide suggests that improvements are

consistent, and redistribution methods provide benefits over their TD learning

baselines. On the other hand, these methods do not provide formal guarantees

that the assignments improve over TD learning, and there is currently a gap

to fill to justify these improvements also theoretically. This is the case, for

example, of other methods (Harutyunyan et al., 2019; Wang et al., 2016b;

Mesnard et al., 2021; van Hasselt et al., 2021) that prove to reduce the variance

of the evaluation, some of which we describe in later sections.

6.3 Conditioning on a predefined set of auxil-

iary goals

The methods in this category evaluate actions for their ability to achieve mul-

tiple goals explicitly. They do so by conditioning the value function on a goal
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and then using the resulting value function to evaluate actions. The intuition

behind them is that the agent’s knowledge about the future can be decomposed

into more elementary associations between states and goals.

Their assignment follow the same temporal structure of those in Equation 6.3,

despite using different influence functions. We now describe the two most

influential methods in this category.

General Value Functions (GVFs) (Sutton et al., 2011), described in Sec-

tion 4.6, stem from the idea that knowledge about the world can be expressed

in the form of predictions. These predictions can then be organised hierarchi-

cally to solve more complex problems. While GVFs carry several modifications

to the canonical value, we focus on its goal-conditioning for the purpose of this

review, which is also its foundational idea. GVFs conditions the action value

on a goal to express the expected return with respect to the reward function

that the goal induces. In their original formulation (Sutton et al., 2011), GVFs

are a set of value functions, one for each goal. The goal is any object in a pre-

defined goal set of MDP states g ∈ S, and the resulting measure of action

influence is the following:

K(s, a, g) = qπ(s, a, g), (6.8)

that is the q-function with respect to the goal-conditioned reward function

R(s, a, g), which is 0 everywhere, and 1 when a certain state is reached. Be-

cause GVFs evaluate an action for what it is going to happen in the future,

GVFs are forward methods, and interpret the CAP as a prediction problem:

“What is the expected return of this action, given that g is the goal?”.

Universal Value Functions Approximators (UVFAs) (Schaul et al.,

2015a) scale the idea of GVFs to a large set of goals, by using a single value

function to learn the whole space of goals. One major benefit of UVFAs over

GVFs is that they are readily applicable to Deep RL by simply adding the
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goal as an input to the value function approximator. This allows the agent to

learn end-to-end with bootstrapping and allows for exploiting a shared predic-

tion structure across different states and goals. Since they derive from GVFs,

UVFA share most of their characteristics. The context is an MDP state s ∈ S;

the goal is still any object in a predefined goal set of states, g ∈ S, and the

credit of an action is the expected return of the reward function induced by

the goal (see Equation (6.8)).

6.3.1 Summary and discussion

The methods in this category stand out for using an explicit goal to assign

credit, as described in Section 4.7. What distinguishes these methods from

those that follow in the next section (which also use goals explicitly) is their

flexibility. While in hindsight methods choose the goal after completing a

trajectory, or based on information acquired during training, these methods

do not. Instead, the set of goals of a GVF is predefined in Sutton et al. (2011).

UVFAs, even if they can generalise to new goals in theory, they are designed

with that purpose in mind, and their application is limited. This represents

both a strong limitation of these methods, and a gap to fill in the literature,

since it limits both their flexibility and their autonomy to adapt to different

tasks, requiring the human designer to specify the set of goals ex-ante and to

provide the set of goals as an input at the start of training.

Furthermore, their interpretation of credit is still linked to the idea of tem-

poral contiguity described in Section 6.1. For this reason, they share many

drawbacks and limitations with those methods and perform poorly when the

POMDP is deep, especially if not accompanied by more advanced techniques.

To the best of our knowledge, there are no examples in the literature that

pair these methods with more advanced CA techniques (e.g., options), which

represents a gap to fill.

On the other hand, by specifying a goal explicitly (GVFs) and by generalising



6.4. Conditioning in hindsight 142

over the goal space (UVFA), conditioning on a predefined set of goals provides

a way to extract signals from the environment even when the signal is sparse

and action influence is low. In fact, even when the main task is complex, the

set of auxiliary goals is designed to provide a useful signal for learning. This is

the reason why we consider these methods improving CA when the POMDP

is sparse (see Table 6.1).

6.4 Conditioning in hindsight

The methods in this category are characterised by the idea of re-evaluating

the action influence according to what the agent achieved, rather than what

it was supposed to achieve. This means that, given a trajectory h, we can

choose some goal g ∈ G (after collecting h) and evaluate the influence of all

the actions in h upon achieving g.

We separate the methods in this category into three subgroups.

(i) Those that re-label the past experience under a different perspective,

such as achieving a different goal than the one the agent started.

(ii) Those that condition the action evaluation on some properties of the

future during training, which becomes an explicit performance request

at inference time.

(iii) Those that condition on future factors that are independent on the eval-

uated action, but that still influence future returns.

6.4.1 Relabelling experience

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) stems

from the problem of learning in sparse rewards environments, which is an

example of low action influence in our framework (see Section 5.2. The method
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exploits the fact that even if a trajectory is suboptimal for the overall implicit

goal to maximise MDP returns, it can be viewed as optimal if the goal is to

achieve its final state.

In practice, HER brings together UVFAs and experience replay (Lin, 1992) to

re-examine trajectories. After collecting a set of trajectories from the environ-

ment, the agent stores each transition in a replay buffer, together with both

the state it sought to reach and the one that it actually did reach. This allows

optimising K̃φ(s, a, g) for both goals. We refer to this process of re-examining

a trajectory collected with a prior goal in mind and evaluating it according to

the actually realised outcome as hindsight conditioning, which is also the main

innovation that HER brings to the CAP. Notice that the original goal is im-

portant because the trajectory is collected with a policy that aims to maximise

the return for that specific goal.

However, in HER, the goal set is still predefined, which requires additional

specifications from the agent-designer and can limit the autonomy of the over-

all agent, which increases the autonomy of the agent. HER uses the goal-

conditioned q-values described in Section 6.3 to measure action influence:

K(st, at, sT ) = qπ(st, at, sT ). (6.9)

Here the context is a history from the POMDP, the action is an action from

the trajectory a ∈ h, and the goal g is to visit a state sT at the end of a

trajectory.

Since HER is limited to off-policy learning with experience replay, Hindsight

Policy Gradients (HPGs) (Rauber et al., 2019) transfers the findings of

HER to Policy Gradient (PG) methods, and extend it to online settings. In-

stead of updating the policy based on the actual reward received, Hindsight

Policy Gradient (HPG) updates the policy based on the hindsight reward,

which is calculated based on the new goals that were defined using HER. The
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main difference with HER is that in HPGs, both the critic and the actor are

conditioned on the additional goal. This results in a goal-conditioned policy

π(·|S = s,G = g), describing the probability of taking an action, given the

current state and a realised outcome. The action influence used in HPG is the

advantage formulation of the hindsight policy gradients:

K(s, a, g) = qπ(s, a, g)− vπ(s, g), (6.10)

where qπ(s, a, g) and vπ(s, g) are the goal-conditioned value functions. Here

the context c is a history h = {ot, at, rt : 0 ≤ t ≤ T}, the goal is arbitrarily

sampled from a goal set, g ∈ G. Like HER, HPG is tailored to tasks with

low action influence due to low MDP density, and it is shown to be effective

in sparse reward settings. Overall, HER and HPG are the first completed

work to talk about hindsight as the re-examination of outcomes for CA. Their

solution is not particularly interesting for the CAP as they do not cast their

problem as a CAP and they do not connect the finding to the CAP explicitly.

However, they are key precursors of the methods that we review next, which

instead provide novel and reusable developments for CAP specifically.

6.4.2 Conditioning on the future

Hindsight Credit Assignment (HCA) Traditional reinforcement learning

algorithms often struggle with credit assignment as they rely solely on fore-

sight: they evaluate actions against a predetermined goal, selected before act-

ing. These methods operate under the assumption that we lack knowledge of

what occurs beyond a given time step, making accurate credit assignment chal-

lenging, especially in tasks with delayed effects. (Harutyunyan et al., 2019), on

the other hand, centres on utilising hindsight information, acknowledging that

credit assignment and learning typically take place after the agent completes

its current trajectory. This approach enables us to leverage this additional

data to refine the learning of critical variables necessary for credit assignment.
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(Harutyunyan et al., 2019) introduces a new family of algorithms known as

Hindsight Credit Assignment (HCA). Hindsight Credit Assignment (HCA) al-

gorithms explicitly assign credit to past actions based on the likelihood of those

actions having been taken, given that a certain outcome has been observed.

This is achieved by comparing a learned hindsight distribution over actions,

conditioned by a future state or return, with the policy that generated the

trajectory.

More precisely, the hindsight distribution, h(a|st, π, g) is the likelihood of an

action a, given the outcome g experienced in the trajectory d ∼ Pµ,π(D|S0 =

s, at ∼ π). In practice, Harutyunyan et al. (2019) consider two classes of

outcomes: states and returns. We refer to the algorithms that derive from

these two classes of goals as state-HCA and return-HCA. For state-HCA, the

context c is the current state st at time t; the outcome is a future state in

the trajectory st′ ∈ d where t′ > t; the credit is the ratio between the state-

conditional hindsight distribution and the policy
ht(a|st,s′t)
π(a|st) . For return-HCA,

the context c is identical; the outcome is the observed return Zt; the credit is

the ratio between the return-conditional hindsight distribution and the policy

1− π(a|st)
ht(a|st,Zt)

. The resulting ratios provide a measure of how crucial a particular

action was in achieving the outcome. A ratio deviating further from 1 indicates

a greater impact (positive or negative) of that action on the outcome. For

example, return-HCA measures the influence of an action with the hindsight

advantage described in Section 4:

K(st, at, zt) =

(
1− π(at|St = st)

Pµ,π(at|St = st, Zt = zt)

)
zt. (6.11)

To compute the hindsight distribution, HCA algorithms employ a technique

related to importance sampling. Importance sampling estimates the expected

value of a function under one distribution (the hindsight distribution) using

samples from another distribution (the policy distribution). In the context of

HCA, importance sampling weights are determined based on the likelihood of
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the agent taking each action in the trajectory, given the hindsight state com-

pared to the likelihood of the policy for that same action. Once the hindsight

distribution is computed, HCA algorithms can be used to update the agent’s

policy and value function. One approach involves using the hindsight distri-

bution to reweight the agent’s experience. This means the agent will learn

more from actions that were more likely to have contributed to the observed

outcome.

Besides advancing the idea of hindsight, (Harutyunyan et al., 2019) carries one

novelty: the possibility to drop the typical policy evaluation settings, where the

goal is to learn a value function by the repeated application of the Bellman

expectation backup. Instead, action values are defined as a measure of the

likelihood that the action and the outcome appear together in the trajectory,

and are a precursor of the sequence modelling techniques described in the next

section (Section 6.5).

Upside-Down RL (UDRL) (Schmidhuber, 2019; Srivastava et al., 2019;

Ashley et al., 2022; Štrupl et al., 2022) is another implementation of the idea

to condition on the future. The intuition behind Upside-Down RL (UDRL)

is that rather than conditioning returns on actions, which is the case of the

methods in Section 6.1, we can invert the dependency and condition actions

on returns instead. This allows using returns as an input and inferring the

action distribution that would achieve that return. The action distribution

is approximated using a neural network, the behaviour policy, that is trained

via maximum likelihood estimation using trajectories collected online from the

environment. In UDRL the context is a completed trajectory d; the outcome

is a command that achieves the return Zk in H = T − k time-steps, which we

denote as g = (Zk, H); the credit of an action a is its probability according to

the behaviour function, π(a|s, g). In addition to HCA, UDRL also conditions

the return to be achieved in a specific timespan.
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Posterior Policy Gradients (PPGs) (Nota et al., 2021) further the idea

of hindsight to provide lower-variance, future-conditioned baselines for policy

gradient methods. At the base of PPG there is a novel value estimator, the

PVF. The intuition behind PVFs is that in POMDPs the state value is not

a valid baseline because the true state is hidden from the agent, and the

observation cannot provide as a sufficient statistic for the return. However,

after a full episode, the agent has more information to calculate a better, a

posteriori guess of the state value at earlier states in the trajectory. Nota et al.

(2021) refers to the family of possible a posteriori estimations of the state value

as the PVF. Formally, a PVF decomposes a state into its current observation

ot, and some hidden state that is not observable and typically unknown bt.

The value of a state can then be written as the expected observation-action

value function over the possible non-observable components uT ∈ U = Rd.

The action influence of a PPG is quantified by the expression:

K(d) = E
u∈U

[P(ut = u|d)v(ot, ut)] . (6.12)

Here, the context is an observation, the action is the current action and the

goal is the observed return. In practice, PVF advances HCA by learning

which statistics of the trajectory ψ(d) are useful to assign credit, rather than

specifying it objectively as a state or a return.

6.4.3 Exposing irrelevant factors

Counterfactual Credit Assignment (CCA) For being data efficient, credit

assignment methods need to disentangle the effects of a given action of the

agent from the effects of external factors and subsequent actions. External

factors in reinforcement learning are any factors that affect the state of the

environment or the agent’s reward but are outside the agent’s control. This

can include things like the actions of other agents in the environment, changes

in the environment state due to natural processes or events. These factors
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can make credit assignment difficult because they can obscure the relationship

between the agent’s actions and its rewards.

Mesnard et al. (2021) proposes to get inspiration from the counterfactuals

from causality theory to improve credit assignment in model-free reinforce-

ment learning. The key idea is to condition value functions on future events,

and learn to extract relevant information from a trajectory. Relevant informa-

tion here corresponds to all information that is predictive of the return while

being independent of the agent’s action at time t. This allows the agent to

separate the effect of its own actions, the skills, from the effect of external

factors and subsequent actions, the luck, which will enable refined credit as-

signment and therefore faster and more stable learning. It shows that these

algorithms have provably lower variance than vanilla policy gradient, and de-

velops valid, practical variants that avoid the potential bias from conditioning

on future information. One variant explicitly tries to remove information from

the hindsight conditioning that depends on the current action while the sec-

ond variant avoids the potential bias from conditioning on future information

thanks to a technique related to important sampling. The empirical evidence

in Mesnard et al. (2021) suggests that CCA offers great improvements in tasks

with delayed effects.

6.4.4 Summary and discussion

The methods described in this section bring many independent novelties to CA.

The most relevant for our scope is the idea of hindsight conditioning, which can

be summarised as evaluating past actions using additional information about

the future, usually not available at the time the action was taken. They differ

from those in Section 6.3, as they do not act on a pre-defined objective set of

goals, but these are chosen in hindsight.

One drawback of these methods is that they must be able to generalise to a

large goal space to be effective, which is not a mild requirement because the
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ability to generalise often correlates with the size of the network. This can

limit the applicability of the method, especially in cases of low computation

and memory budgets.

One of the greatest benefits of these methods is to always have a signal to learn

from because, by construction, there is always a goal that has been achieved in

the current trajectory, for example, the final state, or the terminal return. This,

in turn, produces a higher number of context-action-outcome associations,

translates into additional training data that is often beneficial in supervised

problems, and results in an overall denser signal. These improvements in

POMDPs with low density, which we report in Table 6.1, are supported by

both empirical evidence and theoretical guarantees to reduce the variance of

the evaluations (Harutyunyan et al., 2019; Wang et al., 2016b; Mesnard et al.,

2021; van Hasselt et al., 2021). Incorporating information about the future (for

example, future returns or states), is most likely one major reason why these

algorithms overperform the others. In fact, when this information is designed

to express particular features, such as action-independence or independence

to irrelevant factors, such as in Mesnard et al. (2021), the gap increases even

further.

Finally, some of these methods (Mesnard et al., 2021) also incentivise the dis-

covery of multiple pathways to the same goal, by identifying decisions that are

irrelevant to the outcome, resulting in the fact that any of them can be taken

without affecting the outcome. The only requirement is to employ an actor-

critic algorithm, which we consider a mild assumption, since transitioning from

actor-critic to value-based settings is usually trivially achievable.

6.5 Modelling trajectories as sequences

The methods in this category are based on the observation that RL can be seen

as a sequence modelling problem. Their main idea is to transfer the successes
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of sequence modelling in Natural Language Processing (NLP) to improve RL.

On a high level, they all share the same assumption: a sequence in RL is a

sequence of transitions (s, a, r), and they differ in either how to model the

sequence, the problem they solve, or the specific method they transfer from

NLP.

Trajectory Transformers (TTs) (Janner et al., 2021) implements a

decoder-only (Radford et al., 2018; 2019) Transformer (Vaswani et al., 2017)

to model the sequence of transitions. TTs learn from an observational stream

of data, composed of expert demonstrations resulting in an offline RL training

protocol. The main idea of TTs is to model the next token in the sequence,

which is composed by the next state, the next action, and the resulting reward.

This enables planning, which TTs exploit to plan via beam search. Notice

that, for any of these paradigms, if the sequence model is autoregressive – the

next prediction depends only on the past history, but since a full episode is

available, the future-conditioned probabilities are still well-defined, and also

TTs can condition on the future. In TTs the action influence is the product

between the action probability according to the demonstration dataset and its

q-value:

K(st, at, zt) = Pθ(At = at|Zt = zt)q
π(st, at). (6.13)

Here, the context c is an MDP state c = s ∈ S, the action is arbitrarily

selected, and the goal is the return distribution P(Z).

Decision Transformers (DTs) (Chen et al., 2021) proceed on the same

lines as TTs but ground the problem in learning, rather than planning. DTs

interpret a sequence as a list of (st, at, Zt) triples, where Zt is the return-to-

go. They then use a Transformer to learn a model of the actor that takes the

current state and the return as input and outputs a distribution over actions.

In addition, they optionally learn a model of the critic as well, which takes
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the current state and each action in the distribution to output the value of

each action. The sequences are sampled from expert or semi-expert demon-

strations, and the model is trained to maximise the likelihood of the actions

taken by the expert. From the perspective of CA, TTs and DTs are equiva-

lent, and they share the same limitation in that they struggle to assign credit

accurately to experience beyond that of the offline dataset. Furthermore, like

HCA (Harutyunyan et al., 2019), DTs bring more than one novelty to RL.

Besides modelling the likelihood of the next token, they also use returns as

input to the model, resulting in a form of future conditioning. However, for

CA and this section, we are only interested in their idea of sequence modelling

and we will not discuss the other novelties. There exist further extensions to

DT both to online settings (Zheng et al., 2022) and to model quantities be-

yond the return (Furuta et al., 2022). The former allows assigning credit by

modelling transition sequences in online settings. The latter, instead, gener-

alises sequence modelling to transitions with additional arbitrary information

attached – the same way, Future-Conditional Policy Gradient (FC-PG) gener-

alise HCA.

6.5.1 Summary and discussion

Sequence modelling in RL transfers the advances in sequence modelling for

NLP to Deep RL setting. The main idea is to measure credit by estimating

the probability of the next action (or the next token), conditioned on the

context and the goal defined in hindsight, according to an offline dataset of

expert trajectories (Chen et al., 2021; Janner et al., 2021).

While some works propose adaptation to online fine-tuning (Lee et al., 2022),

these methods mostly learn from offline datasets and the idea to apply sequence

modelling online is underexplored. This represents a strong limitation as it

limits the generalisation ability of these methods. For example, DT often fail

to generalise to returns outside the training distribution.
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The distribution that measures this likelihood P(a|c, g) can be interpreted as

the hindsight distribution (Harutyunyan et al., 2018) described in Section 6.4.

Their development has a similar pattern to that of hindsight methods and pro-

gressively generalises to more complex settings, such as online learning (Zheng

et al., 2022) and more general outcomes (Furuta et al., 2022). In practice,

these two trends converge together to model the likelihood of action, states

and rewards, which hindsight methods call the hindsight distribution. Yet,

this set of methods would benefit from a better connection to the RL theory.

This has been the case for hindsight methods, which leverage notions from

causality and the policy gradient theorem (Sutton & Barto, 2018) to achieve

better experimental results (Mesnard et al., 2021). For the same reasons ex-

plained for hindsight methods in Section 6.4, these methods improve CA when

the POMDP has low density and the action influence is low (see Table 6.1).

Nevertheless, sequence modelling remains a promising direction for CA, es-

pecially for their ability to scale to large datasets (Reed et al., 2022). It is

not clear how these methods position with respect to the CA challenges de-

scribed in Section 5, for the lack of experimentation on tasks that explicitly

stress the agent’s ability to assign credit. However, in their vicinity to future-

conditioned methods, they bear some of the same advantages and also share

some limitations. In particular, for their ability to define outcomes in hind-

sight, regardless of an objective learning signal, they bode well in tasks with

low action influence.

6.6 Planning and learning backwards

The methods in this category extend CA to potential predecessor decisions that

have not been taken, but could have led to the same outcome (Chelu et al.,

2020). The main intuition is that, in environments with low action influence,

highly influential actions are rare, and when a goal is achieved the agent should

use that event to extract as much information as possible to assign credit to
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relevant decisions.

We divide the section into two major sub-categories, depending on whether

the agent identifies predecessor states by planning with an inverse model, or

by learning relevant statistics without it.

6.6.1 Planning backwards

Recall traces (Goyal et al., 2019a) combine model-free updates from Sec-

tion 6.1 with learning a backward model of the environment. A backward

model µ−1(st−1|St = s, At−1 = a) describes the probability of a state St−1 be-

ing the predecessor of another state s, given that the action a was taken. This

backward action is sampled from a backward policy, πb(at−1|st), which predicts

the previous action, and a backward dynamics.

By autoregressively sampling from the backward policy and dynamics, the

agent can cross the MDP backwards, starting from a final state, sT , up until a

starting state, s0 to produce a new trajectory, called recall trace. This allows

the agent to collect experience that always leads to a certain state, sT , but

that does so from different starting points, discovering multiple pathways to

the same goal.

Formally, the agent alternates between steps of GPI via model-free updates and

steps of behaviour cloning on trajectories collected via the backward model.

Trajectories are reversed to match the forward arrow of time before cloning.

This is a key step towards solving the CAP as it allows propagating credit to

decisions that have not been taken but could have led to the same outcome

without interacting with the environment directly. Recall-traces measure the

influence of an action by its q-value, but differ from any other method using the

same action influence because the contextual data is produced via backward

crossing. The goal is to maximise the expected returns.

The same paradigm has been presented in a concurrent work (Edwards et al.,
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2018) as Forward-Backward RL (FBRL). The benefits of a backward model

have also been further investigated in other studies. Wang et al. (2021b) inves-

tigate the problem in offline settings, and show that backward models enable

better generalisation than forward ones. van Hasselt et al. (2019) provide em-

pirical evidence suggesting that assigning credit from hypothetical transitions,

that is, via planning, improves the overall efficiency in control problems. Chelu

et al. (2020) and van Hasselt et al. (2019) further show that backward planning

provides even greater benefits than forward planning when the state-transition

dynamics are stochastic.

6.6.2 Learning predecessors

Expected Eligibility Trace (ET(λ)) (van Hasselt et al., 2021) provide a

model-free alternative to backward planning that assigns credit to potential

predecessors decisions of the outcome: decisions that have been taken in the

past but have not in the last episode. The main idea is to weight the action

value by its expected eligibility trace, that is, the instantaneous trace (see

Section 6.1), but in expectation over the random trajectory, defined by the

policy and the state-transition dynamics.

The Deep RL implementation of ET(λ) considers the expected trace upon the

action value representation – usually the last layer of a neural network value

approximator. Like for other ETs algorithms, ET(λ) measures action influence

using the q-value of the decision and encodes the information of the trace in the

parameters of the function approximator. In this case, the authors interpret

the value network as a composition of a non-linear representation function φ(s)

and a linear value function v(st) = w>φ(s). The expected trace e(s) = Eφ(s)

is then the result of applying a second linear operator E on the representation.

e(s) is then trained to minimise the expected `2 norm between the current

estimation of e(s) and the instantaneous trace.
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6.6.3 Summary and discussion

The methods in this section assign credit by considering the effects of decisions

that have not been taken, but could have led to the same outcome. The

intuition behind them is that, in tasks where the action influence is low due to

low POMDP density, creditable actions are rare findings. When this happens

the agent can use that occurrence to extract as much information as possible

from them.

One set of methods does so by learning inverse models of the state-transition

dynamics and walking backwards from the outcome. Chelu et al. (2020); van

Hasselt et al. (2019) further analyse the conditions in which backward planning

is beneficial. Another set of methods exploits the idea of eligibility traces and

keeps a measure of the marginal state-action probability to assign credit to

actions that could have led to the same outcome. Overall, these methods are

designed to thrive in tasks where the action influence is low. Also, for their

ability to start from a high-value state, backward planning methods can find

a higher number of optimal transpositions, and therefore provide a less biased

estimate of the credit of a state-action pair.

6.7 Meta-learning proxies for credit

The methods in this category aim to meta-learn key hyperparameters of canon-

ical TD methods. In fact, RL methods are often brittle to the choice of hyper-

parameters, for example, the number of steps to look-ahead in bootstrapping,

what discount factor to use, or meta-parameters specific to the method at hand.

How to select these meta-parameters is an accurate balance that depends on

the task, the algorithm, and the objective of the agent.

For this reason, it is sometimes difficult to analyse them using the usual frame-

work, and we present them differently, by describing their main idea, and the

way they are implemented in Deep RL.
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Meta Gradient (MG) RL (Xu et al., 2018) remarks how different CA

measures of action influence impact the performance on control problems, and

proposes to answer the question: “Among the most common TD targets, which

one results in the best performance?”. The method interprets the target as a

parametric, differentiable function that can be used and modified by the agent

to guide its behaviour to achieve the highest returns.

In particular, Meta-Gradients consider the λ-return (Sutton, 1988) target, for

it can generalise the choice of many targets (Schulman et al., 2016). It then

learns its meta-parameters: the bootstrapping parameter λ and the discount

factor γ. The connection between MG and CA is that, different pairs of meta-

parameters evaluate actions differently. For example, changing the discount

factor can move the focus of the assignment from early to late actions with

effects on policy improvements (Xu et al., 2018). In fact, adapting and learning

the meta-parameters online effectively corresponds to meta-learning a measure

of action influence, and profoundly affects credit.

Meta-learning credit assignment strategies has been further extended to distri-

butional (Yin et al., 2023) and continual (Zheng et al., 2020) settings. Badia

et al. (2020) investigated the effects of meta-learning the discount factor and

the exploration rate to balance out short and long-term rewards.

6.7.1 Summary and discussion

Overall, these methods assign credit to actions by applying canonical TD

learning algorithms with a meta-learnt measure of action influence. The goal

can come in the form of an update target (Xu et al., 2018; Zheng et al., 2018;

Xu et al., 2020), a full return distribution (Yin et al., 2023), or a reward func-

tion (Zheng et al., 2020). This allows agents to adapt their influence function

online, especially improving in conditions of high POMDP depth.



Chapter 7

Evaluating credit

Like accurate evaluation is fundamental to RL agents to improve their policy,

an accurate evaluation of a CA method is fundamental to CA research to

monitor if and how a method is advancing the field. The aim of this section

is to survey the state of the art of the metrics, the tasks, and the evaluation

protocols to evaluate a CA method. We discuss the main components of the

evaluation procedure, the performance metrics, the tasks, and the evaluation

protocols.

7.1 Metrics

We categorise existing metrics to evaluate a CA method in two main classes:

(a) The metrics that are already used for control problems. These mostly

aim to assess the agent’s ability to make optimal decisions, but they do

not explicitly measure the accuracy of the action influence.

(b) The metrics that target the quality of an assignment directly, which

usually aggregate metrics throughout the RL training procedure.

We now proceed to describe the two classes of metrics.
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7.1.1 Metrics borrowed from control

Bias, variance and contraction rate. The first, intuitive, obvious proxy to

assess the quality of a credit assignment method is its theoretical performance

in suitable control problems: the bias, variance, and contraction rate of the

policy improvement operator described in Rowland et al. (2020). Notice that

these metrics are not formally defined for all the methods, either because

some variables cannot be accessed or because the operators they act on are

not formally defined for the method in question. For the evaluation operator

described in Equation (2.21), we can specify these quantities as follows.

Γ = sup
s∈S

||T V π(s)− T V ′π(s)||∞
||V π(s)− V ′π(s)||∞

(7.1)

is the contraction rate and describes how fast the assignment converges to its

fixed point, if it does so, and thus how efficient it is. Here V π(s) and V ′π(s)

are two estimates of the state-value, which highlights that these set of metrics

are not suitable to evaluate methods using any measure of action influence.

If T is contractive, then Γ < 1 ∀V π and V ′π, and there exist a fixed-point bias

of T given by:

ξ = ||V π(s)− V̂ π(s)||2, (7.2)

where V̂ π(s) is the true, unique fixed point of T , whose existence is guaranteed

by Γ < 1. For every evaluation operator T , there is an update rule Λ :

R|S| × H → R that takes as input the current estimation of the state-value

function, and a trajectory and outputs the updated function. Λ has a variance:

ν = Eµ,π[||Λ[V (s), D]− T V (s)||22]. (7.3)

These three quantities are usually in a trade-off (Rowland et al., 2020). In-

deed, many (if not all) studies on credit assignment (Hung et al., 2019; Mesnard
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et al., 2021; Ren et al., 2022; Raposo et al., 2021) report the empirical return

and its variance. Because the contraction rate is often harder to calculate,

an alternative metric is the time-to-performance, which evaluates the num-

ber of interactions necessary to reach a given performance. These mostly aim

at showing improvement in sample efficiency and/or asymptotic performance.

While useful, this is often not enough to assess the quality of credit assignment,

as superior returns can be the result of better exploration, better optimisation,

better representation learning, luck (as per the environment dynamics’ stochas-

ticity) or of a combination of such factors. Using empirical returns makes the

evaluation method empirically viable for any measure of action influence de-

scribed in Section 4, even if these metrics are not formally defined for them.

Nonetheless, when the only difference between two RL algorithms lies in how

credit is assigned, and this is not confounded by the aforementioned factors,

it is generally safe to attribute improvements to superior credit, given that

the improvements are statistically significant (Henderson et al., 2018; Agarwal

et al., 2021).

Task completion rate. A related, but more precise, metric is the success

rate. Given a budget of trials, the success rate measures the frequency of

task completion, that is, the number of times the task was solved over the

total number of episodes: G = |C∗|/|C|. Here, C∗ is a set of optimal histories

experienced by the agent, and C is the full set of histories used to train it.

Considering success rates instead of bias, variance, and trade-off is useful as

it alleviates another issue of these performance metrics: there is no distinc-

tion between easy-to-optimise rewards and hard-to-optimise rewards. This is

evident in the key-to-door task with distractors (Hung et al., 2019), which we

describe in detail later in Section 7.2. Due to the stochasticity from the apple

phase (the distractors), it is generally impossible to distinguish performance on

apple picking (easy-to-optimise rewards) and door opening (hard-to-optimise

rewards that superior credit assignment methods usually obtain). Further-

more, the minimum success rate Gmin could also be an effective metric to
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disentangle the effects of exploration from those of CA as discussed in Sec-

tion 5.5, despite never being employed for that purpose. However, notice that

this clarity in reporting credit comes at a cost. In fact, even if these kinds of

metrics are more precise than performance metrics, they require expert knowl-

edge of the task. They often suffer from the same confounders as bias, variance,

and contraction rate.

Value error. As the value function is at the heart of many credit assign-

ment methods, another proxy for the quality of the credit is the quality of

value estimation, which can be estimated from the distribution of TD er-

rors (Andrychowicz et al., 2017; Rauber et al., 2019; Arjona-Medina et al.,

2019). We can then generalise the value error to one of influence error :

E[||K̃(s, a, g) − K(s, a, g)||i], where || · ||i denotes the ith norm of a vector,

K̃(s, a, g) is the current approximation of influence and K(s, a, g) is the true

influence. A drawback of the influence error (and the value error) is that it

can be misleading. When an algorithm does not fully converge, for example,

because of high POMDP sparsity (see Section (b), it can happen that the value

error is very low. This is because the current policy never visits a state with

a return different from zero, and the value function collapses to always return

zero. Nevertheless, this metric is a viable option to evaluate RL methods that

use some form of action influence. It is not applicable, for example, to PG

methods using Monte-Carlo returns to improve a parametric policy via gra-

dient ascent (Sutton & Barto, 2018), or to sequence modelling methods (see

Section 6.5 that only approximate the action probabilities of a predefined set

of demonstrations.

7.1.2 Bespoke metrics for credit assignments

We now review metrics that measure the quality of individual credit assign-

ments, that is, how well actions are mapped to corresponding outcomes, or

how well outcomes are redistributed to past actions. Usually, these metrics
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are calculated in hindsight, after outcomes have been observed.

Using knowledge about the causal structure. Suppose we have expert

knowledge about the causal structure of the task at hand, i.e. which actions

cause which outcomes. This is often the case since as humans we often have an

instinctive understanding of the tasks agents tackle. In such a case, given an

observed outcome from an agent’s trajectory, one can compare credit assign-

ments, which approximate such cause and effect relationships, to the ground

truth represented by our causal model of the task. We give several examples

from the literature. In Delayed Catch, Raposo et al. (2021) assess whether

credit is assigned to the actions that lead to catches or to the end-of-episode

reward since they know that these actions are causing the experienced rewards.

They do the same on the Atari game Skiing, which is a more complex task but

that shares the fact that only a subset of the actions of the agent yield rewards.

For example, in Skiing, going between ski poles is the only thing that grants

rewards (with delay) at the end of an episode. Ferret et al. (2021a) adopt

a similar approach and look at the influence attributed to actions responsi-

ble for trigger switches in the Triggers environment, which contribute alone

to the end-of-episode reward. Similarly, Arjona-Medina et al. (2019) look at

redistributions of RUDDER on several tasks, including the Atari 2600 game

Bowling.

Counterfactual simulation. A natural approach, which is nonetheless sel-

dom explored in the literature, is counterfactual simulation. On a high level,

it consists in asking what would have happened if actions that are credited for

particular outcomes had been replaced by another action. This is close to the

notion of hindsight advantage.

Comparing to actual values of the estimated quantity. This only applies

to methods whose credit assignments are mathematically grounded, in the

sense that they are the empirical approximations of well-defined quantities. In
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general, one can leverage extra compute and the ability to reset a simulator

to arbitrary states to obtain accurate estimations of the underlying quantity,

and compare it to the actual, resource-constrained quantity estimated from

experience.

7.2 Tasks

In what follows, we present environments that we think are most relevant to

evaluate credit assignment methods and individual credit assignments. The

most significant tasks are those that present all three challenges to assign

credit: delayed rewards, transpositions, and sparsity of the influence. This

often corresponds to experiments that have reward delay, high marginal en-

tropy of the reward, and partial observability. To benchmark explicit credit

assignment methods, we additionally need to be able to recover the ground

truth influence of actions w.r.t. given outcomes, or we can use our knowledge

of the environment and develop more subjective measures.

7.2.1 Diagnostic tasks

Diagnostic tasks are useful as sanity checks for RL agents and present the

advantage of running rather quickly, compared to complex environments with

visual input that may imply several millions of samples before agents manage to

solve the task at hand. Notice that these tasks may not be representative of the

performance of the method at scale, but provide a useful signal to diagnose the

behaviour of the algorithm in the challenges described in Section 5. Sometimes,

the same environment can represent both a diagnostic task and an experiment

at scale, simply by changing the space of the observations or the action space.

We first present chain-like environments, that can be represented graphically

by a chain (environments a to c), and then a grid-like environment (environ-

ment d), that has more natural grid representations for both the environment
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and the state.

a) Aliasing chain. The aliasing chain (introduced in Harutyunyan et al.

(2019) as Delayed Effect) is an environment whose outcome depends only on

the first action. A series of perceptually aliased and zero-reward states follow

this first action, and an outcome is observed at the end of the chain (+1 or

−1 depending on the binary first action).

b) Discounting chain. The discounting chain (Osband et al., 2020) is an en-

vironment in which a first action leads to a series of states with inconsequential

decisions with a final reward that is either 1 or 1 + ε, and a variable length. It

highlights issues with the discounting horizon.

c) Ambiguous bandit. The ambiguous bandit (Harutyunyan et al., 2019)

is a variant of a two-armed bandit problem. The agent is given two actions:

one that transitions to a state with a slightly more advantageous Gaussian

distribution over rewards with probability 1− ε, and another that does so with

probability ε.

d) Triggers. Triggers (Ferret et al., 2021a) is a family of environments and

corresponding discrete control tasks that are suited for the quantitative anal-

ysis of the credit assignment abilities of RL algorithms. Each environment is

a bounded square-shaped 2D gridworld where the agent collects rewards that

are conditioned on the previous activation of all the triggers of the map. Col-

lecting all triggers turns the negative value of rewards into positive and this

knowledge can be exploited to assess proper credit assignment: the actions of

collecting triggers appear natural to be credited. The environments are pro-

cedurally generated: when requesting a new environment, a random layout is

drawn according to the input specifications.
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7.2.2 Tasks at scale

In the following, we present higher-dimension benchmarks for agents equipped

with credit assignment capabilities.

Atari. The Arcade Learning Environment (Bellemare et al., 2013) (ALE) is

an emulator in which RL agents compete to reach the highest scores on 56

classic Atari games. We list the ones we deem interesting for temporal credit

assignment assessment due to delayed rewards, which were first highlighted

by Arjona-Medina et al. (2019). Bowling: like in real-life bowling, the agent

must throw a bowling ball at pins, while ideally curving the ball so that it

can clear all pins in one throw. The agent experiences rewards with a high

delay, at the end of all rolls (between 2 and 4 depending on the number of

strikes achieved). Venture: the agent must enter a room, collect a treasure

and shoot monsters. Shooting monsters only give rewards after the treasure

was collected, and there is no in-game reward for collecting it. Seaquest:

the agent controls a submarine and must sink enemy submarines. To reach

higher scores, the agent has to additionally rescue divers that only provide

reward once the submarine lacks oxygen and surfaces to replenish it. Solaris:

the agent controls a spaceship that earns points by hunting enemy spaceships.

These shooting phases are followed by the choice of the next zone to explore on

a high-level map, which conditions future rewards. Skiing: the agent controls

a skier who has to go between poles while going down the slope. The agent

gets no reward until reaching the bottom of the slope, at which time it receives

a reward proportional to the pairs of poles it went through, which makes for

long-term credit assignment.

VizDoom. VizDoom (Kempka et al., 2016) is a suite of partially observable

3D tasks based on the classical Doom video game, a first-person shooter. As

mentioned before, it is an interesting sandbox for credit assignment because

it optionally provides high-level information such as labelled game objects,
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depth as well as a top-view minimap representation; all of which can be used

for approximate optimally efficient credit assignment algorithms.

BoxWorld. BoxWorld (Zambaldi et al., 2018) is a family of environments

that shares similarities with Triggers, while being more challenging. Envi-

ronments are also procedurally-generated square-shaped 2D gridworlds with

discrete controls. The goal is to reach a gem, which requires going through a

series of boxes protected by locks that can only be opened with keys of the

same colour while avoiding distractor boxes. The relations between keys and

locks can be utilised to assess assigned credit since the completion of the task

(as well as intermediate rewards for opening locks) depends on the collection

of the right keys.

Sokoban. Sokoban (Racanière et al., 2017) is a family of environments that

is similar to the two previous ones. The agent must push boxes to intended

positions on the grid while avoiding dead-end situations (for instance, if a block

is stuck against walls on two sides, it cannot be moved anymore). While there is

no definite criterion to identify decisive actions, actions that lead to dead-ends

are known and can be exploited to assess the quality of credit assignment.

DeepMind Lab. DeepMind Lab (Beattie et al., 2016) (DMLab) is a suite

of partially observable 3D tasks with rich visual input. We identify several

tasks that might be of interest to assess credit assignment capabilities, some

of which were used in recent work. Keys-Doors: the agent navigates to keys

that open doors (identified by their shared colour) so that it can get to an

absorbing state represented by a cake. Ferret et al. (2021a) consider a harder

variant of the task where collecting keys is not directly rewarded anymore and

feedback is delayed until opening doors. Keys-Apples-Doors: Hung et al.

(2019) consider an extended version of the previous task. The agent still has

to collect a key, but after a fixed duration a distractor phase begins in which

it can only collect small rewards from apples, and finally, the agent must find
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and open a door with the key it got in the initial phase. To solve the task, the

agent has to learn the correlation or causation link between the key and the

door, which is made hard because of the extended temporal distance between

the two events and of the distractor phase. Deferred Effects: the agent

navigates between two rooms, the first one of which contains apples that give

low rewards, while the other contains cakes that give high rewards but it is

entirely in the dark. The agent can turn the light on by reaching the switch

in the first room, but it gets an immediate negative reward for it. In the end,

the most successful policy is to activate the switch regardless of the immediate

cost so that a maximum number of cakes can be collected in the second room

before the time limit.

7.3 Protocol

Online evaluation. The most standard approach is to evaluate the quality

of credit assignment methods and individual credit assignments along the RL

training procedure. As the policy changes, the credit assignments change since

the effect of actions depends on subsequent actions (which are dictated by the

policy). One can dynamically track the quality of credit assignments and that

of the credit assignment method using the metrics developed in the previous

section. For the credit assignment method, since it requires a dataset of in-

teraction, one can consider using the most trajectories produced by the agent.

An advantage of this approach is that it allows evaluating the evolution of the

credit assignment quality along the RL training, with an evolving policy and

resulting dynamics. Also, since the goal of credit assignment is to help turn

feedback into improvements, it makes sense to evaluate it in the context of said

improvements. While natural, online evaluation means one has little control

over the data distribution of the evaluation. This is problematic because it is

generally hard to disentangle credit quality from the nature of the trajectories

it is evaluated on. A corollary is that outcomes that necessitate precise explo-
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ration (which can be the outcomes for which agents would benefit most from

accurate credit assignment) might not be explored.

Offline evaluation. An alternative is to consider offline evaluation. It requires

a dataset of interactions, either collected before or during the RL training.

Credit assignments and the credit assignment method then use the parame-

ters learned during the RL training while being evaluated on the offline data.

As the policy in the offline data is generally not the latest policy from the online

training, offline evaluation is better suited for policy-conditioned credit assign-

ment or (to some extent) trajectory-conditioned credit assignment. Indeed,

other forms of credit assignment are specific to a single policy, and evaluat-

ing these on data generated from another policy would not be accurate. An

important advantage of offline evaluation is that it alleviates the impact of

exploration, as one controls the data distribution credit is evaluated on.

However, it is not always possible to collect a dataset of interactions, and it is

generally hard to collect a dataset that is representative of the full distribution

of interactions the agent will face. This is especially true for tasks with high-

dimensional observations, where the state space is vast and the agent can only

explore a small fraction of it. In such cases, the offline evaluation might not

be representative of the full distribution of interactions, and the evaluation

might be biased. As a result, offline evaluation might not always be suitable

to evaluate the quality of credit assignment methods, and a biased set of

demonstration will lead to biased evaluations.

Relationship between online and offline evaluation. Since offline and

online evaluations are complementary, it is often beneficial to use both. How-

ever, a natural question that arises is whether offline metrics correlate to on-

line performance. While offline demonstrations can provide a more controlled

and principled evaluation, disentangling credit assignment quality from explo-

ration, it is crucial to verify that improvements measured offline translate to

online gains. As discussed in the previous paragraphs, the correlation between
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offline and online metrics can only be guaranteed if the offline dataset is rep-

resentative of the full distribution of interactions the agent will face. Indeed,

the strength of this correlation may vary depending on the representativeness

of the offline dataset: if critical or rare states are underrepresented, offline

metrics could overestimate or underestimate the true online performance. For

example, when evaluating the ability of an agent to play a videogame, a set of

expert – even if sub-optimal – demonstrations might be a very good proxy for

the full distribution of interactions, as it is likely to cover most of the states

the agent will face.

For these reasons, if we can guarantee that the offline dataset is representative

enough of the full distribution of interactions, offline evaluation can be a good

proxy for online effectiveness. To conclude, while offline evaluation often proves

useful and cost-effective, its results should be interpreted with caution and,

ideally, supplemented by select online experiments to validate the offline-to-

online correlation in practice.



Chapter 8

Closing, discussion and open

challenges on Part III

The CAP is the problem to approximate the influence of an action from a finite

amount of experience, and it is of critical importance to deploy RL agents into

the real world that are effective, general, safe and interpretable. However, there

is a misalignment in the current literature on what credit means in words and

how it is formalised. In this chapters, we put the basis to reconcile this gap

by reviewing the state of the art of the temporal CAP in Deep RL, focusing

on three major questions.

8.1 Summary

Overall, we observed three major fronts of development around the CAP.

The first concern is the problem of how to quantify action influence (Question

1.1.). We addressed Question 1.1. in Section 4, and analysed the quantities

that existing works use to represent the influence of an action. In Section 4.1

we unified these measures of action influence with the assignment definition.

In Sections 4.3 and 4.6 we showed that the existing literature agrees on an

intuition of credit as a measure of the influence of an action over an outcome,
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but that it does not translate that well into mathematics and none of the

current quantities align with the purpose. As a consequence, we proposed a

set of principles that we suggest a measure of action influence should respect

to represent credit.

The second front aims to address the question of how to learn action influence

from experience and to describe the existing methods to assign credit. In Sec-

tion 5 we looked at the challenges that arise from learning these measures of

action influence and, together with Section 6, answered Question 1.2.. We

first reviewed the most common obstacles to learning already identified in the

literature and realigned them to our newly developed formalism. We identi-

fied three dimensions of a POMDP, depth, breadth, and density and described

pathological conditions on each of them that hinder the CA. In Section 6 we

defined a CA method as an algorithm whose aim is to approximate a mea-

sure of action influence from a finite amount of experience. We categorised

methods into those that: (i) use temporal contiguity as a proxy for causal

influence; (ii) decompose the total return into smaller per-timestep contribu-

tions; (iii) condition the present on information about the future using the

idea of hindsight; (iv) use sequence modelling and represent action influence

as the likelihood of action to follow a state and predict an outcome; (v) learn

to imagine backward transitions that always start at a key state and propagate

back to the state that could generate them; (vi) meta-learn action influence

measures.

Finally, the third research front deals with how to evaluate quantities and

methods to assign credit and aims to provide an unbiased estimation of the

progress in the field. In Section 7 we addressed Question 1.3. and analysed

how current methods evaluate their performance and how we can monitor

future advancements. We discussed the resources that each benchmark has

to offer and their limitations. For example, diagnostic benchmarks do not

isolate the specific CAP challenges identified in Section 5: delayed effects,
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transpositions, and sparsity. Benchmarks at scale often cannot disentangle

the CAP from the exploration problem, and it becomes hard to understand

whether a method is advancing one problem or another.

8.2 Discussion and open challenges to date

As this chapters suggests, the work in the field is now fervent and the number

of studies in a bullish trend, with many works showing substantial gains in

control problems only by – to the best of our current knowledge – advancing

on the CAP alone (Bellemare et al., 2017; van Hasselt et al., 2021; Edwards

et al., 2018; Mesnard et al., 2021; 2023).

We observed that the take-off of CA research in the broader area of RL research

is only recent. The most probable reason for this is to be found in the fact

that the tasks considered in earlier Deep RL research were explicitly designed

to be simple from the CA point of view. Using tasks where assigning credit

is hard would have – and probably still does, e.g., Küttler et al. (2020) –

obfuscate other problems that it was necessary to solve before solving the CAP.

For example, adding the CAP on the top of scaling RL to high-dimensional

observations (Arulkumaran et al., 2017) or dealing with large action spaces

(Dulac-Arnold et al., 2015; van Hasselt & Wiering, 2009) would have, most

likely, concealed any evidence of progress for the underlying challenges. This is

also why CA methods do not usually shine in classical benchmarks (Bellemare

et al., 2013), and peer reviews are often hard on these works. Today, thanks to

the advancements in other areas of RL, the field is in a state where improving

on the CAP is a compelling challenge.

Yet, the CAP still holds open questions and there is still much discussion re-

quired to consider the problem solved. In particular, the following observations

describe our positions with respect to this survey.
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Aligning future works to a common problem definition. The lack of a

review since its conception (Minsky, 1961) and the rapid advancements pro-

duced a fragmented landscape of definitions for action influence, an ambiguity

in the meaning of credit assignment, a misalignment between the general in-

tuition and its practical quantification, and a general lack of coherence in the

principal directions of the works. While this diversity is beneficial for the di-

versification of the research, it is also detrimental to comparing the methods.

Future works aiming to propose a new CA method should clarify these pre-

liminary concepts. Answers to “What is the choice of the measure of action

influence? Why the choice? What is the method of learning it from experience?

How is it evaluated?” would be good a starting point.

Characterising credit. “What is the minimum set of properties that a mea-

sure of action influence should respect to inform control? What the more de-

sirable ones?”. This question remains unanswered, with some ideas in Ferret

(2022, Chapter 4), and we still need to understand what characterises a proper

measure of credit.

Causality. The relationship between CA and causality is underexplored, but

in a small subset of works (Mesnard et al., 2021; Pitis et al., 2020; Buesing

et al., 2019). The literature lacks a clear and complete formalism that casts

the CAP as a problem of causal discovery. Investigating this connection and

formalising a measure of action influence that is also a satisfactory measure of

causal influence would help better understand the effects of choosing a measure

of action influence over another. Overall, we need to better understand the

connections between CA and causality: what happens when credit is a strict

measure of causal influence? How do current algorithms perform with respect

to this measure? Can we devise an algorithm that exploits a causal measure

of influence?
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Optimal credit. Many works refer to optimal credit or to assigning credit op-

timally, but it is unclear what that formally means. “When is credit optimal?”

remains unanswered.

Combining benefits from different methods. Methods conditioning on

the future currently show superior results compared to methods in other cat-

egories. These promising methods include hindsight (Section 6.4), sequence

modelling (Section 6.5) and backward learning and planning methods (Sec-

tion 6.6). However, while hindsight methods are advancing fast, sequence

modelling and backward planning methods are underinvestigated. We need a

better understanding of the connection between these two worlds, which could

potentially lead to even better ways of assigning credit. Could there be a con-

nection between these methods? What are the effects of combining backward

planning methods with more satisfactory measures of influence, for example,

with CCA?

Benchmarking. The benchmarks currently used to review a CA method

(Chevalier-Boisvert et al., 2018; Bellemare et al., 2013; Samvelyan et al., 2021)

(see Section 7.2) are often borrowed from control problems, leading to the is-

sues discussed in Section 7 and recalled in the summary above. On a comple-

mentary note, CA methods are often evaluated in actor-critic settings (Haru-

tyunyan et al., 2019; Mesnard et al., 2021), which adds layers of complexity

that are not necessary. This, together with the inclusion of other unnecessary

accessories, can obfuscate the contributions of CA to the overall RL success.

As a consequence, the literature lacks a fair comparison among all the meth-

ods, and it is not clear how all the methods in Section 6 behave with respect

to each other against the same set of benchmarks. This lack of understanding

of the state of the art leads to a poor signal to direct future research. We

call for a new, community-driven single set of benchmarks that disentangles

the CAP from the exploration problem and isolate the challenges described in

Section 5. How to disentangle the CAP and the exploration problem? How to
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isolate each challenge? Shall we evaluate in value-based settings, and would

the ranking between the methods be consistent with an evaluation in actor-

critic settings? While we introduced some ideas in Section 5.5, these questions

are still unanswered.

Reproducibility. Many works propose open-source code, but experiments are

often not reproducible, their code is hard to read, hard to run and hard to

understand. Making code public is not enough, and cannot be considered open-

source if it is not easily usable. Other than public, open-source code should be

accessible, documented, easy to run, and accompanied by continuous support

for questions and issues that may arise from its later usage. We need future

research to acquire more rigour in the way to publish, present, and support

the code that accompanies scientific publications. In particular, we need (i)

a formalised, shared and broadly agreed standard that is not necessarily a

new standard; (ii) for new studies to adhere to this standard, and (iii) for

publishers to review the accompanying code at least as thoroughly as when

reviewing scientific manuscripts.

Monitoring advancements. The community lacks a database containing

comprehensive, curated results of each baseline. Currently, baselines are often

re-run when a new method is proposed. This can potentially lead to com-

parisons that are unfair both because the baselines could be suboptimal (e.g.,

in the hyperparameters choice, training regime) and their reproduction could

be not faithful (e.g., in translating the mathematics into code). When these

conditions are not met, it is not clear whether a new method is advancing the

field because it assigns credit better or because of misaligned baselines. We call

for a new, community-driven database holding the latest evaluations of each

baseline. The evaluation should be driven by the authors and the authors be

responsible for its results. When such a database will be available, new publi-

cations should be tested against the same benchmarks and not re-run previous

baselines, but rather refer to the curated results stored in the database.
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Peer reviewing CA works. As a consequence of the issues identified above,

and because CA methods do not usually shine in classical benchmarks (Belle-

mare et al., 2013), peer reviews often do not have the tools to capture the

novelties of a method and its improvements. On one hand, we need a clear

evaluation protocol, including a shared benchmark and leaderboard to facili-

tate peer reviews. On the other hand, peer reviews must steer away from using

tools and metrics that would be used for control, and use those appropriate

for the CAP instead.

Lack of priors and foundation models. Most of the CA methods start to

learn credit from scratch, without any prior knowledge but the one held by the

initialisation pattern of its underlying network. This represents a main obstacle

to making CA efficient because, at each new learning phase, even elementary

associations must be learned from scratch. In contrast, when facing a new

task, humans often rely on their prior knowledge to determine the influence of

an action. In the current state of the art, the use of priors to assign credit more

efficiently is overlooked. Vice versa, the relevance of the CAP and the use of

more advanced methods for CA (Mesnard et al., 2021; 2023; Edwards et al.,

2018; van Hasselt et al., 2021) is often underestimated for the development of

foundation models in RL.

8.3 Conclusions

To conclude this part, in this Part III, we have set out to formally settle the

CAP in Deep RL. The resulting material does not aim to solve the CAP, but

rather proposes a unifying framework that enables a fair comparison among

the methods that assign credit and organises existing material to expedite the

starting stages of new studies. Where the literature lacks answers, we identify

the gaps and organise them in a list of challenges.
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Chapter 9

Credit Assignment with

Language Models

Canonical solutions to the CAP, such as reward shaping and options, require

extensive domain knowledge and manual intervention, limiting their scala-

bility and applicability. In this work, we lay the foundations for CALM, a

novel approach that leverages LLMs to automate credit assignment via reward

shaping and options discovery. CALM uses LLMs to decompose a task into

elementary subgoals and assess the achievement of these subgoals in state-

action transitions. Every time an option terminates, a subgoal is achieved,

and Credit Assignment with Language Models (CALM) provides an auxiliary

reward. This additional reward signal can enhance the learning process when

the task reward is sparse and delayed without the need for human-designed

rewards. We provide a preliminary evaluation of CALM using a dataset of

human-annotated demonstrations from MiniHack, suggesting that LLMs can

be effective in assigning credit in zero-shot settings, without examples or LLM

fine-tuning. Our preliminary results indicate that the knowledge of LLMs is a

promising prior for credit assignment in RL, facilitating the transfer of human

knowledge into value functions.
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Figure 9.1: A schematic representation of the CALM method. The LLM is used
to evaluate the actions of an RL agent in a POMDP environment. The LLM is
provided with a description of the task and a transition, and is asked to determine
if the action taken in the transition makes progress towards solving the task. The
LLM is used as a critic to assign credit to the agent’s actions, providing an additional
reward signal to enhance the learning process.

9.1 Introduction

We established in the Part III how and why the CAP (Minsky, 1961; Sutton,

1984; Pignatelli et al., 2024a) is a fundamental challenge in RL. It typically

involves determining the contribution of each action to the final outcome, a

process crucial for accurate policy evaluation. Effective CA enables agents to

learn useful associations between actions and outcomes, and provides useful

directions to improve the policy.

However, when rewards are dispensed only at the end of a task (Efroni et al.,

2021), as it is often the case, the feedback becomes sparse and delayed, mak-

ing CA particularly challenging. In such scenarios, rewarding events are rare,

and Deep RL agents often struggle to convert occasional successes into a ro-

bust decision-making process. To exacerbate the issue, RL agents typically

begin with no prior knowledge (tabula rasa) and must learn the nuances and

intricacies of complex tasks from scratch. The lack of controlled experimental

conditions, such as the ability to observe counterfactuals, makes it difficult for

them to distinguish between correlation and causation. As a result, tasks that

are usually easy to solve for humans become hard to address for an RL agent.

To address these challenges, many methods incorporate prior human knowl-
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edge into RL systems. Two techniques are canon: reward shaping (Ng et al.,

1999; Gupta et al., 2022) and Hierarchical Reinforcement Learning (HRL) (Al-

Emran, 2015; Sutton et al., 1999) via options (Sutton et al., 1999). Reward

shaping involves providing an additional synthetic reward to guide the agent’s

actions when natural rewards are uninformative. HRL decomposes complex

tasks into simpler ones (options), training agents to achieve intermediate ob-

jectives that provide a signal while the MDP would not. Despite their effec-

tiveness, these methods require extensive human input, making them costly

and difficult to scale across different environments.

Recently, LLMs have emerged as a useful tool to transfer human knowledge into

computational agents, either through planning (Dalal et al., 2024), expressing

preferences (Klissarov et al., 2023), or grounding their abstract knowledge

into practical solutions (Huang et al., 2023; Carta et al., 2023). Notably, these

models have produced strong results in causal reasoning tasks (Jin et al., 2023)

with performances comparable to humans (Kıcıman et al., 2023). These results

suggest that LLMs could be an effective, supplementary tool to distinguish

between correlation and causation more effectively than traditional methods

used in early stages of RL training.

With these results, a natural question arises: “Can the knowledge encoded in

LLMs serve as a useful prior for CA in RL?” Inspired by the successes of

LLMs, we introduce CALM, a general method to perform CA with LLMs us-

ing reward shaping. We hypothesize that the prior knowledge of a LLM can

provide valuable signals that improve CA in RL, and propose a way to trans-

fer these priors into the agent’s value function. On this assumption, CALM

leverages a pretrained LLM to break down tasks into smaller, composable

subgoals and determine if a state-action-state transition achieves a subgoal.

This provides an additional reward signal to enhance RL algorithms, and ef-

fectively automates reward shaping by substantially reducing the involvement

of humans in the training loop.
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We present a preliminary evaluation of the efficacy of CALM in zero-shot

settings, with no examples and no finetuning. We collect a dataset of demon-

strations from MiniHack (Samvelyan et al., 2021) and use it to compare the

performance of LLMs against human annotations. Our results indicate that

LLMs are a viable means to transfer common human knowledge into value

functions, and can be effective in automating reward shaping. This bodes well

for the prospect to improve CA in the full RL problem.

9.2 Related work

LLMs for RL. Recent advancements have shown the potential of pretrained

LLMs in enhancing RL agents. Paischer et al. (2022; 2024) used CLIP encod-

ings to improve the state representations of POMDPs. Yao et al. (2020); Du

et al. (2023) investigated the ability of pretrained LLMs to improve exploration.

Huang et al. (2023); Carta et al. (2023) grounded the abstract knowledge of

these models and their capabilities into practical RL tasks. LLMs have been

used for planning, either directly as world models (Huang et al., 2022; Wang

et al., 2023; Singh et al., 2023; Brohan et al., 2023; Dasgupta et al., 2023;

Shah et al., 2023; Zhong et al., 2020; 2022) or by writing code (Liang et al.,

2022). Unlike these methods we use pretrained LLMs as a critic: the LLM

provides an evaluation of an action for how useful it is to achieve a goal in the

future. Among the methods above, Du et al. (2023) is the only method to use

subgoals, but these are used to condition a goal-oriented policy, rather than

as a critic.

LLMs for reward shaping. Carta et al. (2022); Goyal et al. (2019b) explore

the advantages of using pure language abstractions for reward shaping, but do

not use a pretrained LLMs and its prior knowledge. Kwon et al. (2023) use

the responses of LLMs as a reward signal, but the investigation is limited to

conversational environments.
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LLMs for knowledge transfer. Another set of studies used intrinsic rewards

to transfer the prior knowledge of an LLM to a value function. Wu et al. (2024)

used LLMs to provide an auxiliary reward signal in Atari (Bellemare et al.,

2013), based on the information contained in a game manual. Unlike this

study, we use subgoals to extract the reward signal, and we do not focus

on incorporating external knowledge material, but rely on the LLM’s prior

knowledge to solve the task. Klissarov et al. (2023) constructed a reward func-

tion from the LLM’s preferences over NetHack (Küttler et al., 2020) in-game

messages only. Instead, our method incorporates the full observation, does

not use preferences, and does not require a separate stage to fit the preference

set, but uses the LLM’s output directly.

In short, none of these methods proposes to generalise reward shaping with

hierarchical skills using pretrained LLMs. Unlike the methods above, we use

pretrained LLMs as a critic: we aim to uncover cause-effect relationships be-

tween actions and goals by both breaking down a task into valuable subgoals

and then acting as a reward function for them. This provides an intermediate

signal to shape the agent’s behaviour when rewards are sparse and delayed.

9.3 Assumptions

We consider the problem of learning to solve POMDPs, as described in Chap-

ter 2.

To best isolate the CAP from other problems, we focus only on environments

with a discrete action space, and deterministic state transitions. To evaluate

the capabilities of LLMs in environments where the CAP is hard, we only

consider tasks where the reward signal is delayed. Specifically, the reward

function is 0 everywhere, and 1 when a goal state is reached.

To start the investigation, we evaluate the LLM only in language settings, leav-

ing the investigation of multimodal ones (text, image, audio, video) to future
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works. For this reason, we consider only environments with an observation

kernel that maps states to a textual codomain, O : S → T , where T is a set

of sequences of characters.

When comparing the LLM’s performance with human annotations, we assume

that these annotations are optimal. However, due to the natural breadth

(see Section 5.3) of the POMDP, these annotations might not me the only

optimal solution. For example, the LLM might break down a task into different

subgoals that are equally valid, but not exactly the same. For this reason,

our evaluation is limited to alignment with human annotations, rather than

optimality.

Finally, we consider a black box, pretrained LLM, that takes an input text and

maps it to a finite set of output characters. We consider only open-weights

models that can fit an NVIDIA A100 80Gb in either 16 bits floating point

or 4 bits integer mode. We assume that the LLM has enough preliminary

knowledge of the MiniHack environment to recognise valuable actions that

progress towards a win.

9.4 Methods

We set out to design a general method to assign credit in RL using LLMs that

can generalise to multiple tasks with little human input. Next, we formalise

the method, discuss its assumptions and provide details on the protocols we

use to evaluate it.

9.4.1 Reward shaping

Among the available CA techniques, we focus on reward shaping (Ng et al.,

1999), due to both its effectiveness in assigning credit and its limitations to

generalisation related to the costs of human involvement in the training loop.

Reward shaping aims to address the scarcity of learning signals by introducing
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an auxiliary reward function, the shaping function:

r̃t+1 = R̃(st, at, st+1). (9.1)

Here, st is the state at time t, at is the action taken in that state, st+1 is the

resulting state, and r̃t+1 is the auxiliary reward collected after taking at in st.

This reward is added to the original reward signal R(st, at, st+1) to obtain the

new, shaped reward

rt+1 = R(st, at, st+1) + R̃(st, at, st+1). (9.2)

If there exist a function φ : S → R such that R̃(st, at, st+1) = φ(st+1)− φ(st),

then the set of optimal policies is preserved, and the shaping function is also

a potential function (Ng et al., 1999).

While potential-shaping can be proven in theory for MDPs, we consider the

more general problem of solving POMDPs. Assuming that we do not have

access to the true, underlying MDP state, these theoretical guarantees do not

hold. For this reason, in the following, we consider the more general case of

non-optimality preserving functions, and assume that the set of optimal poli-

cies induced by the shaped reward is good enough for the agent to satisfatcory

solve the task.

For example, in key-door environments, a common testbed for CA methods

(Hung et al., 2019; Mesnard et al., 2021), the agent must reach a reward behind

a locked door, which can only be opened if the agent possesses a key. Here, the

agent has clear subgoals: (i) go to the key, (ii) pick it up, (iii) go to the door,

(iv) unlock it, (v) go to the reward. Achieving these subgoals sequentially

leads to optimal behaviour. However, the agent struggles to recognise this hi-

erarchical pattern due to the lack of immediate feedback from the environment.

This is particularly true in the early stages of training, when behaviour is er-



9.4. Methods 184

ratic, and two optimal actions can be separated by a long sequence of random

ones. Providing intermediate feedback for each achievement often improves

the agent’s performance (Gupta et al., 2022), and the ability of R̃ to produce

an instantaneous signal indicating progress is crucial for better CA. Thus, re-

ward shaping can significantly accelerate the learning process in environments

with sparse or delayed rewards.

However, designing an effective shaping function is challenging. The function

should be carefully designed to provide useful guidance without leading to un-

intended behaviours. This often calls for incorporating domain knowledge or

heuristic information about the task, and requires deep task and environment

knowledge. Such knowledge may not be readily available or easily codifiable,

limiting the applicability of reward shaping in diverse or unknown environ-

ments. This process is complex and time-consuming, and it might not always

be possible to devise a reward function that incentivizes learning, is compu-

tationally cheap, and general enough to adapt to various tasks. Improving

this limitation could enable broader use of reward shaping and enhance CA in

deep RL.

9.4.2 LLMs as shaping functions

Encouraged by the recent successes of LLMs in RL (Klissarov et al., 2023)

and of using language to abstract skills (Jiang et al., 2019; Jacob et al., 2021;

Sharma et al., 2021; Mu et al., 2022), we explore whether these models can

offer a valid alternative to humans in the reward shaping process. Our goal is

to produce a function that, given a description of the task and a state-action-

state transition, produces a binary signal indicating whether the action makes

progress towards solving the task or not:

LLM : desc(M)× desc(S ×A× S)→ B. (9.3)
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Here, LLM is a pretrained LLM; desc(M) is a natural language description

of the POMDP (the task); desc(S ×A× S) is a textual representation of the

transition, not necessarily in natural language (for example, a grid-arranged

text), and B = {0, 1} is the Boolean domain. In this scenario, the LLM acts

as a critic: its role is to evaluate the action at in the transition (st, at, st+1)

based on the heuristics that we describe next.

We operationalise the idea using the notion of options (Sutton et al., 1999): An

option is a temporally extended actions that often represent abstractions over

the action space of the POMDP, and consists of two elements: an intra-option

policy πi : S → ∆(A), and a termination condition β : S → B.1 Indeed, to

develop an intuition of options, it is useful to visualise one as a macro-action:

a set of actions that, taken together, have precise semantics. For example, in

our key-to-door example, one useful option to consider is to pick up the key.

This macro action includes a set of primitive actions – the set of actions to

navigate to the key and the action pickup – and a termination condition –

whether the key is picked up. For the purpose of our analysis, this termination

is crucial, as it signals that the subtask has been successfully achieved.

We exploit this idea to build our shaping function, set up a single-turn con-

versation, and prompt the model to perform two subtasks:

(i) To identify a set of useful options in the environment, by breaking down

the task into a sequence of shorter subgoals. These options, and more

specifically their termination, effectively constitutes our set of subgoals,

since a subgoal is achieved when the option terminates (a key is picked

up).

(ii) Determine whether an option terminated (thus, if a subgoal is achieved)

in the transition (st, at, st+1).

1We consider S+ = S and omit the initiation set S+
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Every time an option terminates, we augment the task reward with the subtask

reward as according to our reward shaping rule, R̃(st, at, st+1) = β(st+1).

This way of segmenting the task into subgoals is an alternative implementation

of the option framework – compared to the traditional one that specifies an

intra-option policy and a policy over options – but a common one (Sutton

et al., 2011; Schaul et al., 2015a). In the broader context of CA methods, many

approaches related to options are a solid and promising way to improve on the

CAP, as discussed in Section 8. However, most of them fall short in providing

a general method to discover subgoals. Options are pretedermined, must be

provided ex-ante and require extensive domain knowledge to be effective. For

this reason, by levereging the general knowledge of an LLM, CALM provides

a way to define goal-conditioned influence function (Pignatelli et al., 2024a)

with autonomously discovered subgoals, that can be used to assign credit in a

wide range of tasks, without the need for human intervention.

In essence, Equation (9.3) aims to mimic a human supervising an RL agent’s

decisions, acting as an auxiliary critic. Decomposing the task into multiple

subgoals allows each sub-achievement to correspond to a small step towards

success, and composing all the subgoals sequentially results in successful be-

haviour. Since achieving a subgoal is contingent on achieving all the preceding

ones, the number of subgoals achieved quantifies the agent’s progresses. To

develop an intuition of the idea, subgoals can be thought of as levels; gaining

a level at the current time indicates progress in achieving a specific goal in

the future. This process of actualisation, where an action is evaluated for its

future potential to achieve a goal, characterises the function as a CA method

(Pignatelli et al., 2024a).
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9.5 Experimental protocol

The viability of CALM in online RL settings depends on the quality of the

assignments provided by the LLM. Good quality assignments – signals that

reinforce optimal actions – can improve the performance of an RL algorithm.

Thus, we provide a preliminary evaluation of CALM on an offline dataset of

demonstrations.

Environment. We focus on the KeyRoom environment, a canonical testbed

for CA methods (Hung et al., 2019; Mesnard et al., 2021; 2023) originally

proposed in Minigrid (Chevalier-Boisvert et al., 2018). We choose its MiniHack

version, for it provides a textual representation of the observations that can

be fed to a language system. The game presents a top-down view of a grid-like

environment with two rooms. The agent starts in the first room, where a key

is located. It must pick up the key and use it to unlock the door to the second

room, where a reward is located. We consider two types of observations:

1. Cropped observations. a top-down, north-facing, 9x9 crop around

the agent, which is known to improve the performance in standard RL

benchmarks on Nethack (Küttler et al., 2020).

2. Game screens. A top-down, north-facing, 21x79 grid showing the entire

game scene, including an in-game message and a set of statistics of the

current state. We also refer to these as human observations, since they

reproduce the conditions of human game play.

Both observations are partial, despite containing different amounts of infor-

mation. We consider a discrete action set: go north, go east, go south, go

west, pickup, apply. The reward function is deterministic, providing a reward

of 1 if the agent reaches the goal tile and 0 otherwise. Transitions are also

deterministic.
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Dataset. We collect 256 one-step transitions dt = (st, at, st+1) using a random

policy. Given a set of subgoals G ⊂ (S × A × S), a transition dt can then be

classified as either achieving a subgoal g ∈ G or not. This produces categories

C = {ci : 0 ≤ i ≤ |G|+ 1}, one for each subgoal, and an additional one when

no subgoal is achieved. To characterise the abilities of an LLM to assign credit

accurately, we produce a balanced dataset where each goal appears with equal

probability.

Composing the prompt. For each transition we then compose a prompt

using the following structure:

1. <ROLE> specifies the role we ask the LLM to simulate.

2. <ENVIRONMENT-DESCRIPTION> describes the RL environment, the source

of the gameplay.

3. <SYMSET> is a list reporting Nethack wiki entries2 of what each symbols

in the grid represents.

4. <TASK-DESCRIPTION> specifies the overall goal of the agent, and does

not contain information about subgoals.

5. <SUBGOALS> contains either a list of subgoals to achieve, or asks the LLM

to produce one.

6. <INSTRUCTIONS> tasks the agent to determine whether a subgoal is

achieved in the trajectory presented in <TRANSITION>.

7. Finally, <OUTPUT-FORMAT-REQUEST> requests the output in a format that

can be easily parsed, for example, a python dictionary.

Prompt 1 shows a concrete instantiation of this structure, where goals are

provided as part of the input. Here, the role is not specified, exhorting the

2https://nethackwiki.com/wiki/Symset
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LLM to play a generic role, and the environment description (The environment

is MiniHack) is minimal. In the symset – the list of symbols with their meaning

– the descriptions are extracted from the wiki (https://nethackwiki.com/

wiki/Symset). The task is as generic as possible (to win the game), and it

is followed by the set of predetermined subgoals (pick up the key and unlock

the door). The instructions and the request for an appropriate output format

follow on that. Finally, we enclose the transition within a <gameplay> tag,

and remark that this is a single-turn conversation to avoid the model asking

additional clarifications. Notice that we separate each cell in the observation

with a whitespace to ensure that each cell (plus their whitespace) corresponds

to a separate token. We discuss this more in depth in Appendix A.6.1, and

provide more details and variations of prompts in Appendix A.3. To develop

an intuition of the role covered by the model, we encourage the reader to scan

over them before proceeding.

Models. We use pretrained, open-weights large language models that can fit

a 80Gb A100 Nvidia GPU in either 16 bits brain floating point (Dean et al.,

2012) or 4 bits integer weights representations. When models cannot fit in

memory, we use their NF4 (Dettmers et al., 2023) quantised equivalent. These

models are marked with an asterisk (∗) in the tables below. All the models are

finetuned for instructions following, and tokens are deterministically sampled

using a greedy policy.

Annotations. For each transition a human annotator produces a term of ref-

erence for comparison. The annotator is presented with each prompt in the

dataset, without any further instructions. We then record the annotator’s an-

swer, and use it as a term of reference for the LLM’s responses. Since the

prompt has a correct answer, these are not subjective evaluations, but rather

direct verification, with little room for interpretation.

https://nethackwiki.com/wiki/Symset
https://nethackwiki.com/wiki/Symset
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Example prompt
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message:

- - - -

| . . |

| . . |

- - + - . < |

| . . . @ . |

| . ( . . . |

- - - - - - -

Time: 1

Current message:

| . . |

| . . |

- - + - . < |

| . . . . . |

| . ( . @ . |

- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 1: Example of a prompt for instruction verification. Here, goals are
provided externally from a human.

Evaluation. We then compare the LLM’s annotations with the human ones.

The response is a true positive if both the LLM and the human annotator

identify that a subgoal is achieved. It is a false positive (a hallucination) if

the LLM identified it, but the human has not; a false negative (a miss) if the

human identified one, but the agent has not. This effectively casts the problem

as classification, with the set of classes C, as described in the dataset descrip-

tion. We then compare the LLM’s hypotheses with the human responses as

ground truth, and report accuracy, F1 score, precision and recall.
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Notice that the aim of this experiments is not to evaluate whether the LLM

is better than a human annotator with respect to an optimal solution. In

fact, as also explained in Section 9.3, the POMDP might have more than

one optimal solution, for example by breaking the task into different subgoals

that are equally valid, but not exactly the same. Instead, recalling that our

main objective is to investigate whether LLMs can serve as a proxy of human

knowledge to automate reward shaping in RL, we focus on the alignment of

the LLM’s evaluation with the human’s one.

9.6 Experiments, results, and discussion

To evaluate the effectiveness of LLMs in CA for RL, we consider environ-

ments with textual representations. We assume that the LLM has sufficient

knowledge of the game to evaluate actions. While this assumption might be

strong for NetHack, it is reasonable for MiniHack, where tasks are simplified

yet challenging models of common NetHack scenarios, requiring only partial

knowledge.

Based on the set of experimental conditions described above, we then consider

a spectrum of settings requiring progressively less input from humans. We

start by providing the LLM with: (a) cropped observations focused around

the agent; (b) an effective, predetermined set of subgoals; We then proceed to

progressively relax these conditions to: (a) gamescreen observations; (b) al-

lowing the LLM to discover useful subgoals autonomously. These conditions

are set to replicate the conditions of a human playing the game.
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9.7 Can LLMs understand goal specifications

and verify option termination?

This experiment aims to assess whether a pretrained LLM can function as a

reward function when subgoals are provided externally. We provide the LLM

with the environment name, MiniHack, and a list of two subgoals: pick up

the key and unlock the door. We specify that the goal of the agent is simply

to win the game (Jeurissen et al., 2024), and ask it to determine if each subgoal

has been achieved in the transition. Prompt 4 shows an example prompt for

this experiment.

We present results for multiple pretrained LLMs, using both cropped observa-

tions and full game screens. The purpose of the comparison is not to determine

a winning model. It is, instead, to understand whether the ability to assign

credit to single transitions is in the spectrum of capabilities of existing open-

weights LLMs. This will lay the foundation for applying the method in full

RL settings.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1∗ 0.74 0.67 0.77 0.73 124 47 38 47
gemma-1.1-7b-it 0.73 0.70 0.91 0.61 105 75 10 66
Meta-Llama-3-70B-Instruct 0.66 0.65 0.97 0.50 85 82 3 86
Meta-Llama-3-8B-Instruct 0.64 0.64 0.95 0.49 83 81 4 88
c4ai-command-r-v01∗ 0.60 0.57 0.80 0.49 83 64 21 88
Mistral-7B-Instruct-v0.2 0.48 0.54 0.96 0.32 55 83 2 116
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Random 0.33 0.33 0.33 0.33

Table 9.1: Performance of LLM annotations against human annotations with game
screen observations and with the subgoals provided in the prompt. Models marked
with an asterisk (∗) are quantised to NF4 format. TP stands for true positives, TN
for true negatives, FP for false positives, and FN for false negatives. Rows sorted by
F1 score.

We report results in Tables 9.1 and 9.2, and draw the following two insights.

First, LLMs, except gemma-1.1-2b-it, probably due to its small size, are gen-

erally effective in recognising when an instruction has been successfully com-
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Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1∗ 0.78 0.70 0.78 0.77 132 48 37 39
gemma-1.1-7b-it 0.76 0.69 0.79 0.73 124 52 33 47
gemma-1.1-2b-it 0.76 0.68 0.76 0.77 131 43 42 40
c4ai-command-r-v01∗ 0.75 0.69 0.81 0.70 120 57 28 51
Meta-Llama-3-70B-Instruct 0.63 0.58 0.76 0.54 92 56 29 79
Meta-Llama-3-8B-Instruct 0.61 0.61 0.92 0.46 79 78 7 92
Mistral-7B-Instruct-v0.2 0.61 0.62 0.96 0.45 77 82 3 94

Random 0.33 0.33 0.33 0.33

Table 9.2: Performance with cropped observations and with the subgoals pro-
vided in the prompt.

pleted in a state-action-state transition. This shows their ability to understand

goal specifications and to recognise when an option terminates due to comple-

tion. We also noticed that c4ai-command-r-plus degenerates into outputting

false for most transitions, most probably due to quantisation.

Second, restricting the field of view of the observation helps improve per-

formance. This is most likely due to observations being more concise, and

avoiding the information to drown among a high number of tokens. This also

seems to increase the lower bound, and the performance of models drastically

failing with human observations greatly improves, especially gemma-1.1-2b-it.

9.7.1 Can LLMs suggest effective options?

In this experiment, we evaluate whether LLMs can autonomously suggest ef-

fective options. Instead of providing a predetermined list, we ask the LLM to

break down the task into subgoals and verify whether these subgoals have been

achieved. Despite only a small change on the surface, removing some key in-

formation from the prompt intensively tests the LLM’s knowledge of NetHack.

More importantly, it stresses the ability of the models to come up with a vi-

able and effective hierarchy of subgoals such that, if reinforced, produces useful

signals for progress.

This setting is more complex but also more general, as it replicates the amount

of information typically available to a human player. Prompt 5 shows an exam-
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ple prompt for this experiment. As for the previous experiment, we evaluate

the performance of different models using both cropped and human observa-

tions.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.82 0.72 0.71 0.96 165 19 66 6
Meta-Llama-3-8B-Instruct 0.80 0.70 0.72 0.89 153 26 59 18
gemma-1.1-7b-it 0.77 0.66 0.71 0.85 145 25 60 26
Mixtral-8x7B-Instruct-v0.1∗ 0.74 0.64 0.71 0.76 130 33 52 41
Mistral-7B-Instruct-v0.2 0.57 0.48 0.63 0.53 90 32 53 81
c4ai-command-r-v01∗ 0.56 0.52 0.71 0.47 80 52 33 91
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Random 0.33 0.33 0.33 0.33

Table 9.3: Performance with game screen observations and with autonomously
discovered subgoals.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.83 0.75 0.75 0.93 159 33 52 12
gemma-1.1-7b-it 0.81 0.70 0.71 0.95 163 17 68 8
Mixtral-8x7B-Instruct-v0.1∗ 0.72 0.62 0.71 0.74 127 32 53 44
Mistral-7B-Instruct-v0.2 0.65 0.54 0.66 0.64 109 28 57 62
c4ai-command-r-v01∗ 0.60 0.52 0.68 0.54 92 41 44 79
gemma-1.1-2b-it 0.47 0.52 0.89 0.32 55 78 7 116
Meta-Llama-3-8B-Instruct 0.45 0.39 0.57 0.37 63 38 47 108

Random 0.33 0.33 0.33 0.33

Table 9.4: Performance with cropped observations and with autonomously dis-
covered subgoals.

Results in Table 9.3 indicate that LLMs can effectively suggest subgoals when

presented with game screen observations, and that these subgoals align with

those identified by humans. Models like Meta-Llama-3-70B-Instruct and Meta-

Llama-3-8B-Instruct come close to human performance, suggesting that LLMs

can effectively use the additional information to suggest and validate subgoals.

These results bode well for applications of CALM where human input, while

still considerably smaller than in canonical reward shaping, is still expensive

to collect.

When transitioning to cropped observations (Table 9.4) LLMs perform worse.

This is most likely due to a misalignment between the subgoals proposed by

the models and the ones of the ground truth. We did not observe any sub-
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stantial difference in how different models propose subgoals and in the types

of subgoals they suggest. Most models correctly identify item collection and

locating objects, such as stairs, monsters and keys. They often include “going

to <object>” instructions as subgoals. We provide examples of such prompts

in Appendix A.4.

While this evaluation can be unfair, since we compare the LLM’s response with

the set of subgoals the human identified, it still tells whether the LLM way of

reasoning about a task align with the human one. These elements, together

with the ability of LLMs to verify if a subgoal is achieved, suggest that LLMs

can be an effective means to transfer human knowledge into value functions.

9.8 Conclusions, limitations, and future work

In this study, we explored whether LLMs can be a useful means to transfer

human knowledge into the value function of RL agents. By focusing on re-

ward shaping, we highlighted its limitations in scalability due to the cost of

human involvement. To mitigate these costs, we proposed replacing humans

with LLMs, leveraging their ability to decompose tasks into shorter subgoals.

Preliminary results from an offline dataset of MiniHack demonstrations suggest

that LLMs are effective in verifying subgoal achievement and align with those

proposed by humans. This suggests the potential of using LLMs to enhance

CA in RL.

9.8.1 Limitations of the current evidence

While preliminary results are promising, they are limited by the scope of the

current evidence. We did not conduct RL experiments to validate the method

in online RL settings. The dynamic nature of online RL could pose unique

challenges not present in offline settings. Additionally, despite KeyRoom being

representative of the CA challenges, and a common testbed for CA, evaluating
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the method in a broader range of environments would provide more compre-

hensive evidence of its robustness and applicability.

9.8.2 Limitations of the method

The method also has inherent limitations. Environments must provide obser-

vations in the form of text. The LLM must hold enough knowledge of the game

to evaluate actions. While this can be a mild assumption for MiniHack, it can

be an obstacle for environments requiring more specialised knowledge, such

as Nethack (Küttler et al., 2020) or Crafter (Hafner, 2021; Matthews et al.,

2024). Indeed, the LLM relies solely on their prior knowledge and does not

incorporate new knowledge while assigning credit, limiting their adaptability

and accuracy over time.

Notice that when the prompt does not include the action, as shown in abla-

tion study in Appendix A.6.2, the method is independent of the action set.

This means that the method can be applied to environments with a large ac-

tion space without modifications, because the LLM provides an evaluation of

the transition without knowing the action taken in between the two states.

However, while scaling to large action spaces is feasible in theory, and the as-

signment accurate, in practice the influence of each action diminishes as the

number of actions increases, as explained in Chapter 5.

We limited the investigation to using only one past state from the history of

observations to evaluate the transition. While evidence shows that this is suf-

ficient in practice for the environments considered, it is not clear whether this

is enough for more complex environments. However, here we prioritised the

simplest settings in which the method can be applied to avoid overstressing

the LLM with a context that is too long. In fact, providing a longer transitions

history would require a larger context window, with the risk of overwhelming

the LLM with too many tokens, and potentially letting the useuful information

drown in the noise. To relax the assumption of a single transition, a natural
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extension of this work is to extend the method to multistep transitions. Here,

by including past observations in the prompt beyond the previous one, the

LLM can evaluate the current actions (and not all the actions in the trajec-

tory). This would align with the current theory practice in Deep RL to use

complete histories of observations to evaluate the current action.

One potential pattern of failure of using LLMs as reward shapers is reward

hacking (Amodei et al., 2016). Reward hacking occurs when the agent learns

to exploit the reward function by finding loopholes in the subgoal definitions,

rather than achieving the intended goals. In particular, since the LLM is

a pretrained model, it is can be vulnerable to adversarial counterexamples

(Goodfellow et al., 2014), which can pose serious risks for safety and reliability.

For example, if LLM is tricked into providing a very long list of subgoals that

are not necessary waypoints to the final goal, the agent might get addicted to

collecting rewards from these subgoals, especially if the same subgoal can be

achieved multiple times. This can lead to suboptimal policies that do not align

with the original task, and result in the agent failing to achieve the intended

goal.

Another common pattern of failure of CALM, due to the use of LLMs, is hallu-

cinations (Maynez et al., 2020). Hallucination occurs when the LLM generates

information that is not present in the input, or that is not grounded in reality.

In the context of CALM, for example, the LLM can sometimes fails to correctly

understand the grid layout of the environment, or to correctly identify the ob-

jects in the observation, most likely due to the shift in the distribution of the

training data: observations are not natural language. While we try to investi-

gate potential reasons for this in the ablation study in Appendix A.6.2, A.6.1,

it is still an open question how to mitigate this issue.
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9.8.3 Future work

Future work should focus on addressing these limitations. Validating the ap-

proach in online RL settings and exploring its applicability to a broader range

of environments can tell if CALM can enhance the learning process of RL

agents in practice.

A natural extension of this work is to generalise the method beyond text-

only observations. Baumli et al. (2023) follows this line of research, testing the

capability of Vision Language Models (LLMs) to evaluate the completion of an

instruction from pixels alone. The instruction completion question corresponds

to ours in the LLMs domain.

Finally, a closed feedback loop where CALM helps improve the policy, the

policy provides new information to the LLM, and the LLM incorporates this

information to improve its CA ability could help scale to more complex prob-

lems requiring specialistic knowledge.



Chapter 10

NAVIX: Scaling MiniGrid with

JAX

As Deep RL research moves towards solving large-scale worlds, efficient envi-

ronment simulations become crucial for rapid experimentation. However, most

existing environments struggle to scale. Interactions are typically computed

on the CPU, limiting training speed and throughput, due to slower computa-

tion and communication overhead when distributing the task across multiple

machines. Recently, a set of GPU-based environments has sparked raising

interest, proposing a JAX-based, batched re-implementations of common RL

environments that significantly increase the throughput of canonical Deep RL

algorithms, and enabling large scale parallelism. These environments allow

training thousands of agents simultaneously on a single accelerator, vastly

outperforming traditional CPU-based environments. In this work, we focus

on MiniGrid, a foundational, open-source set of environments that faces the

aforementioned limitations. We introduce NAVIX1, a re-implementation of

MiniGrid in JAX. NAVIX achieves over 200 000× throughput improvements

in batch mode, supporting up to 2048 agents in parallel on a single Nvidia A100

80 GB, compared to the multi-threaded implementation of MiniGrid run on

1https://github.com/epignatelli/navix
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CPU, which can only support up to 16 actors. This reduces experiment times

from one week to 15 minutes, promoting faster design iterations and more

scalable RL model development.

(a) 128.98× (b) 26.47× (c) 41.17× (d) 19.72× (e) 45.71×

Figure 10.1: Speedups for five of the NAVIX environments with respect to their
MiniGrid equivalent, using the protocol in Section 10.4.1. (a) Empty-8x8-v0, (b)
DoorKey-8x8-v0, (c) Dynamic-Obstacles-8x8-v0, (d) KeyCorridorS3R3-v0, (e)
LavaGapS7-v0.

10.1 Introduction

Deep Reinforcement Learning (Deep RL) is notoriously sample inefficient

(Kaiser et al., 2019; Wang et al., 2021a; Johnson et al., 2016; Küttler et al.,

2020). Depending on the complexity of the environment dynamics, the obser-

vation space, and the action space, agents often require between 107 to 109

interactions or even more for training. Therefore, as Deep RL moves towards

tackling more complex environments, leveraging an efficient environment im-

plementation is an essential ingredient of rapid experimentation and fast design

iterations.

However, while the efficiency and scalability of solutions for agents have im-

proved massively in recent years (Schulman et al., 2017; Espeholt et al., 2018;

Kapturowski et al., 2018), especially due to the scalability of the current deep

learning frameworks (Abadi et al., 2016; Paszke et al., 2019; Ansel et al., 2024;

Bradbury et al., 2018; Sabne, 2020), environments have not kept pace. They

are mostly based on CPU, cannot adapt to different types of devices, and scal-

ing often requires complex distributed systems, introducing design complexity

and communication overhead. Overall, deep RL experiments are CPU-bound,
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limiting both speed and throughput of RL training.

Recently, a set of GPU-based environments (Freeman et al., 2021; Lange, 2022;

Weng et al., 2022; Koyamada et al., 2023; Rutherford et al., 2023a; Nikulin

et al., 2023; Matthews et al., 2024; Bonnet et al., 2024; Lu et al., 2023; Liesen

et al., 2024b) and frameworks (Lu et al., 2022; Liesen et al., 2024a; Toledo,

2024; Nishimori, 2024; Jiang et al., 2023a) has sparked raising interest, propos-

ing JAX-based, batched implementations of common RL environments that

can significantly increase the speed and throughput of canonical Deep RL

algorithms. This enables large-scale parallelism, allowing the training of thou-

sands of agents in parallel on a single accelerator, significantly outperforming

traditional CPU-based environments, and fostering meta-RL applications.

In this work, we build on this trend and focus on the MiniGrid suite of envi-

ronments (Chevalier-Boisvert et al., 2024), due to its central role in the Deep

RL literature. MiniGrid is fundamental to many studies. For instance, Zhang

et al. (2020b); Zha et al. (2021); Mavor-Parker et al. (2022) used it to test

new exploration strategies; Jiang et al. (2021a) for curriculum learning; Zhao

et al. (2021) for planning; Paischer et al. (2022) for representation learning,

Flet-Berliac et al. (2021); Guan et al. (2022) for diversity. Parisi et al. (2021)

employed MiniGrid to design meta and transfer learning strategies, and Mu

et al. (2022) to study language grounding.

However, despite its ubiquity in the Deep RL literature, MiniGrid faces the lim-

itations of CPU-bound environments. We bridge this gap and propose NAVIX,

a reimplementation of Minigrid in JAX that leverages JAX’s intermediate lan-

guage representation to migrate the computation to different accelerators, such

as GPUs, and TPUs.

Our results show that a single, unbatched NAVIX environment on GPU runs

over 10× faster on average than the original, single-threaded Minigrid im-

plementation on CPU (see Section 10.4.1). In common Deep RL settings, a
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batched NAVIX environment on GPU increases the training throughput of a

PPO agent by over 106× compared to the multi-threaded CPU implementation

of MiniGrid (see Section 10.4.2), turning 1-week experiments into 15 minutes

ones. We show the scaling ability of NAVIX by training over 2048 PPO agents

in parallel, each using their own subset of environments, all on a single Nvidia

A100 80 GB.

The main contributions of this work are the following:

1. A fully JAX-based implementation of 41 environment configurations that

reproduces exactly the original Minigrid MDPs and POMDPs.

2. A description of the design philosophy, the design pattern and principles,

the organisation, and the components of NAVIX, which, together with

the online documentation2, form an instruction manual to use and extend

NAVIX.

3. A set of RL algorithm baselines for all environments in Section 10.4.3.

10.2 Related work

JAX-based environments. The number of JAX-based reimplementations of

common environments is in a bullish trend. Freeman et al. (2021) provide a

fully differentiable physics engine for robotics, including MJX, a reimplemen-

tation of MujoCo (Todorov et al., 2012). Lange (2022) reimplements several

gym (Brockman et al., 2016) environments, including classic control, Bsuite

(Osband et al., 2020), and MinAtar (Young & Tian, 2019),

Koyamada et al. (2023) reimplement many board games, including backgam-

mon, chess, shogi, and go. Lu et al. (2023) provides JAX implementations of

POPGym (Morad et al., 2023), which contains partially-observed RL environ-

ments. Matthews et al. (2024) reimplement Crafter (Hafner, 2021). Bonnet

2https://epignatelli/navix



10.2. Related work 203

et al. (2024) provides JAX implementations of combinatorial problems fre-

quently encountered in industry, including bin packing, capacitated vehicle

routing problem, PacMan, Sokoban, Snake, 2048, Sudoku, and many others.

Rutherford et al. (2023b) reimplement a set of multi-agent environments, in-

cluding a MiniGrid-inspired implementation of the Overcooked benchmark.

Yet, none of these works proposes a reimplementation of Minigrid. Weng et al.

(2022) is the only one providing a single environment of the suite, Empty, but

it is only one of the many, most commonly used environments of the suite, and

arguably the simplest one.

Batched MiniGrid−like environments. Two works stand out for they aim

to partially reimplement MiniGrid. Jiang et al. (2023a) present AMaze, a

fully batched implementation of a partially observable maze environment, with

MiniGrid−like sprites and observations. However, like Weng et al. (2022), the

work does not reimplement the full MiniGrid suite. Nikulin et al. (2023) pro-

poses XLand-MiniGrid, a suite of grid-world environments for meta RL. Like

(Jiang et al., 2023a), XLand-MiniGrid reproduces Minigrid−like observations

but focuses on designing a set of composable rules that can be used to gen-

erate a wide range of environments, rather than reimplementing the original

Minigrid suite.

To conclude, MiniGrid is a fundamental tool for Deep RL experiments, at the

base of a high number of studies, as we highlighted in Section 10.1. It is easy

to use, easy to extend, and provides a wide range of environments of scalable

complexity that are easy to inspect for a clearer understanding of an algorithm

dynamics, pitfalls, and strengths.

Nevertheless, none of the works above provides a full, batched reimplementa-

tion of Minigrid in JAX that mirrors the original suite in terms of environ-

ments, observations, state transitions, and rewards. Instead, we propose a

full JAX-based reimplementation of the MiniGrid suite that can be used as a
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Figure 10.2: Information flow of the ECSM in NAVIX. Entities (Player, Walls,
Keys, Doors, . . . ) are composed of components (Position, Direction, Pocket), which
hold the data of the entity. Systems (Intervention, Transition, Rewards, Termina-
tions) are functions that operate on the collective state of all entities and compo-
nents.

drop-in replacement for the original environments.

10.3 NAVIX: design philosophy and principles

In this section we describe: (i) the design philosophy and pattern of NAVIX

in Section 10.3.1, and (ii) the design principles at its foundation in Sec-

tions 10.3.2.1 and 10.3.2.2.

In particular, in Section 10.3.2.2, we highlight why a JAX port of MiniGrid

is not trivial. Among others, the obstacles to transform a stateless program,

where a function is allowed to change elements that are not an input of the

function, to a stateful one, where the outputs of functions depend solely on the

inputs; and the restrictions in the use of for loops and control flow primitives,

such as if statements.3

10.3.1 Design pattern

NAVIX is broadly inspired to the ECSM, a design pattern widely used in video

game development. In an ECSM, entities – the objects on the grid in our case

– are composed of components – the properties of the object. Each property

3See https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.

html.

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
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holds data about the entity, which can then be used to process the game state.

For example, an entity Player is composed of components Positionable,

Holder, Directional, each of which injects properties into the entity: the

Positionable component injects the Position property, holding the coor-

dinates of the entity on the grid, the Holder component injects the Pocket

property, holding the id of the entity that the agent holds, and so on. A full list

of components and their properties is provided in Table 10.1. This composi-

tional layout allows to easily generate the wide range of combinations of tasks

that MiniGrid offers, and to easily extend the suite with new environments.

Entities are then processed by systems, which are functions that operate on

the collective state of all entities and components. For example, the decision

system may update the state of the entities according to the actions taken by a

player. The transition system may update the state of the entities according to

the MDP state transitions. The observation system generates the observations

that the agents receive, and the reward system computes the rewards that the

agents receive, and so on. We provide a full list of implemented systems in

Appendix A.7.

To develop a better intuition of what these elements are and how they interact,

Figure 10.2 shows the information flow of the ECSM in NAVIX.

10.3.2 Design principles

On this background, two principles are at the foundation of NAVIX, and the

key aspects that characterise it: (i) NAVIX aims to exactly match MiniGrid

(Section 10.3.2.1), working as a drop-in replacement for the original environ-

ments, and; (ii) every environment is fully jittabile and differentiable (Sec-

tion 10.3.2.2), to exploit the full set of features that JAX offers.
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Component Property Shape Description

Positionable Position f32[2] Coordinates of the entity on the grid.
Directional Direction i32[] Direction of the entity.
HasColour Colour u8[] Colour of the entity.
Stochastic Probability f32[] Probability that the entity emits an event.
Openable State bool[] State of the entity, e.g., open or closed.
Pickable Id i32[] Id of the entity that the agent can pick up.
HasTag Tag i32[] Categorical value for the entity class.
HasSprite Sprite u8[32x32x3] Sprite of the entity in RGB format.
Holder Pocket i32[] Id of the entity that the agent holds.

Table 10.1: List of Components in NAVIX. Each component provides a property
(or a set of). These properties hold the data that can be accessed and manipulated by
the systems (see Table 10.3) to provide observations, rewards, and state transitions.

Entity Components Description

Wall [HasColour] Blocks the agent’s movement.
Player [Directional, Holder] Can interact with the environment.
Goal [HasColour, Stochastic] Can reached to receive a reward.
Key [Pickable, HasColour] Can be picked up. Can open doors.
Door [Openable, HasColour] Can be opened and closed.
Lava [] A room object.
Ball [HasColour, Stochastic] A room object.
Box [HasColour, Holder] A container of other.

Table 10.2: List of Entities in NAVIX, together with the components that char-
acterise them. By default, all entities already possess Positionable, HasTah, and
HasSprite components, in addition to those reported in the table.

System Function Description

Intervention I : S ×A → S Updates the state using actions.
Transition µ : S ×A → S Updates the state using MDP dynamics.
Observation O : S → O The observation kernel.
Reward R : S ×A× S → R The Markovian reward function.
Termination γ : S ×A× S → B The termination function.

Table 10.3: List of Systems in NAVIX. A state s ∈ S is a tuple containing: the
set of entities, the static grid layout, and the mission of the agent.
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10.3.2.1 NAVIX matches MiniGrid

NAVIX matches the original MiniGrid suite in terms of environments, observa-

tions, state transitions, rewards, and actions. We include the most commonly

used environments of the suite (see Table A.13), and provide a set of base-

lines for the implemented environments in see Section 10.4 and Table A.13,

Appendix A.12.

Formally, a NAVIX environment is a tupleM = (h,w, T,O,A,R, d, O,R, γ, µ).

Here, h and w are the height and width of the grid, T is the number of timesteps

before timeout; O is the observation space, A is the action space, R is the

reward space; d is the discount factor. O is the observation function, R is

the reward function, γ is the termination function, and µ is the transition

function.

One key difference between NAVIX and MiniGrid is that the latter uses a

non-Markovian reward function. In fact, MiniGrid dispenses a reward of 0

everywhere, except at task completion, where it is inversely proportional to

the number of steps taken by the agent to reach the goal:

rt = R(st, a, st+1)− 0.9 ∗ (t+ 1)/T, (10.1)

Here R is the reward function, st is the state at time t, a is the action taken at

time t, st+1 is the state at time t+ 1, and T is the number of timesteps before

timeout. Notice the dependency on the number of steps t, which makes the

reward non-Markovian.

The use of a non-Markovian reward function is not a mild assumption as most

RL algorithms assume Markov rewards. This might call into question the va-

lidity of the historical results obtained with MiniGrid, and the generalisation

of the results to other environments. For this reason, we depart from the orig-

inal MiniGrid reward function and use a Markovian reward function, instead,
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which is 0 everywhere, and 1 at task completion.

10.3.2.2 Stateful and fully jittable

While we aim to match MiniGrid in terms of environments, observations, state

transitions, rewards, and actions, the API of NAVIX is different, as it must

align with JAX requirements for the environment to be fully jittable. In

fact, NAVIX environments can be compiled into XLA and run on any JAX-

supported accelerator, including GPUs and TPUs. This includes both simply

jitting the step function, and jitting the entire training sequence (Lu et al.,

2022), assuming that the agent is also implemented in JAX. XLA compilation

increases the throughput of experiments massively, allowing for the training of

thousands of agents in parallel on a single accelerator, compared to a few that

are possible with traditional CPU-based environments. We show the scalabil-

ity of NAVIX in Section 10.4.

For environments to be fully jittable, the computation must be stateful. For

this reason, we need to define an environment state-object : the timestep. The

timestep is a tuple (t, ot, at, rt+1, γt+1, st, it+1), where t is the current time – the

number of steps elapsed from the last reset – ot is the observation at time t,

at is the action taken after ot, rt+1 is the reward received after at, γt+1 is the

termination signal after at, st is the true state of the environment at time t,

and it+1 is the info dictionary, useful to store accumulations, such as returns.

This structure is necessary to guarantee the same return schema for both

the step and the reset methods, and allows the environment to autoreset,

and avoid conditional statements in the agent code, which would prevent the

environment from being fully jittable.

At the beginning of the episode, the agent samples a starting state from the

starting distribution µ0 : S → S using the reset(key) method, where key is

a random key for a stateful random number generator, and the agent receives
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the first timestep. Since there is no action and reward at the beginning of

the episode, we pad with respectively −1, 0. Given an action at, the agent

can interact with the environment by calling the step(timestep, action,

key) method. The agent then receives a new state of the environment (a new

timestep) and can continue to interact as needed. Code 1 shows an example of

how to interact with a jitted NAVIX environment. More examples are provided

at https://epignatelli.com/navix/.

import navix as nx

# init a NAVIX environment

env = nx.make("Navix-KeyCorridorS6R3-v0")

# sample a starting state

timestep = env.reset(key)

for _ in range(1000):

# sample a random key

key, subkey = jax.random.split(key)

# sample a random action

action = jax.random.randint(subkey, (1,), 0, 4)

# interact with the environment

timestep = jax.jit(env.step)(timestep, action) # autoresets when done

Code 1: Example code to interact with a jitted NAVIX environment.

Notice that the syntax is similar to the original MiniGrid, including the envi-

ronment id, which simply replaces “MiniGrid” with “Navix”. The only differ-

ences are in the use of an explicit random key for the stateful random number

generator, and the fact that the step method also takes the current timestep

as input, to guarantee the statefulness of the computation.

The schema in Code 1 is an effective template for any kind of agent imple-

mentation, including non JAX-jittable agents. However, while this already im-

proves the speed of environment interactions compared to MiniGrid, as shown

in Section 10.4.1, the real speed-up comes jitting the whole iteration loop. In

Appendix A.8 we provide additional reusable patterns that are useful in daily

RL research, such as how to jit the training loop, how to parallelise the training

of multiple agents, and how to run hyperparameter search in batch mode.

https://epignatelli.com/navix/
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In addition, in Appendix A.10 we provide a guide on how to extend NAVIX,

including new environments, new observations, new rewards, and new termi-

nation functions. This is a fundamental aspect to reflect the flexibility of the

original MiniGrid suite, which is easy to extend and modify.

10.4 Experiments

This section aims to show the advantages of NAVIX compared to the original

MiniGrid implementation, and provides the community with a set of baselines

for all environments. It does the former by comparing the two suites, for all

environments, both in terms of speed improvements and throughput. For the

latter, we train a set of baselines for all environments, and provide a scoreboard

that stores the results for all environments. All experiments are run on a single

Nvidia A100 80Gb, and Intel(R) Xeon(R) Silver 4310 CPU @ 2.10GHz and

128Gb of RAM.

10.4.1 Speed

We first benchmark the raw speed improvements of NAVIX compared to the

original Minigrid implementation, in the most common settings. For each

NAVIX environment and its MiniGrid equivalent, we run 1K steps with 8

parallel environments, and measure the wall time of both. 1K represents the

start of the linear regime in Figure 10.4. Notice that this is the mere speed of

the environment, and does not include the agent training.

We show results in Figure 10.3 and observe that NAVIX is over 10× faster in

unbatched mode than the original MiniGrid implementation on average. These

improvements are due to both the migration of the computation to the GPU

via XLA, which optimises the computation graph for the specific accelerator,

and the batching of the environments. In Figure A.5, Appendix A.12 we

ablate the batching, with no parallel environments, and show that the biggest
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contribution for the speedup is due to efficient batching.

To better understand how the speedup varies with the number of training

steps, and to make sure that the 1K steps used in the previous experiment are

representative of the general trend, we measure the speed improvements for

different lenghts of the training runs. We run 1K, 10K, 100K, and 1M steps

for the MiniGrid-Empty-8x8-v0 environment and its NAVIX equivalent, and

measure the wall time of both.

Results in Figure 10.4 show that NAVIX is consistently faster than the original

MiniGrid implementation, regardless of the number of steps. Both MiniGrid

show a linear increase in the wall time with the number of steps.

10.4.2 Throughput

While NAVIX provides speed improvements compared to the original MiniGrid

implementation, the real advantage comes from the ability to perform highly

parallel training runs on a single accelerator. In this experiment, we test how

the computation scales with the number of environments.

We first test the limits of NAVIX by measuring the computation while varying

the number of environments that run in parallel. MiniGrid uses gymnasium,

which parallelises the computation with Python’s multiprocessing library.

NAVIX, instead, uses JAX’s native vmap, which directly vectorises the com-

putation. We confront the results with the original MiniGrid implementation,

using the MiniGrid-Empty-8x8-v0 environment.

Results in Figure 10.5 show that the original MiniGrid implementation cannot

scale beyond 16 environments on 128GB of RAM, for which it takes around

1s to complete 1K unrolls. On the contrary, NAVIX can run up to 221 (over

2M) environments in parallel on the same hardware, with a wall time almost

always below 1s. In short, NAVIX achieves a throughput over 105 order of

magnitude higher than the original MiniGrid implementation.
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Figure 10.3: Speedup of NAVIX compared to the original Minigrid implementa-
tion, for the implemented environments. The identifiers on the x-axis correspond to
the environments as reported in Table A.12. Results are the average across 5 runs.
Lines show 5-95 percentile confidence intervals. Lower is better.

Figure 10.4: Variation of the speedup of NAVIX compared to the origi-
nal Minigrid implementation according to different numbers of steps for the
MiniGrid-Empty-8x8-v0 environment. Lower is better. Error bars show 5-95 per-
centile confidence intervals across 5 seeds.

Figure 10.5: Wall time of 1K unrolls for both NAVIX and MiniGrid in batch
mode.
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Figure 10.6: Computation costs with growing batch sizes. The agent is a PPO
agent on a Navix-Empty-5x5 environment, run for 1M steps across 5 seeds. The
effective number of environments is 16 times the number of agents since each PPO
agent works on 16 environments.

Secondly, we simulate the very common operation of training many PPO

agents, each with their own subset of 16 environments. However, with NAVIX,

we do this in parallel. We set the Empty-8x8-v0 environment, and train the

agent for 1M steps. Results are shown in Figure 10.6.

We observe that training 2048 agents in NAVIX, for a total of 32 768 environ-

ments in parallel, takes less than 50s, almost 5 times faster than the original

MiniGrid implementation, which takes around 240s to train a single PPO

agent. In other words, considering the performance at 2048 agents, NAVIX

performs 2048 × 1M/49s = 668 734 693.88 steps per second (∼ 670 Million

steps/s) in batch mode, while the original Minigrid implementation performs

1M/318.01 = 3 144.65 steps per second. This is a speedup of over 200 000×.

10.4.3 Baselines

We provide additional baselines using the implementations of PPO (Schulman

et al., 2017), Double DQN (DDQN) (Hasselt et al., 2016), and Soft Actor Critic

(SAC) (Haarnoja et al., 2018) in Rejax (Liesen et al., 2024a). We optimize

hyperparameters (HP) for each algorithm and environment combination using

32 iterations of random search. Each HP configuration is evaluated with 16

different initial seeds. The HP configuration with the highest average final
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Figure 10.7: Episodic returns for a sample of NAVIX environments for DDQN,
PPO and SAC baselines. Lines are average over 32 seeds, and shaded areas show
5-95 percentile confidence intervals.

return is selected. The specific hyperparameters we searched for are shown in

Table A.14.

We run the baselines for 10M steps, across 32 seeds, with the tuned hyperpa-

rameters for the environments shown in Figure ’reffig:baselines. All algorithms

use networks with two hidden layers of 64 units. Instead of alternating be-

tween a single environment step and network update, DQN and SAC instead

perform 128 parallel environment steps and 128 network updates, each with a

new minibatch. We found that this significantly improves the runtime while

leaving the final performance unaffected.
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10.5 Summary, discussion and conclusions

The ability to run fast experiments is crucial to keep up with the state-of-

the-art in RL, and to develop new, more efficient algorithms. Recently, the

RL community has seen a shift towards more efficient environment implemen-

tations, which have historically represented the computational bottleneck of

the training process. Among these, JAX has emerged as a powerful tool to

accelerate the computation of RL environments. Craftax (Matthews et al.,

2024), gymnax (Lange, 2022), JaxMARL Rutherford et al. (2023a), whose

relationship with NAVIX we discussed in Section 10.2, are examples of this

trend.

In this work, we introduced NAVIX, a reimplementation of the Minigrid envi-

ronment suite in JAX that leverages JAX’s intermediate language representa-

tion to migrate the computation to different accelerators, such as GPUs and

TPUs. We described the design philosophy, the design pattern, the organ-

isation, and the components of NAVIX, highlighting the connections to the

ECSM design pattern, and the correspondence between the structure of its

functions and the mathematical formalism of RL.

We presented the environment interface, the list of available environments, and

the scoreboard, storing state-of-the-art results that new algorithms can refer to

avoid running also baselines, which are prone to errors and manipulations. We

showed the speed improvements of NAVIX compared to the original Minigrid

implementation, and the scalability of NAVIX with respect to the number of

agents that can be trained in parallel, or the number of environments that can

be run in parallel. Overall, batched NAVIX environments are over 200 000×

faster than the original Minigrid implementation, turning 1-week experiments

into 15-minute ones.

These improvements not only enable faster experiments, but they represent a

shift of paradigm in the way we think about RL experiments, and the way we
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design them. For example, large-scale meta-learning experiments, which were

previously unfeasible, are now possible. This can unlock very fast searches over

a space of algorithms that the designer can explore in a few days, rather than

weeks or months. Similarly, because the amount data available to RL agents

for a complex environment is mostly limited by the computational budget –

and not by the dataset size like in supervised learning – the ability to collect

more data in the same amount of time opens the door to large scale experiments

that were previously unfeasible.
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Chapter 11

Conclusions and perspectives

In this thesis, we have investigated the CAP in RL. We have shown that the

CAP is a fundamental part of an RL algorithms, and that it plays a key role

in improving the performance of the process in delayed and sparse reward

settings.

First, we have studied the CAP “problem” in RL from a theoretical perspec-

tive. We proposed a new definition of the CAP in RL and showed that it is

a fundamental part of the learning process. Then, we have proposed a new

algorithm that aims to bridge the gap between the human and the machine

learning capabilities in solving POMDPs. Finally, we have re-implemented a

seminal RL environment in JAX, which speeds up RL to the point of opening

new avenues for research in the field, in addition to a consistent, but bare

speedup.

In this chapter, we propose to reflect on this material, discuss it, and advance

hypotheses on what the CAP is currently missing to truly scale RL to very

complex and real-world problems. This will also constitute a discussion on the

limitations of the work presented in this thesis, and the perspectives for future

research.
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11.1 What are we missing?

We present these reflections in the form of Calls that we would like the RL

community to consider in future research.

Call 1 (Current solutions overfit to small problems.). From all the

works referenced in this dissertation, and also from our experiments, we can

observe a tendency in the RL literature to focus on small-scale problems. This

is understandable, as these problems are easier to solve, and they allow for a

more in-depth analysis of the algorithms, leading to a better understanding

of the underlying mechanisms. However, none of these works have shown to

be able to scale RL to very complex problems: experiments remain limited

to small-scale problems, and design choices overfit to these small problems at

hand, leading to dead ends. Despite presenting interesting results, this strategy

does not seem to lead to improvements that are consistent with the complexity

of the problems that we want to solve.

We call for more research whose core contributions do not stop at showing im-

provements in small-scale problems, but presents clear advancements in solving

very complex problems with RL, or at least presents a clear path to scaling RL

to these problems.

Call 2 (The action space is underinvestigated.). From the material sur-

veyed in Part III and from the results presented in Chapter 9, we can observe

that there is very little investigation on the impacts of different formulations

of the action space on scaling RL to complex problems. Most works focus on

how to improve predictions using more accurate, sample efficient or less noisy

influence estimators. These very ingenious methods have shown to be very

effective in improving the performance of RL algorithms. However, recent ad-

vancements in NLP have shown that: (i) the design of the action space (the

vocabulary in their case) can have a significant impact on the performance of

the learning process; and (ii) large DNN are very effective when learning large

output spaces (for example, discrete distributions with ≥ 50 000 events).
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There is a need for more research that shows the impacts of large, and poten-

tially more abstract, action spaces on the performance of RL algorithms.

Call 3 (Options are the way forward.). One promising area of research for

the CAP is the use of options. Currently, there is too much distance between

the resolution of the action space in most POMDPs and the level of abstraction

at which humans operate. Options are a way to bridge this gap, by providing

a way to operate at a higher level of abstraction. However, in the current state

of the art, the options that are currently used in RL must be specified ex-ante

for each problem, which is not scalable to a very large number of problems.

Can we learn this options set from data? Maybe from demonstrations? Or

can we hard-code a set of options that is general enough to be used in a wide

range of problems?

We must find a way to scale options to very complex problems, for example,

by learning a set of options from demonstrations, or by hard-coding a set of

options that is general enough to be used in a wide range of problems.

Call 4 (Large-scale foundation models for RL.). Another lesson that

we can learn from the NLP community is the importance of scale. The NLP

community has shown that large-scale models can learn very complex patterns,

and that they can be used as a foundation for a wide range of tasks. Fine-

tuning these models on a specific task has shown to be very effective. How

general should this model be, which world should it aim to interact with, and

what starting base skills should it have are still open problems.

There is a clear need for a large-scale foundation model for RL, that can be

efficiently fine-tuned on a wide range of problems, or that can learn in-context

how to adapt to very complex POMDPs.

Call 5 (We need to leverage demonstrations.). Demonstrations are a

very powerful source of information because they provide a useful, even if
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sometimes suboptimal, signal on how to solve a problem. This can be very

useful in the early stages of learning, when the agent does not know what to

explore, improving on both the sample efficiency and the safety of the learning

process. It is key that future research focuses on learning from action-less

demonstrations, as these are the most abundant form of data that is publicly

available.

We call for more research on how to leverage demonstrations to improve the

performance of RL algorithms.

Call 6 (RL is necessary for open-ended learning.). While demonstra-

tions are a very powerful source of information, they are not enough to face

a constant stream of new, unseen problems. The agent must be able to learn

from its own experience, and to explore the environment to discover new ways

of solving problems. While supervised learning achieving unprecedented re-

sults in a wide range of tasks, RL still is plays a fundamental role in scaling

AIs to the real world. Aligning to humans, adapting to each human, and

learning from new discoveries are a key component of our interaction with the

world. If we want to build a safe, useful, and responsible AIs that can interact

with the world as we do, we cannot resort to imitation alone, and we must

also focus on RL.

Despite its recent bearish trend in publications, RL still has a fundamental role

to play in scaling AI to the real world.

We kindly encourage the research community to join in solving these challenges

in a shared effort, and we hope that the material collected in this dissertation

can be a helpful resource to both inform future advancements in the field,

inspire new applications, and ultimately scale RL safely to the real world.
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Johan Ferret, Raphaël Marinier, Matthieu Geist, and Olivier Pietquin. Self-

attentional credit assignment for transfer in reinforcement learning. In Pro-

ceedings of the Twenty-Ninth International Joint Conference on Artificial

Intelligence, IJCAI’20, 2021a. ISBN 9780999241165.

Johan Ferret, Olivier Pietquin, and Matthieu Geist. Self-imitation advantage

learning. In AAMAS 2021-20th International Conference on Autonomous

Agents and Multiagent Systems, 2021b.

https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=tV6oBfuyLTQ


BIBLIOGRAPHY 233

Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart,

Sergey Levine, and Yarin Gal. Can autonomous vehicles identify, recover

from, and adapt to distribution shifts? In International Conference on

Machine Learning, pp. 3145–3153. PMLR, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In International Conference on Ma-

chine Learning, pp. 1126–1135. Proceedings of Machine Learning Research,

2017.

Yannis Flet-Berliac. The promise of hierarchical reinforcement learning. The

Gradient, 9, 2019.

Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and

Matthieu Geist. Adversarially guided actor-critic. arXiv preprint

arXiv:2102.04376, 2021.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. Counterfactual multi-agent policy gradients. In Proceed-

ings of the AAAI conference on artificial intelligence, volume 32, 2018.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch,

and Olivier Bachem. Brax - a differentiable physics engine for large scale

rigid body simulation. 2021. URL http://github.com/google/brax.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized deci-

sion transformer for offline hindsight information matching. In International

Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=CAjxVodl_v.

Jim Gao. Machine learning applications for data center optimization. 2014.
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Appendix A

A.1 Further related works

The literature also offers surveys on related topics. Liu et al. (2022) re-

view challenges and solutions of Goal-Conditioned Reinforcement Learning

(GCRL), and Colas et al. (2022) follow to extend GCRL to Intrinsically Mo-

tivated Goal Exploration Process (IMGEP). Both these works are relevant for

they generalise RL to multiple goals, but while goal-conditioning is a key in-

gredient of further arguments (see Section 4.2), GCRL does not aim to address

CAP directly. Barto & Mahadevan (2003); Al-Emran (2015); Mendonca et al.

(2019); Flet-Berliac (2019); Pateria et al. (2021) survey HRL. HRL breaks

down a long-term task into a hierarchical set of smaller sub-tasks, where each

sub-task can be interpreted as an independent goal. However, despite sub-

tasks providing intermediate, mid-way feedback that reduces the overall delay

of effects that characterises the CAP, these works on HRL are limited to in-

vestigate the CAP only by decomposing the problem into smaller ones. Even

in these cases, for example in the case of temporally abstract actions (Sutton

et al., 1999), sub-tasks either are not always well defined, or they require strong

domain knowledge that might hinder generalisation.



A.2. Further details on contexts 266

A.2 Further details on contexts

A contextual distribution defines a general mechanism to collect the contextual

data c (experience). For example, it can be a set of predefined demonstration,

an MDP to actively query by interaction, or imaginary rollouts produced by an

internal world model. This is a key ingredient of each method, together with its

choice of action influence and the protocol to learn that from experience. Two

algorithms can use the same action influence measure (e.g., (Klopf, 1972) and

(Goyal et al., 2019a)), but specify different contextual distributions, resulting

in two separate, often very different methods.

Formally, we represent a context as a distribution over some contextual data

C ∼ PC(C), where C is the context, and PC is the distribution induced by a

specific choice of source. Our main reference for the classification of contextual

distributions is the ladder of causality (Pearl, 2009; Bareinboim et al., 2022),

seeing, doing, imagining, and we define our three classes accordingly.

Observational distributions are distributions over a predefined set of data,

and we denote it with Pobs(C). Here, the agent has only access to passive set

of experience collection from a (possibly unknown) environment. It cannot

intervene or affect the environment in any way, but it must learn from the

data that is available: it cannot explore. This is the typical case of offline CA

methods or methods that learn from demonstrations (Chen et al., 2021), where

the context is a fixed dataset of trajectories. The agent can sample from Pobs
uniformly at random or with forms of prioritisation (Schaul et al., 2015b; Jiang

et al., 2021a). Observational distributions allow assigning credit efficiently and

safely since they do not require direct interactions with the environment and

can ignore the burden of either waiting for the environment to respond or

getting stuck into irreversible states (Grinsztajn et al., 2021). However, they

can be limited both in the amount of information they can provide and in the

overall coverage of the space of associations between actions and outcomes,
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often failing to generalise to unobserved associations (Kirk et al., 2023).

Interactive distributions are distributions defined by active interactions

with an environment, and we denote them with Pµ,π. Here, the agent can ac-

tively intervene to control the environment through the policy, which defines

a distribution over trajectories, D ∼ Pµ,π. This is the typical case of model-

free, online CA methods (Arjona-Medina et al., 2019; Harutyunyan et al.,

2019), where the source is the interface of interaction between the agent and

the environment. Interactive distributions allow the agent to make informed

decisions about which experience to collect (Amin et al., 2021) because the

space of associations between actions and outcomes is under the direct control

of the agent: they allow exploration. One interesting use of these distribu-

tions is to define outcomes in hindsight, that is, by unrolling the policy in

the environment with a prior objective and then considering a different goal

from the resulting trajectory (Andrychowicz et al., 2017). Interactive distri-

butions provide greater information than observational ones but may be more

expensive to query, they do not allow to specify all queries, such as starting

from a specific state or crossing the MDP backwards, and they might lead to

irreversible outcomes with safety concerns (Garćıa et al., 2015).

Hypothetical distributions are distributions defined by functions internal to

the agent, and we denote them with Pµ̃,π, where µ̃ is the agent’s internal state-

transition dynamic function (learned). They represent potential scenarios,

futures or pasts, that do not correspond to actual data collected from the real

environment. The agent can query the space of associations surgically and

explore a broader space of possible outcomes for a given action without having

to interact with the environment. In short, it can imagine a hypothetical

scenario, and reason about what would have happened if the agent had taken

a different action. Hypothetical distributions enable counterfactual reasoning,

that is, to reason about what would have happened if the agent had taken

a different action in a given situation. Crucially, they allow navigating the
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MDP independently of the arrow of time, and, for example, pause the process

of generating a trajectory, revert to a previous state, and then continue the

trajectory from that point. However, they can produce a paradoxical situation

in which the agent explores a region of space with high uncertainty, but relies

on a world model that, because of that uncertainty is not very accurate (Guez

et al., 2020).

A.2.1 Representing a context

Since equation (4.1) includes a context as an input a natural question arises,

“How to represent contexts?”. Recall that the purpose of the context is to two-

fold: a)to unambiguously determine the current present as much as possible,

and b) to convey information about the distribution of actions that will be

taken after the action we aim to evaluate. Section 4.3 details the reasons of

the choice. In many action influence measures (see Section 4.6), such as q-

values or advantage, the context is only the state of an MDP, or a history

if we are solving a POMDP instead. In this case representing the context is

the problem of representing a state, which is widely discussed in literature.

Notice that this is not about learning a state representation, but rather about

specifying the shape of a state when constructing and defining an MDP or an

observation and an action for a POMDP. These portion of the input addresses

the first purpose of a context.

To fulfil its second function the context may contain additional objects and

here we discuss only the documented cases, rather than proposing a theoretical

generalisation. When the additional input is a policy (Harb et al., 2020; Faccio

et al., 2021), then the problem turns to how to represent that specific object.

In the specific case of a policy Harb et al. (2020) and Faccio et al. (2021)

propose two different methods of representing a policy. In other cases, future

actions are specified using a full trajectory, or a feature of it, and in this case

the evaluation happens in hindsight. As for policies, the problem turns to
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representing this additional portion of the context.

A.3 Prompting

To develop an intuition of the LLM’s task, we show examples of prompts for

each configuration used in the experiments of Section 9.7. In particular, we

show examples of prompts for both option termination verification and option

discovery, and both game screen and cropped observations. Finally, we present

prompts where two options terminated (a subgoal is achieved): a key pick-up

and a door unlock.

A.3.1 Cropped vs gamescreen observations
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Prompt with cropped observations
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message: Never mind.

- - - -

| . . |

| . . |

- @ < |

. . . . . |

| . ( . . . |

- - - - - - -

Time: 1

Current message:

- - - -

| . . |

| @ . |

- . < |

. . . . . |

| . ( . . . |

- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 2: Example of a prompt where transitions have cropped observations.

Prompt with gamescreen observations
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Never mind.

- - - -

| . . |

| . . |

- @ < |

. . . . . |

| . ( . . . |

- - - - - - -

Agent the Footpad St:14 Dx:17 Co:17 In:9 Wi:11 Ch:7 Chaotic S:0

Dlvl:1 $:0 HP:12(12) Pw:2(2) AC:7 Xp:1/0

Time: 1

- - - -

| . . |

| @ . |

- . < |

. . . . . |

| . ( . . . |

- - - - - - -

Agent the Footpad St:14 Dx:17 Co:17 In:9 Wi:11 Ch:7 Chaotic S:0

Dlvl:1 $:0 HP:12(12) Pw:2(2) AC:7 Xp:1/0

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 3: Example of a prompt where transitions have game screen observations.
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A.3.2 Option termination vs option discovery

Prompt with cropped observations
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

Consider the following subgoals:

‘‘‘python

subgoals = {

"pick up the key": None,

"open the door": None,

}

‘‘‘

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message: Never mind.

- - - -

| . . |

| . . |

- @ < |

. . . . . |

| . ( . . . |

- - - - - - -

Time: 1

Current message:

- - - -

| . . |

| @ . |

- . < |

. . . . . |

| . ( . . . |

- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 4: Example of a prompt for instruction verification. Here, goals are
provided externally from a human.
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Prompt with cropped observations
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message: Never mind.

- - - -

| . . |

| . . |

- @ < |

. . . . . |

| . ( . . . |

- - - - - - -

Time: 1

Current message:

- - - -

| . . |

| @ . |

- . < |

. . . . . |

| . ( . . . |

- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 5: Example of a prompt for options discovery and termination verification.

A.3.3 Examples of different subgoals
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Examples of key pickup
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message: It’s a wall.

| . . |

| . . |

- - + - . < |

| . . . . . |

| . @ . . . |

- - - - - - -

Time: 1

Current message: g - a key named The Master Key of Thievery.

| . . |

| . . |

- - + - . < |

| . . . . . |

| . @ . . . |

- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 6: Example of a prompt where the transition shows a successful key pickup
subgoal.
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Examples of door unlock
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message:

- - - -

| . . |

| . . |

- - + - . < |

| . . @ . . |

| . . . . . |

- - - - - - -

Time: 1

Current message: Never mind.

- - - - - -

| > | . . |

. . | . . |

- - | - . < |

| . . @ . . |

| . . . . . |

- - - - - - -

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 7: Example of a prompt where the transition shows a successful door-
unlock subgoal.
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A.4 Responses

To give an intuition of how different models approach the task, here, we show

a series of responses to Prompt 1. Notice that, to stimulate the model to

reason about subgoals, we ask to consider its knowledge of Nethack, rather

than MiniHack.

c4ai-command-r-v01
‘‘‘python

{

’find_item’: False,

’open_door’: False,

’collect_item’: False,

’move_upstairs’: False,

’move_downstairs’: True,

’kill_monster’: False,

’find_key’: False,

’open_lock’: False,

’light_lamp’: False,

’win_game’: False

}

‘‘‘

Response 1: Example response

gemma-1.1-7b-it
## Subgoals:

- **Find a way out:** Locate and reach the exit of the map.

- **Gather useful items:** Collect any available items for future use.

- **Explore the environment:** Discover the layout of the map and potential hazards.

## Subgoal Achieved at Time: 1

‘‘‘python

{

"Find a way out": False,

"Gather useful items": True,

"Explore the environment": True,

}

‘‘‘

Response 2: Example response

Mistral-7B-Instruct-v0.2
Based on my understanding of the given environment and the task, the subgoals for the agent are as follows:

1. Exploration: Reach all the unvisited parts of the map.

2. Collection: Gather all the useful items (pick-axe, key, lamp, etc.)

3. Door Opening: Open all the doors (locked or not) to progress through the map.

Now, let’s analyze the given gameplay sequence and determine if any of the subgoals have been achieved at Time: 1.

‘‘‘python

{

"Exploration": False,

"Collection": False,

"Door Opening": False

}

‘‘‘

At Time: 1, the agent has moved to a new location and has not interacted with any items or doors. Therefore, none of

the subgoals have been achieved at this point.

Response 3: Example response
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Mixtral-8x7B-Instruct-v0.1
Based on my knowledge of NetHack, the task of the agent can be broken down into the following subgoals:

1. Movement: The agent needs to move through the game environment to reach the goal.

2. Collection: The agent needs to collect useful items that can help it in achieving the goal.

3. Door manipulation: The agent needs to open doors to explore new areas.

4. Staircase navigation: The agent needs to navigate staircases to move to different levels of the game.

5. Key collection: The agent needs to collect keys to open locked doors.

6. Winning the game: The agent needs to reach the final goal and win the game.

Based on the given game transition, the subgoals achieved at Time: 1 are:

‘‘‘python

{

"Movement": True,

"Collection": False,

"Door manipulation": False,

"Staircase navigation": False,

"Key collection": False,

"Winning the game": False,

}

‘‘‘

Explanation:

* Movement: The agent moved from the bottom left corner of the room to the bottom right corner of the room, so this

subgoal is achieved.

* Collection: The agent did not collect any item in this transition, so this subgoal is not achieved.

* Door manipulation: The agent did not encounter any doors in this transition, so this subgoal is not achieved.

* Staircase navigation: The agent did not encounter any staircases in this transition, so this subgoal is not

achieved.

* Key collection: The agent did not collect any keys in this transition, so this subgoal is not achieved.

* Winning the game: The agent did not reach the final goal in this transition, so this subgoal is not achieved.

Response 4: Example response

Llama-3-8B-Instruct
Based on my knowledge of NetHack, I break down the task of the agent into the following subgoals:

* Find a useful item (pick-axe, key, lamp...)

* Find a ladder or staircase up

* Find a ladder or staircase down

* Open a door (if it’s closed)

* Unlock a door (if it’s locked)

* Reach the goal (win the game)

Now, considering the given game transition, I determine if any of the subgoals has been achieved at Time: 1 or not:

{

’Find a useful item’: False,

’Find a ladder or staircase up’: False,

’Find a ladder or staircase down’: True,

’Open a door (if it\’s closed)’: False,

’Unlock a door (if it\’s locked)’: False,

’Reach the goal’: False

}

Note that the agent has moved north and then east, but no new items or doors have been discovered, and no doors have

been opened or unlocked. However, the agent is now closer to the ladder or staircase down, which is a step towards

reaching the goal.

Response 5: Example response
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Llama-3-70B-Instruct
Based on my knowledge of NetHack, I break down the task of the agent into the following subgoals:

* Reach the staircase/ladder: The agent needs to find a way to move up or down the levels to progress in the game.

* Collect useful items: The agent needs to collect items such as pick-axes, keys, and lamps to overcome obstacles and

access new areas.

* Unlock doors: The agent needs to find keys to unlock closed doors and access new areas.

* Avoid obstacles: The agent needs to avoid walls, locked doors, and other obstacles that can hinder its progress.

* Reach the goal: The agent needs to reach the final goal, which is not specified in this extract but is typically the

treasure or the exit.

Now, considering the given game transition, I determine if any of the subgoals have been achieved at Time: 1 or not:

{

’Reach the staircase/ladder’: False,

’Collect useful items’: False,

’Unlock doors’: False,

’Avoid obstacles’: True,

’Reach the goal’: False,

}

The agent has avoided obstacles by moving north and not hitting the wall, but none of the other subgoals have been

achieved at Time: 1.

Response 6: Example prompt for option discovery, where goals are not provided
externally.
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A.5 Scale

In this section we show how the F1 score varies according to the number of

parameters of the LLM. For a fair analysis, we only compare models of the

same family, where multiple sizes of the model are available. Namely, we con-

sider: Meta-Llama-3-8B-Instruct and Meta-Llama-3-70B-Instruct ; gemma-

1.1-2b-it and gemma-1.1-7b-it ; Mistral-7B-Instruct-v0.2 and Mixtral-8x7B-

Instruct-v0.1. Since c4ai-command-r-plus does not fit an Nvidia A100 80Gb,

we exclude c4ai-command-r-v01 from the comparison.

(a) (b)

(c) (d)

Figure A.1: F1 score as a function of the LLM size.
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A.6 Ablations

In this section, we include results of ablations, to understand which part of

the prompt affect the performance the most. We present two ablations:

(i) With and without a token separator to isolate each cell in the grid ob-

servation.

(ii) With and without including actions in the transition.

A.6.1 Tokenisation

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1 0.73 0.65 0.75 0.71 121 45 40 50
c4ai-command-r-v01 0.66 0.63 0.87 0.53 90 72 13 81
gemma-1.1-7b-it 0.66 0.64 0.89 0.52 89 74 11 82
Mistral-7B-Instruct-v0.2 0.58 0.60 0.97 0.41 70 83 2 101
Meta-Llama-3-8B-Instruct 0.54 0.56 0.90 0.39 66 78 7 105
gemma-1.1-2b-it 0.53 0.49 0.69 0.43 74 52 33 97
Meta-Llama-3-70B-Instruct 0.16 0.39 1.00 0.09 15 85 0 156
c4ai-command-r-plus 0.02 0.33 0.40 0.01 2 82 3 169

Random 0.33 0.33 0.33 0.33

Table A.1: Performance of LLM annotations with game screen observations,
subgoals provided in the prompt, and no token separator.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1 0.76 0.68 0.77 0.75 128 47 38 43
gemma-1.1-7b-it 0.76 0.68 0.77 0.75 128 46 39 43
c4ai-command-r-v01 0.74 0.69 0.83 0.67 115 62 23 56
Meta-Llama-3-70B-Instruct 0.71 0.68 0.89 0.60 102 72 13 69
gemma-1.1-2b-it 0.68 0.57 0.67 0.68 116 29 56 55
c4ai-command-r-plus 0.64 0.61 0.84 0.51 88 68 17 83
Mistral-7B-Instruct-v0.2 0.59 0.61 0.99 0.42 72 84 1 99
Meta-Llama-3-8B-Instruct 0.49 0.52 0.87 0.34 58 76 9 113

Random 0.33 0.33 0.33 0.33

Table A.2: Performance of LLM annotations with cropped observations, subgoals
provided in the prompt, and no token separator.
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Examples of prompt with no token separator
The environment is MiniHack.

I will present you with a short extract of a gameplay. At each timestep, symbols represent the following items:

- "." represents a floor tile.

- "|" can represent either a wall, a vertical wall, an open door.

- "-" can represent either the bottom left corner (of a room), bottom right corner (of a room), wall, horizontal wall,

wall, top left corner (of a room), op right corner (of a room).

- "+" represents a closed door. Doors can be locked, and require a key to open.

- "(" represents a useful item (pick-axe, key, lamp...)

- "<" represents a ladder or staircase up.

- ">" represents a ladder or staircase down.

The task of the agent is to win the game.

First, based on your knowledge of NetHack, break down the task of the agent into subgoals.

Then, consider the following game transition, which might or might not contain these subgoals.

Determine if any of the subgoals is achieved at Time: 1 or not.

Report your response in a dictionary containing the name of the subgoals as keys and booleans as value. For example:

‘‘‘python

{

<name of goal>: <bool>,

}

Observation Sequence:

<gameplay>

Time: 0

Current message: Never mind.

----

|..|

|..|

-@<|

.....|

|.(...|

-------

Time: 1

Current message:

----

|..|

|@.|

-.<|

.....|

|.(...|

-------

</gameplay>

I will not consider anything that is not in the dictionary.

You have only one shot at this, and you cannot ask for clarifications.

Prompt 8: Example of a prompt where the transition shows a successful door-
unlock subgoal.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.81 0.71 0.72 0.92 157 25 60 14
c4ai-command-r-plus 0.79 0.74 0.86 0.73 125 64 21 46
gemma-1.1-7b-it 0.75 0.63 0.68 0.84 144 17 68 27
Mixtral-8x7B-Instruct-v0.1 0.72 0.61 0.69 0.76 130 27 58 41
c4ai-command-r-v01 0.63 0.58 0.76 0.54 92 56 29 79
Meta-Llama-3-8B-Instruct 0.56 0.56 0.86 0.41 70 74 11 101
Mistral-7B-Instruct-v0.2 0.52 0.54 0.83 0.38 65 72 13 106
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Random 0.33 0.33 0.33 0.33

Table A.3: Performance of LLM annotations with game screen observations,
subgoals suggested by the LLM, and no token separator.
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Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.83 0.74 0.74 0.94 161 29 56 10
gemma-1.1-7b-it 0.83 0.72 0.71 0.98 168 17 68 3
Mixtral-8x7B-Instruct-v0.1 0.78 0.68 0.72 0.85 146 27 58 25
c4ai-command-r-plus 0.75 0.69 0.81 0.71 121 56 29 50
Meta-Llama-3-8B-Instruct 0.69 0.59 0.70 0.68 116 35 50 55
c4ai-command-r-v01 0.66 0.57 0.70 0.63 107 39 46 64
Mistral-7B-Instruct-v0.2 0.54 0.47 0.65 0.47 80 41 44 91
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Random 0.33 0.33 0.33 0.33

Table A.4: Performance of LLM annotations with cropped observations, subgoals
suggested by the LLM, and no token separator.
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(a)

(b)

(c)

(d)

Figure A.2: Variation in F1 score between the baseline results presented in Ta-
bles 9.1-9.4 and the results without a token separator in Tables A.1-A.4. Yellow
bars indicate worse performance without a separator. and blue otherwise.
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(a) (b)

Figure A.3: Tokenisation of the same prompt, with (a) and without (b) a token
separator (whitespace).



A.6. Ablations 284

A.6.2 Actions

In this section we investigate the impacts of explicitly adding the action at to

the transition (st, at, st+1), which was left implicit in the main experiments in

Section 9.6.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1 0.83 0.79 0.89 0.77 132 69 16 39
Mistral-7B-Instruct-v0.2 0.67 0.66 0.99 0.50 86 84 1 85
gemma-1.1-7b-it 0.66 0.66 0.97 0.50 86 82 3 85
c4ai-command-r-v01 0.66 0.64 0.93 0.51 87 78 7 84
Meta-Llama-3-8B-Instruct 0.61 0.62 0.97 0.44 76 83 2 95
Meta-Llama-3-70B-Instruct 0.46 0.53 0.98 0.30 51 84 1 120
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Table A.5: Performance of LLM annotations with game screen observations,
subgoals provided in the prompt, and the transition includes actions.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Mixtral-8x7B-Instruct-v0.1 0.80 0.75 0.86 0.75 128 64 21 43
gemma-1.1-7b-it 0.75 0.68 0.79 0.72 123 52 33 48
c4ai-command-r-v01 0.72 0.68 0.86 0.62 106 68 17 65
gemma-1.1-2b-it 0.71 0.62 0.73 0.69 118 42 43 53
Mistral-7B-Instruct-v0.2 0.66 0.66 0.98 0.50 86 83 2 85
Meta-Llama-3-70B-Instruct 0.64 0.59 0.78 0.54 92 59 26 79
Meta-Llama-3-8B-Instruct 0.50 0.54 0.90 0.35 60 78 7 111

Table A.6: Performance of LLM annotations with cropped observations, subgoals
provided in the prompt, and the transition includes actions.

Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.85 0.79 0.80 0.91 155 46 39 16
Mixtral-8x7B-Instruct-v0.1 0.79 0.69 0.72 0.86 147 29 56 24
Meta-Llama-3-8B-Instruct 0.78 0.66 0.68 0.91 155 13 72 16
gemma-1.1-7b-it 0.75 0.64 0.69 0.82 141 22 63 30
Mistral-7B-Instruct-v0.2 0.71 0.61 0.70 0.71 122 33 52 49
c4ai-command-r-v01 0.71 0.67 0.86 0.60 102 69 16 69
gemma-1.1-2b-it 0.00 0.33 0.00 0.00 0 85 0 171

Table A.7: Performance of LLM annotations with game screen observations,
subgoals suggested by the LLM, and the transition includes actions.
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Annotator F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ TP ↑ TN ↑ FP ↓ FN ↓

Human 1.00 1.00 1.00 1.00 171 85 0 0

Meta-Llama-3-70B-Instruct 0.86 0.80 0.82 0.91 155 50 35 16
Mixtral-8x7B-Instruct-v0.1 0.83 0.75 0.76 0.91 156 35 50 15
gemma-1.1-7b-it 0.82 0.72 0.73 0.92 158 27 58 13
c4ai-command-r-v01 0.74 0.64 0.72 0.76 130 35 50 41
Mistral-7B-Instruct-v0.2 0.72 0.63 0.74 0.70 120 42 43 51
Meta-Llama-3-8B-Instruct 0.53 0.46 0.63 0.46 79 39 46 92
gemma-1.1-2b-it 0.42 0.48 0.83 0.28 48 75 10 123

Table A.8: Performance of LLM annotations with cropped observations, subgoals
suggested by the LLM, and the transition includes actions.
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(a)

(b)

(c)

(d)

Figure A.4: Variation in F1 score between the baseline results presented in Ta-
bles 9.1-9.4 and the results where prompts also include the action in Tables A.5-A.8.
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A.7 Details on NAVIX systems

Systems are functions that operate on the collective state of all entities, defin-

ing the rules of the interactions between them. In designing NAVIX, we aimed

to maintain a bijective relationship between the systems and their respective

mathematical formalism in RL. This makes it easier to translate the mathe-

matical formalism into code, and vice versa, connecting the implementation

to the theory. NAVIX includes the following systems: 1. Intervention: a

function that updates the state of the entities according to the actions taken

by the agents. 2. Transition: a function that updates the state of the enti-

ties according to the MDP state transitions. 3. Observation: a function that

generates the observations that the agents receive. 4. Reward: a function that

computes the rewards that the agents receive. 5. Termination: a function

that determines if the episode is terminated. We now describe the systems

formally.

The intervention is a function I : S × A → S that updates the state of the

entities according to the actions taken by the agents. This corresponds to the

canonical decision in an MDP.

The transition is a function µ : S×A → S that updates the state of the entities

according to the MDP state transitions. This corresponds to the canonical

state transition kernel in an MDP.

The observation is a function O : S → O that generates the observations

that the agents receive. NAVIX includes multiple observation functions, each

generating a different type of observation, for example, a first-person view,

a top-down view, or a third-person view, both in symbolic and pixel format.

We provide both full and partial observations, allowing to cast a NAVIX en-

vironment both as an MDP or as a POMDP, depending on the needs of the

algorithm. This follows the design of the original MiniGrid suite.



A.8. Reusable patterns 288

The reward is a function R : S × A → R that computes the rewards that the

agents receive. Likewise, the termination is a function γ : S → {0, 1} that

determines if the episode is terminated. We include both the reward and the

termination functions necessary to reproduce all MiniGrid environments. Both

these systems rely on the concept of events, representing a goal to achieve. An

event is itself an entity signalling that a particular state of the environment

has been reached. For example, it can indicate that the agent has reached a

particular cell, has picked up a particular object, or that the agent performed

a certain action in a particular state.

We provide a summary of the implemented systems in NAVIX in Ta-

bles A.9, A.10, and A.11 for the observation, reward, and termination systems,

respectively.

A.8 Reusable patterns

Here we provide some useful patterns that users can reuse as-they-are or modify

to suit their needs. In particular, we show how to jit the full interaction

loop of a NAVIX environment in Code 2, and how to run multiple seeds in

parallel in Code 3. Further examples, including how to jit a whole training

loop with a JAX-based agent, and how to automate hyperparameter search,

are available in the NAVIX documentation at https://epignatelli.com/

navix/examples/getting_started.html.

https://epignatelli.com/navix/examples/getting_started.html
https://epignatelli.com/navix/examples/getting_started.html
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A.8.1 Jitting full interaction loops

import navix as nx

# init a NAVIX environment

env = nx.make("Navix-KeyCorridorS6R3-v0")

# sample a starting state

timestep = env.reset(key)

# jitting the step function

step_env = jax.jit(env.step)

# unroll the environment for 1000 steps

timestep, _ = jax.lax.scan(

lambda timestep, _: (unroll(timestep, i % 6), ()),

timestep,

(timestep, jnp.arange(1000))

)

Code 2: Example code to jit a Navix-Empty-5x5-v0 environment.

A.8.2 Running multiple seeds in parallel

import navix as nx

env = nx.make("Navix-KeyCorridorS6R3-v0")

# define the run function

def run(key):

def step(state, action):

timestep, key = state

key, subkey = jax.random.split(key)

action = jax.random.randint(subkey, (), 0, env.action_space.n)

return (env.step(timestep, action), key), ()

# unroll the environment for 1000 steps

timestep = env.reset(key)

timestep, _ = jax.lax.scan(

step,

timestep,

((timestep, key) jnp.arange(1000)),

)

return timestep

seeds = jax.random.split(jax.random.PRNGKey(0), 1000)

batched_end_steps = jax.jit(jax.vmap(run))(seeds)

Code 3: Example code to jit a Navix-Empty-5x5-v0 environment.
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A.9 Customising NAVIX environments

NAVIX is designed to be highly customisable, allowing users to create new

environments by combining existing entities and systems. In this section, we

provide examples of how to customise NAVIX environments by using different

systems.

import navix a nx

reward_fn = nx.rewards.compose(

nx.rewards.on_goal_reached(),

nx.rewards.on_lava_fall()

)

env = nx.make(

"Navix-Empty-5x5-v0",

reward_fn=reward_fn)

Code 4: Example code to create a Navix-Empty-5x5-v0 environment with a cus-
tom reward function. See Table A.10 for a list of implemented reward functions.

import navix as nx

env = nx.make(

"Navix-Empty-5x5-v0",

observation_fn=nx.observations.rgb())

Code 5: Example code to create a Navix-Empty-5x5-v0 environment with a cus-
tom observation function. See Table A.9 for a list of implemented observation func-
tions.

import navix as nx

env = nx.make(

"Navix-Empty-5x5-v0",

termination_fn=nx.terminations.on_goal_reached())

Code 6: Example code to create a Navix-Empty-5x5-v0 environment with a cus-
tom termination function. See Table A.11 for a list of implemented termination
functions.

For example, to create a new environment where the agent has to reach a

goal while avoiding lava, we can combine the Goal and Lava entities with the
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import jax, navix as nx

class CustomComponent(nx.Componnet):

"""My custom component."""

custom_property: jax.Array = nx.components.field(shape=())

Code 7: Example code to extend NAVIX by creating a custom component. Notice
that the property must have a type annotation and specify a shape.

Reward system, as shown in Code 4.

Alternatively, to use a different observation function, we can use the

Observation system, as shown in Code 5.

Finally, to terminate the environment, for example, only when the agent

reaches the goal, but not when it falls into the lava, we can use the Termination

system, as shown in Code 6.

These examples can be extended to create more complex environments by

combining different systems for the same environment configuration.

A.10 Extending NAVIX environments

NAVIX is designed to be easily extensible. Users can create new entities,

components, systems, and full environments by implementing the necessary

functions. In this section, we provide templates to extend NAVIX environ-

ments. In particular, Code 8 shows how to create a custom environment,

Code 7 shows how to create a custom component, Code 9 shows how to create

a custom entity, and Code 10 shows how to create custom systems.
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import jax, navix as nx

class CustomEnv(nx.Environment):

def _reset(self, key: jax.Array) -> nx.Timestep:

"""Reset the environment."""

# create your grid, place your entities, define your mission

return timestep

nx.registry.register_env(

"CustomEnv",

lambda *args, **kwargs: CustomEnv.create(

observation_fn=nx.observations.symbolic(),

reward_fn=nx.rewards.on_goal_reached(),

termination_fn=nx.terminations.on_goal_reached(),

)

)

Code 8: Example code to extend NAVIX by creating a custom environment. The
reset function allows to generate a custom starting state, after which the envi-

ronment will evolve according to the usual systems: intervention, transition, reward
and termination functions. Notice that it is convenient to use the environment con-
structor create to automatically set non-orthogonal properties (e.g. observation
space and observation function).

import jax, navix as nx

class CustomEntity(nx.Entity, CustomComponent):

"""My custom entity."""

@property

def walkable(self) -> jax.Array:

return jnp.broadcast_to(jnp.asarray(False), self.shape)

@property

def transparent(self) -> jax.Array:

return jnp.broadcast_to(jnp.asarray(False), self.shape)

@property

def sprite(self) -> jax.Array:

sprite = # the address of your sprite, e.g., SPRITES_REGISTRY[Entities.WALL]

return jnp.broadcast_to(sprite[None], (*self.shape, *sprite.shape))

@property

def tag(self) -> jax.Array:

entity_id = # the id of your entity, e.g., EntityIds.WALL

return jnp.broadcast_to(entity_id, self.shape)

Code 9: Example code to extend NAVIX by creating a custom entity. Notice that
four properties must be implemented: walkable, transparent, sprite, and tag.
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import jax, navix as nx

def my_reward_function(state: nx.State, action: nx.Action, new_state: nx.State) -> jax.Array:

"""My custom reward function."""

# do stuff

return reward # f32[]

def my_termination_function(state: nx.State, action: nx.Action, new_state: nx.State) -> jax.Array:

"""My custom termination function."""

# do stuff

return termination # bool[]

def my_observation_function(state: nx.State) -> jax.Array:

"""My custom observation function."""

# do stuff

return observation # f32[]

def my_intervention_function(state: nx.State, action: nx.Action) -> nx.State:

"""My custom intervention function."""

# do stuff

return new_state # State

def my_transition_function(state: nx.State) -> nx.State:

"""My custom transition function."""

# do stuff

return new_state # State

Code 10: Example code to extend NAVIX by creating custom systems.

A.11 Additional results on NAVIX speedup

As reported in Section 10.4.1, NAVIX provides a significant speedup compared

to the original Minigrid implementation. These improvements are due to both

the migration of the computation to the GPU via XLA, which optimises the

computation graph for the specific accelerator, and the batching of the environ-

ments. In Figure 10.3 we have shown the overall speedup. Here we provide an

ablation study to understand the contribution of the batching and the parallel

environments to the overall speedup. Figure A.5 shows the speedup of NAVIX

compared to the original Minigrid implementation without batching, that is

when only one environment is used. This is a suboptimal and unusual case in

many RL training settings, where instead the tendency is to use multiple en-

vironments in parallel. We can observe that, while the results heavily depend
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on the environment and most of the NAVIX environments are still faster, the

biggest contribution for the speedup is due to efficient batching.

Figure A.5: Ablation. Speedup of NAVIX compared to the original Minigrid
implementation without batching. The identifiers on the x-axis correspond to the
environments as reported in Table A.12. Lower is better.
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Observation function Shape Description

symbolic i32[H, W, 3] The canonical grid encod-
ing observation from Min-
iGrid.

symbolic first person i32[R, R, 3] A first-person view of the
environment in symbolic
format.

rgb u8[32 * H, 32 * W, 3] A fully visible image of
the environment in RGB
format.

rgb first person u8[32 * R, 32 * R, 3] A first-person view of the
environment in RGB for-
mat.

categorical i32[H, W] A grid of entities ID in
the environment.

categorical first personi32[R, R] A first-person view of the
grid of entities ID.

Table A.9: Implemented observation functions in NAVIX.

Reward function Description

on goal reached +1 when a Goal entity and a Player entity have the
same position

on lava fall −1 when a Lava entity and a Player entoty have the
same position

on door done +1 when the done action is performed in front of a
door with the colour specific in the mission

free 0 everywhere
action cost −costa at every action taken, except done
time cost −costt at every step

Table A.10: Implemented reward functions in NAVIX.

Termination function Description

on goal reached Terminates when a Goal entity and a Player entity
have the same position

on lava fall Terminates when a Lava entity and a Player entity
have the same position

on door done Terminates when the done action is performed in
front of a door with the colour specific in the
mission

free 0 everywhere

Table A.11: Implemented termination functions in NAVIX.
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A.12 Additional Tables

X tick Env id

0 Navix-Empty-5x5-v0
1 Navix-Empty-6x6-v0
2 Navix-Empty-8x8-v0
3 Navix-Empty-16x16-v0
4 Navix-Empty-Random-5x5
5 Navix-Empty-Random-6x6
6 Navix-DoorKey-5x5-v0
7 Navix-DoorKey-6x6-v0
8 Navix-DoorKey-8x8-v0
9 Navix-DoorKey-16x16-v0
10 Navix-FourRooms-v0
11 Navix-KeyCorridorS3R1-v0
12 Navix-KeyCorridorS3R2-v0
13 Navix-KeyCorridorS3R3-v0
14 Navix-KeyCorridorS4R3-v0
15 Navix-KeyCorridorS5R3-v0
16 Navix-KeyCorridorS6R3-v0
17 Navix-LavaGapS5-v0
18 Navix-LavaGapS6-v0
19 Navix-LavaGapS7-v0
20 Navix-SimpleCrossingS9N1-v0
21 Navix-SimpleCrossingS9N2-v0
22 Navix-SimpleCrossingS9N3-v0
23 Navix-SimpleCrossingS11N5-v0
24 Navix-Dynamic-Obstacles-5x5
25 Navix-Dynamic-Obstacles-6x6
26 Navix-Dynamic-Obstacles-8x8
27 Navix-Dynamic-Obstacles-16x16
28 Navix-DistShift1-v0
29 Navix-DistShift2-v0

Table A.12: Correspondence between the x-ticks in Figure 10.3 and the environ-
ment ids.
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Env-id Class Height Width Reward

Navix-Empty-5x5-v0 Empty 5 5 R1

Navix-Empty-6x6-v0 Empty 6 5 R1

Navix-Empty-8x8-v0 Empty 8 8 R1

Navix-Empty-16x16-v0 Empty 16 16 R1

Navix-Empty-Random-5x5 Empty 5 5 R1

Navix-Empty-Random-6x6 Empty 6 6 R1

Navix-Empty-Random-8x8 Empty 8 8 R1

Navix-Empty-Random-16x16 Empty 16 16 R1

Navix-DoorKey-5x5-v0 DoorKey 5 5 R1

Navix-DoorKey-6x6-v0 DoorKey 6 6 R1

Navix-DoorKey-8x8-v0 DoorKey 8 8 R1

Navix-DoorKey-16x16-v0 DoorKey 16 16 R1

Navix-DoorKey-Random-5x5 DoorKey 5 5 R1

Navix-DoorKey-Random-6x6 DoorKey 6 6 R1

Navix-DoorKey-Random-8x8 DoorKey 8 8 R1

Navix-DoorKey-Random-16x16 DoorKey 16 16 R1

Navix-FourRooms-v0 FourRooms 17 17 R1

Navix-KeyCorridorS3R1-v0 KeyCorridor 3 7 R1

Navix-KeyCorridorS3R2-v0 KeyCorridor 5 7 R1

Navix-KeyCorridorS3R3-v0 KeyCorridor 7 7 R1

Navix-KeyCorridorS4R3-v0 KeyCorridor 10 10 R1

Navix-KeyCorridorS5R3-v0 KeyCorridor 13 13 R1

Navix-KeyCorridorS6R3-v0 KeyCorridor 16 16 R1

Navix-LavaGap-S5-v0 LavaGap 5 5 R2

Navix-LavaGap-S6-v0 LavaGap 6 6 R2

Navix-LavaGap-S7-v0 LavaGap 7 7 R2

Navix-Crossings-S9N1-v0 Crossings 9 9 R2

Navix-Crossings-S9N2-v0 Crossings 9 9 R2

Navix-Crossings-S9N3-v0 Crossings 9 9 R2

Navix-Crossings-S11N5-v0 Crossings 11 11 R2

Navix-Dynamic-Obstacles-5x5 Dynamic-Obstacles 5 5 R3

Navix-Dynamic-Obstacles-5x5 Dynamic-Obstacles 5 5 R3

Navix-Dynamic-Obstacles-6x6 Dynamic-Obstacles 6 6 R3

Navix-Dynamic-Obstacles-6x6 Dynamic-Obstacles 6 6 R3

Navix-Dynamic-Obstacles-8x8 Dynamic-Obstacles 8 8 R3

Navix-Dynamic-Obstacles-16x16 Dynamic-Obstacles 16 16 R3

Navix-DistShift1-v0 DistShift 6 6 R2

Navix-DistShift2-v0 DistShift 8 8 R2

Navix-GoToDoor-5x5-v0 GoToDoor 5 5 R1

Navix-GoToDoor-6x6-v0 GoToDoor 6 6 R1

Navix-GoToDoor-8x8-v0 GoToDoor 8 8 R1

Table A.13: List of environments available in NAVIX. Env-id denotes the id to
instantiate the environment. Here, R1 is the reward function for goal achievement – 1
when the agent is on the green square, and 0 otherwise. R2 is the reward function for
goal achievement and lava avoidance, adding−1 when the agent is on the lava square.
R3 is the reward function for goal achievement and dynamic obstacles avoidance,
adding −1 when the agent is hit by a flying object. All environments terminate
when the reward is not 0, for example, on goal achievement, or on lava collision.
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A.13 Additional details on baselines

Algorithm Fitted hyperparameters

PPO #envs, #steps, #epochs, #minibatches, discount factor, λ (GAE),
grad. norm clip,
norm. obs., activation function

DQN batch size, target network update freq., discount factor, exploration
fraction,
final ε, grad. norm clip, norm. obs., activation function

SAC batch size, discount factor, τ (Polyak update), target entropy ratio,
norm. obs.,
activation function

Table A.14: Fitted hyperparameters for PPO, DQN, and SAC.

Details on each hyperparameter set, for each environment and each algorithm

are available at https://github.com/keraJLi/rejax/tree/main/configs.

https://github.com/keraJLi/rejax/tree/main/configs
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