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Abstract

Biological and artificial neural networks create internal representations that sup-

port complex tasks like reasoning and decision-making. While characterising these

representations has been a key focus in machine learning and neuroscience, the mech-

anisms for extracting task-specific features and the influence of prior knowledge

remain unclear. To gain insight, it’s essential to analyse the interactions between

datasets, network architectures and initialisation. Previous work has shown that

specific initialisations place networks in a ‘lazy’ regime, where internal representa-

tions do not change through learning, while other initialisations place networks in

a ‘rich/feature learning’ regime, where internal representations evolve to fit a task.

Here, we study how initialisation and architecture learning structured data influence

learning dynamics in deep neural networks. First, we derive novel exact solutions

for deep linear networks with ‘lambda-balanced’ initialisations that differ in the

norms of the weights across layers, which approximate common initialisations used

in practice. Our results show that imbalanced initialisations lead to a lazy learning

regime, while balanced ones promote a rich regime. These findings enhance the

understanding of how weight initialisation and network structure influence learning,

with implications for continual, reversal, and transfer learning in neuroscience and

practical applications. Next, we demonstrate that our theoretical findings, derived

from deep linear networks, have significant implications for non-linear networks.

Utilising the non-linear teacher-student theoretical framework for neural network

analysis, we reveal a strong dependence of specialisation—characterised by rich,

task-specific representations—on initial weight imbalance. We discuss the impli-

cations of this understanding in the context of continual learning and showcase its
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application in practical machine learning scenarios, such as grokking, developing

edge detectors in convolutional neural networks, and neuroscience. Overall, our

results highlight the critical role of initialisation imbalance in the learning dynamics

of both artificial and biological neural networks.
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Chapter 1

Introduction

The more you know, the more you realise you don’t know.

– Aristotle

A defining characteristic of human learning is our remarkable sensitivity to

prior knowledge—what we already know profoundly influences how we acquire

new information [44]. For example, once we have learned the attributes of several

animals, recognising and categorising a new one becomes significantly more efficient

[192, 191, 89]. In contrast, an infant without prior exposure to different animals will

exhibit distinct learning dynamics, forming representations that differ fundamentally

from those of an experienced learner. These differences in learning dynamics

highlight the role of prior knowledge in shaping how information is processed and

integrated.

In machine learning, prior knowledge similarly influences learning across

a range of paradigms, including reversal learning [84], transfer learning

[276, 273, 161, 101], curriculum learning [30], and meta-learning [136]. While

structured priors can accelerate learning and improve generalisation, they can also

introduce constraints that hinder adaptation, as seen in the phenomenon of catas-

trophic interference in continual learning [212, 148, 306].

Despite the well-established importance of prior knowledge, fundamental

questions remain about how structured initial conditions shape the inductive biases
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of artificial and biological neural networks, how they influence learning dynamics,

and what types of representations they support [31, 186]. Understanding how initial-

isation impacts gradient-based learning could lead to improved pretraining strategies

and offer insights into challenges such as catastrophic forgetting in continual learning.

Here, we present frameworks for systematically exploring these effects in a

controlled setting. Our focus is on a fundamental form of prior knowledge in deep

networks: the initial network state and the representations learned from previous

tasks. Prior work has shown that certain initialisations place networks in a ’lazy’

regime, where internal representations do not change through learning, while other

initialisations place networks in a ’rich/feature learning’ regime where internal

representations evolve to fit a task [51, 130].

We investigate the learning regime dynamics of neural models across different

architectures, datasets, and activation functions in simplified toy models to better

understand the role of prior knowledge. Each of these factors plays a crucial role

in shaping learning trajectories, influencing a model’s ability to extract meaningful

task-specific features [243, 215, 22]. Our analysis [243, 69, 158, 39, 67] moves

beyond previous approaches that depend on restrictive assumptions, which often

limits their applicability to real-world scenarios. Ultimately, we investigate how

neural representations emerge throughout training, with the goal of developing a

theoretical framework for their formation in the context of neuroscience.

1.1 Thesis structure

This thesis opens with a background chapter that introduces the broader field of ma-

chine learning, emphasising its connections to cognitive science and neuroscience. A

concise literature review then follows, concisely presenting key research that shaped

this work. The main body is divided into two key sections: The first investigates the

factors driving rich and lazy learning regimes by analysing exact learning dynamics

in deep linear networks with prior knowledge, offering both theoretical insights
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and practical implications. The first section examines the factors driving rich and

lazy learning regimes, focusing on exact learning dynamics in deep linear networks

with prior knowledge and providing insights into their theoretical foundations as

well as practical application. The second section extends the analysis beyond linear

networks, exploring nonlinear ReLU networks and practical architectures. The the-

sis concludes with a general discussion, summarising key findings and proposing

directions for future research.

1.2 Contributions
The contributions of this thesis are threefold:

1. We advance theoretical understanding by defining the spectrum from the lazy

to the rich regime, providing a clearer framework for characterising different

learning dynamics.

2. We extend deep learning theory by exploring a broader range of initialisation

schemes and settings that yield exact learning dynamics.

3. We demonstrate that theories derived from toy linear networks and non-linear

networks have practical implications for real-world learning scenarios relevant

to neuroscience and machine learning in practice.
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Background

Standing on the shoulders of giants.

– Isaac Newton

2.1 Background
This research lies at the intersection of machine learning and neural network theory,

focusing on foundational aspects of deep learning. We begin by introducing the

core concepts of deep learning, followed by a concise historical overview of deep

artificial neural networks, highlighting the gaps that motivate this study. We then

examine the links to cognitive science and neuroscience, where deep learning offers

a powerful framework for exploring key questions—particularly those related to

learning mechanisms and the formation of representations shaped by prior knowledge

in biological systems.

2.1.1 Deep neural networks

Deep neural networks consist of multiple layers of interconnected neurons, each

optimised to process data, mimic cognitive functions, and develop abstractions. The

network starts with an input layer that receives vectors of dimension Ni. These

inputs are passed through a linear transformation, parametrised by the weight matrix

W1 ∈ RNh×Ni , followed by a nonlinear activation function—together constituting the

first hidden layer. Each subsequent hidden layer applies a similar transformation,

using weight matrices typically shaped RNh×Nh , again followed by nonlinearities.

Finally, the output layer uses the weight matrix WL ∈RNo×Nh to generate the model’s
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predictions. Crucially, a layer encompasses both the linear transformation and the

activation function.

Consider a supervised learning task where input vectors xn ∈ RNi , drawn from

a set of P training pairs {(xn,yn)}P
n=1, must be mapped to their corresponding target

output vectors yn ∈ RNo . An L-layer network computes the output as:

ŷ = f (WL−1 f (WL−2 · · · f (W2 f (W1x)) · · ·)) (2.1)

where the function f (·), applied element-wise, introduces a neural nonlinearity.

Common activation functions include ReLU, sigmoid, and tanh.

We train the network by solving the following optimisation problem:

min
WL−1,...,W1

P

∑
n=1
E(yn, ŷn) (2.2)

where E(·, ·) is an error function that penalises discrepancies between the desired

output yn and the predicted output ŷn.

Typically, this objective is approximately minimised through backpropagation,

by iteratively adjusting each weight matrix in the direction of the negative gradient

of task performance:

∆Wl =−η

P

∑
n=1

∂E(yn, ŷn)

∂Wl
, l = 1, . . . ,L−1, (2.3)

where η is a small learning rate parameter. This update rule makes small adjustments

to the weights, aiming to improve task performance most effectively. However, as

will be discussed, the successful implementation of Eqn. 2.3 in practice has taken

decades of development.

2.1.2 A short history of deep learning

The origins of deep artificial neural networks (ANNs) can be traced back to the mid-

20th century, drawing inspiration from biological brain processes [263, 194, 248].

However, their full potential was not realised until the 2000s. Early neural models,
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including perceptrons and the first multilayer networks, showed initial promise

but were hampered by significant limitations [262]. One of the most critical chal-

lenges arose during optimisation using backpropagation [142] In deep networks,

however, gradients often diminish as they are propagated through successive lay-

ers, effectively stalling learning. Compounding this issue were the constraints of

limited computational power, the absence of large-scale datasets, and prevailing

scepticism within the scientific community. These factors led to a prolonged period

of stagnation in Artificial Intelligence (AI) research—commonly referred to as the

”AI Winter”—during which both funding and interest in neural networks waned,

delaying further advancements until pivotal breakthroughs revived the field.

The field has witnessed an exponential acceleration, particularly through-

out the early 2000s, driven by several key factors. One of the primary drivers

has been the continuous increase in computational power, both in terms of the

scale of available computing resources and advancements in hardware technolo-

gies [222, 10]. Additionally, significant progress in neural network architectures

[163, 209, 286, 109, 147], the development of more effective activation functions

[5, 77], and advances in optimisation algorithms [146, 235] have played crucial

roles in shaping modern AI systems. Additionally, the scale and quality of datasets

available for training have expanded significantly, further enhancing the capabilities

of AI models [115, 268]. Further breakthroughs in network initialisation techniques

[164, 105, 243, 118, 223] have facilitated the training of deeper networks by address-

ing challenges such as vanishing and exploding gradients, pointing to the importance

of prior knowledge in these networks. Collectively, these advancements have accel-

erated the evolution of deep learning, leading to increasingly powerful and efficient

AI systems. Deep learning has now revolutionised machine learning, showcasing

exceptional capabilities across various tasks, including image recognition and natural

language processing.

However, our limited ability to interpret deep learning models—frequently
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described as opaque ’black boxes’—continues to hinder both our confidence in their

decision-making and their effective deployment in real-world applications. The theo-

retical understanding of how information is represented in these models — which

could potentially explain their success — remains largely elusive. One particularly

concerning consequence of this issue is the presence of biases in models [195, 108],

which can lead to unfair and potentially harmful decision-making [2]. As a result,

research areas like mechanistic interpretability [257, 79, 204], along with deep

learning theory and toy models [236, 243], have emerged—seeking to understand

what and how neural networks learn - often by making simplifying assumptions.

In particular, these studies highlight that several factors shape the representations

learned by neural networks and, consequently, the biases they develop [50]. These

factors include model architecture, activation functions, optimisation techniques,

initialisation strategies, and data selection [106, 237]. A deeper understanding of

how these factors influence learning in neural networks is critical for advancing the

reliability, transparency, and fairness of deep learning systems. Furthermore, this

understanding could lead to improved performance and offer insights into challenges

such as catastrophic forgetting in continual learning.

As deep learning becomes increasingly embedded in real-world applica-

tions, addressing these challenges is essential. Understanding different learning

paradigms—including how, what, and when models learn—and their inherent

biases is crucial, with important implications for machine learning in practice and

neuroscience.

2.1.3 Deep learning and the brain

The deep learning revolution has not only transformed computer science and its

applications but has also gained traction as a model for brain function, a field often

referred to as NeuroAI [229, 241]. Much like artificial intelligence, the brain can

be considered a black box, with many of its inner workings still unknown. As

a result, both theoretical neuroscience and deep learning theory share a common
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goal: to describe and understand the representations and behaviour of neural net-

works. While deep learning models have been criticised for their lack of biological

plausibility—particularly regarding the implementation of the backpropagation

algorithm [292, 56]—a growing body of research is actively exploring the par-

allels between biological and artificial neural networks (ANNs) representations

[89, 309, 224, 299, 229, 66]. Several review articles have synthesised these insights

[259, 141, 150].

One key research direction explores why neural networks, both biologi-

cal and artificial, develop similar representations when trained on similar tasks

[116, 159, 198, 149, 200, 95, 144, 151] These similarities emerge across multiple

levels of analysis—not only at the level of individual neurons but also in the struc-

tured population-level representations found within and across brain regions. Below,

we discuss some of the main results of research on representation learning and the

brain.

Extensive research on the visual system [153, 249, 151, 179, 298] has demon-

strated striking parallels between biological models and deep learning architectures

such as transformer, convolutional neural networks (CNNs) and Residual Neural

Networks (ResNets). Interestingly, at the neuronal representation level, these net-

works develop features resembling Gabor-like filters, which closely mirror receptive

fields observed in early visual processing in biological systems [305, 85]. Further-

more, networks designed to mimic representations observed in the brain—such as

constraining the filters in the first layer to follow a Gabor function— have been

shown to outperform standard convolutional networks [7]. Altogether, Gabor filters

have emerged as important representational features in image recognition in both

biological and artificial vision systems. They offer a successful mathematical model

of receptive fields, capturing spatial frequency, orientation selectivity, and phase

sensitivity—key properties for edge detection and texture analysis.
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Beyond visual processing, deep networks have demonstrated the ability to

replicate neural representations involved in spatial navigation. Research using

deep and recurrent neural networks (RNNs) trained on navigation tasks has re-

vealed emergent activity patterns strikingly similar to grid cells [264, 24, 293]—a

class of spatially modulated neurons located in the medial entorhinal cortex that

fire in a characteristic hexagonal grid pattern, crucial for encoding spatial loca-

tion and supporting memory functions [114]. Remarkably, such representations

have also been observed across species, suggesting they may reflect a fundamental

mechanism for path integration in biological and artificial learning systems [114, 65].

Taken together, these models effectively reproduce key representational proper-

ties observed in biological systems, underscoring deep learning’s potential to capture

fundamental neural mechanisms [95]. However, the similarity in representation

does not necessarily suggest that the two learning systems are governed by the same

underlying principles, raising concerns about whether we are truly capturing the

brain’s behaviour. For instance, different models can achieve similar representations

using distinct architectures, initialisation and learning algorithms, leading to consid-

erable degeneracy in both the models and their parameters [220, 299]. This is well

exemplified in the Brain-Score framework, which shows that different models often

perform similarly overall, with some variability across brain regions or evaluation

metrics [250]. This overlap makes it challenging to distinguish between models or

determine which best represents biological computation.

An expanding body of research, including the present study, emphasises the

importance of adopting a temporal perspective to illuminate the emergence and

development of neural representations [243, 241, 87]. Rather than treating repre-

sentations as static endpoints, this approach examines how they evolve throughout

the learning process. This temporal framing draws on insights from artificial neural

networks, where the dynamics of learning—and notably, the contrast between rich

and lazy regimes—play a fundamental role in shaping the geometry and functional
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properties of representations.

Previous work has established conceptual parallels between these computational

regimes and patterns of neural representation observed in the brain, suggesting that

rich and lazy learning provide a useful framework for interpreting task-specific

and task-agnostic coding strategies [87]. Strikingly, both artificial and biological

neural systems have been shown to support a wide spectrum of representations that

vary with task structure, brain region, and prior experience [207, 96, 87, 210, 282].

However, a comprehensive theoretical account of how such regimes arise, how they

interact, and what determines their functional roles remains an open challenge in the

field.

Artificial neural networks offer a tractable and flexible model system for

addressing these questions. Their learning dynamics can be finely controlled by

manipulating architectural features, initialisation schemes, task structures, and input

distributions. This experimental precision enables systematic exploration of the

factors that influence learning trajectories and, ultimately, the formation of diverse

representations.

The parallels between deep learning and neuroscience are becoming increas-

ingly compelling with the emergence of architectures that not only surpass human

performance but also mimic cognitive processes in various tasks [251, 229, 160].

Investigating the emergence of similar representations in both biological and artificial

systems may reveal shared underlying principles, while understanding their differ-

ences can shed light on how distinct learning mechanisms shape neural computation.



2.2. Related works 47

2.2 Related works
In this section, we review the literature most relevant to this thesis. We begin by

examining previous works on rich and lazy learning, followed by an analysis of the

learning settings, architecture and analytical frameworks relevant to this thesis. We

identify the gaps in the existing literature this research aims to address.

2.2.1 Rich and Lazy regime

Prior research has demonstrated that different network initialisations give rise to

distinct learning regimes: a ”lazy” regime, in which internal representations remain

largely unchanged throughout training, and a ”rich” or ”feature-learning” regime,

where representations evolve to better fit the task [130, 51]. We review below the

factors that drive the emergence of these learning regimes and characterise the

representations they produce in neural networks. Furthermore, we discuss their

parallels with findings in neuroscience, where a similar dichotomy between non-

linear mix-selectivity and manifold learning has been observed.

2.2.1.1 Rich and Lazy regimes in neural networks

The lazy regime follows from a fundamental phenomenon in overparameterised

neural networks: during training, in the limit of infinite width, these networks can

fit the training data with a variation of their parameters which is much smaller than

their initialisation scale. [51]. As a result, their learning dynamics resemble those of

kernel regression, governed by the Neural Tangent Kernel (NTK) that remains fixed

during training, and demonstrate exponential learning dynamics across various archi-

tectures, including feedforward and recurrent networks [75, 130, 73, 8, 9, 313, 81].

This phenomenon, referred to as the lazy or kernel regime, typically emerges in the

infinite-width limit of neural networks and can be induced by initialising the weights

with sufficiently large variance [130, 51]. Under these conditions, the network

exhibits approximately linear behaviour in its parameters and remains close to its

initialisation throughout training. While the lazy regime offers valuable insights

into how networks converge to a global minimum, it does not fully account for the

generalisation capabilities of neural networks trained with standard initialisations
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-such as Xavier or He initialisation [105, 118]. It is,therefore, widely believed that

another regime, driven by small or vanishing initialisations, underpins some of the

successes of neural networks.

In contrast, the rich feature-learning regime is characterised by an NTK that

evolves throughout training, accompanied by non-convex dynamics that navigate

saddle points [23, 243, 247, 131]. This regime features sigmoidal learning curves,

feature adaptation to the data structure, and simplicity biases, such as low-rankness

[170] sparsity, [294] or specialisation [106]. Numerous studies typically consider the

rich regime which emerges at small initialisation [51, 99]. However, even at small

initialisation scales, differences in weight magnitudes between layers can induce

the lazy learning regime [21] – highlighting the significance of both absolute scale

(initialisation variance) and relative scale (difference in weight magnitude between

layers) in generating diverse learning dynamics [18]. Aside from the works of Liu

et al. [176], Emami et al. [81], most theoretical investigations into rich and lazy

learning have focused on feedforward networks.

The precise characterisation of rich learning—and the features it ac-

quires—often depends on the particular task under consideration, and is usually

defined in contrast to lazy learning. A comprehensive understanding of the con-

tinuum between rich and lazy regimes, including their dynamics across diverse

architectures, remains an open challenge in the field. This thesis seeks to address

this gap by offering a clearer characterisation of these regimes through the use of

simplified toy models, highlighting the crucial role played by relative scaling at

initialisation.

2.2.1.2 Rich and lazy regimes in the brain

The distinction between rich and lazy learning regimes may offer valuable insights

for neuroscience, where neural representations are frequently characterised as either

task-specific or task-agnostic, depending on the experimental context [87, 210, 282].
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This analogy is conceptually compelling: when neural representations adapt in a

task-specific way, they mirror the behaviour of the rich learning regime; conversely,

representations that exhibit minimal change and remain stable across tasks reflect

the lazy regime and are inherently task-agnostic.

However, a key limitation of current experimental work is that neural repre-

sentations are typically measured only at the end of learning. As a result, these

snapshots provide limited insight into the dynamics of how representations evolve

throughout the learning process. Consequently, the same final representation could,

in principle, emerge from either rich or lazy learning dynamics. To address this

ambiguity, future research should aim to characterise the temporal evolution of

neural representations during learning. Understanding these dynamics is essential

for distinguishing between learning regimes and for interpreting the functional role

of representational changes—or lack thereof—across brain regions and tasks.

Nonetheless, certain types of neural representations have been linked to prop-

erties shaped by the underlying learning regime. In particular, the lazy learning

regime has been associated with random non-linear mixed selectivity, whereby

task-relevant variables are projected into a high-dimensional space through random

feature mixing [226, 271, 230, 33]. These randomly mixed-selective representations

are well suited to generalisation across tasks due to their high dimensionality: by

embedding input randomly and non-linearly into a sufficiently large feature space,

task-relevant distinctions often become linearly separable. As a result, simple linear

readouts may be sufficient for solving complex tasks. This suggests that effective

task learning can occur rapidly, without necessitating substantial changes to the

underlying representations —indicative of the lazy regime. By contrast, the rich

regime involves structured representational changes and has been associated with

linear mixed selectivity [282, 206] and manifold learning. In this regime, the brain

encodes information on low-dimensional, task-specific manifolds—examples of

which include the grid-like codes observed in entorhinal cortex cells [47, 33, 90].
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The task-specific nature of these representations is often interpreted as evidence

of alignment with task-relevant vectors. For example, Flesch et al. [90] showed

that neural population codes observed through human fMRI reflect representational

geometries that align with those produced by the rich regime in a model network.

Altogether, task-specific representations are often taken as evidence of alignment

with the rich regime, while the absence of task-specific characteristics may suggest a

lazy regime. However, the broader conditions under which such structured represen-

tations emerge—across different brain regions, task demands, prior knowledge, and

task structures—remain largely unexplored.

The computational models explored in this thesis — based on neuroscience-

relevant architectures such as deep feedforward and recurrent neural networks —

provide a robust framework for formulating new theories about how neural repre-

sentations arise and develop in the brain [156]. These models enable systematic

manipulation of key variables, allowing researchers to isolate and examine the fac-

tors that shape different learning regimes, including task demands, environmental

structure, architectural design, and the influence of prior knowledge. Moreover, they

provide a unique opportunity to investigate the temporal dynamics of learning, poten-

tially leading to novel theoretical insights and predictions. Significant gaps remain in

our understanding of the dynamic of neural representations and the emergence and

progression of complex cognitive functions across the lifespan [241]. By addressing

this gap, we may foster experimental exploration of this pressing open question in

the field.

2.2.2 Learning setting

Prior knowledge plays a crucial role in shaping both the process and outcome of

learning. We outline below different learning setting in which prior knowledge

impacts the learning dynamics.
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2.2.2.1 Continual Learning

Continual learning refers to the ability of an agent to learn from a sequence of tasks

without forgetting previously acquired knowledge. In a continual learning regime, a

biological agent can seamlessly switch between tasks and retain prior knowledge

while learning new tasks. However, this is a major challenge for artificial agents,

as they often struggle with catastrophic forgetting. When trained on a new task,

artificial models tend to overwrite the knowledge learned from previous tasks, making

it difficult to retain information from earlier stages. This phenomenon can also

negatively impact other areas, such as reinforcement learning, multi-task learning,

and lifelong learning [11, 278, 261]. Overcoming this pathology may unlock the

potential for versatile and flexible learning algorithms. Recent efforts to mitigate

catastrophic forgetting [212, 60] have led to the development of regularisation

strategies that promote specialisation, such as elastic weight consolidation [148]

and synaptic intelligence [306]. Finally, prioritised replay has been proposed as

a mechanism to combat catastrophic forgetting. Replay methods include storing

data from earlier tasks to interleave when learning new tasks [192]. In Chapters 3

and 4, we investigate how initialisation impacts the dynamics of continual learning

and evaluate the effectiveness of various methods for mitigating forgetting under

different initialisation schemes.

2.2.2.2 Reversal Learning

The reversal framework, akin to the continual learning paradigm discussed earlier,

represents a form of sequential learning. Specifically, Reversal learning is the process

where an individual changes their behaviour by unlearning an old habit and forming

a new one in response to changing situations. This process requires inhibiting a

formerly rewarded response and shifting to an alternative, making it a key measure

of cognitive flexibility in both humans and animals [129]. Cognitive flexibility in

animals during reversal learning displays considerable variability, with behaviours

ranging from rapid switching to gradual adaptation [133]. Similarly, in deep neural

networks, we observe a diverse range of reversal learning profiles. Notably, deep

linear networks can exhibit both catastrophic slowing and rapid reversal [168]. In
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Chapter 3, we present a theoretical framework that may underpins these observations.

2.2.2.3 Transfer Learning

Transfer learning involves the transfer of knowledge across different domains

[310, 279]. Its origins can be traced back to educational psychology, which suggests

that knowledge transfer occurs through the generalisation of prior experiences. A

practical example is that a person who has learned to play the guitar may acquire

trumpet-playing skills more quickly than someone without prior musical training,

as both instruments share fundamental musical concepts. The transfer learning

framework shares similarities with the continual learning paradigm discussed ear-

lier, particularly due to its sequential learning approach. Importantly, continual

learning also focuses on minimising forgetting. Previous research has uncovered a

fascinating interplay between transfer and forgetting [168, 167, 17, 64], as well as

its connection to the learning regime the network operates in [121]. For example,

lazy representations tend to perform poorly at transfer, whereas rich representations

support greater transfer. In a similar setup, the benefits of leveraging features learned

from upstream tasks for new tasks were examined in single-layer and two-layer net-

works [63, 101, 270]. These studies explored how task similarity and data scarcity

impact downstream task performance [167, 168]. In Chapter 3, we investigate how

initialisation impacts transfer learning.

2.2.2.4 Fine-Tuning

Fine-tuning, a common technique for transfer learning, pre-trains neural networks on

a larger auxiliary task before training on a downstream task of interest. Rather than

training a model from scratch, fine-tuning enables the transfer of knowledge from a

broad, general dataset to a more specialised domain. This technique is especially

valuable in deep learning, where models trained on extensive datasets, such as

ImageNet for computer vision or large text corpora for natural language processing,

can be effectively adapted to new tasks with minimal labelled data [213, 183]. As

the computational costs of training large models continue to rise, fine-tuning has

emerged as a more efficient alternative. However, despite its widespread use, the

underlying dynamics and effects of fine-tuning remain poorly understood. Previous
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research has advanced in this area by shedding light on the implicit regularisation

effects that arise from pre-training followed by fine-tuning, particularly in diagonal

linear networks [173].

In Chapter 3, we explore the fine-tuning dynamics of two-layer linear networks.

Although structurally simple, these models play a foundational role in fine-tuning

strategies, particularly through their use in Low-Rank Adapters (LoRA) [126]—a

widely employed technique aimed at reducing computational demands. The

LoRA parameterisation, given by ∆W = AB, effectively embeds a two-layer lin-

ear sub-network within the larger language model architecture. Recent research

has investigated how factors such as the initialisation of the low-rank matrices

A and B, as well as architectural properties like infinite width, influence fine-

tuning performance—frequently linking these effects to the underlying learning

regime[183, 117, 62]. Notably, low-rank fine-tuning has been shown to often operate

within a so-called lazy or kernel regime [183]. Specifically, the standard fine-tuning

and its LoRA-based variant were shown to perform comparably to their respective

kernel approximations. This regime is characterised by minimal deviation from the

pre-trained parameters and strong retention of the model’s original representations.

2.2.3 Architectures

Neuroscience studies have shown that different regions of the brain possess unique

structural architectures, with variations in their connectomics—the mapping of neural

connections that underlie brain function—potentially reflecting their specialised

functional roles [162]. Similarly, in machine learning, structural parameters such as

depth, width, and connectivity are systematically analysed to assess their influence

on learning dynamics, structured representations, and overall model performance

[67, 158, 37]. Architectural design is thus a crucial factor in the learning process

for both biological and artificial neural networks. In the following sections, we

review key deep learning architectures that are particularly relevant to this thesis,

emphasising their success in enhancing our understanding of neural representations

and computational principles.
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2.2.3.1 Linear networks

Our work builds upon a rich body of research on deep linear networks, which,

despite their simplicity, have proven to be valuable models for understanding more

complex neural networks [23, 93, 243]. Previous research has extensively analyzed

convergence [12, 72], generalisation properties [161, 217, 125], and the implicit bias

of gradient descent [14, 294, 50, 157] in linear networks.

These studies have also revealed that deep linear networks have intricate fixed-

point structures and nonlinear learning dynamics in parameter and function space,

reminiscent of phenomena observed in nonlinear networks [13, 161]. Seminal work

by Saxe et al. [243] laid the groundwork by providing exact solutions to gradient

flow dynamics under task-aligned initialisations, demonstrating that the largest

singular values are learned first during training. This analysis has been extended

to deep linear networks [13, 14, 312] with more flexible initialisation schemes

[103, 272, 104].

In Chapter 3, we directly builds on the matrix Riccati formulation proposed by

Fukumizu [93], which extends these solutions to wide networks. We extend and

refine these results to obtain the dynamics for a wider class of λ -balanced networks

with unequal input output dimension to more clearly demonstrate the impact of

initialisation on rich and lazy learning regimes also developed in Tu et al. [280] for a

set of orthogonal initalisations. Our work extends previous analyses [297] of these

regimes to wide networks. Previous studies leveraged these solutions primarily to

characterise convergence rates; however, our work goes beyond this by providing a

comprehensive characterisation of the complete dynamics of the system [272].

2.2.3.2 Two-layer non-linear networks

Two-layer (or single-hidden-layer) networks have become a central model for study-

ing the rich learning regime [307, 15, 75, 284, 196, 308, 242, 106, 304, 22]. A line

of research, grounded in statistical mechanics, has developed analytically tractable
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dynamical models for a broad class of two-layer (or single-hidden-layer) artificial

neural networks [304]. This approach typically involves taking asymptotic limits

of large input dimension, number of samples and/or number of network weights

in order to capture the typical case behaviour that shape learning behaviour. In

these analyses, the network is characterised by how its width scales relative to the

input dimension and the number of training samples, allowing for the exploration

of distinct learning dynamics and representational properties across various scaling

regimes [58].

Many recent advances in understanding the rich regime of deep learning have

emerged from investigating how the variance of initialisation and the layer-wise

learning rates should scale in the infinite-width limit, in order to ensure the consistent

evolution of activations, gradients, and outputs. In this regime, analysing the dy-

namics becomes significantly more tractable: random variables tend to concentrate,

and key quantities either vanish, remain constant, or diverge [180]. Specifically,

the mean-field limit refers to the setting in which the input dimension remains

finite while the number of hidden units tends to infinity [196, 260]. In contrast,

the extensive-width limit describes a regime where the network width and input

dimension scale proportionally with the number of training samples [58]. These

framework enables the study of learning dynamics in overparameterised models

without collapsing into the kernel regime, where no feature learning occurs [58]. In

contrast, in the Neural Tangent Kernel (NTK) limit, the network behaves as a kernel

regressor and does not engage in feature learning [130, 165, 16]. These ideas have

been extended to deeper networks through the tensor programme framework, which

has led to the derivation of the maximal update parametrisation (µP) [301, 300].

In Chapter 4 we focus on finite-width neural networks. The finite-width setting

considers the case where the input dimension tends to infinity while the number

of hidden units remains small. Theoretical analyses of these simpler models -such

as generalised linear models (GLMs) without hidden layers or networks with a
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fixed (i.e., Θ(1)) number of hidden units–have been extensively conducted [97,

287, 255, 263, 238], with comprehensive reviews available in [304]. In Chapter 4,

we build on this framework to investigate the emergence of specialisation —a

indication of the rich learning regime. Specialisation refers to the tendency of a

network to rely on a subset of its hidden units, rather than redundantly distributing

the representation across all neurons [26, 122]. Previous work [238, 106] has

demonstrated that architectural choices and activation functions play a critical role

in shaping the specialisation profile. We adopt this perspective to disentangle the

respective contributions of initialisation and activation functions in determining the

representation, with particular emphasis on how these factors influence specialisation.

2.2.3.3 Recurrent neural networks

Recurrent neural networks (RNNs) are important tools in both machine learning and

neuroscience for learning tasks with temporal dependencies. In tandem with the

success of dynamical systems theory in describing neural activity related to motor

control, working memory, and decision-making [228, 289, 143], RNNs have become

a popular choice for cognitive models of neural dynamics [25]. They not only

replicate recurrent dynamics recorded in animals but are also capable of performing

abstractions of the same cognitive tasks used in experiments [184, 83, 290, 187, 188].

More generally, RNNs are universal approximators of any open dynamical systems

due to their time-evolving hidden layers, making them an appealing model for study

[70, 254].

Accompanying the popularity of RNNs, there have been significant efforts

dedicated to their theoretical understanding, both from deep learning theoreticians

[54, 208, 314] and neuroscientists relating these findings to observations about

the brain [189, 252, 253, 78, 88, 71, 176]. However, most theoretical studies

of RNNs only analyse the end of training- analysing properties of the solutions

they find, ignoring the learning process itself [241]. In Chapter 3, we examine

simplified Linear Recurrent Neural Networks (LRNNs) to develop analytical meth-

ods for understanding their dynamics. These models have previously been used
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to investigate various phenomena, such as learning regimes [81, 176], low-rank

modifications to network connectivity [252], and issues related to stability and ex-

trapolation [54]. Differing from prior work on learning dynamics in linear networks

[243, 244, 242, 39, 67, 240], we study recurrent architecture, allowing us to analyse

how other architectures constrain optimisation in ways that differ from feedforward

ones. Overall, despite the widespread use and known complex computational

abilities of RNNs, it is still unknown how their representations emerge as a result of

training on temporally-structured tasks.

2.2.4 Analytical frameworks

Below, we present two influential frameworks that have been introduced to the

machine learning field to enable tractable theoretical analysis and deepen our under-

standing of learning dynamics. The first is the teacher–student framework, which

offers a generative modelling setup for studying generalisation and internal represen-

tations in a controlled, synthetic setting. The second is the concept of implicit bias,

which provides insights into the inductive principles that guide learning. Together,

these frameworks offer complementary perspectives on how architectural choices,

initialisation strategies, and training dynamics shape learning outcomes. In the

subsections that follow, we explore each framework in detail and explain how they

underpin the analyses presented in subsequent chapters.

2.2.4.1 Teacher–Student Framework

The teacher–student framework provides a generative modelling approach in which

a student network learns from a teacher model, enabling the creation of controlled

synthetic datasets. This setup offers a robust foundation for analysing learning

behaviour under well-specified conditions [97]. Importantly, the framework can

be adapted to different architectures and settings, making it a flexible and widely

applicable tool across different model classes.

One of the principal advantages of this framework is its capacity to isolate and
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examine how internal representations relate to task structure within a systematically

controlled setting. As a result, it has been widely adopted in both the machine learn-

ing and neuroscience communities to investigate generalisation and the development

of internal representations [291, 82, 245, 311, 106, 19, 277, 220].

A substantial body of theoretical research has also explored online learn-

ing within this framework, particularly in the context of multilayer-perceptrons

[34, 237, 106]. This line of work has facilitated the derivation of ordinary differential

equations characterising the learning dynamics of the network, even in non-linear

settings. While these equations often require numerical integration for their solution,

they provide valuable insights into the behaviour of learning systems. More recently,

this approach has been extended to the study of continual learning—where networks

must integrate information across time without succumbing to catastrophic forgetting

[17, 167, 168, 161].

In Chapter 4, we build upon this foundation by examining continual learning

within the teacher–student framework [167, 168]. In particular, we focus on how

different initialisation strategies influence the evolution of internal representations

across sequential tasks.

2.2.4.2 Implicit bias

Modern deep learning models are often overparameterised—they contain far more

parameters than there are training examples. According to classical statistical

intuition, such models should easily overfit the training data, memorising it without

learning patterns that generalise to unseen inputs. Yet, in practice, overparameterised

networks often generalise surprisingly well. This counterintuitive behaviour is

characterised by the phenomenon of double descent [28], where test error initially

decreases with model complexity, then increases (as expected), but decreases again

as the model becomes highly overparameterised. This suggests that, despite the

existence of many interpolating solutions, neural networks are systematically biased
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toward those that generalise better. The source of this preference to converge to

particular kinds of solutions is known as the network’s implicit bias. The model

architecture, initialisation, and optimisation procedure, in interaction with the data,

determine the implicit bias. Understanding this bias is crucial not only for explaining

why neural networks generalise well despite their capacity to overfit but also for

informing principled model design and training strategies.

Recent progress in understanding implicit bias has centred on theoretically

characterising how gradient-based optimisation selects specific solutions from the

multitude that perfectly fit the training data. A prevalent approach involves identify-

ing a function Q such that the network converges to a first-order Karush-Kuhn-Tucker

(KKT) point that minimises Q among all interpolating solutions. Foundational work

by Soudry et al. [265] exemplified this framework by demonstrating that linear

classifiers trained with gradient descent converge to the maximum-margin solution.

This concept has since been extended to various architectures, including deep linear

networks [137, 112, 199], homogeneous networks [181, 202, 50], and recurrent

neural networks [81].

A related line of research examines the learning dynamics of networks trained

with mean squared error, where the network function dynamics can be expressed as

a mirror flow governed by a specific potential function Φ(β ). Mirror flow is a type

of continuous-time optimisation that operates not in the original parameter space

(known as the primal space), but in a transformed, dual space—often referred to as

the mirror space. Instead of directly updating the model parameters using gradients

in the primal space, this method updates a transformed version of the parameters,

typically based on the gradient of the potential function. This approach is particularly

effective in settings with non-Euclidean geometries or constraints, as the choice

of the potential function Φ(β ) defines the geometry underlying the optimisation

process. Within this framework, the function Q, introduced earlier as a measure

of implicit bias, emerges directly from these dynamics and can be characterised as

minimising a Bregman divergence associated with Φ(β ). The Bregman divergence
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captures how far a solution is from optimality with respect to the geometry defined

by Φ(β ). Consequently, the mirror flow dynamics implicitly guide the optimisation

toward solutions that minimise Q by following paths of steepest descent in this

geometry. This perspective provides a natural geometric interpretation of implicit

bias and helps explain why mirror descent-like processes tend to favour certain

interpolating solutions over others [111]. More details on the mirror flow analysis

can be found in Appendix A.3.5.1.

In simple models like diagonal linear networks, this method shows how the bias

shifts between favouring sparse (ℓ1-like) and smooth (ℓ2-like) solutions depending on

the training regime [294]. However, finding the potential Φ(β ) is problem-specific

and requires solving a second-order differential equation, which may not be solvable

even in simple settings [113, 171]. Azulay et al.[21] extended this analysis to a time-

warped mirror flow, enabling the study of a broader class of architectures (finding a

solution for the second-order differential equation). In Chapter 3, we build on this

line of research by deriving exact expressions for the inductive bias in our minimal

linear network model. Our results extend the work by Azulay et al. [21] to wide

linear networks, revealing how structure and initialisation influence the solutions

found during training.



Chapter 3

From Lazy to Rich: Exact learning

dynamics in deep linear networks

with prior knowledge

Finally, we make some remarks on why linear systems are so important.

The answer is simple: because we can solve them!

– Richard Feynman

This chapter discusses the work presented in publications [67, 69, 158] as well as

ongoing research on Linear RNNs and a review on Linear models [203, 219].

3.1 Introduction
The success of neural models relies on their ability to extract relevant features from

data to build internal representations, a complex process that in machine learning

is defined by two regimes: lazy and rich [243, 215, 51, 22]. Despite significant

advances, these learning regimes and their characterisation are not yet fully under-

stood and would benefit from clearer theoretical predictions, particularly regarding

the influence of prior knowledge on the learning regime. Here, prior knowledge

can be interpreted either as the initialisation or as the representation learned from

a previous task, as is common in continual learning. In this work, we primarily

focus on the impact of initialisation, which can be thought of as the original weight

structure—shaped by years of evolution—potentially embedding useful priors about
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the types of tasks the network is expected to encounter and solve. In this work,

we address this gap by deriving exact solutions for the learning dynamics in deep

linear networks as a function of network initialisation, providing one of the few

analytical models of the rich and lazy regimes in wide and deep neural networks

[297, 158, 280].

To illustrate the dramatic effect of initialisation and the kind of phenomenon

we build a theory for, we consider a two-layer linear network parameterised by

an encoding layer W1 and a decoding layer W2 (Fig. 3.1A). This network can be

initialised with different relative scalings, such that W1WT
1 ≻WT

2 W2, W1WT
1 ≺

WT
2 W2, or W1WT

1 = WT
2 W2, while maintaining the same absolute scale - where

ee define the absolute scale of the weights as the norm of W2W1
1. As shown in

Fig. 3.1B, the choice of relative scaling can result in drastically different learning

trajectories and representations and the theory we develop over the course of this

paper describes these effects. We will exactly solve the dynamics for a special

case in Section 3.3. Through these solutions, we aim to gain insights into the

rich and lazy regimes, as well as the transition between them during training, by

examining the impact of relative scaling. As shown in Fig. 3.1C and further proved in

Appendix A.1.1, initialisation methods used in practice, such as LeCun initialisation

in wide networks, approximate the relative scaling initialisation explored in this paper,

making it relevant to machine learning community as further demonstrated by Kunin

et al. [158]. We consider applications relevant to machine learning and neuroscience,

including continual learning [148, 306, 212], reversal learning [84], transfer learning

[273, 276, 161, 101], fine-tuning [124], revising structured knowledge [247] and

prioritised replay for revising structured knowledge [191].

Our contributions.

• We derive explicit solutions for the gradient flow, internal representational

similarity, and finite-width NTK in unequal-input-output two-layer deep linear

networks under a broad range of λ -balanced initialisation conditions.

1the symbols ≻ and ≺ refer to positive definite matrix inequalities.
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Figure 3.1: A minimal model of the rich and lazy regimes. A. We examine a deep and wide
linear network trained using gradient descent starting from an initialisation char-
acterised by a relative scale parameter λ — which characterises the difference
in pairwise products between the first and second layers (WT

2 W2−W1WT
1 ). B.

Network output for an example task over training time, starting from a range of
relative scale values. The dynamics are influenced by the initialisation. Solid
lines represent simulations, while dotted lines indicate the analytical solutions
derived in this work. C. A network with LeCun weight initialisation [164] in
the infinite width limit becomes λ -balanced, as WT

2 W2−W1WT
1 approaches

the scaled identity matrix. For simulation details, see Appendix A.5.3.

• We model the full range of learning dynamics from lazy to rich, showing

that this transition is influenced by a complex interaction of architecture,

relative scale, absolute scale and weight-target ratio extending beyond just

initialisation absolute scale. We further analyse how weights dynamically

align to task-relevant structure over the course of learning, going beyond prior

work that has assumed initial alignment.

• We present applications of these solutions relevant to both the neuroscience and

machine learning communities, providing exact solutions for continual learn-

ing dynamics, reversal learning dynamics, fine-tuning, and learning structured

knowledge and application to transfer learning.
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3.2 Preliminaries

Consider a supervised learning task where input vectors xn ∈ RNi , from a set of P

training pairs {(xn,yn)}P
n=1, need to be mapped to their corresponding target output

vectors yn ∈ RNo . We learn this task with a two-layer linear network model

ŷn = W2W1xn, (3.1)

with weight matrices W1 ∈ RNh×Ni and W2 ∈ RNo×Nh , where Nh is the number of

hidden units. The network’s weights are optimised using full batch gradient descent

with learning rate η (or respectively time constant τ = 1
η

) on the mean squared error

loss

L(ŷ,y) = 1
2
〈
||ŷ−y||2

〉
, (3.2)

where ⟨·⟩ denotes the average over the dataset. Our objective is to describe the entire

dynamics of the network’s output and internal representations based on the input

covariance and input-output cross-covariance matrices of the dataset, defined as

Σ̃ΣΣ
xx
=

1
P

P

∑
n=1

xnxT
n ∈ RNi×Ni and Σ̃ΣΣ

yx
=

1
P

P

∑
n=1

ynxT
n ∈ RNo×Ni , (3.3)

and the initialisation W2(0),W1(0). We employ an approach first introduced in the

foundational work of Fukumizu [93] (discribed in Appendix A.1.2), which, instead of

studying the parameters directly, considers the dynamics of a matrix of the important

statistics. In particular, defining Q =
[
W1 WT

2

]T
∈ R(Ni+No)×Nh , we consider the

(Ni +No)× (Ni +No) matrix

QQT (t) =

WT
1 W1(t) WT

1 WT
2 (t)

W2W1(t) W2WT
2 (t)

 , (3.4)

which is divided into four quadrants with interpretable meanings, and where t ∈ R

represents training time. The approach monitors several key statistics collected in the

matrix. The off-diagonal blocks contain the network function Ŷ(t) = W2W1(t)X.

The on-diagonal blocks capture the correlation structure of the weight matrices,
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allowing for the calculation of the temporal evolution of the network’s internal

representations. This includes the representational similarity matrices (RSM) of the

neural representations within the hidden layer,

RSMI = XT WT
1 W1(t)X, RSMO = YT (W2WT

2 (t))
+Y, (3.5)

where + denotes the pseudoinverse; and the network’s finite-width NTK [130, 165,

16]

NTK = INo⊗XT WT
1 W1(t)X+W2WT

2 (t)⊗XT X, (3.6)

where INo is the No×No identity matrix and ⊗ is the Kronecker product. Hence,

the dynamics of QQT describes the important aspects of network behaviour. For a

derivation of these quantities, see Appendix A.1.3.
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3.3 Exact learning dynamics

In this section, we derive an exact solution for QQT , providing a clean understanding

of the learning dynamics, convergence behaviour, and generalisation properties of

two-layer linear networks with prior knowledge.

3.3.1 Assumptions

To derive these solutions, we make the following assumptions:

• A1 (Whitened input). The input data is whitened, i.e. Σ̃ΣΣ
xx
= I.

• A2 (λ -Balanced). The network’s weight matrices are λ -balanced at the be-

ginning of training, i.e. WT
2 W2(0)−W1W1(0)T = λ I. If this condition holds

at initialisation, it will persist throughout training [243, 12]. For completeness,

we prove this in Appendix A.2.1.

• A3 (Dimensions). The hidden dimension of the network is defined as Nh =

min(Ni,No), ensuring the network is neither bottlenecked (Nh < min(Ni,No))

nor overparameterised (Nh > min(Ni,No)).

These assumptions are strictly weaker than prior works [93, 158, 297]. The

main distinction between our work and prior works is that [93] assumed zero-

balanced weights (W1(0)W1(0)T = W2(0)T W2(0)), while we relax this assumption

to λ -balanced. The zero-balanced condition restricts the networks to a rich setting.

We develop solutions to explore the continuum between the rich and the lazy regime.

Furthermore, we develop solutions to be applicable to equal and unequal input and

output dimensions, overcoming assumptions used in Fukumizu et al. [93]. While

some works, such as Tarmoun et al. [272], have considered removing this constraint,

their solutions remain in an unstable and mixed form. Other studies, such as Xu and

Ziyin [297] and Kunin et al. [158], have similarly relaxed the balanced assumption

but were limited to single-output neuron settings. See Appendix A.2.2 for a further

discussion on each of these works’ assumptions and their relationship to ours.
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3.3.2 Lemmas and definitions

To derive exact solutions, we start by presenting the main lemmas, which we prove

in the Appendix.

Lemma 3.3.1. Under Assumptions 1 and 2, the gradient flow dynamics of QQT (t),

with initialisation QQT (0) = Q(0)Q(0)T can be written as a differential matrix

Riccati equation

τ
d
dt
(QQT ) = FQQT +QQT F−(QQT )2, where F=

−λ

2 INi (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2 INo

 . (3.7)

As derived in [93], whenever F is symmetric and diagonalisable such that

F = PΛΛΛPT , where P is an orthonormal matrix and ΛΛΛ is a diagonal matrix, then the

unique solution to this matrix Riccatti equation is given by

QQT (t) = eF t
τ Q(0)

[
I+Q(0)T P

(
e2ΛΛΛ

t
τ − I

222ΛΛΛ

)
PT Q(0)

]−1

Q(0)T eF t
τ . (3.8)

In Appendix A.2.3, we prove that this equation is the unique solution to the

initial value problem derived in Lemma 3.3.1 for any value of Λ. However, the

solution in this form is not very useable or interpretable due to the matrix inverse

mixing the blocks of QQT . Additionally, we need to diagonalise F. To do so

we consider the compact singular value decomposition SVD(Σ̃ΣΣ
yx
) = ŨS̃ṼT . Here,

Ũ ∈ RNo×Nh denotes the left singular vectors, S̃ ∈ RNh×Nh the square matrix with

ordered, non-zero singular values on its diagonal, and Ṽ ∈RNi×Nh the corresponding

right singular vectors. For unequal input-output dimensions (Ni ̸= No), the right

and left singular vectors are not square. Accordingly, for the case Ni > Nh = No,

we define Ũ⊥ ∈ RNo×|No−Ni| as a matrix containing orthogonal column vectors that

complete the basis for Ũ, i.e., make
[
Ũ Ũ⊥

]
orthonormal, and Ṽ⊥ ∈ RNi×|No−Ni| as

a matrix of zeros. Conversely, when Ni = Nh < No, then Ṽ⊥ is a matrix containing

orthogonal column vectors that complete the basis for Ṽ and Ũ⊥ is a matrix of zeros.

Using this SVD structure, we can now describe the eigendecomposition of F ( Proof

in Appendix A.2.4).
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Lemma 3.3.2. Under Assumption 3, the eigendecomposition of F = PΛΛΛPT is

P =
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)
√

2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√

2Ũ⊥

 , ΛΛΛ =


S̃λ 0 0

0 −S̃λ 0

0 0 λλλ⊥

 ,

(3.9)

where the matrices S̃λ , λ⊥, H̃, and G̃ are diagonal matrices defined as:

S̃λ =

√
S̃2 +

λ 2

4
I, λ⊥ = sgn(No−Ni)

λ

2
I|No−Ni|, H̃ = sgn(λ )

√
S̃λ − S̃
S̃λ + S̃

, G̃ =
1√

I+ H̃2
.

(3.10)

3.3.3 Main theorem

Thanks to the eigendecomposition of F, we can separate the solution provided in

Eq. 3.8 into four quadrants. The following variables of initialisation allow us to

define the product PT QQQ(0) more succinctly,

B = W2(0)T Ũ(G̃+ H̃G̃)+W1(0)Ṽ(G̃− H̃G̃) ∈ RNh×Nh, (3.11)

C = W2(0)T Ũ(G̃− H̃G̃)−W1(0)Ṽ(G̃+ H̃G̃) ∈ RNh×Nh, (3.12)

D = W2(0)T Ũ⊥+W1(0)Ṽ⊥ ∈ RNh×|No−Ni|. (3.13)

Using these variables of the initialisation, this brings us to our main theorem:

Theorem 3.3.3. Under the assumptions of whitened inputs (1), λ -balanced weights

(2), and no bottleneck (3), the temporal dynamics of QQT are

QQT (t) =

Z1(t)A−1(t)Zx1
T (t) Z1(t)A−1(t)Z2

T (t)

Z2(t)A−1(t)Z1
T (t) Z2(t)A−1(t)Z2

T (t)

 ,

with the time-dependent variables Z1(t) ∈RNi×Nh , Z2(t) ∈RNo×Nh , and A(t) ∈

RNh×Nh:
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Figure 3.2: A. The temporal dynamics of the numerical simulation (colored lines) of the
loss, network function, correlation of input and output weights, and the NTK
(rows 1-5, respectively) are exactly matched by the analytical solution (black
dotted lines) for λ = −2. B. λ = 0 Large initial weight values. C. λ = 2
initial weight values initialised as described in A.5. For simulation details, see
Appendix A.5.4.

Z1(t) =
1
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ BT − 1

2
Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥eλ⊥

t
τ DT , (3.14)

Z2(t) =
1
2

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT +

1
2

Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ DT , (3.15)

A(t) = I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +D

(
eλ⊥

t
τ − I

λ⊥

)
DT .

(3.16)

The proof of Theorem 3.3.3 is in Appendix A.2.5. With this solution, we can

calculate the exact temporal dynamics of the loss, network function, RSMs and NTK

(Fig. 3.2A, C) over a range of λ -balanced initialisations.
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3.3.4 Implementation and simulation

One issue with the expression we derived in Theorem 3.3.3 is that it can be nu-

merically unstable when simulating it for a long time t ≫ 0 as it involves taking

the inverse of terms that involve exponentials that are diverging with t. If we

make the additional assumption that B is invertible, then we can rearrange this

expression to only use exponentials with negative coefficients, which we derive in

Appendix A.2.6. In the next section, we will discuss the significance of B being

invertible at initialisation on the convergence of the dynamics. Simulation details are

in Appendix A.5.

3.3.5 Lambda zero

Since the inverse F−1 = PΓΓΓ
−1PT is not well-defined when ΓΓΓ has zero singular

values, we analyse singular values of zero by examining the limiting behaviour using

L’Hôpital’s rule. The method is described in Appendix A.2.7. In this setting, we

impose a full-rank initialisation condition, defined as rank(W2(0)W1(0)) = Ni = No.

However, this assumption is not necessary in our framework when lambda is non-

zero.
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3.4 Rich and Lazy learning

The conserved quantity λ - set at initialisation - arises from an underlying symmetry

in the network, reminiscent of Noether’s theorem, where symmetries correspond to

conserved quantities. In this case, the weights W1 and W2 can be transformed via an

invertible matrix G and its inverse G−1, respectively, without altering the function

computed by the network—i.e., W2W1 remains unchanged. This transformation,

W1→GW1 and W2→G−1W2, constitutes a General Linear (GL) transformation

of the network’s internal representation. Although such GL transformations leave

the network’s output unchanged, standard gradient descent is not equivariant under

them. This lack of invariance is what drives the emergence of different learning

regimes. As a result, the learning dynamics become highly sensitive to the relative

scaling of layers, encapsulated by λ . In contrast to GL-equivariant optimisation

methods—such as Newton’s method, which accounts for curvature and is therefore

more robust to reparameterisations—gradient descent breaks this symmetry. Ulti-

mately, this asymmetry originates in the backpropagation rule itself, where gradients

at each layer are scaled by the weights of subsequent layers—providing an intuitive

explanation for how the learning dynamics evolve with λ . In summary, the relative

scale/ balanced condition introduces an asymmetry in the update rule that leads to

distinct learning regimes.

In this section, we study how the learning dynamics vary with λ , the relative

scale/ balanced condition, as it spans from negative to positive infinity. We leverage

the exact solutions to gain deeper insight into the transition between the rich and

lazy learning regimes, analysing how this transition depends on the level of prior

knowledge, specifically the initialisation. We investigate five key indicators of learn-

ing regimes: the dynamics of singular values and vectors, the behaviour, structure,

and robustness of learned representations, and the evolution of the NTK. We also

examine the influence of the initialisation scale and architectural choices on learning

dynamics. These analyses incorporate new analytical methods that do not build on

the previously presented solution but provide a complementary framework that goes
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beyond the assumptions required for that solution, offering a fresh perspective on

the problem.

3.4.1 Dynamics of the singular values

Here, we study a λ -balanced linear network initialised with task-aligned weights.

Task-aligned weights are those initialised to share the same eigenvectors as the target

task, allowing us to focus solely on the dynamics of the corresponding singular

values. Previous research [246] has demonstrated that initial weights that are aligned

with the task remain aligned throughout training, restricting the learning dynamics

to the singular values of the network. The λ -balanced setting offers a valuable

opportunity to build intuition about the impact of imbalance on the dynamics of

learning regimes, extending beyond previous solutions [272, 285].

Theorem 3.4.1. Under the assumptions of Theorem 3.3.3 and with a task-aligned

initialisation, as defined in [243], the network function is given by the expression

W2W1(t) = ŨS(t)ṼT where S(t) ∈ RNh×Nh is a diagonal matrix of singular values

with elements sα(t) that evolve according to the equation,

sα(t) = sα(0)+ γα(t;λ )(s̃α − sα(0)) , (3.17)

where s̃α is the α singular value of S̃ and γα(t;λ ) is a λ -dependent monotonic

transition function for each singular value that increases from γα(0;λ ) = 0 to

limt→∞ γα(t;λ ) = 1 defined explicitly in Appendix A.3.1. We find that under different

limits of λ , the transition function converges pointwise to the sigmoidal (λ → 0) and

exponential (λ →±∞) transition functions,

lim
λ→0

γα(t;λ )→ e2s̃α
t
τ −1

e2s̃α
t
τ −1+ s̃α

sα (0)

, lim
λ→±∞

γα(t;λ )→ 1− e−|λ |
t
τ . (3.18)

The proof for Theorem 3.4.1 can be found in Appendix A.3.1. As shown

in Fig. 3.3B, as λ approaches zero, the dynamics resemble sigmoidal learning

curves that traverse between saddle points, characteristic of the rich regime. In this
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Figure 3.3: Simulated and analytical dynamics of the singular values of the network function
with relative scale of A. λ =−2, B. λ = 0, or C. λ = 2, initialised as described
in Appendix A.5. For simulation details, see Appendix A.5.5.

regime, the network learns the most salient features first, which can be beneficial for

generalisation [161]. Conversely, as shown in Fig. 3.3A and C, as the magnitude of

λ increases, the dynamics become exponential, characteristic of the lazy regime. In

this regime, all features are treated equally and the network’s dynamics resemble that

of a shallow network. Notably, similar effects have been observed previously in the

context of large absolute scales [246] independently of the relative scale. Overall,

our results highlight the critical influence the relative scale λ has in shaping the

learning dynamics, from sigmoidal to exponential, steering the network between the

rich and lazy regimes.

3.4.2 The dynamics of the representations

We now consider how the representations of the individual parameters W1 and W2

change through training. Under λ -balanced initialisation, a simple structure persists

throughout training, allowing us to recover the dynamics of parameters - up to a

time-dependent orthogonal transformation - from that of QQT (t).

Theorem 3.4.2. Under Assumption 2, if the network function W2W1(t) =

U(t)S(t)VT (t) is full rank, then we can recover the parameters W2(t) =

U(t)S2(t)RT (t) and W1(t) = R(t)S1(t)VT (t) up to time-dependent orthogonal

transformation R(t) ∈ RNh×Nh , where Sλ (t) =
√

S2(t)+ λ 2

4 I and

S1(t)=
((

Sλ (t)− λ I
2

) 1
2
,0max(0,Ni−No)

)
, S2(t)=

((
Sλ (t)+

λ I
2

) 1
2 ;0max(0,No−Ni)

)
.

(3.19)

Proof of Theorem 3.4.2 is in Appendix A.3.2.
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Figure 3.4: A. A semantic learning task with the SVD of the input-output correlation matrix
of the task. (top) U and V represent the singular vectors, and S contains the
singular values. (bottom) The respective RSMs are USU⊺ for the input and V SV ⊺

for the output task. B. Simulation results and C. Theoretical input and output
representation matrices after training, showing convergence when initialised
with values of λ equal to −2, 0, and 2, according to the initialisation scheme
described in Appendix A.5. D. Final RSMs matrices after training converged
when initialised from random large weights. E. After convergence, the network’s
sensitivity to input noise (top panel) is invariant to λ , but the sensitivity to
parameter noise increases as λ becomes smaller (or larger) than zero. For
simulation details, see Appendix A.5.6.

The effective singular values Sλ of the corresponding weights are either up-

weighted or down-weighted depending on the magnitude and sign of λ , splitting

the representation into two parts. This division is reflected in the network’s internal

representations. With our solution, QQT (t), which captures the temporal dynamics

of the similarity between hidden layer activations, we can analyse the network’s

internal representations in relation to the task. This allows us to determine whether

the network adopts a rich or lazy representation, depending on the value of λ .

Assuming convergence to the global minimum, which is guaranteed when the

matrix B is non-singular, the internal representation satisfies WT
1 W1 = ṼS̃2

1ṼT and

W2WT
2 = ŨS̃2

2ŨT with W2W1 = ŨS̃ṼT . Theorem A.3.3 in the Appendix provides a

detailed proof of this limiting behaviour.

To illustrate this, we consider a hierarchical semantic learning task1, introduced

in Saxe et al. [243], where living organisms are organised according to their features

1In this setting, the network has equal input and output dimensions
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(Fig.3.4 A). The representational similarity of the task’s inputs (ṼS̃ṼT ) reflects this

hierarchical structure (Fig. 3.4A). Similarly, the representational similarity of the

task’s target values (ŨS̃ŨT ) highlights the primary groupings of items.

When training a two-layer network with relative scale λ equal to zero and

task-agnostic initialisation [197], the input and output representational similarity

matrices (Fig. 3.4B) match the task’s structure upon convergence. As derived

in Theorem A.3.4 the network is guaranteed to find a rich solution regardless of

the absolute scale when lambda is equal to zero, meaning WT
1 W1 = ṼS̃ṼT and

W2WT
2 = ŨS̃ŨT , as shown in Fig. 3.4C.

We also show that as λ approaches either positive or negative infinity, the

network symmetrically transitions into the lazy regime.

Theorem 3.4.3. Under the assumptions of Theorem A.2.6, training on data ΣΣΣ
yx =

ŨS̃ṼT , as λ → ∞, the representation tends to

W2WT
2 = Ũ

 λ I 0max(0,No−Ni)

0max(0,No−Ni) 0

 ŨT , (3.20)

WT
1 W1 =

1
λ

Ṽ

 S̃2 0max(0,Ni−No)

0max(0,Ni−No) 0

 ṼT . (3.21)

As λ →−∞,

W2WT
2 =− 1

λ
Ũ

 S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

 ŨT , (3.22)

WT
1 W1 = Ṽ

 −λ I 0max(0,Ni−No)

0max(0,Ni−No) 0

 ṼT . (3.23)

The proof can be found in Appendix A.3.2.3

As demonstrated in Theorem 3.4.3 and illustrated in Fig. 3.4B, the represen-

tations converge to an identity matrix for both large positive and large negative
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values of λ— emerging in the output representations for large positive λ and input

representations for large negative λ . This convergence indicates that the network

adopts task-agnostic representations. Meanwhile, the other respective RSMs become

negligible, with scales proportional to 1/λ , while still solving for the task. Therefore,

as shown in Theorem A.3.6, the NTK becomes static and equivalent to the identity

matrix in the limit as λ approaches infinity. However, the downscaled representations

of the network retain task-specific structure. As demonstrated in Theorem 3.4.3,

the downscaled weights captures the singular values of the task as well as the

corresponding singular vectors.

Intuitively, in this setup, the larger weights function as an identity-like projection,

while the smaller weights adapt and align to the task. However, because of their

smaller scale relative to the larger weights, their contribution to the NTK remains

negligible. This property could be beneficial if the weights are later rescaled, such as

during fine-tuning, potentially enhancing generalisation and transfer learning, as we

will demonstrate in Sec. 3.5.3. We contrast this to the scenario where both weights

are initialised with large Gaussian values, leading to lazy learning that maintains

a fixed NTK but lacks any structural representation, as illustrated in Fig. 3.4D.

Furthermore, in the infinite-width regime, where weights are initialised from a

Gaussian distribution with large variance, averaging effects cause both input and

output representations to approximate identity matrices. In this scenario, the network

learns with minimal parameter variation, operating in the lazy regime with a fixed

Neural Tangent Kernel (NTK). This behaviour contrasts with the dynamics observed

in the current setting since both input and output representations are task agnostic –

given by a scalled identity matrix.

Consequently, we propose a new lazy regime, which we refer to as the semi-

structured lazy regime. These existing regimes preserve only the input or output

representation, resulting in a partial loss of structural information. Altogether, we

find that initialisation will determine which layer in the network the task specification

features resides in: layers initialised with large values will be task-agnostic, while
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those initialised with small values will be task-specific.

3.4.3 Representation robustness and sensitivity to noise

Here, we examine the relationship between the learning regime and the robustness of

the learned representations to added noise in the inputs and parameters. The expected

post-convergence loss with added noise to the inputs is determined by the norm of

the network function [40], which in our setting is independent of λ . Specifically, if

we add zero-centered noise ψX with variance σ2
X to the inputs, then the expected loss

is ⟨L⟩ψX
= σ2

X ∑
Nh
i=1 S̃2

i + c, where c is a constant that depends solely on the statistics

of the training data (Figure 3.4E, Appendix A.3.3). However, if we instead add noise

to the parameters, the expected loss scales quadratically with the norm of the weight

matrices [40], which in our setting depend on λ . In particular, zero-centered parame-

ter noiseψW1 andψW2 with variance σ2
W results in an expected loss of⟨L⟩ψW1 ,ψW2

=

1
2Niσ

2
W||W2||2F + 1

2Noσ2
W||W1||2F + 1

2NiNhNoσ4 + c, with norms ||W1||2F =

1
2 ∑

Nh
i=1

(√
4S̃2

i +λ 2 +λ

)
and ||W2||2F = 1

2 ∑
Nh
i=1

(√
4S̃2

i +λ 2−λ

)
. This im-

plies that, under the assumption of equal input-output dimensions, networks ini-

tialised with λ = 0, corresponding to the rich regime, converge to solutions most

robust to parameter noise (Fig. 3.4E, Appendix A.3.3). As the norm of λ increases,

the loss scales proportionally, leading to less robust solutions. In practical terms,

parameter noise can be interpreted as noise arising within the neurons of a bio-

logical network. In this context, rich solutions may offer more robust representations.

In conclusion, the impact of noise on the network is strongly influenced by both

its source and the degree of weight balancing. While the impact of input noise is

largely independent of the network’s relative scale λ , the influence of parameter

noise is shaped by the value of λ . Our findings further show that the rich regime

consistently yields more robust solutions across a wide range of conditions.
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Figure 3.5: Decoupling dynamics. A Analytical (black dotted lines) and numerical (solid
lines) of the temporal dynamics of the on- and off-diagonal elements of ΨTΨ

in blue and red, respectively. B Schematic representation of the decoupling
process. C Three target matrices with dense, unequal diagonal, and equal
diagonal structure. D-F Decoupling dynamics for the top (D), middle (E), and
bottom (F) tasks depicted in panel C. Row F contains analytical predictions
for the time of the peak of the off-diagonal (dashed green). The network is
initialised as defined in A.3.4 with small, intermediate and large variance. For
simulation details, see Appendix A.5.7.

3.4.4 Dynamics of the singular vectors

We now seek to explore the dynamics of singular vectors in greater detail to gain a

deeper understanding of the learning process. As highlighted in previous studies,

learning is often driven by two interrelated processes that sometimes occur simulta-

neously: the growth of norms and the alignment of the basis [131].

Earlier analyses of learning dynamics were conducted under the assumption that

the initial network weights are ”decoupled,” meaning the network’s initial state and

the task share the same singular vectors—that is, U = Ũ and V = Ṽ [243]. Intuitively,

this assumption implies that there is no cross-coupling between different singular

modes, allowing each to evolve independently. In other words, the network’s initial

state was presumed to already encode part of the task’s structure before training

commenced, making it inherently aligned (see Sec. 3.4.1). However, this assumption

rarely holds in real-world scenarios, where such pre-alignment is generally absent. As

a consequence, most prior work has relied on the empirical observation that learning
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from tabula rasa small initial weights occurs in two phases: First, the network’s

input-output map rapidly decouples; then subsequently, independent singular modes

are learned in this decoupled regime. Because this decoupling process is fast from

small initial weights, the learning dynamics are still approximately described by

the temporal learning dynamics of the singular values assuming decoupling from

the start. This dynamic has been called a silent alignment process [18]. Here, we

leverage our matrix Riccati approach to analytically study the dynamics of this

decoupling process. We begin by deriving an alternate form of the exact solution

that eases the analysis. For simplicity, we study the case where λ = 0

Theorem 3.4.4. Let the weight matrices of a two-layer linear network be initialised

by W1 =Ψ(0)ṼT and W2 = ŨΨ(0)T , where Ψ ∈ RNh×Ni is an arbitrary, invertible

matrix. Then, under the assumptions of equal input-output dimensions, whitened

inputs (1), zero-balanced weights (4) and full rank (described in section 3.3.5), the

temporal dynamics of QQT are fully determined by

ΨTΨ=
[
e−S̃ t

τ

(
Ψ(0)TΨ(0)

)−1
e−S̃ t

τ +(I− e−2S̃ t
τ )S̃−1

]−1
. (3.24)

For a proof of Theorem 3.4.4, please refer to Appendix A.3.4. We remark

that this form is less general than that in Theorem 3.3.3, and in particular implies

UV = ŨṼ. Here, the matrix ΨTΨ represents the dynamics directly in the SVD basis

of the task. Off-diagonal elements represent counterproductive coupling between

different singular modes (for instance, [ΨTΨ]21 is the strength of connection from

input singular vector 1 to output singular vector 2, which must approach zero to

perform the task perfectly), while on-diagonal elements represent the coupling within

the same mode. For instance, [ΨTΨ]11 is the strength of connection from input

singular vector 1 to output singular vector 1, which must approach the associated

task singular value to perform the task perfectly. Hence, we can study the decoupling

process by examining the dynamics by which ΨTΨ becomes approximately diagonal.

The outer inverse in Equation 3.24 renders it difficult to study high-dimensional
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networks analytically. Therefore, we focus on small networks with input and output

dimension Ni = 2 and No = 2, for which a lengthy but explicit analytical solution is

given in Appendix A.3.4. In this setting, the structure of the weight initialisation and

task are encoded in the matrices

Ψ(0)TΨ(0) =

ψ1(0) ν(0)

ν(0) ψ2(0)

 and S̃ =

s̃1 0

0 s̃2

 , (3.25)

where the parameters ψ1(0) and ψ2(0) represent the component of the initialisation

that is aligned with the task, and ν(0) represents cross-coupling, such that taking

ν(0) = 0 recovers previously known and more restricted solutions for the decoupled

case [243]. We use this setting to demonstrate two features of the learning dynamics.

3.4.4.1 Decoupling dynamics

We demonstrate that the learning dynamics can be decomposed into two distinct

phases: a fitting phase, characterised by the growth of singular values, and an

alignment phase, quantified by the decoupling of the singular vectors. We track de-

coupling by considering the dynamics of the off-diagonal element ν(t) (Fig. 3.5D-F

red lines). At convergence, the off-diagonal element shrinks to zero, as shown in

Appendix A.3.4. However, strikingly, ν(t) can exhibit non-monotonic trajectories

with transient peaks or valleys partway through the learning process. In particular, in

Appendix A.3.4 we derive the time of the peak magnitude as tpeak =
τ

4s̃ ln s̃(s̃−ψ1−ψ2)
ψ1ψ2−ν(0)2

(Fig. 3.5F green dotted line), which coincides approximately with the time at which

the on-diagonal element is half learned. If initialised from small random weights,

the off-diagonal remains near zero throughout learning, reminiscent of the silent

alignment effect [18]. For large initialisations, no peak is observed and the dynamics

are exponential. At intermediate initialisations, the maximum of the off-diagonal is

reached before the singular mode is fully learned (Appendix A.3.4). Intuitively, a par-

ticular input singular vector can initially project appreciably onto the wrong output

singular vector, corresponding to initial misalignment. This is only revealed when

this link is amplified, at which point corrective dynamics remove the counterproduc-
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tive coupling, as schematised in Fig. 3.5B. Taken together, our findings highlight the

rich spectrum of learning dynamics that can be broadly characterised by two distinct

phases: a fitting phase, marked by the growth of singular values, and an alignment

phase, captured through decoupling. We recover the ’silent alignment’ phenomenon,

where rapid alignment precedes singular value growth, suggesting a clear separation

between the two phases. In contrast, we also observe scenarios where these phases

unfold concurrently, leading to altered singular value dynamics. Crucially, we show

that the manifestation of these learning profiles depends sensitively on both the data

and the initialisation. We leave the investigation of disentanglement behaviour under

different values of λ for future work. Nonetheless, we expect to observe similar

phenomenology as previously reported—specifically, the silent alignment effect. We

report further measurements of decoupling in Appendix A.3.4.

3.4.4.2 Effect of initialisation variance

Next, we revisit the impact of initialisation scale for the on-diagonal dynamics. As

shown in Fig. 3.5D-F, as the initialisation variance grows, the learning dynamics

change from sigmoidal to exponential, possibly displaying more complex behaviour

at intermediate variance (Appendix A.3.4). In this simple setting we can analyse this

transition in detail. Taking s̃1 = s̃2 = s̃ as in Fig. 3.5F and |ψ1(0)|, |ψ2(0)|, |ν(0)| ≪

1, we recover a sigmoidal trajectory,

ψ1(t) =
s̃ψ1(0)

e
−2s̃t

τ [s̃−ψ1(0)−ψ2(0)]+ψ1(0)+ψ2(0)
, (3.26)

while for |ψ1(0)|, |ψ2(0)|, |ν(0)| ≫ 0 the dynamics of the on-diagonal elementψ1 is

close to exponential (Fig. 3.5D-F left and right columns). The effect of initialisation

variance (scale) across different lambda value is further analysed in Section 3.4.6.1.

3.4.5 The impact of the architecture

In this study, we examine how a network’s learning regime is influenced by the

interplay between its architecture and the sign of the relative scale. We analyse five

types of network architectures, including three two-layer feedforward configurations
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illustrated in Fig. 3.6A: (1) funnel networks, which decrease in width from input to

output (Ni > Nh = No); (2) inverted-funnel networks, which increase in width from

input to output (Ni = Nh < No); and (3) square networks, where input, hidden, and

output dimensions are equal (Ni = Nh = No). Additionally, we explore recurrent

architectures.

3.4.5.1 Mirror flow
We analyse the effect of initialisation in feedforward architectures using a novel

analytical frameworks that do not rely on Assumption (1) concerning whitened

inputs. These analysis further enables the exploration of new architectural variants,

including funnel networks and anti-funnel network structures, while also relaxing

assumptions on the data structure.

We consider the same two-layer linear network setting used above with Nh ≥

min(Ni,No), such that this parametrisation can represent all linear maps from RNi →

RNo . The rescaling symmetry between W2 and W1 implies the Nh×Nh matrix

ΛΛΛ = ηw2W2(0)⊺W2(0)−ηw1W1(0)W1(0)⊺ is conserved throughout gradient flow

[74].

We consider the dynamics of the network function βββ = W⊺
1W⊺

2 ∈ RNi×No ,

vec
(

β̇ββ

)
=−(ηw2W2(0)W2(0)⊺⊕ηw1W1(0)⊺W1(0))︸ ︷︷ ︸

M

vec(XX⊺
βββ −XY⊺),

(3.27)

where vec(·) denotes the vectorisation operator and ⊕ denotes the Kronecker sum2.

We find that the dynamics of βββ are preconditioned by a matrix M that de-

pends on quadratics of W2 and W1 and characterises the NTK matrix NNNTTT KKK =

(Ic⊗X⊺)M(Ic⊗X). We now show how M can be expressed in terms of the rank-1

matrices βββ k = W⊺
1kW⊺

2k ∈ RNi×No , which represent the contribution to βββ of a single

neuron with parameters W1k, W2k and conserved quantity λk = ΛΛΛkk.

2The Kronecker sum is defined for square matrices C ∈ Rc×c and D ∈ Rd×d as C⊕D = C⊗ Id +
Ic⊗D.
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Theorem 3.4.5. Whenever ∥βββ k∥F ̸= 0 for all k ∈ [Nh], the matrix M can be expressed

as the sum M = ∑
h
k=1 Mk over hidden neurons where Mk is defined as,

Mk =


√

λ 2
k +4ηw1ηw2∥βββ k∥2

F +λk

2

 βββ
⊺
k βββ k

∥βββ k∥2
F
⊕


√

λ 2
k +4ηw1ηw2∥βββ k∥2

F −λk

2

 βββ kβββ
⊺
k

∥βββ k∥2
F
.

(3.28)

The proof of Theorem 3.4.5 can be found in Appendix A.3.5.2

In Appendix A.3.5.2, we derive M in the complementary setting where the

network consists of a single neuron, i.e., Nh = 1. By studying the dependence of M

on the conserved quantities λk and the dimensions Ni, Nh and No, we can determine

the influence of the relative scale on the learning regime. Note that the first term

in the equation corresponds to the update in W2, while the second term reflects

the update in W1. The sign of λ therefore determines which layer predominantly

adapts during training—positive λ emphasises adaptation in W2, whereas negative

λ favours adaptation in W1. When min(Ni,No)≤ Nh < max(Ni,Nh), and assuming

independent initialisations for all βk, then networks which narrow from input to

output (Ni > No) enter the lazy regime when all λk≫ 0, whereas networks which

expand from input to output (Ni < No) do so when all λk ≪ 0. However, with

opposite signs for λk, and assuming all βββ k(0) ̸∝ βββ ∗, these networks enter a delayed

rich regime. As elaborated in A.3.5.2, this occurs because, in these regimes, a

solution βββ ∗ does not exist within the space spanned by M at initialisation. Intuitively,

since the rate of change of one weight matrix is proportional to the norm of the other,

a strong imbalance—where one matrix is much larger than the other—can lead to the

effective freezing of the larger matrix. In such cases, lazy learning requires that the

target lies within the span of the initialisation matrix (i.e., the task is not in the null

space of the network), a scenario typically associated with the lazy regime λk≫ 0

if Ni > No and λk≪ 0 if Ni < No ) and λk≫ 0. If this condition is not satisfied—

i.e., respectively λk≪ 0 is small or negative—the network enters a regime where the

smaller matrix must first grow in norm before meaningful alignment can occur. This

explains the delayed onset of learning observed in the delayed rich regime. More
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details are provided in the Appendix A.3.5. When Nh ≥max(Ni,No) all networks

enter the lazy regime with all λk≫ 0 or all λk≪ 0. When the network is square,

it enters the lazy regime in the limit as λ → ±∞, as first shown in Section 3.4.

Conversely, as all λk→ 0, all networks transition into the rich regime regardless of

dimensions.

The analytical framework established in Theorem 3.4.5 offers valuable insights

into the learning regime under varying limits of λk across different architectural

configurations. While this analytical method does not capture the exact dynamics-

which we develop further below in Sec. 3.4.5.2 - it reveals that the expressivity

of the network is primarily governed by the layer with the larger input or output

dimensionality. When the layer that predominantly adapts during training does not

correspond to the more expressive (i.e., wider) layer, the network may exhibit a

phenomenon referred to as delayed richness. These findings provide a more nuanced

perspective on the results described above for square networks and aligned networks.

Importantly, within this analytical framework, we do not require Assumption 1

concerning whitened inputs or isotropic initialisation (Assumption 2: ΛΛΛ = λ INh),

yet we recover the findings outlined previously in Sec. 3.4, where the magnitude of

the relative scale parameter λ governs the transition between rich and lazy learning

regimes. Specifically, we further demonstrate that the relationship between the

limiting behaviour of λ and the resulting learning regime is architecture-dependent.

While Theorem 3.4.5 offers valuable insight into the learning regimes in the

limits of λk, understanding the transition between regimes remains challenging. To

achieve this, we aim to express M directly in terms of βββ , rather than the layer-specific

parameters βββ k, by imposing structure on the conserved quantities ΛΛΛ.

Theorem 3.4.6. When ΛΛΛ = λ INh and Nh = Ni if λ < 0 or Nh = No if λ > 0,

then the matrix M can be expressed as M =
√

ηw1ηw2βββ
⊺
βββ + λ 2

4 INo ⊗ INi + INo ⊗√
ηw2ηw1ββββββ

⊺+ λ 2

4 INi . The proof is provided in Appendix A.3.5.3.

From Theorem 3.4.6 the resulting dynamics of βββ simplify to a self-consistent
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equation regulated by λ ,

β̇ββ =−XP

√
ηaηwβββ

⊺
βββ +

λ 2

4
INo−

√
ηaηwββββββ

⊺+
λ 2

4
INiXP, (3.29)

where P = X⊺βββ −Y is the residual. Under our isotropic assumption on the conserved

quantities Λ = λ INh , these dynamics are exact. Concurrent to our work, Tu et al.

[280] finds that βββ approximately follows these dynamics in the overparameterised

setting Nh≫max(Ni,No) under a Gaussian initialisationN (0,σ2) of the parameters

where σ2Nh is analogous to λ . By studying the dependence of M on the conserved

quantities λ , we can determine the influence of the relative scale on the learning

regime. We arrive at similar conclusions to those described above, while taking

into consideration that we are analysing a more restricted architectural setting, as

outlined in Appendix A.3.5.3.

Next we attempt to better understand these dynamics for intermediate values

of λ through the lens of a mirror flow. A brief review of the mirror flow analysis

is provided in the Appendix A.3.5.1. Equipped with a self-consistent equation for

the dynamics of βββ , we now aim to interpret these dynamics as a mirror flow with a

λ -dependent potential.

Theorem 3.4.7. Let ΛΛΛ = λ INh and assume Nh ≥ min(Ni,No) and S ̸= 0. We then

have that the dynamics of S, the singular values of βββ , are given by the mirror flow

Ṡ =−
(
∇

2
Φλ (S)

)−1
∇SL, (3.30)

where L is the loss, Φλ (S) = ∑
min(Ni,No)
i=1 qλ (Si) and qλ is the hyperbolic entropy

potential

qλ (x) =
1
4

(
2xsinh−1

(
2x
|λ |

)
−
√

4x2 +λ 2 + |λ |
)
. (3.31)

The proof of the Theorem can be found in Appendix A.3.5.4. Theorem 3.4.7

implies that the dynamics for the singular values of βββ can be described as a mirror
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flow with a λ -dependent potential. This potential was first identified as the inductive

bias for diagonal linear networks [294], and the same mirror flow on the singular

values is derived from a different initialisation choice in prior work [285]. Termed

hyperbolic entropy, this potential smoothly interpolates between an ℓ1 and ℓ2 penalty

on the singular values for the rich (λ → 0) and lazy (λ →±∞) regimes respectively.

Unfortunately, in our setting we cannot adapt our mirror flow interpretation into a

statement on the inductive bias at interpolation because the singular vectors evolve

through training. If we introduce additional assumptions — specifically, whitened

input data (X⊺X⊺ = INi) and a task-aligned initialisation such that the singular vectors

of βββ 0 are aligned with those of βββ ∗ — we can ensure that the singular vectors remain

constant and thus derive an inductive bias on the singular values. However, in this

setting the dynamics decouple completely, implying there is no difference between

applying an ℓ1 or ℓ2 penalty on the singular values. Consequently, even though the

dynamics will depend on λ , the final interpolating solution will be independent of λ ,

making a statement on the inductive bias insignificant.

All together, the methods presented above further enables the exploration of

new architectural variants, including funnel networks and anti-funnel network, while

also relaxing assumptions on the data structure (ie.whitened inputs).

3.4.5.2 Feed-forward architecture

Now, we analyse the influence of architecture using our exact solution, QQT ,

which characterises the dynamics of the NTK across various feedforward network

architectures. To examine the NTK’s evolution under varying λ initialisations, we

compute the kernel distance from initialisation, as defined in Fort et al. [91].

As shown in Fig. 3.6B, we observe that funnel networks consistently enter the

lazy regime as λ → ∞, while inverted-funnel networks do so as λ →−∞. The NTK

remains static during the initial phase, rigorously confirming the rank argument

first introduced above for the multi-output setting. In the opposite limits of λ ,

these networks transition from a lazy regime to a rich regime. During this second
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Figure 3.6: A. Schematic representations of the network architectures considered, from
left to right: funnel network, square network, and inverted-funnel network.
B. The plot shows the NTK kernel distance from initialisation, as defined in
[91] across the three architectures depicted schematically. C. The NTK kernel
distance away from initialisation over training time. For simulation details, see
Appendix A.5.8.

alignment phase, the NTK matrix undergoes changes, indicating an initial lazy phase

followed by a delayed rich phase. We further investigate and quantify this delayed

rich regime, showing the NTK movement over training in Fig. 3.6C. This behaviour

is also quantified in Theorem A.3.13, which describes the rate of learning in this

network.

Intuitively, the delayed onset of the rich regime occurs because no least-squares

solution exists within the span of the network at initialisation. In such cases, the

network enters a delayed rich phase, where λ tends toward infinity, with the mag-

nitude of λ determining the length of the delay. At first, the network exhibits lazy

dynamics, striving to approximate the solution. However, as constraints necessitate

adjustments in its directions, the network gradually transitions into the rich phase.

Interestingly, delayed rich regimes have been suggested as the mechanism underlying

grokking—where networks trained on tasks suddenly exhibit strong generalisation

long after memorising the training data [155].

For square networks with equal input and output dimensions, this behaviour is

discussed in Sec. 3.4.2. Across all architectures, as λ → 0, the networks consistently

transition into the rich regime. Altogether, we further characterise the delayed rich

regime in wide networks.
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3.4.5.3 Recurrence facilitates rich learning

We have identified two distinct learning regimes in artificial neural networks:

feature-learning (rich learning) and non-feature-learning (lazy learning), both of

which are influenced by weight initialisation in deep feedforward architectures

[12, 21, 39, 119, 300, 87, 69, 67]. However, theoretical investigations into how

non-feedforward architectures affect these learning regimes remain limited [81].

Notably, Liu et al. [176] examined the role of weight connectivity in shaping learning

regimes in RNNs. Building on this line of inquiry, we explore how recurrence

impacts feature-learning dynamics. Specifically, we investigate whether recurrent

architectures impose additional constraints on the learning problem, thereby biasing

the network towards the rich learning regime.

We study a LRNN (Fig. 3.7) parametrised by matrices W1 ∈ RNh×Ni,Wh ∈

RNh×Nh,W2 ∈ RNo×Nh with a hidden state ht ∈ RNh that receives an input xt ∈ RNx

at each timestep t and updates its hidden state. For simplicity, we study the single-

output case, where the network only produces an output ŷT ∈RNo at the last timestep

T . The network is characterised by the equations

ht+1 = Whht +W1xt , (3.32)

ŷT = W2hT+1 . (3.33)

We initialise the hidden layer h1 as a vector of zeros, yielding

ht+1 =
t

∑
i=1

Wt−i
h W1xi . (3.34)

A schematic of the networks can be found in Fig. 3.7 We analyse learning in the

LRNN when trained using backpropagation through time on the squared error over

P trajectories {xp,1,xn,2, . . . ,xp,T ,yp,T}P
n=1

L=
1
2

P

∑
n=1
∥yn,T −W2(

T

∑
i=1

WT−i
h W1xn,i)∥2 (3.35)



3.4. Rich and Lazy learning 89

Figure 3.7: Linear RNN model captures task dynamics through temporally-dependent
singular values. The data correlation matrices ΣY Xt have constant left and right
singular vectors, varying only in their singular values St across time. For details,
see Appendix A.5.9.

With the model and loss function fixed, our next step is to specify a task for the

model to learn. In this linear setting, the task is fully specified by the sequence of

matrices Σ̃ΣΣ
yx
= ∑

P
n=1 yn,T x⊺n,t , the input-output correlation matrix between the input

xn,t at timestep t and the final output yn,T .

We derive a general form of the NTK for this setting (i.e. finite-width LRNNs)

in Appendix A.3.5.6, extending the analysis of Emami et al. [81], which focused

on the infinite-width limit. We then leverage this formulation to investigate the

learning regimes that arise in LRNNs under varying initialisations and trajectory

lengths. Note that in our setting, trajectory lengths correspond to the depth of

the network. We examine two initialisation settings: one where the weights are

misaligned (Fig. 3.8(left)) and another where they are aligned (Fig. 3.8 (right)).

To quantify feature learning, we measure the kernel distance between the NTK at

initialisation and the end of training for LRNNs as a function of trajectory length and

weight initialisation scale. We train on constant task dynamics in both the aligned

and unaligned cases. Using networks without aligned weights also broadens the

possible solution space, which is important when considering, for example, how
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Figure 3.8: Recurrence drives feature learning. Phase plots illustrating the kernel distance
of the NTK from initialisation as a function of trajectory length and initialisation
scale for LRNN initialised with weights that are (left) unaligned and (right)
aligned. See experimental details in Appendix A.5.10

learning gives rise to different dynamic solutions in networks trained on the same

tasks [281]. As expected, in the aligned case, we see that the kernel moves further in

networks with smaller initialisations (rich learning) compared to networks with large

weights (lazy learning) relative to the target. Under the aligned configuration, vector

rotation to align with the task is unnecessary; instead, the scaling of the initialisation

becomes the critical factor. When the network’s initialisation variance is close to the

target variance, the adjustments required to fit the target are minimised. This explains

why smaller initialisation scales result in more pronounced NTK movement. More

interestingly, we also find that the kernel distance increases as the network transitions

from feedforward computations (i.e. trajectory lengths/depth 1 and 2) to a recurrent

network with longer trajectory lengths (Fig.3.8), indicating recurrence induces greater

feature learning for networks misaligned to the target at initialisation. The emergence

of the rich regime in the presence of recurrence is not believed to share the same origin

as that observed under balanced conditions; the underlying mechanisms are thought
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to be fundamentally different. In Appendix A.3.5.6, we further show that this effect

only appears to exist in networks with finite width and that lazy learning becomes

more prevalent in wider networks, as previously observed in feedforward networks

[165]. This framework offers a systematic approach to understanding how recurrence,

initialisation scale, and temporal structure influence the learning dynamics of neural

networks. In the aligned setting, we use singular value decomposition (SVD) to

analyse the network’s learning regime. Building on this, Proca et al. [219] take a step

further by providing exact solutions to the learning dynamics using the eigenvalue

decomposition, which accommodates complex eigenvalues. This approach opens

the door to analysing rotational and oscillatory behaviours—dynamics that are likely

essential for understanding how recurrent neural networks (RNNs) learn and process

information, especially in biologically inspired contexts. Further exploring these

richer dynamics will be a key direction for future work. Additionally, understanding

the role of relative scaling within this framework remains a significant and open

challenge to be addressed in subsequent research.

3.4.6 The impact of scale

Up to this point, we have analysed the influence of relative scale, λ , on the learning

regime. However, absolute scale has traditionally been considered the primary factor

driving the learning regime [243]. To further investigate this, we will independently

vary both absolute and relative scale to understand their impact on the learning

regime. Additionally, we will examine how the ratio of scale to target scale influences

learning dynamics when the balanced condition is not exactly enforced.

3.4.6.1 Scale vs relative scale

A straightforward intuition for the scale and the relative scale can be gained by

considering the scalar case where Ni = Nh = No = 1. In this scenario, it is easy

to ensure that w2
1 = w2

2 satisfies λ = 0 while allowing for different absolute scales.

For instance, w1 = w2 = 0.001 or w1 = w2 = 5. In such cases, the absolute scale is

clearly decoupled from the relative scale. However, in more complex settings, the

relative scale and absolute scale interact in non-trivial ways.
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Previously, our primary focus was on how λ , the relative scale parameter,

governs the transition between sigmoidal and exponential dynamical regimes. How-

ever, the role of the absolute scale is also evident in Theorem 3.4.1. A similar

argument applies to the absolute scale, which explicitly appears as sα(0) in these

equations. When λ = 0, the dynamics of sα simplify to the classical solution of the

Bernoulli differential equation. In the limiting case where sα(0)→ 0, the system

follows classic sigmoidal dynamics, characteristic of the rich regime. Conversely, as

sα(0)→∞, the system transitions to exponential dynamics, characteristic of the lazy

regime, as previously noted in Saxe et al. [243].
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Figure 3.9: Two ways to get lazy dynamics. Figures show the changes in NTK (measure of
non-linear dynamics) of linear neural network trained on randomised regression.
A: In Sec. 3.4.6.1, when the weights are lambda-balanced (Assumption 2), layer
imbalance governs the transition between rich (red) and lazy (blue) dynamics.

However, this influence is not explicitly apparent in the main theorem. The

effect of absolute scale is inherently embedded within our framework through the

definitions of B, C, and D (see Eq. 3.11). To further explore this relationship, we

numerically investigate the interplay between relative weight scale, absolute weight

scale, and the network’s learning dynamics in a general setting. To do so, we measure

the kernel distance between the NTK at initialisation and at the end of training for
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networks initialised with random weights of specified relative and absolute scales.

The networks are trained on a randomly generated input-output task. We define the

absolute scale of the weights as the norm of W2W1. By keeping the target fixed at

order one, we specifically examine the effect of the weight-to-target ratio. Fig. 3.9A

illustrates that in a square (Ni = No) linear neural network, rich dynamics emerge

when the weights are balanced with a small λ 3. As introduced in Sec. 3.4.2, this

indicates that there exist initial states with large zero-balanced weights that lead

to rich solutions. Given this, key questions arise: What are the resulting system

dynamics? Does the network continue to exhibit the stepwise evolution characteristic

of the rich regime, or does it instead follow the exponential dynamics associated

with large-scale initialisation?

To explore this, we again consider the semantic learning task that maps living

entities to positions in a hierarchy (Fig. 3.10A,B) [243]. When training a two-layer

network from small random initial weights, the input and output representational sim-

ilarity matrices (RSM) (Fig. 3.10C, upper left and lower right quadrants) align with

the task structure at convergence. However, when initialised with large weights, the

RSM indicates that the network has instead converged to a lazy solution (Fig. 3.10D).

Importantly, the final function learned by the network remains identical in both cases

(Fig. 3.10C, D, lower left quadrant). Additionally, despite identical final loss, the

learning dynamics differ significantly: small initial weights lead to a slow, step-

wise evolution, whereas large initial weights result in rapid, exponential learning

(Fig. 3.10F), as predicted by Saxe et al. [243]. We call this regime the rapid rich

regime. Intuitively, the system enters the rapid rich regime due to two main factors.

First, the update rate of the weights is proportional to their magnitude: the rate of

change of W1 is modulated by the norm of W2, and vice versa. As a result, larger

weights facilitate faster updates, creating a positive feedback loop that accelerates

learning dynamics. Second, when λ = 0, the dynamics consistently drive the system

into the rich regime, as confirmed by our results in A.3.4.

3In Appendix A.3.6.1, we further analyse the phase portrait of the learning regime across different
architectures as a function of both scale and relative scale.
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Figure 3.10: Rich and lazy learning. A Semantic learning task, B SVD of the input-output
correlation of the task (top) and the respective RSMs (bottom). Rows and
columns in the SVD and RSMs are identically ordered as the order of items
in the hierarchical tree. C Final QQT matrices after training converged when
initialised from random small weights, D random large weights (note how the
upper left and lower right quadrant differ from the task’s RSMs) and E large
zero-balanced weights. F Learning curves for the three different initialisations
as in C (green), D (pink) and E (blue). While both large weight initialisations
lead to fast exponential learning curves, the small weight initialisation leads
to a slow step-like decay of the loss. For details of the experiment, see Ap-
pendix A.5.12

Interestingly, with zero-balanced initialisation and large weights, certain initial

states can lead to rich solutions while exhibiting fast exponential learning curves

(Fig. 3.10E, F). We reveal a class of task-independent initialisations that radically

alter learning dynamics from slow non-linear dynamics to fast exponential trajecto-

ries while converging to a global optimum with identical representational similarity,

dissociating learning trajectories from the structure of initial internal representations.

For additional simulations, see Appendix A.3.6.2. Thus, our framework effectively

captures the transition from stepwise to exponential learning dynamics as the weight

scale increases, distinguishing this effect from the structure of internal representa-

tions. This underscores the complex interplay between scale and relative scale in

shaping the learning regime.
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3.5 Applications
In this section, we apply the exact solutions for the learning dynamics in deep linear

networks described in Sec. 3.3 to illustrate several phenomena relevant to machine

learning and neuroscience.

3.5.1 Continual learning

A variety of theoretical work has investigated aspects of continual learning

[17, 64, 167, 256, 279]. In this setting, starting from an initial set of weights,

a network is trained on a sequence of tasks with respective input-output correlations

T1 = Σ̃ΣΣ
yx
1 ,T2 = Σ̃ΣΣ

yx
2 , ...Tn = Σ̃ΣΣ

yx
n . As illustrated in Fig. 3.11A, our framework enables

exact analytical solutions for the entire continual learning process, specifically

for the evolution of the network function W2W1. In this setting, the final state

of the network after training on one task serves as the initial state for the next.

The dynamics observed across tasks show rich variability, with a clear distinction

between learning from random initialisation and adaptation during inter-task transi-

tions. At initialisation, small random weights produce sigmoidal learning dynamics,

whereas post-task weights—having already reached a larger norm—induce more

exponential-like learning dynamics in subsequent tasks.

These solutions also precisely characterise the temporal evolution of forgetting

across arbitrary task sequences, as forgetting is entirely governed by the dynamics

of the network function W2W1. Training on later tasks can overwrite previously

learned knowledge, a phenomenon known as catastrophic forgetting —quantified as

the relative change in loss [193, 227, 92]. The pathology of catastrophic forgetting

has long been a challenge for neural network models [193, 227, 92]. We offer

additional theoretical insights into the underlying basis of this phenomenon. As

detailed in Appendix A.4.1 (Fig. 3.11A), we demonstrate that, regardless of the

chosen value of λ , training on subsequent tasks can result in the overwriting of

previously acquired knowledge, leading to catastrophic forgetting [193, 227, 92].
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As a result, catastrophic forgetting is entirely determined by the similarity

of the input-output correlations between tasks. This implies that the amount of

forgetting can be fully determined for a sequence of tasks before the onset of

training. Specifically, task similarity is assessed via their shared singular value/vector

structure. When tasks share common singular values/vectors, learning is facilitated,

as the network can reuse previously acquired representational components without

the need to relearn them. Using our analytical framework, we precisely describe the

dynamics that give rise to catastrophic forgetting in linear networks. Importantly,

we show that the forgetting profile is independent of initialisation — indicating that

prior knowledge, in this context, does not mitigate forgetting. However, in regimes

where early stopping is employed, the dynamics of forgetting become sensitive to

both the order in which tasks are learned and the initial choice of the parameter λ .

In such cases, our exact solutions can serve as a valuable tool for predicting the

extent of forgetting and for informing training strategies to mitigate its impact. It is

important to note that our theoretical model does not incorporate noise in the data —

an important factor in early stopping scenarios where training halts before overfitting

occurs. While we cautiously anticipate that the influence of λ on the rich and lazy

regime dynamics will remain consistent under mild noise conditions, this remains an

open question. Further investigation is required to confirm whether the analytical

insights developed here extend robustly to noise.

As expected, our findings are specific to linear networks. In contrast, non-linear

networks using activations such as tanh or ReLU exhibit different behaviours: their

weights become rapidly unbalanced, and the forgetting values computed prior to

training no longer accurately predict the actual outcome (see Fig.3.11B). The phe-

nomenon of catastrophic forgetting in non-linear settings remains poorly understood.

In the following section (Sec.3.5.1), we take further steps toward characterising the

forgetting profile as a function of initialisation.

In summary, our results describe the exact learning dynamics of catastrophic
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Figure 3.11: Continual learning. A Top: Network training from small zero-balanced weights
on a sequence of tasks (coloured lines show simulation and black dotted lines
analytical results). Bottom: Evaluation loss for tasks of the sequence (dotted)
while training on the current task (solid). As the network function is optimised
on the current task, the loss of other tasks increases (λ = 0). B Comparison of
the numerical and analytical amount of catastrophic forgetting on a first task
after training on a second task for n = 50 linear (red), tanh (blue) and ReLU
(green) networks. Each dot correspond to a different initialisation seed. For
simulation details, see Appendix A.5.13.

forgetting and thus provide an analytical tool to study its mechanisms and potential

countermeasures.

3.5.2 Reversal learning

During reversal learning, previously acquired knowledge must be relearned, neces-

sitating the overcoming of an earlier established relationship between inputs and

outputs. For example, reversal learning occurs when items of a class are mislabelled

and later corrected (Fig. 3.12C, D top). The challenge in such tasks lies in the persis-

tence of the old association, which isn’t simply erased but often actively competes

with the formation of the new one. We show analytically that reversal learning, in

fact, does not succeed in deep linear networks when λ = 0 (Appendix A.4.2). The

pre-existing knowledge lies exactly on the separatrix of a saddle point, causing the

learning dynamics to converge to zero (Fig. 3.12A). In contrast, the learning still

succeeds numerically, as any noise will perturb the dynamics off the saddle point,

allowing learning to proceed (Fig. 3.12A). However, the dynamics are slow in the
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vicinity of the saddle point, providing a theoretical explanation for catastrophic

slowing in deep linear networks [168].

This scenario can be interpreted as the ongoing competition between memory

traces: the established neural memory supporting the old behaviour (the old memory

trace) creates a pull or a difficult landscape feature (the saddle point) that makes it

hard for the network to efficiently forge the new memory. Therefore, our theoret-

ical framework provides a potential mechanism for the competing memory trace

hypothesis, a prominent idea in neuroscience [283]. Our results suggest that, rather

than being passively overwritten, prior knowledge (the old memory trace) actively

interferes with the formation of new memory by shaping the learning landscape,

thereby hindering efficient adaptation.

However, when λ is non-zero, reversal learning dynamics consistently succeed,

as they avoid passing through the saddle point due to the initialisation scheme. This

is both theoretically proven and numerically illustrated in Appendix A.4.2. We also

present a spectrum of reversal learning behaviours controlled by the relative scale

λ , ranging from rich to lazy learning regimes. Further, the exact learning dynamics

reveal that (Appendix A.4.2) shallow networks also succeed without exhibiting

catastrophic slowing during reversal learning (Fig. 3.12B). Altogether, this spectrum

of reversal behaviours has the potential to explain the diverse dynamics observed

in animal behaviours, offering insights into the learning regimes relevant to various

neuroscience experiments.

3.5.3 Transfer learning

We consider how different λ initialisations influence generalisation to a new feature

after being trained on an initial task. As detailed in Appendix A.4.3, we first train

each network on the hierarchical semantic learning task described in Fig. 3.10. We

then add a new feature to the dataset, and train the network specifically on the

corresponding item while keeping the rest of the network parameters unchanged. Af-

terwards, we evaluate the generalisation to the other items. We observe in Appendix
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Fig. A.10 that the hierarchical structure of the data is effectively transferred to the

new feature when the representation is task-specific and λ is zero. Conversely, when

the input feature representation is lazy (λ ≤ 0), meaning the hidden representation

lacks adaptation, no hierarchical generalisation is observed. Strikingly, when λ is

positive, the hierarchical structure in the input weights remains small but structured,

while the output weights exhibit a lazy representation and the network generalises

hierarchically. Specifically, Appendix Fig. A.10 shows that increasing λ leads to

better generalisation. Therefore, as λ increases, networks more effectively transfer

the hierarchical structure of the network to the new feature for untrained items,

leading to an increase in generalisation performance. This indicates that the lazy

regime structure (large λ values) first defined in Sec. 3.4 can be beneficial for transfer

learning.

3.5.4 Fine-tuning

It is a common practice to pre-train neural networks on a large auxiliary task before

fine-tuning them on a downstream task with limited samples. Despite the widespread

use of this approach, the dynamics and outcomes of this method remain poorly un-

derstood. In our study, we provide a theoretical foundation for the empirical success

of fine-tuning, aiming to improve our understanding of how performance depends

on the initialisation. Specifically, we investigate how changes in λ -balancedness

after pretraining—denoted as λFT —may affect fine-tuning performance on a new

dataset, as discussed in Appendix A.4.4. Across all tasks we consider, we con-

sistently find that fine-tuning performance improves and converges more quickly

as networks are re-balanced to larger values of λFT and, conversely, decreases as

λFT approaches zero as shown in Fig. A.11. Interestingly, networks that are not

re-balanced before finetuning (i.e., with λFT = /0) but were initialised with λPT
4

prior to pretraining, perform similarly on new tasks to networks that are re-balanced

such that λFT = λPT. In this work, we analyse the fine-tuning dynamics of two-layer

linear networks and show that rebalancing enables models to leverage both the bene-

4PT: Pre-training
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fits and trade-offs of distinct learning regimes governed by λ . While conceptually

simple, the two-layer linear architectures studied in this work are widely employed

in practice for fine-tuning large pre-trained language and vision models. Notably,

they serve as the foundation for methods such as Low-Rank Adapters (LoRA)[124],

which are discussed in more detail in Appendix A.4.4. Although the specific setup

considered here differs in some respects—most notably, the input-output mapping

is not initialised to zero—these models exhibit comparable behaviours that make

our findings broadly relevant. In particular, prior work has shown that imbalances

in such systems can lead to both benefits and drawbacks in terms of fine-tuning

stability and performance. While a comprehensive empirical investigation of how

initialisation influences fine-tuning outcomes is beyond the scope of this thesis, it

represents a compelling and important direction for future research.

3.5.5 Revising structured knowledge

Knowledge is often organised within an underlying, shared structure, of which many

can be learned and represented in deep linear networks [247]. For example, spatial

locations can be related to each other using the same cardinal directions, or varying

semantic knowledge can be organised using the same hierarchical tree. Here, we

investigate if deep linear networks benefit from shared underlying structure. To this

end, a network, initialised with λ = 0 is first trained on the three-level hierarchical

tree of Sec. 3.4 (eight items of the living kingdom, each with a set of eight associated

features), and subsequently trained on a revised version of the hierarchy. When

training the network on a new hierarchical tree with identical items but a new set of

features, like a colour hierarchy (Fig. 3.12C, D bottom), there is no speed advantage

in comparison to a random initialisation with similar initial variance (Fig. 3.12E-F,

bottom). Importantly, from Theorem A.3.3, it follows that the learning process

can be sped up significantly by initialising from large zero-balanced weights while

converging to a global minimum with identical generalisation properties as when

training from small weights (Fig. 3.12G-H).

We further demonstrate that any alteration to the second task’s input-output
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correlation that preserves singular values or singular vectors from the first task

leaves those components unchanged during learning (Appendix A.4.5). Based

on this observation and drawing inspiration from collaborative work on replay

detection in the dorsolateral striatum (not included in this thesis) [275], a new

prioritised replay scheme is developed, which contradicts the one proposed by

McClelland et al. [191, 192]. In the standard training setup, the time complexity is

O(Ntotal
modes×Nepochs), where Ntotal

modes denotes the total number of modes. In contrast,

the prioritised replay mechanism reduces this to O(Nmodified
modes ×Nepochs), effectively

savingO(Nunmodified
modes ×Nepochs) training steps, where Nunmodified

modes =Ntotal
modes−Nmodified

modes .

This demonstrates that the prioritised replay retains the original learning dynamics

while significantly improving efficiency (see Appendix A.4.5).

In summary, having incorporated structured knowledge before revision does

not speed up or even slows down learning in comparison to learning from random

zero-balanced weights. Notably, the statement holds even when task structures nearly

match.(Fig. 3.10B and Fig. 3.12D).
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Figure 3.12: Reversal learning and revising structured knowledge. The scale of the x-axis
varies in the top and bottom rows. A Analytical (black dotted) and numerical
(solid) learning dynamics of a reversal learning task. The analytical solution
gets stuck on a saddle point, whereas the numerical simulation escapes the
saddle point and converges to the target. B In a shallow network, training on
the same task as in A converges analytically (black dotted) and numerically
(solid). C Semantic learning tasks. Revised living kingdom (top) and colour
hierarchy (bottom). D SVD of the input-output coreelation of the tasks and
respective RSMs. E Analytical (black dotted) and simulation (solid) loss and
F learning dynamics of first training on the living kingdom (Fig. 3.10A) and
subsequently on the respective task in C. The analytical solution fails for the
revised animal kingdom as it gets stuck in a saddle point, while the simulation
escapes the saddle (top, green circle). Initial training on the living kingdom task
from large initial weights and subsequent training on the colour hierarchy have
similar convergence times (bottom) G Multidimensional scaling (MDS) of the
network function for initial training on the living kingdom task from small (top)
and large initial weights (bottom). Note how, despite the seemingly chaotic
learning dynamics when starting from large initial weights, both simulations
learn the same representation. H MDS of subsequent training on the respective
task in C. For simulation details, see Appendix A.5.14.

3.6 Discussion

We derive exact solutions to the learning dynamics within a tractable model class:

deep linear networks. While our findings extend the range of analytically describable

two-layer linear network problems, they are still limited by a set of assumptions. In

particular, further relaxing the assumptions that input covariance must be whitened

and that initialisation must be λ -balanced could bring the analysis closer to practical

applications in machine learning and neuroscience. Moving towards the nonlinear

setting would also make the findings more applicable to real-world scenarios. Despite

these limitations, our solutions provide valuable insights into network behaviour. We

demonstrate how prior knowledge influences learning dynamics, where notably, this

prior knowledge can be interpreted either as the initialisation or as the representation
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learned from a previous task, as in continual learning. Specifically, we examine

the transition between the rich and lazy regimes by analysing the dynamics as a

function of λ—the relative scale—across its full range from positive to negative

infinity. Our analysis highlights the critical role of the relative scale, λ , in governing

the transition between rich and lazy learning regimes. In particular, we uncover

a structured lazy regime that facilitates transfer learning and a rapid rich regime

with exponential dynamics. Building on prior work [158], which demonstrated the

relevance of these findings in both basic nonlinear models and practical applications,

our theoretical framework suggests that exploring unbalanced initialisation strategies

may further enhance efficient feature learning. Additionally, we show that this

transition is shaped by a nuanced interplay among network architecture, relative

scale and absolute scale -extending the analysis beyond the sole effect of absolute

scale at initialisation. Finally, we demonstrate the applicability of our solutions to

both neuroscience and machine learning, offering exact results for continual learning

dynamics, reversal learning, transfer learning, fine-tuning, and the acquisition of

structured knowledge. We leave to future work the extension of these initialisation

principles to deep networks, as well as the application of our framework to the

dynamics of fine-tuning and linear auto-encoders.



Chapter 4

From Lazy to Rich: Beyond linear

networks

But linearity is often an approximation to a more complicated reality.

– Steven H. Strogatz

This chapter discusses the work presented in publications [134, 158].

4.1 Introduction
It has been shown that neurons do not exclusively perform linear computations,

emphasising the need to explore nonlinear models [46]. In fact, most real-world

models naturally incorporate nonlinearities. As such, our objective is to examine the

impact of prior knowledge within nonlinear networks. Thus far, we have explored

the dynamics of linear networks and examined how initialisation, architecture, and

dynamics influence the learning regime and its representation. In this chapter, we

move beyond linear networks. We begin by investigating the same parameters

(initialisation and architecture) in a two-layer perceptron in a teacher-student setup

and its applications. We then analyse how these theoretical results manifest in

networks used in practice. Here to investigate the learning regime of the network,

we examine the representation it has developed after learning a task.

Theories of representation in biological neural networks range from highly

localised representations in single neural units [26] to fully distributed or shared rep-
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resentations [122]. While shared representations offer greater robustness, specialised

representations allow for more efficient encoding of information. Experimental

evidence supports both ends of this spectrum, with different brain areas and tasks ex-

hibiting distinct forms of representation [35, 221, 100, 128, 20]. Similarly, artificial

neural networks display both shared [163, 86, 303] and specialised representations

[305, 288], with recent advances in explainable AI, such as the Golden Gate Claude

model [274], exemplifying an extreme case of specialisation. Given the trade-off

between shared and specialised representations, a critical research challenge is

understanding how to guide neural networks toward one form or the other. Previous

research [51, 99, 36] has shown that by interpolating between learning regimes, one

can transition from shared representations—characterised by random projections in

neural tangent kernels—to effective feature learning [272, 158, 297, 67, 285]. In this

chapter, we examine the role of initialisation in guiding neural networks toward either

specialised or shared representations, offering a complementary perspective on both

the lazy learning regime [130] and the rich learning regime [51]. While our analysis

is situated within the feature learning regime, it adopts a distinct theoretical approach

to characterizing the variety of such regimes by examining how initialization affects

representations in standard synthetic neural network framework.

These representations are particularly relevant in contexts such as disentangled

representation learning [31] and multi-task learning [45], including continual and

transfer learning. Specialised representations can facilitate faster adaptation and

reduce catastrophic forgetting [193, 227] by enabling networks to efficiently rewire

themselves [267]. Caruana’s seminal work on multi-task learning [45] highlighted

the advantages of specialisation in improving performance across multiple tasks.

Recent efforts to mitigate catastrophic forgetting [212, 60] have led to the

development of regularisation strategies that encourage specialisation, such as elastic

weight consolidation (EWC) [148], synaptic intelligence [306], and learning without

forgetting [172]. In disentangled representation learning, Locatello et al. [177]
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demonstrated that, despite the success of unsupervised approaches, disentanglement

does not emerge naturally without an explicit inductive bias, underscoring the need

for supervision in enforcing structured representations.

Main Contributions

Our exploration reveals how initialisation biases learning dynamics toward

either specialised or shared representations, offering new insights into learning dy-

namics in over-parameterised networks. Specifically, our work makes the following

key contributions:

• We study the impact of initialisation in high-dimensional mean-field neural

networks trained with stochastic gradient descent [238, 236, 34].

• Our findings challenge existing assumptions about the relationship between

task similarity and catastrophic forgetting [225, 167, 168].

• We identify specific initialisation schemes that promote specialisation by

increasing the entropy of readout weights and creating an imbalance between

the first and last layers, aligning with findings from Chapter 3 [67].

• We demonstrate the practical implications of our results for regularisation

strategies in continual learning, specifically analysing how EWC [148] is

influenced by specialisation dynamics and highlighting potential pitfalls in

regularisation methods for continual learning.

• Finally, we show how this imbalance impacts neural network dynamics in

practical settings.

We begin by introducing the teacher-student setup and the concept of specialisa-

tion within this framework while situating our work in the relevant literature. We then

explore the application of our findings to the continual learning problem, revisiting

existing theoretical frameworks and demonstrating how certain conclusions may not

hold under specific initialisation schemes. We conclude this chapter by discussing
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the implications of our findings for EWC-based mitigation strategies. Finally, we

reflect on the limitations of our work and propose future research directions.
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4.2 Preliminaries

4.2.1 Notation

In this chapter, we use bold for vectors and matrices, unless we use indices to express

the dimensions of the variable. We also

• W input to hidden weights of student

• h(1) hidden to output weights (head weights) of student (for teacher 1)

• h(2) hidden to output weights (head weights) of student (for teacher 2)

• W(1)
T input to hidden weights of teacher 1

• W(2)
T input to hidden weights of teacher 2

• h(1)
T individual hidden to output weights (head weights) of teacher 1

• h(2)
T individual hidden to output weights (head weights) of teacher 2

• φ activation function

• η learning rate of the head weights

• γ controls the correlation between tasks

• N input dimension

• i, j,k denote student indices

4.2.2 The two-layer teacher-student setup for continual learning

The teacher-student framework is a generative model that allows for the controlled

creation of synthetic datasets [97]. The framework involves two classifiers: the

teacher and the student, for instance, neural networks as exemplified in Fig. 4.1a.

The teacher has fixed randomly drawn weights and maps random inputs x from a

given distribution to labels, providing a rule for generating labels. The student, on

the other hand, updates its parameters through learning protocols like stochastic
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(2)b)

Figure 4.1: Teacher-Student Framework. (a) A standard teacher-student configuration,
where a “student” network is trained on i.i.d. inputs using labels provided by a
fixed “teacher” network. The student’s initial weights, IW and Ih, are determined
by the initialization parameters ΘW and Θh. See Appendix B.3.1 for further
details. (b) To model continual learning, we train a two-layer student network
sequentially on two different teacher networks, each corresponding to a separate
task (Task 1 and Task 2). We refer to this setup as the multi-head configuration,
where the student shares the same input pathway but has separate output heads
to learn from Teacher 1 and Teacher 2, respectively. See Appendix B.3.1 for
details.

gradient descent (SGD) to approximate the teacher’s outputs.

We use a teacher-student framework designed for the continual learning setting,

shown in Fig. 4.1b, which has been analysed in [167, 168]. This model consists of

two randomly initialised teacher networks—one for an upstream task and one for a

downstream task.

Each teacher is represented by two-layer neural networks with p∗ hidden units

and weights W(1)
T , h(1)

T for the upstream task, and W(2)
T , h(2)

T for the downstream task.

Given a random input x ∈Rd , drawn i.i.d. from a Gaussian distribution xi ∼N (0,1),

the teachers generate labels (scalar) according to the equation:

y(t) = h(t)
T ·φ

(
W(t)

T x√
d

)
for t = 1,2, (4.1)
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where φ is a non-linear activation function, chosen here as φ(z) = erf
(

z/
√

2
)

to

allow the exact analytical evaluation of Gaussian integrals. This setup allows us to

generate two datasets D(1) and D(2), with controlled similarity between the tasks by

manipulating the teacher weights. Specifically, we generate W(1)
T , h(1)

T , and h(2)
T with

i.i.d. Gaussian entries, while W(2)
T is generated as:

W(2)
T = γW(1)

T +
√

1− γ2W(aux)
T , (4.2)

where W(aux)
T is an auxiliary weight matrix, and γ controls the correlation between

tasks. The student is a two-layer neural network with p hidden units, using the same

non-linearity φ . It is trained using online stochastic gradient descent on a squared

error loss, with a shared first-layer weight matrix W and task-specific readout weights

h(1) and h(2). Sharing the first-layer weights facilitates the study of continual learning

by allowing the model to share features common to multiple tasks, thereby impacting

knowledge transfer and forgetting. For both layers, the initial weights are sampled

i.i.d. from a Gaussian distribution, with the first-layer weights W having standard

deviation σW . This initialisation is generally selected to ensure analytical tractability.

The updates for W and h(t) at iteration e, under SGD on the squared error loss, are

given by:

W[e+1] = W[e]− η√
d

(
h(t) ·φ

(
Wx√

d

)
− y(t)

)
φ
′
(

Wx√
d

)
v(t)x, (4.3)

h(t)[e+1] = h(t)[e]− η

d

(
h(t) ·φ

(
Wx√

d

)
− y(t)

)
φ

(
Wx√

d

)
, (4.4)

where η is the learning rate and y(t) is the target output from the teacher network for

task t. In the large input dimension limit d→ ∞ while keeping the other dimensions

finite, we can derive closed-form expressions for the evolution of the order parameters

Q =
1
d

WW⊺, R(t) =
1
d

WW(t)⊺
T , T(t,t ′) =

1
d

W(t)
T W(t ′)⊺

T , h(t), h(t)
T ; (4.5)

where t, t ′ ∈ {1,2} refer to the two tasks. Intuitively, Q measures the self-overlap

or internal structure of the current weights W. It captures how the learned features
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(rows of W) are organised, representing the network’s internal representation. R(t)

quantifies the alignment between the current weights W and the target weights W(t)
T

for task t. A higher value indicates that the network is better aligned with task

t. T(t,t ′) quantifies the similarity between the first-layer weights of teachers t and

t ′. h(t) and h(t)
T correspond to the student and the teacher head weights for task t,

respectively. Together, T(t,t ′) and the teacher head weights h(t)
T and h(t ′)

T provide a

measure of how similar the two tasks t and t ′ are.

We use the parameter update expressions from Equations 4.3 to derive the

corresponding updates for the order parameters. In the high-dimensional limit

(d→ ∞), these discrete update equations converge to ordinary differential equations

(ODEs), which can be integrated either numerically or analytically in certain cases

[132]. As is often the case in the statistical physics of disordered systems, this

approach was first derived non-rigorously by Saad and Solla [238] and Biehl and

Schwarze [34], with later works laying down a mathematical foundation showing the

concentration of the ODEs [107, 29]. Let us define the pre-activations of the student

and task-t teacher given an input x from task t as

λi =
1√
d

Wi ·x, ρ
(t)
i =

1√
d

W(t)
T,i ·x, (4.6)

and denote the difference between the teacher and student predictions by ∆(t) =

h(t) ·φ(λ )−h(t)
T ·φ(ρ). The corresponding ODEs for the order parameters in the

limit d→ ∞ are given by:

dQik

dτ
=−ηh(t)i ⟨φ

′(λi)∆
(t)

λk⟩−ηh(t)k ⟨φ
′(λk)∆

(t)
λi⟩

+η
2h(t)i h(t)k ⟨φ

′(λi)φ
′(λk)(∆

(t))2⟩, (4.7)

dR(t ′)
in

dτ
=−ηh(t)i ⟨φ

′(λi)∆
(t)

ρ
(t ′)
n ⟩, (4.8)

dh(t)i
dτ

=−η⟨∆(t)
φ(λi)⟩, (4.9)

where τ = epoch/d represents continuous time in the high-dimensional limit, and
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t, t ′ ∈ 1,2 denote the task indices. The angular brackets indicate an average over

the pre-activations. The pre-activations themselves are centred Gaussian random

variables with covariances determined by the order parameters Q, RRR(t), and T such

that

P(β ,γ) =
1

(2π)F+H |C̃|1/2 exp
(
−1

2
(β ,γ)TC̃−1(β ,γ)

)
, (4.10)

C =


Q R(1) T (2,1)

R(1),T T (1,1) R(2)

T (1,2),T R(2),T T (2,2),T

 . (4.11)

These averages can be computed analytically for certain activation functions.

For instance, in the case of a rescaled error function introduced in the main text

[238, 34], the relevant averages are given by:

I2 =⟨φ(β )φ(γ)⟩=
1
π

arcsin

(
Σ12√

(1+Σ11)(1+Σ22)

)
, (4.12)

I3 =⟨φ ′(ζ )βφ(γ)⟩= 2Σ23(1+Σ11)−2Σ12Σ13√
Λ3(1+Σ11)

, (4.13)

I4 =⟨φ ′(ζ )φ ′(ι)φ(β )φ(γ)⟩=
4

π2
√

Λ4
arcsin

(
Λ0√
Λ1Λ2

)
, (4.14)

where the Greek letters represent arbitrary pre-activations with covariance matrix ΣΣΣ,

and the auxiliary quantities Λi are given by:

Λ0 = Λ4Σ34−Σ23Σ24(1+Σ11)−Σ13Σ14(1+Σ22)+Σ12Σ13Σ24 +Σ12Σ14Σ23,

(4.15)

Λ1 = Λ4(1+Σ33)−Σ
2
23(1+Σ11)−Σ

2
13(1+Σ22)+2Σ12Σ13Σ23, (4.16)

Λ2 = Λ4(1+Σ44)−Σ
2
24(1+Σ11)−Σ

2
14(1+Σ22)+2Σ12Σ14Σ24, (4.17)

Λ3 = (1+Σ11)(1+Σ33)−Σ
2
13. (4.18)

Λ4 = (1+Σ11)(1+Σ22)−Σ
2
12. (4.19)

The ODEs governing the dynamics of the order parameters in the continual

learning setting were first derived by Lee et al. [167]. They provide a comprehensive
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analytical framework for tracking the student network’s learning dynamics and the

emergence of specialisation throughout training. For example, we can formulate the

generalisation error in terms of the order parameters and track its dynamics through

time. Let us begin by

ε
(t) =

1
2
Ex

[(
h(t) ·φ

(
Wx√

d

)
− y(t)

)2
]

(4.20)

ε
(t) =

1
2

[
∑
i,k

h(t)i h(t)k φ(λi)φ(λk)+∑
m,n

h(t)T,mh(t)T,nφ(ρm)φ(ρn)−2∑
i,n

h(t)i h(t)T,nφ(λi)φ(ρn)

]
.

=
1
2 ∑

i,k
h(t)i h(t)k I2(i,k)+

1
2 ∑

n,m
h(t)T,nh(t)T,mI2(n,m)−∑

i,n
h(i t)h

(
T,nt)I2(i,n)

= I21(Q,h(t))+ I21(T(t,t),h(t)
T )− 1

2
I22(Q,R(t),T(t,t),h(t), ,h(t)

T ), (4.21)

where we have expressed the equation in terms of I21 and I22, making their

dependence on the previously defined order parameters explicit.

In the context of continual learning, we define forgetting on the first task as the

change in generalisation error following a task switch at time s̃. Specifically, we

quantify forgetting at time s̃+ s as:

Forgetting: Ft ≡ ε
(t)
|s̃+s− ε

(t)
|s̃ (4.22)

Here, ε(t) denotes the generalization error on task t. For task 1, an increase in

this error after the switch indicates positive forgetting, reflecting a degradation in

performance due to interference from the newly learned task.
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Figure 4.2: Specialisation. Schematic illustration of specialisation in the student-teacher
setup. Specialisation is measured by comparing the similarity of hidden layer
representations between the student and teacher. (a) In the specialised setting,
each student neuron (yellow and blue) aligns with a specific teacher neuron
(yellow and blue). (b) In the non-specialised scenario, the student redundantly
shares teacher representations across multiple neurons (green). See Appendix
B.3.2 for details.

4.3 Rich and Lazy learning
We start by exploring the representations developed during the initial phase of

learning in the continual learning setting. Our analysis remains within the feature

learning regime and provides a clearer definition of the different rich representations

that emerge as a function of initialisation, with a particular focus on specialisation.

This setup lends itself to a theoretical approach that examines how initialisation

within standard synthetic neural network frameworks influences specialisation.

4.3.1 Specialisation: Student-teacher setting

While a detailed quantitative characterisation of specialisation follows in the next

section, we briefly introduce the concept within the teacher-student framework. Saad

et al. [238] demonstrated that when both the teacher and student are represented

as committee machines—where the first layer’s weights remain fixed and learning
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Figure 4.3: Initialisation impacts specialisation. Previous work established a relationship
between the activation function φ and the propensity for the student nodes to
specialise to teacher nodes. However we show in this work that this is an overly
simplistic description; other factors including student weight initialisations
IW , Ih, parameterised by ΘW ,Θh arguably play a stronger role. Generalisation
error curves for two simulations of the teacher-student setup, one with a ReLU
activation function and one with a scaled error activation function. ΘW and Θh
are chosen to achieve a solution with ReLU that specialises—as indicated by
sparser overlap matrices on the bottom right, and a scaled error function solution
that does not specialise—as indicated by denser overlap matrices on the top
right. A sparse (dense) Q matrix shows few (many) nodes are active, while a
sparse (dense) R matrix shows student nodes are representing teacher nodes
in a targeted (redundant) manner. Further details for the quantities described
can be found in subsection 4.4.1. The teacher network comprises two hidden
units with weights initialised from a Gaussian distribution, while the student
network contains four hidden units. Further simulation details are provided in
Appendix B.3.3.

occurs in the second layer—each student neuron becomes specialised by aligning

with a particular teacher neuron. Similarly, Goldt et al. [106] observed that for

sigmoidal activation functions in two-layer networks, an over-parametrised student

will selectively use only a subset of those units to replicate the teacher’s outputs.

This phenomenon, termed specialisation, stands in contrast to a student redundantly

sharing representations of the teacher across neurons as depicted in Fig. 4.2.

In this section, we present a more comprehensive account of the factors under-

lying specialisation. In contrast to Goldt et al. [106], we argue that initialisation

-not the activation function -is chiefly responsible. We highlight this in Fig. 4.3, by
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showing that with carefully chosen initialisations we can train a highly specialised

ReLU student (bottom panels), and a non-specialising sigmoidal student (top panels)–

shown by the sparser Q and R matrices of the ReLU network–which represents the

opposite of the conclusions presented in Goldt et al. [106]. We begin by aiming to

establish what properties of an initialisation promote specialisation.

4.3.1.1 Specialisation’s relevance for continual learning

In this section, we formalise the relationship between specialisation and initialisation.

A student can effectively ignore a unit in two ways: either the unit’s post-activation

is near 0 (inactive) or the corresponding second-layer weight is 0. This motivates

three measures for specialisation based on the definition of entropy- over the hidden

units, head weights, and the product of both:

Hh =−
p

∑
i

˜|hi| log |h̃i|, HQ =−
p

∑
i

Q̃ii log Q̃ii, Hm =−
p

∑
i

Q̃ii|h̃i| log(Q̃ii|h̃i|);

(4.23)

where the tilde denote normalisation, i.e. ˜|hi| = |hi|
∑

P
i |hi|

, Q̃ii =
Qii

∑
P
i Qii

and p is the

number of hidden neuron. Each of the quantities Hh, HQ, and Hm can be interpreted

as a form of Shannon entropy, which characterises the uncertainty or spread within a

probability distribution.

The term Hh measures the entropy of the normalised magnitudes |h̃i|. A high

value of Hh indicates that the |hi| values are distributed relatively evenly across units,

corresponding to a state of low specialisation. Conversely, a low value of Hh reflects

a situation where one or a few |hi| dominate, indicating strong specialisation.

Similarly, HQ quantifies the entropy of the normalised diagonal elements of the

student overlap matrix Q. In this context, Q is the order parameter that quantifies the

overlap of the student’s hidden representations used in statistical physics to analyse

the dynamics of generalisation error. Here, we focus only on the diagonal elements

of Q, Qii that reflect the mean squared magnitude of the input weights for the i-th
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Figure 4.4: Phase diagrams show significance of initialisation for specialisation. The
phase diagrams show with colour the aggregated entropy Eq. 4.23 evaluated for
different initialisations. On the x-axis we span over the standard deviation of the
first layer. The second layer is initialised using polar coordinates, and the y-axis
represents the norm while the different panels give the angle spanning from
orthogonal units (θ = 0) to identical units (θ = π/4). Specialisation is achieved
by blue-leaning initialisations, while yellow-leaning ones exhibit high entropy
and therefore non-specialised solutions. The teacher has one hidden unit, while
the student has two hidden units. For simulation details, see Appendix B.3.4.

neuron and serve as a proxy for measuring entropy. A high value of HQ indicates that

the overlap is evenly distributed across units, implying low specialisation, whereas a

low value of HQ suggests that the overlap is concentrated in a subset of units.

The quantity Hm represents a mixed entropy that combines information from

both Q and h. Specifically, it measures the entropy of the product Q̃ii|h̃i| across units.

This measure captures joint specialisation: Hm is minimised when both the overlap

Q and the activations h are highly concentrated together, and maximised when both

are broadly distributed.

All together, maximum entropy in these measures corresponds to no specialisa-

tion, while minimum entropy corresponds to maximum specialisation.

We can investigate how these measures vary as a function of different properties

of the problem setup, in particular those related to initialisation. For simplicity,

we start by considering the case where the teacher network has a single hidden
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neuron while the student network contains two hidden units. This allows us to

initialise the second layer weights of the student in polar coordinates, with precise

and interpretable control over the scale and asymmetry of weights. Formally, we

parameterise our readout initialisations according to

h(t)[0;r(t),θ (t)] = (r(t) cosθ
(t),r(t) sinθ

(t)). (4.24)

Fig. 4.4 contains phase diagrams showing how the entropy measures in Eqs. 4.23

vary with the initialisation parameters r(t), θ (t), and σW . We can make several

observations: (i) the strongest determinant of specialisation is the asymmetry in

the second layer weights, i.e. the θ parameter. (ii) This is the case for both ReLU

and sigmoidal activation functions, reinforcing the point made in the example from

Fig. 4.3. (iii) the scale of initialisations (parameters σW , r) are also important.

The results show that a positive norm imbalance (that is, σW < r) fosters greater

specialisation in non-linear networks. Notably, these findings contrast with those

for linear networks, where a positive λ results in lazy learning—an outcome not

expected to exhibit any specialisation, as detailed in Chapter 3.

Overall, while most prior work adopts a similar approach to initialising the

readout weights, we propose a novel scheme based on polar coordinates. This formu-

lation enables a smooth transition between specialised and distributed representations.

It is essential to acknowledge the limitations of the current setup, which has been

primarily demonstrated with just two hidden neurons. As the number of neurons

increases, maintaining entropy control and achieving balance becomes increasingly

challenging, making it harder to draw definitive conclusions. In the following sec-

tion, we explore how our findings might generalise to more complex architectures

(e.g. more hidden neurons). However, as previously noted, the distinction between

rich and lazy regimes may lose clarity or consistency in these higher-dimensional

settings. In particular, we identify initialisation strategies that promote specialisation

by increasing the entropy of the readout weights and introducing an asymmetry

between the first and last layers. These findings further underscore the importance
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of layer-wise imbalance in shaping the learning regime, echoing similar insights

from Chapter 3 [67]. This further highlights that layer imbalance plays a crucial

role in shaping both the learning regime and the representations developed in simple

non-linear networks, as seen through the lens of specialisation.
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4.4 Applications
In this section, we explore the practical implications of our findings on the rela-

tionship between initialisation and specialisation, particularly in the contexts of

continual learning. We further illustrate how the resulting imbalances affect neural

network behavior in practical scenarios. All together, we show that the relative scale

(imbalance) also impact the degree of specialisation and feature learning in practice.

4.4.1 Continual learning

A fundamental challenge in continual learning is the mitigation of catastrophic for-

getting, wherein performance on previously acquired tasks deteriorates upon learning

new ones [193, 227]. While early work, such as that by Goodfellow et al. [110],

typically assumed a monotonic relationship between task similarity and forgetting,

more recent studies have revealed a richer and more nuanced set of forgetting pro-

files. In particular, Ramasesh et al. [225] and Lee et al. [167] conducted systematic

experiments across diverse architectures and training paradigms, showing that catas-

trophic forgetting is most pronounced between tasks of intermediate similarity. To

account for this phenomenon, Lee et al. [168] proposed a mechanistic explanation

grounded in neural resource allocation. They posited a trade-off between the reuse

of previously specialized neurons and the recruitment of dormant units. In particular,

task-specific specialization often leaves unused capacity in the form of dormant

units, which can be recruited when tasks are highly dissimilar—thereby helping the

network preserve performance across multiple domains [45]. When task similarity

is intermediate, however, the network tends to partially reuse existing neurons, in-

creasing the risk of interference and forgetting. This dynamic reflects a fundamental

tension between efficiency and flexibility. This phenomenon is evocatively captured

by Maslow’s cognitive bias: “If the only tool you have is a hammer, it is tempting to

treat everything as if it were a nail” [211]. Over-reliance on existing representational

“tools” (neurons) can induce interference, whereas under-utilization of them may

result in inefficient or unstable representations. We refer to this characteristic pat-

tern—where forgetting peaks at intermediate task similarity—as Maslow’s Hammer
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Figure 4.5: Initialisation and specialisation properties can influence profile of forgetting
vs. similarity. (a) forgetting (defined in 4.22) as a function of task similarity
(defined in 4.2) can be both monotonic, shown here for the cases of specialisation
after both tasks (blue), and no-specialisation + large, asymmetric second head
initialisation (orange); or non-monotonic (green, as characterised by Maslow’s
hammer [168]). (b) the final norm of the two nodes (one solid and one dashed)
is defined as the absolute norm of the weights at the end of training on both tasks
as a function of task similarity. In the cases that lead to monotonic forgetting,
nodes are fully re-used, either because the corresponding new head is initialised
large (orange) or because the new head is symmetrically initialised, and the
nodes continue to represent redundant information during the second task (blue).
The networks use sigmoidal activations. The teacher has one hidden unit with
weights initialised from a zero-mean Gaussian, while the student has two hidden
units. For simulation details, see Appendix B.3.5.

profile. Formalizing such non-monotonic forgetting trajectories may be critical for

developing more robust and adaptive continual learning systems.

4.4.1.1 Specialisation underlies Maslow’s hammer

We aim to revisit the two established forgetting profiles empirically observed in

the continual learning literature: namely, the Maslow’s Hammer profile, observed

empirically first in Ramasesh et al. [225], and the monotonic forgetting profile, more

typically assumed and observed in Goodfellow et al. [110]. The phase diagrams in

Fig. 4.4 demonstrate that initialisation can drastically change the type of solutions

found by the student after training on one teacher. While this may be inconsequential

as the generalisation error remains unaffected, in many cases, the specific structure

of the learned representation can have a substantial impact on downstream tasks and

the extent of forgetting the first task.
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In the worst case scenario, the student undergoes no specialisation during

the first task. During the second task, there is no notion of the trade-off between

node reuse and node activation discussed in [168]; rather, the student continues to

find a non-specialised solution to the second teacher, effectively fully reusing its

entire representation for the second task. Consequently, the amount of forgetting

with respect to the initial task decreases monotonically with task similarity. This

extreme case is illustrated in orange in Fig. 4.5. Further, even with specialisation

after the first task, large asymmetric initialisation in the second task readout weights

can induce this monotonic relationship, again by pushing the student into reuse

rather than activation (blue Fig. 4.5). Finally, after the network learns a specialised

representation during the first task and is initialised symmetrically for the second, we

observe the characteristic U-shaped pattern associated with Maslow’s hammer—a

phenomenon reported in various continual learning settings [225]. This case is

illustrated in green in Fig. 4.5.

In a broader context, a rich diversity of behaviours can emerge, driven by

factors such as the initialisation schemes, the scale of weights in the first layer,

and the readout heads for both tasks. A glimpse of this behavioural diversity is

provided in Appendix B.2, where we further explore the interaction between these

factors and their impact on forgetting in continual learning. Altogether, these results

illustrate the complex relationship between the forgetting profile, initialisation, and

specialisation beyond the previously established forgetting profiles.

4.4.1.2 Specialisation underlies EWC

The findings relating specialisation to forgetting from Sec. 4.4.1.1 have direct conse-

quences for interference mitigation strategies such as EWC. EWC is a regularisation-

based method that computes a measure of ”importance” for each weight with respect

to a task via the Fisher information [148]. The Fisher information is defined as the
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expected outer product of the gradient of the log-likelihood, that is,

Fi j = Ex∼D

[
∂ log p(y | x,θ)

∂θi

∂ log p(y | x,θ)
∂θ j

]
,

where θ denotes the model (here the student) parameters, x the input to the model,

y the output of the model and the expectation is taken over the data distribution D

corresponding to the task at hand (here the teacher). EWC typically approximates F

as a diagonal matrix (that we note Fi), treating each parameter i independently. In

practice, we approximate the Fisher information matrix by computing the squared

gradients of the student model’s loss—evaluated against the teacher’s output—and

averaging them over the dataset.

Subsequently, a squared penalty scaled by this importance is applied to the

deviation of this weight during learning of future tasks as follows:

LEWC(W) = L(W)+
ξ

2 ∑
i

Fi(Wi−W ∗i ), (4.25)

where F is the Fisher information matrix, ξ is a regularisation strength parameter,

and W∗ are the weights at the end of training on the first task. The diagonal entries

Fi reflect the sensitivity of the model’s predictions to perturbations in individual

parameters, and are used to selectively constrain important parameters during subse-

quent learning to mitigate forgetting.

In cases where the network does not specialise, i.e. multiple student nodes

learn redundant representations for a given teacher node, the nodes have equal

importance. Consequently, EWC cannot distinguish between these sets of weights

and depending on the regularisation parameter ξ either lets these nodes move during

training on the second task (under-regularises) leading to forgetting, or lets none

move (over-regularises) leading to no transfer. We show results illustrating this

behaviour in the teacher-student setup in Fig. 4.6. In particular, we show the regime

of intermediate task similarity, where in [168] previously argued that EWC should
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Figure 4.6: EWC is strongly reliant on specialisation. We show the generalisation error in
the first (solid line) and second (dashed) task for different EWC regularisation
strengths. (a) When the student finds a specialised solution to the first task, there
is a range of EWC regularisation strength ξ for which the activated units can
remain fixed and spare capacity can be used to learn the second task—leading
to low generalisation error in both tasks (ξ = 10−2, ξ = 10−4 perform very
well). (b) When the student does not specialise in the first task, EWC reduces
to an inflexible regulariser that either penalises plasticity everywhere—leading
to little forgetting but no further learning (e.g. ξ = 1), or does not penalise
any plasticity—leading to catastrophic forgetting (e.g. ξ = 10−6). The teacher
network has a single hidden unit, with weights initialised from a Gaussian
distribution with zero mean and unit variance. The student network consists of
two hidden units. The input weights are initialised from a Gaussian with mean
0 and standard deviation 0.001. The head of the student network is initialised
using the polar method ensuring specialised and non-specialised readouts. For
simulation details, see Appendix B.3.6.

perform better than methods such as replay. Altogether, we analysed how EWC

[148] is influenced by specialisation dynamics and highlight pitfalls in regularisation

methods for continual learning.

4.4.2 Imbalanced initialisations in practice

Until now, our focus has been on simplified networks, gradually increasing their

complexity through architectural decisions, initialisation strategies, and the incorpo-

ration of non-linearities. We now turn to exploring how our theoretical findings—on

specialisation, the rich and lazy regimes, and initialisation—manifest in practical

scenarios. We start by investigating how imbalanced initialisation can promote

disentangled representations and enhance interpretability in sparse auto encoders,

which aligns with the specialisation effects discussed in Sec. 4.3. Next, we consider

the implications for grokking and analyse the interpretability of the early layers
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in a convolutional neural network. Finally, we show that the continual learning

behaviours observed in simplified setups also appear in more realistic contexts, such

as a continual learning task using MNIST.

4.4.2.1 Increasing specialisation in disentangled representation

learning
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Figure 4.7: Violin plots of a) the Disentanglement, Completeness, and Informativenes (DCI)
[80] score and b) the reconstruction loss against gain of a beta-VAE trained
on the 3DShapes data set. The disentanglement score decreases as the gain
increases while the reconstruction loss remains steady, c) Example traversals of
models with gains 2 and 0.3, respectively, highlighting a disentangled dimension
for gain 0.3 and a mixed dimension for gain 2. Experimental details can be
found in the Appendix B.3.7.

We extend the results on imbalanced initialisation and apply them beyond

the limited setting of our framework in the context of disentangled representation

learning, where the goal is to separate latent factors. A seminal contribution to this

domain came with the β -VAE model, where Higgins et al. [120] demonstrated how

increasing the KL-divergence term can enforce disentanglement by encouraging

specialised latent representations. Many studies have built upon these foundational

frameworks to enhance disentanglement performance, exploring different training

regimes [178, 94] and loss functions [49, 145, 154]. Here, we contribute to this

literature by applying our theoretical insights and examining the impact of initialisa-

tion on disentanglement performance. Specifically, we examine how initialisation

impacts specialisation in disentanglement learning on the 3DShapes dataset [41]

using the β -VAE model- widely adopted for such tasks [120, 42].

We implement a β -VAE model, employing the ”DeepGaussianLinear” architec-

ture for the decoder and the ”DeepLinear” architecture for the encoder, as specified
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in [177]. Both architectures are composed of five fully connected layers with ReLU

activations. The model is trained using the Adam Optimiser, which optimises a loss

function that combines KL divergence and binary cross-entropy-based reconstruction

loss. Additional details are given in Appendix B.3.7.

In these experiments, we adjust the variance of the weights in a deep fully-

connected encoder, by varying the constant gain of the Xavier initialisation [105].

Specifically, the first block of layers was initialised with gain g, while the readout

layer received a gain 1/g. Notice that g = 1 represents the standard initialisation

scheme.

Results are shown in Fig. 4.7, despite very similar levels of reconstruction loss,

networks initialised with smaller gains improved disentanglement in the β -VAE

network, as reflected in higher Disentanglement, Completeness, and Informativeness

(DCI) scores [80]. Note that a smaller value of g indicates greater variance in the

output layer relative to the input layer, reflecting a positive network imbalance. There-

fore, this aligns with the theoretical results presented above and further confirms

that modulating the initialisation gain can increase the network’s disentanglement.

Although the scope of these experiments is limited, they provide preliminary vali-

dation of our theoretical framework in more realistic contexts, encouraging further

investigation into alternative initialisation schemes with varying levels of imbalance.

We advocate for further investigation into alternative initialisation schemes with

varying levels of imbalance. Moreover, we highlight the need for future research to

extend these experiments by considering a wider variety of datasets (Car3D [76],

dSprites [190],), network architectures (Conv, Linear), initialisation strategies (

Gaussian Xavier Initalisation) and different metric (SAP [154, 120],) to fully explore

the implications of our findings.
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4.4.2.2 Increasing Interpretability using Sparse Auto Encoder

To support our finding that larger hidden-to-output weights promote specialised

representation, we examine activation sparsity in a sparse autoencoder, where

sparsity reflects specialisation. We predict that increasing the relative weight of later

layers will lead to greater sparsity in the autoencoder’s activations.

We conduct the following experiment in two phases: Phase 1: We train a

standard VAE (similar to Sec. 4.4.2.1) on MNIST which was initialised with small

weights to ensure the feature learning regime [99] (we sample from a Gaussian with

standard deviation 0.001). Importantly, the latent dimension of this VAE is smaller

than the input and forms an entangled latent space. Phase 2: In a similar manner

to the recent approach on the Claude line of Large Language Models [274], we

train a sparse autoencoder (SAE) from the latent space of the VAE, with the aim of

improving the sparsity and disentanglement of the latent space. For our model, we

train in exactly the same manner, except we do not use the L1 regularisation on the

hidden activity. Thus, for our model, there is no explicit pressure on the autoencoder

to embed representations sparsely. For simplicity, we will refer to this model as an

implicit Sparse Autoencoder (iSAE). We repeat this process with varying degrees of

initialisation imbalance and track the sparsity of the SAE and iSAE. Denoting the

hidden layer activity of the networks for the entire MNIST dataset as H, we define an

indicator function in Eq. 4.26 for a single neuron responding to a single data point:

1(Hi j) =:

1, Hi j > 0

0, otherwise
(4.26)

We calculate the sparsity across the dataset as the average number of data points

the hidden neurons respond to. The network is initialised with varying values of

υ , where increasing υ results in progressively larger initial weights for the decoder

relative to the encoder.

The results of this experiment are shown in Fig. 4.8. We see clearly from these
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Figure 4.8: Implicit regularisation from initialisation imbalance in a sparse autoen-
coder:

We track the sparsity of the iSAE and SAE for varying degrees of initialisation
imbalance (x-axis). The imbalance on the x-axis depicts the natural log of the

imbalance parameter (υ). Thus, 0.0 depicts balanced initialisation typically used in
practice. The y-axis depicts the corresponding sparsity calculated using Eq. B.1 in

the Appendix. Clearly, as the imbalance increases, the sparsity of the iSAE
decreases, while the SAE does not respond due to its explicit regularisation. Results
depict the average over ten runs with two standard deviations on either side of the

mean. For simulation details, see Appendix B.3.8.

results that as the initialisation imbalance is pushed towards the hidden-to-output

weights such that they are larger than the input-to-hidden weights, then the sparsity

of the iSAE latent space improves dramatically. This is consistent with the positive

imbalance described in Sec. 4.3.1.1, demonstrating alignment between our empirical

observations and the minimal model analysis presented above. In contrast, the

SAE with explicit sparsity regularisation remains unaffected by varying levels of

initialisation imbalance. These results provide empirical support for our predictions

and underscore the role of disentanglement in improving both interpretability and

generalisation.

4.4.2.3 Interpretability of early layers in CNN

We now shift our focus to a different class of models—convolutional neural networks

(CNNs)—to explore how layer-wise imbalances influence representation learning.
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As shown in Fig. 4.9, panel (a), filters in CNNs trained on image classification tasks

frequently align with edge detectors, consistent with earlier findings [152]. We

demonstrate that modifying the learning rate of the first layer—which effectively

alters the imbalance between layers—can either strengthen or weaken this alignment.

Our results indicate that a positive imbalance (i.e., a positive λ ) encourages more

robust feature learning in nonlinear networks. This observation is consistent with

the specialisation dynamics discussed in Sec. 4.3, and is further formalised in our

analysis of two-layer ReLU networks in [158].

4.4.2.4 Grokking

We now explore the impact of imbalances on grokking. Grokking refers to the phe-

nomenon where networks trained on simple modular arithmetic tasks only generalise

after initially memorising their training data [218]. This behaviour is believed to

result from a transition between lazy and rich learning [155, 182, 234] and is consid-

ered crucial for understanding emergent phenomena [204]. We show in panel b) of

Fig. 4.9, that reducing the variance of the embedding in a single-layer transformer (to

less than 6% of all parameters) significantly accelerates the grokking process. This

is equivalent to the positive imbalance discussed in previous sections. Therefore, this

reinforces the finding that imbalance can control the learning regime in nonlinear

networks.

4.4.2.5 Forgetting Curves in MNIST

To further support the findings presented in Sec. 4.4.1.1 on continual learning, we

now examine a continual learning task based on the MNIST dataset [61]. This

dataset has previously been adapted to continual learning benchmarks, e.g. most

famously in the permuted MNIST task [110]. Here, we construct a slightly different

continual learning task to encode a notion of task similarity.

We begin by considering only one-half of the ten-class MNIST dataset, such

that we are left with only data in the first five classes. Our first task in the sequence

of two tasks consists simply of classifying these five digits. Our second task is also

to classify five digits and ranges from classifying the same five digits (maximum task
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Figure 4.9: Impact of balanced initialisations in practice. Here, we provide evidence
that an a positively balanced initialisation - where the second layer is wider
than the first (a) promotes the interpretability of early layers in CNNs and (b)
decreases the time spent grokking in modular arithmetic in a transformer. In
these experiments, we regulate the first layer’s learning speed relative to the
rest of the network by dividing its initialisation by α . For models without
normalisation layers, we also scale the last layer’s initialisation by α to preserve
the input-output map. α = 1 represents standard parametrisation, while α ≫ 1
and α ≪ 1 correspond to positively and negatively balanced initialisations,
respectively. See Appendix B.3.9 for details.

similarity) to classifying five new digits, i.e. those that were discarded to construct

the first task (orthogonal tasks- minimum task similarity). In a ten-class dataset like

MNIST, this gives us only a very coarse grip on task similarity, but this suffices to

robustly elicit behaviour analogous to what we observe in the toy teacher-student

models.

We use a two-layer, multi-head, feed-forward architecture with sigmoidal

activations to mirror the models used in the teacher-student setup. The hidden

dimension of our networks needs to be larger to properly learn the classification

task; we therefore lose the elegance and control afforded by the polar coordinate

initialisations of Sec. 4.4.1.1 to vary entropy and scale of initialisations. The method

we use to generalise this notion is to interpolate between two initialisations: a

high entropy initialisation (e.g. a uniform distribution) and a relatively low entropy

initialisation (e.g. Normal or Laplace distribution).
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Figure 4.10: Forgetting profiles on MNIST continual learning problem. Forgetting vs.
task similarity on a continual learning task using the MNIST dataset. Here,
similarity is defined as the number of classes that are the same in a 5-way
classification problem from the first task to the second, i.e., zero corresponds
to 5 new classes and five corresponds to the same five classes. The green
line is achieved by initialising with low entropy and small weights in the first
head, followed by high entropy and small weights in the second, while the
blue and orange lines have low entropy second head initialisations with high
and low entropy initialisations in the first head, respectively. These forgetting
profiles (in terms of their monotonicity patterns) qualitatively match those
observed in the theoretical toy problems discussed in Sec. 4.4.1.1 (see Fig. 4.5).
Note that σ (i) denotes the scale of the ith head initialization (equivalent to r in
Fig. 4.5) and γ(i) the relative entropy (playing a similar role to θ in Fig. 4.5).
For simulation details, see Appendix B.3.10.

In Fig. 4.10, we show forgetting profiles for three different initialisation schemes

(analogous to those shown in Fig. 4.5) for the continual MNIST task described above.

It is clear that in the case of low entropy and specialisation in the first task, along

with high entropy in the second head initialisation, we observe characteristics of

Maslow’s hammer. However, when we initialise the second head with low entropy,

we recover the monotonic relationships found in the equivalent initialisations from

the toy models. Note that, at this stage, these are primarily qualitative results, i.e. we

are comparing the shapes of these forgetting profiles and not the relative magnitudes

or detailed forgetting metrics. Overall, we observe similar forgetting patterns in

this more complex setting, effectively validating insights from the toy model and
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highlighting the influence of entropy and weight imbalance.
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4.5 Discussion

In this chapter, we investigate the impact of prior knowledge—modelled through

initialisation—on the specialisation of representations and their learning dynamics.

We introduce a minimal model that transitions between specialised and shared

representations, offering a complementary perspective on both the lazy learning

regime [130] and the rich learning regime [196, 233]. While our analysis is grounded

in the feature learning framework, it provides a more nuanced understanding of the

various rich representations that emerge as a function of initialisation. Specifically,

we emphasise the impact of increasing the entropy of the readout weights and

introducing asymmetries between the first and last layers to get a specialised solution.

These findings extend the results from discussed in Chapter 3, while adding further

nuance to the role of entropy in this mechanism. [67]. This result closely aligns

with the insights derived in [158], where we further formalised the findings for two-

layer ReLU networks in our paper1. Overall, our theory suggests that imbalanced

initialisations may offer a promising strategy for optimising efficient feature learning.

However, there are several key limitations to extending this work to more

general settings. One challenge is that this work primarily operates within simplified

frameworks, which—while commonly used in neural network analysis— do not

fully capture the complexity of modern architectures and real-world data. For

example, we focus on two-layer neural networks, and applying this theory to deeper

networks presents significant difficulties. In deeper architectures, which are widely

used in practice, there are numerous ways to introduce imbalance across layers. In

our experiment, we made informed yet arbitrary decisions to modify the balance

between blocks of the network or adjust the first layer in relation to the rest of

the network. Investigating how different imbalance profiles affect feature learning,

inductive biases, and generalisation in deeper networks is a promising direction for

future research. One potential approach is to build on the path-based framework

proposed by Saxe et al. [242].

1This part of the paper is not discussed in detail in this thesis.
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Furthermore, our experiments rely on Gaussian input data and simplified

input-output relations, which are far from the complexities of real-world scenarios.

A natural next step is to extend our analysis to more realistic generative models,

such as the hidden manifold model [107] or the superstatistical generative model [3],

which offer more structured data distributions and better capture observations from

real data experiments.

Complementing analytical approaches with numerical experiments in con-

trolled real-world settings is a promising direction to overcome these limitations.

While this may reduce some of the analytical tractability, it brings us closer to

solving practical challenges. For instance, we plan to explore a broader range

of network architectures, datasets—such as Car3D [76] and dSprites [190]—and

evaluation metrics, such as SAP [154, 120]. We also hope to deepen our practical

insights on forgetting by using the continual learning benchmark proposed by [102]

to test our findings in more complex environments. Although we have focused

on continual learning, other domains of machine learning are also affected by

specialised representations. An interesting direction for future research concerns

the emergence of compositionality. [169, 71] reported the emergence of compo-

sitional representations in neural networks, and theoretical frameworks are now

available to investigate this phenomenon [166]. These future studies will allow us to

validate our theoretical insights and fully assess their relevance in real-world settings.



Chapter 5

Conclusion

To keep your balance, you must keep moving.

– Albert Einstein

This chapter reviews and connects all the works presented in this thesis.

5.1 Discussion
Below, we summarise and discuss the insights gained from Chapters 3 and 4 on the

influence of initialisation on learning regimes. We then consider the relevance of

toy models used in this work to the field of machine learning, before turning to their

implications for neuroscience.

5.1.1 Balancing learning regimes

At a high level, this research investigates how prior knowledge—both in biological

and artificial neural networks—influences the learning process and the formation

of internal representations that support complex behaviour, including continual

learning, curriculum learning, reversal learning, and the acquisition of structured

knowledge. To address these questions, we developed mathematical frameworks

grounded in deep learning theory, aimed at capturing the flexible and adaptive nature

of learning. In our models, prior knowledge is embedded in the initial state of the

network, as well as in the representations carried over from previous tasks.

Chapter 2 offers a comprehensive review of the foundational background

and pertinent literature that underpin this work. We begin by outlining the key
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concepts of deep learning and their relevance to neuroscience. This is followed by

an exploration of core themes central to the thesis, with a particular focus on the

rich and lazy learning regimes, diverse learning paradigms, and the variety of neural

network architectures and initialisation strategies previously studied.

In Chapter 3, we introduce a minimal model with exactly solvable learning

dynamics under varying prior knowledge. This framework reveals a subtle yet

critical factor: imbalance—defined as the relative scale across layers at initialisation.

Although frequently overlooked, we demonstrate that relative imbalance provides

access to the full spectrum of learning regimes—from rich to lazy—uncovering

behaviours that could not be explained by absolute scale alone [51]. To gain a deeper

understanding, we systematically vary architectural configurations, initialisation

scales, and datasets and show how these elements interact with prior knowledge

during the learning process.

Chapter 4 extends this investigation to non-linear networks, evaluating whether

the insights gained from linear models hold in more realistic and complex settings.

In particular, we underscore the importance of readout weight entropy and the

asymmetry between the first and final layers at initialisation as key drivers of network

specialisation—a defining characteristic of rich learning regimes (see Sec. 4.3).

Moreover, we demonstrate that both relative scaling and overall weight scale crit-

ically influence the extent of feature learning in non-linear and applied settings

(discussed in Sec. 4.4.2).

Overall, this thesis successfully demonstrates the impact of relative scaling

on learning regimes, from theoretical linear toy models to practical neural net-

works. However, variations in imbalance—or relative scaling—give rise to markedly

different learning behaviours depending on the activation function. For instance,

in linear networks, zero imbalance typically fosters rich dynamics, whereas in

ReLU-activated nonlinear networks, a positive imbalance—where the second layer
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has greater variance than the first—promotes the formation of structured, specialised

representations. In practical models employing non-linearity, a positive imbalance

likewise facilitates feature learning. Furthermore, Chapter 3 shows that network

architecture itself plays a decisive role in the emergence of rich learning regimes.

For instance, in linear networks, funnel-shaped architectures tend to enter a delayed

rich learning regime when the relative scaling is negatively balanced, whereas

anti-funnel architectures transition into this regime under negative imbalance. In our

nonlinear-network experiments we exclusively employed a funnel-shaped design;

consequently, a systematic exploration of alternative architectural motifs and their

impact on the learning regime constitutes a promising avenue for future work.

It is worth emphasising that the two experimental setups explored in this work

are not directly equivalent. The student–teacher framework presented in Chapter

4 operates in the high-dimensional limit and has long been a standard approach

for probing the feature learning regime. However, its connection to the Neural

Tangent Kernel (NTK) or lazy training regime is rather limited. In principle, one

might attempt to study lazy dynamics by taking the limit of extreme layer imbalance.

Yet, such an approach is constrained by the assumptions typically imposed in

high-dimensional settings—such as Gaussian inputs and specific scaling relations.

These constraints make the exploration of NTK-like behavior less relevant in this

framework, particularly when compared to setups where such dynamics can be

studied more flexibly and with fewer restrictions. In our setup, we deliberately avoid

this regime. Even when initialising the first layer with a large scale to approximate

lazy training, the network still develops representations that go beyond simple

random projections. By contrast, the scenario explored in Chapter 3 involves a linear

network trained on finite data, resulting in distinct training dynamics that span the

full range—from lazy to rich regimes.

Furthermore, one of the persistent challenges in this area is the lack of a

precise and universally accepted definition of the rich learning regime. It is often
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characterised in contrast to the lazy regime, where learning dynamics are governed

by a fixed Neural Tangent Kernel (NTK). This regime is also often characterised by

sigmoidal learning curves and simplicity biases, such as low-rankness [170] sparsity

[294] or specialisation [106]. However, what constitutes ”richness” in learning

remains context-dependent. For example, in our linear network analysis (Chapter

3), we use the NTK framework to delineate regimes, while in the non-linear case

(Chapter 4), we focus on specialisation—an indicator of rich learning—rather than

relying on kernel-based descriptions.

Looking ahead, a key direction for future research is to further develop a

theoretical framework that formally characterises the spectrum of learning regimes

in broader settings, particularly those that fall outside the lazy regime. This thesis

takes an initial step in that direction by providing a clearer mapping between lazy

and rich learning, and by offering a more nuanced understanding of how different

regimes emerge across architectures and initialisations. Encouragingly, several

insights derived from the linear setting appear to generalise to non-linear networks

in practical contexts, pointing to the broader relevance and applicability of these

findings. Importantly, we show in Chapter 3 that widely used initialisation schemes

can also be interpreted through the lens of balancedness. Although originally

designed to address challenges such as vanishing gradients, these schemes often

induce a form of balance across network layers. As demonstrated in this thesis, such

balanced initialisation may implicitly steer networks towards a rich feature learning

regime, potentially explaining the extrodinary ablilities of deep networks today. A

systematic investigation of this phenomenon presents a promising avenue for future

research.

5.1.2 The importance of toy models

In this thesis, we employ simplified or ”toy” models as a means to develop theoretical

understanding and build intuition in the face of the growing complexity of contem-

porary machine learning systems. This approach is inspired by the longstanding
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tradition in physics, where abstraction has been used as a powerful methodological

tool to gain insight into complex natural phenomena. Such simplifications—whether

modelling a cow as a sphere [139], linearising pendulum motion [127], or employ-

ing idealised frameworks such as Hopfield networks to study associative memory

and network dynamics [123]—reflect a deeper epistemological principle: a well-

constructed model need not capture every microscopic detail to reveal fundamental

system behaviour. Instead, effective models strike a balance between analytical

tractability and conceptual clarity, often producing insights that transcend their

original scope of application.

In Chapter 3, we begin by analysing linear neural networks as a tractable class of

models that serve as proxies for deep neural networks (DNNs), which are inherently

non-linear and dynamically complex, particularly due to the presence of activation

functions such as ReLU. Although often overlooked due to their apparent simplicity

and frequent characterisation as mere compositions of matrix multiplications, we

demonstrate that linear networks exhibit surprisingly rich dynamical properties.

Despite their linear architectures, the learning dynamics of linear neural net-

works are non-linear [243]. We show in Chapter 3, that these dynamics are capable

of capturing a range of empirical phenomena observed in non-linear networks,

including step-wise learning [243], the rich and lazy learning regimes [67], and the

phenomenon of grokking [158] in algorithmic learning tasks [218] (discussed in

Sec. 3.4). Similar linearised frameworks have been successfully employed to investi-

gate a wide range of phenomena [216, 119, 6, 140], as well as learning paradigms

such as self-supervised learning [258], modularisation [134], specialisation [135],

fine-tuning [174], and generalisation [4]. Our primary focus in Chapter 3 is on

feedforward linear models; however, we also explore recurrent architectures.

A distinctive advantage of linear network models lies in their analytical solv-

ability under suitable assumptions. Several studies have derived exact solutions for
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learning trajectories in these systems [23, 243, 39], providing formal mathematical

interpretations that often generalise beyond the immediate scope of the model.

Motivated by this, Chapter 3 broadens the class of analytically tractable models by

investigating a wider range of initialisation schemes, with particular emphasis on

balanced initialisations. This extension reveals that balanced initialisation across

layers plays a pivotal role in modulating the degree of feature learning. This gener-

alisation also allows for the analysis and interpretation of more subtle dynamical

behaviours, including catastrophic slowing (as examined in Sec. 3.5.2) and exponen-

tial convergence towards structured representations (see Sec. 3.4.6.1)—phenomena

that are otherwise challenging to isolate in less controlled settings.

While linear models offer clarity and foundational insights, we remain cognisant

of their limitations. In practical applications, linear networks are rarely employed

due to their lack of expressive power and sensitivity to architectural choices. Certain

behaviours inherent to DNNs, particularly those requiring activation-dependent

nonlinearities, cannot be faithfully reproduced with layer-wise linear approximations.

For instance, although linear models highlight the importance of balanced layers,

they do not fully replicate the observed behaviours in real-world systems.

Accordingly, in Chapter 4, we turn to simplified models of non-linear networks,

focusing specifically on the two-layer perceptron. This toy model architecture,

grounded in statistical physics, allows for the derivation of dynamical equations

governing the evolution of order parameters, albeit at the cost of analytic tractabil-

ity. These equations must typically be integrated numerically. Nevertheless, this

approach permits the investigation of dynamical aspects of network behaviour while

incorporating critical non-linear features.Moreover, such toy models have found

application in exploring cognitive capabilities such as continual learning [167],

curriculum design [239], and compositionality [166].

In Chapter 4, we investigate how variations in network initialisation influence
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learning dynamics and representational properties. Specifically, we highlight the role

of readout weight entropy and asymmetry between the first and last layers in driving

network specialisation—a hallmark of rich learning regimes (discussed in Sec. 4.3).

We demonstrate that the relative scaling between layers significantly modulates

the degree of specialisation observed, a finding with direct relevance to practical

machine learning architectures (discussed in Sec. 4.4.2). We further validate these

observations in empirical settings, bridging the gap between theory and application.

In conclusion, this thesis highlights the enduring relevance of toy models—both

linear and non-linear—as indispensable tools for theoretical exploration in machine

learning and neuroscience. These simplified systems not only elucidate funda-

mental mechanisms but also inform our understanding of real-world models and

their behaviours. While their full potential has yet to be realised, we advocate for

the continued development and analysis of such models, which hold promise for

advancing our theoretical and practical understanding of learning systems.

5.1.3 Relevance to neuroscience

Deep learning models have emerged as powerful tools for advancing our under-

standing of brain function, offering mechanistic insights into neural activity and

cognitive processes [241]. These models provide researchers with the opportu-

nity to test hypotheses in controlled, artificial settings and to generate predictive

frameworks for biological phenomena. For instance, deep learning architectures

have been widely utilised to investigate the geometry of neural representations and

the principles governing information transfer [52, 53, 302, 266]. In addition, deep

linear networks have yielded valuable insights into various cognitive functions,

including semantic learning in infancy, task abstraction, and transitive inference in

humans [247, 229, 205, 90, 87, 175]. Building on this foundation, the present thesis

leverages deep learning models to explore fundamental questions in neuroscience,

with particular emphasis on how prior knowledge influences subsequent learning.
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In particular, the findings presented in this thesis contribute meaningfully to

ongoing debates in cognitive science and neuroscience [87], particularly in relation

to continual learning [121]. Our results suggest that both extrinsic factors—such

as task similarity (discussed in Chapter 4) —and intrinsic elements—such as the

adoption of ”rich” or ”lazy” learning strategies (discussed in Chapters 3 and 4)

—play a critical role in shaping learning dynamics. This observation aligns with

broader theoretical frameworks suggesting that computational principles are shared

across biological and artificial systems, influenced by global structural properties

and internal representations. Notably, we demonstrate that even relatively compact

models are capable of producing diverse representational profiles and functional

behaviours, reflecting the heterogeneity observed in human cognition.

Crucially, the models presented in this thesis are abstract and not intended as

detailed simulations of biological neural circuits, they are useful for probing high-

level computational principles that may be shared between artificial and biological

systems. A key limitation of this approach is that it does not capture the full

biophysical or anatomical complexity of the brain, nor does it produce outputs

directly comparable to neural recordings without further adaptation. Additionally,

the behavioural tasks used in our simulations are simplified relative to those used

in experimental neuroscience. As such, the relevance to brain function should be

interpreted with caution. However, by isolating core mechanisms—such as sparsity,

representational overlap, and learning dynamics—these models allow us to explore

hypotheses that are difficult to test directly in vivo. Their value lies in generating

conceptual insights and predictions that can guide future empirical studies rather

than in providing a direct one-to-one mapping with biological systems.

Despite the progress made, significant challenges remain in bridging the gap

between artificial models and empirical neuroscience. A key limitation in the field

is the lack of consensus regarding standardised methods for comparing model

predictions with experimental data. While the importance of theory–experiment

interaction is widely recognised, tools that support such integration are still in
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their infancy. One core issue concerns the availability and accessibility of data in

consistent, labelled formats. Although there is growing momentum towards open-

source collaboration, practical difficulties persist in accessing behavioural and neural

datasets. Researchers are often required to interpret diverse task structures and grap-

ple with heterogeneous pre-processing pipelines, often insufficiently documented.

This lack of standardisation hinders the field’s ability to comprehensively test and

validate new modelling approaches. Furthermore, not all models are designed to

generate neural or behavioural outputs, nor can they always interact with specific

tasks. Conversely, experimental protocols are not always described in a manner that

facilitates computational modelling. These disparities make it difficult to establish

meaningful, systematic comparisons between models and biological data. Moreover,

there is currently no streamlined or standardised method for enabling models to

engage directly with behavioural tasks. Researchers frequently resort to bespoke

simulations to replicate animal behaviour and environmental interactions, resulting

in duplicated efforts, inconsistencies, and the increased risk of implementation errors.

These barriers collectively impede efforts to make model–data integration more

scalable and accessible.

Overall, this thesis underscores the importance of sustained efforts at the inter-

face between machine learning and neuroscience, thereby advancing both disciplines

through a deeper understanding of model and animal behaviour across varied experi-

mental settings. Furthermore, we advocate for streamlining the exchange between

theoretical modelling and empirical data. This integrated approach will not only

expose the limitations of current models but also generate novel, testable hypotheses

for future experiments.
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5.2 General conclusions
Altogether, this research aims to foster a synergistic relationship between theoretical

models of intelligence and practical AI applications. The outcomes of this research

include the development of minimal models with exact solutions that are more

aligned with realistic scenarios. The theoretical advances in architecture, initiali-

sation, and data constraints subsequently facilitated the exploration of the factor

controlling the rich and lazy regime with key applications across machine learning

and neuroscience, including continual learning [212, 148, 306], reversal learning

[84], transfer learning [276, 273, 161, 101], and efficient fine-tuning methods [173].

This research will open avenues for cross-domain applications through models of

complex cognitive functions, along with the creation of advanced comparison tools

and methods. Broadly, this work seeks to close the gaps between human and machine

intelligence, paving the way for significant breakthroughs in both neuroscience and

AI with the ultimate goal of enhancing our understanding of how the brain and AI

systems learn and adapt.
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5.3 Further work
Moving forward, building upon the foundation established in this thesis. We pro-

pose a theory-driven approach that combines theoretical insights with practical

applications alongside the development of tools that enable the standardisation of

representation comparisons, creating a feedback loop to guide experiments and

ultimately unifying representations.

5.3.1 Theoretical models for realistic settings beyond the

limitations of existing frameworks

Building on my previous work, promising research directions include analysing the

learning dynamics of neural models and studying the representation of models in

both functional and parameter spaces in small toy models [243, 69, 158, 39, 67].

However, current approaches remain constrained by a set of standard assumptions

that limit their applicability to real-world problems. The first research proposal

aims to address these limitations by critically evaluating these assumptions and

introducing novel methodologies to enhance our theoretical models where necessary.

We plan to explore this through three interconnected projects that complement each

other.

5.3.1.1 The effect of architectural/connectivity on representation:

depth and width

In the brain, distinct regions exhibit a variety of architectures, and differences in

their connectivity may correspond to their specialised functional roles [162]. In

this thesis, we systematically vary architectural parameters—such as depth, width

and connectivity—to evaluate their effects on learning dynamics, the emergence of

structured representations and overall model performance [67, 158].

Bridging analytically tractable models with real-world complexity is crucial

for both machine learning and neuroscience if we are to deepen our understanding

of how these systems function. Moreover, elucidating how the statistics of training
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data interact with architectural features to constrain the learned representations

remains an open challenge—with significant implications for model learning and

generalisation.

An important avenue of research lies in examining the dynamics of architectural

frameworks relevant to neuroscience, such as deep feedforward, wide, and bottleneck

architectures, which have been previously applied in modeling brain regions such

as cerebellum-like structures [201, 295, 207, 201, 295, 207]. These architectures

are regularly employed for practical applications in machine learning, for example,

to implement Low-Rank adapters (LoRA) [124]. Lora architectures have become

increasingly important in modern machine learning, particularly for fine-tuning large

pre-trained models in natural language processing (NLP) and computer vision tasks

[124, 62]. This research has the potential to theoretically explain their success and

provide insights that could lead to further improvements.

By examining these architectural factors, we can make substantial progress in

enhancing the characterisation, interpretability, and performance of machine learning

models and theoretical models of brain regions. The ultimate goal is to study more

complex architectures present in the brain and understand how circuitry constrains

the types of functions it can learn.

5.3.1.2 The effect of initialisation/prior knowledge on

representation: beyond Tabula rasa

A key feature of human learning is its strong dependence on prior knowledge:

what we already know significantly influences how we learn new information [44].

As exemplified in this thesis, in machine learning, the role of prior knowledge is

evident across several paradigms, including reversal learning [84], transfer learning

[276, 273, 161, 101], continual learning [212, 148, 306], curriculum learning [30],

and meta-learning [136].
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Existing approaches, including our current framework [67, 39, 69], typically as-

sume tabula rasa (small random weights that lack structure) or balanced initialisation

(a property that remains conserved throughout training akin to relative scaling across

layers)[12, 243]. In this thesis [69, 67, 158], we demonstrated that the degree of

balance between layers plays a critical role in shaping feature learning, influencing

inductive biases, and affecting generalisation capacities.

A promising direction for future research involves examining this effect within

neuroscience-relevant architectures, such as deep and bottleneck networks, as

discussed above. Further relaxing the constraints on initialisation could provide im-

portant insights into the generalisation, memorisation, and optimisation of artificial

and biological neural networks.

5.3.1.3 The effect of the data on representation:

Non-whitened/correlated inputs and realistic settings

In both machine learning and neuroscience, data encountered in practice is often

high-dimensional, highly correlated, noisy, and multimodal. Analytical studies

which derive exact solutions, such as the one presented here and form the foundation

of existing literature [93, 39, 158] often adopt restring assumptions such as whitened

input. Moving towards more realistic data settings is critical for developing models

that better reflect these complexities.

Recent studies have started to relax the assumption of whitened inputs, allowing

for more detailed analyses of learning dynamics on high-dimensional, realistic

datasets [247, 4, 131]. Building on these advances, future work will examine the

effects of input correlations and noise on learning trajectories, with the aim of

elucidating the implicit biases that such realistic data conditions impose on learning

processes and the resulting representational structures.This research trajectory aims

to bridge theoretical models and neuroscience applications by providing insights

into how neural networks process and represent complex, real-world data to support
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processes such as generalisation and memorisation [138, 207, 55, 38, 32].

5.3.2 Open-source comparative frameworks

In today’s era of large-scale neuroscience and machine learning, a standardised

framework for comparing neural representations is crucial for bridging theory and

application. Building on the theoretical and application foundations established

above, future research will focus on the development of software to enable more

rigorous comparisons between neural representations in biological brains and com-

putational models. By systematising and standardising model comparisons, this

research direction seeks to develop and refine metrics for assessing similarity and

performance. As part of this effort, NeuralPlayground [68], a framework designed

to facilitate comparisons of neural activity in brain regions such as the hippocampus

and entorhinal cortex, will continue to be developed. This includes the integration

of additional datasets [27, 269, 48, 98] and the enhancement of existing models

[57, 43], thereby expanding the platform’s utility for both neuroscience and machine

learning research communities.
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Appendix Chapter 3

A.1 Preliminaries

A.1.1 Random weight initialisations and λ -balanced property

Throughout this work, we assume that initial weights are λ -Balanced. However, in

practice, weights are not initialised with that goal in mind. Usually, a weight matrix

W is initialised with some random distribution centred around 0, with variance

inversely proportional to the number of layers on which W has a direct effect ([105],

[164], [118]). In this section, we show that many common initialisation techniques

lead to λ -Balanced weights in expectation. Furthermore, as the size of a network

tends to infinity, these random weights are λ -Balanced in probability.

We do this by first finding the expectation and variance of the balance compu-

tation for two adjacent weight matrices, Wi+1 and Wi, initialised under a normal

distribution with zero mean. Subsequently, we describe how network structure and

size can impact the expectation and variance of the balance computation.

Theorem A.1.1. [Random Weight Initialisation Leads to Balanced Condition]

Consider a fully connected neural network with L layers. Each layer has Ni neu-

rons, and the weights of each layer Wi is a matrix of dimension (Ni,Ni+1). The

matrix Wi = (wi
N,m) where wi

N,m ∼N (0,σ2
i ), where σ2

i is determined based on the

initialisation technique. Then the following hold for all i ∈ [1,L−1]:
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• E [WT
i+1Wi+1−WiWT

i ] = (Ni+2σ2
i+1−Niσ

2
i )I.

• Var
[
WT

i+1Wi+1−WiWT
i
]
= (Ni+2σ4

i+1+Niσ
4
i )B, where B is a square matrix

with fours across the diagonal and ones everywhere else.

Note that in the case L = 3, N0 = i,N1 = h,N2 = o with i,h,o being the input, hidden

and output dimensions respectively as defined in the main text.

Proof of Theorem A.1.1.

Let Wi+1 =


w1,1 w1,2 · · · w1,Ni+2

w2,1 w2,2 · · · w2,Ni+2
...

... . . . ...

wNi+1,1 wNi+1,2 · · · wNi+1,Ni+2


=
(

w1 w2 . . . wNi+2

)
(A.1)

with w j = (w1, j,w2, j, . . . ,wNi+1, j)
T . Then,

WT
i+1Wi+1 =


wT

1

wT
2
...

wT
Ni+2


(

w1 w2 · · · wNi+2

)

=


⟨w1,w1⟩ ⟨w1,w2⟩ · · · ⟨w1,wNi+2⟩

⟨w2,w1⟩ ⟨w2,w2⟩ · · · ⟨w2,wNi+2⟩
...

... . . . ...

⟨wNi+2,w1⟩ ⟨wNi+2,w2⟩ · · · ⟨wNi+2,wNi+2⟩

 . (A.2)

Now, consider ⟨wi,w j⟩ with i ̸= j,
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⟨wi,w j⟩=
Ni+2

∑
k=1

wk,iwk, j, (A.3)

E
[
⟨wi,w j⟩

]
= E

[
Ni+2

∑
k=1

wk,iwk, j

]

=
Ni+2

∑
k=1

E[wk,iwk, j]

=
Ni+2

∑
k=1

E[wk,i]E[wk, j] = 0 (by independence), (A.4)

Var
[
⟨wi,w j⟩

]
= E

[
⟨wi,w j⟩2

]
−
[
E
[
⟨wi,w j⟩

]]2
= E

(Ni+2

∑
k=1

wk,iwk, j

)2


= E

[
Ni+2

∑
k=1

w2
k,iw

2
k, j +2

Ni+2

∑
k=1

∑
l>k

wk,iwk, jwl,iwl, j

]

=
Ni+2

∑
k=1

E[w2
k,iw

2
k, j]+2

Ni+2

∑
k=1

∑
l>k

E[wk,i]E[wk, j]E[wl,i]E[wl, j]

=
Ni+2

∑
k=1

E[w2
k,i]E[w

2
k, j]

= (Ni+2)σ
4
i+1. (A.5)

Similarly, consider ⟨wi,wi⟩:

⟨wi,wi⟩=
Ni+2

∑
k=1

w2
k,i. (A.6)

E [⟨wi,wi⟩] = E

[
Ni+2

∑
k=1

w2
k,i

]
= Ni+2E

[
w2

k,i
]
= Ni+2σ

2
Ni+1

. (A.7)



A.1. Preliminaries 152

Var [⟨wi,wi⟩] = E
[
(⟨wi,wi⟩)2

]
−E [⟨wi,wi⟩]2

= E

(Ni+2

∑
k=1

w2
k,i

)2
−N2

i+2σ
4
Ni+1

= E

(Ni+2

∑
k=1

w2
k,i

)2
−N2

i+2σ
4
Ni+1

= E

[
Ni+2

∑
k=1

w4
k,i +2

Ni+2

∑
k=1

Ni+2

∑
l=k+1

w2
k,iw

2
l,i

]
−N2

i+2σ
4
Ni+1

=
Ni+2

∑
k=1

E
[
w4

k,i
]
+2

Ni+2

∑
k=1

Ni+2

∑
l=k+1

E
[
w2

k,i
]
E
[
w2

l,i
]
−N2

i+2σ
4
Ni+1

= Ni+2(3σ
4
Ni+1

)+(N2
i+2−Ni+2)σ

4
Ni+1
−N2

i+2σ
4
Ni+1

= 4Ni+2σ
4
Ni+1

. (A.8)

Hence

E
[
WT

i+1Wi+1
]
=
(
Ni+2σ

2
i+1
)

I, (A.9)

Var
[
WT

i+1Wi+1
]
= (Ni+2)σ

4
i+1B. (A.10)

For the case for Wi, notice we can express WiWT
i as (WT

i )
T (WT

i ). Hence we can

use the proof above, with W′
i+1 = WT

i . In this case the matrix W′
i+1 has shape

(Ni,Ni+1), and each element of the matrix has variance σ2
i . We have

E
[
WiWT

i
]
= Niσ

2
i I and Var

[
WiWT

i
]
= Niσ

4
i B. (A.11)

By assumption, Wi,Wi+1 are independent. Hence Cov(Wi,Wi+1) = 0. We can use

this property together with linearity of expectation:

E
[
WT

i+1Wi+1−WT
i Wi

]
=
(
Ni+2σ

2
i+1−Niσ

2
i
)

I. (A.12)
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Var
[
WT

i+1Wi+1−WT
i Wi

]
=
(
Ni+2σ

4
i+1 +Niσ

4
i
)
B. (A.13)

This completes the proof.

In neural network training, proper weight initialisation is crucial for ensuring stable

gradients during backpropagation, which helps to avoid issues such as vanishing and

exploding gradients. The goal of weight scaling is to maintain appropriate variance

across layers, enabling efficient and effective learning ([105]). The weights are

typically initialised to be random and centered around 0 to break symmetry and

ensure that different neurons learn different features.

Some of the most commonly used initialisation methods are detailed below:

• LeCun Initialisation [164]: Weights are initialised using a normal distribution

with a mean of 0 and a variance of 1
Ni

, where Ni is the number of input units in

the layer. Mathematically, the weights w are drawn from N (0, 1
Ni
).

• Glorot Initialisation [105]: Weights are initialised using a normal distribution

with a mean of 0 and a variance of 2
Ni+Ni+1

, where Ni is the number of input

units and Ni+1 is the number of output units. This method balances the variance

between layers with different widths. Mathematically, the weights w are drawn

from N (0, 2
Ni+Ni+1

).

• He Initialisation [118]: Weights are initialised using a normal distribution

with a mean of 0 and a variance of 2
Ni

, where Ni is the number of input units in

the layer. This method is particularly suited for layers with ReLU activation

functions. Mathematically, the weights w are drawn from N (0, 2
Ni
).

• Scaled Initialisation [223]: Weights are initialised using a normal distribution

with a mean of 0 and a variance of αi
Ni

, where Ni is the number of input units

in the layer and αi is a parameter specific to each layer. Mathematically, the

weights w are drawn from N (0, αi
Ni
).

These initialisation methods help ensure that the network starts with weights that

facilitate stable and efficient learning, avoiding the common pitfalls of poorly
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initialised neural networks. Using (Theorem A.1.1), we can calculate the respective

expectations and variances of the balanced computation under the different initialisa-

tions.

Initialisation Var(wi+1
N,m) Var(wi

N,m) E[WT
i+1Wi+1−WiWT

i ] Var[WT
i+1Wi+1−WiWT

i ]

LeCun 1
Ni+1

1
Ni

(
Ni+2
Ni+1
−1
)

I
(

Ni+2
N2

i+1
+ 1

Ni

)
B

Glorot 2
Ni+1+Ni+2

2
Ni+1+Ni

2
(

Ni+2
Ni+1+Ni+2

− Ni
Ni+1+Ni

)
I (Ni+2

(
2

Ni+1+Ni+2

)2
+Ni

(
2

Ni+Ni+1

)2
)B

He 2
Ni+1

2
Ni

2
(

Ni+2
Ni+1
−1
)

I 4
(

Ni+2
N2

i+1
+ 1

Ni

)
B

Scaled α2
i+1

Ni+1

α2
i

Ni

(
Ni+2
Ni+1

α2
i+1−α2

i

)
I (Ni+2

(
α2

i+1
Ni+1

)2

+Ni

(
α2

i
Ni

)2
)B

Table A.1: Comparison of variance and expectation of balanced computation for different
weight initialisations

Table A.1 shows that for the above initialisations the balanced computation of the

weight pair will result in λ -Balanced weights for some λ . Fig. A.1 also details how

network structure will influence the value of λ for different initialisation techniques.

These findings provide motivation to better understand the relation between the

balanced computation of a network, its structure and the regime it will learn in. If we

are able to understand the relation between λ -Balanced weights and rich and lazy

learning in linear Networks, one might be able to approximate these results to the

nonlinear case. A possible future application might be the ability to heavily influence

a network’s learning regime by altering the relative width of its layers, its activation

functions or weight initialisation techniques used for each layer.

A.1.2 Fukumizu approach

Lemma A.1.2. We introduce the variables

Q =

WT
1

W2

 and QQT =

WT
1 W1 WT

1 WT
2

W2W1 W2WT
2

 . (A.14)
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Figure A.1: Impact of Network Structure on sign of balanced coefficient for different ini-
tialisations. Lecun, He and Scaled initialisations depend solely on the ratio of
the sizes of the output and hidden layers. Scaled initialisation’s dependence is
affected by the parameters αi+1,αi. Glorot initialisation’s sign depends on both
ratios.

Defining

F =

−λ

2 I (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2 I

 , (A.15)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati

equation

τ
d
dt
(QQT ) = FQQT +QQT F− (QQT )2. (A.16)

Proof. We introduce the variables

Q =

WT
1

W2

 and QQT =

WT
1 W1 WT

1 WT
2

W2W1 W2WT
2

 . (A.17)

We compute the time derivative

τ
d
dt
(QQT ) = τ

dWT
1

dt W1 +WT
1

dW1
dt

dWT
1

dt W2 +WT
1

dW2
dt

dW2
dt W1 +W2

dW1
dt

dWT
2

dt W2 +WT
2

dW2
dt

 . (A.18)

Using equations 18 and 19, we compute the four quadrants separately giving

τ

(
dWT

1
dt

W1 +WT
1

dW1

dt

)
=
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= (Σyx−W2W1)
T W2W1 +WT

1 WT
2 (Σ

yx−W2W1)

= (Σyx)T W2W1 +WT
1 WT

2 Σ
yx−WT

1 WT
2 W2W1− (W2W1)

T W2W1

= (Σyx)T W2W1 +WT
1 WT

2 Σ
yx−WT

1 WT
2 W2W1−WT

1 W1WT
1 W1−λWT

1 W1,

(A.19)

τ

(
dWT

1
dt

WT
2 +WT

1
dWT

2
dt

)
=

= (Σyx−W2W1)
T W2WT

2 +WT
1 W1(Σ

yx−W2W1)
T

= (Σyx)T W2WT
2 +WT

1 W1(Σ
yx)T −WT

1 W1WT
1 WT

2 −WT
1 WT

2 W2WT
2 , (A.20)

τ

(
dW2

dt
W1 +W2

dW1

dt

)
=

= (Σyx−W2W1)WT
1 W1 +W2WT

2 (Σ
yx−W2W1)

= Σ
yxWT

1 W1 +W2WT
2 Σ

yx−W2WT
2 W2W1−W2W1WT

1 W1, (A.21)

τ

(
dW2

dt
WT

2 +W2
dWT

2
dt

)
=

(Σ̃ΣΣ
yx−W2W1)WT

1 WT
2 +W2W1(Σ̃ΣΣ

yx−W2W1)
T

= Σ̃ΣΣ
yxWT

1 WT
2 +W2W1(Σ̃ΣΣ

yx
)T −W2W1WT

1 WT
2 −W2W1(W2W1)

T

= Σ̃ΣΣ
yxWT

1 WT
2 +W2W1(Σ̃ΣΣ

yx
)T −W2W1WT

1 WT
2 −W2W1WT

1 WT
2

= Σ̃ΣΣ
yxWT

1 WT
2 +W2W1(Σ̃ΣΣ

yx
)T −W2W1WT

1 WT
2 −W2WT

2 W2WT
2 +λW2WT

2 .

(A.22)

Defining

F =

−λ

2 I (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2 I

 , (A.23)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati
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equation

τ
d
dt
(QQT ) = FQQT +QQT F− (QQT )2. (A.24)

We write τ
d
dt (QQT ) for completeness

τ
d
dt
(QQT ) =−λ

2 (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2

WT
1 W1 WT

1 W2

W2W1 W2WT
2

+
WT

1 W1 WT
1 W2

W2W1 W2WT
2

T −λ

2 (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2


−

WT
1 W1 WT

1 W2

W2W1 W2WT
2

2

=

−λ

2 (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2

WT
1 W1 WT

1 W2

W2W1 W2WT
2

+
WT

1 W1 WT
1 W2

W2W1 W2WT
2

T −λ

2 (Σ̃ΣΣ
yx
)T

Σ̃ΣΣ
yx λ

2


−

WT
1 W1 WT

1 W2

W2W1 W2WT
2

WT
1 W1 WT

1 W2

W2W1 W2WT
2


=

−λ

2 WT
1 W1 +(Σ̃ΣΣ

yx
)T W2W1 −λ

2 WT
1 W2 +(Σ̃ΣΣ

yx
)T W2WT

2

Σ̃ΣΣ
yxWT

1 W1 +
λ

2 W2W1 Σ̃ΣΣ
yxWT

1 WT
2 + λ

2 W2WT
2


+

−λ

2 WT
1 W1 +WT

1 W1(Σ̃ΣΣ
yx
)T λ

2 WT
1 W2 +WT

1 W2(Σ̃ΣΣ
yx
)T

−λ

2 WT
2 W1 +W2W1(Σ̃ΣΣ

yx
)T λ

2 W2WT
2 +W2WT

2 (Σ̃ΣΣ
yx
)T


−

WT
1 W1 WT

1 W2

W2W1 W2WT
2

WT
1 W1 WT

1 W2

W2W1 W2WT
2


=

−λ

2 WT
1 W1 +(Σ̃ΣΣ

yx
)T W2W1 −λ

2 WT
1 W2 +(Σ̃ΣΣ

yx
)T W2WT

2

Σ̃ΣΣ
yxWT

1 W1 +
λ

2 W2W1 Σ̃ΣΣ
yxWT

1 WT
2 + λ

2 W2WT
2


+

−λ

2 WT
1 W1 +WT

1 W1(Σ̃ΣΣ
yx
)T λ

2 WT
1 W2 +WT

1 W2(Σ̃ΣΣ
yx
)T

−λ

2 WT
2 W1 +W2W1(Σ̃ΣΣ

yx
)T λ

2 W2WT
2 +W2WT

2 (Σ̃ΣΣ
yx
)T


−

WT
1 W1WT

1 W1 +WT
1 W2WT

2 W1 WT
1 W1WT

1 W2 +WT
1 W2WT

2 W2

W2W1WT
1 W1 +W2WT

2 W2W1 W2W1WT
1 W2 +W2WT

2 W2WT
2



.

The four quadrants of Eq. A.18 are equivalent to equations A.19, A.20, A.21, and

A.22 respectively.
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A.1.3 Representational similarity analysis and finite-width

neural tangent kernel

The task-relevant representational similarity matrix [151] of the hidden layer, calcu-

lated from the inputs W1X is

RSMI(t) = (W1(t)X)T W1(t)X

= XT (WT
1 W1)(t)X. (A.25)

Similarly, the representational similarity matrix of the hidden layer, calculated from

the outputs W+
2 Y, where + denotes the pseudoinverse, is

RSMO(t) = (W+
2 (t)Y)T W+

2 (t)Y

= YT (W2WT
2 (t))

+Y. (A.26)

In the following, we derive the finite-width neural tangent kernel [130] for a

two-layer linear network. Starting with the network function at time t

Ft(X) = W2W1X, (A.27)

the discrete time gradient descent dynamics of the next time step yields

Ft+1(X) =

(
W2−η

∂L
∂W2

)(
W1−η

∂L
∂W1

)
X

= W2W1X−η

(
W2

∂L
∂W1

+
∂L

∂W2
W1−η

∂L
∂W2

∂L
∂W1

)
X. (A.28)

The network function’s gradient flow can then be derived as

Ft+1(X)−Ft(X)

η
=−

(
W2

∂L
∂W1

+
∂L

∂W2
W1−η

∂L
∂W2

∂L
∂W1

)
X (A.29)

−−−→
η→0

d
dt

F(X) =−
(

W2
∂L

∂W1
+

∂L
∂W2

W1

)
X. (A.30)
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Substituting the partial derivatives

∂L
∂W1

=
1
2

∂

∂W1
||W2W1X−Y||2F

= WT
2 (W2W1X−Y)XT (A.31)

and

∂L
∂W2

=
1
2

∂

∂W2
||W2W1X−Y||2F

= (W2W1X−Y)XT WT
1 (A.32)

then yields

d
dt

F(X) =−W2WT
2 (W2W1X−Y)XT X− (W2W1X−Y)XT WT

1 W1X. (A.33)

Finally, we introduce the identity matrix INo of size No and apply row-wise vecto-

riasation vecr(F(X)) := f (X) and the identity vecr(ABC) = (A⊗CT )vecr(B) to

derive the neural tangent kernel

d
dt

F(X) =−W2WT
2 (W2W1X−Y)XT X− INo(W2W1X−Y)XT WT

1 W1X

(A.34)

⇔ d
dt

f (X) =−

W2WT
2 ⊗XT X+ I⊗XT WT

1 W1X︸ ︷︷ ︸
NTK

vecr(W2W1X−Y)

=−
([

W2⊗XT ,I⊗XT WT
1
][

W2⊗XT ,I⊗XT WT
1
]T)

vecr

(
∂L
∂F

)
=−

(
[∇W1 f ,∇W2 f ] [∇W1 f ,∇W2 f ]T

)
∂L
∂ f

=−
(
∇θ f ∇θ f T) ∂L

∂ f
, (A.35)

where [A,B] denotes concatenation.
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A.2 Exact learning dynamics with prior knowledge

A.2.1 Balanced condition

Definition A.2.1 (Definition of λ -balanced property ([243], [185])). The weights

W1,W2 are λ -balanced if and only if there exists a Balanced Coefficient λ ∈ R

such that

(W1,W2) = WT
2 W2−W1WT

1 = λ I (A.36)

where B is called the Balanced Computation.

For λ = 0 we have Zero-Balanced given as

A4 (Zero-Balanced). W1(0)W1(0)T = W2(0)T W2(0).

Theorem A.2.2. Balanced Condition Persists Through Training Suppose at initial-

isation

W2(0)T W2(0)−W1(0)W1(0)T = λ I. (A.37)

Then for all t ≥ 0

W2(t)T W2(t)−W1(t)W1(t)T = λ I. (A.38)

Proof. Consider:

τ
d
dt

[
W2(t)T W2(t)−W1(t)W1(t)T ]=(

τ
d
dt

W2(t)
)T

W2(t)+W2(t)T
(

τ
d
dt

W2(t)
)

−
(

τ
d
dt

W1(t)
)

W1(t)T −W1(t)
(

τ
d
dt

W1(t)
)T

= W1(t)
(

Σ̃ΣΣ
yx−W2(t)W1(t)Σ̃ΣΣ

xx
)T

W2(t)

+W2(t)T
(

Σ̃ΣΣ
yx−W2(t)W1(t)Σ̃ΣΣ

xx
)

W1(t)

−W2(t)T
(

Σ̃ΣΣ
yx−W2(t)W1(t)Σ̃ΣΣ

xx
)

W1(t)

−W1(t)
(

Σ̃ΣΣ
yx−W2(t)W1(t)Σ̃ΣΣ

xx
)

W2(t)

= 000. (A.39)

Note that W2(t)T W2(t)−W1(t)W1(t)T is conserved for any initial value λ .
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A.2.2 Discussion assumptions

Whittened Inputs. Although the whitened input assumption is quite strong, it is

commonly used in analytical work to obtain exact solutions, and much of the existing

literature relies on these solutions [93, 39, 158]. While relaxing this assumption

prevents the exact description of network dynamics, Kunin et al. [158] examine the

implicit bias of the training trajectory without relying on whitened inputs. If the

interpolating manifold is one-dimensional, the solution can be solved exactly in terms

of λ . Their findings demonstrate a similar quantitative dependence on λ , governing

the implicit bias transition between rich and lazy regimes. Furthermore, recent

advancements, such as the ”decorrelated backpropagation” technique introduced by

Dalm et al. [59] which whitens inputs during training, showing that optimising for

whitened inputs can actually be done in practice and improve efficiency in real-world

applications. Importantly, This study highlights that in certain real-world scenarios,

whitening can provide a more optimal learning condition. This approaches empha-

sise the potential advantages of input whitening for downstream tasks, reinforcing

the validity of our assumption.

Dimension. Previous works imposed specific dimensionality constraints. For ex-

ample: Fukumizu [93] assumed equal input and output dimensions (Ni = No) while

allowing a bottleneck in the hidden dimension (Nh ≤ Ni = No). In out first paper

[39], we extended these solutions to cases with unequal input and output dimensions

(Ni ̸= No) but restricted bottleneck networks (Nh = min(Ni,No)) and introduced an

additional invertibility condition on the B. In the follow up work we allow for

unequal input and output Ni ̸= No and do not introduce an additional invertibility

assumption. This flexibility expands the applicability of our framework to a wider

range of architectures. The dimensional constraints can be further relaxed by in-

creasing the hidden layer width Nh, as outlined in Theorem 3.4.5; however, this

approach yields limited benefits. Increasing Nh does not substantially enhance the

network’s expressivity, as the effective rank remains bounded. Another constraint

of our approach is that it does not extend to deep network architectures. Previous
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research has explored how depth influences learning dynamics [243], however, as-

suming that the network aligns with the singular structure of the task. Although in

our analysis, we restrict our focus to two-layer networks, we can achieve a precise

understanding of the learning dynamics without the need for alignment. Recent

studies, including those by Kunin et al. [158], have investigated the implicit biases

present in deep networks. However, these findings have certain limitations, as they

lack exact analytical solutions for the dynamics of deep networks. The assumptions

about dimensionality are often tied to the analytical techniques employed.

Full rank In our first work, [39], we imposed a full-rank initialisation condition,

defined as rank(W2(0)W1(0)) = Ni = No. However, this assumption is not necessary

in our framework when lambda is non-zero.

Balancedness Assumption A significant departure from prior works is the relaxation

of the balancedness assumption: Earlier studies, such as Fukumizu [93] and our

first work [39] assumed strict zero-balancedness (W1(0)W1(0)T = W2(0)T W2(0)),

which constrained the networks to the rich regime. Our approach generalises this

to λ -balancedness, enabling exploration of the continuum between the rich and

lazy regimes. While some efforts, such as Tarmoun et al. [272], have explored

removing the zero-balanced constraint, their solutions were limited to unstable or

mixed forms. In contrast, our methodology systematically studies different learning

regimes by varying initialisation properties, particularly through the relative scale

parameter in a stable and non-mixed form. This allows controlled transitions between

regimes, advancing understanding of neural network behavior across the spectrum.

Other studies, such as Kunin et al. [158] and Xu and Zheng [296] have also relaxed

the balancedness assumption, though their analysis was restricted to single-output

neuron settings. We emphasise the importance of this balanced quantity by rigorously

proving that, in the averaging limit, standard network initialisations (e.g., LeCun

initialisation [164], He initialisation) lead to λ -balanced behavior in the infinite-

width limit. Specifically, the term W1(0)W1(0)T = W2(0)T W2(0) converges to a

scaled identity matrix. Furthermore, previous studies have demonstrated that the
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relative scaling of λ significantly impacts the learning regime in practical scenarios,

highlighting the crucial role of dynamical studies of networks as a function of

this parameter [158]. Several prior studies also rely on the assumption of small

random initial weights [243]. This assumption posits that when the weight scale

is small, alignment occurs rapidly, enabling a simplified analysis focused on the

dynamics of the singular values. Under these conditions, the balanced condition

remains nearly zero throughout training. However, many initialization schemes fall

outside both the balanced regime and the small-weight assumption—scenarios that

most existing theoretical frameworks struggle to address. These assumptions are

thus primarily made for analytical tractability. Exploring dynamics beyond these

constrained settings is a valuable direction for future research.

A.2.3 QQT diagonalisation

Lemma A.2.3. If F = PΛΛΛPT is symmetric and diagonalisable, then the matrix Ric-

cati differential equation d
dt (QQT ) = FQQT +QQT F− (QQT )2 with initialisation

QQT (0) = Q(0)Q(0)T has a unique solution for all t ≥ 0, and the solution is given

by

QQT (t) = eF t
τ Q(0)

[
I+Q(0)T P

(
e2ΛΛΛ

t
τ − I

222ΛΛΛ

)
PT Q(0)

]−1

Q(0)T eF t
τ . (A.40)

This is true even when there exists ΛΛΛi = 0.

Proof. First we show that there exists a unique solution to the initial value problem

stated. This is true by Picard-Lindelöf theorem. Now we show that the provided

solution satisfies the ODE. Let L = eF t
τ Q(0) and C = I+Q(0)T P

(
e2ΛΛΛ

t
τ −I

2ΛΛΛ

)
PT Q(0)

such that solution QQT (t) = LC−1LT . The time derivative of QQT is then given by

d
dt
(QQT ) =

d
dt
(L)C−1LT +L

d
dt
(C−1)LT +LC−1 d

dt
(LT ). (A.41)

Solving for these derivatives individually, we find

d
dt
(L) =

d
dt

eF t
τ Q(0) = FeF t

τ Q(0) = FL, (A.42)
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d
dt
(C−1) =−C−1 d

dt
(C)C−1 =−C−1Q(0)T P

d
dt

(
e2ΛΛΛ

t
τ − I

2ΛΛΛ

)
PT Q(0)C−1.

(A.43)

We consider the derivative of the fraction serpately,

d
dt

(
e2ΛΛΛ

t
τ − I

2ΛΛΛ

)
= e2ΛΛΛ

t
τ , (A.44)

this is true even in the limit as λi→ 0. Plugging these derivatives back in we see that

the solution satisfies the ODE. Lastly, let t = 0, we see that the the solution satisfies

the initial conditions.

A.2.4 F diagonalisation

Lemma A.2.4. The eigendecomposition of F = PΛΛΛPT where

P =
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)
√

2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√

2Ũ⊥

 , ΛΛΛ =


S̃λ 0 0

0 −S̃λ 0

0 0 λλλ⊥


(A.45)

and the matrices S̃λ , λλλ⊥, H̃, and G̃ are the diagonal matrices defined as:

S̃λ =

√
S̃2 +

λ 2

4
I, λλλ⊥ = sgn(No−Ni)

λ

2
I, H̃ = sgn(λ )

√
S̃λ − S̃
S̃λ + S̃

, G̃ =
1√

I+ H̃2
.

(A.46)

Beyond the invertibility of F , we need to understand the relationship between

F and Q(0). To do this the following lemma relates the structure between the SVD

of the model with the SVD structure of the individual parameters.

Proof. We leave for the reader by computing

F = PΛΛΛPT . (A.47)
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A.2.5 Solution unequal-input-output

Theorem A.2.5. Under the assumptions of whitened inputs (Assumption 1), lambda-

balanced weights (Assumption 2), no bottleneck (Assumption 3), the temporal dy-

namics of QQT are

QQT (t) =

Z1A−1ZT
1 Z1A−1ZT

2

Z2A−1ZT
1 Z2A−1ZT

2

 , (A.48)

where the variables Z1 ∈ RNi×Nh , Z2 ∈ RNo×Nh , and A ∈ RNh×Nh are defined as

Z1(t) =
1
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ BT − 1

2
Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T , (A.49)

Z2(t) =
1
2

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT +

1
2

Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0), (A.50)

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT
⊥W2(0)

+W1(0)Ṽ⊥

(
eλλλ⊥

t
τ − I

λλλ⊥

)
ṼT
⊥W1(0)T . (A.51)

Proof. We start and use the diagonalisation of F to rewrite the matrix exponential of

F and F. Note that PT P = PPT = I and therefore PT = P−1.

eF t
τ = PeΓΓΓP⊺

=
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)
√

2V⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√

2U⊥




eS̃λ
t
τ 0 0

0 e−S̃λ
t
τ 0

0 0 eλλλ⊥
t
τ


× 1√

2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)
√

2V⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√

2U⊥

T

=
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃− H̃G̃) −Ũ(G̃+ H̃G̃)

eS̃λ
t
τ 0

0 e−S̃λ
t
τ


× 1√

2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

T

(A.52)
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+2
1√
2

Ṽ⊥

Ũ⊥

eλλλ⊥
t
τ

1√
2

Ṽ⊥

Ũ⊥

T

= OeΛΛΛ
t
τ O+2Meλλλ⊥

t
τ MT . (A.53)

F = OΛOT +2Mλλλ⊥MT . (A.54)

eF t
τ F−1eF t

τ −F−1 = (A.55)

OeΛΛΛ
t
τ OT OΛΛΛ

−1OT OeΛΛΛ
t
τ OT −OΛΛΛ

−1OT +M(eλλλ⊥
t
τ − I)(λλλ⊥)−1MT .

Where M = 1√
2

Ṽ⊥

Ũ⊥

T

. Placing these expressions into Eq. A.40 gives

QQT (t) =
[
OeΛΛΛ

t
τ OT +2Meλλλ⊥

t
τ MT

]
Q(0)[

I+
1
2

Q(0)T
(

O
(

e2ΛΛΛ
t
τ − I

)
ΛΛΛ
−1OT +M(eλλλ⊥

t
τ − I)λλλ−1

⊥ MT
)

Q(0)
]−1

Q(0)T
[
OeΛΛΛ

t
τ OT +2Meλλλ⊥

t
τ MT

]T
. (A.56)

OOOT QQQ(0) =
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

T WT
1 (0)

W2(0)



=
1√
2

(G̃− H̃G̃)ṼT WT
1 (0)+(G̃+ H̃G̃)ŨT W2(0)

(G̃+ H̃G̃)ṼT WT
1 (0)− (G̃− H̃G̃)ŨT W2(0)



=
1√
2

 BT

−CT

 , (A.57)
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where

B = W2(0)T Ũ(G̃+ H̃G̃)+W1(0)Ṽ(G̃− H̃G̃) ∈ RNh×Nh, (A.58)

C = W2(0)T Ũ(G̃− H̃G̃)−W1(0)Ṽ(G̃+ H̃G̃) ∈ RNh×Nh. (A.59)

OOOeΛΛΛt/τ =
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

eS̃λ
t
τ 0

0 e−S̃λ
t
τ



=
1√
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

 . (A.60)

OOOeΛΛΛt/τOOOT QQQ(0) =
1
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

 BT

−CT


=

1
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ BT − Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

 . (A.61)

2Meλλλ⊥
t
τ MT Q(0) = 2

1√
2

Ṽ⊥

Ũ⊥

eλλλ⊥
t
τ 0

0 eλλλ⊥
t
τ

 1√
2

Ṽ⊥

Ũ⊥

T W1(0)T

W2(0)


=

Ṽ⊥eλλλ⊥
t
τ ṼT
⊥ 0

0 Ũ⊥eλλλ⊥
t
τ ŨT
⊥

W1(0)T

W2(0)



=

Ṽ⊥eλλλ⊥
t
τ ṼT
⊥W1(0)T

Ũ⊥eλλλ⊥
t
τ ŨT
⊥W2(0)

 . (A.62)

Putting it together we get the expressions for Z1(t) and Z2(t)

[
OeΛΛΛ

t
τ OT +2Meλλλ⊥

t
τ MT

]
Q(0) = (A.63)

=
1
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ BT − Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

+

Ṽ⊥eλλλ⊥
t
τ ṼT
⊥W1(0)T

Ũ⊥eλλλ⊥
t
τ ŨT
⊥W2(0)

 .
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Z1(t) =
1
2

Ṽ(G̃− H̃G̃)eS̃λ
t
τ BT − 1

2
Ṽ(G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T .

(A.64)

Z2(t) =
1
2

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT +

1
2

Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0).

(A.65)

We now compute the terms inside the inverse

Q(0)T M(eλ⊥
t
τ )λ−1
⊥ MT Q(0) =

[
W1(0) W2(0)T

] 1√
2

Ṽ⊥

Ũ⊥

eλ⊥
t
τ 0

0 eλ⊥
t
τ

λ⊥ 0

0 λ⊥

−1
1√
2

Ṽ⊥

Ũ⊥

T W1(0)T

W2(0)


[
W1(0) W2(0)T

]eλ⊥
t
τ λ
−1
⊥ Ṽ⊥ṼT

⊥W1(0)T

eλ⊥
t
τ λ
−1
⊥ Ũ⊥ŨT

⊥W2(0)

 (A.66)

=
[(

W1(0)Ṽ⊥eλ⊥
t
τ λ
−1
⊥ ṼT

⊥W1(0)T +W2(0)T Ũ⊥eλ⊥
t
τ λ
−1
⊥ ŨT

⊥W2(0)
)]

.

Q(0)T Mλ
−1
⊥ MT Q(0) =

2
[
W1(0) W2(0)T

] 1√
2

Ṽ⊥

Ũ⊥

λ⊥ 0

0 λ⊥

−1
1√
2

Ṽ⊥

Ũ⊥

T W1(0)T

W2(0)


=
[
W1(0) W2(0)T

]Ṽ⊥

Ũ⊥

λ
−1
⊥ Ṽ⊥ṼT

⊥W1(0)T

λ
−1
⊥ Ũ⊥ŨT

⊥W2(0)



=
[
W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)T +W2(0)T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)
]
. (A.67)

Now

1
2

Q(0)T O
(

e2ΛΛΛ
t
τ − I

)
ΛΛΛ
−1OT =

1
4
[B−C]

(
eΛΛΛ

t
τ − I

)
ΛΛΛ
−1

 BT

−CT


(A.68)
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=
1
4

(
B
(

e2S̃λ
t
τ − I

)
(S̃λ )

−1BT −C
(

e−2S̃λ
t
τ − I

)
(S̃λ )

−1CT
)
. (A.69)

Putting it all together

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT

+W2(0)T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT
⊥W2(0)+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT
⊥W1(0)T .

(A.70)

So, final form:

QQT (t) = (A.71)1
2Ṽ(G̃− H̃G̃)eS̃λ

t
τ BT − 1

2Ṽ(G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0)


[

I+
1
4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT
⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT
⊥W1(0)T

]−1

1
2Ṽ(G̃− H̃G̃)eS̃λ

t
τ BT − 1

2Ṽ(G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0)

T

.

A.2.6 Stable solution unequal-input-output

Theorem A.2.6. Given the assumptions of Theorem 3.3.3 further assuming that B

is invertible and defining eλ⊥
t
τ = sgn(No−Ni)

λ

2 , the temporal evolution of QQT is

described as follows:
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QQT (t) = Z
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CT B−T e−S̃λ

t
τ (A.72)

− e−S̃λ
t
τ B−1W2(0)T Ũ⊥λ

−1
⊥ ŨT

⊥W2(0)B−T e−S̃λ
t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)T Ũ⊥λ

−1
⊥ ŨT

⊥W2(0)B−T e−S̃λ
t
τ

+ e−S̃λ
t
τ e

λ

2
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)T B−T e−S̃λ
t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)T B−T e−S̃λ
t
τ

]−1
ZT ,

where

Z =

 1
2 Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
+ Ṽ⊥ṼT

⊥W1(0)B−T eλ⊥
t
τ e−S̃λ

t
τ

1
2 Ũ
[
(G̃+ H̃G̃)+(G̃− H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
+ Ũ⊥ŨT

⊥W2(0)T B−T eλ⊥
t
τ e−S̃λ

t
τ .


(A.73)

Proof. We start from

QQT (t) = 1
2 Ṽ(G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ(G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T

1
2 Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2 Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0)


[

I+
1
4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT
⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT
⊥W1(0)T

]−1

 1
2 Ṽ(G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ(G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T

1
2 Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2 Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0)

T

.

We extract B−T e−S̃λ
t
τ from all terms as exemplified bellow
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OeΛΛΛt/τOT Q(0) =
1
2

Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
Ũ
[
(G̃+ H̃G̃)+(G̃− H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
BT eS̃λ

t
τ ,

(A.74)

and rewrite the dynamics as

QQT (t) = (A.75) 1
2 Ṽ(G̃− H̃G̃)− 1

2 Ṽ(G̃+ H̃G̃)e−S̃λ
t
τ CT B−T e−S̃λ

t
τ + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T B−T e−S̃λ

t
τ

1
2 Ũ(G̃+ H̃G̃)+ 1

2 Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT B−T e−S̃λ

t
τ + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0)B−T e−S̃λ

t
τ


[

e−S̃λ
t
τ B−1B−T e−S̃λ

t
τ +

1
4

((
I− e−2S̃λ

t
τ

S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT B−T e−S̃λ

t
τ

)

+ e−S̃λ
t
τ B−1W2(0)T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT
⊥W2(0)B−T e−S̃λ

t
τ

+e−S̃λ
t
τ B−1W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT
⊥W1(0)T B−T e−S̃λ

t
τ

]−1

 1
2 Ṽ(G̃− H̃G̃)− 1

2 Ṽ(G̃+ H̃G̃)e−S̃λ
t
τ CT B−T e−S̃λ

t
τ + Ṽ⊥eλ⊥

t
τ ṼT
⊥W1(0)T B−T e−S̃λ

t
τ

1
2 Ũ(G̃+ H̃G̃)+ 1

2 Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT B−T e−S̃λ

t
τ + Ũ⊥eλ⊥

t
τ ŨT
⊥W2(0)B−T e−S̃λ

t
τ

T

=

 1
2 Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
+ Ṽ⊥ṼT

⊥W1(0)B−T eλ⊥
t
τ e−S̃λ

t
τ

1
2 Ũ
[
(G̃+ H̃G̃)+(G̃− H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
+ Ũ⊥ŨT

⊥W2(0)T B−T eλ⊥
t
τ e−S̃λ

t
τ


[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CT B−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)T Ũ⊥λ

−1
⊥ ŨT

⊥W2(0)B−T e−S̃λ
t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)T Ũ⊥λ

−1
⊥ ŨT

⊥W2(0)B−T e−S̃λ
t
τ

+ e−S̃λ
t
τ e

λ

2
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)T B−T e−S̃λ
t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)T B−T e−S̃λ
t
τ

]−1

 Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
+ Ṽ⊥ṼT

⊥W1(0)B−T eλ⊥
t
τ e−S̃λ

t
τ

Ũ
[
(G̃+ H̃G̃)+(G̃− H̃G̃)e−S̃λ

t
τ CT B−T e−S̃λ

t
τ

]
+ Ũ⊥ŨT

⊥W2(0)T B−T eλ⊥
t
τ e−S̃λ

t
τ

T

.
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where eλ⊥
t
τ = sgn(No−Ni)

λ

2 is a scalar

A.2.6.1 Proof exact learning dynamics with prior knowledge

unequal dimension

We start with the following equation

QQT (t) =
[
OeΛΛΛ

t
τ OT +2Meλ⊥

t
τ MT

]
Q(0)︸ ︷︷ ︸

L[
I+

1
2

Q(0)T
(

O
(

e2ΛΛΛ
t
τ − I

)
ΛΛΛ
−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)

Q(0)
]−1

︸ ︷︷ ︸
C−1

Q(0)T
[
OeΛΛΛ

t
τ OT +2Meλ⊥

t
τ MT

]
︸ ︷︷ ︸

R

=LC−1R. (A.76)

Substituting our solution into the matrix Riccati equation then yields

τ
d
dt

QQT = FQQT +QQT F− (QQT )2, (A.77)

⇒ τ
d
dt

LC−1R ?
= FLC−1R+LC−1RF−LC−1RLC−1R. (A.78)

Using the chain rule ∂ (AB) = (∂A)B+A(∂B) and the identities

d
dt
(A−1) = A−1(

d
dt

A)A−1 and
d
dt
(etA) = AetA = etAA. (A.79)

Next, we note that

OT O =

1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

T
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)


= I. (A.80)
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OT M =
1√
2

Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

 1√
2

Ṽ⊥

Ũ⊥


=

1
2

(G̃− H̃G̃)T ṼT Ṽ⊥+(G̃+ H̃G̃)T ŨT Ũ⊥

(G̃+ H̃G̃)T ṼT Ṽ⊥− (G̃− H̃G̃)T ŨT Ũ⊥


= 0. (A.81)

MT O =
1√
2

[
ṼT
⊥ ŨT

⊥

]Ṽ(G̃− H̃G̃) Ṽ(G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)


=

1
2

ṼT
⊥Ṽ(G̃− H̃G̃)+ ŨT

⊥Ũ(G̃+ H̃G̃)

ṼT
⊥Ṽ(G̃+ H̃G̃)− ŨT

⊥Ũ(G̃− H̃G̃)


= 0. (A.82)

We get

τ
d
dt

QQT = τ
d
dt

(
LC−1R

)
= τ

(
d
dt

L
)

C−1R+ τL
(

d
dt

C−1R
)

= τ

(
d
dt

L
)

C−1R+ τLC−1
(

d
dt

R
)
+ τL

(
d
dt

C−1
)

R, (A.83)

with

τ

(
d
dt

L
)

C−1R = τ

(
O

1
τ

ΛΛΛeΛΛΛ
t
τ OT +2M

λ⊥I
2τ

eλ⊥
t
τ MT

)
Q(0)C−1R

=
(

OΛΛΛeΛΛΛ
t
τ OT +Mλ⊥Ieλ⊥

t
τ MT

)
Q(0)C−1R

= (Oλ⊥OT +2Mλ⊥MT )
(

OeΛΛΛ
t
τ OT +2Meλ⊥

t
τ MT

)
Q(0)C−1R

= FLC−1R, (A.84)
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τLC−1
(

d
dt

R
)
= τLC−1Q(0)T

(
O

1
τ

eΛΛΛ
t
τ ΛΛΛOT +2Meλ⊥

t
τ

λ⊥I
2τ

MT
)

= LC−1Q(0)T
(

O
1
τ

eΛΛΛ
t
τ ΛΛΛOT +2Meλ⊥

t
τ

λ⊥I
2τ

MT
)

= LC−1RF, (A.85)

and

τL
(

d
dt

C−1
)

R =

− τLC−1
(

d
dt

C
)

C−1R

=−LC−1
[

τ
1
2

Q(0)T O2
1
τ

e2ΛΛΛ
t
τ ΛΛΛΛΛΛ

−1OT Q(0)

+ τ
1
2

Q(0)T 4
1
τ

Meλ⊥
t
τ λ⊥ (λ⊥)

−1 MT Q(0)
]

C−1R

=−LC−1
[

Q(0)T Oe2ΛΛΛ
t
τ OT Q(0)+2Q(0)T Meλ⊥

t
τ MT Q(0)

]
C−1R

=−LC−1
[

Q(0)T OeΛΛΛ
t
τ OT OeΛΛΛ

t
τ OT Q(0)

+2Q(0)T OeΛΛΛ
t
τ OT M︸ ︷︷ ︸

0

eλ⊥
t
τ MT Q(0)

+2Q(0)T Meλ⊥
t
τ MT O︸ ︷︷ ︸

0

eΛΛΛ
t
τ OT Q(0)

+4Q(0)T Meλ⊥
t
τ MT Meλ⊥

t
τ MT Q(0)

]
C−1R

=−LC−1RLC−1R. (A.86)

Finally, substituting Eq. A.84, Eq. A.85 and Eq.A.86 into the left hand side of

Eq. A.78 proves equality. □

A.2.7 Lambda equal zero case

In this setting, we impose a full-rank initialisation condition, defined as

rank(W2(0)W1(0)) = Ni = No. The solution to the matrix Riccati equation as

provided by Fukumizu [93] requires calculation of the inverse F−1 and the matrix ex-

ponential eF t
τ . To this end, we diagonalise F by completing its basis by incorporating
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zero eigenvalues as illustrated below

F =

 0 ṼS̃ŨT

ŨS̃ṼT 0



=
1√
2

Ṽ Ṽ
√

2Ṽ⊥

Ũ −Ũ
√

2Ũ⊥




S̃ 0 0

0 −S̃ 0

0 0 0

 1√
2

Ṽ Ṽ
√

2Ṽ⊥

Ũ −Ũ
√

2Ũ⊥

T

= PΓΓΓPT . (A.87)

Note that PT P = PPT = I and therefore PT = P−1. We then use the diagonalisation

of F to rewrite the matrix exponential.

eF t
τ = PeΓΓΓPT

=
1√
2

Ṽ Ṽ
√

2V⊥

Ũ −Ũ
√

2U⊥




eS̃ t
τ 0 0

0 e−S̃ t
τ 0

0 0 e0

 1√
2

Ṽ Ṽ
√

2V⊥

Ũ −Ũ
√

2U⊥

T

=
1
2

ṼeS̃ t
τ ṼT + Ṽe−S̃ t

τ ṼT +2Ṽ⊥ṼT
⊥ ṼeS̃ t

τ ŨT − Ṽe−S̃ t
τ ŨT +2Ṽ⊥ŨT

⊥

ŨeS̃ t
τ ṼT − Ũe−S̃ t

τ ṼT +2Ũ⊥ṼT
⊥ ŨeS̃ t

τ ŨT − Ũe−S̃ t
τ ŨT +2Ũ⊥ŨT

⊥


=

1√
2

Ṽ Ṽ

Ũ −Ũ

eS̃ t
τ 0

0 e−S̃ t
τ

 1√
2

Ṽ Ṽ

Ũ −Ũ

T

+2
1√
2

Ṽ⊥

Ũ⊥

 1√
2

Ṽ⊥

Ũ⊥

T

= OeΛΛΛ
t
τ O+2MMT . (A.88)

As the inverse F−1 = PΓΓΓ
−1PT is not well defined for a ΓΓΓ with zero eigenvalues. We

study eigenvalues of value zero by analysing the limiting behaviour of eF t
τ F−1eF t

τ −

F−1 for a single mode

lim
ε→0

[
e

εt
τ

1
ε

e
εt
τ − 1

ε

]
= lim

ε→0

[
e

2εt
τ −1
ε

]
(A.89)

L’Hospital−−−−−→ lim
ε→0

 ∂

∂ε

(
e

2εt
τ −1

)
∂

∂ε
ε

= lim
ε→0

2
t
τ

e
2εt
τ = 2

t
τ

. (A.90)
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which reveals the time dependent contribution of zero eigenvalues. Thus in the case

where lambda tend to zero we have

eF t
τ F−1eF t

τ −F−1 = OeΛΛΛ
t
τ OT OΛΛΛ

−1OT OeΛΛΛ
t
τ OT −OΛΛΛ

−1OT +4
t
τ

MMT . (A.91)

We continue by placing these expressions into Eq. A.40 gives

QQT (t) =[
OeΛΛΛ

t
τ OT +2MMT

]
Q(0)[

I+
1
2

Q(0)T
(

OeΛΛΛ
t
τ OT OΛΛΛ

−1OT OeΛΛΛ
t
τ OT −OΛΛΛ

−1OT +4
t
τ

MMT
)

Q(0)
]−1

Q(0)T
[
OeΛΛΛ

t
τ OT +2MMT

]
=
[
OeΛΛΛ

t
τ OT +2MMT

]
Q(0)[

I+
1
2

Q(0)T
(

OeΛΛΛ
t
τ ΛΛΛ
−1eΛΛΛ

t
τ OT −OΛΛΛ

−1OT +4
t
τ

MMT
)

Q(0)
]−1

Q(0)T
[
OeΛΛΛ

t
τ OT +2MMT

]
=
[
OeΛΛΛ

t
τ OT +2MMT

]
Q(0)[

I+
1
2

Q(0)T
(

O
(

e2ΛΛΛ
t
τ ΛΛΛ
−1−ΛΛΛ

−1
)

OT +4
t
τ

MMT
)

Q(0)
]−1

Q(0)T
[
OeΛΛΛ

t
τ OT +2MMT

]
=
[
OeΛΛΛ

t
τ OT +2MMT

]
Q(0)[

I+
1
2

Q(0)T
(

O
(

e2ΛΛΛ
t
τ − I

)
ΛΛΛ
−1OT +4

t
τ

MMT
)

Q(0)
]−1

(A.92)

Q(0)T
[
OeΛΛΛ

t
τ OT +2MMT

]
.

Then, matrix multiplication on the left side of the equation yields

OeΛΛΛ
t
τ =

1√
2

Ṽ Ṽ

Ũ −Ũ

eS̃ t
τ 0

0 e−S̃ t
τ

=
1√
2

ṼeS̃ t
τ Ṽe−S̃ t

τ

ŨeS̃ t
τ −Ũe−S̃ t

τ

 (A.93)
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and

OT Q(0) =
1√
2

Ṽ Ṽ

Ũ −Ũ

T V
√

SRT

U
√

SRT


=

1√
2

ṼT V
√

SRT + ŨT U
√

SRT

ṼT V
√

SRT − ŨT U
√

SRT


=

1√
2

(ṼT V+ ŨT U
)√

SRT(
ṼT V− ŨT U

)√
SRT

 , (A.94)

such that

OeΛΛΛ
t
τ OT Q(0) =

1
2

ṼeS̃ t
τ Ṽe−S̃ t

τ

ŨeS̃ t
τ −Ũe−S̃ t

τ

ṼT V
√

SRT + ŨT U
√

SRT

ṼT V
√

SRT − ŨT U
√

SRT


=

1
2

Ṽ
(

eS̃ t
τ

(
ṼT V+ ŨT U

)
+ e−S̃ t

τ

(
ṼT V− ŨT U

))√
SRT

Ũ
(

eS̃ t
τ

(
ṼT V+ ŨT U

)
− e−S̃ t

τ

(
ṼT V− ŨT U

))√
SRT

 .

(A.95)

We continue by calculating

4MMT Q(0) = 4
1√
2

Ṽ⊥

Ũ⊥

 1√
2

Ṽ⊥

Ũ⊥

T V
√

SRT

U
√

SRT


= 2

Ṽ⊥ṼT
⊥ Ṽ⊥ŨT

⊥

Ũ⊥ṼT
⊥ Ũ⊥ŨT

⊥

V
√

SRT

U
√

SRT


= 2

Ṽ⊥ṼT
⊥ 0

0 Ũ⊥ŨT
⊥

V
√

SRT

U
√

SRT


= 2

Ṽ⊥ṼT
⊥V
√

SRT

Ũ⊥ŨT
⊥U
√

SRT

 (A.96)
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and

1
2

Q(0)T 4
t
τ

MMT Q(0) =
t
τ

[
R
√

SVT R
√

SUT
]Ṽ⊥ṼT

⊥V
√

SRT

Ũ⊥ŨT
⊥U
√

SRT


=

t
τ

[
R
√

S
(
VT Ṽ⊥ṼT

⊥V+UT Ũ⊥ŨT
⊥U
)√

SRT
]
. (A.97)

Next, we define B0 = UT Ũ+VT Ṽ and C0 = UT Ũ−VT Ṽ and rewrite the inverse as

[
I+

1
2

Q(0)T O
(

e2ΛΛΛ
t
τ − I

)
ΛΛΛ
−1OT Q(0)+2

t
τ

Q(0)T MMT Q(0)
]−1

=

[
I+

1
4

R
√

S
([

B0 −C0

](
e2ΛΛΛ

t
τ − I

)
ΛΛΛ
−1

 BT
0

−CT
0


+4

t
τ

(
VT Ṽ⊥ṼT

⊥V+UT Ũ⊥ŨT
⊥U
))√

SRT
]−1

. (A.98)

Working from the centre out, we have

[
B0 −C0

]
ΛΛΛ
−1

 BT
0

−CT
0

=
[
B0 −C0

]S̃−1 0

0 −S̃−1

 BT
0

−CT
0


=
[
B0 −C0

]S̃−1BT
0

S̃−1CT
0


= B0S̃−1BT

0 −C0S̃−1CT
0 (A.99)

and

[
B0 −C0

]
e2ΛΛΛ

t
τ ΛΛΛ
−1

 BT
0

−CT
0

=
[
B0 −C0

]e2S̃ t
τ S̃−1 0

0 −e−2S̃ t
τ S̃−1

 BT
0

−CT
0


=
[
B0 −C0

] e2S̃ t
τ S̃−1BT

0

e−2S̃ t
τ S̃−1CT

0


= B0e2S̃ t

τ S̃−1BT
0 −C0e−2S̃ t

τ S̃−1CT
0 . (A.100)
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In this setting, we require that B0 is invertible. Finally, using AB−1 = (BA−1)−1

(and A−1B = (B−1A)−1) to move terms into the inverse, we rewrite

QQT (t) =
1
2

(Ṽ
(

eS̃ t
τ BT

0 − e−S̃ t
τ CT

0

)
+2Ṽ⊥ṼT

⊥V
)√

SRT(
Ũ
(

eS̃ t
τ BT

0 + e−S̃ t
τ CT

0

)
+2Ũ⊥ŨT

⊥U
)√

SRT


[

I+R
√

S
(

1
4

B0

(
e2S̃ t

τ − I
)

S̃−1BT
0 −

1
4

C0

(
e−2S̃ t

τ − I
)

S̃−1CT
0

+
t
τ

(
VT Ṽ⊥ṼT

⊥V+UT Ũ⊥ŨT
⊥U
))√

SRT
]−1

1
2

(Ṽ
(

eS̃ t
τ BT

0 − e−S̃ t
τ CT

0

)
+2Ṽ⊥ṼT

⊥V
)√

SRT(
Ũ
(

eS̃ t
τ BT

0 + e−S̃ t
τ CT

0

)
+2Ũ⊥ŨT

⊥U
)√

SRT

T

=
1
2

Ṽ
(

eS̃ t
τ BT

0 − e−S̃ t
τ CT

0

)
+2Ṽ⊥ṼT

⊥V

Ũ
(

eS̃ t
τ BT

0 + e−S̃ t
τ CT

0

)
+2Ũ⊥ŨT

⊥U


[

S−1 +
1
4

B0

(
e2S̃ t

τ − I
)

S̃−1BT
0 −

1
4

C0

(
e−2S̃ t

τ − I
)

S̃−1CT
0

+
t
τ

(
VT Ṽ⊥ṼT

⊥V+UT Ũ⊥ŨT
⊥U
)]−1

1
2

Ṽ
(

eS̃ t
τ BT

0 − e−S̃ t
τ CT

0

)
+2Ṽ⊥ṼT

⊥V

Ũ
(

eS̃ t
τ BT

0 + e−S̃ t
τ CT

0

)
+2Ũ⊥ŨT

⊥U

T

=

Ṽ
(

I− e−S̃ t
τ CT

0 (B
T
0 )
−1e−S̃ t

τ

)
+2Ṽ⊥ṼT

⊥V(BT
0 )
−1e−S̃ t

τ

Ũ
(

I+ e−S̃ t
τ CT

0 (B
T
0 )
−1e−S̃ t

τ

)
+2Ũ⊥ŨT

⊥U(BT
0 )
−1e−S̃ t

τ


[

4e−S̃ t
τ B−1

0 S−1(BT
0 )
−1e−S̃ t

τ +
(

I− e−2S̃ t
τ

)
S̃−1

− e−S̃ t
τ B−1

0 C0

(
e−2S̃ t

τ − I
)

S̃−1CT
0 (B

T
0 )
−1e−S̃ t

τ (A.101)

+4
t
τ

e−S̃ t
τ B−1

0
(
VT Ṽ⊥ṼT

⊥V+UT Ũ⊥ŨT
⊥U
)
(BT

0 )
−1e−S̃ t

τ

]−1

Ṽ
(

I− e−S̃ t
τ CT

0 (B
T
0 )
−1e−S̃ t

τ

)
+2Ṽ⊥ṼT

⊥VB−T e−S̃ t
τ

Ũ
(

I+ e−S̃ t
τ CT

0 (B
T
0 )
−1e−S̃ t

τ

)
+2Ũ⊥ŨT

⊥UB−T e−S̃ t
τ

T

.
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A.3 Rich-Lazy learning

A.3.1 Dynamics of the singular values

Theorem A.3.1. Under the assumptions of Theorem 3.3.3 and with a task-aligned

initialisation given by W1(0) = RS1ṼT and W2(0) = ŨS2RT , where R ∈ RNh×Nh

is an orthonormal matrix, then the network function is given by the expression

W2W1(t) = ŨS(t)ṼT where S(t) ∈ RNh×Nh is a diagonal matrix of singular values

with elements sα(t) that evolve according to the equation,

sα(t) = sα(0)+ γα(t;λ )(s̃α − sα(0)) , (A.102)

where s̃α is the α singular value of S̃ and γα(t;λ ) is a λ -dependent monotonic

transition function for each singular value that increases from γα(0;λ ) = 0 to

limt→∞ γα(t;λ ) = 1 defined as

γα(t;λ ) =
s̃λ ,αsλ ,α sinh

(
2s̃λ ,α

t
τ

)
+
(

s̃αsα + λ 2

4

)
cosh

(
2s̃λ ,α

t
τ

)
−
(

s̃αsα + λ 2

4

)
s̃λ ,αsλ ,α sinh

(
2s̃λ ,α

t
τ

)
+
(

s̃αsα + λ 2

4

)
cosh

(
2s̃λ ,α

t
τ

)
+ s̃α (s̃α − sα)

,

(A.103)

where s̃λ ,α =
√

s̃2
α + λ 2

4 , sλ ,α =
√

sα(0)2 + λ 2

4 , and sα = sα(0). We find that under

different limits of λ , the transition function converges pointwise to the sigmoidal

(λ → 0) and exponential (λ →±∞) transition functions,

γα(t;λ )→


e2s̃α

t
τ −1

e2s̃α
t
τ −1+ s̃α

sα (0)

as λ → 0,

1− e−|λ |
t
τ as λ →±∞

. (A.104)

Proof. According to Theorem 3.3.3, the network function is given by the equation

W2W1(t) = Z2(t)A−1(t)ZT
1 (t), (A.105)

which depends on the variables of the initialisation B and C. Plugging the expressions

for a task-aligned initialisation W1(0) and W2(0) into these variables we get the
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following simplified expressions,

B = R
(
S2(G̃+ H̃G̃)+S1(G̃− H̃G̃)

)︸ ︷︷ ︸
DB

, (A.106)

C = R
(
S2(G̃− H̃G̃)−S1(G̃+ H̃G̃)

)︸ ︷︷ ︸
DC

, (A.107)

where we define the diagonal matrices DB and DC for ease of notation. Using these

expressions, we now get the following time-dependent expressions for Z2(t), A−1(t),

and Z1(t),

Z1(t) =
1
2

Ṽ
(
(G̃− H̃G̃)eS̃λ

t
τ DB− (G̃+ H̃G̃)e−S̃λ

t
τ DC

)
RT . (A.108)

Z2(t) =
1
2

Ũ
(
(G̃+ H̃G̃)eS̃λ

t
τ DB +(G̃− H̃G̃)e−S̃λ

t
τ DC

)
RT . (A.109)

A(t) = R

(
I+

(
e2S̃λ

t
τ − I

4S̃λ

)
D2

B−

(
e−2S̃λ

t
τ − I

4S̃λ

)
D2

C

)
RT . (A.110)

Plugging these expressions into the expression for the network function, notice that

the R terms cancel each other resulting in following equation

W2W1(t) =

Ũ

 Num

4I+
(

e2S̃
λ

t
τ −I

S̃λ

)
D2

B−
(

e−2S̃
λ

t
τ −I

S̃λ

)
D2

C


︸ ︷︷ ︸

S(t)

ṼT , (A.111)

where

Num =
(
(G̃− H̃G̃)eS̃λ

t
τ DB− (G̃+ H̃G̃)e−S̃λ

t
τ DC

)
×(

(G̃+ H̃G̃)eS̃λ
t
τ DB +(G̃− H̃G̃)e−S̃λ

t
τ DC

)
(A.112)

Notice that the middle term is simply a product of diagonal matrices. We can factor
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the numerator of this expressions as,

(G̃2− H̃2G̃2)e2S̃λ
t
τ D2

B +
(
(G̃− H̃G̃)2− (G̃+ H̃G̃)2)DBDC− (G̃2− H̃2G̃2)e−2S̃λ

t
τ D2

C

(A.113)

We can further factor this expression as,

G̃2(I− H̃2)
(

e2S̃λ
t
τ D2

B− e−2S̃λ
t
τ D2

C

)
−4G̃2H̃DBDC. (A.114)

Putting it all together we find that S(t) can be expressed as,

S(t) =
G̃2(I− H̃2)

(
e2S̃λ

t
τ D2

B− e−2S̃λ
t
τ D2

C

)
−4G̃2H̃DBDC

4I+
(

e2S̃
λ

t
τ −I

S̃λ

)
D2

B−
(

e−2S̃
λ

t
τ −I

S̃λ

)
D2

C

. (A.115)

Now using the relationship between H̃ and G̃ we use the following two identities:

G̃2(I− H̃2) =
S̃

S̃λ

, 4G̃2H̃ =
λ

S̃λ

(A.116)

Plugging these identities into the previous expression and multiplying the numerator

and denominator by S̃λ gives,

S(t) =
S̃
(

e2S̃λ
t
τ D2

B− e−2S̃λ
t
τ D2

C

)
−λDBDC

4S̃λ + e2S̃λ
t
τ D2

B− e−2S̃λ
t
τ D2

C +D2
C−D2

B

. (A.117)

Add and subtract S̃
(
4S̃λ +D2

C−D2
B
)

from the numerator such that

S(t) = S̃−
S̃
(
4S̃λ +D2

C−D2
B
)
+λDBDC

4S̃λ + e2S̃λ
t
τ D2

B− e−2S̃λ
t
τ D2

C +D2
C−D2

B

. (A.118)

Using the form of DB and DC notice the following two identities:

DBDC =
λ

S̃λ

(
S̃−S2S1

)
, D2

C−D2
B =− 4

S̃λ

(
S̃S2S1 +

λ 2

4
I
)

(A.119)
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From the second identity we can derive a third identity,

4S̃λ +D2
C−D2

B = 4
S̃

S̃λ

(
S̃−S2S1

)
(A.120)

Plugging the first and third identities into the numerator for the previous expres-

sion gives,

S(t) = S̃−
(4S̃2+λ 2I)

S̃λ

(
S̃−S2S1

)
4S̃λ + e2S̃λ

t
τ D2

B− e−2S̃λ
t
τ D2

C +D2
C−D2

B

. (A.121)

Multiply numerator and denominator by S̃λ

4 and simplify terms gives the expression,

S(t)= S̃−
S̃2

λ

S̃2
λ
+ S̃λ

4

(
e2S̃λ

t
τ D2

B− e−2S̃λ
t
τ D2

C

)
− S̃λ

4

(
D2

B−D2
C

) (S̃−S2S1
)
. (A.122)

Thus we have found the transition function,

γ(t;λ ) =

S̃λ

4

(
e2S̃λ

t
τ D2

B− e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
D2

C−D2
B
)

S̃λ

4

(
e2S̃λ

t
τ D2

B− e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
4S̃λ +D2

C−D2
B
) . (A.123)

We will use our previous identities and the definitions of D2
B and D2

C to simplify this

expression. Notice the following identity,

S̃λ

4

(
e2S̃λ

t
τ D2

B− e−2S̃λ
t
τ D2

C

)
= S̃λ Sλ sinh

(
2S̃λ

t
τ

)
+

(
S̃S(0)+

λ 2

4
I
)

cosh
(

2S̃λ

t
τ

)
(A.124)

Putting it all together we get

γ(t;λ ) =
S̃λ Sλ sinh

(
2S̃λ

t
τ

)
+
(

S̃S(0)+ λ 2

4 I
)

cosh
(
2S̃λ

t
τ

)
−
(

S̃S(0)+ λ 2

4 I
)

S̃λ Sλ sinh
(
2S̃λ

t
τ

)
+
(

S̃S(0)+ λ 2

4 I
)

cosh
(
2S̃λ

t
τ

)
+ S̃

(
S̃−S(0)

)
(A.125)

We will now show why under certain limits of λ this expression simplifies to the

sigmoidal and exponential dynamics discussed in the previous section.

Sigmoidal dynamics. When λ = 0, then S̃λ = S̃ and Sλ = S(0). Notice, that the
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coefficients for the hyperbolic functions all simplify to S̃S(0). Using the hyperbolic

identity sinh(x)+ cosh(x) = ex, we can simplify the expression for the transition

function to

γ(t;λ ) =
S̃S(0)e2S̃ t

τ − S̃S(0)
S̃S(0)e2S̃ t

τ − S̃S(0)+ S̃2
. (A.126)

Dividing the numerator and denominator by S̃S(0) gives the final expression.

Exponential dynamics. In the limit as λ →±∞ the expressions S̃λ →
|λ |
2 and

Sλ →
|λ |
2 . Additionally, in these limits because λ 2

4 I≫ S̃S(0) then
(

S̃S(0)+ λ 2

4 I
)
→

λ 2

4 I. As a result of these simplifications the coefficients for the hyperbolic functions

all simplify to λ 2

4 I. As a result we can again use the hyperbolic identity sinh(x)+

cosh(x) = ex to simplify the expression as

γ(t;λ ) =
λ 2

4 e|λ |
t
τ − λ 2

4 I
λ 2

4 e|λ |
t
τ + S̃

(
S̃−S(0)

) . (A.127)

Dividing the numerator and denominator by λ 2

4 results in all terms without a co-

efficient proportional to λ 2 vanishing, which simplifying further gives the final

expression.

A.3.2 Dynamics of the representation

The lazy and rich regimes are defined by the dynamics of the NTK of the network.

Lazy learning occurs when the NTK is constant, rich learning occurs when it is not

[87].

The NTK intuitively measures the movement of the network representations

through training. As shown in our first work [39], in specific experimental setup, we

can calculate the NTK of the network in terms of the internal representations in a

straightforward way:

NTK = INo⊗XT WT
1 W1(t)X+W2WT

2 (t)⊗XT X. (A.128)

In order to better understand the effect of λ on NTK dynamics, we first derive the

singular values of the λ -balanced weights, and the representations of a λ -balanced
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network.

A.3.2.1 Lambda-balanced singular value

Theorem A.3.2. Under a λ -Balanced initialisation (Assumption 2), if the net-

work function W2W1(t) = U(t)S(t)VT (t) is full rank and we define Sλ (t) =√
S2(t)+ λ 2

4 I. , then we can recover the parameters W2(t) = U(t)S2(t)RT (t),

W1(t) = R(t)S1(t)VT (t) up to time-dependent orthogonal transformation R(t) of

size Nh×Nh, where

S1(t) =
((

Sλ (t)− λ I
2

) 1
2 0max(0,Ni−No)

)
. (A.129)

S2(t) =
((

Sλ (t)+
λ I
2

) 1
2 0max(0,No−Ni)

)
. (A.130)

Proof. We prove the case Ni ≤ No and Nh = min(Ni,No). The proof for No ≤ Ni

follows the same structure. Let USVT = W2(t)W1(t) be the singular value

decomposition of the product of the weights at training step t. We will use

W2 = W2(t),W1 = W1(t) as a shorthand.

We write the initialisation for our setting W2W1 = USVT . We therefore can

write without loss of generality the weight matrices W2 =US2G2 and W1 =G1S1VT .

In this case we requiere that G2 = G−1
1 and S1S2 = S.

We assume the balanced property such that WT
2 W2−W1WT

1 = λ I. We know

this holds for any t since this is a conserved quantity in linear networks. The matrices

W1WT
1 and WT

2 W2 are symmetric, which consequently implies that their singular

vectors are orthogonal. Consequently, in our specific scenario, we require that G1

and G2 are orthogonal matrices and it follows that

G2 = G−1
1 = GT

1 (A.131)

G2 = GT
1 = RT . (A.132)

We can write W2 = US2RT ,W1 = RS1VT , where R is an orthonormal matrix
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and S2,S1 are diagonal (possibly rectangular) matrices.

Hence,

RST
2 S2RT −RS1S1RT = λ I, (A.133)

ST
2 S2−S1S1 = λ I. (A.134)

The matrices S1,S2, have shapes (Nh,Ni), (No,Nh) respectively. We introduce

the diagonal matrices Ŝ1 of shape (Nh,Ni), Ŝ2 of shape (Ni,Nh) such that the zero

matrix has size (No−Ni,Nh) :

S1 =
(

Ŝ1

)
, S2 =

Ŝ2

0

 . (A.135)

Hence,

ST
2 S2−S1S1 = λ I. (A.136)

From the above equation and the fact that Ŝ1Ŝ2 = S we derive that:

Ŝ2 =

(√
λ 2I+4S2 +λ I

2

) 1
2

, Ŝ1 =

(√
λ 2I+4S2−λ I

2

) 1
2

, (A.137)

Hence,

W2 = U


(√

λ 2I+4S2+λ I
2

) 1
2

0max(0,No−Ni)

RT , (A.138)

W1 = R
((√

λ 2I+4S2−λ I
2

) 1
2 0max(0,Ni−No)

)
VT . (A.139)

A.3.2.2 Convergence proof

With our solution, QQT (t), which captures the temporal dynamics of the similarity

between hidden layer activations, we can analyse the network’s internal representa-
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tions in relation to the task. This allows us to determine whether the network adopts

a rich or lazy representation, depending on the value of λ . Consider a λ -Balanced

network training on data ΣΣΣ
yx = ŨS̃ṼT . We assume that the convergence is toward

global minima and B is invertible

Theorem A.3.3. Under the assumptions of Theorem A.2.6, the network function

converges to ŨS̃ṼT and acquires the internal representation, that is WT
1 W1 =

ṼS̃2
1ṼT and W2WT

2 = ŨS̃2
2ŨT

Proof. As training time increases, all terms in Eq. A.72 vanish to zero. Terms in

Eq. A.72 decay as

lim
t→∞

e−
√

S̃2+ λ2I
4

t
τ = 0. (A.140)

and

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+ λ2

4 I t
τ = 0. (A.141)

Therefore, in the temporal limit, Eq. A.72 reduces to

lim
t→∞

QQT (t) = lim
t→∞

WT
1 W1(t) WT

1 WT
2 (t)

W2W1(t) W2W2(t)T


=

Ṽ(G̃− H̃G̃)

Ũ(H̃G̃+ G̃)

[S̃−1
λ

]−1 [
(Ṽ(G̃− H̃G̃))T (Ũ(H̃G̃+ G̃))T

]

=

Ṽ(G̃− H̃G̃)S̃λ (G̃− H̃G̃)T ṼT Ṽ(G̃− H̃G̃)S̃λ (H̃G̃+ G̃)T ŨT

Ũ(H̃G̃+ G̃)S̃λ (G̃− H̃G̃)T ṼT Ũ(H̃G̃+ G̃)S̃λ (H̃G̃+ G̃)T ŨT

 .
(A.142)

We note that

(G̃− H̃G̃)S̃λ (G̃+ H̃G̃) =
Sλ (1− H̃2)

1+ H̃2
= S̃, (A.143)

and

S̃2
1 = S̃λ (G̃− H̃G̃)2 =

S̃λ (1+ H̃2)

1+ H̃2
− S̃λ (2H̃)

1+ H̃2
=

√
4S̃2 +λ 2I−λ I

2
, (A.144)
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S̃2
2 = S̃λ (G̃+ H̃G̃)2 =

S̃λ (1+ H̃2)

1+ H̃2
+

S̃λ (2H̃)

1+ H̃2
=

√
4S̃2 +λ 2I+λ I

2
. (A.145)

Therefore, we can rewrite equation Eq. A.142 as

lim
t→∞

QQT (t) = lim
t→∞

WT
1 W1(t) WT

1 WT
2 (t)

W2W1(t) W2W2(t)T


=

ṼS̃2
1ṼT ṼS̃ŨT

ŨS̃ṼT ŨS̃2
2ŨT

 . (A.146)

A.3.2.3 Representation in the limit

Theorem A.3.4. Under the assumptions of Theorem A.2.6, training on data ΣΣΣ
yx =

ŨS̃ṼT , as λ → 0, the representation tends to

lim
t→∞

QQT (t) =

ṼS̃ṼT ṼS̃ŨT

ŨS̃ṼT ŨS̃ŨT

 . (A.147)

Proof. When λ = 0, both S̃1 and S̃2 reduce to S̃. Substituting these expressions back

into Eq. A.146 gives the expression in Eq. A.147.

Theorem A.3.5. Under the assumptions of Theorem A.2.6, training on data ΣΣΣ
yx =

ŨS̃ṼT , as λ → ∞, the representation tends to

W2WT
2 = Ũ

 λ I 0max(0,No−Ni)

0max(0,No−Ni) 0

 ŨT , (A.148)

WT
1 W1 =

1
λ

Ṽ

 S̃2 0max(0,Ni−No)

0max(0,Ni−No) 0

 ṼT . (A.149)

As λ →−∞,

W2WT
2 =− 1

λ
Ũ

 S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

 ŨT , (A.150)
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WT
1 W1 = Ṽ

 −λ I 0max(0,Ni−No)

0max(0,Ni−No) 0

 ṼT . (A.151)

Proof. We start from the representation derived in Theorem A.3.3 and using the

Taylor expansion of f (x) =
√

1+ x2, we compute

√
λ 2I+4S̃2 +λ I

2
=
|λ |
√

1+
(

2S̃
λ

)2
+λ I

2
. (A.152)

|λ |
(

1+
(

2S̃
λ

)2
+O(λ−4)

)
+λ I

2
=
|λ |+λ

2
+

S̃2

|λ |
+O(λ−3). (A.153)

Hence

lim
λ→∞

√
λ 2I+4S̃2 +λ I

2
= λ I, lim

λ→−∞

√
λ 2I+4S̃2 +λ I

2
=

S̃2

|λ |
=− S̃2

λ
. (A.154)

Similarly,

√
λ 2I+4S̃2−λ I

2
=
|λ |−λ

2
+

S̃2

|λ |
+O(λ−3), (A.155)

lim
λ→∞

√
λ 2I+4S̃2−λ I

2
=

S̃2

λ
, lim

λ→−∞

√
λ 2I+4S̃2−λ I

2
=

S̃2

|λ |
=−λ I. (A.156)

Since Ũ, Ṽ are independent of λ :

lim
λ→±∞

W2WT
2 = Ũ

(
lim

λ→±∞

S2

)
ŨT . (A.157)

lim
λ→±∞

WT
1 W1 = Ṽ

(
lim

λ→±∞

S1

)
ṼT . (A.158)
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As |λ | → ∞, one of the network representations approaches a scaled identity

matrix, while the other tends toward zero. Intuitively, this suggests that the repre-

sentations shift less and less as |λ | increases. Next, we demonstrate that the NTK

becomes progressively less variable as |λ | grows and ultimately converges to zero.

A.3.2.4 NTK movement

Theorem A.3.6. Under the assumptions of Theorem A.2.6, consider a linear network

training on data ΣΣΣ
yx = ŨS̃ṼT . At any arbitrary training time t ≥ 0, let W2(t)W1(t)=

U∗S∗V∗T . Then,

1. For any λ ∈ R:

NTK(0) = INo⊗XT V

√λ 2I+4S∗2−λ I
2 0

0 0

VT X

+U

√λ 2I+4S∗2+λ I
2 0

0 0

UT ⊗XT X.

(A.159)

NTK(t) = INo⊗XT V∗
√λ 2I+4S∗2−λ I

2 0

0 0

V∗T

+U∗
√λ 2I+4S∗2+λ I

2 0

0 0

U∗T ⊗XT X.

(A.160)

2. As λ → ∞:

NTK(t)−NTK(0)→ 1
λ

(
INo⊗XT V∗S̃∗2V∗T X− INo⊗XT VS̃2VT X

)
→ 0.

(A.161)

3. As λ →−∞:

NTK(t)−NTK(0)→ 1
λ

(
US̃2UT ⊗XT X−U∗S̃∗2U∗T ⊗XT X

)
→ 0.

(A.162)
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Proof. These results follow from substituting the limiting forms of the network

representations into the NTK definition (Eq. 3.6) and exploiting the linearity of the

Kronecker product.

The theorem above demonstrates that as |λ | → ∞, the NTK of a λ -Balanced

network remains constant. This indicates that the network operates in the lazy regime

throughout all training steps. The λ -balanced condition imposes a relationship

between the singular values of the two weight matrices. Specifically, if W2 and W1

are λ -balanced and satisfy W2W1 = Σ̃ΣΣyx, then for arbitrary singular values ai,bi,

and si, the following relations hold:

a2
i −b2

i = λ , ai ·bi = si.

As λ increases, the value of bi must decrease. In the limit as λ → ∞, a2
i → λ and

b2
i → 0. From the first equation, when b2

i → 0, a2
i → λ . Since these equations apply

to all singular values of the matrices, it follows that for all i, a2
i → λ , leading to the

conclusion that:

WT
2 W2 = λ I,

as expected. The intuition here is that the weights are constrained by the need to

fit the data, which bounds their overall norms. The λ -balanced condition further

specifies a relationship between these norms, and as |λ | increases, this constraint

tightens, driving W2 toward the identity matrix. In this regime, the network behaves

similarly to a shallow network, with λ acting as a toggle between deep and shallow

learning dynamics. This finding is significant as it highlights the impact of weight

initialisation on learning regimes.

A.3.3 Representation robustness and sensitivity to noise

As derived in Braun et al. [40], the expected mean squared error under additive,

independent and identically distributed input noise with mean µ = 0 and variance
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σ2
x is

〈
1

2P

P

∑
i=1
||W2W1 (xi +ξx)−yi||22

〉
ξx

= σ
2
x ||W2W1||2F + c, (A.163)

where c = 1
2 Tr(Σ̃ΣΣyy

)− 1
2 Tr(Σ̃ΣΣyx

Σ̃ΣΣ
yxT

) is a noise independent constant that only de-

pends on the statistics of the training data. In Theorem A.3.3 we show that the

network function converges to ŨS̃ṼT and therefore

σ
2
x ||W2W1||2F = σ

2
x ||ŨS̃ṼT ||2F = σ

2
x ||S̃||2F = σ

2
x

Nh

∑
i=1

S̃2
i . (A.164)

As derived in Braun et al. [40], under the assumption of whitened inputs (Assump-

tion 1), in the case of additive parameter noise with µ = 0 and variance σ2
W, the

expected mean squared error is〈
1

2P

P

∑
i=1
||(W2 +ξW2)(W1 +ξW1)xi−yi||22

〉
ξW1 ,ξW2

=
1
2

Niσ
2
W||W2||2F +

1
2

Noσ
2
W||W1||2F +

1
2

NiNhNoσ
4 + c.

(A.165)

Using Theorem A.3.3, we have

||W1||2F = Tr(WT
1 W1)

= Tr

(√
λ 2I+4S̃2 +λ I

2

)

=
1
2

(
Nh

∑
i=1

√
λ 2 +4S̃2

i +λ

) (A.166)

and

||W2||2F = Tr(W2WT
2 )

= Tr

(√
λ 2I+4S̃2−λ I

2

)
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=
1
2

(
Nh

∑
i=1

√
λ 2 +4S̃2

i −λ

)
. (A.167)

To find the λ that minimises the expected loss, we substitute the equations for the

norms, take the partial derivative with respect to λ and set it to zero

∂ ⟨L⟩
ξW1 ,ξW2

∂λ

!
= 0

⇔1
4

Niσ
2
W

∂

∂λ

( Nh

∑
i=1

√
λ 2 +4S̃2

i −λ

)
+

1
4

Noσ
2
W

∂

∂λ

(
Nh

∑
i=1

√
λ 2 +4S̃2

i +λ

)
= 0

⇔Ni

Nh

∑
i=1

λ√
λ 2 +4S̃2

i

−NiNh +No

Nh

∑
i=1

λ√
λ 2 +4S̃2

i

+NoNh = 0

⇔
Nh

∑
i=1

λ√
λ 2 +4S̃2

i

= Nh
Ni−No

Ni +No
.

(A.168)

It follows, that under the assumption that Ni = No, the equation reduces to

Nh

∑
i=1

λ√
λ 2 +4S̃2

i

= 0. (A.169)

We note, that the denominator is always positive and therefore, that the left-hand

side of the equation is always larger zero for any λ > 0, and smaller than zero for

any λ < 0. The euqation is therefore only solved for λ = 0.

A.3.4 Dynamics of the eigenvectors

A.3.4.1 Proof for Theorem 3.4.4

Let the input and output dimension of a two-layer linear network (Eq. 3.1) be equal,

i.e., Ni = No, and λ = 0 then Eq. A.101 simplifies to
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QQT (t) =

Ṽ
(

I− e−S̃ t
τ CT (BT )−1e−S̃ t

τ

)
Ũ
(

I+ e−S̃ t
τ CT (BT )−1e−S̃ t

τ

)


[
4e−S̃ t

τ B−1S−1(BT )−1e−S̃ t
τ +
(

I− e−2S̃ t
τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)

S̃−1CT (BT )−1e−S̃ t
τ

]−1

(A.170)Ṽ
(

I− e−S̃ t
τ CT (BT )−1e−S̃ t

τ

)
Ũ
(

I+ e−S̃ t
τ CT (BT )−1e−S̃ t

τ

)
T

.

See derivation in Sec. A.2.7.

Let the singular value decomposition of the input-output correlation of the task

be

SVD(Σ̃ΣΣ
yx
) = ŨS̃ṼT , (A.171)

and suppose that the initial state of the network can be written in the form

SVD(W2(0)W1(0)) = USVT = ŨΨ(0)TΨ(0)ṼT . (A.172)

First, we note that the initial weights in this setting are not independent of the

structure of the target task. In particular,

U
√

S = ŨΨ(0)T

⇔ ŨT U
√

S =Ψ(0)T

⇔
√

SUT Ũ =Ψ(0) (A.173)

and

√
SVT =Ψ(0)ṼT

⇔
√

SVT Ṽ =Ψ(0). (A.174)
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and therefore

√
SUT Ũ =

√
SVT Ṽ

⇔ UVT = ŨṼT . (A.175)

This further simplifies the equation, as

U
√

S = ŨΨ(0)T

⇔ U = ŨΨ(0)T
√

S
−1
, (A.176)

and

√
SVT =Ψ(0)ṼT

⇔ VT =
√

S
−1
Ψ(0)ṼT

⇔ V = ṼΨ(0)T
√

S
−1

, (A.177)

then recollecting the definition of B and C we get

BT = ŨT U+ ṼT V

= ŨT ŨΨ(0)T
√

S
−1

+ ṼT ṼΨ(0)T
√

S
−1

=
(
ŨT Ũ+ ṼT Ṽ

)
Ψ(0)T

√
S
−1

= 2Ψ(0)T
√

S
−1
, (A.178)

and

CT = ŨT U− ṼT V

=
(
ŨT Ũ− ṼT Ṽ

)
Ψ(0)T

√
S
−1

= 0. (A.179)
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Substituting the new values of B and C into Equation A.170 then yields

QQT (t) =Ṽ

Ũ

[4e−S̃ t
τ

1
4
Ψ(0)−1

√
SS−1

√
SΨ(0)−T e−S̃ t

τ +
(

I− e−2S̃ t
τ

)
S̃−1
]−1

Ṽ

Ũ

T

=

Ṽ

Ũ

[e−S̃ t
τ

(
Ψ(0)TΨ(0)

)−1
e−S̃ t

τ +
(

I− e−2S̃ t
τ

)
S̃−1
]−1

Ṽ

Ũ

T

. (A.180)

Finally, we note that the dynamics can thus be written as

QQT (t)

=

ṼΨTΨ(t)ṼT ṼΨTΨ(t)(t)ŨT

ŨΨTΨ(t)ṼT ŨΨTΨ(t)ŨT

 (A.181)

where

ΨTΨ(t) =
[
e−S̃ t

τ

(
Ψ(0)TΨ(0)

)−1
e−S̃ t

τ +
(

I− e−2S̃ t
τ

)
S̃−1
]−1

. (A.182)

□

A.3.4.2 Solution for 2×2 dynamics

We consider small networks with input and output dimension Ni = 2 and No = 2.

In this setting, the structure of the weight initialisation and task are encoded in the

matrices

Ψ(0)TΨ(0) =

ψ1(0) ν(0)

ν(0) ψ2(0)

 and S̃ =

s̃1 0

0 s̃2

 , (A.183)

where the parameters ψ1(0) and ψ2(0) represent coupling within a singular mode,

and ν(0) represents counterproductive cross-coupling between different singular

modes at initialisation.

From Eq. 3.24, we have
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ΨTΨ(t) =

[e
−s̃1t

τ 0

0 e
−s̃2t

τ

ψ1(0) ν(0)

ν(0) ψ2(0)

−1e
−s̃1t

τ 0

0 e
−s̃2t

τ


+

[1 0

0 1

−
e

−2s̃1t
τ 0

0 e
−2s̃2t

τ

]s̃1 0

0 s̃2

−1]−1

=

[
1

ψ1(0)ψ2(0)−ν(0)2

e
−s̃1t

τ 0

0 e
−s̃2t

τ

ψ2(0) −ν(0)

−ν(0) ψ1(0)

e
−s̃1t

τ 0

0 e
−s̃2t

τ


+

[1 0

0 1

−
e

−2s̃1t
τ 0

0 e
−2s̃2t

τ

] 1
s̃1

0

0 1
s̃2

]−1

, (A.184)

where we use a b

c d

−1

=
1

ad−bc

 d −b

−c a

 . (A.185)

We continue with

ΨTΨ(t) =

[
1

ψ1(0)ψ2(0)−ν(0)2

e
−s̃1t

τ 0

0 e
−s̃2t

τ

ψ2(0) −ν(0)

−ν(0) ψ1(0)

e
−s̃1t

τ 0

0 e
−s̃2t

τ


+

 1
s̃1

0

0 1
s̃2

−
 1

s̃1
e
−2s̃1t

τ 0

0 1
s̃2

e
−2s̃2t

τ

]−1

=

[
1

ψ1(0)ψ2(0)−ν(0)2

 e
−2s̃1t

τ ψ2(0) −e
−s̃1t

τ ν(0)e
−s̃2t

τ

−e
−s̃2t

τ ν(0)e
−s̃1t

τ e
−2s̃2t

τ ψ1(0)


+

 1
s̃1

0

0 1
s̃2

−
 1

s̃1
e
−2s̃1t

τ 0

0 1
s̃2

e
−2s̃2t

τ

]−1

=

 e
−2s̃1t

τ ψ2(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃1
− 1

s̃1
e
−2s̃1t

τ − e
−s̃1t

τ ν(0)e
−s̃2t

τ

ψ1(0)ψ2(0)−ν(0)2

− e
−s̃2t

τ ν(0)e
−s̃1t

τ

ψ1(0)ψ2(0)−ν(0)2
e
−2s̃2t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃2
− 1

s̃2
e
−2s̃2t

τ


−1

. (A.186)
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We use Eq. A.185 and simplify the denominator

ΨTΨ(t) =

1(
e
−2s̃2t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃2
− 1

s̃2
e
−2s̃2t

τ

)(
e
−2s̃1t

τ ψ2(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃1
− 1

s̃1
e
−2s̃1t

τ

)
−
(
− e

−s̃2t
τ ν(0)e

−s̃1t
τ

ψ1(0)ψ2(0)−ν(0)2

)2

(A.187)

×

 e
−2s̃2t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃2
− 1

s̃2
e
−2s̃2t

τ
e
−s̃1t

τ ν(0)e
−s̃2t

τ

ψ1(0)ψ2(0)−ν(0)2

e
−s̃2t

τ ν(0)e
−s̃1t

τ

ψ1(0)ψ2(0)−ν(0)2
e
−2s̃1t

τ ψ2(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃1
− 1

s̃1
e
−2s̃1t

τ

 .

The diagonal element ψ1(t) is given as

ψ1(t) =
e
−2s̃2t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃2
− 1

s̃2
e
−2s̃2t

τ

Dnum
, (A.188)

where

Dnum =
( e

−2s̃2t
τ ψ1(0)

ψ1(0)ψ2(0)−ν(0)2 +
1
s̃2
− 1

s̃2
e
−2s̃2t

τ

)( e
−2s̃1t

τ ψ2(0)
ψ1(0)ψ2(0)−ν(0)2

+
1
s̃1
− 1

s̃1
e
−2s̃1t

τ

)
−
(
− e

−s̃2t
τ ν(0)e

−s̃1t
τ

ψ1(0)ψ2(0)−ν(0)2

)2
(A.189)

and interchanging subscripts 1 and 2 yields ψ2(t). As a check on this result, by

setting ν(0) = 0 we recover the expression

ψ1(t) =
ψ1(0)

e
−2s̃1t

τ + ψ1(0)
s̃1

(
1− e

−2s̃1t
τ

) , (A.190)

from Saxe et al. [247]. We further simplify the denominator to

ΨTΨ(t) =

1
1

ψ1(0)ψ2(0)−ν(0)2

(
e
−2(s̃1+s̃2)t

τ (1− ψ1(0)
s̃1
− ψ2(0)

s̃2
)+ e

−2s̃2t
τ

ψ1(0)
s̃1

+ e
−2s̃1t

τ
ψ2(0)

s̃2

)
+ 1

s̃2 s̃1

(A.191)

×

 e
−2s̃2t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃2
− 1

s̃2
e
−2s̃2t

τ
e
−s̃1t

τ ν(0)e
−s̃2t

τ

ψ1(0)ψ2(0)−ν(0)2

e
−s̃2t

τ ν(0)e
−s̃1t

τ

ψ1(0)ψ2(0)−ν(0)2
e
−2s̃1t

τ ψ2(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃1
− 1

s̃1
e
−2s̃1t

τ


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A

B

C

D

E

F

Figure A.2: A-C Network function dynamics (Diagonal elements: blue, Off-diagonal el-
ements: red) learning with learning rate η = 0.01 on the target 5× 5 diago-
nal matrices shown in Eq. A.194. The network was initialised as defined in
Sec.A.3.4 with Small (σ = 1e−6), Intermediate (σ = 0.1) and Large (σ = 2)
variance, and hidden layer size Nh = 10. A, Dense. B, Diagonal. C, Equal
diagonal. D-F. Corresponding numerical temporal dynamics of the projection
of the network function on- and off-diagonal elements into the singular-basis of
the initialisation. Equivalently, the temporal dynamics of the elements of ΨΨT

bottom left quadrant. D, Dense. E, Diagonal. F, Equal diagonal.

A.3.4.3 Off-Diagonal decoupling dynamics

We track the decoupling by considering the dynamics of the off-diagonal element.

ν(t) =

e
−s̃2t

τ ν(0)e
−s̃1t

τ

ψ1(0)ψ2(0)−ν(0)2

1
ψ1(0)ψ2(0)−ν(0)2

(
e
−2(s̃1+s̃2)t

τ (1− ψ1(0)
s̃1
− ψ2(0)

s̃2
)+ e

−2s̃2t
τ

ψ1(0)
s̃1

+ e
−2s̃1t

τ
ψ2(0)

s̃2

)
+ 1

s̃2s̃1

.

(A.192)

As t tends to infinity limt→∞ν(t) = 0 the off-diagonal element shrinks to zero. We

can further simplify the off-diagonal to

ν(t)=
ν(0)

e
−(s̃1+s̃2)t

τ (1− ψ1(0)
s̃1
− ψ2(0)

s̃2
)+ e

(s̃1−s̃2)t
τ

ψ1(0)
s̃1

+ e
(s̃2−s̃1)t

τ
ψ2(0)

s̃2
+ ψ1(0)ψ2(0)−ν(0)2

s̃2s̃1

.

(A.193)

Eq. A.193 can exhibit non-monotonic trajectories with transient peaks as shown

in Fig. 3.5. The qualitative observations for the 2×2 network hold for larger target

matrices as shown in Fig. A.2. For large initialisation, the dynamics are exponential.
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At intermediate and small initialisation, the maximum of the off-diagonal is reached

before the singular mode is fully learned. Generally, at intermediate variance initiali-

sations, we observe more complex behaviour. In the small initialisation scheme, the

peak is of negligible size. The respective target matrix for Panel A-D, B-E and C-F

in Fig. A.2 are

Dense:



5 6 3 0 1

4 1 0 1 2

3 0 2 4 0

3 4 0 3 2

2 0 1 3 4


, (A.194)

Diagonal:



5 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4


, (A.195)

Equal Diagonal:



5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

0 0 0 5 0

0 0 0 0 5


. (A.196)

We characterise these dynamics considering the case where s̃1 = s̃2 = s̃ for the two-

by-two solution (i.e. equal diagonal target y) for which we can compute the time of

the peak. In this particular case, we can further simplify the off-diagonal to

ν(t) =
ν(0)

e
−2(s̃)t

τ (1− ψ1(0)+ψ2(0)
s̃ )+ ψ1(0)+ψ2(0)

s̃ + ψ1(0)ψ2(0)−ν(0)2

s̃2

. (A.197)

We find the time of the maximum of the off-diagonal elements to be tpeak =

τ

4s̃ ln s̃(s̃−ψ1(0)−ψ2(0))
ψ1(0)ψ2(0)−ν(0)2 .

The presence of a peak in the off-diagonal values, indicates the decoupling, but
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as shown in Fig. 3.5D-F, the peak size is negligible in comparison to the size of

the on-diagonal values for small initial weights. This difference is reminiscent of

the silent alignment effect described by Atanasov et al. [18]. We further note, that

the time scale of decoupling is on the same order as the one reported for the silent

alignment effect tsa =
1
s̃ .

A.3.4.4 On-diagonal dynamics and the effect of initialisation

variance

In this section we revisit the impact of initialisation scale for the on-diagonal dynam-

ics. We start from Eq. A.191

ψ1(t) = (A.198)

e
−2s̃2t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃2
− 1

s̃2
e
−2s̃2t

τ

1
ψ1(0)ψ2(0)−ν(0)2

(
e
−2(s̃1+s̃2)t

τ (1− ψ1(0)
s̃1
− ψ2(0)

s̃2
)+ e

−2s̃2t
τ

ψ1(0)
s̃1

+ e
−2s̃1t

τ
ψ2(0)

s̃2

)
+ 1

s̃2s̃1

.

The diagonal elements simplify in the cases where s̃1 = s̃2 = s̃ (i.e. target Y is

diagonal),

ψ1(t) = (A.199)

e
−2s̃t

τ ψ1(0)
ψ1(0)ψ2(0)−ν(0)2 +

1
s̃ −

1
˜̃s e
−2s̃t

τ

1
ψ1(0)ψ2(0)−ν(0)2

(
e
−4s̃t

τ (1− ψ1(0)
s̃ − ψ2(0)

s̃ )+ e
−2s̃t

τ
ψ1(0)

s̃ + e
−2s̃t

τ
ψ2(0)

s̃

)
+ 1

s̃2

.

We consider when |ψ1(0)|, |ψ2(0)|, |ν(0)| ≪ 1, and recover a sigmoidal trajec-

tory,

ψ1(t) =
s̃ψ1(0)

e
−2s̃t

τ [s̃−ψ1(0)−ψ2(0)]+ψ1(0)+ψ2(0)
. (A.200)

We can compute the time at which ψ1(t) rises to half its asymptotic value to be

thalf =
τ

2s̃
log
(

s̃−ψ1(0)−ψ2(0)
ψ1(0)−ψ2(0)

)
. (A.201)

For |ψ1(0)|, |ψ2(0)|, |ν(0)| ≫ 0 the dynamics of the on-diagonal element ψ1 is

close to exponential.
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A.3.5 The impact of the architecture

A.3.5.1 Overview of Mirror Flow Analysis for Implicit Bias

Here we recap the standard analysis for determining the implicit bias of a linear

network through mirror flow. As first introduced in Gunasekar et al. [111], if the

learning dynamics of the predictor βββ can be expressed as a mirror flow for some

strictly convex potential Φα(βββ ),

β̇ββ =−
(
∇

2
Φα(βββ )

)−1
XXXρρρ, (A.202)

where ρρρ = (XXX⊺
βββ − yyy) is the residual, then the limiting solution of the dynamics is

determined by the constrained optimisation problem,

βββ (∞) = argmin
βββ∈RNi

DΦ(βββ ,βββ (0)) s.t. XXX⊺
βββ = yyy, (A.203)

where DΦ(ppp,qqq) =Φ(ppp)−Φ(qqq)−⟨∇Φ(qqq), ppp−qqq⟩ is the Bregman divergence defined

with Φ. In this analysis we consider No = 0

To understand the relationship between mirror flow eq. (A.202) and the opti-

misation problem eq. (A.203), we consider an equivalent constrained optimisation

problem

βββ (∞) = argmin
βββ∈RNi

Q(βββ ) s.t. XXXβββ = yyy, (A.204)

where Q(βββ ) = Φα(βββ )−∇Φα(βββ (0))⊺βββ , which is often referred to as the implicit

bias. Q(βββ ) is strictly convex, and thus it is sufficient to show that βββ (∞) is a first

order KKT point of the constrained optimisation (A.204). This is true iff there exists

ννν ∈ Rn such that ∇Q(βββ (∞)) = XXX⊺
ννν . The goal is to derive ννν from the mirror flow

eq. (A.202). Notice, we can rewrite eq. (A.202) as, ˙(∇Φα(βββ )) = −XXX⊺
ρρρ , which

integrated over time gives

∇Φα(βββ (∞))−∇Φα(βββ (0)) =−XXX⊺
∫

∞

0
ρρρ(t)dt. (A.205)

The LHS is ∇Q(βββ (∞)). Thus, by defining ννν =
∫

∞

0 ρρρ(t)dt, which assumes the
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residual decays fast enough such that this is well defined, then we have shown the

desired KKT condition. Crucial to this analysis is that there exists a solution to the

second-order differential equation

∇
2
Φα(βββ ) =

(
∇θ βββ∇θ βββ

⊺)−1
, (A.206)

which even for extremely simple Jacobian maps may not be true [113].

A.3.5.2 Deriving M

We consider the dynamics of a two-layer linear network with h hidden neurons and

c outputs, f (x;θ) = W2W1X, where W1 ∈ RNh×Ni and W2 ∈ RNo×Nh . We assume

that Nh ≥min(Ni,No), such that this parameterisation can represent all linear maps

from RN
i →RNo . The rescaling symmetry in this model between the first and second

layer implies the Nh×Nh matrix ΛΛΛ = W⊺
2W2−W1W⊺

1 determined at initialisation

remains conserved throughout gradient flow [74]. This can be easily shown from the

temporal dynamics of A and W ,

Ẇ2
⊺
=−ηw2W1X(X⊺

βββ −Y⊺), (A.207)

Ẇ1
⊺
=−ηw1X(X⊺

βββ −Y⊺)W2. (A.208)

The NTK matrix can be expressed as

NTK = (INo⊗X⊺)
(
ηw1W2W⊺

2⊕ηw2W⊺
1W1

)
(INo⊗X) , (A.209)

where ⊗ and ⊕ denote the Kronecker product and sum respectively. The

Kronecker sum is defined for square matrices C ∈ Rc×c and D ∈ Rd×d as

C⊕D = C⊗ Id + Ic⊗D.

We consider the dynamics of βββ = W⊺
1W⊺

2 ∈ RNi×No in function space, which is
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governed by the ODE,

β̇ββ =W⊺
1Ẇ2

⊺
+Ẇ1

⊺W⊺
2 =−

(
ηw2W⊺

1W1X(X⊺
βββ −Y⊺)+ηw1X(X⊺

βββ −Y⊺)W2W⊺
2.
)

(A.210)

Vectorising using the identity vec(ABC) = (C⊺⊗A)vec(B) Eq. A.210 becomes

vec
(

β̇ββ

)
=−vec

(
ηw1INiX(X⊺

βββ −Y⊺)W2W⊺
2 +ηw2W⊺

1W1X(X⊺
βββ −Y⊺)INo

)
,

=−(ηw1W2W⊺
2⊗ INi +ηw2INo⊗W⊺

1W1)vec(XX⊺
βββ −XY⊺)),

=−
(
ηw1W2W⊺

2⊕ηw2W⊺
1W1

)︸ ︷︷ ︸
M

vec(XX⊺
βββ −XY⊺). (A.211)

We find that the dynamics of βββ can be expressed as gradient flow preconditioned by

a matrix M that depends on quadratics of W2 and W1.

Theorem A.3.7. Whenever ∥βββ k∥F ̸= 0 for all k∈ [Nh], the matrix M can be expressed

as the sum M = ∑
h
k=1 Mk over hidden neurons where Mk is defined as,

Mk =


√

λ 2
k +4ηw1ηw2∥βββ k∥2

F +λk

2

 βββ
⊺
k βββ k

∥βββ k∥2
F
⊕


√

λ 2
k +4ηw1ηw2∥βββ k∥2

F −λk

2

 βββ kβββ
⊺
k

∥βββ k∥2
F
.

(A.212)

Proof. Consider a single hidden neuron k ∈ [Nh] of the multi-output model defined

by the parameters W1k ∈ RNi and W2k ∈ RNo . Let βββ k = W⊺
1kW⊺

2k be the RNi×No

matrix representing the contribution of this hidden neuron to the input-output map

of the network βββ = ∑
Nh
k=1 βββ k. Consider the two gram matrices βββ

⊺
k βββ k ∈ RNo×No and

βββ kβββ
⊺
k ∈ RNi×Ni ,

βββ
⊺
k βββ k = ∥W1k∥2W2kW⊺

2k, βββ kβββ
⊺
k = ∥W2k∥2W⊺

1kW1k. (A.213)

Notice that we can express ∥βββ k∥2
F as

∥βββ k∥2
F = Tr(βββ⊺

k βββ k) = Tr(βββ kβββ
⊺
k ) = ∥W2k∥2∥W1k∥2 (A.214)
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At each hidden neuron we have the conserved quantity1 ηw1∥W2k∥2−ηw2∥W1k∥2 =

λk where λk ∈ R. Using this quantity we can invert the expression for ∥βββ k∥2
F to get

∥W2k∥2 =

√
λ 2

k +4ηw2ηw1∥βββ k∥2
F +λk

2ηw1

, (A.215)

∥W1k∥2 =

√
λ 2

k +4ηw2ηw1∥βββ k∥2
F −λk

2ηw2

. (A.216)

When ∥βββ k∥2
F > 0, we can use these expressions to solve for the outer products

W2kW⊺
2k and W⊺

1kW1k in terms of βββ k and λk,

W2kW⊺
2k =

√
λ 2

k +4ηw2ηw1∥βββ k∥2
F +λk

2ηw1

βββ
⊺
k βββ k

∥βββ k∥2
F
, (A.217)

W⊺
1kW1k =

√
λ 2

k +4ηw2ηw1∥βββ k∥2
F −λk

2ηw2

βββ kβββ
⊺
k

∥βββ k∥2
F
. (A.218)

By substituting these expressions into the decompositions W2W⊺
2 = ∑

Nh
k=1 W2kW⊺

2k

and W⊺
1W1 = ∑

Nh
k=1 W⊺

1kW1k, we derive the representation for M: M = ∑
Nh
k=1 Mk

where

Mk =


√

λ 2
k +4ηw2ηw1∥βββ k∥2

F +λk

2

 βββ
⊺
k βββ k

∥βββ k∥2
F
⊕


√

λ 2
k +4ηw2ηw1∥βββ k∥2

F −λk

2

 βββ kβββ
⊺
k

∥βββ k∥2
F
.

(A.219)

Understanding M when there is a single-neuron Nh = 1

When there is a single-hidden neuron Nh = min(Ni,No) = 1, the expression for

M presented in Theorem 3.4.5 simplifies allowing us to precisely understand the

influence of λ on the learning regime. When Nh = No = 1, then βββ
⊺
βββ

∥βββ∥2
F
= 1. Therefore,

1As long as No > 1, then the surface of this Ni +No hyperboloid is always connected, however its
topology will depend on the relationship between Ni and No.
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Eq. 3.28 simplifies to

M =

√
λ 2 +ηw2ηw14∥βββ∥2 +λ

2
INi +

√
λ 2 +ηw2ηw14∥βββ∥2−λ

2
ββββββ

⊺

∥βββ∥2 . (A.220)

When Nh = Ni = 1, then ββββββ
⊺

∥βββ∥2
F
= 1 and thus Eq. 3.28 simplifies to,

M =

√
λ 2 +ηw2ηw14∥βββ∥2 +λ

2
βββ
⊺
βββ

∥βββ∥2 +

√
λ 2 +ηw2ηw14∥βββ∥2−λ

2
INo. (A.221)

In both settings, M is the weighted sum of the identity matrix and a rank-one

projection matrix. While these equations are strikingly similar there is an interesting

distinction that arises in the limits of λ . As λ → ∞, then the first expression

for M becomes proportional to INi , while the second expression for M becomes

proportional to the rank-1 projection βββ
⊺
βββ

∥βββ∥2 . Conversely, as λ →−∞, then the first

expression for M becomes proportional to the rank-1 projection ββββββ
⊺

∥βββ∥2 , while the

second expression for M becomes proportional to INo . When Nh = Ni = No = 1,

then M =
√

λ 2 +ηw2ηw14∥βββ∥2 and thus in both limits of λ →±∞, M becomes a

constant independent of βββ . In all settings, when λ = 0, M depends on βββ . In other

words, the influence of λ on whether the dynamics are lazy, rich, or delayed rich,

crucially depends on the relative sizes of dimensions No, Nh, and Ni.

Interpreting M in different limits and architectures

We now seek to more generally understand the influence of the conserved quantities

λi and the relative sizes of dimensions Ni, Nh and No on the learning regime. For a

matrix W⊺
2 ∈ RNo×Ni , let Row(W⊺

2)⊆ RNo and Col(W⊺
2)⊆ RNi denote the row and

column space of W⊺
2 respectively.

Theorem A.3.8. The dynamics are in the lazy regime, for all t ≥ 0, if λk→ ∞ for all

k ∈ [Nh] and there exists a least squares solution βββ ∗ ∈ RNi×No such that

Row(βββ ∗)⊆ Span

(
Nh⋃

k=1

Row(βββ k(0))

)
, (A.222)
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or λk→−∞ for all k ∈ [h] and there exists a solution such that

Col(βββ ∗)⊆ Span

(
h⋃

k=1

Col(βββ k(0))

)
. (A.223)

Proof. As λk→ ∞, Mk→ |λk|
βββ
⊺
k βββ k
∥βββ k∥2

F
⊗ Id , implying β̇ββ k =−|λk|∂L∂βββ

(
βββ
⊺
k βββ k
∥βββ k∥2

F

)
. Notice

that
(

βββ
⊺
k βββ k
∥βββ k∥2

F

)
is the unique orthogonal projection matrix onto the one-dimensional

row space of βββ k. Thus, the dynamics of each βββ k follow a projected gradient descent

in their row space. As a result, Mk will not change and thus the NTK will be static.

By assumption there exists a least squares solution βββ ∗ such that the rows of βββ ∗ are in

the span of the rows of βββ k. Thus, a solution will be reached as t→ ∞, while the Mk

remain static.As λk→−∞ for all k ∈ [h], Mk→ Ic⊗|λk|
βββ kβββ

⊺
k

∥βββ k∥2
F

, and an analogous

argument can be made.

Note that the assumptions in Theorem A.3.8 can be more intuitively expressed

in terms of the parameter space (W1,W2). Except in highly degenerate cases, the

assumption Row(βββ ∗) ⊆ Span
(⋃h

k=1 Row(βββ k(0))
)

is equivalent to the existence

of a βββ ∗ whose rows lie in the span of {W2W1k(0)}
Nh
k=1, or, equivalently, to the

existence of a matrix W2 such that βββ ∗ = W2(0)W1. Similarly, the condition

Col(βββ ∗)⊆ Span
(⋃Nh

k=1 Col(βββ k(0))
)

is in most cases equivalent to the existence of

a matrix W2 such that βββ ∗ = W1(0)⊺W2(0)⊺.

A direct consequence of Theorem A.3.8 is that networks which narrow from

input to output (Ni > No) must enter the lazy regime with probability 1 as all λk→∞

whenever Nh ≥ No and assuming independent initialisations for all βββ k. In this

case, the rows of {βββ 1, . . . ,βββ h} span all of RNo and thus the condition on the least

squares solution is trivially true. By the same logic, networks which expand from

input to output (Ni < No) do so as all λk →−∞ whenever Nh ≥ Ni and assuming

independent initialisations for all βββ k. Additionally, when Nh ≥ max(Ni,No) and

assuming independent initialisations for all βββ k, then all networks enter the lazy

regime as either all λk→ ∞ or all λk→−∞.
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Another interesting implication of Theorem A.3.8, is that if there does not exist

a least squares solution βββ ∗ with rows in the span of the rows of {βββ 1, . . . ,βββ h}, then the

network will enter a delayed rich regime as all λk→ ∞, where the magnitude of the

λk will determine the delay. In this setting, the network is initially lazy, attempting

to fit the solution within the row space of the βββ k, but eventually the direction of

the rows must change in order to fit the problem, leading to a rich phase. A similar

statement involving the columns of βββ ∗ is true as all λk→−∞.

A.3.5.3 Simplifying M through assumptions on ΛΛΛ

We now consider how introducing structures on ΛΛΛ can lead to simpler expressions

for M. A natural assumption to consider is the following:

A5 (Isotropic initialisation). Let W⊺
2 ∈ RNh×No and W1 ∈ RNh×Ni be initialised such

that ΛΛΛ = ηw1W2(0)⊺W2(0)−ηw2W1(0)W1(0)⊺ = λ INh .

In square networks, where the dimensions of the input, hidden, and output layers

coincide (Ni = Nh = No), and the weights are initialised as W⊺
2 ∼N (0,σ2

a/No) and

W1 ∼N (0,ΣΣΣ2
w1
/Ni), this assumption is naturally satisfied with λ = σ2

a −ΣΣΣ
2
w1

as the

dimension Nh→ ∞. However, a limitation of this assumption is that for general λ

it requires Nh ≤ min(Ni,No). Specifically, when λ > 0, the isotropic initialisation

requires that W2(0)⊺W2(0)≻ 0, which implies Nh ≤ No. Similarly, when λ < 0, the

isotropic initialisation requires that W1(0)W1(0)⊺ ≻ 0, which implies Nh ≤ Ni. Now

we prove two important implications of the isotropic initialisation assumption.

Lemma A.3.9. Let ΛΛΛ = λ INh . If either λ ≥ 0 or λ < 0 and Nh ≥ Ni, we have that

W⊺
1W1 =

1
ηw2

(
−λ

2
INi +

√
ηw2ηw1ββββββ

⊺+
λ 2

4
INi

)
. (A.224)

Proof. The quantity ηw1W⊺
2W2−ηw2W1W⊺

1 = λ INh is conserved in gradient flow.

Multiplying on the left by W⊺
1 and on the right by W1 we have that

ηw2(W
⊺
1W1)

2 +λW⊺
1W1 = ηw1ββββββ

⊺. (A.225)
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Completing the square by adding λ 2

4ηw2
INi to both sides and dividing by ηw2 we get

the equality, (
W⊺

1W1 +
λ

2ηw2

INi

)2

=
λ 2

4η2
w2

INi +
ηw1

ηw2

ββββββ
⊺ (A.226)

For λ ≥ 0, W⊺
1W1 +

λ

2ηw2
INi ⪰ 0. For λ < 0, then we know from the conserved

quantity that W1W⊺
1 +

λ

2ηw2
INh =

ηw1
ηw2

W⊺
2W2− λ

2ηw2
INh ≻ 0, which implies when

Nh ≥ Ni that W⊺
1W1 +

λ

2ηw2
INi ≻ 0. As a result, we can take the principal square root

of each side,

W⊺
1W1 +

λ

2ηw2

INi =

√
λ 2

4η2
w2

INi +
ηw1

ηw2

ββββββ
⊺, (A.227)

which rearranged gives the final result.

Lemma A.3.10. Let ΛΛΛ = λ INh . If either λ ≤ 0 or λ > 0 and Nh ≥ No, we have that

W2W⊺
2 =

1
ηw1

(
λ

2
INo +

√
ηw2ηw1βββ

⊺
βββ +

λ 2

4
INo

)
. (A.228)

Proof. The proof is analogous to the proof of Lemma A.3.9.

From Lemma A.3.9 and Lemma A.3.10 we can prove Theorem 3.4.6, as shown

below.

Proof. We start from

vec
(

β̇ββ

)
=−

(
ηw1W2W⊺

2⊕ηw2W⊺
1W1

)︸ ︷︷ ︸
M

vec(XX⊺
βββ −XYT ), (A.229)

Plugging in expressions for W⊺
1W1 from Lemma A.3.9 and W2W⊺

2 from

Lemma A.3.10 we can directly write,

M =

(
λ

2
INo +

√
ηw2ηw1βββ

⊺
βββ +

λ 2

4
INo

)
⊕

(
−λ

2
INi +

√
ηw2ηw1ββββββ

⊺+
λ 2

4
INi

)

=

(√
ηw2ηw1βββ

⊺
βββ +

λ 2

4
INo⊗ INi

)
+

(
INo⊗

√
ηw2ηw1ββββββ

⊺+
λ 2

4
INi

)
(A.230)
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From this expression for M(βββ ) we can easily consider how it simplifies in

limiting settings of λ :

M→


λ INiNo λ →−∞√

ηw2ηw1βββ
⊺
βββ ⊗ INi + INo⊗

√
ηw2ηw1ββββββ

⊺
λ = 0

λ INiNo λ → ∞.

(A.231)

As λ →±∞, M→ λ INiNo , and the dynamics are lazy. In this limit, the dynamics

of βββ converge to the trajectory of linear regression trained by gradient flow and along

this trajectory the NTK matrix remains constant. When λ = 0, M=
√

ηw2ηw1βββ
⊺
βββ⊗

INi + INo⊗
√

ηw2ηw1ββββββ
⊺, and the dynamics are rich. Here the NTK changes in both

magnitude and direction through training. In the next section we will attempt to

better understand these dynamics for intermediate values of λ through the lens of a

mirror flow.

A.3.5.4 Deriving a mirror flow for the singular values of βββ

For a matrix βββ , the dynamics of one of its singular values are given by σ̇σσ = v⊺β̇ββu,

where u and v are the corresponding left and right singular vectors as previously

defined. This equality can be derived from chain rule and the fact that ∥u∥= ∥v∥= 1:

σ̇σσ = v̇⊺βββu+v⊺β̇ββu+v⊺βββ u̇ = v̇⊺uσσσ +v⊺β̇ββu+σσσv⊺u̇ = v⊺β̇ββu. (A.232)

In the last equality we used that fact that for any vector z with a fixed norm, ˙∥z∥2 =

2ż⊺z= 0. Letting diag :RNi×No→Rmin(Ni,No) be the operator that, given a rectangular

matrix, returns a vector of the elements on the main diagonal, we can then write,

Ṡ = diag(V⊺
β̇ββU) (A.233)

where S ∈ Rmin(Ni,No) is the vector of singular values of βββ . In the following lemma,

we use the shared singular vector structure between βββ and W2 and W1 to rewrite

these dynamics as

Ṡ =−M∇SL (A.234)
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where M is a diagonal matrix and ∇SL is the gradient of the loss with respect to the

singular values of βββ . Without loss of generality we consider ηw2 = ηw1 = 1.

Lemma A.3.11. Let ΛΛΛ = λ INh . We then have that Ṡ = −M∇SL, where M ∈

Rmin(Ni,No)×min(No,Ni) is a diagonal matrix with

Mii =


√

λ 2 +4S2
i i≤min(Ni,Nh,No)

0 otherwise
(A.235)

Proof. First note that

Ṡ = diag(V⊺
β̇ββU)

=−diag
(
V⊺ [X(X⊺

βββ −Y⊺)W2W⊺
2 +W⊺

1W1X(X⊺
βββ −Y⊺)

]
U
)

=−diag
(
V⊺X(X⊺

βββ −Y⊺)UΣΣΣ
2
w2

+ΣΣΣ
2
w1

V⊺X(X⊺
βββ −Y⊺)U

)
(A.236)

where we let W⊺
1W1 = VΣΣΣ

2
w1

V⊺ and W2W⊺
2 = UΣΣΣ

2
w2

U⊺, using the fact that, under

ΛΛΛ = λ INh , the eigenvectors of W2W⊺
2 are the right singular vectors of βββ and the

eigenvectors of W⊺
1W1 are the left singular vectors of βββ . This expression rewrites as

Ṡ =−Mdiag(V⊺X(X⊺
βββ −Y⊺)U) (A.237)

where M ∈ Rmin(Ni,No)×min(Ni,No) is a diagonal matrix with Mii = (ΣΣΣ2
w2
)ii +(ΣΣΣ2

w1
)ii.

For i ≤ min(Ni,Nh,No), one can show that Mii =
√

λ 2 +4S2
i . This is be-

cause for i ≤ min(Ni,Nh,No), (ΣΣΣ2
w2
)ii = (ΣΣΣ2

w1
)ii + λ from the conservation

law and (ΣΣΣ2
w1
)ii(ΣΣΣ

2
w2
)ii = S2

i from the definition of S. Together this implies

(ΣΣΣ2
w1
)ii
(
λ +(ΣΣΣ2

w1
)ii
)
= S2

i , which is a quadratic equation in (ΣΣΣ2
w1
)ii. If Nh <

min(Ni,No) then Mii = 0 for i > min(Ni,No) accounting for rank deficiency of

both WT
2 and W1 in this case. Additionally, in our setting of MSE loss, it is

straightforward to show that

∂L
∂Si

= (V⊺X(X⊺
βββ −Y⊺)U)ii (A.238)
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We then have that ∇SL = diag(V⊺X(X⊺βββ −Y⊺)U), which, combined with our

expression for M, completes the proof.

Leveraging Lemma A.3.11, we can show that the singular values of βββ evolve

under a mirror flow in the following theorem.

Theorem A.3.12. Let ΛΛΛ = λ INh and assume Nh ≥min(Ni,No) and S ̸= 0. We then

have that the dynamics of S, the singular values of βββ , are given by the mirror flow

Ṡ =−
(
∇

2
Φλ (S)

)−1
∇SL, (A.239)

where Φλ (S) = ∑
min(Ni,No)
i=1 qλ (Si) and qλ is the hyperbolic entropy potential

qλ (x) =
1
4

(
2xsinh−1

(
2x
|λ |

)
−
√

4x2 +λ 2 + |λ |
)
. (A.240)

Proof. When ΛΛΛ = λ INh , then by Lemma A.3.11 the dynamics of the singular values

of βββ can be expressed as Ṡ =−M∇SL. Furthermore, when Nh ≥min(Ni,No) and

S ̸= 0, we have that M =
√

λ 2 +4S2Imin(Ni,No), where S2 is element-wise, which

is always invertible. Observe, this expression for M is the inverse Hessian of the

potential Φλ (S) = ∑i qλ (Si) for qλ specified in the theorem statement. Thus, the

dynamics for the singular values are the mirror flow Ṡ =−
(
∇2Φλ (S)

)−1
∇SL.

Theorem A.3.12 implies that the dynamics for the singular values of βββ can be

described as a mirror flow with a λ -dependent potential. This potential was first

identified as the inductive bias for diagonal linear networks by Woodworth et al.

[294]. Termed hyperbolic entropy, this potential smoothly interpolates between an

ℓ1 and ℓ2 penalty on the singular values for the rich (λ → 0) and lazy (λ →±∞)

regimes respectively. Unfortunately, in our setting we cannot adapt our mirror flow

interpretation into a statement on the inductive bias at interpolation because the

singular vectors evolve through training. If we introduce additional assumptions —

specifically, whitened input data (XX⊺ = INi) and a task-aligned initialisation such

that the singular vectors of βββ 0 are aligned with those of βββ ∗ — we can ensure that

the singular vectors remain constant and thus derive an inductive bias on the singular
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values. However, in this setting the dynamics decouple completely, implying there is

no difference between applying an ℓ1 or ℓ2 penalty on the singular values. Conse-

quently, even though the dynamics will depend on λ , the final interpolating solution

will be independent of λ , making a statement on the inductive bias insignificant.

A.3.5.5 Delayed Rich

Theorem A.3.13. Under the conditions of Theorem A.2.6, when λ⊥ > 0, the network

enters a regime referred to as the delayed-rich phase. In this phase, the learning rate

is determined by two competing exponential factors:

eλ⊥
t
τ e−

√
S̃2+ λ2

4 I t
τ and e−

√
S̃2+ λ2

4 I t
τ . (A.241)

As λ increases, various parts of the network display different learning dynamics:

some components adjust rapidly, converging exponentially with λ , while others

adapt more slowly, with their convergence rate inversely proportional to λ , leading

to a slow adaptation.

Proof. The solution to Theorem A.2.6 is governed by two time-dependent terms:

e−
√

S̃2+ λ2I
4

t
τ and eλ⊥

t
τ e−

√
S̃2+ λ2

4 I t
τ . (A.242)

The first term decays exponentially, tending toward zero over time.

lim
t→∞

e−
√

S̃2+ λ2I
4

t
τ = 0. (A.243)

In the limit of λ gets large the rate of learning is given by

lim
λ→∞

√
λ 2I+4S̃2

2
=

λ I
2
, (A.244)

The second term also decays with time

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+ λ2

4 I t
τ = 0, (A.245)

but in the limit as lambda gets large the rate of learning is given by
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lim
λ→∞

√
λ 2I+4S̃2−λ I

2
=

S̃2

λ
. (A.246)

Thus, as λ increases, the convergence rate slows for certain parts of the network,

while other components continue to learn more quickly. This explains the delay

observed in the delayed-rich regime.

A.3.5.6 Analysing the impact of recurrence on feature learning

Here we derive the finite-width neural tangent kernel (NTK) [130] for a LRNN

where the loss is computed over the final output of the network, following a similar

approach to Braun et al. [39], Dominé et al. [69] in deep linear networks.

Recall the network function of the LRNN at training step tθ is

ŶYY T,tθ (XXX1:T ) = W2

T

∑
i=1

WT−i
h W1XXX i. (A.247)

After taking a training step with learning rate η , the network function becomes

ŶYY T,tθ+1(XXX1:T ) = (W2−η
∂L

∂W2
)

T

∑
i=1

(Wh−η
∂L

∂Wh
)T−i(W1−η

∂L
∂W1

)XXX i (A.248)

Using the binomial expansion (a−b)n = ∑
n
k=0(−1)k(n

k

)
an−kbk

(Wh−η
∂L

∂Wh
)T−i =

T−i

∑
k=0

(−1)k
(

T − i
k

)
WT−i−k

h

(
η

∂L
∂Wh

)k

= WT−i
h +

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h

(
η

∂L
∂Wh

)k

. (A.249)

Substituting back,
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ŶYY T,tθ+1(XXX1:T ) =

(W2−η
∂L

∂W2
)

T

∑
i=1

(
WT−i

h +
T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)k

)

× (W1−η
∂L

∂W1
)XXX i

=
T

∑
i=1

[
W2WT−i

h W1XXX i +W2

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)kW1XXX i

−W2ηWT−i
h

∂L
∂W1

XXX i−W2η

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)k ∂L

∂W1
XXX i

−η
∂L

∂W2
WT−i

h W1XXX i−η
∂L

∂W2

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)kW1XXX i

+η
∂L

∂W2
ηWT−i

h
∂L

∂W1
XXX i +η

∂L
∂W2

η

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)k ∂L

∂W1
XXX i

]
.

(A.250)

The gradient flow equation describing the dynamics of the network function is then:

ŶYY T,tθ+1− ŶYY T,tθ
η

=

T

∑
i=1

[
W2

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η)k−1(
∂L

∂Wh
)kW1XXX i

−W2WT−i
h

∂L
∂W1

XXX i−W2

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)k ∂L

∂W1
XXX i

− ∂L
∂W2

T

∑
i=1

WT−i
h W1XXX i−

∂L
∂W2

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)kW1XXX i

+
∂L

∂W2
ηWT−i

h
∂L

∂W1
XXX i +

∂L
∂W2

η

T−i

∑
k=1

(−1)k
(

T − i
k

)
WT−i−k

h (η
∂L

∂Wh
)k ∂L

∂W1
XXX i

]
.

(A.251)

As the learning rate η → 0 (the gradient flow regime),
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τ
ŶYY T

dtθ
=

T

∑
i=1

(−W2WT−i
h

∂L
∂W1

− (T − i)W2WT−i−1
h

∂L
∂Wh

W1−
∂L

∂W2
WT−i

h W1)XXX i.

(A.252)

Substituting the partial derivatives of the loss,

τ
ŶYY T

dtθ
=

T

∑
i=1
−W2WT−i

h

(
T

∑
j=1

W(T− j)⊤
h W⊤2 (YYY T −W2

T

∑
k=1

WT−k
h W1XXXk)XXX⊤j

)
XXX i

− (T − i)W2WT−i−1
h

(
T−1

∑
j=1

T− j−1

∑
r=0

W(r)⊤
h W⊤

2 (YYY T −W2

T

∑
k=1

WT−k
h W1XXXk)

×XXX⊤j W⊤1 W(T− j−1−r)⊤
h W1XXX i

)

−

(
(YYY T −W2

T

∑
k=1

WT−k
h W1XXXk)

(
T

∑
j=1

XXX⊤j W⊤1 W(T− j)⊤
h

))
×WT−i

h W1XXX i. (A.253)

Finally, we use the identity vec(AXB) = (B⊤⊗A)vec(X) to derive the NTK

(∇θ vec(ŶYY T )∇θ vec(ŶYY T )) on the left-side of the vectorising function:

τ
dvec(ŶYY T )

dtθ
=

T

∑
i=1

T−1

∑
j=1

(−XXX⊤i XXX j⊗W2WT−i
h W(T− j)⊤

h W⊤2 )

−
T−i−1

∑
r=0

(T − i)XXX⊤i W⊤1 W(T−k−1−r)
h W1XXX j

⊗W2WT−i−1
h W(r)⊤

h W⊤2

− INy⊗XXX⊤i W⊤
1 W(T−i)⊤

h W(T− j)
h W1XXX j

×vec(YYY T −W2

T

∑
k=1

WT−k
h W1XXXk). (A.254)
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∇θ vec(ŶYY T )∇θ vec(ŶYY T ) =
T

∑
i=1

T−1

∑
j=1

XXX⊤i XXX j⊗W2WT−i
h W(T− j)⊤

h W⊤
2

+
T−i−1

∑
r=0

(T − i)XXX⊤i W⊤1 W(T−k−1−r)
h W1XXX j

⊗W2WT−i−1
h W(r)⊤

h W⊤2

+ INy⊗XXX⊤i W⊤1 W(T−i)⊤
h W(T− j)

h W1XXX j. (A.255)

We conduct an experiment to investigate how sequence length T (recurrence)

and the scale of initialisation weights influence the learning dynamics of the network

(Fig. 3.8). All layers are initialised with weights drawn from a normal distribution

with a specified variance (initialisation scale). The network is trained on a random

input-output mapping sampled from a normal distribution with a variance of 1. We

use a learning rate of η = 0.1 throughout the experiments. In the first experiment,

the network is unaligned with the task eigenvectors. In the second experiment, we

achieve task alignment by initialising the network with the eigenvectors of the task.

During training, we calculate the NTK distance from its initialisation. This kernel

distance, K(t), is defined as:

K(t) = 1− ⟨K0,Kt⟩
∥K0∥F∥Kt∥F

,

following the definition in Fort et al. [91]. These distances are visualised as

heatmaps for sequence lengths within the range [1,7] and initialisation scales in

(0.01,1]. A batch size of P = 50 is used for training. As explained in the main text,

the recurrence always leads to a rich regime in the unaligned case, regardless of the

scale of initialisation. This contrasts with feedforward networks. Under the aligned

configuration, vector rotation to align with the task is unnecessary; instead, the

scaling of the initialisation becomes the critical factor. When the network’s initial

variance is close to the target variance, the adjustments required to fit the target are

minimised. This explains why smaller initialisation scales result in more pronounced

NTK movement. It is important to emphasise that these observations are specific to
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the final stages of the learning process.

Note that, in this study, we focus on finite-width neural networks, but discuss

the connection between our work and from the infinite-width literature. Studies of

the learning regimes and dynamics of neural networks have focused on how the

variance of initialisation and layer-wise learning rates should scale in the context of

infinite-width networks. This scaling is crucial for ensuring consistent behaviour

across activations, gradients, and outputs, enabling the network to effectively perform

kernel regression without learning specific features [196, 231, 260, 232, 130, 165].

The hyper-parameters for Fig. A.3 are identical to those used in Fig. 3.8, with the sole

difference being that the hidden layer size is set to 300 instead of 4. In this context,

interestingly, recurrence does not always protect against a lazy regime, corroborating

results previously reported in the literature.

Figure A.3: Recurrence does not drives feature learning in infinite width. Phase plots
illustrating the kernel distance of the NTK from initialisation when the hidden
layer size is set to 300 compared to size 4.

.

In Fig. A.4, we examine how the trajectory length and the initialisation scale of

input-output modes versus recurrent modes affect the learning regime in an aligned

setting. As we saw before, increasing the trajectory length tends to favour a richer

learning regime. Furthermore, initialisation scale of the recurrent modes more

strongly influences the feature learning regime compared to the scale of input-output

modes.
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Figure A.4: Initialisation of recurrent modes more strongly impacts feature learning.
Phase plots illustrating the kernel distance of the NTK from initialisation for
different trajectory lengths as a function of initialisation strength of input-output
and recurrent connectivity modes. Initialisation scale of recurrent modes more
strongly influences kernel distance than the scale of input-output modes.

.

A.3.6 The impact of scale

A.3.6.1 Scale vs relative scale

We conducted an experiment to explore the relationship between relative weight

scale, absolute weight scale, and the network’s learning regime in a general setting

as shown in Fig. 3.9. The absolute scale of the weights in Fig. 3.9A is defined as the

norm of W2W1. Random initial weights with specified relative and absolute scales

were generated, and the network was trained on a random input-output task. We

compute the logarithmic kernel distance of the NTK from initialisation and the loga-

rithmic loss throughout training. We plot these values in a heat map for λ in [−9,9]

and relative scale in (0,20]. We repeat this procedure for three architectures: a square

network (Ni = 2,Nh = 2,No = 2), a funnel network (Ni = 4,Nh = 2,No = 2), and an

anti-funnel network (Ni = 2,Nh = 2,No = 4). These are the same architectures as in

Fig. 3.6 in the main text.

Initialisation In all three different types of networks, at the start of training, the

model loss depends entirely on an absolute scale, not the relative scale.

Throughout training Across networks, the learning dynamics are intricately

influenced by both the absolute and relative scales and fully captured by our theo-

retical solution. In the square network, the loss increases with absolute scale but
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Figure A.5: Square network: Phase plots showing (left) the logarithmic kernel distance
of the NTK from initialisation and (right) the corresponding logarithmic loss
as functions of the relative scale λ and the absolute scale. (Top to bottom)
Different time steps during training t = 1, t = 20, t = 100.

decreases with relative scale, as shown in Fig. A.5. Strikingly, for large imbalanced

λ , even at small scales, the network transitions into a lazy regime. The funnel and

anti-funnel network architectures demonstrate antisymmetric behaviour as shown in

Fig. A.6 and Fig. A.7. Here, we focus on the anti-funnel network for brevity. The

evolution of the loss reveals that negative λ initialisations first converge, whereas

positive λ initialisations retain larger loss values. Additionally, the kernel distance

attains its maximum for positive λ , aligning with the results outlined in Sec. 3.4.

At convergence, the loss across all networks stabilises uniformly, irrespective

of initial conditions, confirming consistent convergence. This outcome aligns with

the theoretical expectation for linear networks under gradient flow, which predictably

converge to the same solution. Furthermore, in square networks, the kernel distance

peaks at λ = 0 (results corresponding to the green curve in Fig. 3.6B.) This obser-

vation illustrates that the regime at λ = 0 is consistently rich, independent of the
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absolute scale as predicted by our theoretical results in Theorem A.3.4. For funnel

and anti-funnel networks, the kernel distance exhibits an antisymmetric pattern. In

the anti-funnel network, the kernel distance depends mostly on λ , achieving high

values for positive λ and approaching zero for negative λ (matching the results in

Fig. 3.6B ( pink line)). Conversely, in the funnel network, the kernel distance is

high for negative λ and approaches zero for positive λ , corroborating the results in

Fig. 3.6B. (blue line). These results emphasise the interplay between relative and

absolute scales, highlighting their critical roles in determining the system’s behavior.

Altogether, the absolute scale and relative scale of the weights play a critical role in

describing the phase portrait of the learning regime, as first demonstrated in Kunin

et al. [158].

Figure A.6: Anti-funnel network: Phase plots showing (left) the logarithmic kernel distance
of the NTK from initialisation and (right) the corresponding logarithmic loss
as functions of the relative scale λ and the absolute scale. (Top to bottom)
Different time steps during training t = 1, t = 400, t = 4000.

A.3.6.2 Rapid Rich regime

Under the assumptions of Theorem A.3.4, the network function acquires a rich

task-specific internal representation at convergence, that is WT
1 W1 = ṼS̃ṼT and
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Figure A.7: Funnel network: Phase plots showing (left) the logarithmic kernel distance
of the NTK from initialisation and (right) the corresponding logarithmic loss
as functions of the relative scale λ and the absolute scale. (Top to bottom)
Different time steps during training t = 1, t = 400, t = 4000.

W2WT
2 = ŨS̃ŨT . Therefore, there exist initial states with large zero-balanced

weights that lead to rich solutions.

We more quantitatively capture this phenomena in Fig. A.8. We define the error

on the internal representation ||WT
1 W1− ṼS̃ṼT ||2F and ||W2WT

2 − ŨS̃ŨT |2F for W1

and W2 respectively. Effectively, we measure the richness of the representation and

in turn it’s generalisation ability. In Fig. A.8, the error remains zero for increasing

the gain for any network initialised with zero-balanced weights. In other words,

the representation at convergence is rich. In contrast, for random initialisation the

error increases with increasing gain. As the network is moving away from the small

random weight initialisation, the network converges to lazier representation.
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A B

Figure A.8: A.B Mean and standard deviation on the error on the internal representation error
defined as in Sec. A.3.6.2 for the learning the living kingdom task (Fig. 3.10A),
a random 7×7 matrix (blue), a random 5×7 matrix (yellow), a 7×5 matrix
(green), a 8× 8 matrix (red). All the task ran were ran with learning rate
η = 0.001 enforcing initial zero-balanced weights (Assumption 4) (dotted line)
and breaking the assumption of zero-balanced initial weights (line). Nh = 10
for all networks.

A.4 Applications

A.4.1 Continual learning

We consider the case of training a two-layer deep linear network on a sequence of

tasks Ta, Tb, Tc, ... with corresponding correlation functions Ta = Σ̃ΣΣ
yx
a , Tb = Σ̃ΣΣ

yx
b ....

Then, the full batch loss of the i-th task at any point in training time is

Li =
1

2P
||W2W1Xi−Yi||2F . (A.256)

From Theorem A.3.3 it follows that after training the network to convergence on task

T j, the network function is W2W1 = ŨS̃ṼT = Σ̃ΣΣ
yx
j . Further, using the assumption of

whitened inputs (Assumption 1) and the identities ||A||2F = Tr(AAT ) and Tr(A)+

Tr(B) = Tr(A+B), the full batch loss of the i-th task is then
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Hence, the extent of forgetting, denoted as Fi for task Ti during training on task Tk

subsequent to training the network on task T j, specifically, the relative change in

loss, is entirely dictated by the similarity structure among tasks.

Fi
(
T j,Tk

)
= Li (Tk)−Li

(
T j
)

=
1
2

∥∥∥Σ̃ΣΣ
yx
k − Σ̃ΣΣ
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i
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F
+ c− 1

2
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It is important to note that the amount of forgetting is a function of the weight

trajectories. Therefore, we have analytical solutions for trajectories of forgetting.

A.4.2 Reversal learning

In the following discussion, we assume that the input and output dimensions are

equal. We denote the i-th columns of the left and right singular vectors as ui, ũi,

and vi, ṽi, respectively. Reversal learning occurs when both the task and the initial

network function share the same left and right singular vectors, i.e., U = Ũ and

V = Ṽ, with the exception of one or more columns of the left singular vectors, where

the direction is reversed: −ui = ũi. It is important to note that if a reversal occurs in

the right singular vectors, such that −vi = ṽi, this can be equivalently represented

as a reversal in the left singular vectors, as the signs of the right and left singular



A.4. Applications 225

vectors are interchangeable.

In the reversal learning setting, both B = S2ŨT Ũ(G̃+ H̃G̃)+S1VT Ṽ(G̃− H̃G̃)

and C = S2ŨT Ũ(G̃− H̃G̃)−S1VT Ṽ(G̃+ H̃G̃) are diagonal matrices.

In the case where lambda is zero the diagonal entries of C are zero if the

singular vectors are aligned and non zero if they are reversed. Similarly, diagonal

entries of B are non-zero if the singular vectors are aligned and zero if they are

reversed. Therefore, in the case of reversal learning, B is a diagonal matrix with 0

values and thus is not invertible. As a consequence, the learning dynamics cannot be

described by Eq. A.101. However, as B and C are diagonal matrices, the learning

dynamics simplify. Let bi, ci, si and s̃i denote the i-th diagonal entry of B, C, S and

S̃ respectively, then the network dynamics can be rewritten as

W2W1(t) =
1
2

Ũ
[
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t
τ BT +(G̃− H̃G̃)e−S̃λ
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It follows, that in the reversal learning case, i.e. b= 0, for each reversed singular

vector, the dynamics vanish to zero

lim
t→∞

−sλ ic2
i s̃ie−4s̃λ i

t
τ

4s̃λ ,ie−2s̃λ i
t
τ + sic2

i

(
e−2s̃λ i

t
τ − e−4s̃λ i

t
τ

) ũiṽT
i = 0. (A.260)

Analytically, the learning dynamics are initialised on and remain along the
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separatrix of a saddle point until the corresponding singular value of the network

function decreases to zero and stays there, indicating convergence to the saddle point.

In numerical simulations, however, the learning dynamics can escape the saddle

points due to the imprecision of floating-point arithmetic. Despite this, numerical

optimisation still experiences significant delays, as escaping the saddle point is

time-consuming [168]. In contrast, when the singular vectors are aligned (c = 0),

the equation governing temporal dynamics, as described in Saxe et al. [243], is

recovered. Under these conditions, training succeeds, with the singular value of the

network function converging to its target value.

lim
t→∞

Ni

∑
i=1

sλ ib2
i s̃λ i

4s̃λ ie−2s̃λ i
t
τ + sλ ib2

i

(
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t
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) ũiṽT
i =

sλ ib2
i s̃λ i

sλ ib2
i

ũiṽT
i

= s̃λ iũiṽT
i . (A.261)

Figure A.9: Plot showing the steps to convergence for two tasks: (1) the reversal learning
task and (2) a randomly sampled continual learning task across a range of λ

values. The reversal learning task exhibits catastrophic slowing at λ = 0.

In the case where λ is non-zero, the diagonal of C are also non-zero; this is true

regardless of whether they are reversed or aligned. Similarly, the diagonal entries of

B remain non-zero whether the singular vectors are aligned or reversed. Therefore,

when λ is non-zero reversal learning always succeeds as shown in Fig. A.9
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A.4.2.1 Exact learning dynamics in shallow networks

To provide a point of comparison to our deep linear network results, here we derive

a solution for the temporal dynamics of reversal learning in a shallow network. The

network’s weights are optimised using full batch gradient descent with learning rate

η (or equivalently time constant τ = 1/η) on the mean squared error loss given in

Eq. 3.2, yielding the first task dynamics

τ
d
dt

W = Σ̃ΣΣ
yx−WΣ̃ΣΣ

xx
, (A.262)

where Σ̃ΣΣ
xx and Σ̃ΣΣ

yx is the input and input-output correlation matrices of the dataset.

We define

SVD(W(0)) = USVT and SVD(Σ̃ΣΣ
yx
) = ŨS̃ṼT . (A.263)

motivating the change of variable W = UWVT . We project the weight into the basis

of the initialisation

τ
d
dt

UWVT =Σ̃ΣΣ
yx−UWVT

Σ̃ΣΣ
xx
, (A.264)

τ
d
dt

UWVT =UUT
Σ̃ΣΣ

yxVVT −UWVT
Σ̃ΣΣ

xx
, (A.265)

τ
d
dt

W =UT
Σ̃ΣΣ

yxV−WΣ̃ΣΣ
xx
. (A.266)

Under the assumption of whitened inputs (Assumption 1), the dynamics yields

τ
d
dt

W =UT
Σ̃ΣΣ

yxV−W. (A.267)

Defining Wii = bi the diagonal element of the matrix, encoding the strength

of the mode i transmitted by the input-to-output weight. Similarly, we write

(UT Σ̃ΣΣ
yxV)ii = ki. Assuming decoupled initial conditions, we obtain the scalar dy-

namics

τ
d
dt

bi = ki−bi (A.268)
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with solution

bi = ki(1− e
−t
τ )+b0

i e
−t
τ . (A.269)

Reverting the change of variable, the weight trajectory yields

W = UB(t)VT . (A.270)

This solution is very similar to the one proposed by Saxe et al. [247]. However,

the key here is that ki can have negative values. ki is negative whenever a vector is in

the opposite direction to the initialisation (as in the reversal learning setting). We

show in Fig. 3.12 that the analytical solution derived above matches the numerical

temporal dynamics. From Eq. A.269, we note that the shallow network cannot

display catastrophic slowing.

A.4.3 Transfer learning

Figure A.10: Transfer learning for different λ . A A new feature (such as ‘eats worms’) is
introduced to the dataset after training on the hierarchical semantic learning
task (Sec. 3.4.2). A randomly initialised row is added to W2 and trained
on a single item with the new feature (for example, the goldfish), with the
rest of the network frozen. The network is then tested on the transfer of
the new feature to other items, such that items closer to the goldfish in the
hierarchy are more likely to have the same feature. B The generalisation loss
on the untrained items with the new feature decreases as λ increases. C As λ

increases positively, networks better transfer the hierarchical structure of the
data to the representation of the new feature.
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We study how the representations learned for different λ initialisations impact

generalisation of properties of the data. To do this, we consider the case where a new

feature is associated to a learned item in a dataset and how this new feature may then

be related to other items based on prior knowledge. In particular, we first train each

network (for different values of−10≤ λ ≤ 10) on the hierarchical semantic learning

task in Sec. 3.4.2 and then add a new feature (e.g., ‘eats worms’) to a single item

(e.g., the goldfish) (Fig. A.10A), correspondingly increasing the output dimension to

represent the novel feature. In order to learn the new feature without affecting prior

knowledge, we append a randomly initialised row to W2 and train it on the single

item with the new feature, while keeping the rest of the network frozen. Thus, we

only change the weights from the hidden layer to the new feature which may produce

different behaviour depending on how the hidden layer representations vary based

on λ . After training on the new feature-item association, we query the network with

the rest of the data to observe how the new feature is associated with the other items.

We find that as λ increases positively, the network better transfers the hierarchy such

that it projects the feature onto items based on their distance to the trained item

(Fig. A.10B,C). For example, after learning that a goldfish eats worms, the network

can extrapolate the hierarchy to infer that another fish, or birds, may also eat worms;

instead, plants are not likely to eat worms. Alternatively, as λ becomes more negative,

the network ceases to infer any hierarchical structure and only learns to map the new

feature to the single item trained on. In this case, after learning that a goldfish eats

worms, the network does not infer that other fish, birds, or plants may also eat worms.

Interestingly, this setting highlights how asymmetries in the representations

yielded by different λ can actually benefit transfer and generalisation. This can be

shown by observing that the learning of a new feature association only depends on

the first layer W1. Let ŷyy f denote the vector of the representation of the new feature

f across items i in the dataset. Additionally, let W( f )T
2 be the new row of weights

appended to W2 which map the hidden layer to the new feature. Following Saxe

et al. [247], if w( f )T
2 is initialised with small random weights and trained on item H̃i,
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it will converge to

w( f )T
2 = H̃T

i WT
1 /∥W1H̃i∥2

2 (A.271)

ŷ f = (H̃T
i WT

1 W1H̃)/∥W1H̃i∥2
2 (A.272)

From this we can see that differences in the representations of the new feature across

items ŷ f across λ are only influenced by W1. In the case of the rich learning regime

where λ = 0, the semantic relationship between features and items is distributed

across both layers. Instead, when λ > 0, the second layer W2 exhibits lazy learning,

yielding an output representation W2WT
2 of a weighted identity matrix. However,

the first layer W1 still learns a rich representation of the hierarchy, albeit at a smaller

scaling. Furthermore in the λ > 0 case, learning of the hierarchy occurs in the first

layer, allowing it to more readily transfer this structure to the learning of a new

feature (which only depends on the first layer). Thus, in this case, the ‘shallowing’ of

the network into the first layer is actually beneficial. Finally, we can also observe the

opposite case when λ < 0. Here, rich learning happens in the second layer, while the

first layer is lazy and learns to represent a weighted identity matrix. As such, these

networks do not learn to transfer the hierarchy of different items to the new feature.

A.4.4 Fine-tuning

It is a common practice to pre-train neural networks on a large auxiliary task before

fine-tuning them on a downstream task with limited samples. Despite the widespread

use of this approach, the dynamics and outcomes of this method remain poorly

understood. In our study, we provide a theoretical foundation for the empirical

success of fine-tuning, aiming to improve our understanding of how performance

depends on the initialisation. We’re interested in understanding how changing the

λ -balancedness after pre-training may impact fine-tuning on a new dataset. We

use λPT to denote how networks are first initialised prior to pretraining, and λFT to

how they are re-balanced after pre-training and before fine-tuning on a new task.

Similar to the previous section, we first train each network (for different values

of −10 ≤ λPT ≤ 10) on the hierarchical semantic learning task. We then change
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Figure A.11: Fine-tuning performance on three tasks for different re-balancing λFT . A
After training on the hierarchical semantic learning task (Sec. 3.4.2), networks
are re-balanced and trained on one of three tasks: adding an existing feature
from one item to another item in the hierarchy (left), the reversal learning
task in Appendix A.4.2 (center), or a scaled version of the hierarchy where
each singular value is scaled by 2 (right). B Change in loss on the new task
across different λFT for different λPT . As λFT approaches 0, the loss on the
new task increases across all λPT . Interestingly, networks that are not re-
balanced prior to fine-tuning (λFT = /0) perform similarly to networks that are
re-balanced to the same values (λFT = λPT ). C Dynamics of the loss across
the first pre-training task and the new fine-tuning task. Networks re-balanced
to λFT = 0 consistently learn slower across all tasks compared to networks
that are re-balanced to larger magnitude values (|λFT |> 0 )

the λ -balancedness of each network (for different values of −10≤ λFT ≤ 10) and

retrain on a new dataset to observe how this impacts fine-tuning for different values

and compare to networks that are not re-balanced to some λFT (λFT = /0) after initial

pre-training. In particular, to reset the λ -balancedness of a pre-trained network to

λFT , we rescale the singular values of each layer (S1,S2) using the singular values

of the entire network function (S = UT W2W1V), while keeping the left and right

singular vectors of the network unchanged.

We consider three different tasks to fine-tune the networks on. In the first,

we add an existing feature from one item to another item in the hierarchy in order

to disrupt the structure of the left and right singular vectors. In the second task,
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we consider the same reversal learning task discussed in Appendix A.4.2, where

one column of the right singular vectors are reversed such that −vvvi = ṽvvi. Finally,

we consider a scaled version of the hierarchy where each singular value is scaled by 2.

Across all the tasks we consider, we consistently find that fine-tuning perfor-

mance improves as networks are re-balanced to larger values of λFT and, conversely,

decreases as λFT approaches 0. Networks re-balanced to λFT = 0 also learn more

slowly compared to |λFT |> 0. Interestingly, when studying networks that are not

re-balanced prior to fine-tuning (λFT = /0; but are first initialised prior to pretraining

to λPT ), we see that they perform similarly on the new tasks to networks that are

re-balanced to λFT = λPT .

In this work, we derive the precise dynamics of two-layer linear. While straight-

forward in design, these architectures are foundational in numerous machine learning

applications, particularly in the implementation of Low Rank Adapters (LoRA)[124].

A key innovation in LoRA is to parameterise the update of a large weight matrix

W ∈ Rd×d within a language model as ∆W = AB, the product of two low-rank ma-

trices A∈Rd×r and B∈Rr×d , where only A and B are trained. To ensure ∆W = 0 at

initialisation, it is standard practice to initialise A∼N (0,σ2) and B = 0 ( [124, 117].

It is noteworthy that this parameterisation, ∆W = AB, effectively embeds a two-layer

linear network within the language model. When r≪ d, this initialisation scheme

approximately adheres to our λ -balanced condition, with σ2 playing the role of the

balance parameter λ . Investigating how the initialisation scale of A and B influences

fine-tuning dynamics under LoRA, and connecting this to our work on λ -balanced

two-layer linear networks and their role in feature learning, represents an intriguing

avenue for future exploration. This perspective aligns with recent studies suggesting

that low-rank fine-tuning operates in a “lazy” regime, as well as work examining

how the initialisation of A or B affects fine-tuning performance [183, 117]. Our

framework offers a potential bridge to understanding these phenomena more com-

prehensively. While a detailed exploration of fine-tuning performance lies beyond
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the scope of this work, it remains an important direction for future research.

A.4.5 Revising structured knowledge

We assume that the network learn a first task with input-output correlation ΣΣΣ = USV.

We explore the dynamics of the deep network when learning a subsequent task with

input-output correlations Σ̃ΣΣ = ŨS̃Ṽ. Specifically, we show that the gradient step

increment is zero for the dimension of the eigen-basis when the two tasks are schema

consistent. We have

τ
d
dt

W1 =−WT
2 (Σ̃ΣΣ

xy−W2W1Σ̃ΣΣ
x
) (A.273)

τ
d
dt

W2 =−(Σ̃ΣΣ
yx−W2W1Σ̃ΣΣ

x
)WT

1 (A.274)

Assume whitened inputs for the second task (ie. Σ̃ΣΣ
x
= I ) and substituting Σ̃ΣΣ

xy
=

ŨS̃ṼT , we can rewrite Eq. A.274 and Eq. A.273 as

τ
d
dt

W1 =−WT
2 (ŨS̃ṼT −W2W1), (A.275)

τ
d
dt

W2 =−(ŨS̃ṼT −W2W1)WT
1 . (A.276)

We consider the first epoch of the second task. Therefore, we can rewrite Eq. A.276

and Eq. A.275 using the eigen-representation of the weights W1,W2 at the end of

the first task

τ
d
dt

W1 =−R
√

SUT (ŨS̃ṼT −U
√

SRT R
√

SVT ), (A.277)

τ
d
dt

W2 =−(ŨS̃ṼT −U
√

SRT R
√

SVT )V
√

SRT , (A.278)

which simplifies to

τ
d
dt

W1 =−(R
√

SUT (ŨS̃ṼT −USVT )), (A.279)

τ
d
dt

W2 =−(ŨS̃ṼT −USVT )V
√

SRT . (A.280)
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We consider the change variables to W1 and W2 where

W1 = RW1VT , (A.281)

W2 = UW2RT , (A.282)

giving

τ
d
dt

W1 =−(
√

SUT (ŨS̃ṼT V−US)), (A.283)

τ
d
dt

W2 =−(ŨS̃ṼT −USVT )V
√

S. (A.284)

Further simplifiying to

τ
d
dt

W1 =−(
√

S(UT ŨS̃ṼT V−S)), (A.285)

τ
d
dt

W2 =−(UT ŨS̃ṼT V−S)
√

S. (A.286)

The differential equation is equal to zero when

(UT ŨS̃ṼT V−S) = 0. (A.287)

We first observe that the equation above is satisfied by modes that share the same

eigenvectors and eigenvalues. If the modes of both W1 and W2 remain unchanged in

the initial step—that is, if their respective gradient updates are zero—the inequality

will continue to hold in all subsequent steps. However, when the input–output

correlations of the first and second tasks have different bases in their singular value

decompositions, we expect modifications to both eigenvalues and eigenvectors.

Consequently, replay can only reduce learning time when the two tasks share the

same eigenstructure, thereby motivating the replay algorithm.

A.5 Implementation and simulations
The details of the simulation studies are described as follows. Specifically, Ni, Nh,

and No represent the dimensions of the input, hidden layer, and output (target),
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respectively.

A.5.1 Lambda-balanced weight initialisation

In practice, to initialise the network with lambda-balanced weights, we use Algo-

rithm 1.

A.5.2 Tasks

In the following, we describe the different tasks that are used throughout the simula-

tion studies.

A.5.2.1 Random regression task

In the random regression task, the inputs X ∈ RNi×N are generated from a standard

normal distribution, X ∼ N (µ = 0,σ = 1). The input data X is then whitened to

satisfy 1
N XXT = I. The target values Y ∈ RNo×N are independently sampled from a

normal distribution with variance scaled according to the number of output nodes,

Y ∼N (µ = 0,α = 1√
No
). Consequently, the network inputs and target values are

uncorrelated Gaussian noise, implying that a linear solution may not always exist.

A.5.2.2 Semantic hierarchy

We use the same task as in Saxe et al. [243] and modify it to match the theoretical

dynamics. The modification ensures that the inputs are whitened. In the semantic

hierarchy task, input items are represented as one-hot vectors, i.e., X = I
8 . The

corresponding target vectors, yi, encode the item’s position within the hierarchical

tree. Specifically, a value of 1 indicates that the item is a left child of a node, −1

denotes a right child, and 0 indicates that the item is not a child of that node. For

example, consider the blue fish: it is a blue fish, a left child of the root node, a

left child of the animal node, not part of the plant branch, a right child of the fish

node, and not part of the bird, algae, or flower branches, resulting in the label

[1,1,1,0,−1,0,0,0]. The labels for all objects in the semantic tree, as shown in

Fig. 3.4 A, are given by:
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Algorithm 1 Get λ -balanced

1: function GET LAMBDA BALANCED(λ , in dim, hidden dim, out dim, σ = 1)
2: if out dim > in dim and λ < 0 then
3: raise Exception(’Lambda must be positive if out dim ¿ in dim’)
4: end if
5: if in dim > out dim and λ > 0 then
6: raise Exception(’Lambda must be positive if in dim ¿ out dim’)
7: end if
8: if hidden dim < min(in dim,out dim) then
9: raise Exception(’Network cannot be bottlenecked’)

10: end if
11: if hidden dim > max(in dim,out dim) and λ ̸= 0 then
12: raise Exception(’hidden dim cannot be the largest dimension if lambda

is not 0’)
13: end if
14: W1← σ · random normal matrix(hidden dim, in dim)
15: W2← σ · random normal matrix(out dim,hidden dim)
16: [U,S,Vt]← SVD(W2 ·W1)
17: R← random orthonormal matrix(hidden dim)

18: S2equal dim←
√(√

λ 2 +4 ·S2 +λ

)
/2

19: S1equal dim←
√(√

λ 2 +4 ·S2−λ

)
/2

20: if out dim > in dim then
21: S2←

[
S2equal dim 0

0 0hidden dim−in dim

]
22: S1←

[
S1equal dim

0

]
23: else if in dim > out dim then
24: S1←

[
S1equal dim 0

0 0hidden dim−out dim

]
25: S2←

[
S2equal dim 0

]
26: end if
27: init W2←U ·S2 ·RT

28: init W1← R ·S1 ·Vt
29: return (init W1, init W2)
30: end function
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Y = 8∗



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1



. (A.288)

The singular value decomposition (SVD) of the corresponding correlation

matrix, Σ̃ΣΣ
yx, is not unique due to identical singular values: the first two, the third and

fourth, and the last four values are the same. To align the numerical and analytical

solutions, this permutation invariance is addressed by adding a small perturbation to

each column yi, for i ∈ 1, ...,N, of the labels:

yi = yi ·
(

1+
0.1
i

)
, (A.289)

resulting in singular values that are nearly, but not exactly, identical.

A.5.3 Figure 3.1

Panels B illustrates three simulations conducted on the same task with varying

initial λ -balanced weights respectively λ = −2, λ = 0, λ = 2. The regression

task parameters were set with (σ =
√

10). The network architecture consisted

of Ni = 3, Nh = 2, No = 2,with a learning rate of η = 0.0002. The batch size is

N = 10. The zero-balanced weights are initialised with variance σ = 0.00001. The

lambda-balanced network are initialised with σxy =
√

1 of a random regression task

with same architecture.

On Panel C , we plot the balancedness W2(0)T W2(0)−W1(0)W1(0)T for a

two layer network initialised with LeCun initialisation with dimension Ni = 40 ,Nh=
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120 ,No=250

A.5.4 Figure 3.2

Panel A, B, C illustrates three simulations conducted on the same task with varying

initial λ -balanced weights respectively λ = −2, λ = 0, λ = 2 according to the

initialisation scheme described in Appendix A.5. The regression task parameters

were set with (σ =
√

10). The network architecture consisted of Ni = 3, Nh = 2,

No = 2 with a learning rate of η = 0.0002. The batch size is N = 10. The zero-

balanced weights are initialised with variance σ = 0.00001. The lambda-balanced

network are initialised with sigmaxy =
√

1 of a random regression task with same

architecture.

A.5.5 Figure 3.3

Panel A, B, C illustrates three simulations conducted on the same task with varying

initial λ -balanced weights respectively λ = −2, λ = 0, λ = 2 according to the

initialisation scheme described in Appendix A.5. The regression task parameters

were set with (σ =
√

12). The network architecture consisted of Ni = 3, Nh = 3,

No = 3 with a learning rate of η = 0.0002. The batch size is N = 5. The zero-

balanced weights are initialised with variance σ = 0.0009. The lambda-balanced

network are initialised with Σxy =
√

12 of a random regression task with same

architecture.

A.5.6 Figure 3.4

In Panel A presents a semantic learning task with the SVD of the input-output

correlation matrix of the task. U and V represent the singular vectors, and S contains

the singular values. This decomposition allows us to compute the respective RSMs

as USU⊤ for the input and VSV⊤ for the output task. The rows and columns in the

SVD and RSMs are ordered identically to the items in the hierarchical tree.

The results in Panel B display simulation outcomes, while Panel C presents

theoretical input and output representation matrices at convergence for a network

trained on the semantic task described in [243],. These matrices are generated using
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varying initial λ -balanced weights set at λ =−2, λ = 0, and λ = 2, following the

initialisation scheme outlined in Appendix A.5. The network architecture includes

Ni = 8, Nh = 8, and No = 8 with a learning rate of η = 0.001 and a batch size of

N = 8. Zero-balanced weights are initialised with a variance of σ = 0.00001, while

λ -balanced networks are initialised with σxy =
√

1 based on a random regression

task with the same architecture.

Panel D illustrates results from running the same task and network configuration

but initialised with randomly large weights having a variance of σ = 1.

In panel E, we trained a two-layer linear network with Ni = Nh = No = 4 on a

random regression task for λ ∈ [−5,−4,−3,−2,−1,0,1,2,3,4,5] to convergence.

Subsequently, we added Gaussian noise with µ = 0,σ ∈ [0,0.5,1] to the inputs (top

panel) or synaptic weights (bottom panel) and calculated the expected mean squared

error.

A.5.7 Figure 3.5

Fig. 3.5 panel A was generated by training a linear network with Ni = 5, Nh = 10,

No = 5 on the target Y as shown in Eq. A.194 (equal diagonal). The network was

initialised with σ = 0.1. The learning rate was η = 0.01.

Fig. 3.5 panel D, E and F was generated by training a linear network with

Ni = 2, Nh = 10, No = 2 on the target Y as shown in Fig. 3.5 C and input X = b f i.

The network was initialised with small σ = 0.00001, intermediate σ = 0.3 and large

σ = 2 synaptic weights. The learning rate was η = 0.0001.

A.5.8 Figure 3.6

Panel A illustrates schematic representations of the network architectures considered:

from left to right, a funnel network (Ni = 4, Nh = 2, No = 2), a square network

(Ni = 4, Nh = 4, No = 4), and an inverted-funnel network (Ni = 2, Nh = 2, No = 4).
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Panel B shows the Neural Tangent Kernel (NTK) distance from initialisation,

as defined in Fort et al. [91], across the three architectures shown schematically. The

kernel distance is calculated as:

K(t) = 1− ⟨K0,Kt⟩
∥K0∥F∥Kt∥F

. (A.290)

The simulations conducted on the same task with eleven varying initial λ -balanced

weights in [−9,9]. The regression task parameters were set with (σ =
√

3). The

task has batch size N = 10. The network has with a learning rate of η = 0.01. The

lambda-balanced network are initialised with σxy =
√

1 of a random regression task.

Panel C shows the Neural Tangent Kernel (NTK) distance from initialisation

for the funnel architectures shown schematically with dimensions Ni = 3, Nh = 2,

and No = 2. The simulations conducted on the same task with twenty one varying

initial λ -balanced weights in [−9,9]. The regression task parameters were set with

(σ =
√

3). The task has batch size N = 30. The network has with a learning rate

of η = 0.002. The lambda-balanced network are initialised with σxy =
√

1 of a

random regression task.

A.5.9 Figure 3.7

This figure presents a schematic of the Linear RNN model, which captures task

dynamics through time-dependent singular values. The input and output weight

matrices are denoted as W1 and W2, respectively, with Wh representing the recurrent

hidden weight matrix. The data correlation matrices ΣΣΣ
Y Xt maintain constant left and

right singular vectors, while their singular values St vary over time.

A.5.10 Figure 3.8

Phase plots depicting the kernel distance of the NTK from initialisation, computed

as

K(t) = 1− ⟨K0,Kt⟩
∥K0∥F∥Kt∥F

(A.291)
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as a function of trajectory length, which varies between [1,7], and initialisation

scale, which ranges from [0.01,1]. The plots compare LRNN models initialised with

weights that are (left) unaligned and (right) aligned dicribed bellow. The network

architecture consists of input, hidden, and output layers, each containing four units.

A.5.10.1 Structured task dynamics

To create data with input-output correlation matrices that have constant left and right

singular vectors and temporally-structured singular value dynamics, we similarly

reverse-engineer the equations in Eq. 3.32. We first generate random Gaussian input

centered at 0, which is then whitened.

The data singular values S1:T are created by setting the singular values in

each dimension α and at each trajectory timestep t according to the specified task

dynamics f (constant f (λα , t) = 1, exponential f (λα , t) = λ t
α , inverse-exponential

f (λα , t) = λ T−t
α ) and hyperparameters δα ,λα , such that sα,t = δα f (λα , t). We

generate constant left and right singular vectors U2,V1 by taking the SVD of a

random matrix. Finally, we create the output according to

YYY T =
T

∑
i=1

U2StV⊤1 XXX t (A.292)

A.5.10.2 Aligned LRNN

To initialise aligned LRNNs, we reverse-engineer the weight matrices starting from

the connectivity modes as described in Eq. 3.32. We specify the initialisation of

the connectivity modes (input, recurrent, output) as hyperparameters, which are the

diagonal matrices W1,Wh,W2. We then create orthogonal matrices R1, R2 =(R1)
−1

and use the left and right singular matrices U2,V1 of the data correlation matrices
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(see below in Appendix A.5.10.1) to form the weight matrices according to:

W1 = R1W1V⊤1 (A.293)

Wh = R2WhR⊤1 (A.294)

W2 = U2W2R⊤2 (A.295)

A.5.10.3 Unaligned LRNN

We create unaligned LRNNs by initialising the weights with a Gaussian distribution

of mean 0 and standard deviation σ/
√

Nin, where σ is a specified hyperparameter

and Ni is the row-size of the corresponding weight matrix.

A.5.10.4 Training

Networks are trained using gradient descent on the mean squared error and auto-

mated differentiation in order to compare our theoretical results with standard deep

learning approaches. We modify our learning timescale in the theory to account

for the additional scalars introduced by taking the mean over samples P and output

dimension No (τ = PNo/η , where η is the learning rate) when comparing to simula-

tion. Training was conducted for 30,000 epochs using a learning rate of 0.1, with

50 samples per run. All layers were trainable, and the kernel distance values were

averaged over five different seeds. Throughout training, the singular values remained

constant.

A.5.11 Figure 3.9

In panel A, we conducted an experiment to explore the relationship between relative

weight scale, absolute weight scale, and the network’s learning regime in a general

setting. The absolute scale of the weights in Fig. 3.9A is defined as the norm of

W2W1. Random initial weights with specified relative and absolute scales were gen-

erated, and the network was trained on a random input-output task. During training,

we calculated the logarithmic kernel distance of the NTK from initialisation and

the logarithmic loss. The kernel distance is calculated as: K(t) = 1− ⟨K0,Kt⟩
∥K0∥F∥Kt∥F

.

as defined in Fort et al. [2020]. These values were visualised as heat maps for
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λ ∈ [−9,9] and relative scales in (0,20]. The regression task parameters were set

with (σ =
√

3). The task has batch size N = 10. The network has with a learning

rate of η = 0.01. The lambda-balanced network are initialised with E[xyT ] = I of

a random regression task. Fig. 3.9A shows that a square (Ni = Nc) linear neural

network satisfying Assumption 2 (λ -balanced) only show amplifying dynamics

when the weights are balanced with small |λ |.

In panel B, the setup is identical to that of Fig. 3.9A except a few changes. We

used the linear neural network with Ni = 20,Nh = 20,No = 2. We randomly ini-

tialised W2,W1 (which do not satisfying the balanced condition) using symmetrised

initialisation [51] to set the initial function equal to the zero function. The layer

imbalance was implemented using the standard deviations σ1,σ2 used to initialise

the weights. To change the weight-to-target ratio, we used target downscaling in

the range [0.1,50]. The inputs are not whitened, as the dynamics remain largely

independent of the input distribution. Being so close to the target results in negligible

learning dynamics.

Code The codes used to plot Fig. 3.9 are based on the original codes of Domine

et al. [2024] with only minor changes. They are available at https://anonymous.

4open.science/r/linear_first-0FCA.

A.5.12 Figure 3.10

Panels C-F in Fig. 3.10 were generated by training a linear network with Ni = 8,

Nh = 14, No = 8 on the N = 8 items of the semantic hierarchy task. The learning

rate was η = 0.05 and the initial weights in panels C, D, and E were sampled from a

normal distribution with σ = 0.0001 and σ = 0.42 and zero-balanced weights with

σ = 0.44 respectively.

A.5.13 Figure 3.11

Fig. 3.11 panel A was generated by training a linear network with Ni = 5, Nh = 10,

No = 6 subsequently on four different random regression tasks with N = 25. The

learning rate was η = 0.05 and the initial weights were small (σ = 0.0001).

https://anonymous.4open.science/r/linear_first-0FCA
https://anonymous.4open.science/r/linear_first-0FCA
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Panels B were generated by running 50 simulations on two subsequent random

regression tasks, each with a different initial random seed. The simulation was

repeated three times, the first time with a linear, the second time with a tanh and

the last time with a ReLU activation function in the hidden layer. Dimension

were randomly sampled such that Ni ∈ [2,30], No ∈ [2,30], Nh = [min(Ni,No),30]

and N = 100. The standard deviation of the initial weight was chosen such that

σ = 0.5√
0.5(Ni+Nh)

. The learning rate was η = 0.075.

A.5.14 Figure 3.12

Fig. 3.12 panel A was generated by training a linear network with Ni = 4, Nh = 6,

No = 4 on a reversal learning task (see Sec. 3.5.2), which was derived from a random

regression task. The learning rate was η = 0.05 and initial weights had a standard

deviation of σ = 0.25. Panel B was generated by training a shallow linear network

(see Sec. A.4.2.1) on the same reversal learning task, with identical hyperparameters

as in panel A.

For the top and bottom rows of panels E-F a linear network with Ni = 8, Nh = 14,

No = 8 was trained on the semantic hierarchy task, followed by training the network

on the adapted semantic hierarchy as depicted in Fig. 3.12 C top, which is a reversal

learning task and the colour hierarchy respectively. The learning rate was η = 0.05

and σ was set to 0.001 and 0.35 respectively.



Appendix B

Appendix Chapter 4

B.1 Additional entropy phase diagrams
In Fig. 4.4 we show phase diagrams of the aggregate entropy as a function of

initialisation parameters, for both ReLU and sigmoidal networks. In Fig. B.1 below,

we show additional plots with the individual entropy terms (Hu defined over the unit

activations, and Hh defined over the head weights).

B.2 Diversity of forgetting curves

B.3 Implementation and simulation

B.3.1 Figure 4.1

Panel A illustrates the teacher-student setup, where a student network is trained

using labels generated by a fixed teacher network.

Panel B shows the student-teacher continual learning set up. To model continual

learning, a two-layer student network is trained sequentially on two distinct teacher

networks, each corresponding to a different task (Task 1 and Task 2). In this setup,

the student learns from the outputs of the teacher networks. The two student instances

share the same input weights but have separate output heads. The student’s initial

weights, denoted by IW and Ih, are parameterised by ΘW and Θh, respectively. This

figure is adapted from Fig. 1 in Lee et al. [167].
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Figure B.1: Additional Phase Diagrams. Here we show the equivalent phase diagrams
from Fig 4.4 for entropy measures over the unit activations and head weights.

B.3.2 Figure 4.2

Schematic representation of specialisation in the student-teacher setup. Saad and

Solla [238] showed that, when both teacher and student are modelled as committee

machines, each student neuron (yellow and blue) specialises by aligning with a

specific teacher neuron (yellow and blue). Similarly, Goldt et al. [106] observed that

for certain activation functions in two-layer networks, an over-parameterised student

will selectively use only a subset of those units to replicate the teacher’s outputs.

This phenomenon, termed specialisation, stands in contrast to a student redundantly

sharing representations of the teacher across neurons (green).

B.3.3 Figure 4.3

Data Preparation

The dataset is sampled from an independent and identically distributed (i.i.d.) Gaus-
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sian distribution with a mean of 0 and unit variance, assuming an infinite dataset size.

Both the teacher and student networks have the same input dimension and a single

output dimension.

Model Architecture

The teacher network consists of two hidden units with no bias, and its weights

are initialised from a Gaussian distribution. The student network has four hidden

units, also without bias. Its initialisation differs based on activation function: the

second-layer weights have low variance and magnitude for sigmoidal activation,

while they have high variance for ReLU activation.

Training Process

Training is performed using stochastic gradient descent (SGD) with a batch size of

1 for a total of 80 million steps. The optimisation process is guided by the mean

squared error (MSE) loss function. Both the hidden and head layers of the student

network are trainable, ensuring full network adaptation during training. The head

layer remains unchanged throughout training, as it is neither reset nor copied.

B.3.4 Figure 4.4

Data Preparation

The phase diagrams depict the aggregated entropy for various initialisations, with

color indicating different entropy levels. The dataset is drawn from an independent

and identically distributed (i.i.d.) Gaussian distribution with a mean of 0 and unit

variance, assuming an infinite dataset size.

Model Architecture

Both the teacher and student networks share the same input dimension of 10,000 and

an output dimension of 1. The networks utilise ReLU and sigmoidal nonlinearities.

The teacher has 1 hidden units, no bias, and initial weights sampled from a Gaussian

distribution with a mean of 0 and a standard deviation of 0.001. The student has
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two hidden units, no bias. The student is intialised with the polar cordinate methode

discibed in Eq. 4.24. The x-axis represents the standard deviation of the first

layer’s initialisation, while the y-axis corresponds to the norm of the second-layer

initialisation, expressed in polar coordinates. Different panels show varying angles,

ranging from orthogonal units (θ = 0) to identical units (θ = π/4). Blue-leaning

initialisations indicate specialised solutions, whereas yellow-leaning ones correspond

to high-entropy, non-specialised configurations.

Training Process

The training process is conducted using stochastic gradient descent (SGD) as the

optimiser, with a learning rate of 1.0. The model is trained for a total of 1,000,000

steps using a batch size of 1. The mean squared error (MSE) loss function is

employed to guide the optimisation process. Both the hidden and head layers of the

student network are trainable, ensuring that the entire network undergoes adaptation

during training. Additionally, the head layer is not reset or copied at any stage of

training.

B.3.5 Figure 4.5

Data Preparation

The dataset is generated from independent and identically distributed (i.i.d.) sample

of a Gaussian distribution with a mean of 0 and variance of 1, assuming an infinite

dataset size.

Model Architecture

Both the teacher and student networks have an input dimension of 10,000 and an

output dimension of 1. The networks utilise sigmoidal nonlinearities. The teacher

network consists of a single hidden unit, no bias and initial weights sampled from

a Gaussian distribution with a mean of 0. The student network has two hidden

units and no bias. The initialisation follows the polar coordinate method outlined

in Eq. 4.24, as shown in the accompanying figure. The weights of the first layer

are initialised with zero mean and a variance of 0.001. The similarity between the
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teacher is controled by Eq. 4.2.

Training Process

Training is performed using stochastic gradient descent (SGD) with a learning rate

of 1.0, and the model is trained until convergence. The mean squared error (MSE)

loss function is used to guide the learning process. Both the hidden and head layers

of the student network are trainable, allowing the entire network to adapt throughout

training.

B.3.6 Figure 4.6

Data Preparation

The input data is sampled from an independent and identically distributed (i.i.d.)

Gaussian distribution with zero mean and unit variance, assuming an infinite dataset

size. No noise is added to the student inputs or teacher outputs. The input dimension

is set to 10,000 and the output dimension is 1 for both student and teacher networks.

Two teachers are used in this continual learning setup.

Model Architecture

The teacher network has a single hidden unit and no bias, with weights initialised

from a Gaussian distribution with zero mean and unit variance. The student network

consists of two hidden units, also without bias. The input weights are initialised

from a Gaussian with mean 0 and standard deviation 0.001. The head of the student

network is initialised using the polar method, with different norms and angles

assigned for each task, ensuring task-specific readouts. The input layer is shared

across tasks, while the output heads are task-specific.

Training Process

Training is performed using stochastic gradient descent (SGD) with a batch size of 1

and a fixed learning rate of 1.0, for a total of 10 million steps. The mean squared

error (MSE) is used as the loss function. Both the hidden and head layers of the
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student network are trainable. At the task switch point, the head is not copied. EWC

is applied for continual learning, with node-level importance and a regularisation

strength shown in the figure.

B.3.7 Figure 4.7

We conduct our experiments using open-source frameworks [177, 1]. Specifically, we

implement a beta-VAE with the ”DeepGaussianLinear” architecture for the decoder

and ”DeepLinear” for the encoder. We modify the Xavier initialisation where the

weights of the linear layers will have values sampled from U(−a,a) with

a = gain×
√

6
fan in+ fan out

We vary the gain between 0.3 and 3 and run each experiment over 4 seeds. All

network parameters are set to their default values as provided by the respective

open-source frameworks. We run the experiments for 20 Epochs and 157499

iterations.

DCI Disentanglement

Eastwood and Williams [80] define three key properties of learned representations:

Disentanglement, Completeness, and Informativeness. To assess these, they calculate

the importance of each dimension of the representation in predicting a factor of

variation. This can be done using models like Lasso or Random Forest classifiers.

Disentanglement is computed by subtracting the entropy of the probability that

a representation dimension predicts a factor, weighted by its relative importance.

Completeness is similarly measured, focusing on how well a factor is captured by the

dimensions. Informativeness is evaluated as the prediction error of the factors. We

use the implementation in Locatello et al. [177]. In this implementation, we sample

10,000 training and 5,000 test points, then use gradient-boosted trees from Scikit-

learn to obtain feature importance weights. These weights form an importance matrix,

with rows representing factors and columns representing dimensions. Disentangle-

ment is calculated by normalising the columns of this matrix, subtracting the entropy
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from 1 for each column, and then weighting by each dimension’s relative importance.

B.3.8 Figure 4.8

In our experiments the VAE has 16 hidden neurons. These 16 neurons become

the input (and output) to the SAE. The SAE then projects this up to a latent space

of dimension 2048 which has a ReLU activation function. For our baseline, we

train the SAE with the typical L2 reconstruction loss and L1 regularisation on the

hidden activity. We calculate the sparsity across the dataset as the average number

of datapoints the hidden neurons respond to, over the 60000 datapoints:

1
2048

2048

∑
i=1

60000

∑
j=1

1(Hi j) (B.1)

To initialise the layers of the iSAE and SAE we define an imbalance parameter

υ (note that this is not the same hyper-parameter as the λ notation employed in the

main text and is defined purely for practicality in this experiment). The encoder

weights are initialised by sampling from a Gaussian with standard deviation σ =

0.001 1
υ

. The decoder weights are sampled from a Gaussian with standard deviation

σ = 0.001υ . Thus, as υ increases the decoder is initialised with increasingly large

weights compared to the decoder.

B.3.9 Figure 4.9

Gabor Filters

We are training a small ResNet based on the CIFAR10 script provided in the DAWN

benchmark (code available here). The only modifications to the provided code base

are we increase the convolution kernel size from 3×3 to 15×15, to better observe

the learned spatial patterns, and we set the weight decay parameter to 0 to avoid

confounding variables. Moreover, we are dividing the convolutional filters weights

by a parameter α (after standard initialisation) which controls the balancedness of

the network. To quantify the smoothness of the filters, we compute the normalised

Laplacian of each filter wi j ∈R15×15, over input i=(1,2,3) and output j =(1, ...,64)

https://github.com/davidcpage/cifar10-fast
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channels

smoothness(wi j) :=
∥∥∥∥ wi j

∥wi j∥2
∗∆

∥∥∥∥2

2
(B.2)

where the Laplacian kernel is defined as

∆ :=


−0.25 −0.5 −0.25

−0.5 2 −0.5

−0.25 −0.5 −0.25

 . (B.3)
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Figure B.3: Interpreting convolutional filters. CNN experiments on CIFAR10. We can see
in A) that all networks achieve comparable training and test accuracy, despite
the modification in initialisation. However, in B) we see that networks with
a small initialisation (α < 1) learn much smoother filters, giving quantiative
support to results in Fig. 4.9. The smoothness is defined as the normalised
Laplacian of the filters (see text, Eq. B.2).

Grokking

We are training a one layer transformer model on the modular arithmetic task in

Power et al. [218]. Our experimental code is based on an existing Pytorch imple-

mentation (code available here). The only modifications to the provided code base

is that we use a single transformer layer (instead of the default 2-layer model).

Prior analysis in Nanda et al. [204] has shown that this model can learn a minimal

(attention-based) circuit that solves the task.

We study the effects on grokking time (defined as ≥ 0.99 accuracy on the

validation data) of two manipulations. Firstly, we divide the embedding weights of

the positional and token embeddings by the same balancedness parameter α as in

https://github.com/teddykoker/grokking
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the CNN gabor experiments. Secondly, like in Kumar et al. [155], we multiply the

output of the model (i.e., the logits) by a factor τ and divide the learning rate by τ2.
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Figure B.4: Transformer Grokking in Modular Arithmetic Task. A) Shows the number
of training steps required until the training accuracy passes a predefined thresh-
old of 99%; we sample scaling τ ∈ {0.5,0.75,1.0,1.25,1.5} [155] and balance
α ∈ {0.1,0.3,1.0,3.0,10} on a regular grid over n = 5 random initialisations
with a maximal computational budget of m = 30,000 training steps. B) Same as
A), but reporting the number of training steps required until the test performance
passes the predefined threshold of 99%. We clearly see the fastest grokking in
an unbalanced rich setting.

B.3.10 Figure 4.10

This experiment involves training a neural network on a subset of the MNIST dataset

and analysing how different nodes contribute to learning. The key steps in the

process are as follows:

Data Preparation

The MNIST dataset, which consists of handwritten digits, is downloaded and trans-

formed into tensors. A subset of the dataset is created by selecting only specific digit

classes (e.g., digits 0-4 for initial training). The selected data is split into training

(80%) and validation (20%) sets, and corresponding data loaders are created.

Model Architecture

A two layer neural network is defined with an input layer of 784 neurons (corre-

sponding to 28× 28 pixel images), one hidden layer, and two output layers. The
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activation function used is the sigmoid function. The second-layer weights are

initialised using a combination of uniform and normal distributions, with different

variance levels.

Training Process

The model is trained using stochastic gradient descent (SGD) with a momentum

factor. The experiment is run multiple times with different random seeds using

multiprocessing, ensuring robustness in results. The initial task involves training on

the base dataset (digits 0-4).
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Figure B.2: Initialisation can lead to a diversity of specialisation dynamics and a di-
versity of relationships between forgetting and task similarity. R,σW fixed,
θ (1),θ (2) measured in increments of π/16. Scaled error function, P∗ = 1,P = 1.
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Andrew Saxe, and Surya Ganguli. Get rich quick: exact solutions reveal how

unbalanced initializations promote rapid feature learning. Advances in Neural

Information Processing Systems, 37:81157–81203, 2025.

https://arxiv.org/abs/1711.00848


BIBLIOGRAPHY 275

[159] Aarre Laakso and Garrison Cottrell. Content and cluster analysis: assessing

representational similarity in neural systems. Philosophical psychology, 13

(1):47–76, 2000.

[160] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J

Gershman. Building machines that learn and think like people. Behavioral

and brain sciences, 40:e253, 2017.

[161] Andrew K Lampinen and Surya Ganguli. An analytic theory of generaliza-

tion dynamics and transfer learning in deep linear networks. arXiv preprint

arXiv:1809.10374, 2018.

[162] Janne K Lappalainen, Fabian D Tschopp, Sridhama Prakhya, Mason McGill,

Aljoscha Nern, Kazunori Shinomiya, Shin-ya Takemura, Eyal Gruntman,

Jakob H Macke, and Srinivas C Turaga. Connectome-constrained networks

predict neural activity across the fly visual system. Nature, pages 1–9, 2024.

[163] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied

to handwritten zip code recognition. Neural computation, 1(4):541–551,

1989.
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