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Introduction
Multiple sclerosis (MS) is a chronic neurological dis-
order characterised by demyelination and neurode-
generation resulting in physical and cognitive 
disability.1 Cognitive impairment can be present at all 
stages and subtypes of the disease, affecting 40%–
70% of patients2 and is linked to higher unemploy-
ment rates, and lower quality of life.3

Magnetic resonance imaging (MRI) studies have 
demonstrated associations between cognitive 
decline and brain atrophy in MS patients, under-
scoring neurodegeneration as a key driver of 

cognitive decline, in addition to inflammation and 
demyelination.4 Recently, optical coherence tomog-
raphy (OCT) has gained attention as a potential tool 
for monitoring neurodegeneration in MS. OCT esti-
mates the thickness of the retinal nerve fibre layer 
(RNFL), which is composed of the unmyelinated 
axons of retinal ganglion cells, and the ganglion 
cell-inner plexiform layer (GCIPL), which contains 
the cell bodies of the retinal ganglion cells and their 
synapses. Specifically, in the absence of damage, 
such as optic neuritis (ON), the RNFL and GCIPL 
are thought to reflect central nervous system (CNS) 
structure.5
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Background: Cognitive decline in multiple sclerosis (MS) is associated with neuro-axonal loss, quan-
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Inner retinal thinning has been linked to brain atro-
phy, notably grey matter (GM), but also white matter 
(WM) and lesion volumes.6 Moreover, several studies 
have reported associations between thinning on reti-
nal OCT measures and worse cognitive perfor-
mance,7–11 supporting the role of OCT-derived 
measures as indirect biomarkers of CNS degenera-
tion. However, other studies did not confirm these 
findings.12,13 These inconsistent results relate in part 
to the inclusion of mixed clinical subtypes, and differ-
ent cognitive domains assessed across studies. 
Importantly, given that the role of OCT as a mirror of 
CNS degeneration depends strictly on the absence of 
ON-related thinning, differences in classifications of 
affected and non-affected eyes may further contribute 
to previous inconsistent findings. Indeed, Davion 
et al.14 employed MRI with double inversion recovery 
acquisition to account for subclinical ON and found 
that the association between OCT and clinical param-
eters was just a reflection of asymptomatic ON, thus 
mandating a stricter approach to the classification of 
non-affected eyes when evaluating OCT as a measure 
of CNS neurodegeneration.

It also remains unclear whether OCT measures offer 
unique explanatory variance complementary to 
MRI. In clinical practice, where time and resources 
are limited, it might be prudent to determine the util-
ity of adding OCT to MRI to explain cognitive 
dysfunction.

This study aimed to (1) establish the association 
between OCT measures and cognitive performance in 
relapsing-remitting MS (RRMS) patients and (2) 
investigate the added value of OCT when used with 
MRI in explaining cognitive performance. We 
employed strict methods to classify non-affected eyes 
by taking recent guidelines on inter-eye difference 
(IED) cut-off points into consideration.15 We used the 
Brief International Cognitive Assessment for MS 
(BICAMS) to assess cognitive performance.16

Methods

Patients
We recruited consecutive RRMS patients who initi-
ated a disease-modifying therapy (DMT) at the 
National Hospital for Neurology and Neurosurgery 
(NHNN), University College London, United 
Kingdom.

Inclusion criteria were as follows: (1) clinically defi-
nite RRMS diagnosis according to the 2017 McDonald 
Criteria17 and (2) within 3 months from initiation of a 

new DMT for MS at the NHNN. Exclusion criteria 
were as follows: (1) clinical history of bilateral ON; 
(2) known ophthalmological comorbidities such as 
glaucoma,18 as per the OSCAR-IB criteria; (3) refrac-
tive errors >6 or <−6 dioptres; (4) use of steroid 
therapy in the last 3 months; (5) history of learning 
disability or major psychiatric conditions; and (6) use 
of cognitively altering drugs, such as antidepressants 
or lisdexamfetamine.

Ethical approval for the study was granted by the 
Health Research Authority (HRA), and Health and 
Care Research Wales (HCRW) on 21 June 2019 (19/
WA/0157; IRAS code: 257366, EDGE number: 
121353). All patients provided written informed 
consent.

Procedure
Patients were invited for a study visit at baseline. 
Clinical data were collected through patient inter-
views and review of medical records including demo-
graphics, disease duration, DMT, relapse history and 
ON history. All participants underwent cognitive test-
ing, physical examination, MRI and OCT (see subse-
quent sections). We aimed to complete all assessments 
on the same day, but where this was not possible, a 
3-month delay was accepted.

Cognitive and clinical assessments
Patients underwent cognitive testing with the 
BICAMS,16 which comprised: (1) Symbol Digit 
Modalities Test (SDMT), measuring processing 
speed; (2) the first three recall trials of the Brief 
Visuospatial Memory Test Revised (BVMT-R), meas-
uring visual learning memory; and (3) the first five 
trials of the California Verbal Learning Test, Second 
Edition (CVLT-II), measuring verbal learning.

Age, sex and years of education were used to convert 
raw in z-scores for each participant according to avail-
able normative data.19 A test score was considered 
impaired if below 1.5 standard deviations from the 
mean. Patients’ physical disability was assessed by a 
trained neurologist using the Expanded Disability 
Status Scale (EDSS).20

MRI protocol
MRI was performed using a 3 Tesla Philips Ingenia 
CX MRI system (Philips Medical Systems, Best, 
Netherlands) with the standard NV 16-channel coil. 
The brain MRI protocol is reported in Supplemental 
Material (S1).
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Images were pre-processed as follows: lesions were 
defined using the automated lesion delineation soft-
ware, nicMS,21 using three-dimensional (3D) 
T2-FLAIR images as input. All lesion masks were 
manually inspected and corrected where necessary, 
and lesion load was calculated as the total volume of 
focal lesions. Lesion filling of 3D T1-Turbo Field 
Echo (TFE) images was then performed, and subse-
quently, images were segmented into GM and WM 
tissue using the Geodesic Information Flow soft-
ware22 and tissue volumes (mm3) were extracted 
using NiftySeg software. All tissue volumes were cor-
rected by total intracranial volume.

OCT
The OCT protocol is reported following the Advised 
Protocol for OCT Study Terminology and Elements 
recommendations (APOSTEL) version 2.0.23

Retinal images were acquired in a dark room by 
trained operators using a Spectral Domain (SD)-OCT 
machine (Heidelberg Spectralis, software V6.16.2). 
The OCT scanning protocol is reported in 
Supplemental Material (S2).18

Information about ON history was obtained by patient 
interviews and review of medical records. Patients 
with bilateral ON history were excluded. We sought 
to prioritise identification of unaffected eyes, and 
therefore, we applied an absolute threshold of peri-
papillary retinal nerve fibre layer (pRNFL) and an 
IED threshold. We used published normative data24 to 
threshold pRNFL values of ⩽75 µm to signify optic 
neuropathy at a 99% confidence interval. For patients 
with a clinical history of unilateral ON, the other eye 
was considered unaffected where pRNFL > 75 µm. 
For eyes without ON history, we applied stringent cri-
teria to ensure that unaffected eyes were not contami-
nated with affected eyes: pRNFL > 75 µm, IED of 
pRNFL ⩽ 5 µm or GCIPL ⩽ 4 µm.15 For eyes with a 
clinical history of ON, 28 out of 43 (65.11%) showed 
pRNFL > 75 µm, while 95% violated the IED criteria. 
For patients contributing both eyes to the same cate-
gory, we averaged the values of both eyes to ensure 
that all patients contributed only one value to the anal-
yses. In total, 67 patients had both eyes unaffected, 
while 8 had both eyes affected (Figure 1).

Statistical analysis
Statistical analyses were performed using Rstudio 
(version: 2023.06.0). Continuous variables were 
expressed as means and standard deviations, or 
median and range, and categorical variables as 

numbers and percentages. Data distribution was 
assessed using the Shapiro–Wilks test. Pearson’s and 
Spearman’s tests of univariate correlations were used 
for parametric and non-parametric variables. 
Multivariable linear regression models were used to 
assess the explanatory value (quantified by adjusted 
R2) of OCT measures and MRI measures (alone and 
combined) on cognitive and physical disability varia-
bles. Cognitive (BICAMS) and physical (EDSS) 
scores were treated as dependent variables in separate 
models, while OCT (pRNFL and GCIPL) and MRI 
(WM, GM and lesion volume) measures along with 
potential confounding variables (age, sex, disease 
duration and years of education) were considered 
independent variables. To ensure that multicollinear-
ity was not influencing regression results, we com-
puted the variance inflation factor (VIF) for each 
predictor in the models. A VIF value below 5 was 

Figure 1.  Flowchart of patient selection and categorisation 
of eyes.
MRI: Magnetic resonance imaging; OCT: optical coherence 
tomography; BICAMS: Brief International Cognitive Assessment 
for MS; ON: optic neuritis; pRNFL: peripapillary retinal nerve 
fibre layer; GCIPL: ganglion cell-inner plexiform layer; IED: 
inter-eye differences.
Where IED were larger than 5 μm for pRNFL or 4 μm for GCIPL, 
the thicker eye was included in the non-affected category and 
provided that the pRNFL was larger than 75 μm.
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used as a threshold to determine the presence of sig-
nificant multicollinearity. All predictors in both the 
OCT and MRI models had VIF values well below this 
threshold, indicating low collinearity. A model com-
parison approach using analysis of variance (ANOVA) 
was used to compare models including only MRI 
measures as independent variables with models 
including both MRI and OCT measures. Only results 
associated with p < 0.05 were considered statistically 
significant and, therefore, reported in the results.

Results

Patient characteristics
This study included 150 patients with RRMS but 
13 were excluded due to clinically confirmed bilat-
eral ON. Demographic and clinical characteristics 
are reported in Table 1. The sample comprised 
mainly female (69.34%) middle-aged adults 
(40.88 ± 10.6 years), with relatively short median 
disease duration (7.95 ± 7.39 years) and low physical 
disability (median, EDSS = 2, range, 0–6.5). None of 
the patients had a diagnosis of vascular or other neu-
rodegenerative conditions. In terms of cognitive 

performance, 50.36% of the patients scored below 
the cut-off (i.e., z-score deviation greater than 1.5) on 
the SDMT and 37.23% on the BVMT-R, while few 
patients (N = 7, 5.11%) scored below the cut-off on 
the CVLT-II.

Most patients (n = 120, 87.5%) completed all assess-
ments on the same day, while 13 had up to a month 
interval between assessments (9.5%) and a few had 
assessments spread over 3 months (n = 4, 3%). No 
patients experienced relapses between assessments.

Univariate correlations between OCT, MRI and 
BICAMS
In terms of MRI, greater WM and GM volume and 
lower lesion volume correlated with higher scores on 
the SDMT, BVMT-R, CVLT-II and lower EDSS, 
except for the CVLT-II, which showed no correlation 
with GM volume (r = 0.14, p = 0.10) (Table 2).

When dividing eyes by ON history, GCIPL thickness 
of non-affected eyes correlated with better perfor-
mance on the SDMT (r = 0.27, p < 0.01), higher WM 
volume (r = 0.22, p < 0.01) and lower lesion volume 

Table 1.  Participant characteristics.

N = 137

Age, years, mean (SD) 40.88 (10.6)

Sex, females N (%) 95 (69.34)

Ethnicity, white N (%) 97 (70.8)

Years of education, mean (SD) 15.47 (2.51)

Disease duration years, mean (SD) 7.95 (7.39)

EDSS, median (range) 2 (0–6.5)

BICAMS, mean (SD) (% impairment)

  SDMT 52.67 (13.44) (50.36%)

  BVMT-R 23.97 (7.48) (37.23%)

  CVLT-II 52.27 (10.95) (5.11%)

Normalised MRI measures, mean (SD)

  White matter volume 0.30 (0.01)

  Grey matter volume 0.44 (0.01)

  Lesion volume 0.01 (0.01)

Retinal OCT measures, mean (SD) (µm)

  Affected eyes’ pRNFL 82.75 (14.78)

  Affected eyes’ GCIPL 71.64 (14.13)

  Unaffected eyes’ pRNFL 96.61 (9.71)
  Unaffected eyes’ GCIPL 86.67 (10.59)

EDSS: Expanded Disability Status Scale; BICAMS: Brief International Cognitive Assessment for Multiple Sclerosis; SDMT: 
Symbol Digit Modalities Test; BVMT-R: Brief Visuospatial Memory Test Revised; CVLT-II: California Verbal Learning Test, 
Second Edition; MRI: magnetic resonance imaging; OCT: optical coherence tomography; pRNFL: peripapillary retinal nerve fibre 
layer; GCIPL: ganglion cell-inner plexiform layer.
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(r = −0.19, p = 0.04); RNFL thickness of non-affected 
eyes correlated with better performance on the 
BVMT-R (r = 0.19, p = 0.05), lower EDSS (r = −0.24, 
p < 0.01) and higher WM volume (r = 0.24, p < 0.01) 
(Figure 2). Correlations for affected eyes and for all 
eyes irrespective of categorisation are reported in 
Figure 2.

Multivariable analyses
Multivariable analyses adjusted for age, sex, disease 
duration and years of education (for the BICAMS) 
were performed. A test for multicollinearity using the 
VIF showed no evidence of significant multicolline-
arity (all VIF < 1.8). These analyses yielded non-
significant results for OCT measures in affected eyes 
on all BICAMS subtests and EDSS (all p > 0.16) 
(Table 3).

The association between GCIPL thickness of the non-
affected eye and the SDMT remained significant 
(B = 0.23, 95% CI = (0.02–0.44), p = 0.03) (Table 3). 
On the contrary, RNFL thickness of the non-affected 
eye no longer remained a significant predictor of 
BVMT-R (B = 0.02, 95% CI = (−0.11 to 0.16), 
p = 0.74), but age and sex explained significant vari-
ance (p < 0.02).

In the multivariable analysis combining GCIPL with 
MRI measures (lesion, GM and WM volumes), the 
VIF values remained low (<1.8), suggesting no sig-
nificant multicollinearity between predictors. This 
analysis revealed a significant combined explanatory 
value of the SDMT, F(8,118) = 6.80, p < 0.001, with 
an adjusted R2 of 0.27. However, GCIPL was not a 
significant predictor within the model (B = 0.18, 95% 
CI = (−0.03 to 0.38), p = 0.09). Moreover, when com-
paring the model including only MRI measures as 
predictors, F(7,119) = 7.25, p < 0.001, adjusted 
R2 = 0.26, with the model including both MRI meas-
ures and GCIPL, an ANOVA showed no significant 
differences, F(1,118) = 2.85, p = 0.10 (Table 4).

Sensitivity analyses
We conducted sensitivity analyses in mildly 
(EDSS < 3, N = 90) versus severely disabled patients 
(EDSS > 3, N = 39), revealing that in the mild disabil-
ity group, GCIPL thickness (B = 0.24, 95% CI = (0.03–
0.45), p = 0.03), disease duration (B = −0.05, 95% 
CI = (0.27 to −0.02), p = 0.003) and years of education 
(B = 1.22, 95% CI = (0.27–2.17) p = 0.01) were signifi-
cant predictors of SDMT scores. The model for this 
group explained significant variance in SDMT, 

F(5,84) = 5.64, p < 0.001, adjusted R2 = 0.21. In con-
trast, the analysis for the severely disabled group indi-
cated no significant predictors (all p > 0.3) (see Table 
5 in Supplemental Material (S3)).

Our second sensitivity analysis compared younger 
(<50) with older (>50) patients, showing that in the 
younger group, GCIPL thickness (B = 0.25, 95% 
CI = (9.91–0.50), p = 0.04), disease duration 
(B = −0.05, 95% CI = (−0.08 to −0.01), p = 0.006) and 
years of education (B = 1.38, 95% CI = (0.38–2.38), 
p = 0.007) were significant predictors of SDMT score. 
The overall model for younger patients explained sig-
nificant variance in SDMT, F(5,93) = 4.37, p = 0.001, 
adjusted R2 = 0.15. Conversely, the analysis of the 
older group did not reveal any significant predictors 
(all p > 0.05), indicating a diminished influence of 
these factors on cognitive performance in this age 
group (see Table 5 in Supplemental Material (S3)).

Discussion
In this cross-sectional study, we explored the associa-
tion between OCT measures and BICAMS perfor-
mance in 137 RRMS patients. In addition, we 
investigated the role of OCT as complementary to a 
standard clinical MRI protocol in explaining cogni-
tive dysfunction in RRMS. We found that GCIPL was 
associated with SDMT performance and with WM 
and lesion volume. However, GCIPL did not contrib-
ute uniquely to predicting SDMT when MRI meas-
ures were also included. These findings suggest that 
OCT measures are relevant, but not unique predictors 
of cognitive dysfunction in RRMS.

Our study introduces several novel contributions that 
enhance the understanding of OCT in clinical moni-
toring for RRMS. First, we incorporated MRI met-
rics, which are well-established biomarkers of 
neuro-axonal damage and part of standard-of-care of 
MS, to assess the relative contributions of OCT and 
MRI measures. This provides a more comprehensive 
evaluation of these tools in cognitive dysfunction. 
Second, we used objective thresholds to define non-
affected eyes, rather than relying on self-reported or 
clinically diagnosed optic neuropathy, which enhances 
the precision of our analysis. Third, our cohort exclu-
sively comprises RRMS patients, unlike previous 
studies that included mixed clinical subtypes. These 
novel aspects strengthen the evidence for using OCT 
in monitoring clinical progression in RRMS, while 
showing that the established relationship between 
OCT metrics and clinical disability is not confounded 
by subclinical optic neuropathy.
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Figure 2.  Scatterplots of correlations between imaging and clinical variables for affected (blue) and non-affected (red) eyes.
RNFL: retinal nerve fibre layer; EDSS: Expanded Disability Status Scale; GCIPL: ganglion cell-inner plexiform layer; SDMT: Symbol 
Digit Modalities Test; BVMT: Brief Visuospatial Memory Test.
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Table 3.  Multivariate analyses of OCT metrics and cognitive performance and EDSS.

SDMT BVMT-R CVLT-II EDSS

Models with affected RNFL
 � RNFL 

thickness
B = −0.06
CI = [−0.29 to 0.18]
p = 0.65

B = −0.09
CI = [−0.22 to 0.05]
p = 0.21

B = −0.13
CI = [−0.33 to 0.06]
p = 0.17

B = 0.00
CI = [−0.03 to 0.03]
p = 0.97

  Age B = −0.19
CI = [−0.52 to 0.14]
p = 0.25

B = −0.10
CI = [−0.28 to 0.08]
p = 0.28

B = −0.11
CI = [−0.38 to 0.15]
p = 0.39

B = 0.02
CI = [−0.02 to 0.06]
p = 0.34

  Sex B = −1.94
CI = [−9.24 to 5.35]
p = 0.59

B = −2.63
CI = [−6.73 to 1.46]
p = 0.20

B = −5.54
CI = [−11.43 to 0.36]
p = 0.07

B = 0.90
CI = [0.05 to 1.75]
p = 0.04

 � Disease 
duration

B = −0.03
CI = [−0.07 to 0.01]
p = 0.09

B = −0.02
CI = [−0.04 to −0.00]
p = 0.04

B = −0.01
CI = [−0.05 to 0.02]
p = 0.37

B = 0.00
CI = [−0.00 to 0.01]
p = 0.75

 � Years of 
education

B = 0.57
CI = [−0.87 to 2.00]
p = 0.43

B = −0.06
CI = [−0.86 to 0.75]
p = 0.88

B = 0.06
CI = [−1.10 to 1.22]
p = 0.91

–

Model estimates F(5,63) = 1.37, 
p = 0.25, adj. R2 = 0.03

F(5,63) = 2.12, 
p = 0.07, adj. R2 = 0.08

F(5,63) = 1.26, 
p = 0.29, adj. R2 = 0.02

F(4,64) = 1.62, 
p = 0.18, adj. R2 = 0.04

Models with unaffected RNFL
 � RNFL 

thickness
B = 0.01
CI = [−0.23 to 0.25]
p = 0.94

B = 0.02
CI = [−0.11 to 0.16]
p = 0.74

B = −0.09
CI = [−0.28 to 0.10]
p = 0.33

B = −0.02
CI = [−0.05 to 0.01]
p = 0.29

  Age B = −0.29
CI = [−0.52 to −0.06]
p = 0.02

B = −0.15
CI = [−0.28 to −0.02]
p = 0.02

B = −0.11
CI = [−0.29 to 0.07]
p = 0.24

B = 0.05
CI = [0.03 to 0.08]
p < 0.001

  Sex B = −2.60
CI = [−7.58 to 2.38]
p = 0.30

B = −3.28
CI = [−6.09 to −0.46]
p = 0.02

B = −7.77
CI = [−11.72 to −3.81]
p < 0.001

B = 0.53
CI = [−0.10 to 1.16]
p = 0.10

 � Disease 
duration

B = −0.03
CI = [−0.05 to 0.00]
p = 0.05

B = −0.01
CI = [−0.03 to 0.00]
p = 0.12

B =−0.01
CI = [−0.04 to 0.01]
p = 0.22

B = −0.00
CI = [−0.00 to 0.00]
p = 0.39

 � Years of 
education

B = 1.20
CI = [0.31 to 2.09]
p = 0.01

B = 0.29
CI = [−0.21 to 0.80]
p = 0.25

B = 1.06
CI = [0.35 to 1.76]
p = 0.004

–

Model estimates F(5,123) = 4.56, 
p < 0.001, adj. 
R2 = 0.12

F(5,123) = 3.83, 
p = 0.003, adj. 
R2 = 0.10

F(5,123) = 5.26, 
p < 0.001, adj. 
R2 = 0.14

F(4,124) = 5.42, 
p < 0.001, adj. 
R2 = 0.12

Models with affected GCIPL
 � GCIPL 

thickness
B = 0.04
CI = [−0.20 to 0.29]
p = 0.73

B = −0.10
CI = [−0.24 to 0.04]
p = 0.16

B = −0.11
CI = [−0.31 to 0.09]
p = 0.27

B = 0.00
CI = [−0.03 to 0.03]
p = 0.97

  Age B = −0.14
CI = [−0.47 to 0.19]
p = 0.39

B = −0.10
CI = [−0.29 to 0.08]
p = 0.27

B = −0.09
CI = [−0.36 to 0.17]
p = 0.48

B = 0.02
CI = [−0.02 to 0.06]
p = 0.36

  Sex B = −1.98
CI = [−9.30 to 5.33]
p = 0.59

B = −2.96
CI = [−7.02 to 1.11]
p = 0.15

B = −5.95
CI = [−11.81 to −0.09]
p = 0.05

B = 0.95
CI = [0.09 to 1.80]
p = 0.03

 � Disease 
duration

B = −0.03
CI = [−0.07 to 0.01]
p = 0.09

B = −0.02
CI = [−0.05 to −0.00]
p = 0.03

B = −0.02
CI = [−0.05 to 0.02]
p = 0.33

B = 0.00
CI = [−0.00 to 0.01]
p = 0.69

 � Years of 
education

B = 0.44
CI = [−0.98 to 1.87]
p = 0.54

B = −0.17
CI = [−0.97 to 0.62]
p = 0.66

B = −0.13
CI = [−1.28 to 1.01]
p = 0.82

–

Model estimates F(5,62) = 1.44, 
p = 0.22, adj. R2 = 0.03

F(5,62) = 2.46, 
p = 0.04, adj. R2 = 0.09

F(5,62) = 1.4, p = 0.24, 
adj. R2 = 0.03

F(4,63) = 1.69, 
p = 0.16, adj. R2 = 0.04

 (continued)
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SDMT BVMT-R CVLT-II EDSS

Models with unaffected GCIPL

� � GCIPL 
thickness

B = 0.23
CI = [0.02 to 0.44]
p = 0.03

B = 0.05
CI = [−0.07 to 0.17]
p = 0.43

B = −0.02
CI = [−0.19 to 0.15]
p = 0.83

B = −0.00
CI = [−0.03 to 0.02]
p = 0.73

  Age B = −0.23
CI = [−0.46 to −0.01]
p = 0.05

B = −0.15
CI = [−0.28 to −0.01]
p = 0.03

B = −0.10
CI = [−0.28 to 0.09]
p = 0.31

B = 0.06
CI = [0.03 to 0.09]
p < 0.001

  Sex B = −3.01
CI = [−7.83 to 1.81]
p = 0.22

B = −3.44
CI = [−6.21 to −0.67]
p = 0.02

B = −7.38
CI = [−11.30 to −3.47]
p < 0.001

B = 0.60
CI = [−0.03 to 1.22]
p = 0.06

 � Disease 
duration

B = −0.03
CI = [−0.05 to 0.00]
p = 0.06

B = −0.01
CI = [−0.03 to 0.00]
p = 0.12

B = −0.01
CI = [−0.03 to 0.01]
p = 0.26

B = −0.00
CI = [−0.00 to 0.00]
p = 0.45

 � Years of 
education

B = 1.18
CI = [0.31 to 2.05]
p = 0.01

B = 0.30
CI = [−0.20 to 0.80]
p = 0.24

B = 1.02
CI = [0.32 to 1.73]
p = 0.01

–

Model estimates F(5,123) = 5.67, 
p < 0.001, adj. 
R2 = 0.15

F(5,123) = 3.94, 
p = 0.002, adj. 
R2 = 0.10

F(5,123) = 5.04, 
p < 0.001, adj. 
R2 = 0.14

F(4,124) = 5.13, 
p < 0.001, adj. 
R2 = 0.11

SDMT: Symbol Digit Modalities Test; BVMT-R: Brief Visuospatial Memory Test Revised; CVLT-II: California Verbal Learning 
Test, Second Edition; EDSS: Expanded Disability Status Scale; RNFL: retinal nerve fibre layer; GCIPL: ganglion cell-inner 
plexiform layer. Bold font indicates statistical significance at the p < 0.05 level.

Table 3.  (continued)

Table 4.  Multivariable models of OCT and MRI measures with SDMT.

Model 1: OCT Model 2: MRI Model 3: OCT + MRI

GCIPL thickness B = 0.23
CI = [0.02–0.44]
p = 0.03

– B = 0.18
CI = [−0.03 to 0.38]
p = 0.09

White matter 
volume

– B = 308.73
CI = [105.08 to 512.39]
p = 0.003

B = 286.33
CI = [82.52 to 490.14]
p = 0.006

Grey matter 
volume

– B = 265.68
CI = [−19.07 to 550.43]
p = 0.07

B = 271.25
CI = [−11.41 to 553.91]
p = 0.06

Lesion volume – B = −401.27
CI = [−883.75 to 81.21]
p = 0.10

B = −384.01
CI = [−863.25 to 95.24]
p = 0.12

Age B = −0.23
CI = [−0.46 to −0.01]
p = 0.05

B = −0.20
CI = [−0.43 to 0.03]
p = 0.08

B = −0.16
CI = [−0.39 to 0.07]
p = 0.17

Sex B = −3.01
CI = [−7.83 to 1.81]
p = 0.22

B = −2.89
CI = [−7.54 to 1.76]
p = 0.22

B = −3.02
CI = [−7.63 to 1.60]
p = 0.19

Disease duration B = −0.03
CI = [−0.05 to 0.00]
p = 0.06

B = −0.01
CI = [−0.03 to 0.02]
p = 0.58

B = −0.01
CI = [−0.03 to 0.02]
p = 0.62

Years of 
education

B = 1.18
CI = [0.31 to 2.05]
p = 0.008

B = 1.27
CI = [0.43 to 2.12]
p = 0.003

B = 1.26
CI = [0.43 to 2.10]
p = 0.003

Model estimates F(5,123) = 5.67, p < 0.001, 
adj. R2 = 0.15

F(7,119) = 7.25, p < 0.001, 
adj. R2 = 0.26

F(8,118) = 6.80, p < 0.001, 
adj. R2 = 0.27

GCIPL: ganglion cell-inner plexiform layer.
Model 1 includes GCIPL; Model 2 includes MRI measures; and Model 3 includes both GCIPL and MRI measures. Bold font 
indicates statistical significance at the p < 0.05 level.
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Consistent with previous studies, we found the great-
est impairment on the SDMT, a sensitive measure of 
cognitive efficiency in MS.25 We also found that 
37.23% had visuospatial learning difficulties 
(BVMT-R) and only 5.11% had verbal learning defi-
cits (CVLT-II).

We found a correlation between GCIPL and SDMT, 
which persisted when controlling for important con-
founders such as age, sex and disease duration. The 
initial correlation seen between RNFL and BVMT-R 
scores was lost after controlling for confounders. 
This is in line with previous findings that GCIPL 
showed stronger associations with cognition than 
pRNFL7,11 supporting the notion that GCIPL is 
advantageous over pRNFL in its reflection of atro-
phy.26 Our lack of associations with pRNFL con-
trasts with previous studies.7,9,11 Notably, most of 
these studies included older patients, longer disease 
durations or mixed clinical subtypes. Dreyer-Alster 
et al.7 found a significant association between RNFL 
and verbal function in a sample of 204 RRMS 
patients with similar age and disease duration to this 
study. We did not measure verbal function, and any 
associations with verbal memory and learning 
(CVLT-II) may have gone unnoticed due to the low 
impairment rate (5.11%). Among the studies that did 
not report associations, one used a younger cohort, 
with shorter disease duration and a lower physical 
disability,12 while another only investigated RNFL 
and not GCIPL.13 As our cohort positions itself clini-
cally and demographically between those studies 
that found associations with both GCIPL and 
pRNFL, and those that did not, this likely implies 
that cognitive dysfunction precedes retinal thinning, 
or depend on different pathological aspects, as previ-
ously suspected.13

The results of our sensitivity analyses revealed that 
GCIPL thickness loses predictive power in patients 
with greater disability (EDSS > 3). This could indi-
cate that in earlier MS, cognitive outcomes can be 
more effectively predicted by structural factors, while 
in more advanced stages, cognitive decline may be 
influenced by more complex, disease-related pro-
cesses. The finding that GCIPL thickness was signifi-
cant only in younger patients suggests that younger 
individuals may experience cognitive decline more 
directly related to MS-specific structural damage, 
while this association may be blurred by age-related 
cognitive decline in older patients. Nonetheless, it is 
important to acknowledge that the sample size of the 
severely disabled subcohort (n = 39) was much lower 
than the mildly disabled subcohort (n = 90), as was 
true for the young (n = 99) versus older (n = 30) 

subsamples. Therefore, we cannot exclude that these 
findings are owed to lack of statistical power in the 
smaller cohorts.

As expected, correlations between OCT measures and 
both cognitive and MRI measures were observed for 
eyes unaffected by ON, as ON-related thinning can 
confound OCT associations with degeneration.27

The association between GCIPL and SDMT did not 
persist when controlling for MRI measures (WM, 
GM and lesion volume). This contrasts the hypothe-
sis that OCT may be a better correlate of neurodegen-
eration, as it is not confounded by myelin loss and 
‘pseudoatrophy’, which are known limitations of 
conventional MRI. Nonetheless, this finding is 
unsurprising, as the association between OCT meas-
ures and clinical disability is thought to reflect brain 
atrophy.5 Our findings contrast with those reported 
by Cerdá-Fuertes et al.,28 where pRNFL remained a 
significant predictor of SDMT performance after 
controlling for brain parenchymal fraction. This 
inconsistency may be explained by differences in our 
samples: their cohort comprised both relapsing and 
progressive patients, with longer disease duration, 
older age and higher physical disability, and had a 
lower mean pRNFL value compared with the current 
cohort. It seems plausible that the complementary 
value of OCT next to MRI becomes apparent later in 
the disease, where the neurodegenerative component 
is more prominent.

While GM pathology is considered the prominent 
driver of cognitive dysfunction in MS, increasing evi-
dence suggests that it might also be related to a net-
work failure, starting with a decrease in WM integrity.4 
In this respect, it is unsurprising that the reduced WM 
volume in the current cohort is the main predictor of 
performance on the SDMT, a sensitive although not 
specific measure of cognitive efficiency.25 SDMT 
performance is strongly associated with decrease in 
information processing speed; one of the main fea-
tures of cognitive impairment in MS,29 associated 
with damage of both GM structures and their WM 
connections30,31 and their structural and functional 
changes.32 Moreover, the less prominent GM pathol-
ogy observed in this study is not surprising given the 
middle-aged, relapsing-remitting cohort with a rela-
tively short disease duration. It is possible that the 
potential unique variance explained by OCT relates 
more to GM pathology and is not evident in RRMS at 
an early disease stage. Thus, OCT may contribute 
uniquely to the detection of cognitive impairments in 
later, more progressive disease stages, where GM and 
WM damage becomes more prominent.
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Our study has several strengths but also some limita-
tions. First, as we aimed to investigate the potential 
role of OCT as a mirror of neurodegeneration, we 
employed strict criteria to ensure that the unaffected 
category was not contaminated with affected eyes by 
excluding eyes with a history of ON, a pRNFL above 
75 µm and inter-eye differences of GCIPL => 4 µm 
and pRNFL => 5 µm, which are considered robust 
thresholds for identifying asymptomatic unilateral 
ON.15 Nonetheless, it is still possible that some 
patients had subclinical ON, which particularly in the 
case of bilateral subclinical ON, would not necessar-
ily have been caught with the criteria applied. 
Furthermore, our approach to use OCT-based exclu-
sion criteria (i.e., the IED and pRNFL absolute thresh-
old) means that the results can be extrapolated only to 
patients with at least one unaffected optic nerve. In 
patients with a history of bilateral ON, the IED 
approach cannot be used to determine subclinical ON, 
and, therefore, it may only be possible to use the abso-
lute pRNFL threshold to exclude patients with sub-
clinical ON prior to using OCT metrics as biomarkers 
of CNS degeneration. Second, although the BICAMS 
represents a feasible measure currently recommended 
as a brief battery able to capture the most common 
cognitive deficits in MS,16 its use has limited the 
insight into other cognitive domains, such as execu-
tive functioning, that can be present since the time of 
diagnosis.33 Third, we did not control for depression 
or fatigue, which are prevalent in MS and may affect 
cognitive performance, although a clear link has not 
been demonstrated.34 Finally, a particular strength is 
that we controlled for visual acuity, which is known to 
influence performance on the SDMT and BVMT-R,35 
thereby concluding that the reported associations 
between OCT and cognitive performance are not just 
reflective of visual impairments.

Overall, it appears that cognitive deficits can pre-
cede retinal thinning, possibly because of inflamma-
tion and network disruption, which can be better 
captured by MRI. This highlights the importance of 
monitoring cognition from the early stages of MS, 
where DMTs may alleviate inflammation and pre-
vent neurodegeneration.

Conclusion
While OCT appears to be a reliable predictor of cog-
nitive efficiency as measured by the SDMT, even in 
early MS, it does not appear to explain variance 
beyond a standard clinical MRI protocol. It may be 
that both MRI and OCT represent similar markers of 
neurodegeneration. In clinical practice, where time 
and resources are limited, OCT may be most useful as 

an alternative monitoring strategy for those who are 
ineligible for MRI, or as a method of more frequent 
monitoring between MRIs, due to its ability to pro-
vide objective measurements quickly and inexpen-
sively. GCIPL thickness may provide an accessible 
proxy of neurodegeneration and cognitive processing 
speed, without the need for post-processing. The 
advantages of OCT as complementary to MRI for lon-
gitudinal prediction and in determining MS subtypes 
with more prominent neurodegeneration remain to be 
elucidated.
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