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Abstract

This thesis explores optimal individualized treatment allocation in social network settings.

The first chapter studies the individualized vaccine allocation under limited supply within

a heterogeneous SIR network framework, leveraging social network data containing indi-

vidual demographic characteristics and health status. By exploiting submodularity of the

allocation problem, it devises a novel greedy algorithm to assign the treatment, with theoret-

ical performance guarantees. Simulation results underline the importance of accounting for

spillover effects when targeting vaccinations.

The second chapter focuses on treatment allocation in sequential decision games of in-

teracting agents, where stationary distributions of outcomes follow Gibbs distributions. To

overcome the analytical and computational challenges of direct optimization, it employs a

variational approximation to characterize and estimate optimal treatment policies. I charac-

terize the performance of the variational approximation, deriving a performance guarantee

for the greedy optimization algorithm via a welfare regret bound. I implement our proposed

method in simulation exercises and an empirical application using the Indian microfinance

data (Banerjee et al., 2013), and show it delivers significant welfare gains.

The third chapter examines treatment allocation in large-scale simultaneous decision

games with strategic complementarities. I introduce a maximin optimal treatment alloca-

tion rule that remains robust to the presence of multiple Nash equilibria. Remaining agnostic

about the specific selection rule, I derive a closed-form expression for the boundary of the

identified set of equilibrium outcomes. To address the incompleteness that emerges from

unspecified selection, I propose a policy maximizing worst-case welfare. A greedy algorithm

is used for implementation, with theoretical performance guarantees established through a

welfare regret bound that accounts for both sampling uncertainty and the use of a greedy

algorithm. Finally, I demonstrate this method with an application to the microfinance dataset

of Banerjee et al. (2013).
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Impact Statement

This thesis explores how individualised treatment allocation on social networks reshapes wel-

fare, inequality and policy design. Because treatments received by one agent propagate

through network spillovers, traditional “one-person-at-a-time” rules waste scarce resources

and can even widen disparities. I study this problem across three complementary settings

and show how modern optimisation and econometric tools translate into actionable guid-

ance for health authorities, NGOs, and regulators.

Chapter 1. I develop a heterogeneous–SIR model that embeds detailed network data and

prove that the planner’s welfare objective is submodular. This property lets us replace infeasi-

ble brute-force searches with a simple greedy algorithm that enjoys a 63% worst-case guaran-

tee yet, in simulations, achieves virtually the global optimum. When applied to vaccine tar-

geting, the rule lifts expected health welfare by 4–12% over random or demographically-based

strategies. The result provides health agencies with a ready-to-use tool for distributing lim-

ited doses during pandemics or seasonal outbreaks.

Chapter 2. Turning to sequential network games—relevant for micro-finance adoption, agri-

cultural innovations and other behaviours where decisions unfold over time—I introduce a

variational approximation to the equilibrium Gibbs distribution, derive regret bounds, and

embed both in a greedy assignment routine. Using Indian village data, the algorithm raises

predicted loan uptake by an average 41% (and up to 137%) relative to the NGO’s historical

practice. Practitioners can therefore amplify development interventions without additional

subsidies, simply by re-ordering whom they target first.

Chapter 3. I tackle the pervasive problem of multiple equilibria. A maximin allocation rule

is proposed that maximises worst-case welfare, together with closed-form expressions for

the identified set of outcomes. This offers regulators and competition authorities a defen-
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sible benchmark when uncertainty about strategic behaviour—e.g. in technology adoption

or vaccination take-up—might otherwise stall action. Again using the Indian village data,

our method achieves notably higher welfare levels, with average improvements of 116% even

when multiple equilibria are present.

Societal benefits. Health ministries can embed the SIR-based routine in dashboards for

real-time vaccine allocation. Development agencies and social enterprises can deploy the

sequential-game tool to allocate interventions while accounting for stationary spillovers. Pol-

icymakers can remain agnostic about behavioural-equilibrium uncertainty yet still obtain ro-

bust welfare gains through the maximin rule.

Overall, the thesis provides scalable, open-source algorithms and rigorous performance

guarantees that help translate complex network interactions into effective, equitable and

resilient policy actions.
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Chapter 1

Who Should Get Vaccinated?

Individualized Allocation of Vaccines

Over SIR Network

1.1 Introduction

Allocation of a resource over individuals who interact within a social network is an important

task in many fields, such as economics, medicine, education, and engineering (Lee et al.

(2020), Banerjee et al. (2013), among others). One of the important policy decisions of this

sort in pandemic times is how to allocate vaccines over heterogeneous individuals to control

the spread of disease and protect the lives of vulnerable. It is crucial for the vaccine allocation

rule to take into account the spillover effect of cutting transmission of the disease.

Since the start of COVID-19 pandemic, governments around the world have gone to great

lengths to collect network data in which one can trace who is contacting whom. Motivated

by these observations, we study how to estimate optimal individualized allocations of vac-

cines under capacity constraint, using micro-level social network data. Data is informative

about the covariates of N units, their health status, and their associated neighbors. Using in-
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sample information, we evaluate the risk to each unit, calculated from its own covariates and

spillovers from its heterogeneous neighbors, using an individualized Susceptible-Infectious-

Recovered model. The purpose of vaccine allocation is to maximize public health, by select-

ing units to be vaccinated. Obtaining an optimal assignment is, however, challenging since

whether a treatment is optimal for an individual depends on which treatments are given to

her neighbors. This implies that the search for an optimal allocation has to be performed

over the entire network jointly, not individually.

This paper makes two main contributions. The first contribution is to develop methods

to estimate vaccine assignment policies that exploit network information at the micro-level.

The second contribution is to show that the empirical welfare criterion built upon the SIR

spillover structure delivers a submodular objective function, which we exploit to obtain com-

putationally attractive algorithms to solve the welfare optimization problem. Distinct from

the existing approach of estimating individualized allocation policies under network interfer-

ence (Viviano, 2019; Ananth, 2020a), our setting does not assume the availability of Ran-

domized Control Trial (RCT) data. Instead, we assume the availability of estimated values of

these spillover parameters from other sources, which we plug into our SIR model. Exploit-

ing already estimated SIR parameter values for immediate targeting and allocation is useful

when time is of the essence and the need for policy action is pressing, and avoids the cost of

running an RCT.

To optimize the empirical welfare of allocation policies, one naive approach is to evaluate

the value of empirical welfare exhaustively for all possible combinations of vaccine alloca-

tions over individuals. We refer to this as the brute-force approach. Although the brute-force

approach is guaranteed to optimize the empirical welfare, it is not practicable since the num-

ber of possible combinations grows exponentially as the number of individuals in the network

increases. On the other hand, giving up on optimization entirely and implementing random

allocation is indeed practicable, but leads to a significant waste of the vaccine supply, which

we show in our simulation exercises.
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Given the challenge in optimizing the empirical welfare, what we recommend in this pa-

per is an allocation policy obtained by greedy optimization. A greedy optimization algorithm

in the current setting is to sequentially allocate a vaccine to an individual in the network

who is most influential for improving the social welfare. In general, greedy algorithms are

not guaranteed to yield an optimum. With the current welfare criterion built upon the SIR

spillover structure, however, we can obtain a non-decreasing submodular objective function.

Relying on the seminal result in discrete convex analysis shown by Nemhauser et al. (1978),

we show that the greedy algorithm delivers an allocation policy at which the value of the

objective function is worse than the optimum only up to a universal constant factor, indepen-

dent of the spillovers, size, and density of the SIR networks. Our derivation of the population

welfare regret of the greedily estimated allocation policy reflects the potential loss of welfare

due to non-feasibility of obtaining the brute-force allocation policy.

We further illustrate the advantages of our method in our simulation exercises. In a

small network setting (up to 35 individuals in the network), comparisons with the brute-

force allocation rules reveal that our proposed greedy allocation rules leads to an optimal

solution. In a large network setting, we evaluate the performance of our method versus two

different assignment rules : random assignment, and targeting without considering network

information. The welfare improvement relative to these two baselines ranges over 4% - 12%,

and this result is insensitive to the values of SIR parameters and the size and density of

network.

To assess how uncertainty in the SIR parameter estimates affect the welfare performance

of the estimated policy, we derive a uniform upper bound of the welfare regret of our vaccine

allocation rule and its convergence rate with respect to the size of the sample used for ob-

taining the SIR parameter estimates. The uniform upper bound of regret depends upon two

things. Firstly, n, which is the sample size of the separate dataset used to estimate the SIR

parameters. Secondly, the ratio of the network data sample size N to the maximum number

of neighbors NM plus the minimum between the number of infected units NI and the number
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of available vaccine doses d (i.e., (dmin{NM , d} + 2dNM + min{NI , d})/N). As NM and NI

grow, the complexity and risk of the social network increase, which can reduce the welfare

regret performance of the estimated vaccine allocation rule.

The remainder of this paper is organized as follows. We first discuss the relevant literature

in the rest of this section. Section 2 details various models, and the HI-SIR model in particular,

and the wider setting. Section 3 is concerned with estimation, including the estimation of

SIR parameters and the construction of the QIP problem. The optimization procedure is

contained in section 4. Section 5 contains the theoretical results. Simulation details are

shown in Section 6, and Section 7 concludes. All proofs and derivations are shown in the

appendix.

1.1.1 Related Literature

Our work contributes to the literature on statistical treatment rules, which was first intro-

duced into econometrics by Manski (2004). The optimal treatment allocation regime has

been studied in many fields, such as medical statistics (Zhao et al., 2012, 2015), operational

research (Loiola et al., 2007) and economics. Following the pioneering works of Hannan

(1957) and Savage (1951),1 researchers in econometrics and machine learning often use

regret to evaluate the performance of decision rules. The recent literature of statistical treat-

ment rules includes Dehejia (2005), Hirano and Porter (2009), Stoye (2009, 2012), Tetenov

(2012), Bhattacharya and Dupas (2012), Kitagawa and Tetenov (2018), Zhou et al. (2018),

Manski (2019), Kasy and Sautmann (2019), Athey and Wager (2020), Kock et al. (2020),

Mbakop and Tabord-Meehan (2021), Manski and Tetenov (2021), Sakaguchi (2021), and

Kitagawa et al. (2021) among others. The planner’s objective function in the majority of

these works is a sum of individual outcomes under the no-interference assumption (i.e., Sta-

ble Unit Treatment Value Assumption of Rubin (1974)). This assumption does not hold in this

1Hannan (1957) considers regret-minimizing strategies in the context of zero-sum and sequential games.
Savage (1951) introduces minimax-regret rules to the statistical decision theory.
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study because of the network spillover effects that are present. To our knowledge, there are

only two other papers that also consider the network setting in statistical treatment choice,

which are Viviano (2019) and Ananth (2020a). These two papers assume the availability

of pilot data from RCT studies performed over networks in order to form empirical welfare

criteria. Their frameworks are not restricted to the SIR setting of the current paper and

cover spillover structures commonly assumed in social science applications. In contrast, our

approach forms welfare estimates by imposing the HI-SIR model structure and plugging in

values of the primitive spillover parameters that are estimated or calibrated in some external

study (e.g., Baqaee et al. (2020)). Another notable difference is that we consider allocation

policies that are not constrained other than via the capacity constraint, while Viviano (2019)

and Ananth (2020a) assume the class of implementable allocation policies has a finite VC-

dimension to control overfitting to the training RCT sample.

The SIR model was originally proposed by Kermack and McKendrick (1927), and is

now the workhorse model in the epidemiological literature. Many extended versions have

been studied in epidemiological analyses, such as the Susceptible-Infected-Susceptible model

(Nåsell, 1996) and the Susceptible-Exposed-Infected-Recovered model (Li and Muldowney,

1995). During the global pandemic, an epidemological literature has sprung up within eco-

nomics. Atkeson (2020) and Stock (2020) introduced the SIR model into economics to study

the implications of the current pandemic on the US economy. We introduce heterogeneity into

the SIR model, which is similar to what Acemoglu et al. (2020) does in studying the Multi-

Risk SIR model. That paper assumes, however, that the infection rate after the release of a

vaccine equals zero, which means it does not consider the vaccine allocation problem. Our

work contributes to the current literature by studying micro-level vaccine assignment rules in

a heterogeneous SIR model with network information. In contrast, the existing works ana-

lyzing vaccine allocation rules focus on solving for the optimal proportion of vaccinated units

in the population (Pastor-Satorras and Vespignani (2002), Manski (2010, 2017)). Chen et al.

(2020) analyzes vaccine allocation using a heterogeneous SIR model, while they consider
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vaccine allocation policies at the group-level rather than the individual-level.

We build a connection to the literature on using a submodular function to solve an op-

timization problem. The performance guarantee of a general greedy algorithm for solving

submodular maximization problems with a cardinality constraint was first established by

Nemhauser et al. (1978). The later literature links the cardinality constraint to a more general

constraint : Matroid constraint (Fisher et al., 1978; Cunningham, 1985). See Bach (2011)

and Krause and Golovin (2014) for overviews of papers studying optimization of submodular

functions. In this work, we discuss a submodular function with a uniform matroid constraint

(i.e., capacity constraint) and a more general partition matroid constraint.

We notice that our approach to vaccine allocation problem is related to the influence max-

imization problem first formulated by Kempe et al. (2003). Chen et al. (2010) investigates

submodularity of objective functions and greedy optimization algorithms in this problem.

Applications of the influence maximization problem include targeting for viral marketing

(Domingos and Richardson, 2001) and optimal information spread in social network (Bak-

shy et al., 2011). There are two widely studied information diffusion models in this literature:

Independent Cascade Model (Goldenberg et al., 2001) and Linear Threshold Model (Granovet-

ter, 1978). Despite some similarity between the diffusion models and our SIR model, this

literature has not considered individualized vaccine allocation problem.

We also note that there is a growing literature on estimation of treatment effects un-

der network interference. Manski (2013) discusses identification of treatment effects and

spillover effects under a deterministic interference graph and a set of relevant potential out-

comes. The increased number of network datasets that have recently become available has

motivated further work on this topic, including Sävje et al. (2017), Aronow et al. (2017),

Athey et al. (2018), Basse et al. (2019), and Leung and Moon (2019). Li and Wager (2020)

non-parametrically estimates direct and indirect effects of treatment in a random network

setting. Vazquez-Bare (2020) analyzes estimation of spillover effects using an instrument

variable. See Kline and Tamer (2020) and Graham and De Paula (2020) for recent reviews
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on econometric analysis in the presence of social interactions.

1.2 Setup and Identification

We consider a basic model to study the vaccination allocation problem. Let us first introduce

the timeline and data setting that we consider in this work.

1st period 2nd period

time

t=0 t=1

Vaccine

t=2
A [Xi, H0i]

N
i=1 [H1i]

N
i=1

As shown in the illustration, we suppose there are two periods. At t = 0, policymakers

initially observe the network structure A (i.e., adjacency matrix) linking N individuals, for

which we provide further details below. Policymakers then observe covariates Xi ∈ X ⊂ Rdx

and current period health state H0 ∈ {S, I, R} for each of the N individuals. The health states

{S, I, R} stand for Susceptible, Infected, and Recovered. We assume the network structure A

is observed before personal health status to avoid the impact of self-isolation on the network

structure. At t = 1, policymakers start to assign the vaccine. After a short vaccination period,

people begin to meet their neighbors, which we call the interaction period. The health state

during that period is defined as H1 ∈ {S, I, R,D}, where D stands for death. Since at the

time of assigning vaccination, H1 is not yet observed by researchers, a stochastic health state

will be used to evaluate personal risk. The ultimate goal of policymakers is to maximize the

expected social health situation via the allocation of vaccines.

In our setting, units are connected through a social network. We assume the following

property on network structure holds :

Assumption 1. (Undirected Relationships) The interference graph is undirected. i.e., Aij = Aji.

The symmetric N ×N adjacency matrix A specifies who contacts with whom, with the (i, j)th

element of A, denoted by Aij, equal to one if unit i and unit j has positive contact time, and
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zero otherwise. By convention, all the diagonal elements Aii are equal to zero. If Aij = 1,

then we say that i and j are neighbors. Let Ni indicate the neighbors of unit i, then we

write Aij = 1 if j ∈ Ni and i ∈ Nj. The size of spillover (i.e., the probability of disease

transmission) between the units i and j depends not only on Aij but also on the amount of

their contact time and the transmission rates which are allowed to be asymmetric between

them. We accordingly have a directed weighted network structure for the spillovers, as shown

in later sections.

Now, let us introduce the notation that we use in the following sections. First, vi is the

individual vaccine assignment rule (i.e., vi = 1 if unit i gets the vaccine). Let v denote

(v1, ..., vN) ∈ {0, 1}N , and X denote (X1, ..., XN) ∈ RN×dx . Let Si be the susceptible state

indicator in the first period (i.e., Si = 1{H0i=S}), let Ii be the infected state indicator in

the first period (i.e., Ii = 1{H0i=I}), and let Ri be the recovered state indicator in the first

period (i.e., Ri = 1{H0i=R}). Moreover, let |Ni| denote the number of neighbors of unit i (i.e.,

|Ni| =
∑

j Aij).

1.2.1 Heterogeneous-Interacted-SIR model

To measure the personalized transition probability, we use a HI-SIR model. Our model is

defined in discrete time within a simplified setting of two time periods. In the first period,

we observe the health state of each unit H0, which belongs to S(Susceptible), I(Infected), or

R(Recovered),

Si + Ii +Ri = 1.

In the second period, the state variable is H1. Compared with H0, H1 includes one more state

D(Death).

1{H1i=S} + 1{H1i=I} + 1{H1i=R} + 1{H1i=D} = 1.

Without the vaccine, the state can move from susceptible to infected, then to either recovery

or death. Now, we consider the setting after introducing the vaccine. Generally, vaccination
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has two purposes : the first is limiting the spread of disease, and the second is treatment.

Vaccination builds up the immune system, which leads to recovery. However, the effectiveness

of vaccination (i.e., the percentage of vaccinated units that recover) is not clear. For simplicity,

we assume that assumption 2 holds.

Assumption 2. (PT) Perfect Treatment : A vaccinated unit enters the Recovered state, regardless

of its previous state (i.e., Pr(H1i = R|vi = 1) = 1).

To further simplify the setting, we split all units into a finite number of disjoint groups

based on their characteristics. The infection rate between each group varies. This setting

could be extended to the individual level, but the micro level infection rate would need to

be known in this case. Here, we consider two groups and use age as a binary indicator : G1

(Young) and G2 (Old). We now define ai and bi as the group indicators (i.e., ai = 1{Xi∈G1}

and bi = 1{Xi∈G2}).

We specify one of the key components in SIR models, the infection rate of unit i, as :

qi =
[
β11

∑
j∈Ni

Ij(1− vj)aj
|Ni|

+ β12

∑
j∈Ni

Ij(1− vj)bj
|Ni|

]
· ai

+
[
β21

∑
j∈Ni

Ij(1− vj)aj
|Ni|

+ β22

∑
j∈Ni

Ij(1− vj)bj
|Ni|

]
· bi, (1.1)

where βsk = −κs ln(1−csk), csk is the probability of successful disease transmission following a

contact between group s and group k (i.e., c11 measures the transmission probability from one

unit to another within the young group, c12 is the corresponding probability of transmission

from a unit in the old group to a unit in the young group, with similar definitions for c21 and

c22), and κs is the average number of contacts in group s at each time period. βsk describes

the effective contact rate of the disease between group s and group k. The derivation of

equation 1.1 can be found in the appendix.

In the above expression, Ij(1− vj) means a susceptible individual can only be infected by
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neighbors who were infected and not vaccinated.2 Those neighbors may come from various

groups. We calculate the fraction of neighbors in each group and multiply them by the

associated risk parameters. The risk parameter βsk measures the probability that a susceptible

individual in group k is infected by an infected individual from group s in one time period.

We now define {γ1, γ2} as the recovery rate and {δ1, δ2} as the mortality from infection in

group 1 and group 2 respectively. Given this, we can formulate the probability of staying in

the infection state for the infected unit i as :

pi = 1− ai(γ1 + δ1)− bi(γ2 + δ2). (1.2)

Since the probability of recovery and death purely depend on personal physical fitness,3 there

is no interactive part in equation 1.2. The transition probability to the infected state is then :

PIi(v) ≡ Pr(H1i = I|X,v, A,H0) = Siqi · (1− vi) + Iipi · (1− vi).

In the above expression, the probability of an unvaccinated unit being infected has two com-

ponents. The first is the probability of a healthy unit being infected. The second is the

probability of staying in the infected state for those infected in the first period. Under As-

sumption 2, a vaccinated unit has zero probability of being infected. Similarly, the transition

probability to the susceptible state is :

PSi(v) ≡ Pr(H1i = S|X,v, A,H0) =
[
1− vi − qi(1− vi)

]
· Si.

An unvaccinated unit can only exit the susceptible state by infection. Therefore, the probabil-

ity of staying in the susceptible state decreases with the risk parameter βsk, which depends on

2This can also be thought of as an underlying assumption, which is commonly used in the epidemiological
literature (e.g., Pesaran and Yang (2020)).

3This can be thought as a simplified assumption, which indicates the death rate does not depend on the
availability of hospital spare capacity.
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the number of infected neighbors and the number of contacts with them. The remaining two

states do not rely on the network structure. First, the transition probability to the recovered

state :

PRi(v) ≡ Pr(H1i = R|X,v, A,H0) = vi +
[
Ri + Ii(aiγ1 + biγ2)

]
· (1− vi).

In the above expression,4 recovery has two different sources. One is the vaccine, and the

other is self-immunity. The effect of self-immunity is heterogeneous and varies with personal

characteristics. The probability of building immunity in each group is γ1, γ2. The last state is

death, which occurs with probability

PDi(v) ≡ Pr(H1i = D|X,v, A,H0) = Ii(aiδ1 + biδ2) · (1− vi).

1.2.2 Optimal Vaccine Allocation Problem

In Emanuel et al. (2020), a group of medical ethics experts suggest a successful vaccine is

needed to reduce death and morbidity from infection, and is also needed for the restoration

of economic and social activity. Following that suggestion, we choose our baseline outcome

variable as the weighted average of the probability of being healthy in the second period.

The idea of using weighted probability is to allow a flexible policy target of the planner. For

example, if the planner wants to incorporate the importance of economic recovery into the

policy objective, she may want to weight more the probabilities of being healthy of those

who can contribute more to the economic output. For instance, the planner could specify the

weights on the individuals to depend on their individuals characteristics including working

hours and other socioeconomic characteristics (i.e., gi = g(Xi)).5 We assume the weight is

4A maintained assumption in this equation is that the probability of being reinfected for the recovered units
is zero. We relax this assumption in Section 7.

5A maintained assumption in this expression is that for every unit, the weight is same for both susceptible
and recovered states. This is a simplifying assumption that can be relaxed if we want to weight differently the
susceptible and recovered states.
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non-negative for every unit. Taking these into consideration, equation (1.3) specifies the goal

of the vaccine allocation policy as a constrained optimization problem:

max
v∈{0,1}N

1

N

N∑
i=1

gi
∑

h∈{S,R}

Phi(v), (1.3)

s.t.
N∑
i=1

vi ≤ d,

where

Phi(v) = Pr(H1i = h|X,v, A,H0),

and d ≥ 1 is a positive integer for the exogenous cardinality constraint. The main idea of the

above objective function is to maximize the weighted probability of being in the susceptible

or recovered state in the second period by appropriately assigning the d doses of vaccine at

the end of the first period.

In equation (1.3), Phi is the heterogeneous state transition function, which describes the

probability of h ∈ {S,R} in the second period. This transition probability depends on the

individuals’ covariates and previous state including whether being vaccinated or not, and the

associated network structure. We adopt the HI-SIR model to formulate the above transition

function, which has been provided in the previous subsection.

One relevant question is : Will vaccine allocation change the network structure? Yes, it

would change the behaviour of vaccinated units. For example, vaccinated units prefer to go

out as compared to unvaccinated units. Given this, the number of contacts at each time period

κs and the network structure A would change after the vaccine allocation. Our framework

allows the network structure to vary without affecting the optimal allocation of vaccines in a

special case where only the vaccinated units change their behaviours. This is because under

our perfect treatment assumption, the vaccinated units no longer spread the disease or be

infected, and their behavioral changes do not affect the health statuses of the neighbors
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and themselves. On the other hand, our framework cannot accommodate a general case

where the unvaccinated units also change their behaviours, since if so the heterogeneous SIR

parameters in the objective function change in response to the vaccine allocation. To allow

this scenario, we could incorporate uncertainty as to the values of κs and A in the second

period, for instance, by optimizing an objective function that takes the expectation of the SIR

parameters the adjacency matrices conditional on v. We do not, however, consider such an

extension in this paper and leave this topic for future research.

1.3 Estimation

In order to measure the individual risk level using the HI-SIR model, we need to know the

associated SIR parameters : transmission rate (i.e., β11, β12, β21, β22), and recovery rate (i.e.,

γ1, γ2). Given that we cannot observe the true value of those parameters, it is infeasible to

evaluate the objective function (1.3) based on the in-sample information of (H0, X) and A

of the target network. We therefore assume access to a separate dataset with sample size

n or an external study analyzing it, from which we can form estimates for these exogenous

parameters. We construct an empirical version of the population welfare (1.3) and maximize

over the feasible allocation policies. To reflect the precision of the SIR parameter estimates

in the welfare performance of an estimated allocation rule, we explicitly take into account

the sampling uncertainty of the parameter estimates in our derivation of the welfare regret

upper bound.

1.3.1 Estimation of SIR Parameters

The estimation of infection rate and death rate always faces severe missing data problems

as discussed in Manski and Molinari (2020). Keeling and Rohani (2011) points out that,

usually, researchers first estimate the reproductive ratio R0, which is the average number of

15



individuals that one sick person infects.

R0 = β × 1

γ
.

Then, the infection rate can be derived from the estimated recovery rate γ̂ and R̂0. In our

case, the reproductive ratio is heterogeneous at group level.

R0sk = βsk ×
1

γs
∀s, k = 1, 2, (1.4)

whereR0sk is the number of infectious individuals in group s resulting from one sick person in

group k. We need to estimate the average number of younger infectious and older infectious

from one sick person in group 1 and group 2, and also the recovery rate in each group. Given

these values, we can estimate β11, β12, β21, β22 from equation (1.4).

Remark 1.3.1. We do not discuss what is a desirable procedure for estimating the model

parameters in this work, since the choice of estimator depends on the type of data (e.g.,

Seroprevalence data, Reported cases data, etc.). See Keeling and Rohani (2011) for fur-

ther details. For the COVID-19 transmissions, estimation of homogeneous R0 and other SIR

parameters has been performed in several papers including Fernández-Villaverde and Jones

(2020), Ferguson et al. (2020), and Korolev (2021). They note the difficulty in calibrating

critical parameters at an early stage of the pandemic due to the lack of credible data, which

motivates partial identification analysis of Manski and Molinari (2020) and Stoye (2021).

Our approach, however, assumes availability of credible point estimates and does not allow

identified-set estimates for the SIR parameters. See Ellison (2020) and Akbarpour et al.

(2020a) for recent estimates of heterogeneous SIR parameters.
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1.3.2 Quadratic Integer Programming

Plugging the parameter estimates into our HI-SIR model, we now have the sample analog of

the population maximization problem (1.3), which is

max
v∈{0,1}N

Wn(v), s.t.
N∑
i=1

vi ≤ d, where

Wn(v) =
1

N

N∑
i=1

gi
∑

h∈{S,R}

P̂hi(v).

We can formulate this optimization as a quadratic integer programming (QIP) problem,

which in the context of an assignment problem over a network is synonymous with the

Quadratic Assignment Problem (QAP) of Koopmans and Beckmann (1957). We can express

Wn(v) as

Wn(v) =
1

N

N∑
i=1

gi

[
vi +

[
Ri + (aiγ̂1 + biγ̂2)Ii

]
(1− vi) +MiSi(1− vi)

]
︸ ︷︷ ︸

Probability of being healthy

(1.5)

where

Mi = 1−
∑N

j=1(β̂11aiaj + β̂12aibj + β̂21biaj + β̂22bibj)AijIj(1− vj)
|Ni|

.

For the probability of being healthy in equation (1.5), there are two linear terms and one

quadratic term in v. The first term measures the direct effect of vaccination. A vaccinated

unit is safe from infection with 100% probability. The last two terms describe the probabil-

ity of being free of infection for unvaccinated units. Infected units naturally recover with

probability {γ1, γ2}, which depends on their own characteristics. For those units who are

already recovered in the first period, they are free from infection in the second period. The

last component takes into account the indirect effect of vaccination. For susceptible units,

the probability of being infected by their infected neighbors is summarized by the interaction

term.

After removing all the constant parts in equation (1.5), we obtain a simplified objective
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function (i.e.,Wn(v) = Fn(v) + constant) :

Fn(v) =
N∑
i=1

ĉivi +
1

N

N∑
i=1

1

|Ni|

N∑
j=1

Tij(vi + vj − vivj), (1.6)

where

ĉi = gi
[
1−Ri − (aiγ̂1 + biγ̂2)Ii − Si

]
/N,

Tij = gi
(
β̂11aiaj + β̂12aibj + β̂21biaj + β̂22bibj

)
AijIjSi.

Since Fn differs fromWn only by an additive constant (conditional on the network struc-

ture and individual characteristics in the first period), maximizing Fn is equivalent to max-

imizing the original empirical welfare function Wn. Therefore, from now on, we will focus

on Fn(v) as our new objective function. Within Fn(v), there is a quadratic term plus linear

components in v. Current software is available to solve general QIP problems, such as CPLEX

and Gurobi. However, both applications require a symmetric weighting matrix, which does

not hold in our case. This asymmetric property comes from the infectious process, since dis-

ease can only be transmitted from infected units to susceptible units, but the reverse is not

true. We discuss how to solve this QIP problem with showing and exploiting the submodular

property of our objective function in the next section.

1.4 Optimization

1.4.1 Submodularity

We showed in the last section that we can formulate our objective function as QAP. This kind

of problem is well known as an NP-hard and NP-hard to approximate problem (Cela, 2013).

In general, we cannot solve QAP in polynomial time, which is an issue in practice. We shall,

however, show that the quadratic integer programming in our vaccine allocation problem can
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be linked to the submodular optimization problem. The benefit of submodularity is that there

exist off-the-shelf algorithms that can solve a submodular minimization problem in exact

polynomial time and approximately solve a submodular maximization problem with capacity

constraint in polynomial time. The seminal result of Nemhauser et al. (1978) provides a

universal bound for the quality of approximation as detailed below in Section 1.4.2.

Definition 1.4.1 (Submodular function). Let N = {1, 2, . . . , N}. A real-valued set-function

F : 2N → R is submodular if and only if, for all subsets A,B ⊆ N , we have : F (A) + F (B) ≥

F (A ∩B) + F (A ∪B).

In simple terms, submodularity describes the diminishing returns property. The marginal

increase in the average probability of being healthy decreases in the number of vaccinated

units. This property is crucial for the maximization algorithm. For ease of exposition, we

express the simplified empirical welfare Fn as a set function with argument V ∈ 2N , where

the binary vector of vaccine allocation v ∈ {0, 1}N and V correspond by V = {i ∈ N : vi = 1}:

Fn(V ) = v⊺Ŵv + Ĉ⊺v − 1⊺
N×1Ŵv − v⊺Ŵ1N×1, (1.7)

where

Ĉ =


ĉ1

...

ĉN


, 1N×1 =


1

...

1


, Ŵ =



ŵ11 ŵ12 · · · ŵ1N

ŵ21 ŵ22 · · · ŵ2N

...
...

. . .
...

ŵN1 ŵN2 · · · ŵNN


,

ŵij = −
Aijgi
|Ni|N

(β̂11aiSiajIj + β̂12aiSibjIj + β̂21biSiajIj + β̂22biSibjIj).

We then denote the class of feasible allocation sets V subject to the cardinality constraint

|V | ≤ d by Vd ≡ {V ∈ 2N : |V | ≤ d}. Since vaccinating additional individuals cannot reduce

welfare, Fn is a non-decreasing set function, i.e., for any V ⊂ V ′, Fn(V ) ≤ Fn(V
′).6

6See the proof of Theorem 1.4.1 for a formal proof for the non-decreasing property of Fn.
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The quadratic functional form of Fn shown in (1.7) can be linked to one classic submod-

ular function called a cut function. Cut functions have been well studied in combinatorial

optimization and graph theory. We apply some of the results from that literature (e.g., Bach

(2011)).

Lemma 1.4.1. Let Ŵ ∈ RN×N and Ĉ ∈ RN . Then the set function Fn : V 7→ v⊺Ŵv + Ĉ⊺v −

1⊺
N×1Ŵv − v⊺Ŵ1N×1 is submodular if and only if ŵij ≤ 0 ∀i ̸= j.

The proof is shown in the appendix. Note that the necessary and sufficient condition for

submodularity shown in this lemma is distinct from negative semidefiniteness of the matrix

Ŵ . Since all the parameters in ŵij are non-negative, we must have ŵij ≤ 0, ∀i, j = 1, ..., N .

This immediately leads to the following theorem:

Theorem 1.4.1. The objective function Fn(V ) is a non-decreasing submodular function for any

adjacency matrix, covariate values, and parameter estimates.

Theorem 1.4.1 is the key result in our paper. It describes two important properties of

our objective function; monotonicity and submodularity. We exploit these two properties to

justify the uses of greedy maximization algorithms shown in the next subsection.

1.4.2 Greedy Maximization Algorithm

Greedy maximization algorithms for submodular functions have been studied and frequently

used for well over forty years. The performance guarantee of the algorithm that we study

was first introduced by Nemhauser et al. (1978). This algorithm essentially uses the dimin-

ishing returns property of the submodular function. The idea is to iteratively select the most

valuable element until the capacity constraint is reached. At each round, the algorithm eval-

uates O(N) functions to identify the marginal gain of each element. The number of rounds

depends on the capacity constraint d. As a result, the computational complexity of the greedy

algorithm is of order O(N · d), well below the computational complexity of the brute-force
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search. Algorithm 1 presents the greedy maximization algorithm applied to maximization of

the empirical welfare (1.7).

Algorithm 1: Capacity Constrained Greedy Algorithm
1 : Input : Dataset {Si, Ii, Ri, ai, bi}Ni=1, {Aij}Ni,j=1, estimated parameters
{β̂11, β̂12, β̂21, β̂22, γ̂1, γ̂2}, weight {gi}Ni=1 and capacity constraint d;

2 : Initialization : Starting from the empty set V = ∅ ;

if |V | < d then

3 : for each i ∈ N\V do

4 : Compute the marginal gain Fn(V + {i}) − Fn(V );

5 : Select i which maximizes the marginal gain and add it into the set V ;

else

return the set V ;
end

In general, there is no performance guarantee of the greedy algorithm. However, as

shown by Nemhauser et al. (1978) for a non-decreasing submodular function with cardinal-

ity constraint (i.e., capacity constraint in our case), the greedy maximization algorithm is

guaranteed to yield an allocation rule V̂ ∈ Vd that satisfies Fn(V̂ ) ≥ (1 − αd)Fn(V̂
∗), where

V̂ ∗ ∈ Vd is a constrained optimum under the capacity constraint, and αd is a positive con-

stant that depends only on d ≥ 1 and αd ≥ 1/e for all d ≥ 1. This seminal result implies

that the greedy maximization algorithm provides a universal optimization guarantee for non-

decreasing submodular functions, Fn(V̂ ) ≥ (1 − 1/e)Fn(V̂
∗) ≈ 0.63Fn(V̂

∗). Since we show

in Theorem 1.4.1 that our objective function is non-decreasing and submodular, we obtain

the following theorem as an immediate corollary of our Theorem 1.4.1 and Nemhauser et al.

(1978).

Theorem 1.4.2 (Nemhauser et al. 1978). Let Fn : 2N → R be the simplified empirical welfare

function as defined in (1.7) and V̂ ∗ ∈ argmaxV ∈Vd
Fn(V ), d ≥ 1. The greedy algorithm shown

in Algorithm 1 outputs V̂ ∈ Vd such that

Fn(V̂ ) ≥ (1− αd)Fn(V̂
∗) ≥ (1− 1/e)Fn(V̂

∗),
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where 1−αd ≡ 1−
(
1− 1

d

)d is monotonically decreasing in d and converges to 1−e−1 as d→∞.

1.4.3 Targeting Constraint

Up until now, we have only considered a simple capacity constraint in the vaccine assignment

rule. In reality, Beyond the weight specification in the objective function, policymakers may

want to prioritize some group over the others by limiting the number of vaccines that are

administered in each group.7 For example, policymakers may limit access to vaccines for

those people that can work at home. If we are able to divide individuals into two groups

based on their job categories, into a group that can work at home and a group that cannot

say, then policymakers can set an upper bound on the number of vaccines that are available

for the work at home group.

We call this kind of constraint a targeting constraint, and impose it in our model in such

way that each of the two age groups has a capacity constraint for the number of available

vaccines: ∑
i : Xi∈G1

vi =
N∑
i=1

aivi ≤ d1,
∑

i : Xi∈G2

vi =
N∑
i=1

bivi ≤ d2.

This targeting constraint belongs to a general class of constraints : the so called matroid

class. First, we use I to describe the subset of 2N that is compatible with all of the constraints

imposed. If we restrict the set of vaccinated agents V to belong to I, which is part of a

matroid (Y , I), this constraint is called a matroid constraint.

Definition 1.4.2 (Matroid). Let I be a nonempty family of allowable subsets of N . Then the

tuple (N , I) is a matroid if it satisfies :

• (Heredity) For any D ⊂ E ⊂ N , if E ∈ I, then D ∈ I.

• (Augmentation) For any D,E ∈ I, if |D| < |E|, then there exists an x ∈ E\D such that

D ∪ {x} ∈ I.
7A group in this section does not need to coincide with the group defining the heterogeneity of the SIR pa-

rameters. For example, we could divide units based on their job category, geographical location, or community.
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Let N1 and N2 be the disjoint subsets partitioned by Xi (N1 ∪N2 = N ). We can represent

the targeting constraint by

I ≡ {V : V ⊆ N , |V ∩N1| ≤ d1, |V ∩N2| ≤ d2}.

We can show that this (N , I) is a matroid referred to as a partition matroid. First, we show

heredity. For any D ⊂ E, we must have |D ∩ N1| ≤ |E ∩ N1| and |D ∩ N2| ≤ |E ∩ N2|. If

E ∈ I, then it means D must satisfy the targeting constraint in I. Next, for any D,E ∈ I,

we must have |D ∩ N1|, |E ∩ N1| ≤ d1 and |D ∩ N2|, |E ∩ N2| ≤ d2. If |D| < |E|, then either

|D ∩ N1| < |E ∩ N1| or |D ∩ N2| < |E ∩ N2| or both. As a result, there must exist an element

x that belongs to E\D such that|D ∪ {x} ∩ N1| ≤ d1 and |D ∪ {x} ∩ N2| ≤ d2.

This problem of optimal treatment assignment subject to a partition matroid constraint

is to maximize Fn(V ) over V ∈ I. The following Algorithm 2 is guaranteed to produce a

solution V̂ ′ ∈ I. Greedy maximization algorithms subject to a partition matroid constraint

performed for non-decreasing submodular functions attain at least 50% of the optimal wel-

fare.
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Algorithm 2: Targeting Constraint Greedy Algorithm
1 : Input : Dataset {Si, Ii, Ri, ai, bi}Ni=1, {Aij}Ni,j=1, estimated parameters
{β̂11, β̂12, β̂21, β̂22, γ̂1, γ̂2}, weight {gi}Ni=1, capacity constraint d, and targeting
constraints d1, d2;

2 : Initialization : Starting from the empty set V = ∅ ;

if |V | < d then

3 : for each i ∈ N\V do

4 : Compute the marginal gain Fn(V + {i}) − Fn(V );

5 : Sort i in order of decreasing marginal gain

6. if
∑

j∈V aj + ai(1) ≤ d1 ∩
∑

j∈V bj + bi(1) ≤ d2 then

7 : Add the 1st element of i into V ;
else

8 : Repeat step 6 with remaining i;
end

else

return the set V ;
end

Proposition 1.4.1 (Fisher et al. 1978). Let Fn : 2N → R be the simplified empirical welfare

function as defined in (1.7) and V̂ ∗∗ ∈ argmaxV ∈I Fn(V ). The greedy maximization algorithm

shown in Algorithm 2 outputs V̂ ′ ∈ I such that

Fn(V̂
′) ≥ 1

2
Fn(V̂

∗∗).

The performance guarantee of the greedy algorithm with targeting constraint is worse

than the performance guarantee of Algorithm 1. This implies a trade-off between additional

constraints and the accuracy of computation. In the next section, we discuss the welfare

regret bounds of the allocation rules estimated by the above greedy algorithms.

1.4.4 Perfect Treatment Assumption and Submodularity

Recall Assumption 2 (Perfect Treatment) : A vaccinated unit enters the Recovered state, re-

gardless of its previous state (i.e., Pr(H1i = R|vi = 1) = 1). There are three possible ways to

relax this assumption :
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• The recovered units can still spread disease.

• The recovered units will become susceptible after one period (few periods).

• Some percentage of vaccinated units remain susceptible or infected.

In the first case, if the person is recovered at H0, she will spread the disease during the first

period. In that case, the recovered neighbors of unit i will be taken into account by the

infection rate qi. This will not, however, change the sign of our weighting matrix, hence

submodularity (by Theorem 1.4.1) still holds. In the second case, if unit i is recovered in the

first period (i.e., H0i = R), she could become susceptible in the second period (i.e., H1i = S).

Then, she may be infected in the next period (i.e., H2i = I). However, we only consider a

one time period setting in this work, which rules out this risk. In the third case, varying this

percentage only affects the coefficient of the linear term in the objective function (i.e., ĉi in

equation 1.6), which is irrelevant to submodularity.

1.5 Regret Bounds

Following Manski (2004) and the subsequent literature on statistical treatment rules, we use

regret to evaluate the performance of our algorithm for vaccine allocation. Let F : 2N → R

be the population analogue of Fn(·) in (1.7), where the estimated parameters are replaced by

the truth. The expected regret measures the average difference in the welfare between using

the constrained optimal assignment rule V ∗ ∈ argmaxV ∈Vd
F (V ) and using the constrained

estimated greedy algorithm V̂ obtained from Algorithm 1:

F (V ∗)− EPn

[
F (V̂ )

]
= EPn

[
F (V ∗)− F (V̂ )

]
≥ 0,

where EPn is the expectation with respect to the sampling uncertainty of the parameter esti-

mates in the external studies.
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In this work, we assume that consistent estimators of effective contact rate and recovery

rate are available from other studies. Generally, there is no requirement on the estimator

except that Assumption 3 needs to hold.

Assumption 3. Let β̂sk denote the estimate of effective contact rate between group s and group

k, and γ̂s denote the estimate of recovery rate in group s. The following properties need to hold:

P

{∣∣∣β̂sk − βsk∣∣∣ ≥ ϵ
}
≤ 2e−2nϵ2 ∀s, k = 1, 2.

P

{
|γ̂s − γs| ≥ ϵ

}
≤ 2e−2nϵ2 ∀s = 1, 2,

where P is the sampling distribution in another study that has sample size n.

The above assumption is an exponential tail bound obtained by applying Hoeffding’s large

deviation inequality (Hoeffding, 1963). Since βsk is the effective contact rate of the disease

between group s and k, and γs is the recovery rate in group s, both are naturally bounded in

[0, 1]. Hence, common estimators (e.g., sample analog) meet the above condition. However,

other tail bounds might apply for some other estimators, which do not necessarily have the

same form as the above tail bound. Our approach can accommodate various tail bounds,

such as the tail bound associated with the maximum likelihood estimator (Miao, 2010).

The estimators for the contact rates and recovery rates may come from different studies

with different sample sizes. In this case, we can view n in Assumption 3 as the smallest

sample size among the studies.

In order to derive the uniform convergence rate of the welfare regret, we decompose

regret into three components as follows.

F (V ∗)− F (V̂ ) = F (V ∗)− Fn(V̂
∗)︸ ︷︷ ︸

1

+Fn(V̂
∗)− Fn(V̂ )︸ ︷︷ ︸

2

+Fn(V̂ )− F (V̂ )︸ ︷︷ ︸
3

,

where V ∗ is an oracle optimum V ∗ = argmaxV ∈Vd
F (V ), V̂ ∗ is a constrained optimal solution
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to the estimated welfare V̂ ∗ = argmaxV ∈Vd
Fn(V ), and V̂ is the output from the greedy

maximization algorithm under the capacity constraint. Therefore, 1 describes the regret we

would attain if the constrained optimum could be computed exactly. 2 measures the welfare

loss introduced by the greedy algorithm. 3 indicates the loss from using the estimated

objective function instead of the true objective function. We compute the upper bound of

each component separately and then combine them.

First, we start from the derivation of the upper bound of 1 . This part is similar to the

approach in Kitagawa and Tetenov (2018). Before looking at V ∗, consider the following

inequality, which holds for any Ṽ ∈ Vd :

F (Ṽ )− Fn(V̂
∗) ≤ F (Ṽ )− Fn(Ṽ )(

∵ Fn(V̂
∗) ≥ Fn(Ṽ )

)
≤ sup

V ∈Vd

|Fn(V )− F (V )|.

Since the above inequality applies to F (Ṽ ) for all Ṽ , it also applies to V ∗ :

F (V ∗)− Fn(V̂
∗) ≤ sup

V ∈Vd

∣∣Fn(V )− F (V )
∣∣ .

For the second component, we can obtain an upper bound by applying Theorem 1.4.2 :

Fn(V̂
∗)− Fn(V̂ ) ≤ 1

e
Fn(V̂

∗)

≤ 1

e
(Fn(V̂

∗)− F (V̂ ∗)) +
1

e
F (V ∗)

≤ 1

e

∣∣∣Fn(V̂
∗)− F (V̂ ∗)

∣∣∣+ 1

e
F (V ∗)

≤ 1

e
sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣+ 1

e
F (V ∗).

(1.8)
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Similarly to the first component, the third component can be bounded as :

Fn(V̂ )− F (V̂ ) ≤ |Fn(V̂ )− F (V̂ )| ≤ sup
V ∈Vd

|Fn(V )− F (V )|.

Combining all the previous results, we obtain the upper bound of regret :

F (V ∗)− F (V̂ ) ≤
(
2 +

1

e

)
sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣+ 1

e
F (V ∗). (1.9)

Compared with the regret upper bound when one could compute V̂ ∗, the regret upper

bound shown in (1.9) has one additional term 1
e
supV ∈Vd

∣∣Fn(V )− F (V )
∣∣ + 1

e
F (V ∗). This

additional term comes from equation (1.8) and captures the welfare loss induced by the use of

greedy algorithm. As we characterize below, the first term converges to zero as n→∞ under

Assumption 3, while the second term remains independent of the accuracy of the parameter

estimates. A simulation study in Section 6 assesses the magnitude of the optimization error

of the greedy algorithm, and shows numerically that the greedy algorithm yields an exact

optimum for small network cases (N = 35) at least. Based on this, we believe that the

optimization error term of the greedy algorithm is much smaller than the universal theoretical

bound 1
e
F (V ∗).

In the partition matroid (targeting constraint) case, by applying Proposition 1.4.1 and

repeating the arguments to derive (1.9), we obtain

F (V ∗∗)− F (V̂ ′) ≤ 5

2
sup
V ∈I

∣∣Fn(V )− F (V )
∣∣+ 1

2
F (V ∗∗),

where V ∗∗ is an oracle optimum under the targeting constraint, V ∗∗ ∈ argmaxV ∈I F (V ).

In order to bound supV ∈Vd

∣∣Fn(V )− F (V )
∣∣, we use the triangle inequality to find the bound
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of
∣∣Fn(V )− F (V )

∣∣ :
∣∣Fn(V )− F (V )

∣∣ = ∣∣∣v⊺(Ŵ −W )v + (Ĉ⊺ − C⊺)v − 1⊺
N×1(Ŵ −W )v − v⊺(Ŵ −W )1N×1

∣∣∣
≤
∣∣∣v⊺(Ŵ −W )v

∣∣∣+∣∣∣(Ĉ⊺ − C⊺)v
∣∣∣+∣∣∣1⊺

N×1(Ŵ −W )v
∣∣∣+∣∣∣v⊺(Ŵ −W )1N×1

∣∣∣
≤ v⊺

∣∣∣Ŵ −W
∣∣∣v +

∣∣∣(Ĉ⊺ − C⊺)
∣∣∣v + 1⊺

N×1

∣∣∣Ŵ −W
∣∣∣v + v⊺

∣∣∣Ŵ −W
∣∣∣1N×1,

where the absolute value of a matrix or vector stands for the element-wise absolute values.

Therefore, we can decompose the maximal deviation supV ∈V
∣∣Fn(V )− F (V )

∣∣ into four parts :

sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ ≤ sup

V ∈Vd

v⊺
∣∣∣Ŵ −W ∣∣∣v + sup

V ∈Vd

∣∣∣Ĉ⊺ − C⊺
∣∣∣v

+ sup
V ∈Vd

1⊺
N×1

∣∣∣Ŵ −W ∣∣∣v + sup
V ∈Vd

v⊺
∣∣∣Ŵ −W ∣∣∣1N×1.

(1.10)

Under Assumption 3, we can obtain an upper bound for the mean of each element in Ŵ −W

and Ĉ − C, as shown in the next lemma.

Lemma 1.5.1. Under Assumption 1, 2, and 3, we have

EPn

∣∣ŵij − wij

∣∣ ≤√
1 + ln(2)

2n

Aijgi
N

, EPn|ĉi − ci| ≤
√

1 + ln(2)

2n

Iigi
N

.

Combining this lemma with equations (1.9) and (1.10), we obtain the following theorem:

Theorem 1.5.1. Let NM = maxi∈N |Ni|, NI be the total number of infected units, and g =

maxi∈N gi. Under Assumptions 1, 2, and 3, we have

EPn

[
F (V ∗)− F (V̂ )

]
≤ C̄ ·

g
[
dmin{NM , d}+ 2dNM +min{NI , d}

]
N

√
1

n
+

1

e
F (V ∗),

where C̄ is a universal constant and d is the number of available vaccine doses.

Proof of the above theorem is shown in the appendix. In Theorem 1.5.1, we provided

a distribution-free upper bound on the expected regret. We show that the convergence rate

of the upper bound depends on the network data sample size N and also the sample size n

for estimating the SIR parameters. At the same time, the regret upper bound is increasing
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in the complexity and the riskiness of the network. The intuition is that our algorithm finds

it harder to identify the most valuable units when the maximum number of edges and the

number of infected individuals in the network increases. The maximum individual weight

g also boosts the upper bound of regret. Moreover, our algorithm finds it harder to identify

the best allocation rule when the number of possible combinations increase, which occurs

when the capacity constraint is relaxed. This also implies the benefit of quarantine. Since

quarantine controls the maximum number of connections in the network, the effectiveness

of vaccine allocation is boosted by such government policy. Therefore, there is advantage

to complementing a vaccine assignment policy with quarantine, which is evidenced by our

simulation exercises.

1.6 Simulation Exercises

In this section, we use an Erdös-Renyi model to generate random social networks. In each of

the following tables, we use 100 different networks and take the average of the outcome vari-

able across all of the networks. We further show the standard deviation of in-sample welfare

to understand the variation of network structure. We choose the probability of allocating a

unit to group 1 to be 40% and the probability of allocating a unit to group 2 to be 60% (i.e.,

P(Xi = G1) = 0.4 and P(Xi = G2) = 0.6). In the epidemiological literature, researchers

usually find the steady state of the SIR parameters. In order to identify the impact of varying

the SIR parameters, we choose two different sets of parameter values to run the simulation.

Throughout our simulation studies, we do not consider sampling errors in the parameter es-

timates and focus on optimizing welfare with the true parameter values plugged in. Table

1.1 summarizes all the values of the SIR parameters that we have used.
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Parameters set 1 set 2 Parameters set 1 set 2

β11 0.7 0.8 β12 0.5 0.5

β21 0.5 0.7 β22 0.6 0.7

γ1 0.1 0.1 γ2 0.05 0.025

Table 1.1: Summary of the SIR parameter values

In addition, we choose three different densities, 0.1, 0.5 and 1, in order to identify the

effect of network complexity. Here, density = 1 means that the network is fully connected

(i.e., complete graph). We choose full to understand the behaviour of our heuristic algorithm

not only in the sparse network case but also in the densest case. We also compare three

capacity constraints, d = 7%N, 10%N, 20%N , to evaluate the marginal performance gain of

our greedy algorithm. We choose equal weight in the following comparisons. We, however,

show the impact of changing weights on the number of vaccinated younger units in Table

1.5.

In the following sections, we compare our greedy algorithm with three familiar allocation

rules. We first compare our algorithm with a brute force method in order to find the difference

between the potentially sub-optimal greedy solution and the brute-force optimal solution.

However, the number of possible combinations dramatically increases with the number of

nodes and the capacity constraint. We cannot use a large number of agents to compute

the brute force optimum in the simulation. Given this, in Section 1.6.2, we use a random

assignment rule as a baseline to evaluate the performance of our algorithm in a large network

setting. The third allocation rule that we compare our greedy algorithm with is an allocation

rule which assigns the vaccine without considering network information. We compare the

greedy algorithm with this third rule in Section 1.6.3.

31



1.6.1 Comparing with Brute Force

Allocation Rule Greedy Algorithm Brute Force8

Capacity Constraint d = 7%N d = 10%N d = 20%N d = 7%N d = 10%N d = 20%N

Parameter set 1
N = 500, density = 0.1 0.60 0.65 0.77 0.60 0.65 0.77

(0.21) (0.22) (0.26) (0.21) (0.22) (0.26)
N = 500, density = 0.5 0.47 0.51 0.63 0.47 0.51 0.63

(0.40) (0.39) (0.39) (0.40) (0.39) (0.39)
N = 500, density = 1∗ 0.33 0.37 0.49 0.33 0.37 0.49

N = 800, density = 0.1 0.58 0.66 0.76 0.58 0.66 0.76
(0.23) (0.25) (0.26) (0.23) (0.25) (0.26)

N = 800, density = 0.5 0.44 0.52 0.62 0.44 0.52 0.62
(0.38) (0.38) (0.38) (0.38) (0.38) (0.38)

N = 800, density = 1∗ 0.30 0.36 0.46 0.30 0.36 0.46

Parameter set 2
N = 500, density = 0.1 0.59 0.64 0.77 0.59 0.64 0.77

(0.27) (0.29) (0.32) (0.27) (0.29) (0.32)
N = 500, density = 0.5 0.42 0.46 0.59 0.42 0.46 0.59

(0.49) (0.49) (0.49) (0.49) (0.49) (0.49)
N = 500, density = 1∗ 0.25 0.29 0.41 0.25 0.29 0.41

N = 800, density = 0.1 0.57 0.65 0.76 0.57 0.65 0.76
(0.28) (0.30) (0.31) (0.28) (0.30) (0.31)

N = 800, density = 0.5 0.40 0.47 0.58 0.40 0.47 0.58
(0.47) (0.47) (0.47) (0.47) (0.47) (0.47)

N = 800, density = 1∗ 0.22 0.29 0.40 0.22 0.29 0.40

Table 1.2: The value of welfare (the sum of probabilities of being healthy in the second period) av-
eraged over 100 random networks (standard errors in parentheses). We use the Greedy Algorithm or
the Brute Force to determine who in each network should be vaccinated.
∗ When the density of Erdös-Renyi network equals 1, standard errors are 0 since there is no random-
ness in the network structure.

Since Theorem 1.4.2 shows the gap between the optimal solution and the heuristic result is

at most 37%, we want to explore this theoretical difference using numerical study. We list

all the possible combinations and use brute force to search for the optimal solution given a

manageable number of units. We specify the maximum number of units to be N = 35, which

is limited by computer performance. As the number of nodes increases, the possible number

of combinations grows exponentially. The memory requirement and running time become

impractical in a more realistic case. We recognize that the results from a small network may
8We compare all possible combinations given the capacity constraint and select the set V that maximizes

Wn.
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not be accurate in a large network setting, but help us to understand the regret of our greedy

algorithm to some degree. We summarize the in-sample welfareWn of these two approaches

in Table 1.2.

In the small network case, we find that our greedy algorithm finds optimal allocation

rules in all cases that we consider, which indicates a good performance of our method. We

also notice that the welfare that is associated with the optimum decreases with the number of

edges. As we relax the capacity constraint, welfare increases rapidly. The main purpose of this

comparison is to get an idea of how much worse the empirical welfare at the greedy solution

can be relative to the brute force optimum. More results are illustrated in the following two

sections.

1.6.2 Comparing With Random Assignment

In this section, we use a random assignment rule to define the baseline of vaccine allocation.

We randomly draw an allocation 10, 000 times and calculate the average value of the outcome

variable. Random allocation is one common assignment rule for policymakers. The purpose

of this simulation is to learn about the improvement of our greedy allocation rule. In order

to evaluate its performance in a relatively large network setting, we choose N = 500 and

800. Table 1.3 records the main differences in terms of in-sample welfare between these two

methods.

From Table 1.3, we find that the performance of both methods decreases with the number

of edges, which is also true for the first comparison. As the number of edges increase, the

greedy algorithm finds it harder to identify who is relatively crucial in the network, which

supports our interpretation of Theorem 1.5.1 in the previous section. This effect becomes

more pronounced as the capacity constraint is relaxed. In the most extreme case, when

everyone is connected with each other, the performance of our method is still better than

the random assignment rule. This performance gap widens with the capacity constraint. We

also find that the average welfare increases by 12% when the capacity constraint increases
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by 0.1N . Moreover, this improvement is robust with respect to the variation of number of

nodes and the changes of density levels of network. The number of nodes decreases the

performance of our method in a sparse network setting. For N = 800, welfare in the densest

network is 14% lower than the welfare with density = 0.5, no matter which capacity constraint

and parameter set we use.

Allocation Rule Greedy Algorithm Random Assignment9

Capacity Constraint d = 7%N d = 10%N d = 20%N d = 7%N d = 10%N d = 20%N

Parameter set 1
N = 500, density = 0.1 0.61 0.65 0.77 0.57 0.59 0.66

(<0.01) (0.01) (0.01) (<0.01) (<0.01) (<0.01)
N = 500, density = 0.5 0.61 0.64 0.76 0.57 0.59 0.66

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
N = 500, density = 1∗ 0.61 0.64 0.76 0.57 0.59 0.66

N = 800, density = 0.1 0.59 0.63 0.75 0.55 0.57 0.64
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

N = 800, density = 0.5 0.48 0.51 0.63 0.44 0.46 0.53
(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

N = 800, density = 1∗ 0.34 0.37 0.49 0.30 0.32 0.39

Parameter set 2
N = 500, density = 0.1 0.60 0.64 0.77 0.56 0.59 0.66

(0.01) (0.01) (0.01) (<0.01) (<0.01) (0.01)
N = 500, density = 0.5 0.60 0.64 0.76 0.56 0.59 0.66

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
N = 500, density = 1∗ 0.60 0.64 0.76 0.56 0.59 0.66

N = 800, density = 0.1 0.58 0.62 0.74 0.54 0.56 0.63
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

N = 800, density = 0.5 0.44 0.48 0.60 0.40 0.43 0.50
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

N = 800, density = 1∗ 0.26 0.30 0.42 0.23 0.25 0.32

Table 1.3: The value of welfare (the sum of probabilities of being healthy in the second period) av-
eraged over 100 random networks (standard errors in parentheses). We use the Greedy Algorithm or
the Random allocation to determine who in each network should be vaccinated.
∗ When the density of Erdös-Renyi network equals 1, standard errors are 0 since there is no random-
ness in the network structure.

If we look at the random assignment rule in Table 1.3, its performance is much worse

than the performance of the greedy algorithm. This difference increases when the complex-

ity of and the number of nodes in the network increase. The performance of the random

9In Random allocation, we randomly select an assignment 10, 000 times for each network and take the
average value of the outcome variable.
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assignment rule improves as we relax the capacity constraint. However, this improvement

is only about 7% when the capacity constraint increases by 0.1N. Compared with the greedy

algorithm, random assignment is less effective. Given its scarcity, we waste considerable

resources by randomly assigning the vaccine. Looking at the situation of full edges, the

performance of random allocation is inferior. The ratio of the welfare attained by random

allocation to the welfare attained by the greedy algorithm is illustrated in Figure 1.1. This

ratio increases slowly with the number of edges and deceases with the number of nodes in

the network. In addition, the ratio decreases in an obvious way with the number of vaccines

that are available.
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Figure 1.1: Comparison between Greedy Algorithm and Random allocation
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1.6.3 Comparing With Targeting Without Network Information

Allocation Rule Greedy Algorithm TWNI10

Capacity Constraint d = 7%N d = 10%N d = 20%N d = 7%N d = 10%N d = 20%N

Parameter set 1
N = 500, density = 0.1 0.61 0.65 0.77 0.57 0.59 0.65

(<0.01) (0.01) (0.01) (<0.01) (0.01) (0.01)
N = 500, density = 0.5 0.61 0.64 0.76 0.57 0.59 0.65

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
N = 500, density = 1∗ 0.61 0.64 0.76 0.57 0.59 0.65

N = 800, density = 0.1 0.59 0.63 0.75 0.56 0.58 0.65
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

N = 800, density = 0.5 0.48 0.51 0.63 0.44 0.47 0.54
(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

N = 800, density = 1∗ 0.34 0.37 0.49 0.30 0.33 0.40

Parameter set 2
N = 500, density = 0.1 0.60 0.64 0.77 0.56 0.58 0.65

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
N = 500, density = 0.5 0.60 0.64 0.76 0.56 0.58 0.65

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
N = 500, density = 1∗ 0.60 0.64 0.76 0.56 0.58 0.65

N = 800, density = 0.1 0.58 0.62 0.74 0.55 0.57 0.64
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

N = 800, density = 0.5 0.44 0.48 0.60 0.41 0.43 0.50
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

N = 800, density = 1∗ 0.26 0.30 0.42 0.23 0.26 0.33

Table 1.4: The value of welfare (the sum of probabilities of being healthy in the second period) av-
eraged over 100 random networks (standard errors in parentheses). We use the Greedy Algorithm or
the TWNI allocation to determine who in each network should be vaccinated.
∗ When the density of Erdös-Renyi network equals 1, standard errors are 0 since there is no random-
ness in the network structure.

Usually, in the literature on treatment assignment, researchers use observational data or

experimental data without network structure information to study the optimal policy. As

a result, the allocation regime assigns the treatment without considering spillover effects,

which could lead to a sub-optimal result. We call this kind of regime Targeting Without

Network Information (TWNI). In this simulation, we want to learn the welfare loss from

using TWNI versus our method.

Generally, TWNI assigns treatment based on personal characteristics. In this study, we

10We assign the vaccine only to the second group (i.e., only older people receive the vaccine).
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only have one covariate : age. This means either the old group receives the vaccine or the

young group receives the vaccine. Under the previous setting (i.e., older people are more

likely to be infected and to die), group 2 will consume the entire vaccine allocation. Given

different capacity constraints, this assignment rule selects units to be vaccinated from group

2 until the upper bound is reached. Table 1.4 indicates the results for TWNI allocation are

similar to those for random allocation. In addition, despite the outcome value varying with

the SIR parameters, the sizable improvement from using network information to allocate

vaccination is quite robust to variations in the size and density of network.
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Figure 1.2: Comparison between Greedy Algorithm and Targeting Without Network Information

Our numerical study shows that if the number of available vaccine doses is small, the loss

from ignoring network information is relatively small too (around 4%). This loss increases

dramatically, however, with the number of available vaccines. In addition, the performance

gap between our greedy algorithm and the other two allocation methods decreases with

the network complexity (i.e., the number of edges). Under what might be described as a

lockdown policy, the density of the network is maintained at a relatively low level, which

raises the cost of ignoring spillovers. This cost also increases with the number of units in the

population, which is a problem in a more realistic setting. The performance improvement

from considering network information is robust to variation of the SIR parameters, and an
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allocation rule which ignores spillovers waste a sizeable proportion of a scarce resource.

In Table 1.5, we illustrate the impact on the percentage of vaccinated younger units by

varying the weight choice gi (In this simulation exercise, we choose equal weight for the units

in same group). If we assign weight g1 = 1.5 for G1, we find all the vaccines are consumed

by younger units. Comparing with the equal weight case, this number changes dramatically.

Moreover, we find our greedy algorithm offers more vaccines to younger units in the case of

parameter set 2 than parameter set 1, i.e., when the transmission rate parameters are higher

within and across the groups.

Weight Choice Weight g1 = 1, g2 = 1 Weight g1 = 1.1, g2 = 1 Weight g1 = 1.5, g2 = 1

Capacity Constraint d = 7%N d = 20%N d = 7%N d = 20%N d = 7%N d = 20%N

Parameter set 1
N = 500, density = 0.1 9% 17% 80% 61% 100% 100%
N = 500, density = 0.5 0% 1% 100% 94% 100% 100%
N = 500, density = 1 9% 17% 80% 61% 100% 100%
N = 800, density = 0.1 11% 14% 84% 69% 100% 100%
N = 800, density = 0.5 0% 1% 100% 95% 100% 100%
N = 800, density = 1 0% 0% 100% 100% 100% 100%
Parameter set 2
N = 500, density = 0.1 31% 27% 89% 64% 100% 100%
N = 500, density = 0.5 3% 13% 100% 95% 100% 100%
N = 500, density = 1 31% 27% 89% 64% 100% 100%
N = 800, density = 0.1 23% 26% 91% 71% 100% 100%
N = 800, density = 0.5 5% 10% 100% 98% 100% 100%
N = 800, density = 1 0% 0% 100% 100% 100% 100%

Table 1.5: The percentage of vaccinated younger units in the second period under the vaccine allo-
cation policies obtained by Greedy Algorithm, averaged over 100 random networks. We choose three
different sets of weights in this comparison

1.7 Conclusion

In this work, we have introduced a novel method to estimate individualized vaccine allocation

rules under network interference. We introduce the heterogeneous-interacted-SIR model to

specify the spillover effects of infectious disease. We show that the welfare objective function

of the vaccine allocation problem is non-decreasing and submodular, and so is its empirical
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analogue formed by plugging in the estimates of the SIR parameters. Based on this specific

diminishing returns property, we provide a greedy algorithm with performance guarantee

under two different exogenous constraints, which can easily accommodate various targets

that policymakers commonly face in reality. Moreover, we show that this algorithm implies

an upper bound for regret that converges uniformly at O(n−1/2). Using simulation, we point

out the importance of considering network information in the allocation problem.

Several open questions and extensions are worth considering in future work. First, this

paper considered a one-time vaccine allocation. We did not consider if there are multiple

allocation periods, and how to decide the allocation dynamically. A relevant important ques-

tion is how to jointly optimize allocations and timing of first- and second-doses of vaccines,

as recently discussed for Covid-19 vaccines in Maier et al. (2021), Tuite et al. (2021), and

Wang et al. (2021)). Moreover, we do not study how the vaccine allocation rule impacts on

the outcome variables after multiple periods. As discussed in Bu et al. (2020), changes to

the network structure should be considered in a dynamic setting. Second, we only compare

the greedy algorithm with the brute-force optimum in a small network. Other than the uni-

versal bounds of Theorem 1.5.1, we do not know the performance of our method relative to

the optimal solution in the large network data setting. Third, we did not impose any other

constraints than the capacity constraint and the targeting constraint. For interpretability and

fairness, we may want to additionally restrict the policy rule as a simple function of observed

covariates. We regard these as interesting questions that are worthy of consideration.
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Supplement to “ Who Should Get

Vaccinated? Individualized Allocation of

Vaccines Over SIR Network”

A.1 The Transmission Term

Consider a susceptible individual i with κs contacts which depends on his own characteristics

at each period. Of these contacts, a fraction
∑

j∈Ni
Ij(1−vj)aj/|Ni| are contacts with infected

neighbors from group 1, and a fraction
∑

j∈Ni
Ij(1 − vj)bj/|Ni| are contacts with infected

neighbors from group 2. If we define cij as the probability of successful disease transmission

at each contact, then 1 − csk is the probability that transmission between group s and group

k does not take place. Therefore, we have the probability that a unit i is not infected in one

time period :

1− qi = (1− c11)
κ1

∑
j∈Ni

Ij(1−vj)ajai

|Ni| · (1− c12)
κ1

∑
j∈Ni

Ij(1−vj)bjai

|Ni|

· (1− c21)
κ2

∑
j∈Ni

Ij(1−vj)ajbi

|Ni| · (1− c22)
κ2

∑
j∈Ni

Ij(1−vj)bjbi

|Ni| .
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We now define βsk = −κs ln(1 − csk) and plug it into the expression for 1 − qi, which allows

us to rewrite the above equation as :

qi = 1− e−z,

where

z =
β11
|Ni|

∑
j∈Ni

Ij(1− vj)ajai +
β12
|Ni|

∑
j∈Ni

Ij(1− vj)bjai

+
β21
|Ni|

∑
j∈Ni

Ij(1− vj)ajbi +
β22
|Ni|

∑
j∈Ni

Ij(1− vj)bjbi.

Recalling that ex = 1 + x + x2

2!
+ x3

3!
+ · · · , we now have the probability of infection at each

time period is

qi ≃ z.

A.2 Lemmas

A.2.1 Preliminary Lemma

In this section we collect a set of lemmas from past literature that we use in our proofs.

Lemma A.2.1 (Proposition 6.3 Bach (2011)). Let Q ∈ Rp×p, q ∈ Rp, and N = {1, 2, . . . , p}.

For A ∈ 2N , define 1A = (11∈A, . . . , 1p∈A)
′. The function F : A 7→ q⊺1A + 1

2
1⊺AQ1A is submodular

if and only if all off-diagonal elements of Q are non-positive.

Lemma A.2.2 (Theorem 2.2 Cunningham (1985)). Function F is a cut function if and only

if : For any three disjoint subsets A, B, C of S,

F (A ∪B ∪ C) = F (A ∪B) + F (A ∪ C) + F (B ∪ C)− F (A)− F (B)− F (C) + F (∅).
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The following lemmas are some common techniques that are often used in the statistical

learning literature, as reviewed in Lugosi (2002).

Lemma A.2.3 (Hoeffding’s inequality Hoeffding (1963)). LetX1, ..., Xn be independent bounded

random variables such that Xi falls in the interval [ai, bi] with probability one. Denote their sum

by Sn =
∑n

i=1Xi. Then for any ϵ > 0 we have

P{Sn − ESn ≥ ϵ} ≤ e−2e2/
∑n

i=1(bi−ai)
2

,

and

P{Sn − ESn ≤ −ϵ} ≤ e−2e2/
∑n

i=1(bi−ai)
2

.

A.2.2 Proof of Lemma 1.4.1

Let Ŵ ∈ RN×N and Ĉ ∈ RN . Then the function Fn : V 7→ v⊺Ŵv+ Ĉ⊺v−1⊺
N×1Ŵv−v⊺Ŵ1N×1

is submodular if and only if ŵij ≤ 0 ∀i ̸= j.

Proof. The first step is to show our objective function is a cut function based on Lemma A.2.2.

In our case, simply consider three arbitrary disjoint sets A,B,C ⊆ N .

Fn(A) =
∑
j∈A

{ŵjj + ĉj}+
∑

i ̸=j∈A

{ŵij} −
∑
j∈A

N∑
m=1

{ŵmj + ŵjm},

Fn(B) =
∑
j∈B

{ŵjj + ĉj}+
∑

i ̸=j∈B

{ŵij} −
∑
j∈B

N∑
m=1

{ŵmj + ŵjm},
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Fn({A ∪B}) =
∑

j∈{A∪B}

{ŵjj + ĉj}+
∑

i ̸=j∈{A∪B}

{ŵij} −
∑

j∈{A∪B}

N∑
m=1

{ŵmj + ŵjm}

=
∑
j∈A

{ŵjj + ĉj}+
∑

i ̸=j∈A

{ŵij} −
∑
j∈A

N∑
m=1

{ŵmj + ŵjm}

+
∑
j∈B

{ŵjj + ĉj}+
∑

i ̸=j∈B

{ŵij} −
∑
j∈B

N∑
m=1

{ŵmj + ŵjm}

= Fn(A) + Fn(B).

Therefore, we have :

Fn({A ∪B} ∪ C) = Fn({A ∪B}) + Fn(C)

= Fn(A) + Fn(B) + Fn(C)

Combining the previous results, we get :

Fn({A ∪B} ∪ C) = Fn(A ∪B) + Fn(A ∪ C) + Fn(B ∪ C)

− Fn(A)− Fn(B)− Fn(C)− Fn(∅),

since Fn(∅) = 0.

Now, we have shown that Fn(V ) is a cut function. The next step is to find the sufficient and

necessary conditions for submodularity of the cut function. Lemma A.2.1 indicates, for any

cut function which can be written as a quadratic function plus a linear part, submodularity

holds if and only if all off-diagonal elements of the weighting matrix are non-positive. That

requires ŵij ≤ 0, ∀i ̸= j.
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A.2.3 Proof of Lemma 1.5.1

Under Assumption 1, 2, and 3, we have

EPn

∣∣ŵij − wij

∣∣ ≤√
1 + ln(2)

2n

Aijgi
N

, EPn|ĉi − ci| ≤
√

1 + ln(2)

2n

Iigi
N

.

Proof. We first prove the upper bound of EPn

∣∣ŵij − wij

∣∣ .
ŵij − wij =

SigiAijIj
|Ni|N

[
(β11 − β̂11)aiaj + (β12 − β̂12)aibj + (β21 − β̂21)biaj + (β22 − β̂22)bibj

]
.

If we take the absolute value and expectation of each side, by the triangle inequality, we get

EPn

∣∣ŵij − wij

∣∣ = EPn

∣∣∣∣SigiAijIj
|Ni|N

[
(β̂11 − β11)aiaj + (β̂12 − β12)aibj

+(β̂21 − β21)biaj + (β̂22 − β22)bibj
]∣∣∣∣

≤ SigiAijIjaiaj
|Ni|N

EPn

∣∣∣β̂11 − β11∣∣∣+ SigiAijIjaibj
|Ni|N

EPn

∣∣∣β̂12 − β12∣∣∣
+
SigiAijIjbiaj
|Ni|N

EPn

∣∣∣β̂21 − β21∣∣∣+ SigiAijIjbibj
|Ni|N

EPn

∣∣∣β̂22 − β22∣∣∣ .
(A.11)

Since βsk is the effective contact rate of the disease between group s and k, it is naturally

bounded in [0, 1]. We can apply Lemma A.2.3 to get the upper bound of each component :

P

{∣∣∣β̂sk − βsk∣∣∣ ≥ ϵ
}
≤ 2e−2nϵ2 ∀s, k = 1, 2. (A.12)

Now we can bound E(|β̂ − β|). Recall that for any nonnegative random variable Y, E(Y ) =
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∫∞
0
P(Y ≥ t)dt. Hence, for any a > 0,

E(|β̂ − β|2) =
∫ ∞

0

P(|β̂ − β|2 ≥ t)dt

=

∫ a

0

P(|β̂ − β|2 ≥ t)dt+

∫ ∞

a

P(|β̂ − β|2 ≥ t)dt

≤ a+

∫ ∞

a

P(|β̂ − β|2 ≥ t)dt.

Equation (A.12) implies that P(|β̂ − β| ≥
√
t) ≤ 2e−2nt. Hence,

E(|β̂ − β|2) ≤ a+

∫ ∞

a

P(|β̂ − β|2 ≥ t)dt

= a+

∫ ∞

a

P(|β̂ − β| ≥
√
t)dt

≤ a+ 2

∫ ∞

a

e−2ntdt

= a+
e−2na

n
.

Set a = ln(2)/(2n) and we have

E(|β̂ − β|2) ≤ ln(2)

2n
+

1

2n
=

1 + ln(2)

2n
.

Therefore, we have

E(|β̂ − β|) ≤
√

(E(|β̂ − β|2) ≤
√

1 + ln(2)

2n
.

Plugging this upper bound back to equation (A.11), we get

E
∣∣ŵij − wij

∣∣ ≤√
1 + ln(2)

2n
(aiSiAijajIj + aiSiAijbjIj + biSiAijajIj + biSiAijbjIj)

gi
|Ni|N

(∵ |Ni| ≥ 1 and by treating 0 neighbor as equal to 1)

≤
√

1 + ln(2)

2n

Aijgi
N

.
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The steps to prove the upper bound for EPn|ĉi − ci| are exactly the same,

ĉi − ci = −(γ̂1 − γ1)
aiIigi
N
− (γ̂2 − γ2)

biIigi
N

.

Take the absolute value and expectation of both sides,

E|ĉi − ci| = E
∣∣∣∣(γ̂1 − γ1)aiIigiN

+ (γ̂2 − γ2)
biIigi
N

∣∣∣∣
≤ E|γ̂1 − γ1|

aiIigi
N

+ E|γ̂2 − γ2|
biIigi
N

.

(A.13)

With the same idea as for β, γ is also bounded in [0, 1]. By using Lemma A.2.3, we get

E|γ̂ − γ| ≤
√

1 + ln(2)

2n
∀γ̂ = γ̂1, γ̂2.

Plugging this upper bound back into equation A.13, we get

E|ĉi − ci| ≤
√

1 + ln(2)

2n
(ai + bi)

Iigi
N

=

√
1 + ln(2)

2n

Iigi
N

.

A.3 Proofs for Theorems

A.3.1 Proof of Theorem 1.4.1

The objective function Fn(V ) is a non-decreasing submodular function for any adjacency

matrix, covariate values, and parameter estimates.

Proof. Recall

Fn(V ) = v⊺Ŵv + Ĉ⊺v − 1⊺
N×1Ŵv − v⊺Ŵ1N×1.
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Here, v is a vector of integers. Let us first, instead, look at this function in the continuous case.

Imagine now we have a vector ṽ with continuous elements. Then, this function becomes :

F̃n(V ) = ṽ⊺Ŵ ṽ + Ĉ⊺ṽ − 1⊺
N×1Ŵ ṽ − ṽ⊺Ŵ1N×1.

We can write the derivative of Fn(V ) with respect to ṽ :

∂F̃n(V )

∂ṽ
= ṽ⊺Ŵ ⊺ + ṽ⊺Ŵ + Ĉ⊺ − 1⊺N×1Ŵ − 1⊺N×1Ŵ

⊺

= (ṽ⊺ − 1⊺N×1)︸ ︷︷ ︸
≤0

Ŵ ⊺︸︷︷︸
≤0

+(ṽ⊺ − 1⊺N×1)︸ ︷︷ ︸
≤0

Ŵ︸︷︷︸
≤0

+ Ĉ⊺︸︷︷︸
≥0

≥ 0.

Given all the elements in ∂F̃n(V )
∂ṽ

are non-negative, this non-decreasing property also holds

under the integer increment in every element of v. Therefore, Fn(V ) is a non-decreasing set

function. Combining this with Lemma 1.4.1, we complete the proof.

A.3.2 Proof of Theorem 1.5.1

Let NM = maxi∈N |Ni|, NI be the total number of infected units, and g = maxi∈N gi. Under

Assumptions 1, 2, and 3, we have

EPn

[
F (V ∗)− F (V̂ )

]
≤ C̄ ·

g
[
dmin{NM , d}+ 2dNM +min{NI , d}

]
N

√
1

n
+

1

e
F (V ∗),

where C̄ is a universal constant and d is the number of available vaccine doses.
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Proof.

EPn

[
sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ ] ≤ EPn

[
sup
V ∈Vd

v⊺
∣∣∣Ŵ −W ∣∣∣v]+ EPn

[
sup
V ∈Vd

∣∣∣Ĉ⊺ − C⊺
∣∣∣v]

+ EPn

[
sup
V ∈Vd

1⊺
N×1

∣∣∣Ŵ −W ∣∣∣v]+ EPn

[
sup
V ∈Vd

v⊺
∣∣∣Ŵ −W ∣∣∣1N×1

]
= sup

V ∈Vd

v⊺ EPn

∣∣∣Ŵ −W ∣∣∣v + sup
V ∈Vd

EPn

∣∣∣Ĉ⊺ − C⊺
∣∣∣v

+ sup
V ∈Vd

1⊺
N×1 EPn

∣∣∣Ŵ −W ∣∣∣v + sup
V ∈Vd

v⊺ EPn

∣∣∣Ŵ −W ∣∣∣1N×1.

(A.14)

From equation (A.14), EPn

[
supV ∈Vd

∣∣Fn(V )− F (V )
∣∣ ] can be decomposed into four compo-

nents. Since v only contains {0, 1} and the absolute value must be non-negative, V that

maximizes each component under capacity constraint must select units with a greater num-

ber of edges, as compare to those that are not selected. We define the maximum number of

edges for each unit as NM . Hence, the number of edges for selected units must be lower or

equal to NM . Next, we look at each term in equation A.14 separately. Using Lemma 1.5.1,

the first term is bounded as :

sup
V ∈Vd

v⊺ EPn

∣∣∣Ŵ −W ∣∣∣v ≤ sup
V ∈Vd

√
1 + ln(2)

2n

∑
i∈V

∑
j∈V

Aijgi
N

≤
√

1 + ln(2)

2n

∑
i∈V

gi min{NM , d}
N(

∵
∑
j∈V

Aij ≤ min{NM , d} ∀i ∈ N
)

≤
√

1 + ln(2)

2n

dg ·min{NM , d}
N

.

The second term is bounded as :

sup
V ∈Vd

EPn

∣∣∣Ĉ⊺ − C⊺
∣∣∣v ≤ sup

V ∈Vd

√
1 + ln(2)

2n

∑
i∈V

Iigi
N
≤

√
1 + ln(2)

2n

gmin{NI , d}
N

.
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The third term is bounded as :

sup
V ∈Vd

1⊺
N×1 EPn

∣∣∣Ŵ −W ∣∣∣v ≤ sup
V ∈Vd

√
1 + ln(2)

2n

∑
i∈N

∑
j∈V

Aijgi
N

≤
√

1 + ln(2)

2n

∑
j∈V gNM

N

=

√
1 + ln(2)

2n

dgNM

N
.

The fourth term is bounded as :

sup
V ∈Vd

v⊺ EPn

∣∣∣Ŵ −W ∣∣∣1N×1 ≤ sup
V ∈Vd

√
1 + ln(2)

2n

∑
i∈V

∑
j∈N

Aijgi
N

≤
√

1 + ln(2)

2n

∑
i∈V gNM

N

=

√
1 + ln(2)

2n

dgNM

N
.

Combining the bounds of the four terms, we get

EPn

[
sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ ] ≤√

1 + ln(2)

2n

dgmin{NM , d}
N

+ 2

√
1 + ln(2)

2n

dgNM

N

+

√
1 + ln(2)

2n

gmin{NI , d}
N

=
dgmin{NM , d}+ 2dgNM + gmin{NI , d}

N

√
1 + ln(2)

2n
.

Therefore, we have from equation (1.9)

EPn [F (V ∗)− F (V̂ )] ≤
(
2 +

1

e

)
dgmin{NM , d}+ 2dgNM + gmin{NI , d}

N

√
1 + ln(2)

2n

+
1

e
F (V ∗)

=

(
2 +

1

e

)
g
[
dmin{NM , d}+ 2dNM +min{NI , d}

]
N

√
1 + ln(2)

2n

+
1

e
F (V ∗)
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Setting C̄ = (2 + 1/e)
√

1+ln(2)
2

completes the proof.

50



Chapter 2

Individualized Treatment Allocation in

Sequential Network Games

2.1 Introduction

The question of how best to allocate treatment to units interacting in a network is relevant

to many policy areas, including the provision of local public goods (Bramoullé and Kranton,

2007), the diffusion of microfinance (Banerjee et al. (2013); and Akbarpour et al. (2020b)),

and strategic immunization (Galeotti and Rogers (2013); and Kitagawa and Wang (2023b)).

Obtaining an optimal individualized allocation, however, is often infeasible due to analytical

and computational challenges. As a consequence, practical counterfactual policy analysis in

the presence of network spillovers is limited to simulating and comparing outcome distribu-

tions or welfare values across a few benchmark candidate policies. This leaves the magnitude

of the potential welfare gains of an optimal individualized assignment policy unknown.

Focusing on a class of social network models in which interacting agents play sequential

decision games (Jackson and Watts (2002); Nakajima (2007); Mele (2017); and Christakis

et al. (2020)), this paper develops a method to obtain optimal treatment assignment rules

that maximize a social welfare criterion. We consider an individualized allocation of binary
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treatments over agents who are heterogeneous in terms of their own observable characteris-

tics, their network configurations, and their neighbors’ observable characteristics. Each agent

chooses a binary outcome so as to maximize their own utility. This choice depends upon the

agent’s own characteristics and treatment as well as their neighbors’ characteristics, treat-

ments and choices. The sequential decisions of randomly ordered agents induce a unique

stationary distribution of choices (Nakajima, 2007; Mele, 2017). We specify the planner’s

welfare criterion to be the mean of the aggregate outcomes (i.e., the sum of the means of

binary outcomes over all agents in the network) at the stationary state that is associated with

a given treatment allocation. We aim to maximize the welfare evaluated at the stationary

outcome distribution with respect to the individualized allocation of treatments.

There are analytical and computational challenges to solving the maximization problem

for optimal targeting. First, fixing an allocation of treatments, the sequential decision games

induce a Markov random field (MRF) and the stationary outcome distribution has a Gibbs

distribution representation. The analytical properties of the mean of the aggregate outcomes,

however, are difficult to characterize. To approximate the joint distribution of outcomes, the

literature on MRFs performs numerical methods such as Markov Chain Monte Carlo (MCMC)

(Geman and Geman, 1984). If the size of the network is moderate to large though, MCMC

can be slow to converge. It is, therefore, infeasible to perform MCMC to evaluate the welfare

at every candidate treatment assignment policy. Second, obtaining an optimal individualized

assignment is a combinatorial optimization problem with respect to a binary vector whose

cardinality is equal to the number of agents in the network. A brute force search quickly

becomes infeasible as the size of network expands.

We tackle these challenges by proposing methods for approximately solving the combi-

natorial optimization problem for individualized assignment. Our proposal is to perform

a variational approximation of the stationary distribution of outcomes and to optimize the

approximated equilibrium welfare with respect to an assignment vector by using a greedy

optimization algorithm. The variational approximation step lessens the computational bur-
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den of running MCMC at each candidate policy. The greedy optimization step reduces the

computational burden of the combinatorial optimization by assigning treatment sequentially

to the agent who generates the largest welfare gain given previous assignments. Since our

proposal involves approximation of the objective function and the heuristic method of greedy

optimization, our proposal is not guaranteed to lead to a global optimum. A novel contri-

bution of this paper is that we derive a performance guarantee for our proposed method in

terms of an analytical upper bound on the welfare loss relative to the globally optimal as-

signment. The upper bound on the welfare regret consists of two terms: the welfare loss due

to variational approximation and the welfare loss due to greedy optimization. We show that,

once scaled such that it can be interpreted as the per-person welfare loss, the first term of the

upper bound on the welfare loss (originating from the variational approximation) vanishes

asymptotically as the number of agents in the network increases. On the other hand, we

show that the second term of the upper bound on the the welfare loss (originating from the

greedy optimization) does not generally converge to zero.

To highlight this paper’s unique contributions to the literature, we abstract from estima-

tion of the structural parameters underlying the sequential decision game and assume that

they are known. See Geyer and Thompson (1992), Snijders et al. (2002), Wainwright et al.

(2008), Chatterjee and Diaconis (2013), Mele (2017), Boucher and Mourifié (2017), and

Mele and Zhu (2022) for identification and estimation of these parameters. In practical

terms, our proposed method is useful for computing an optimal assignment of treatment,

with point estimates plugged-in in place of structural parameters.

To assess the performance of our proposal, we perform extensive numerical studies. Given

that the number of possible configurations increases exponentially with the size of the net-

work, we are only able to apply the brute force method to search for the optimal allocation

rule in a small network setting. We find that our proposed method leads to a globally optimal

solution in a small network setting under our assumptions. In a large network setting, we first

examine the performance of using our method compared with No treatment and with ran-
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dom allocation. We attain a welfare improvement of around 50% relative to a No treatment

rule, and an improvement of around 10% relative to a random allocation rule. In addition,

we evaluate the welfare performance gap of using variational approximation compared with

MCMC to approximate the stationary distribution of the outcome. Under our assumptions,

the variational approximation performs as well as MCMC for all of the treatment allocation

rules that we consider.

We augment these numerical studies with an empirical application that illustrates the im-

plementation and welfare performance of our method. Specifically, we apply our procedure

to Indian microfinance data that has been previously analyzed by Banerjee et al. (2013). The

data contains information about households in a number of villages, their relation to other

households in their village, and whether they chose to purchase a microfinance product. For

each village in the sample, we estimate the structural parameters of an assumed utility func-

tion using the method outlined in Snijders et al. (2002). Plugging in the parameter estimates,

we obtain an individualized treatment allocation rule using our greedy algorithm. We com-

pare the village welfare attained by our greedy algorithm with the welfare achieved by an

NGO called Bharatha Swamukti Samsthe (BSS). For all 43 villages in the sample, our method

is associated with a higher welfare-level, with the magnitude of improvement varying from

9.82% to 137.46% (average improvement is 40.69%). The magnitude of the welfare gain is

remarkable and demonstrates the benefits of individualized targeting under interference.

The remainder of this paper is organized as follows. We first review the relevant literature

in the remainder of this section. Section 2.2 details the sequential decision process and

the stationary distribution of the outcome variable. Section 2.3 contains theoretical results

relating to the implementation of a variational approximation and to the maximization of the

variationally approximated outcome. Simulation results are shown in Section 2.4. We apply

our proposed method to the Indian microfinance data, which is studied by Banerjee et al.

(2013), and demonstrate its performance in Section 2.5. Section 2.6 concludes. All proofs

and derivations are shown in Appendix A.1 to A.2.
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2.1.1 Literature Review

This paper intersects with several literatures in economics and econometrics, including graph-

ical game analysis, Markov random fields and variational approximation, discrete optimiza-

tion of non-submodular functions, and statistical treatment rules.

Graphical game analysis has a long history in economics, see Rosenthal (1973), Kakade

et al. (2003), Ballester et al. (2006), Roughgarden (2010), Kearns et al. (2013), Babichenko

and Tamuz (2016), De Paula et al. (2018), Leung (2020) and Parise and Asuman (2023).

The most relevant paper to our work are Mele (2017) and Christakis et al. (2020), which

study strategic network formation. Despite both of them consider the sequential network

formation process, there exists some variations in their meeting technology. Mele (2017) as-

sumes units can revise their actions frequently and can meet multiple times, while Christakis

et al. (2020) assumes units can only meet once and their actions are permanent. Under their

meeting technology, Mele (2017) formulates the network formation game as a potential game

(Monderer and Shapley, 1996), and characterizes the stationary distribution of the network

as an exponential distribution. We also formulate our game as a potential game and adopt

a similar sequential decision process (Blume, 1993) to study the stationary distribution for

our game. Jackson and Watts (2002) indicates that this sequential decision process is a spe-

cific equilibrium selection mechanism. Kashaev et al. (2023) introduces a similar sequential

structure into a discrete choice model with peer effect and estimates the model with panel

data. Kline et al. (2021) discusses the difficulties and potential solutions of analyzing coun-

terfactuals with multiple equilibria. Lee and Pakes (2009) suggests using the best response

dynamics learning model (our sequential decision process) to perform counterfactual analy-

sis with multiple equilibria. De Paula (2013) reviews the recent literature on the econometric

analysis of games with multiple equilibria. Badev (2021) extends the setting in Mele (2017)

to study how behavioral choices change the network formation. De Paula (2020) reviews

recent works on network formation. Whilst Mele (2017) devotes considerable attention to

characterizing the stationary distribution of a network formation game, the main focus of
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this paper is to develop a method for approximating optimal targeting in network games.

Ballester et al. (2006) and Galeotti et al. (2020) also study targeting an intervention in a

network setting, but the utility specification, the objective function, and the action space in

their paper differ from those in our setting. Those differences lead to a different equilibrium

and a different identification strategy for the optimal intervention compared with our setting.

This paper is also relevant to the literature on Markov random fields (MRF) and varia-

tional approximation. MRF offer a way to represent the joint distribution of random variables

as a collection of conditional distributions. MRF has been used in a wide variety of fields, in-

cluding in statistical physics (e.g., Ising model; Ising, 1925), and in image processing (Wang

et al., 2013). We model an individual’s choice of outcomes as the maximization of a latent

payoff function that depends upon a treatment allocation and their neighbors’ choices, and

derive an MRF representation of the joint distribution of outcomes. We use variational ap-

proximation as a computationally tractable approximation of the stationary outcome distribu-

tion. See Wainwright et al. (2008) for a comprehensive survey on variational approximation

and MRF. Chatterjee and Dembo (2016) provides an approximation error bound to varia-

tional approximation applied to MRF of binary outcomes. Mele and Zhu (2022) apply this

method to estimate parameters in a network formation model. However, none of the afore-

mentioned papers have considered how changing parameter values affects the mean value

or the distribution of MRF. This literature has not, to the best of our knowledge, studied

how to obtain an optimal intervention in terms of a criterion function defined on the joint

distribution of outcomes characterized through a MRF.

We build a connection to the literature on providing a theoretical performance guarantee

to using a greedy algorithm. Nemhauser et al. (1978) provides a performance guarantee for

a general greedy algorithm solving submodular maximization problems with a cardinality

constraint. Many optimization problems, however, are not submodular (Krause et al., 2008)

and greedy algorithms usually still exhibit good empirical performance (Das and Kempe,

2011). Given this, there is considerable interest in solving non-submodular optimization
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problems using greedy algorithms amongst researchers. See Das and Kempe (2011), Bian

et al. (2017), El Halabi and Jegelka (2020), and Jagalur-Mohan and Marzouk (2021). We

use the result from Bian et al. (2017) to produce a performance guarantee for our treatment

allocation problem by clarifying sufficient conditions for obtaining non-trivial bounds on the

submodularity ratio and the curvature of our objective function. We are unaware of these

recent advances in the literature on discrete optimization of non-submodular functions being

applied elsewhere to the problem of optimal targeting in the presence of network spillovers.

Although it does not introduce sampling uncertainty, this paper shares some motivation

with the literature on statistical treatment rules, which was first introduced into econometrics

by Manski (2004). Following the pioneering works of Savage (1951), and Hannan (1957),

researchers often characterize the performance of decision rules using regret.1 See Dehejia

(2005), Stoye (2009, 2012), Hirano and Porter (2009, 2020), Chamberlain (2011, 2020),

Tetenov (2012), and Christensen et al. (2022) for decision theoretic analyses of statistical

treatment rules. There is also a growing literature learning on studying individualized treat-

ment assignments including Kitagawa and Tetenov (2018), Athey and Wager (2021), Kasy

and Sautmann (2021), Kitagawa et al. (2021), Mbakop and Tabord-Meehan (2021), Sun

(2021), and Adjaho and Christensen (2022), among others. These works do not consider set-

tings that allow for the network spillovers of treatments. There are some recent works that

introduce network spillovers into statistical treatment choice, such as Viviano (2019, 2020),

Ananth (2020b), Kitagawa and Wang (2023b), and Munro et al. (2023). Viviano (2019)

and Ananth (2020b) assume the availability of network data from a randomised control trial

(RCT) experiment. They do not model the behavior of units from a structural perspective.

Viviano (2020) studies how to assign treatments over the social network in an experiment

design setting. Munro et al. (2023) studies targeting analysis taking into account spillovers

through the market equilibrium. Kitagawa and Wang (2023b) considers the allocation of

1In econometrics and machine learning, regret typically arises due to uncertainty surrounding the value of
underlying parameters (i.e., estimation). In this work, regret arises from our use of variational approximation
and of a greedy algorithm (i.e., identification).
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vaccines over an epidemiological network model (a Susceptible-Infected-Recovered, or SIR,

network). Kitagawa and Wang (2023b) considers a simple two-period transition model and

does not consider the long-run stationary distribution of health status over the network.

In contrast, in this paper, we consider sequential decision games and aim to optimize the

long-run equilibrium welfare by exploiting its MRF representation. As an application of var-

ionational approximation to treatment choice in a different context, Kitagawa et al. (2022a)

applies variational approximation to a quasi-posterior distribution for individualized treat-

ment assignment policies and studies welfare regret performances when assignment policies

are drawn randomly from the variationally approximated posterior.

2.2 Model

2.2.1 Setup

Let N = {1, 2, ..., N} be the population. Each unit has a K-dimensional vector of observable

characteristics that we denote by Xi, i ∈ N . Assuming that the support of Xi is bounded,

we normalize the measurements of Xi to be nonnegative, such that Xi ∈ RK
+ . Let X =

{X1, ..., XN} be a matrix that collects the characteristics of units in the population, and let

XN denote the set of all possible matrices X . LetD = {d1, ..., dN} denote a vector of treatment

allocation, where di ∈ {0, 1}, i ∈ N , indicates whether unit i is treated (di = 1) or untreated

(di = 0).

The social network is represented by an N × N binary matrix that we denote by G =

{Gij}i,j∈N , and that is fixed and exogenous in this work. Gij = 1 indicates that units i and

j are connected in the social network, whilst Gij = 0 indicates that they are not. Let Ni

indicate the set of neighbors of unit i. N denotes the maximum number of edges for one

unit in the network (i.e., N = maxi |Ni|); N denotes the minimum number of edges for one

unit in the network (i.e., N = mini |Ni|). As a convention, we assume there are no self-links
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(i.e., Gii = 0, ∀i ∈ N ). We further assume that the following property holds for the network

structure :

Assumption 4. (Undirected Link) The adjacency matrix G is undirected. i.e., Gij = Gji.

The symmetric property of interaction in Assumption 4 is a necessary condition for our inter-

acted sequential decision game to be a proper potential game (Definition 2.2.1 below) that

can yield a unique stationary outcome distribution. The size of the spillover between units i

and j depends not only upon Gij but also upon the treatment allocation and upon covariates,

which are allowed to be asymmetric. We, accordingly, have a directed weighted network

structure for the spillovers.

As we have previously mentioned, we consider a sequential decision game setting to de-

rive the unique stationary outcome distribution. We now introduce the notation for our

sequential decision game. Let Y t
i ∈ Y = {0, 1} be unit i’s choice made at time t, which we

refer to as i’s outcome. Let Y t be the collection of outcome variables {Y t
1 , ..., Y

t
N} ∈ YN at

time t. We consider a discrete-time infinite-horizon setting. For each time period t in the

decision process, we denote the realization of Y t by yt ∈ {0, 1}N , and the realization of unit

i’s outcome by yti . The outcome set that includes all of the current outcomes but yti , that is,

yt\yti , is denoted by yt−i. Let Y = {Yi}Ni=1 ∈ YN denote the collection of the outcome variables

in equilibrium, which follows the stationary outcome distribution.

The game, which we denote by G, comprises:

• the aforementioned set of individuals that we label N , a social planner, and nature;

• a set of actions Y t that records the binary choice that is made by each individual in

every time period t in which they are selected (by nature) to move, and a treatment

choice D for each individual that is made by the social planner in the initial period

upon observing X and G but before Y 1 is chosen;

• a player function that selects a single individual to be active in each time period based

upon whom nature indicates;
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• a sequence of histories over an infinite-horizon that is summarised by an initial treat-

ment allocation and by the identity of the individual that is selected by nature in each

time period alongside their corresponding action;

• the preferences (utilities) of individuals {Ui(y
t,X , D,G;θ)}Ni=1, which depend upon

both their own and others’ actions (i.e., upon each individual’s initial treatment allo-

cation and the binary choices that they subsequently make whenever they are selected

to do so by nature) and by the social planner’s actions (i.e., upon the treatment choice

that the social planner makes in the initial period), and that we imbue with certain

properties specified in Section 2.2.5;

• the individual selected by nature in each time period receives a pair of preference shocks

(one for each of their two choices) before they make a decision. Each individual max-

imizes their utility at each time period in which they are selected by nature. The so-

cial planner chooses the initial treatment allocation to maximize an objective function,

which we call the planner’s welfare.

2.2.2 Potential Game

We consider pure-strategy Nash equilibrium as the solution concept of our game. Recall that

the definition of a pure-strategy Nash equilibrium is a set of actions y∗ = {y∗1, ..., y∗N} such

that

Ui(y
∗
i , y

∗
−i,X , D,G;θ) ≥ Ui(y

′
i, y

∗
−i,X , D,G;θ)

for any y′i ∈ Y and for all i ∈ N . This requires that no individual has a profitable deviation

from her current decision when she is randomly selected by nature. To analyze the Nash

equilibrium of our game, we characterize our game as a potential game. The concept of

a potential game has been used to study strategic interaction since Rosenthal (1973). It

provides a tool to analyze the Nash equilibria of (non) cooperative games in various settings
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(e.g., Jackson, 2010, and Bramoullé et al., 2014). We now formally define the potential

game.

Definition 2.2.1. (Potential Game (Monderer and Shapley, 1996)) G is a potential game if

there exists a potential function Φ : YN → R such that for all i ∈ N and for all yi, y′i ∈ Y

Ui(yi, y−i)− Ui(y
′
i, y−i) = Φ(yi, y−i)− Φ(y′i, y−i). (2.1)

The change in potentials from any player’s unilateral deviation matches the change in their

payoffs. Nash equilibria, therefore, must be the local maximizers of potential. Monderer and

Shapley (1996, §Theorem 4.5) states that

∂Ui

∂yi∂yj
=

∂Uj

∂yj∂yi
(2.2)

is a necessary and sufficient condition for a game featuring a twice continuously differen-

tiable utility function to be a potential game. For the discrete outcome case, a condition2

– that we refer to as the symmetry property – analogous to Eq.2.2 is a necessary and suffi-

cient condition for the existence of a potential function. Chandrasekhar and Jackson (2014),

and Mele (2017) also use a potential game framework to analyze Nash equilibria in a net-

work game. We restrict our analysis to potential games equipped with a potential function

Φ(y,X , D,G;θ). We later specify a functional form for the utility function that satisfies the

symmetry property and provide an explicit functional form for the potential function in Sec-

tion 2.2.5. In assuming that our game is a potential game, we guarantee that at least one

pure strategy Nash equilibrium exists, as per Monderer and Shapley (1996).

2Replacing the second-order derivative in Eq.2.2 with second-order differences. See Monderer and Shapley
(1996, §Corollary 2.9) for further details.
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2.2.3 Sequential Decision Process

The details of the sequential decision process are as follows. In the initial period, the social

planner observes the connections in the social network and individuals’ attributes, and de-

cides the treatment allocation so as to maximize the planner’s welfare. Then, at the beginning

of every period t, an individual i is randomly chosen from N by nature. Unit i chooses an ac-

tion (outcome) yti . The selection process is a stochastic sequence O = (Ot)∞t=1 with support N .

Realizations of Ot indicate the unit that makes a decision in period t; all other units maintain

the same choice as in the last period.

The probability of unit i being randomly chosen from N at time t is given by:

Pr(Ot = i|yt−1,X , D,G) = ρi(y
t−1
−i ),

where
∑N

i=1 ρi(y
t−1
−i ) = 1 for all y ∈ {0, 1}N . In the simplest case, ρi(yt−1

−i ) = 1/N for all t. The

idea here is that only previously-made choices (outcome) factor into the decision of the unit

that is selected by nature in period t. Without this, it is not possible to provide a closed-form

expression for the joint distribution of the outcome. We require that any individual can be

selected and that this selection depends upon yt−1
−i rather than upon yt−1.

Assumption 5. (Decision Process) The probability of unit i being selected at time t does not

depend upon yt−1
i , and each action has a positive probability of occurring:

ρi(y
t−1
−i ) = Pr(Ot = i|yt−1

−i ,X , D,G) > 0 ∀i ∈ N .

Once unit i has been selected in period t, they choose action yti so to maximize their

current utility. We assume that there is complete information, such that unit i can observe

the attributes and treatment status of their neighbors. Before making their decision, unit i
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receives an idiosyncratic shock ε. Then, unit i chooses Y t
i = 1 if and only if:

Ui(1, y
t−1
−i ,X , D,G;θ) + ε1t ≥ Ui(0, y

t−1
−i ,X , D,G;θ) + ε0t.

Following the discrete choice literature (e.g., Train et al., 1987; Brock and Durlauf, 2001),

Mele (2017), and Christakis et al. (2020), we put the following assumption about the id-

iosyncratic shock.

Assumption 6. (Preference Shock) ε1t and ε0t follow a Type 1 extreme value distribution and

are independent and identically distributed among units and across time.

Under Assumption 6, the conditional probability of unit i choosing Y t
i = 1 is given by:

P (Y t
i = 1|Y t−1

−i = yt−1
−i ,X , D,G;θ) =

exp[Ui(1, y
t−1
−i ,X , D,G;θ)]∑

yi∈{0,1} exp[Ui(yi, y
t−1
−i ,X , D,G;θ)]

.

Therefore, the sequence [y0, y1, ..., yt] evolves as a Markov chain such that:

yti =


yt−1
i w/p 1− ρi(yt−1

−i )

y w/p ρi(y
t−1
−i ) · P (Y t

i = y|Y t−1
−i = yt−1

−i ),

∀i ∈ N ,

where y ∈ {0, 1}. Under Assumption 4 to 6, this Markov chain is irreducible and aperiodic,3

which has a unique stationary distribution. Note that in the special case when there is no

idiosyncratic shock, the sequence will stay in one Nash equilibrium in the long run.

The individual decision process is a stochastic best response dynamic process (Blume,

1993). This sequential decision process generates a Markov Chain of decisions. Jackson

and Watts (2002) shows that the sequential decision process plays the role of a stochastic

equilibrium selection mechanism. Without this sequential structure, the model would be

an incomplete model. Lee and Pakes (2009) performs counterfactual predictions of policy
3It is irreducible since every configuration could happen in a finite time given our assumption on the selec-

tion process. It is aperiodic since the selected unit has a positive probability to choose the same choice as in the
last period.
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interventions in the presence of multiple equilibria, with best response dynamics playing the

role of an equilibrium selection mechanism.

2.2.4 Stationary Distribution

Following Mele (2017, §Theorem 1), the stationary joint distribution of the outcomes in our

sequential decision game is given by:

Theorem 2.2.1. Unique Stationary Distribution (Nakajima, 2007; Mele, 2017): Under As-

sumption 4 to 6, the interacted decision game has a unique stationary distribution:

P [Y = y|X , D,G;θ] = exp[Φ(y,X , D,G;θ)]∑
δ∈{0,1}N exp[Φ(δ,X , D,G;θ)]

. (2.3)

Mele (2017) discusses the relationship between Nash equilibria and this stationary distri-

bution. The set of Nash equilibria is the set of local maxima of the potential function. We also

know that the probability of a given configuration increases with the value of the potential.

Nash equilibria of the game must, therefore, be visited more often in the long run. Given

this, modes of the stationary distribution will correspond to Nash equilibria.

Theorem 2.2.1 shows that, given the parametric specification of the distribution of unob-

servables (Assumption 6), the joint distribution of the outcomes is given by a Gibbs distribu-

tion characterized by the potentials. This result has a close connection to the MRF literature.

Specifically, we can view the joint distribution of the outcomes in the stationary as a Markov

random field (see, e.g., Brémaud, 2013):

The random field {Yi}Ni=1 is a collection of random variables on the state space Y. This

random field is a Markov random field if for all i ∈ N and y ∈ YN :

P (Yi = yi|Y−i = y−i) = P (Yi = yi|Yj∈Ni
= yj∈Ni

). (2.4)

Given the specification of our utility function, the conditional distribution of Yi satisfies
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this Markov property. By connecting Y to MRF, the Hammersley-Clifford Theorem (Hammer-

sley and Clifford, 1971; Besag, 1974) establishes that the joint distribution of Y must follow

a Gibbs distribution, which is consistent with the result of Theorem 2.2.1.

The stationary distribution of the outcomes shown in Theorem 2.2.1 is structural in the

sense that the specification of the potential function in the Gibbs distribution relies on the

functional form specification of the latent payoff function of agents. An advantage of the

current structural approach is that we are transparent about the assumptions that we im-

pose on the behavior of agents, on the structure of social interaction, and on the equilibrium

concept. The structural approach, accordingly, disciplines the class of joint distributions of

observed outcomes to be analyzed. As an alternative to the structural approach, we can

consider a reduced-form approach where we model the conditional distribution of the ob-

served outcomes given the treatment vector. Maintaining the family of Gibbs distributions,

the reduced-form approach corresponds to introducing a more flexible functional form for

the potential functions without guaranteeing that it is supported as a Nash equilibrium of

the potential game. Despite this potential issue, our approach of variational approximation

and greedy optimization can be used to obtain an optimal targeting rule for a broad class of

potential functions.

2.2.5 Preference

As in Nakajima (2007), Mele (2017), and Sheng (2020), we specify the individual utility

function as a quadratic function of own and neighbors’ choices. This implies that we allow

the spillover effects to be at the first degree but not at a higher degree, i.e., the spillover

effect is bilateral within each pair of individuals. The deterministic component of the utility

of player i of choosing yi relative to yi = 0 is given by:

Ui(y,X , D,G;α, β) = αiyi +
N∑
j ̸=i

βijyiyj.
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Given a network G, covariates X = (X1, ..., XN), and a treatment allocation D = (d1, ..., dN),

the coefficient αi on unit i’s choice depends upon their own covariates and treatment status as

well as those of all of their neighbors; the coefficient βij on the quadratic term yiyj depends

upon their own covariates and treatment status as well as those of their neighbor unit j.

Allowing for αi and βij to be unconstrained, this specification of the utility function is without

loss of generality since choice is binary. The condition for the existence of a potential function

(Eq.2.2), however, requires that βij = βji for all i ̸= j ∈ N .4 This symmetry assumption on

βij restricts the spillover effect of unit i’s choice on unit j. The approach that is proposed

in this paper to obtain an optimal treatment allocation can be implemented for any utility

function specification as long as this symmetry condition is imposed. Nevertheless, to obtain a

specific welfare performance guarantee for our method, we consider the following parametric

specification of the utility functions in the remaining sections.

Ui(y,X , D,G;θ) =
[
θ0 + θ1di +X ′

iθ2 +X ′
iθ3di +AN

∑
j∈Ni

θ4mijdj

]
yi +AN

∑
j∈Ni

mij(θ5 + θ6didj)yiyj ,

(2.5)

where mij = m(Xi, Xj) is a (bounded) real-valued function of personal characteristics. In the

absence of binary treatments, this specification appears in Mele (2017), and Sheng (2020).

mij measures the distance between unit i’s characteristics and unit j’s characteristics; the

spillover effect is weighted by how similar two units appear. AN is a term that controls the

magnitude of spillovers so that the unknown parameters (θ4, θ5, θ6) can be independent of

the size of the network. As AN increases, unit i’s decision is more heavily influenced by

their neighbor’s choices and treatment status. To generate non-degenerate stochastic choice

irrespective of the size and density of the network, we consider the following condition on

AN :

Assumption 7. A positive sequence AN satisfies:

ANN ≤ O(1).
4For a potential function to exist, after eliminating zero terms, we require that Ui(1, 0, y−ij)−Ui(1, 1, y−ij)+

Uj(1, 1, y−ij)− Uj(0, 1, y−ij) = 0. This implies that −βij + βji = 0.
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A choice of AN that satisfies Assumption 7 depends on the sparsity of the network struc-

ture. For the dense network (i.e., the maximum number of links a node can have increases

linearly with N), one may choose AN = 1
N

to accommodate the increasing magnitude of the

spillover effect. Similar choices of AN have been used in many settings. For example, Sheng

(2020) chooses AN = 1
N−2

; Galeotti et al. (2020) chooses AN = 1 but imposes an additional

assumption on the coefficient. For the sparse network where N is O(1), AN can be set to 1.

The utility that unit i derives from an action is the sum of the net benefits that they accrue

from their own actions and from those of their neighbors. In this work, we assume that only

direct neighbors are valuable and units do not receive utility from one-link-away contacts.

The total benefit of playing action Yi = 1 has six components. When unit i chooses action

Yi = 1, they receive utility θ0 from their own choice without treatment. They also receive

additional utility θ1di depending upon their own treatment status. Their utility also has a

heterogeneous treatment effect component X ′
i(θ2+ θ3di), which depends upon their personal

characteristics Xi. Units value treatment externalities; that is, treatment received by other

units. Unit i receives additional utility θ4mij if their neighbor unit j receives treatment, no

matter their own treatment status. Units value choice spillovers. When unit i is deciding

whether to play action 1, they observe unit j’s choice and attributes. If unit j is a neighbor

of unit i that chooses action 1 then this provides θ5mij additional utility to unit i. The final

component corresponds to the choice spillovers from those neighbors who receive treatment.

If both unit i and unit j receive treatment and both of them choose action 1, unit i receives

additional utility θ6mij from the common treatment and choice.

Example 1. (Customer Purchase Decisions) Individual i makes a purchase decision Yi (i.e.,

buy or not buy) for one product (e.g., Dropbox subscription, Orange from Sainsbury, iPhone).

In this example, the social planner is the company that is trying to maximize the total number of

customers that purchase its products. Individuals’ purchase decisions sequentially depend upon

the purchase decision of their friends or of their colleagues. The company observes individuals’

friendships and then decides how to allocate discount offers to achieve its own targets. (e.g.,
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Richardson and Domingos, 2002)

Example 2. (Criminal Network) In a criminal network, suspects are connected by a social

network. Suspect i makes a decision whether to commit a crime, Yi = 0, or not, Yi = 1. The

social planner in this example is the government or a police force that is trying to minimize the

total number of crimes in the long run. The decision that a suspect makes about whether to

commit a crime is based upon whether they and their friends have been arrested before (di = 1

denotes they have been arrested before and di = 0 denotes they have not been arrested in the

past). The social planner observes the criminal network and decides which suspects to arrest.

(e.g, Lee et al., 2021)

To ensure that our game is a potential game, we impose an additional assumption on mij.

We assume that the following condition is satisfied.

Assumption 8. (Non-negative, Bounded and Symmetric Property) Function mij satisfies the

following restrictions:

m(Xi, Xj) = m(Xj, Xi), ∀i, j ∈ N .

mij ∈ [m,m] ∈ R+, ∀i, j ∈ N .

Assumption 8 ensures that mij is symmetric hold for all i, j ∈ N . Researchers can freely

choose any mij which satisfies the above assumption. The following proposition indicates

that our decision game is a potential game.

Proposition 2.2.1. (Potential Function) Under Assumption 4 and 8, the potential function

Φ(y,X , D,G;θ) for Ui(y,X , D,G;θ) specified in Eq.2.5 can be defined as:

Φ(y,X , D,G;θ) =
N∑
i=1

θ0 + θ1di +X ′
i(θ2 + θ3di) + AN

N∑
j=1

θ4mijGijdj

 yi

+
AN

2

N∑
i=1

N∑
j=1

mijGijyiyj(θ5 + θ6didj),
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and our interacted decision game is a potential game.

Proof of Proposition 2.2.1 is provided in Appendix A.1.2. We can, however, easily verify

that this specification satisfies the definition of a potential function (i.e., Eq.2.1). Notice that

the potential function is not the summation of the utility function across all units; summation

of the utility function counts the interaction terms twice and violates Eq.2.1. By character-

izing our game as a potential game, we can employ the stationary outcome distribution that

we derived in Theorem 2.2.1 to evaluate the planner’s expected welfare.

2.3 Treatment Allocation

The objective of the social planner is to select a treatment assignment D∗ ∈ {0, 1}N that

maximizes equilibrium mean outcomes subject to a capacity constraint that the number of

individuals that are treated cannot exceed κ > 0:

D∗ = argmax
D∈{0,1}N

N∑
i=1

EP [Yi|X , D,G;θ], (2.6)

s.t.
N∑
i=1

di ≤ κ.

From Theorem 2.2.1, the stationary joint distribution of Y depends on the treatment alloca-

tion D. Fixing the parameters θ, attributes X , and network G, the social planner selects the

joint distribution that maximizes equilibrium outcomes by manipulating treatment allocation

rules.

In this work, we assume that the structural parameters θ underlying the sequential de-

cision game are given and abstract from uncertainty in parameters estimation. In general,

there are three common estimation strategies used in the MRF literature.

• Markov chain Monte Carlo (MCMC; Metropolis and Ulam, 1949): Geyer and Thompson

(1992), Snijders et al. (2002), Mele (2017), Badev (2021).
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• Pseudo-likelihood: Besag (1974), Van Duijn et al. (2009), Boucher and Mourifié (2017).

• Variational approximation: Wainwright et al. (2008), Chatterjee and Diaconis (2013),

Mele and Zhu (2022).

MCMC involves sampling from a large class of joint distributions and scales well with the

dimensionality of the sample space (Bishop and Nasrabadi, 2006). An issue, however, is that

the mixing time of the Markov chain generated by Metropolis or Gibbs sampling takes expo-

nential time (Bhamidi et al., 2008; Chatterjee and Diaconis, 2013). Pseudo-likelihood focuses

on the conditional probability—rather than the joint distribution—and is computationally

fast. Its properties, however, are not well studied except in some specific cases (Boucher

and Mourifié, 2017). Variational approximation, which is optimization-based rather than

sampling-based, is an attractive alternative to MCMC if a fast optimization algorithm is avail-

able. To approximate the Gibbs distribution, a fast iteration algorithm for optimization is

known (Wainwright et al., 2008) and is what we employ in a part of our algorithm (Algo-

rithm 3 in Section 2.3.2).

2.3.1 Welfare Approximation

We cannot directly maximize the equilibrium welfare; instead, we seek to maximize the

approximated welfare. We now discuss what prevents us from maximizing the equilibrium

welfare. Recall that the objective function W (D) from Eq.2.6 is:

W (D) =
N∑
i=1

EP [Yi|X , D,G]

=
N∑
i=1

∑
y∈{0,1}N

yiP (Y = y|X , D,G)

=
N∑
i=1

∑
y∈{0,1}N

yi
exp[Φ(y,X , D,G;θ)]∑

δ∈{0,1}N exp[Φ(δ,X , D,G;θ)]

=
∑
i=1

∑
y∈{0,1}N

yi
exp[w′

1y + y′w2y]∑
δ∈{0,1}N exp[w′

1δ + δ′w2δ]
,

(2.7)
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where w1 is a N × 1 weighting vector and w2 is a N ×N weighting matrix. The i-th element

in w1 takes the value:

wi
1 = θ0 + θ1di + (θ2 + θ3di)Xi + AN

N∑
j=1

θ4mijGijdj.

The i, j-th element in w2 takes the value:

wij
2 =

AN

2
mijGij(θ5 + θ6didj).

We define the denominator in Eq.2.7 – the partition function – as Z:

Z :=
∑

δ∈{0,1}N
exp[w′

1δ + δ′w2δ].

Since the partition function Z sums all possible configurations (of which there are 2N), it

is infeasible to evaluate the expectation. When N > 276, there are more configurations than

atoms in the observable universe (De Paula, 2020).

Given this well-known problem, we seek to approximate the distribution P using a tractable

distribution Q. Defining µP
i := EP [Yi|X , D,G] and µQ

i := EQ[Yi|X , D,G], the objective func-

tion can be bounded from above by:

W (D) =
N∑
i=1

µP
i ≤

N∑
i=1

|µP
i − µ

Q
i |+

N∑
i=1

µQ
i . (2.8)

The approximation error is, therefore, bounded by:

N∑
i=1

µP
i −

N∑
i=1

µQ
i ≤

N∑
i=1

|µP
i − µ

Q
i |. (2.9)

To characterize the approximation error, we introduce the Wasserstein 1-distance.

Definition 2.3.1 (Wasserstein 1-Distance). Let P and Q be two probability distributions
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over {0, 1}N . Define Ω(P,Q) as the set of all couplings of P and Q, i.e., all joint distributions

of (Y, Y ′) such that Y ∼ P and Y ′ ∼ Q. Let the Hamming distance be

dH(Y, Y
′) =

N∑
i=1

1{Yi ̸= Y ′
i }.

Then the Wasserstein 1-distance equipped with Hamming distance is given by

W1(P,Q) = inf
ω∈Ω(P,Q)

Eω

[
dH(Y, Y

′)
]
.

We show that the approximation error in Eq.2.9 is upper bounded by W1(P,Q) in the

following lemma.

Lemma 2.3.1. Error Bound: Let P and Q be two probability distributions over {0, 1}N . We

have:
N∑
i=1

|µP
i − µ

Q
i | ≤ W1(P,Q).

Proof of Lemma 2.3.1 is provided in Appendix A.1.3. To uniformly bound the Wasserstein

1-distance, we show our unique stationary distribution P satisfies the Talagrand transporta-

tion inequality5 under the following assumption.

Assumption 9. Spillover Effect: The coefficients of strategic interaction satisfy:

|θ5|+ |θ6| < 4
(
AN max

i=1,...,N

N∑
j=1

mijGij

)−1
.

Or equivalently, there exists a constant α ∈ (0, 1) such that:

AN

(
|θ5|+ |θ6|

)
max

i=1,...,N

N∑
j=1

mijGij ≤ 4(1− α).

Assumption 9 is a common condition in the Markov random field literature, known as

5A distribution P satisfies the Talagrand transportation inequality if
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Dobrushin’s condition (Dobrushin, 1970), and it guarantees the uniqueness of the Gibbs

distribution (i.e., given a system of conditional distributions of Yi given Y−i, for all i ∈ N ,

as shown in Eq.2.4, there exists a unique Gibbs distribution as the joint distribution of Y ).

Assumption 9 restricts the magnitude of the spillover effects through concordant actions with

neighbors, yi = yj = 1. Furthermore, Götze et al. (2019) shows that the distribution P is

sub-Gaussian under Dobrushin’s condition. Given the knowledge of parameter values, we

can directly check if Assumption 9 holds or not in the given application. In the simulation

exercise given below, we examine the performance of our greedy algorithm when Assumption

9 is relaxed.

Proposition 2.3.1. Transporation Inequality: Under Assumption 4 to 9, there is a universal

constant Ct such that the stationary distribution P , defined in Eq.2.3, satisfies:

W1(P,Q) ≤ Ct

√
KL(Q∥P ),

for all probability measures Q on {0, 1}N with a finite first moment.

Proof of Proposition 2.3.1 is provided in Appendix A.1.4. As a consequence, the approx-

imation error is bounded by the C
√

KL(Q∥P ). It is natural to choose a distribution Q that

minimizes the upper bound KL(Q||P ) so as to reduce the approximation error. It is not, how-

ever, feasible to search over all tractable distributions to find Q; We choose to work with an

independent Bernoulli distribution.

Remark 2.3.1. Some social planners may target maximizing the expected utilitarian welfare

(i.e., the summation of individual utilities) when choosing the optimal treatment allocation,
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in which case the objective function becomes:

WU(D) =
N∑
i=1

EP [Ui(y,X , D,G;θ)|X , D,G]

=
N∑
i=1

θ1ijEP [yi|X , D,G] +
N∑
i=1

N∑
j=1

θ2ijEP [yiyj|X , D,G]

=
N∑
i=1

θ1ijµ
P
i +

N∑
i=1

N∑
j=1

θ2ijµ
P
ij,

where θ1ij = θ0+θ1di+X
′
iθ2+X

′
iθ3di+AN

∑
j∈Ni

θ4mijdj, θ2ij = AN

∑
j∈Ni

(θ5+θ6didj)mij, and

µP
ij = EP [yiyj|X , D,G]. This µP

ij term leads to the bound on the objective function differing

substantially from the one in Eq.2.8. Standard variational approximation does not apply in

this setting. We leave analysis of this problem for future research.

2.3.2 Mean Field Method

Using an independent Bernoulli distribution to approximate the target distribution is called

naive mean field approximation (Wainwright et al., 2008). This method can be viewed as a

specific method in the general approach of variational approximation, which approximates

a complicated probability distribution by a distribution belonging to a class of analytically

tractable parametric distributions. In Eq.2.8, P corresponds to the target distribution to be

approximated and Q corresponds to a simple parametric distribution approximating P . We

consider the class of independent Bernoulli distributions as a parametric family for Q, since

it delivers a feasible and fast optimization algorithm and the magnitude of its approximation

error is already established in the literature.

The probability mass function of an independent Bernoulli distribution Q is expressed as:

Q(Y = y) =
N∏
i=1

(µQ
i )

yi(1− µQ
i )

1−yi .
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Let µQ be an N × 1 vector that collects {µQ
i }Ni=1. The Kullback–Leibler divergence between Q

and P equals:

KL(Q||P ) = EQ

[
log

Q(y)

P (y)

]
= EQ

[
log

Q(y)

exp[w′
1y + y′w2y − logZ]

]
= EQ[logQ(y)− w′

1y − y′w2y + logZ]

= logZ −
[
w′

1µ
Q + (µQ)′w2µ

Q −
N∑
i=1

[
µQ
i log(µQ

i ) + (1− µQ
i ) log(1− µ

Q
i )
]]
.

The last line holds since the diagonal entries of w2 are zero and

EQ[y
′w2y] = EQ

[ N∑
i=1

N∑
j ̸=i

wij
2 yiyj

]
=

N∑
i=1

N∑
j ̸=i

wij
2 EQ[yiyj] =

N∑
i=1

N∑
j ̸=i

wij
2 EQ[yi]EQ[yj]

= (µQ)′w2µ
Q.

Recall Z in Eq.2.7 sums over all possible configurations. Z is, therefore, independent of Y

(i.e., it is constant). We define A(µQ,X , D,G) as:

A(µQ,X , D,G) := w′
1µ

Q + (µQ)′w2µ
Q −

N∑
i=1

[
µQ
i log(µQ

i ) + (1− µQ
i ) log(1− µ

Q
i )
]
.

As such, minimizing KL(Q||P ) is equivalent to maximizing A(µQ,X , D,G). We denote by µ̃

the result of the following optimization:

µ̃ = arg sup
µQ

A(µQ,X , D,G)

= arg sup
µQ

w′
1µ

Q + (µQ)′w2µ
Q −

N∑
i=1

[
µQ
i log(µQ

i ) + (1− µQ
i ) log(1− µ

Q
i )
]
.

(2.10)
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Then the approximated distribution Q∗ is expressed as:

Q∗(Y = y) =
N∏
i=1

(µ̃i)
yi(1− µ̃i)

1−yi .

The first order condition of Eq.2.10 is:

µ̃i =
1

1 + exp[−(θ0 + θ1di +X ′
i(θ2 + θ3di) +ANθ4

∑
j ̸=i

mijGijdj +AN
∑
j ̸=i

mijGij(θ5 + θ6didj)µ̃j)]

= Λ
[
θ0 + θ1di +X ′

i(θ2 + θ3di) +ANθ4
∑
j ̸=i

mijGijdj +AN

∑
j ̸=i

mijGij(θ5 + θ6didj)µ̃j

]
.

(2.11)

Given that the above objective function (Eq.2.10) is non-concave, there may exist multiple

maximizers. In the following proposition, we show that this optimization problem does have

a unique maximizer.

Proposition 2.3.2. Unique Maximizer: Under Assumptions 4 to 8, the optimization problem

defining µ̃ has a unique maximizer and the iteration procedure of Algorithm 3 converges to it.

Proof of Proposition 2.3.2 is provided in Appendix A.1.5. To obtain the global optimum,

it is sufficient to solve the first-order condition (Eq.2.11). Finding a root of the first-order

conditions is feasible and there exists a fast off-the-shelf iterative method to compute µ̃ (see

Algorithm 3). Convergence of this algorithm has been extensively studied in the literature

on variational approximation (Wainwright et al., 2008). Iteration in Algorithm 3 amounts

to coordinate ascent of the mean field variational problem (Eq.2.10). Given that Eq.2.10 is

a strictly concave function of µi when all other coordinates µ−i are held fixed (Wainwright

et al., 2008, §Chapter 5.3), the maximum is uniquely attained at every coordinate update.

Bertsekas (2016, §Chapter 1.8) guarantees that {µ̃0, µ̃1, ...} converges to a local optimum.

If, in addition, we constrain the magnitude of the spillovers of the neighbor’s actions by

ANm(|θ5| + |θ6|)N ≤ 4, we can show that the above iteration process forms a contraction

mapping, implying that it converges to a unique global optimum (see Appendix A.1.6 for a
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proof).

In approximating an interacted joint distribution by a fully independent distribution it

is conceivable that there should be some information loss. The following theorem shows,

however, that the information loss due to variational approximation (measured in terms of

the Kullbuck-Leibler divergence) converges to zero as the size of the network grows to infinity.

Theorem 2.3.1. Approximation Error Bound: Let Q∗ denote the independent Bernoulli dis-

tribution solving Eq.2.10. Under Assumptions 4 to 8, the Kullback–Leibler divergence of Q∗ from

P is bounded from above by:

KL(Q∗||P ) ≤ C1ANN + C2N +O
(√

A2
NN2N

)
+O

(√
A3

NN2N2

)
+ o(N), (2.12)

where C1, C2 are known constants that depend only upon θ and m.

This theorem follows as a direct corollary of Chatterjee and Dembo (2016, §Theorem

1.6). Proof of Theorem 2.3.1 is provided in Appendix A.2.1. Theorem 2.3.1 shows that the

upper bound on the approximation error depends upon the size of the network N and the

magnitude of the spillover effect ANN . Given that Assumption 7 holds with non-increasing

sequence of AN , Theorem 2.3.1 clarifies that the leading term in the approximation error

bound Eq.2.12 grows at O(N).

Recall from Eq.2.9 and Eq.2.12 that the error due to approximating the welfare at P

by the welfare at Q∗ can be bounded by
√

KL(Q∗||P ) ≤ O(N1/2). If our objective is to

maximize 1
N

∑N
i=1 µ

P
i , Theorem 2.3.1 implies that this term can be bounded from above by

1
N

√
KL(Q∗||P ) ≤ O(N−1/2), which converges to zero as N becomes large. This means that,

as the size of the network becomes large, spillover effects become less important.

Remark 2.3.2. We derive the result in Theorem 2.3.1 by assuming that the structural param-

eters θ are independent of N . Recently, Joseph and Mark (2022) discusses the potential issue

of using variational approximation when structural parameters depend upon the network

size N . Joseph and Mark (2022) shows numerically that estimation of the parameters using
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variational approximation can deliver estimates that are far from true parameter values if the

network is more transitive. If the transitivity of a network depends upon its size, then the

approximation error may not shrink to zero. The analogous problem for us is when the pa-

rameters that measure the spillover effects depend upon N , our approximation error bound

may not converge to zero. We emphasize several things. First, the estimation method that we

adopted in the empirical application section is MCMC-MLE, which is known to converge to

the true parameter value. That is also supported by Joseph and Mark (2022). Second, in our

empirical application, we show for networks of different sizes that our parameter estimates

are quite similar to each other. This is indicative of our parameters not depending upon N .

In addition, the empirical results illustrate that our proposed method performs well across all

network sizes in the dataset.

2.3.3 Implementation

In the last section, we discussed how to approximate the mean value of the outcome variable

using the mean field method. In this section, we propose an algorithm to allocate treatment

so as to maximize the approximated welfare and discuss its implementation.

Suppose that the set of feasible allocations is subject to a capacity constraint,
∑N

i=1 di ≤ κ,

where κ ∈ N+ specifies the maximum number of units that can be treated. We denote the set

of feasible allocations by Dκ ≡ {D ∈ {0, 1}N :
∑N

i=1 di ≤ κ}, and the approximated welfare

by:

W̃ (D) =
N∑
i=1

µ̃i.

We seek to maximize the approximated welfare:

D̃ = argmax
D∈Dκ

W̃ (D). (2.13)

As shown in the Eq.2.11, {µ̃i}Ni=1 is a large non-linear simultaneous equation system. The ap-
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proximated mean value µ̃i of each unit i depends non-linearly upon the approximated mean

value µ̃j and the treatment assignment dj of her neighbor, unit j. Hence, the optimization

problem (Eq.2.13) becomes a complicated combinatorial optimization. We propose a greedy

algorithm (Algorithm 4) to solve this problem heuristically.

The idea of our greedy algorithm is to assign treatment to the unit that contributes most to

the welfare objective, repeating this until the capacity constraint binds. Specifically, in each

round, Algorithm 3 computes the marginal gain of receiving treatment for each untreated

unit. We refer to the unit whose treatment induces the largest increase in the approximated

welfare as the most influential unit in that round. We provide a theoretical performance

guarantee for our greedy algorithm in Section 2.3.4. We also numerically examine the per-

formance of our method in Section 2.4.

In Algorithm 4, we use a variational approximation method to compute µ̃ for each as-

signment rule and for each round (i.e., there are O(N) operations in each round). Alterna-

tively, MCMC can be used to simulate the mean value µ of the unique stationary distribution

(Eq.2.3) instead of computing the variationally approximated µ̃. Since MCMC may require

exponential time for convergence (Chatterjee and Diaconis, 2013) though, simulating µ is

infeasible for a large network (i.e., MCMC needs to be run O(κN) times). In Section 2.4.2,

we compare the welfare computed using these two methods for various treatment allocation

rules.
Algorithm 3: Computing µ̃

Input: Weighted adjacency matrix G, treatment allocation D, covariates X ,
parameters θ, and threshold ϱ

Initialization: Draw µ̃0
i ∼ U [0, 1],∀i ∈ N ; t = 1

while A(µ̃t,X , D,G)−A(µ̃t−1,X , D,G) > ϱ do
t← t+ 1
for i← 1, ..., N do

µ̃t
i ← Λ

[
θ0+θ1di+X ′

i(θ2+θ3di)+ANθ4
∑
j ̸=i

mijGijdj+AN
∑
j ̸=i

mijGij(θ5+θ6didj)µ̃
t−1
j

]
end

end
Return µ̃← µ̃t
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Algorithm 4: Maximizing Over Treatment Allocation Rules
Input: Weighted adjacency matrix G, covariates X , parameters θ, capacity constraint
κ

Output: Treatment allocation regime D̃
Initialization: D ← 0N×1

if
∑N

i=1 di < κ then
for i with di = 0 do

di ← 1, denote new treatment vector as D′

µ̃← Run Algorithm 3 with D′

∆i ← W̃ (D′)− W̃ (D)
end
i∗ ← argmaxi∆i

di∗ ← 1
else

D̃ ← D
end

2.3.4 Theoretical Analysis

In this section, we analyze the regret of the treatment allocation rule computed using our

greedy algorithm. Given D∗ = argmaxD∈Dκ
W (D) is the maximizer of W (D), then W (D∗)

denotes the maximum value of W (D). Regret is the gap between the maximal equilibrium

(oracle) welfare W (D∗) and the equilibrium welfare attained at the treatment allocation rule

computed using our greedy algorithm W (DG). We decompose regret into four terms:

W (D∗)−W (DG) = W (D∗)− W̃ (D∗)︸ ︷︷ ︸
≤
√

2KL(Q∗||P )

+ W̃ (D∗)− W̃ (D̃)︸ ︷︷ ︸
≤0

+ W̃ (D̃)− W̃ (DG)︸ ︷︷ ︸
Regret from greedy

+ W̃ (DG)−W (DG)︸ ︷︷ ︸
≤
√

2KL(Q∗||P )

≤
√

8KL(Q∗||P ) + W̃ (D̃)− W̃ (DG).

(2.14)

The first term corresponds to the approximation error of using variational approximation;

the second term comes from using the maximizer of the approximated equilibrium welfare

D̃; the third term comes from using our greedy algorithm instead of using the maximizer of

the variationally approximated welfare; and the last component is again introduced by using

the approximated equilibrium welfare W̃ (D).
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Theorem 2.3.1 provides an upper bound on the approximation error
√

8KL(Q∗||P ):

√
8KL(Q∗||P ) ≤

√
8
[
C1ANN + C2N +O

(√
A2

NN2N

)
+O

(√
A3

NN2N2

)]
+ o(N1/2). (2.15)

In Eq.2.15, the convergence rate of the upper bound on approximation error depends upon

the network size N , sparsity of the network N , and the choice of normalization AN . Given

Assumption 7, the convergence rate for the upper bound on the variational approximation

error simplifies to: √
8KL(Q∗||P ) ≤ O(N1/2). (2.16)

For a general objective function mapping {0, 1}N to R, however, there is no theoretical

performance guarantee for the greedy algorithm, i.e., it is not known how much worse the

greedy optimizer can be than the global optimum in terms of the value of the objective

function. For a class of non-decreasing submodular functions on Dκ ⊂ {0, 1}N , Nemhauser

et al. (1978) shows the existence of performance guarantees (1− 1/e).

Unfortunately, submodularity does not generally hold for our problem (Eq.2.13). Other

applications have faced the same issue. Relaxing the requirement of submodularity, Conforti

and Cornuéjols (1984) introduces the concept of curvature to characterize a constant factor

in the performance guarantee. Das and Kempe (2011) introduces the submodularity ratio to

define the closeness of a set function to submodularity. Bian et al. (2017) combines these two

concepts (curvature and the submodularity ratio) to obtain a performance guarantee for the

greedy algorithm for a large class of non-submodular functions. In what follows, we apply

these techniques to the variationally approximated welfare.

The definitions of submodularity, the submodularity ratio, and the curvature of a set func-

tion f are as follows.
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Definition 2.3.2. (Submodularity): A set function is a submodular function if:

∑
k∈R\S

[f(S ∪ {k})− f(S)] ≥ f(S ∪R)− f(S), ∀S,R ⊆ N .

Definition 2.3.3. (Submodularity Ratio) The submodularity ratio of a non-negative set

function f(·) is the largest γ such that

∑
k∈R\S

[f(S ∪ {k})− f(S)] ≥ γ[f(S ∪R)− f(S)], ∀S,R ⊆ N .

Definition 2.3.4. (Curvature) The curvature of a non-negative set function f(·) is the small-

est value of ξ such that

f(R ∪ {k})− f(R) ≥ (1− ξ)[f(S ∪ {k})− f(S)], ∀S ⊆ R ⊆ N ,∀k ∈ N \R.

The submodularity of a set function is analogous to concavity of a real function and im-

plies that the function has diminishing returns. The marginal increase in the probability of

choosing action 1 decreases with the number of treated units. The submodularity ratio cap-

tures how much greater the probability of choosing action 1 is from providing treatment to a

group of units versus the combined benefit of treating each unit individually. Curvature can

be interpreted as how close a set function is to being additive.

We associate the set function f(·) in the above definitions with the variationally approx-

imated welfare W̃ (·), which we view as a real-valued mapping of treatment allocation sets

D ⊂ N (i.e., D = {i ∈ N : di = 1}):

82



W̃ (D) =
∑
i∈D

Λ
[
θ0 + θ1 +X ′

i(θ2 + θ3) + ANθ5
∑
j ̸=i
j∈N

mijGijµ̃j + AN

∑
j ̸=i
j∈D

mijGij(θ4 + θ6µ̃j)
]

+
∑

k∈N\D

Λ
[
θ0 +X ′

kθ2 + ANθ4
∑
ℓ∈D

mkℓGkℓ + ANθ5
∑
ℓ̸=k
ℓ∈N

mkℓGkℓµ̃ℓ

]
.

We characterize the submodularity ratio and curvature of W̃ (·) to obtain an analytical perfor-

mance guarantee for our greedy algorithm. In addition, we restrict our analysis to settings of

positive treatment and spillover effects by imposing the following assumption.

Assumption 10. (Positivity and Monotonicity) We assume that W̃ (D) is a non-negative and

non-decreasing set function (i.e., W̃ (D) ≥ W̃ (D̃) if D̃ ⊆ D).

Assumption 10 restricts the signs of the overall treatment effects, which includes direct

and indirect treatment effects. One sufficient condition of Assumption 10 is that parameters

θ1, θ3, θ4, θ5, θ6 ≥ 0. This assumption works in many applications, such as allocating vaccina-

tions to increase social health, providing discounts to encourage purchase, and assigning tax

auditing to encourage paying tax.

By showing that a set function is non-decreasing, its curvature ξ and its submodularity

ratio γ must belong to [0, 1] (Bian et al., 2017). Having ξ ∈ [0, 1] and γ ∈ [0, 1] is not,

however, enough to attain a nontrivial performance guarantee. For instance, if γ = 0, the

lower bound in Theorem 2.3.2 equals 0, which is a trivial lower bound; if ξ = 0, then the

lower bound equals γ, which could be 0. To rule out these trivial cases, we impose the

following assumption, which gives a sufficient condition to bound the submodularity ratio

and curvature away from 0 and 1.

Assumption 11. (Lower Bound on N) We assume that the sample size satisfies:

N ≥
(
ANθ4N ·m+ θ1

)
/4.
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Assumption 11 restricts the sample size of the network. Even in a dense network, N (the

minimum number of edges for one unit in the network) can be small and, accordingly, the

requirement on the sample size. Assumption 11 easily holds for the medium or large size of

networks. We are now able to provide a performance guarantee for our greedy algorithm.

Theorem 2.3.2. Performance Guarantee for greedy Algorithm: Under Assumptions 4 to

11, the curvature ξ of W̃ (D) and the submodularity ratio γ of W̃ (D) are in (0, 1). The greedy

algorithm enjoys the following approximation guarantee for the problem in Eq.2.13:

W̃ (DG) ≥
1

ξ
(1− e−ξγ)W̃ (D̃),

where DG is the treatment assignment rule that is obtained by Algorithm 4.

The second part of Theorem 2.3.2 is taken from (Bian et al., 2017, §Theorem 1). Proof

of Theorem 2.3.2 is provided in Appendix A.2.2. Theorem 2.3.2 indicates that there exists

a performance guarantee that depends upon the unknown curvature and upon the submod-

ularity ratio. The first part of Theorem 2.3.2 dictates that the performance guarantee is a

non-trivial bound. It is infeasible to determine ξ and γ for W̃ (D); it is, however, possible to

derive an upper bound for ξ and a lower bound for γ, which combined with Assumption 11,

excludes triviality. Combining all of the previous results, we are able to use Bian et al. (2017,

§Theorem 1) to provide a non-trivial performance guarantee on W̃ (D). We emphasize that

if ξ = 1 and γ = 1, the performance guarantee in Theorem 2.3.2 coincides with the well-

known performance guarantee constant of the greedy algorithm for submodular functions

(i.e., 1− 1/e Nemhauser et al., 1978). If ξ < 1 or γ < 1, the performance guarantee is worse

than 1− 1/e.

Via Theorem 2.3.2 we can obtain an upper bound on the regret from using our greedy

algorithm:

W̃ (D̃)− W̃ (DG) ≤
[
1− 1

ξ
(1− e−ξγ)

]
W̃ (D̃). (2.17)
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Combining Eq.2.16, Eq.2.17, and Eq.2.14, and noting that W̃ (D̃) is at most O(N), we obtain

the next theorem:

Theorem 2.3.3. Regret Bound: Let D∗ denote the maximizer of W̃ (D) and DG be the as-

signment vector obtained by Algorithm 4. Under Assumptions 4 to 11, given curvature ξ and

submodularity ratio γ, the regret is bounded from above by:

W (D∗)−W (DG) ≤ O(N1/2) +O(N)
[
1− 1

ξ
(1− e−ξγ)

]
.

Theorem 2.3.3 is our key result. It characterizes the convergence rate of overall regret,

showing its dependence on the network complexity and the network size. The dependence

upon the parameters in the utility function is shown implicitly via the terms C1 and C2 in

Theorem 2.3.1. If we examine the average equilibrium welfare, then the regret bound be-

comes:
1

N
(W (D∗)−W (DG)) ≤ O(N−1/2) +

1

N
W̃ (D̃)

[
1− 1

ξ
(1− e−ξγ)

]
.

The first term is the approximation error and shrinks to zero as N goes to infinity. Given that

W̃ (D̃) can be a function of N , the regret that is associated with our greedy algorithm can

converge to a constant.

2.4 Simulation Exercises

In this section, we evaluate the performance of our greedy algorithm in simulation exercises.

We use an Erdös-Renyi model to generate random social networks. For each choice of N ,

we generate 100 networks with fixed density (i.e., 0.3 and 0.6)6 and use the average of the

equilibrium welfare over these 100 networks to assess the performance of our method. For

personal covariates X , we choose a binary variable that is generated from a Bernoulli distri-

bution B(0.5). We specify m(Xi, Xj) as mij = |Xi−Xj|. We report the equilibrium welfare as

6Number of edges = density× N(N−1)
2 .
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the per-person equilibrium average, maxD∈Dκ 1/N
∑N

i=1 E[Yi|X , D,G]. In addition, we specify

the tolerance level ϱ of Algorithm 3 as 1.0E − 9. The capacity constraint that we choose is

κ = 30%N . To evaluate the impact of the unique fixed point of the iteration on the perfor-

mance of our greedy algorithm, we choose two parameter sets. The first set of parameters

guarantees the unique fixed point whilst the second set of parameters violates this condition.

Table 2.1 summarizes the values of the parameters in our simulation.

Parameters θ0 θ1 θ2 θ3 θ4 θ5 θ6

Set 1 −2 0.5 0.1 0.6 0.7 0.8 0.9

Set 2 −2 0.5 0.1 0.6 0.7 7 7

Table 2.1: Summary of the parameter values

In the following sections, we compare our greedy algorithm with random allocation in a

small network setting and in a large network setting. Random allocation assigns treatment to

a fraction κ of units independently of personal characteristics and network structure. In the

small network setting, we are able to compute the distribution of outcomes at every possible

assignment vector, and use a brute force method to find an optimal treatment allocation.

Using the welfare level at the optimal assignment as a benchmark, we can calculate the regret

of our greedy algorithm. Since the number of possible assignment vectors grows rapidly with

the number of units, we cannot compute the regret in the large network analysis of Section

2.4.2 in this way. We instead assess the welfare performance of the greedy targeting rule in

comparison to the welfare level of the No treatment rule.

2.4.1 Small Network

We consider N = 5, 7, 9, 11, 13 or 15 to be a small network setting in our simulation exer-

cise. First, we consider all possible treatment allocations subject to the capacity constraint

and perform brute force search to find an optimal assignment. For instance, when N = 15,

the number of feasible assignment vectors is 32, 768. We compute the joint distribution of
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outcomes at each possible treatment allocation by applying the joint probability mass func-

tion of the Gibbs distribution (Eq.2.3). Second, to assess the welfare loss from implementing

the variational approximation, we evaluate the regret of a treatment assignment rule that

is obtained by maximizing the variationally approximated welfare over every feasible treat-

ment allocation meeting the capacity constraint (without greedy optimization). We label this

method of obtaining the optimal treatment assignment as brute force with variational ap-

proximation (BFVA). Table 2.2 records the main differences between the two aforementioned

methods and the greedy targeting rule in terms of in-sample average welfare.

From Table 2.2, we find that our greedy algorithm performs as well as the brute force

method in a small network setting except when N = 5 (1% gap for N = 5). This indicates a

good performance of our method. We find that the regret when N = 5 mainly comes from

the approximation error of using a variational approximation. As we have shown in Theorem

2.3.1, the upper bound on the Kullback–Leibler divergence can be large when the sample

size is small. This coincides with the empirical result. Our greedy algorithm can, however,

achieve the same performance as BFVA, which means that using our greedy algorithm has a

negligible effect upon regret.

In Figure 2.1, we compare the regret from using our greedy algorithm to random al-

location for parameter set 1.7 Here, random allocation means that we randomly draw 50

allocation rules that satisfy the capacity constraint and average the welfare that they gener-

ate. The left-hand graph presents this comparison for density equal to 0.3; the right-hand

graph presents this comparison for density equal to 0.6. From Figure 2.1, we find that the

performance gap between our greedy targeting rule and random allocation in terms of regret

ranges from 7% to 14%.

Figure 2.2 indicates the results from using parameter set 2. Parameter set 2 assumes much

larger spillover effects that create highly dependent Gibbs distribution. Regret is greater than

for parameter set 1, both when using our greedy algorithm and using random allocation. This

7Parameter set 1 satisfies the sufficient condition for convergence to global optimum shown in Appendix
A.1.6.
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indicates that the stronger dependence in Gibbs distribution deteriorates the quality of the

variational approximation by independent Bernoullis. We note, however, that for the size of

networks being N = 7, 9, 11, 13, 15, the regret from using our greedy algorithm stays within

10% of the maximal welfare and it dominates the performance of random allocation. These

numerical evidence suggests that the advantage to using our greedy method is maintained

for a wide range of the size of the spillover effects.
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Figure 2.1: Comparison between the greedy algorithm and random allocation for the parameter set
1 (Left: density = 0.3 and Right: density = 0.6)
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Figure 2.2: Comparison between the greedy algorithm and random allocation for the parameter set
2 (Left: density = 0.3 and Right: density = 0.6)

2.4.2 Large Network

We now extend our simulation exercise to large network settings where N = 50, 100 or

150. As previously mentioned, we can neither search over all possible allocation vectors nor
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compute the joint distribution over all possible vectors in a large network setting. To deal

with these two problems, we first choose a baseline assignment rule – the No treatment rule

– with which to compare the allocation rules that we compute. We evaluate the additional

average welfare that we gain by providing treatment relative to the No treatment rule, rather

than relative to the optimal assignment rule as we did for the small network setting. In

Table 2.3, we summarize the average welfare for treatment assignment rules corresponding

to greedy targeting, random allocation, and No treatment. Second, we use Gibbs sampling to

approximate the joint distribution (Eq.2.3), iterating 10, 000 times (burning period equal to

5, 000) for each class of treatment rule.

Using Gibbs sampling, however, is not necessarily a feasible method to evaluate random

allocation (and more generally) in a large network given its slow convergence. In the exer-

cise, we use 10 random networks and 10 random draws, which takes approximately 30 hours

to compute a result for random allocation.8 In contrast, it takes only 20 seconds to obtain a

result for random allocation using variational approximation.

In Table 2.3, we compare the welfare delivered by Gibbs sampling with that delivered

by variational approximation for the three aforementioned classes of treatment assignment

rules. All the results in Table 2.3 are computed across 100 random networks, using the

average of 10 random draws for random allocation, and with the capacity constraint set at

0.3N . Table 2.4 indicates that variational approximation constitutes a good approximation of

the Gibbs distribution (Eq.2.3), providing strong evidence in favour of using the variational

approximation in our algorithm even for strongly dependent Gibbs distributions.

Table 2.3 indicates that using our greedy algorithm leads to an increase in welfare of ap-

proximately 10% as compared with random allocation. Relative to No treatment, our greedy

algorithm performs 37% ∼ 55% better than the random allocation. This result is robust to the

network density. This suggests that the welfare gain from using our greedy algorithm carries

over to the large network setting.

8We use parallel processing on a computer with an 8 core Intel i7-10700 CPU and 32GB RAM.
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Average Welfare with MCMC Average Welfare with VA

Allocation Rule N = 50 N = 100 N = 150 N = 50 N = 100 N = 150

Density = 0.3

greedy algorithm 0.186 0.186 0.186 0.186 0.186 0.186
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Random allocation 0.166 0.170 0.170 0.164 0.170 0.169
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

No treatment rule 0.126 0.127 0.127 0.126 0.127 0.127
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Density = 0.6

greedy algorithm 0.194 0.193 0.193 0.194 0.193 0.193
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Random allocation 0.173 0.178 0.178 0.172 0.178 0.178
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

No treatment rule 0.128 0.129 0.129 0.127 0.129 0.129
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Table 2.3: Comparison between the average welfare computed using Gibbs sampling and variational
approximation for parameter set 1

Average Welfare with MCMC Average Welfare with VA

Allocation Rule N = 50 N = 100 N = 150 N = 50 N = 100 N = 150

Density = 0.3

greedy algorithm 0.227 0.218 0.215 0.237 0.228 0.225
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Random allocation 0.201 0.203 0.203 0.209 0.214 0.213
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

No treatment rule 0.143 0.143 0.143 0.149 0.150 0.149
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Density = 0.6

greedy algorithm 0.317 0.305 0.299 0.346 0.343 0.339
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Random allocation 0.287 0.293 0.292 0.321 0.334 0.333
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

No treatment rule 0.171 0.171 0.170 0.207 0.208 0.208
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Table 2.4: Comparison between the average welfare computed using Gibbs sampling and variational
approximation for parameter set 2

2.5 Empirical Application

We illustrate our proposed method using the dataset of Banerjee et al. (2013), which exam-

ines take-up of a microfinance initiative in India.9 A detailed description of the study can be
9The dataset is available at https://doi.org/10.7910/DVN/U3BIHX.
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found in the original paper. This study features 43 villages in Karnataka that participated in a

newly available microfinance loan program. Bharatha Swamukti Samsthe (BSS)—an Indian

non-governmental microfinance institution administering the initiative—provided informa-

tion about the availability of microfinance and program details (the treatment) to individuals

that they identified as ‘leaders’ (e.g., teachers, shopkeepers, savings group leaders, etc.) so

as to maximize the number of households that chose to adopt the microfinance product. The

data provide network information at the household level (network data is available across

12 dimensions, including financial and medical links, social activity, and known family mem-

bers) for each village. We use all available households characteristics that are available in

the dataset (quality of access to electricity, quality of latrines, number of beds, number of

rooms, the number of beds per capita, and the number of rooms per capita) as covariates.

The program started in 2007, and the survey for microfinance adoption was finished in early

2011. We treat each household’s choice about whether to purchase microfinance or not as

observations drawn from a stationary distribution of the sequential game.

The most common occupations in these villages are in agriculture, sericulture, and dairy

production (Banerjee et al., 2013). In addition, these villages had almost no exposure to

microfinance institutions and other types of credit before this program. Our target in this ap-

plication is to maximize the participation rate of microfinance (4 years after program assign-

ment) given a capacity constraint on treatment (i.e., Eq.2.6); we set our capacity constraint

equal to the number of households that BSS contacted in the original study. In the previous

sections, we have assumed that the parameters θ are given; here, we must estimate them.

We allow the parameters of our utility function to be different across villages, and estimate

them for each village using Markov Chain Monte Carlo Maximum Likelihood (Snijders et al.,

2002). For each iteration of the procedure, we set the number of draws in the Gibbs sam-

pling procedure equal to 200N2. In addition, we choose m(Xi, Xj) = 1
1+|Xi−Xj | , which is a

monotonically decreasing function in the metric between Xi and Xj. We also note that each

household is connected to approximately 10 others on average across all of the 43 villages.
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Comparing this with the total number of households in each village (there are between 107

and 341 households in each village), we find that the household network in each village is a

sparse network. We, therefore, choose AN = 1 in this application.

Table 2.5 shows the average probability of taking up microfinance observed in each village

(column Sample Avg.) and the prediction of village-level take-up probability obtained from

our MCMC-MLE estimates (column Welfare under Original). We refer to the former as the

Sample Average and the latter as the Welfare under Original Allocation. We provide standard

errors for the Sample Average, which we calculate using network HAC estimation (Leung

(2019); and Kojevnikov et al. (2021)). We compute Welfare under Original Allocation by

substituting the estimated parameters and the original treatment allocation (used by BSS)

into our model. To further evaluate the performance of our proposed method, we randomly

draw 100 treatment allocations that satisfy the capacity constraint in each village, and calcu-

late the probability of purchasing microfinance for each allocation. We refer to the average

probability over these draws as the Welfare under Random Allocation. We then implement

our proposed method with the estimated parameters to find the optimal treatment allocation

rule. We refer to the share of households adopting microfinance according to the optimal

treatment allocation and our model as the Welfare under Greedy Allocation. Table 2.5 records

these statistics for the 43 villages in the dataset, with the final column comparing the Wel-

fare under our Greedy Allocation with the Welfare under Original Allocation. It also contains

bootstrap standard errors for welfare based on 100 bootstrap samples for each village. The

bootstrap samples are obtained by drawing outcomes from the MCMC stationary distribu-

tion simulated under the structural parameters estimated with the original sample. To obtain

the standard errors for the Welfare under Greedy Allocation, for each bootstrap sample, we

estimate the structural parameters and simulate welfare under a greedy optimal allocation.10

First, we note that the estimated average share of households who adopt microfinance

10If an optimal welfare is differentiable in the structural parameters and the greedy optimal allocation under
the true structural parameter value is unique, we expect the bootstrap delta method applies to yield asymptoti-
cally valid standard errors.

92



under the MCMC-MLE estimates fits the data well for all 43 villages. We also find that the

HAC standard error for the empirical average tends to be large, since there are relatively few

households in each village, and this noise is a possible explanation for the large differences

between the estimated share of households purchasing microfinance and the empirical aver-

age in some villages. Second, we find that random allocation delivers a comparable level of

welfare to the original treatment allocation. This result is indicative that the leaders that BSS

selected were not particularly effective in encouraging take-up by other households. Third,

we find that our proposed method compares favourably to the method that is implemented

in Banerjee et al. (2013), yielding a treatment allocation that attains a higher welfare-level.

As shown in Table 2.5, the welfare gain is positive for all 43 villages (exceeding 100% in some

villages). This indicates that if the specification of the sequential network game is correct

in the context of the current application, individualized treatment allocation that takes into

account network spillovers can generate large welfare gains—something that indicates that

the network structure matters. Existing empirical work around social networks has not quan-

tified the welfare gain from individualized treatment allocation under spillovers due to a lack

of feasible procedures to obtain an optimal individualized assignment policy. In contrast, we

uncover evidence of the welfare gains that can be realised by exploiting network spillovers.

We note that Akbarpour et al. (2020b) argues that the optimal treatment allocation rule

under a capacity constraint may lose any advantage that it enjoys over random allocation if

the capacity constraint is even slightly relaxed by a few additional households. The objective

in that paper, however, is to maximize information diffusion in the context of a large network

asymptotic. This is distinct from our target. We focus on the proportion of households that

purchase microfinance in equilibrium. Spillover effects for product purchase are distinct from

those for information diffusion both in mechanism and in intuition. In particular, we empha-

size that in our setting it matters who households receive their information from and how

this affects their purchase decision, rather than simply whether they are informed. We addi-

tionally note that the condition on the spillover effects that is maintained in the analysis of
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Akbarpour et al. (2020b) becomes more restrictive when spillover effects are heterogeneous.

2.6 Conclusion

In this work, we have introduced a novel method to obtain individualized treatment allo-

cation rules that maximize the equilibrium welfare in sequential network games. We have

considered settings where the stationary joint distribution of outcomes follows a Gibbs distri-

bution. To handle the analytical and computational challenge of analyzing the Gibbs distri-

bution, we use variational approximation and maximize the approximated welfare criterion

using a greedy maximization algorithm over treatment allocations. We have obtained bounds

on the approximation error of the variational approximation and of the greedy maximization

in terms of the equilibrium welfare. Moreover, we derive an upper bound on the conver-

gence rate of the welfare regret bound. Using simulation, we have shown that our greedy

algorithm performs as well as the globally optimal treatment allocation in a small network

setting. In a large network setting with a given specification of parameter values, our greedy

algorithm dominates random allocation and leads to a welfare improvement of around 50%

compared with No treatment. We then apply our method to the Indian microfinance data

(Banerjee et al., 2013). We find our method outperforms both the original allocation and

random allocation across all the villages. The average welfare gain is around 40%.

We suggest that several questions remain open and that there are several ways in which

our work can be extended. First, we have not considered parameter estimation in this work.

A relevant question is how to incorporate the uncertainty from parameter estimation into

our analysis of regret. In addition, we may want to perform inference for the welfare at the

obtained assignment rule, taking into account the uncertainty of parameter estimates and a

potential winner’s bias (Andrews et al., 2020). Second, to validate the iteration method for

computing the variational approximation, we rely on assumptions on the spillover effect to

guarantee convergence to an optimal variational approximation. Relaxing this assumption to
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allow for unconstrained parameter values remains a topic for future research. Third, we have

used a naive mean field method in this work. As is mentioned in Wainwright et al. (2008),

using a structural mean field method can improve the performance of an approximation and

can lead to better welfare performance.
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Network Size

Allocation Rule N = 5 N = 7 N = 9 N = 11 N = 13 N = 15

Density = 0.3

Brute force 0.189 0.185 0.192 0.181 0.189 0.194
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Brute force with var. approx. 0.187 0.185 0.192 0.181 0.189 0.194
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

greedy with var. approx. 0.187 0.185 0.192 0.181 0.189 0.194
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Density = 0.6

Brute force 0.197 0.193 0.201 0.183 0.195 0.201
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Brute force with var. approx. 0.196 0.193 0.201 0.183 0.195 0.201
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

greedy with var. approx. 0.196 0.193 0.201 0.183 0.195 0.201
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Table 2.2: Comparison for parameter set 1
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Village Sample Avg. (s.e.) Welfare under Welfare Gain∗

Original Random Greedy (s.e.) Level (s.e.) Percentage

1 0.240 (0.025) 0.249 (0.030) 0.248 (0.029) 0.296 (0.034) 0.047 (0.014) 18.75%
2 0.146 (0.021) 0.188 (0.025) 0.195 (0.024) 0.216 (0.036) 0.032 (0.020) 16.81%
3 0.140 (0.023) 0.163 (0.020) 0.166 (0.022) 0.282 (0.051) 0.118 (0.041) 75.52%
4 0.077 (0.024) 0.101 (0.027) 0.106 (0.027) 0.173 (0.027) 0.073 (0.016) 72.01%
5 0.234 (0.028) 0.242 (0.035) 0.232 (0.036) 0.305 (0.044) 0.064 (0.020) 26.18%

6 0.184 (0.025) 0.156 (0.021) 0.162 (0.022) 0.279 (0.030) 0.123 (0.017) 78.57%
7 0.295 (0.038) 0.432 (0.037) 0.488 (0.046) 0.610 (0.058) 0.178 (0.040) 41.25%
8 0.118 (0.026) 0.130 (0.030) 0.146 (0.033) 0.216 (0.049) 0.086 (0.033) 66.68%
9 0.205 (0.030) 0.199 (0.024) 0.215 (0.025) 0.297 (0.034) 0.099 (0.025) 49.81%
10 0.356 (0.042) 0.364 (0.041) 0.405 (0.046) 0.482 (0.056) 0.117 (0.039) 32.18%

11 0.451 (0.046) 0.467 (0.037) 0.475 (0.038) 0.515 (0.036) 0.048 (0.014) 10.30%
12 0.153 (0.024) 0.153 (0.020) 0.150 (0.018) 0.176 (0.028) 0.023 (0.015) 14.66%
13 0.190 (0.021) 0.192 (0.029) 0.194 (0.033) 0.223 (0.040) 0.031 (0.021) 16.01%
14 0.169 (0.030) 0.188 (0.028) 0.202 (0.028) 0.277 (0.031) 0.090 (0.014) 47.82%
15 0.267 (0.020) 0.283 (0.023) 0.297 (0.024) 0.325 (0.027) 0.042 (0.013) 14.89%

16 0.354 (0.041) 0.346 (0.045) 0.343 (0.045) 0.414 (0.051) 0.068 (0.018) 19.82%
17 0.185 (0.029) 0.281 (0.022) 0.283 (0.023) 0.314 (0.024) 0.034 (0.012) 12.09%
18 0.186 (0.027) 0.203 (0.039) 0.201 (0.037) 0.245 (0.059) 0.043 (0.033) 20.82%
19 0.078 (0.017) 0.088 (0.021) 0.088 (0.021) 0.097 (0.040) 0.009 (0.033) 9.82%
20 0.193 (0.022) 0.200 (0.023) 0.190 (0.023) 0.328 (0.040) 0.128 (0.031) 64.10%

21 0.347 (0.038) 0.377 (0.038) 0.369 (0.039) 0.473 (0.038) 0.096 (0.028) 25.45%
22 0.245 (0.042) 0.245 (0.044) 0.239 (0.040) 0.282 (0.053) 0.037 (0.016) 15.09%
23 0.209 (0.027) 0.258 (0.029) 0.271 (0.029) 0.382 (0.035) 0.124 (0.019) 47.89%
24 0.235 (0.030) 0.250 (0.027) 0.235 (0.027) 0.299 (0.030) 0.053 (0.011) 21.64%
25 0.229 (0.024) 0.213 (0.037) 0.231 (0.036) 0.312 (0.046) 0.099 (0.033) 46.31%

26 0.187 (0.036) 0.218 (0.028) 0.225 (0.027) 0.314 (0.030) 0.096 (0.009) 43.95%
27 0.094 (0.019) 0.088 (0.016) 0.088 (0.017) 0.129 (0.018) 0.040 (0.013) 14.89%
28 0.123 (0.029) 0.104 (0.021) 0.112 (0.022) 0.186 (0.035) 0.082 (0.019) 14.89%
29 0.101 (0.016) 0.117 (0.024) 0.113 (0.023) 0.175 (0.045) 0.058 (0.033) 49.57%
30 0.110 (0.046) 0.174 (0.036) 0.179 (0.037) 0.203 (0.043) 0.029 (0.016) 16.75%

31 0.153 (0.023) 0.196 (0.024) 0.187 (0.024) 0.304 (0.031) 0.108 (0.016) 54.79%
32 0.084 (0.015) 0.091 (0.013) 0.086 (0.013) 0.216 (0.044) 0.125 (0.040) 137.46%
33 0.150 (0.024) 0.143 (0.019) 0.135 (0.019) 0.203 (0.037) 0.060 (0.021) 41.61%
34 0.177 (0.035) 0.230 (0.027) 0.229 (0.026) 0.274 (0.036) 0.044 (0.020) 19.16%
35 0.109 (0.021) 0.115 (0.019) 0.112 (0.020) 0.150 (0.026) 0.035 (0.016) 30.67%

36 0.167 (0.020) 0.166 (0.020) 0.177 (0.023) 0.238 (0.039) 0.072 (0.026) 43.57%
37 0.298 (0.039) 0.346 (0.026) 0.346 (0.027) 0.410 (0.027) 0.065 (0.015) 18.62%
38 0.147 (0.028) 0.215 (0.040) 0.205 (0.039) 0.251 (0.056) 0.036 (0.032) 16.44%
39 0.211 (0.025) 0.222 (0.028) 0.210 (0.026) 0.267 (0.039) 0.045 (0.026) 20.34%
40 0.164 (0.033) 0.170 (0.020) 0.179 (0.020) 0.310 (0.044) 0.140 (0.036) 81.97%

41 0.160 (0.035) 0.154 (0.030) 0.116 (0.031) 0.217 (0.031) 0.063 (0.017) 40.99%
42 0.177 (0.029) 0.167 (0.029) 0.194 (0.032) 0.228 (0.043) 0.111 (0.025) 66.38%
43 0.238 (0.036) 0.181 (0.030) 0.202 (0.034) 0.326 (0.060) 0.146 (0.038) 80.82%

Table 2.5: Comparison using 43 Indian villages microfinance data from Banerjee et al. (2013) ∗ Wel-
fare Gain compares the equilibrium welfare simulated under Greedy Allocation and the equilibrium
welfare simulated under Original Allocation implemented by BSS.
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Supplement to “Individualized Treatment

Allocations in Sequential Network

Games”

A.1 Lemma and Proposition

A.1.1 Preliminary Lemma

In this section, we collect various lemmas that we use to prove our main results. We first

denote the matrix norms induced by vector norms as ∥A∥a,b := sup{∥Ax∥b : ∥x∥a ≤ 1}. Let

δ be a measure with full support on YN , we denote the conditional distribution of Yi as

δi(Yi|Y−i) :=
δ(Y )∑

Yi∈YN δ(Yi,Y−i)
given the choices other units Y−i. We also introduce the coupling

matrix here. A matrix A = (aij)i,j≤N is a coupling matrix if it satisfies aii = 0 for all i and for

i ̸= j ∥∥δi(· | Y−i) − δi(· | Y ′
−i)

∥∥
TV
≤ aij,

whenever Y, Y ′ ∈ YN differ only at the j-th coordinate.

Lemma A.1.1. Let P be the stationary distribution P , defined in Eq.2.3. Then, the coupling

matrix is given by J , with each element Jij = AN

4
mijGij

(
|θ5|+ |θ6|

)
. Under Assumption 9,

∥J∥2,2 ≤ ∥J∥∞,∞ ≤ 1− α holds for P. (A.18)
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Moreover,

δi
(
· | Y−i

)
∈

(
1− Cα, Cα

)
for some Cα depending only on α and ,

uniformly in i, N, and Y−i.

Proof.

δi
(
1 | Y−i

)
=

π(1, Y−i)

π(1, Y−i) + π(0, Y−i)
,

δi
(
0 | Y−i

)
=

π(0, Y−i)

π(1, Y−i) + π(0, Y−i)
,

where

π(1, Y−i) = exp

αi +
∑
j ̸=i

αjYj +
AN

2

N∑
ℓ=1

N∑
j=1

mℓjGℓjYℓYj(θ5 + θ6dℓdj)

 ,
π(0, Y−i) = exp

∑
j ̸=i

αjYj +
AN

2

∑
ℓ̸=i

∑
j ̸=i

mℓjGℓjYℓYj(θ5 + θ6dℓdj)

 ,
where αi = θ0+θ1di+X

′
i(θ2+θ3di)+AN

∑N
j=1 θ4mijGijdj. Denote γ(x) = exp(x)

1+exp(x)
as a sigmoid

function of x ∈ R, then we have:

δi
(
1 | Y i

)
= γ

αi +AN

N∑
j=1

mijGijYj(θ5 + θ6didj)

 . (A.19)

δi
(
0 | Y i

)
= 1− δi

(
1 | Y i

)
.

Therefore,

dTV (δi
(
· | zi

)
, δi

(
· | yi

)
) = |δi

(
1 · | zi

)
− δi

(
1 · | yi

)
| = |γ(gi(Y ))− γ(gi(TkY ))|,

where gi(Y ) = αi + AN

∑N
j=1mijGijYj(θ5 + θ6didj). Therefore

dTV (δi
(
· | zi

)
, δi

(
· | yi

)
) ≤ 1

4
|gi(y)− gi(Tky)| ≤

1

4

∣∣ANmikGik(θ5 + θ6)
∣∣.
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Thus, the coupling matrix is given by J , with each element Jij = AN

4
mijGij

(
|θ5| + |θ6|

)
. First

inequality in Eq.A.18 holds since:

∥J∥2,2 ≤
√
∥J∥∞,∞∥JT∥∞,∞ = ∥J∥∞,∞,

where the eigenvalue |λi(JJT )| ≤ ∥JJT∥ ≤ ∥J∥∥JT∥ for any operator norm, and J is sym-

metric. Under Assumption 9,

∥J∥∞,∞ =
AN

4

(
|θ5|+ |θ6|

)
max

i=1,...,N

N∑
j=1

mijGij ≤ 1− α.

The second statement follows by using Eq.A.19:

δi(1|Y−i) ≤ γ(|θ0|+ |θ1|+X
′|θ2|+X

′|θ3|+ ANNm|θ4|+ 4(1− α)) =: Cα.

Therefore, δi(0 | Y−i) ≤ 1−Cα. Without loss of generality, we choose 1−Cα ≤ Cα, and finish

the proof.

Lemma A.1.2. For any τ > 0, there is a finite set of N × 1 vectorsW(τ) such that

|W(τ)| ≤ 2N ,

and for any N × 1 vector M with entries in {0, 1}, there exists a W ∈ W(τ) such that

∑
i

(Mi −Wi)
2 ≤ τ 2.

Proof. Since all the entries of M in {0, 1}, M must be a vertex of the N-dimensional unit

hypercube [0, 1]N . As such, we let W be the collection of all vertices of the N-dimensional
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unit hypercube. For any M , we can always find an element inW such that:

∑
i

(Mi −Wi)
2 = 0 ≤ τ 2.

Then |W(τ)| = 2N .

Lemma A.1.3. Suppose Assumptions 4 to 9 hold. Let R ⊂ N be a treatment allocation set,

R = {i ∈ N : di = 1} such that N \ R ̸= ∅. Given k ∈ N \ R, let µ̃i, i = 1, . . . , N , be a

solution of the first-order conditions of Eq.2.11 when the treatment allocation set is R∪{k} and

µ̃′
i, i = 1, . . . , N , be a solution of Eq.2.11 when the treatment allocation set is R, i.e.,

µ̃i = Λ
(
θ0 + θ1di +X ′

i(θ2 + θ3di) +ANθ5
∑
j ̸=i

mijGijµ̃j +AN

∑
j ̸=i
j∈R

mijGij(θ4 + θ6diµ̃j) +Mik(µ̃)
)
,

µ̃′
i = Λ

(
θ0 + θ1di +X ′

i(θ2 + θ3di) + ANθ5
∑
j ̸=i

mijGijµ̃
′
j + AN

∑
j ̸=i
j∈R

mijGij(θ4 + θ6diµ̃
′
j)
)
,

whereMik : [0, 1]
N → R+ is defined by

Mik(µ) = ANmikGik(θ4 + θ6diµk) + 1{i = k}(X ′
iθ3 + AN

∑
j∈R

θ6mijGijµj).

Then, µ̃i ≥ µ̃′
i holds for all i ∈ N at any X ∈ RN×k and G ∈ {0, 1}N×N .

Proof. Let us define µ̃ as a vector with elements {µ̃i}Ni=1 and µ̃′ as a vector with elements

{µ̃′
i}Ni=1. By the assumption that θ3, θ4, θ6 ≥ 0,Mik is non-negative for all i ∈ N . We define

µ̃1
i = Λ

(
θ0 + θ1di +X ′

i(θ2 + θ3di)+ANθ5
∑
j ̸=i

mijGijµ̃
′
j +AN

∑
j ̸=i
j∈R

mijGij(θ4 + θ6diµ̃
′
j)+Mik(µ̃

′)
)
,
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for all i ∈ N , where µ̃1
i ≥ µ̃′

i. Then, we use µ̃1 to generate µ̃2:

µ̃2
i = Λ

(
θ0+ θ1di+X

′
i(θ2+ θ3di)+ANθ5

∑
j ̸=i

mijGijµ̃
1
j +AN

∑
j ̸=i
j∈R

mijGij(θ4+ θ6diµ̃
1
j)+Mik(µ̃

1)
)
,

for all i ∈ N , where µ̃2
i ≥ µ̃1

i . We iterate the above process until it converges. If this iteration

is a contraction mapping, we can guarantee convergence to µ̃, which is a unique equilibrium

(by Theorem A.3.1). We denote this iteration process as {µ̃t}Tt=1 and show that the above

mapping T : [0, 1]N → [0, 1]N is a contraction mapping; we equate the distance metric with

the ℓ1-distance. For any t ≥ 1,

d(T (µ̃t), T (µ̃s)) =
N∑
i=1

∣∣µ̃t+1
i − µ̃s+1

i

∣∣,

d(µ̃t, µ̃s) =
N∑
i=1

∣∣µ̃t
i − µ̃s

i

∣∣.
First, we know that Λ(·) is a sigmoid function. Hence, its steepest slope is 0.25.

µ̃t+1
i − µ̃s+1

i ≤ 0.25AN

∑
j ̸=i

(|θ5|+ |θ6|di)mijGij(µ̃
t
j − µ̃s

j)

(By Multivariate Mean Value Theorem)

≤ 0.25AN(|θ5|+ |θ6|)
∑
j ̸=i

mijGij(µ̃
t
j − µ̃s

j

)
≤ 0.25AN(|θ5|+ |θ6|)

∑
j ̸=i

mijGij|µ̃t
j − µ̃s

j

∣∣.
Therefore,

∣∣µ̃t+1
i − µ̃s+1

i

∣∣ ≤ AN(|θ5|+ |θ6|)
4

∑
j ̸=i

mijGij|µ̃t
j − µ̃s

j

∣∣.
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Hence,

N∑
i=1

∣∣µ̃t+1
i − µ̃s+1

i

∣∣ ≤ AN(|θ5|+ |θ6|)
4

N∑
i=1

∑
j ̸=i

mijGij|µ̃t
j − µ̃s

j

∣∣
≤ AN(|θ5|+ |θ6|)

4

N∑
i=1

∣∣µ̃t
i − µ̃s

i

∣∣max
i∈N

∑
j ̸=i

mijGij.

Under Assumption 9, we can show that T is a contraction mapping. In addition, since µ̃t ∈

[0, 1] for all t ≥ 1, the metric space (µ̃, d) is a complete metric space. By Theorem A.3.1,

{µ̃′, µ̃1, ...} converges to µ̃. SinceMik ∈ [0,+∞) for all i ∈ N , this result applies for anyMik.

We conclude that µ̃i ≥ µ̃T −1
i ≥ · · · ≥ µ̃′

i,∀i ∈ N \ {k}.

Lemma A.1.4. Under Assumptions 4 to 11, the upper bound on the curvature ξup and the lower

bound on the submodularity ratio γlow is given by:

ξ ≤ ξup = 1− ζ ∈ (0, 1),

γ ≥ γlow = ζ ∈ (0, 1),

where

ζ =
1

N
min{Λ′(θ0 +X ′θ2

)
,Λ′(θ0 + θ1 +X ′θ2 +X ′θ3 +AN (θ4 + θ5 + θ6)mN

)
}
(
ANθ4N ·m+ θ1

)
,

and X ′θ2 = mini∈N X ′
iθ2, X ′θ2 = maxi∈N X ′

iθ2, X ′θ3 = argmaxi∈N X ′
iθ3.

Proof. Curvature:

The curvature is defined as the smallest value of ξ such that

W̃ (R ∪ {k})− W̃ (R) ≥ (1− ξ)[W̃ (S ∪ {k})− W̃ (S)] ∀S ⊆ R ⊆ N ,∀k ∈ N \R.

As a consequence,

ξ = max
S⊆R⊂N ,k∈N\R

1− W̃ (R ∪ {k})− W̃ (R)

W̃ (S ∪ {k})− W̃ (S)
. (A.20)
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We first denote W̃i(D) as:

W̃i(D) := 1{i∈D}Λ
[
θ0 + θ1 +X ′

i(θ2 + θ3) + ANθ5
∑
j ̸=i
j∈N

mijGijµ̃j + AN

∑
j ̸=i
j∈D

mijGij(θ4 + θ6µ̃j)
]

+ 1{k∈N\D}Λ
[
θ0 +X ′

kθ2 + ANθ4
∑
ℓ∈D

mkℓGkℓ + ANθ5
∑
ℓ ̸=k
ℓ∈N

mkℓGkℓµ̃ℓ

]
.

We can upper bound the denominator in Eq.A.20 by:

W̃ (S ∪ {k})− W̃ (S) =
N∑
i=1

W̃i(S ∪ {k})− W̃i(S) ≤ N,

A lower bound on the numerator in Eq.A.20 is:

∆F
.
= W̃ (R ∪ {k})− W̃ (R) ∀k ∈ N , R ⊆ N .

Then we define ξup as:

ξup ≡ 1− ∆F

N
≥ ξ.

Let µ̃ denote the solution of Eq.2.10 with di = 1 for i ∈ R ∪ {k} and µ̃′ denote the solution of

Eq.2.10 with di = 1 for i ∈ R. We first rewrite W̃ (R ∪ {k})− W̃ (R) with a view to deriving a

lower bound. To do so, we define

ϕi(µ) := θ0+θ1+X
′
i(θ2+θ3)+ANθ5

∑
j ̸=i

mijGijµj+AN

∑
j ̸=i
j∈R

mijGij(θ4+θ6µj)+ANmikGik(θ4+θ6µk);

ϕ
i
(µ) := θ0 + θ1 +X ′

i(θ2 + θ3) + ANθ5
∑
j ̸=i

mijGijµj + AN

∑
j ̸=i
j∈R

mijGij(θ4 + θ6µj);
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φc(µ) := θ0 +X ′
cθ2 + ANθ5

∑
b̸=c

Gcbmbcµb + ANθ4
∑
z∈R

mczGcz + ANθ4mckGck;

φ
c
(µ) := θ0 +X ′

cθ2 + ANθ5
∑
b ̸=c

Gcbmbcµb + ANθ4
∑
z∈R

mczGcz;

ψk(µ) := θ0 + θ1 +X ′
k(θ2 + θ3) + ANθ5

∑
e̸=k

mkeGkeµe + AN

∑
l∈R

mklGkl(θ4 + θ6µl);

ψ
k
(µ) := θ0 +X ′

kθ2 + ANθ5
∑
e̸=k

mkeGkeµe + ANθ4
∑
l∈R

mklGkl

Then, we have

W̃ (R ∪ {k})− W̃ (R)

=
∑
i∈R

[
Λ
(
ϕi(µ̃)

)
− Λ

(
ϕ
i
(µ̃′)

)]
+

∑
c∈N\R∪{k}

[
Λ
(
φc(µ̃)

)
− Λ

(
φ
c
(µ̃′)

)]
+ Λ

(
ψk(µ̃)

)
− Λ

(
ψ

k
(µ̃′)

)
.

(A.21)

By Lemma A.1.3, we can bound the above equation from below by replacing µ̃′
i with µ̃i

for all i ∈ N . Then, Eq.A.21 is bounded by:

W̃ (R ∪ {k})− W̃ (R)

≥
∑
i∈R

[
Λ
(
ϕi(µ̃)

)
− Λ

(
ϕ
i
(µ̃)

)]
+

∑
c∈N\R∪{k}

[
Λ
(
φc(µ̃)

)
− Λ

(
φ
c
(µ̃)

)]
+ Λ

(
ψk(µ̃)

)
− Λ

(
ψ

k
(µ̃)

)
.

Using the mean value theorem, and letting ϕi ∈
(
ϕ
i
(µ̃), ϕi(µ̃)

)
, φc ∈

(
φ
c
(µ̃), φc(µ̃)

)
, ψk ∈
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(
ψ

k
(µ̃), ψk(µ̃)

)
, we have:

W̃ (R ∪ {k})− W̃ (R)

≥
∑
i∈R

Λ′(ϕi)AN(θ4 + θ6µ̃k)mikGik +
∑

c∈N\R∪{k}

Λ′(φc)ANθ4mckGck

+ Λ′(ψk)(θ1 +X ′
kθ3 + θ6AN

∑
l∈R

mklGklµ̃l)

≥
∑
i∈R

Λ′(ϕi)ANθ4mikGik +
∑

c∈N\R∪{k}

Λ′(φc)ANθ4mckGck + Λ′(ψk)θ1

≥
∑
i∈R

Λ′(ϕi)ANθ4mikGik +
∑

c∈N\R∪{k}

Λ′(φc)ANθ4mckGck + Λ′(ψk)θ1

≥ Λ′ ·
(∑

i ̸=k

ANθ4mikGik + θ1
)

≥ Λ′ ·
(
ANθ4N ·m+ θ1

)
,

(A.22)

where

Λ′(ϕi) = min{Λ′(ϕ
i
),Λ′(ϕi)},

Λ′(φc) = min{Λ′(φ
c
),Λ′(φc)},

Λ′(ψk) = min{Λ′(ψ
k
),Λ′(ψk)},

Λ′ = min{Λ′(θ0 +X ′θ2
)
,Λ′(θ0 + θ1 +X ′θ2 +X ′θ3 + AN(θ4 + θ5 + θ6)mN

)
}.

Then,

ξup = 1− 1

N
Λ′ ·

(
ANθ4N ·m+ θ1

)
.

Under Assumption 5 and 10

θ1, θ4, AN , N,m > 0⇒
(
ANθ4N ·m+ θ1

)
> 0.
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In addition, we know that Λ(x) is a logistic function, and so

Λ′(θ0 +X ′θ2
)
∈ (0, 0.25],

Λ′(θ0 + θ1 +X ′θ2 +X ′θ3 + AN(θ3 + θ4 + θ5)mN
)
∈ (0, 0.25].

Hence,

Λ′ ∈ (0, 0.25).

By assuming that
(
ANθ4N ·m+ θ1

)
≤ 4N , we obtain

Λ′ ·
(
ANθ4N ·m+ θ1

)
< N.

We conclude that ξup < 1. From Bian et al. (2017), ξ only equal to 0 if W̃ (D) is supermodular.

Since W̃ (D) is not supermodular, ξup > ξ > 0.

Submodularity Ratio

The submodularity ratio of a non-negative set function is the largest γ such that

∑
k∈R\S

[W̃ (S ∪ {k})− W̃ (S)] ≥ γ[W̃ (S ∪R)− W̃ (S)], ∀S,R ⊆ N .

As a consequence,

γ = min
S ̸=R

∑
k∈R\S[W̃ (S ∪ {k})− W̃ (S)]

W̃ (S ∪R)− W̃ (S)

= min
S ̸=R

∑
k∈R\S

∑
i[W̃i(S ∪ {k})− W̃i(S)]∑

i[W̃i(S ∪R)− W̃i(S)]

(A.23)
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We can upper bound the denominator in Eq.A.23 by:

N∑
i=1

[W̃i(S ∪R)− W̃i(S)] ≤ N.

We first rewrite
∑

k∈R\S[W̃ (S ∪ {k})− W̃ (S)] with a view to deriving a lower bound.

∑
k∈R\S

∑
i

[W̃i(S ∪ {k})− W̃i(S)]

=
∑

k∈R\S

[∑
i∈S

[
Λ
(
θ0 + θ1 +X ′

i(θ2 + θ3) + ANθ5
∑
j ̸=i

mijGijµ̃j + AN

∑
j ̸=i
j∈S

mijGij(θ4 + θ6µ̃j)

+ ANmikGik(θ4 + θ6µ̃k)
)
− Λ

(
θ0 + θ1 +X ′

i(θ2 + θ3) + ANθ5
∑
j ̸=i

mijGijµ̃
′
j + AN

∑
j ̸=i
j∈S

mijGij(θ4 + θ6µ̃
′
j)
)]

+
∑

c∈N\S∪{k}

[
Λ
(
θ0 +X ′

cθ2 + ANθ5
∑
b ̸=c

Gcbmbcµ̃b + ANθ4
∑
z∈S

mczGcz + ANθ4mckGck

)
− Λ(θ0 +X ′

cθ2 + ANθ5
∑
b ̸=c

Gcbmbcµ̃
′
b + ANθ4

∑
z∈S

mczGcz)
]

+ Λ(θ0 + θ1 +X ′
k(θ2 + θ3) + ANθ5

∑
e̸=k

mkeGkeµ̃e + AN

∑
l∈S

mklGkl(θ4 + θ6µ̃l))

− Λ(θ0 +X ′
kθ2 + ANθ5

∑
e̸=k

mkeGkeµ̃
′
e + ANθ4

∑
l∈S

mklGkl)

]
.

We can lower bound the numerator in Eq.A.23 by:

∑
k∈R\S

∑
i

[W̃i(S ∪ {k})− W̃i(S)] ≥
∑

k∈R\S

Λ′ ·
(
ANθ4N ·m+ θ1

)
(By Eq.A.22)

≥ Λ′ ·
(
ANθ4N ·m+ θ1

)
Defining:

γlow =
1

N
Λ′ ·

(
ANθ4N ·m+ θ1

)
,
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the submodularity ratio can be bounded from below by:

γ ≥ γlow = 1− ξup ∈ (0, 1).

A.1.2 Proof of Proposition 2.2.1

Under Assumptions 4 and 8, the potential function Φ(y,X , D,G;θ) for Ui(y,X , D,G;θ) can

be defined as:

Φ(y,X , D,G;θ) =
N∑
i=1

θ0 + θ1di +X ′
i(θ2 + θ3di) + AN

N∑
j=1

θ4mijGijdj

 yi

+
AN

2

N∑
i=1

N∑
j=1

mijGijyiyj(θ5 + θ6didj),

,

and our interacted decision game is a potential game.

Proof. A potential function is a function Φ : Y → R such that:

Φ(yi = 1, y−i,X , D,G)−Φ(yi = 0, y−i,X , D,G) = Ui(yi = 1, y−i,X , D,G)−Ui(yi = 0, y−i,X , D,G).

Simple computation shows that for any i ∈ N ,

Φ(yi = 1, y−i,X , D,G)− Φ(yi = 0, y−i,X , D,G)

= θ0 + θ1di +X ′
i(θ2 + θ3di) + AN

N∑
j=1

θ4mijGijdj + AN

N∑
j=1

mijGijyj(θ5 + θ6didj)

= Ui(yi = 1, y−i,X , D,G)− Ui(yi = 0, y−i,X , D,G).

Therefore, Φ is the potential of our interacted decision game.
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A.1.3 Proof of Lemma 2.3.1

Lemma A.1.5. Error Bound: Let P and Q be two probability distributions over {0, 1}N . We

have:
N∑
i=1

|µP
i − µ

Q
i | ≤ WH

1 (P,Q).

Proof. For any coupling ω ∈ Ω(P,Q) (i.e. a joint distribution on (Y, Y ′) with marginals P and

Q), define the Hamming cost

Eω

[ N∑
i=1

1{Yi ̸= Y ′
i }
]

=
N∑
i=1

Eω[1{Yi ̸= Y ′
i }] =

N∑
i=1

Prω(Yi ̸= Y ′
i ).

For each coordinate i, given Yi is Bernoulli random variable, we have

Prω(Yi ̸= Y ′
i ) ≥

∣∣P (Yi = 1)−Q(Yi = 1)
∣∣.

Summing over i = 1, . . . , N , we get

Eω

[ N∑
i=1

1{Yi ̸= Y ′
i }
]
≥

N∑
i=1

∣∣P (Yi = 1)−Q(Yi = 1)
∣∣.

Since WH
1 (P,Q) is the infimum of the above expected Hamming cost over all couplings γ ∈

Ω(P,Q), the result follows:

WH
1 (P,Q) = inf

ω∈Ω(P,Q)
Eω

[ N∑
i=1

1{Yi ̸= Y ′
i }
]
≥

N∑
i=1

∣∣P (Yi = 1)−Q(Yi = 1)
∣∣.
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A.1.4 Proof of Proposition 2.3.1

Proposition A.1.1. Transportation Inequality: Under Assumption 9, there is a universal con-

stant Ct such that the stationary distribution P , defined in Eq.2.3, satisfies:

W1(P,Q) ≤ Ct

√
KL(Q∥P ),

for all probability measures Q on {0, 1}N with a finite first moment.

Proof. We first introduce the definition of approximate tensorization property:

Definition A.1.1 (Approximate tensorization of entropy). We say that a measure µ has the

approximate tensorization property with constant C (abbreviated AT(C)) if for every function

f : Y → [0,∞),

Entµ(f) ≤ C Eµ

[ n∑
i=1

Entµ(·|Y−i)

(
f
)]
,

where Entµ(f) := Eµ

[
f log f

]
−Eµ[f ] log

(
Eµ[f ]

)
∈ [0,∞) is the entropy functional of nonneg-

ative function f .

We apply Lemma A.1.1 to see that by Lemma A.3.1 we have for some χ = χ(θ,X,G, α)

such that the stationary distribution P satisfies the approximate tensorization propertyAT ( 1
χα2 ).

i.e.,

EntP (f) ≤
1

χα2
EP

[ n∑
i=1

EntP (·|Y−i)

(
f
)]
.

In addition, the second statement of Lemma A.1.1 guarantees that χ ≥ (1−Cα). Therefore, P

satisfies the approximate tensorization property AT ( 1
(1−Cα)α2 ). Lemma A.3.2 guarantees the

stationary distribution P satisfies the dimension-free convex concentration inequality with

constant K depending only on 1/(1 − Cα)α
2, where the definition of convex concentration

property is given by

Definition A.1.2. Convex Concentration Property: a random vectorX in RN has the convex

concentration property with constant K if for any L-Lipschitz convex function f : RN → R,
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and any t > 0,

Pr
(
|f(X)−Med f(X)| ≥ t

)
≤ 2 exp

(
− t2

K2 L2

)
. (5.1)

Apply Lemma A.3.3, we conclude there exists constant CT such that P satisfies inequality

T̄f with f(x) = CT∥x∥21, where the definition of T̄f is given by:

Definition A.1.3. Weak transport cost: Let µ and ν be probability measures on RN , and

assume ν ∈ RN with finite first moment. define the weak transport cost between µ and ν as

Tf (Q | P ) = inf
π

∫
{0,1}N

f(y −
∫
{0,1}

y′ py(dy
′))P (dy).

where f : RN → [0,+∞] is a lower-semicontinuous convex function, and the infimum is taken

over all couplings π of µ and ν (i.e. measures on RN ×RN with marginals µ and ν). For each

x ∈ RN , px(·) denotes the conditional measure given by π(dx dy) = px(dy)µ(dx) (µ-almost

surely). We will say that µ satisfies the inequality T̄f if for every probability measure ν ∈ RN

with finite first moment,

max
(
Tf (ν | µ),Tf (µ | ν)

)
≤ KL(ν | µ).

Applying f(x) = CT∥x∥21, there exists constant CT such that

Tf (Q | P ) = inf
π

∫
{0,1}N

CT

∥∥∥∥y − ∫
{0,1}

y′ py(dy
′)

∥∥∥∥2

1

P (dy). (A.24)

Therefore, we have √
1

CT

Tf (Q | P ) ≤
√

1

CT

KL(Q | P ). (A.25)

Now I claim: Suppose we have probability measures P,Q on {0, 1}N . Given the Wasser-

stein 1-distance equipped with Hamming distance, defined in Definition 2.3.1, and the weak
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transport cost is defined in Eq.A.24, we have

W1(P,Q) ≤
√

1

CT

T f (Q | P ).

Combining with Eq.A.25, and denote ct = 1√
CT

, we finish the proof of the statement. Now, I

will begin proofing the above claim. Let P,Q be probability measures on {0, 1}N . Define the

Wasserstein 1-distance (with Hamming distance) as:

W1(P,Q) = inf
π∈Ω(P,Q)

Eπ[∥Y − Y ′∥1],

where ∥y − y′∥1 =
∑N

i=1 |yi − y′i| is the Hamming distance. Define the weak transport cost as:

Tf (Q | P ) = inf
π∈Ω(P,Q)

∫
{0,1}N

CT∥y − Eπ[Y
′|Y = y]∥21P (dy).

Define another weak transport cost as:

T
′
(Q | P ) = inf

π∈Ω(P,Q)

∫
{0,1}N

C
1/2
T ∥y − Eπ[Y

′|Y = y]∥1P (dy).

By Jensen’s inequality and the square root function is concave, we have

T
′
(Q | P ) = inf

π∈Ω(P,Q)

∫
{0,1}N

√
CT∥y − Eπ[Y ′|Y = y]∥21P (dy)

≤ inf
π∈Ω(P,Q)

[∫
{0,1}N

CT∥y − Eπ[Y
′|Y = y]∥21P (dy)

]1/2

=

√
Tf (Q | P )

(A.26)

We are going to show:

W1(P,Q) =
1√
CT

T
′
(Q | P ). (A.27)

Consider each component in ∥y−Eπ[Y
′|Y = y]∥1 separately. Given coupling π and condition-
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ing on Y = y, we have:

Eπ[Y
′
i |Y = y] = Pπ(Y

′
i = 1|Y = y) := pi(y).

Thus,

|yi − pi(y)| = Pπ(Y
′
i ̸= yi|Y = y).

Summing over units, we get:

∥y − Eπ[Y
′|Y = y]∥1 =

N∑
i=1

Pπ(Y
′
i ̸= yi|Y = y) = Eπ[∥y − Y ′∥1|Y = y].

Integrating w.r.t. P (dy), we have exact equality:

∫
{0,1}N

∥y − Eπ[Y
′|Y = y]∥1P (dy) = Eπ[∥Y − Y ′∥1].

Since this holds for any coupling π, we have equality of objective functions for each coupling.

Thus, the infimum over all couplings must coincide. This establishes the desired equivalence.

Combining Eq.A.26 and Eq.A.27, we finish the proof of our claim.

A.1.5 Proof of Proposition 2.3.2

Under Assumptions 4 to 8, the optimization for µ̃ has a unique maximizer and the iteration

procedure of Algorithm 3 converges to this maximizer.

Proof. To prove the existence of a unique maximizer, we need to show that two conditions

are satisfied.

1. The objective function is continuous and differentiable in the interior.

2. The boundary point cannot be a global optimum.
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Since our objective function is the sum of linear terms, quadratic functions and logarithmic

functions, the first condition is trivially satisfied. To check the second condition, we need to

verify that the derivative is positive at µQ
i = 0 and is negative at µQ

i = 1. The derivative is:

∂

∂µQ
i

A(µQ,X , D,G) = θ0 + θ1di +X ′
iθ2 +X ′

iθ3di + AN

N∑
j=1

θ4mijGijdj

+ AN

N∑
j=1

mijGij(θ5 + θ6didj)µ
Q
j − log(µQ

i ) + log(1− µQ
i ).

When µQ
i = 0,

− log(µQ
i ) + log(1− µQ

i ) = − log(0) + log(1) = +∞.

When µQ
i = 1,

− log(µQ
i ) + log(1− µQ

i ) = − log(1) + log(0) = −∞.

Since all of the elements in θ0+θ1di+X ′
iθ2+X

′
iθ3di+AN

∑N
j=1 θ4mijGijdj+AN

∑N
j=1mijGij(θ5+

θ6didj)µ
Q
j are bounded,

∂

∂µQ
i

A(µQ,X , D,G)|µQ
i =0 = +∞,

and
∂

∂µQ
i

A(µQ,X , D,G)|µQ
i =1 = −∞.

Away from the boundary, the objective function increases. A global optimum, if it exists,

then has to be in the interior. Since the objective function is continuous and differentiable,

the first-order condition has to be satisfied at the global optimum. The coordinate ascent

property that holds at every iterative step implies that the objective function increases at

each step, which further implies that the point that the algorithm converges to cannot be a

local maximum.
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A.1.6 Proof of Contraction Mapping

Under Assumptions 4 to 6, and 9, the iteration procedure in Algorithm 3 is a contraction

mapping for all i ∈ N , for all {di}Ni=1 ∈ {0, 1}N , for all X ∈ RN×k, and for all G ∈ {0, 1}N×N .

Proof. This proof is very similar to Lemma A.1.3. Recall the iteration in Algorithm 3:

µ̃t+1
i = Λ

[
θ0 + θ1di +X ′

i(θ2 + θ3di) + ANθ4
∑
j ̸=i

mijGijdj + AN

∑
j ̸=i

mijGij(θ5 + θ6didj)µ̃
t
j

]
.

We denote this iteration process as {µ̃t}Tt=1 and show the above mapping T : [0, 1]N → [0, 1]N

is a contraction mapping. To prove the above iteration is a contraction mapping, we use

ℓ1-distance. For any t ≥ 1,

d(T (µ̃t), T (µ̃s)) =
N∑
i=1

∣∣µ̃t+1
i − µ̃s+1

i

∣∣,

d(µ̃t, µ̃s) =
N∑
i=1

∣∣µ̃t
i − µ̃s

i

∣∣.
First, we know Λ(·) is a sigmoid function. Hence, its largest slope is 0.25.

µ̃t+1
i − µ̃s+1

i ≤ 0.25AN

∑
j ̸=i

(θ5 + θ6didj)mijGij(µ̃
t
j − µ̃s

j)

(By Multivariate Mean Value Theorem)

≤ 0.25AN(|θ5|+ |θ6|)
∑
j ̸=i

mijGij(µ̃
t
j − µ̃s

j

)
≤ 0.25AN(|θ5|+ |θ6|)

∑
j ̸=i

mijGij|µ̃t
j − µ̃s

j

∣∣.
Therefore,

∣∣µ̃t+1
i − µ̃s+1

i

∣∣ ≤ AN(|θ5|+ |θ6|)
4

∑
j ̸=i

mijGij|µ̃t
j − µ̃s

j

∣∣.
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Hence,

N∑
i=1

∣∣µ̃t+1
i − µ̃s+1

i

∣∣ ≤ AN(|θ5|+ |θ6|)
4

N∑
i=1

∑
j ̸=i

mijGij|µ̃t
j − µ̃s

j

∣∣
≤ AN(|θ5|+ |θ6|)

4

N∑
i=1

∣∣µ̃t
i − µ̃s

i

∣∣max
i∈N

∑
j ̸=i

mijGij.

Therefore, under Assumption 9, T is a contraction mapping. In addition, since µ̃t ∈ [0, 1] for

all t ≥ 1, the metric space (µ̃, d) is a complete metric space. By Theorem A.3.1, {µ̃′, µ̃1, ...}

will converge to a unique fixed point, which is µ̃.

A.2 Theorem

A.2.1 Proof of Theorem 2.3.1

Let Q∗ denote the independent Bernoulli distribution that solves Eq.2.10. Under Assumptions

4 to 8, the Kullback–Leibler divergence between Q∗ and P is bounded from above by:

KL(Q∗||P ) ≤ C1ANN+C2N+O
(√

A2
NN

2N

)
+O

(√
A3

NN
2N2

)
+O

(√
A3

NNN
3

)
+o(N),

where C1, C2 are constants that depend only upon θ,m, max1≤i≤N |X ′
iθ2|, and max1≤i≤N |X ′

iθ3|.

Proof. We need to apply Theorem A.3.2. We define f : [0, 1]N → R as:

f(µ̃) =
∑
i

(θ0+θ1di+X
′
i(θ2+θ3di)+ANθ4

∑
j ̸=i

mijGijdj)µ̃i+
AN

2

∑
i

∑
j

(θ5+θ6didj)mijGijµ̃iµ̃j.
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Therefore,

∥f∥ ≤
∑
i

(|θ0|+ |θ1|+ |X ′
iθ2|+ |θ3Xi|) + AN

∑
i

∑
j

|θ4mij|Gij +
AN

2

∑
i

∑
j

Gij(|θ5mij|+ |θ6mij|)

≤ N(|θ0|+ |θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|) +mAN(|θ4|+ |θ5|+ |θ6|)
∑
i

∑
j

Gij

≤ N(|θ0|+ |θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|) +mANNN(|θ4|+ |θ5|+ |θ6|)

=: ã.

The partial derivative of f(µ̃) with respect to µ̃i is:

∂f(µ̃)

∂µ̃i

= θ0+θ1+X
′
iθ2+X

′
iθ3di+AN

∑
j ̸=i

θ4mijGijdj+AN

∑
j ̸=i

θ5mijGijµ̃j+AN

∑
j ̸=i

θ6mijGijdidjµ̃j.

(A.28)

Therefore,

∥∇if(µ̃)∥ ≤ |θ0|+ |θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|+mANN(|θ4|+ |θ5|+ |θ6|) =: b̃.

The second partial derivative with respect to µ̃j is:

∂2f(µ̃)

∂µ̃i∂µ̃j

= ANθ5mijGij + ANθ6mijGijdidj.

Therefore, for all j ̸= i,

∥∇i∇jg(µ̃)∥ ≤ mAN(|θ5|+ |θ6|)Gij = c̃Gij =: c̃ij,

with the second derivative zero if i = j. Next, we need to compute |M(ϵ)|, where M(ϵ) is

the finite subset of RN such that for any µ̃ ∈ {0, 1}N , there exists η = (η1, ..., ηN) ∈M(ϵ) such

that ∑
i

(∂f(µ̃)
∂µ̃i

− ηi
)2

≤ Nϵ2.
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We note that this is requirement on the derivative at the boundary; we only need the above

condition to hold when µ̃ ∈ {0, 1}N to defineM(ϵ), and not more generally for µ̃ ∈ (0, 1)N .

Recalling Eq.A.28 and defining T1 and T2 as:

T1(µ̃) :=
ANθ5
2

∑
i

∑
j

mijGijµ̃iµ̃j, T2(µ̃) :=
ANθ6
2

∑
i

∑
j

mijGijdidjµ̃iµ̃j,

we state the partial derivative of f(µ̃) as

∂f(µ̃)

∂µ̃i

= θ0 + θ1 +X ′
iθ2 +X ′

iθ3di + θ4AN

∑
j

mijGijdj +
∂T1(µ̃)

∂µ̃i

+
∂T2(µ̃)

∂µ̃i

.

LetM1(ϵ) be the finite subset of RN such that for any µ̃ ∈ {0, 1}N , there exists λ = (λ1, ..., λN) ∈

M1(ϵ) such that ∑
i

(∂T1(µ̃)
∂µ̃i

− λi
)2

≤ Nϵ2.

LetM2(ϵ) be the finite subset of RN such that for any µ̃ ∈ {0, 1}N , there exists ϑ = (ϑ1, ..., ϑN) ∈

M2(ϵ) such that ∑
i

(∂T2(µ̃)
∂µ̃i

− ϑi

)2

≤ Nϵ2.

Defining λi and ϑi for all i ∈ N to be:

λi = ANθ5
∑
j

mijGij ỹj, ϑi = ANθ6
∑
j

mijGijdidj ṽj,

where ỹj ∈ {0, 1} and ṽj ∈ {0, 1} by Lemma A.1.2, we can then defineM(ϵ) as:

M(ϵ) :=
{
θ0 + θ1 +X ′

iθ2 +X ′
iθ3di + ANθ4

∑
j

mijGijdj + ℓ1 + ℓ2

: ℓ1 ∈M1

(
ϵ√
2

)
, ℓ2 ∈M2

(
ϵ√
2

)
, i ∈ N

}
.
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Then,

(∂T1(µ̃)
∂µ̃i

− λi
)2

=
(
ANθ5

∑
j

mijGij(µ̃j − ỹj)
)2

≤
(
ANθ5

∑
j

m2
ijGij

)(
ANθ5

∑
j

(µ̃j − ỹj)2
)

(By the Cauchy–Schwarz inequality)

≤ A2
Nθ

2
5N

∑
j

(µ̃j − ỹj)2max
i,j

m2
ij

≤ A2
Nθ

2
5Nτ

2
1 max

i,j
m2

ij

(By Lemma A.1.2)

=
ϵ2

2
By choosing τ1 =

√
ϵ2

2A2
Nθ

2
5N maxij m2

ij

.

(∂T2(µ̃)
∂µ̃i

− ϑi

)2

=
(
ANθ6

∑
j

mijGijdidj(µ̃j − ṽj)
)2

≤
(
ANθ6

∑
j

m2
ijGijdidj

)(
ANθ6

∑
j

(µ̃j − ṽj)2
)

(By the Cauchy–Schwarz inequality)

≤ A2
Nθ

2
6N

∑
j

(µ̃j − ṽj)2max
i,j

m2
ij

≤ A2
Nθ

2
6Nτ

2
2 max

i,j
m2

ij

(By Lemma A.1.2)

=
ϵ2

2
By choosing τ2 =

√
ϵ2

2A2
Nθ

2
6N maxij m2

ij

.

Therefore,

|M(ϵ)| ≤ N · N(N + 1)

2
·
∣∣∣M1

(
ϵ√
2

) ∣∣∣ · ∣∣∣M2

(
ϵ√
2

) ∣∣∣ ≤ 22N−1N2(N + 1).
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We now apply Theorem A.3.2, choosing ϵ = N−1:

K(Q∗∥P ) ≤ 1

4
(N

∑
i

b2i )
1
2N−1 + 3 + log(22N−1(N3 +N))

+ 4
(∑

i

b2i +
1

4

∑
i,j

(ac2ij + bibjcij + 4bicij)
) 1

2
+ log 2

≤ b̃

4
+ 3 + 2N log 2 + log(N3 +N) + 4

(
b̃2N +

1

4

∑
i,j

(ãc̃2Gij + b̃2c̃Gij + 4b̃c̃Gij)
) 1

2

≤ b̃

4
+ 3 + 2N log 2 + log(N3 +N) + 4

(
b̃2N +

1

4
NN(ãc̃2 + b̃2c̃+ 4b̃c̃)

) 1
2

= C1ANN + C2N

+

√
(C3ANN + C4A2

NN
2)N + (C5AN + C6A2

NN + C7A3
NN

2 + C8A2
N + C9NA3

N)N
2 + o(N)

= C1ANN + C2N +O
(√

A2
NN

2N

)
+O

(√
A3

NN
2N2

)
+O

(√
A3

NNN
2

)
+ o(N),

where o(N) collects those elements that are constant or that grow at a slower rate than N ,

and

C1 =
1

4
m(|θ4|+ |θ5|+ |θ6|),

C2 = 2 log 2,

C3 = 32m(|θ0|+ |θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|)(|θ4|+ |θ5|+ |θ6|)

C4 = 16m2(|θ4|+ |θ5|+ |θ6|)2

C5 = 4m(|θ0|+|θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|+4)(|θ0|+|θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|)(|θ5|+|θ6|).

C6 = 8m2[(|θ0|+ |θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|) + 2](|θ4|+ |θ5|+ |θ6|)(|θ5|+ |θ6|),

C7 = 4m3(|θ4|+ |θ5|+ |θ6|)2(|θ5|+ |θ6|),

C8 = 4m2(|θ0|+ |θ1|+max
i
|X ′

iθ2|+max
i
|X ′

iθ3|)(|θ5|+ |θ6|)2,

C9 = 4m3(|θ4|+ |θ5|+ |θ6|)(|θ5|+ |θ6|)2.
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A.2.2 Proof of Theorem 2.3.2

Under Assumptions 4 to 11, the curvature ξ and submodularity ratio γ of W̃ (D) are in (0, 1).

The greedy Algorithm enjoys an approximation guarantee for solving the problem in Eq.2.13

of:

W̃ (DG) ≥
1

ξ
(1− e−ξγ)W̃ (D̃),

where DG is the treatment assignment rule obtained by Algorithm 4.

For completeness, we present the statement of Theorem 1 in Bian et al. (2017).

Theorem A.2.1. Theorem 1 (Bian et al., 2017) Let F (·) be a non-negative nondecreasing set

function with submodularity ratio γ ∈ [0, 1] and curvature ξ ∈ [0, 1]. The greedy algorithm enjoys

the following approximation guarantee for solving the maximization problem with cardinality

constraint:

F (DG) ≥
1

ξ
(1− e−ξγ)F (D∗),

where DG is the result of the greedy algorithm and D∗ is the optimal solution.

Proof. The first statement in Theorem 2.3.2 directly follows Lemma A.1.4. Then we apply

Theorem A.2.1 to get the second statement.

A.3 Results from Previous Literature

Lemma A.3.1. (Götze et al., 2019, §Theorem 4.2) Let δ be a measure with full support on YN .

Define

χ = min
1≤i≤N

min
Y ∈YN

δi
(
Yi | Y−i

)
.
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Let A = (aij)i,j≤N satisfy aii = 0 for all i and for i ̸= j

∥∥δi(· | Y−i) − δi(· | Y ′
−i)

∥∥
TV
≤ aij,

whenever Y, Y ′ ∈ YN differ only at the j-th coordinate. Assume moreover that

∥A∥2,2 < 1.

Then δ satisfies the approximate tensorization property AT(C) with

C =
1

χ
(
1− ∥A∥2,2

)2 .
Lemma A.3.2. (Adamczak et al. (2019, §Proposition 5.4)) If X is a [−1, 1]N - valued random

vector with law µ, which satisfies the approximate tensorization AT(C), then X satisfies the

dimension-free convex concentration inequality with constant K depending only on C.

Lemma A.3.3. (Adamczak et al., 2019, §Theorem 5.3) Let X be a random vector in RN with

distribution µ. The following conditions are equivalent:

(i) There exists K such that X has the dimension-free convex concentration property with

constant K.

(ii) There exists c such that µ satisfies the inequality Tf with f(x) = c∥x∥21.

(iii) There exist D,λ > 0 such that for every convex Lipschitz function and every concave func-

tion whose Hessian is bounded below by (−λ)Id,

Ent
(
ef(X)

)
≤ DE

[
∥∇f(X)∥2

]
E
[
ef(X)

]
.

Moreover, for any two of the above assertions, the constants in one may be chosen to depend only

on the constants in the other.
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Theorem A.3.1. Banach Fixed-Point Theorem: Let (X, d) be a non-empty complete metric

space with a contraction mapping T : X → X. Then T admits a unique fixed-point x∗.

Theorem A.3.2. Chatterjee and Dembo (2016) Suppose that f : [0, 1]N → R is twice continu-

ously differentiable in (0, 1)N , so that f and all of its first- and second-order derivatives extend

continuously to the boundary. Let ∥f∥ denote the supremum norm of f : [0, 1]N → R. For each i

and j, denote

fi :=
∂f

∂xi
, fij :=

∂2f

∂xi∂xj
,

and let

a := ∥f∥, bi := ∥fi∥, cij := ∥fij∥.

Given ϵ > 0, M(ϵ) is a finite subset of RN such that for any µ̃ ∈ {0, 1}N , there exists η =

(η1, ..., ηN) ∈M(ϵ) such that ∑
i

(∂f(µ̃)
∂µ̃i

− ηi
)2

≤ Nϵ2.

Let us define for any µ̃ = (µ̃1, ..., µ̃N) ∈ [0, 1]N ,

I(µ̃) =
N∑
i=1

[
µ̃i log µ̃i + (1− µ̃i) log(1− µ̃i)

]
.

Let us define

F = sup
µ̃∈[0,1]N

(f(µ̃)− I(µ̃)) + lower order terms.

Then for an ϵ > 0,

F ≤ sup
µ̃∈[0,1]N

(f(µ̃)− I(µ̃)) + complexity term + smoothness term.

where

complexity term =
1

4

(
n

N∑
i=1

b2i

)1/2

ϵ+ 3Nϵ+ log |M(ϵ)|,
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and

smoothness term = 4
( N∑

i=1

(acii + b2i ) +
1

4

N∑
i,j=1

(ac2ij + bibjcij + 4bicij)
)1/2

+
1

4

( N∑
i=1

b2i

)1/2( N∑
i=1

c2ii

)1/2

+ 3
N∑
i=1

cii + log 2.

125



Chapter 3

Robust Network Targeting with Multiple

Nash Equilibria

3.1 Introduction

Many policy problems involve allocating treatment among a network of interacting agents.

Examples include technology diffusion (Parente and Prescott, 1994; Alvarez et al., 2023),

teenage smoking (Nakajima, 2007), consumer adoption decisions (Banerjee et al., 2013;

Keane and Wasi, 2013), and education and migration (Hsiao, 2022). Research in these fields

highlights the role of spillover effects, particularly those arising from strategic interactions.

Among other things, these strategic interactions lead to the presence of multiple Nash

equilibria, which complicates the process of finding an optimal treatment allocation policy.

To handle this multiplicity, counterfactual policy analysis “has made simplifying assumptions

which either change the outcome space or impose ad hoc selection mechanisms in regions of mul-

tiplicity” (Tamer, 2003). Consequently, this approach “potentially introduces misspecifications

and nonrobustness in the analysis of substantive questions” (De Paula, 2013). To address this

problem, can we develop a treatment allocation rule that remains optimal even under the

least favorable equilibrium?
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Focusing on a class of network models where units participate in a simultaneous deci-

sion game with strategic complementarity (Brock and Durlauf, 2001; Ballester et al., 2006;

Molinari and Rosen, 2008; Jia, 2008; Echenique and Komunjer, 2009; Lazzati, 2015; Gra-

ham and Pelican, 2023), this paper develops a method for constructing a maximin optimal

treatment allocation rule that is robust to the presence of multiple Nash equilibria. A plan-

ner allocates a binary treatment among a target population of N units embedded within a

network, where each unit’s covariates and the network structure are observable. Each unit

then simultaneously chooses a binary action to maximize its own utility, which depends on

its own characteristics and treatment, as well as the characteristics, treatments, and expected

choice of its neighbors1. Our goal is to learn a treatment allocation policy that maximizes

social welfare for the target population.

To determine the optimal treatment allocation rule for the target population, we assume

that there exists data for a social network of units who have been assigned treatment in the

past. This sample may differ from the target population in terms of both the number of

units and the network structure. Data is assumed to be available for each unit’s covariates,

decisions, and assignments, as well as those of their neighbors. After assessing how individ-

ual outcomes vary in response to different treatment allocations among the training sample,

we analyze the optimal treatment allocation strategy, taking into account the covariates and

network structure of the target population. Consider, for example, targeted information pro-

vision in villages with the aim of increasing microfinance adoption, as discussed in Banerjee

et al. (2013). By analyzing heterogeneous choices among the units in villages selected by

policymakers, we then estimate whom to better target in external villages.

There are both theoretical and practical challenges to studying optimal treatment allo-

cation in the presence of strategic interactions. The primary theoretical challenge is incom-

pleteness (Jovanovic, 1989) of the model when there are multiple Nash equilibria2. With-

1This incomplete information setting (Brock and Durlauf, 2001; Bajari et al., 2010a; de Paula and Tang,
2012), is our primary focus. Section 3.7 extends our results to the complete information setting.

2See the detailed surveys by De Paula (2013); Molinari (2020); Kline and Tamer (2020).
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out assuming an equilibrium selection mechanism, our model predicts a set of equilibrium

outcomes under a counterfactual policy. From a theoretical perspective, one cannot judge

which equilibrium outcome is more likely than the others. This paper allows for these mul-

tiple equilibria and imposes no assumptions on equilibrium selection. Instead, we provide

set-identified equilibrium social welfare for any treatment allocation policy, along with a

closed-form expression that characterizes the bounds of this set.

As the counterfactual equilibrium social welfare is only set-identified, we cannot directly

target equilibrium welfare when designing a treatment allocation rule. To address this uncer-

tainty, we refine the optimality of treatment allocation using the maximin welfare criterion.

This criterion is employed in the robust decision theory literature (e.g., Chamberlain, 2000a),

and the robust mechanism design literature (e.g., Morris et al., 2024). Under the maximin

welfare criterion, our objective is to design a treatment allocation policy that maximizes social

welfare evaluated under the least favourable equilibrium selection rule.

In terms of implementation, there are two challenges. We adopt a parametric utility func-

tion specification, and the first challenge is estimating the parameters of this utility function.

We assume the existence of a one-period training data set that contains a finite number n

of units, along with their covariates and the network structure3. An existing treatment allo-

cation policy is assumed, and we observe each unit’s choice under this policy. We estimate

parameters using the two-step maximum likelihood estimator proposed by Leung (2015).

However, in the context of a network game setting, the asymptotic behavior of this estimator

cannot be characterized without assuming how the network structure changes as the number

of units increases (i.e., whether the network is dense or sparse). Although non-asymptotic

results could elucidate how the sampling uncertainty of this estimator is influenced by net-

work structure, the current literature lacks such analysis. Addressing this gap is one of the

primary focuses of our paper.

The second challenge to implementation is finding the maximin optimal treatment alloca-

3We allow the training data to come from our target population, with caveats about the private information
of each unit. A more detailed discussion is provided in Section 3.4.1.
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tion, which requires optimizing an objective function dependent on a system of simultaneous

equations. In the presence of strategic interactions, when a treatment is assigned to a unit, it

not only influences their behavior but also that of their neighbors. This, in turn, affects the

payoff of their neighbors’ neighbors, propagating feedback effects throughout the network

and presenting a complex combinatorial optimization problem. To tackle this complexity,

we propose a greedy algorithm. This algorithm sequentially assigns treatment to the agent

who yields the highest marginal welfare gain at each step. However, this class of algorithm

generally lacks a performance guarantee. We address this by characterizing the performance

guarantee through the features of our objective function.

We evaluate the performance of our proposed method based on its regret, which is defined

as the difference between the largest achievable welfare and the welfare achieved by our

proposed method, evaluated under the least favourable equilibrium selection rule. Regret

arises from two sources of uncertainty: The first is due to the use of estimated structural

parameters, and reflects sampling uncertainty. The second is due to the use of a greedy

algorithm.

This paper makes three theoretical contributions: (i) It provides a closed-form expression

for the identified set corresponding to the equilibrium outcomes under any arbitrary policy

intervention. The heavy computation costs due to the large number of equilibria have limited

the range of empirical applications in the literature to static models with a small number of

players and choice alternatives. Our approach avoids computing the set of equilibria and

hence allows for a feasible characterization of the identified region for the equilibrium social

welfare; (ii) It presents the first non-asymptotic result on regret with strategic interactions.

It shows that, under regularity conditions, the regret introduced by sampling uncertainty

shrinks at the rate log(n)/
√
n; (iii) It offers a theoretical performance guarantee for the regret

associated with using a greedy algorithm to solve optimization problems involving systems

of simultaneous equations, a topic previously unexplored in the existing literature.

To demonstrate how our method can be implemented and quantitatively evaluate its per-
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formance, we apply it to the data of Banerjee et al. (2013). We design a policy to maximize

the take-up rate of microfinance products among households across various villages. For

each village in the sample, we estimate the utility function parameters. These estimates are

then used to assess the presence of strategic complementarity in each village. We find that

strategic complementarities are present in 16 out of the 43 villages. For these villages, we

construct an individualized treatment allocation rule using our greedy algorithm. Empirical

results revealed that the occurrence of multiple equilibria can vary depending on the alloca-

tion method used. We compare the welfare outcomes achieved by our algorithm with those

obtained by the NGO Bharatha Swamukti Samsthe (BSS). Our results indicate that, for all

16 villages exhibiting strategic complementarity, our method achieves notably higher welfare

levels, with improvements ranging from 20% to 270%, and an average improvement of 116%.

Additionally, the lower bound of welfare under our method consistently exceeds the maximal

welfare attained under the allocation rule used by BSS and a rule that assigns treatment at

random. These substantial welfare gains highlight the benefits of individualized targeting in

the presence of strategic interference, which demonstrates the efficacy of our approach in

optimizing resource allocation and improving social welfare.

3.1.1 Literature Review

This paper is related to several literatures in economics and econometrics, including strategic

interactions, statistical treatment rules, robust decision theory, robust mechanism design, and

greedy algorithms.

Pioneering contributions to the econometric aspects of game-theoretic models include

works by Jovanovic (1989) and Bresnahan and Reiss (1991), which explore the empirical

challenges associated with models that feature multiple equilibria. The recent literature on

the econometrics of strategic interactions includes simultaneous decision games with com-

plete information, such as Tamer (2003), Bajari et al. (2010a,b), De Paula et al. (2018),

Sheng (2020), and Chesher and Rosen (2020); simultaneous decision games with incom-
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plete information, such as de Paula and Tang (2012, 2020), Menzel (2016), and Ridder and

Sheng (2020); and sequential decision games: Aguirregabiria and Mira (2007, 2019), Mele

(2017), Leung (2019), and Christakis et al. (2020).

Focusing on a game with complete information, Tamer (2003) obtains bounds for struc-

tural parameters while remaining fully agnostic about the equilibrium selection mechanism.

Motivated by this, Sheng (2020) uses a sub-network approach to provide bounds for struc-

tural parameters in a network formation setting. Chesher and Rosen (2020) partially iden-

tifies structural parameters using the Generalized Instrumental Variable approach (Chesher

and Rosen, 2017). Bajari et al. (2010a) point identifies the parameters for a game with

incomplete information, along with providing a semi-parametric estimator. However, estima-

tion methods typically require observing repeated samples of the game, which may not be

feasible for social network games. Motivated by this, Leung (2015) studies a two-step maxi-

mum likelihood estimator in a large network setting, while Ridder and Sheng (2020) studies

a two-step GMM estimator in a similar setting. The paper adopts an existing estimator for

structural parameters and treats this as an intermediate step in estimating an optimal policy.

One important task in obtaining an optimal policy is predicting the equilibrium outcome

under counterfactual policies. In the strategic interaction literature, counterfactual analysis

has been studied among others by Jia (2008), Aguirregabiria and Mira (2010), and Canen

and Song (2020) under various assumptions on the equilibrium selection mechanism. Cilib-

erto and Tamer (2009) does not restrict the equilibrium selection rule but considers only

some candidate counterfactual policies. Additionally, Lee and Pakes (2009) investigates ATM

network games by enumerating all Nash equilibria and analyzing how different learning al-

gorithms select among them. None of these studies considers the aggregate equilibrium out-

come, which aggregates the equilibrium outcomes of each unit, under a counterfactual policy.

Here, we consider a social planner, and hence it is crucial to evaluate the aggregate social

welfare. Remaining fully agnostic about the equilibrium selection mechanism, we provide a

counterfactual analysis of the aggregate social welfare.
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Strategic interactions are closely related to social interaction models. These were in-

troduced by Manski (1993), which examines spillover effects through strategic interactions

using a linear social interaction model with unique equilibrium. Brock and Durlauf (2001) ex-

tends this model to a nonlinear setting and considers multiple equilibria. Goldsmith-Pinkham

and Imbens (2013) considers the endogeneity of the network formation process. De Paula

et al. (2024) recovers unknown network structure using a linear social interaction model.

This paper contributes to the growing literature on statistical treatment rules, which were

introduced into econometrics by Manski (2004) and Dehejia (2005). The recent literature in-

cludes Stoye (2009, 2012), Hirano and Porter (2009, 2020), Chamberlain (2011), Kitagawa

and Tetenov (2018), Ananth (2020b), Athey and Wager (2021), Mbakop and Tabord-Meehan

(2021), Kitagawa et al. (2021), Sun (2021), Munro et al. (2021), Christensen et al. (2022),

Adjaho and Christensen (2022), Kitagawa et al. (2022b), Kitagawa and Wang (2023a,b), Vi-

viano (2024), Fernandez et al. (2024), and Munro (2024). In contrast to the i.i.d. setting

considered in most of these papers, we consider a setting where the spillover effects of treat-

ment assignment are important. A small number of papers in the literature considers spillover

effects. These include Viviano (2024), Ananth (2020b), Munro et al. (2021), and Kitagawa

and Wang (2023a,b). Apart from Kitagawa and Wang (2023a), none of those papers con-

sider spillover effects introduced by strategic interaction or the related complications, such

as multiple equilibria.

Viviano (2024) and Ananth (2020b) focus on estimating direct and indirect treatment ef-

fects to derive optimal allocation policies based on data. We focus on the strategic interaction

setting where each unit’s behavior is influenced by the behaviors of nearby individuals within

a network. These interactions are naturally modeled using game theory (Jackson and Zenou,

2015), which we adopt in our analysis. In addition, using a game theoretical approach en-

ables us to evaluate social welfare directly through the individual’s utility and account for the

general equilibrium effects. Munro et al. (2021) focuses on a competitive equilibrium where

spillover effects are mediated through the equilibrium price. Their approach uses the mean-
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field limit to characterize the asymptotic behavior of treatment effects, focusing on settings

where a unique mean-field equilibrium price exists. Kitagawa and Wang (2023a) focuses on

a sequential decision game with a Markovian structure, which leads to a unique stationary

joint distribution of units’ decisions (Mele, 2017). This stationary distribution allows each

state to be revisited instead of converging to multiple distinct equilibria. As a consequence,

their stationary welfare differs from the equilibrium welfare that we consider here and we do

not require the existence of a potential function. Kitagawa and Wang (2023b) considers the

spillover effects from vaccination.

Although the source of uncertainty is different, our paper robustly addresses the incom-

pleteness introduced by multiple equilibria in a manner inspired by the robust decision theory

literature (see the recent survey by Chamberlain, 2020). Chamberlain (2000a,b) consider

decision-making when there is uncertainty due to a partially specified subjective distribution.

Their robust decision rule maximizes the risk function evaluated at the least-favourable dis-

tribution. Hansen and Sargent (2001, 2008) achieve robustness by working within a neigh-

borhood of a reference model and maximizing the minimum of expected utility over that

neighborhood. Manski (2003) faces a similar problem to us where some part of the model is

missing from the data, and obtains a robust identification region by incorporating the max-

imum and minimum value of the unobserved component. Giacomini and Kitagawa (2021)

applies the robust Bayes approach of Berger (1994) to a set-identified model, and shows

asymptotic equivalence between the identified set and the set of posterior means obtained

from using a multiple priors. See also Giacomini et al. (2021) and references therein. Chris-

tensen and Connault (2023) relaxes parametric assumptions about the distribution of latent

variables in a structural model. Their robust counterfactual set is obtained by maximizing

(minimizing) the counterfactual through the distribution of latent variables over a neighbor-

hood of the prespecified parametric distribution.

Finally, this paper is closely related to network games and mechanism design, as exempli-

fied by Morris (2000), Ballester et al. (2006), Galeotti et al. (2010), and Galeotti et al. (2020)
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for network games, and Mathevet (2010), Gonçalves and Furtado (2020), Fu et al. (2021),

Morris et al. (2024), and Brooks and Du (2024) for mechanism design. Network games ex-

plore how network characteristics influence behavior. Jackson et al. (2008) and Jackson and

Zenou (2015) provide comprehensive summaries. Galeotti et al. (2020) employs a principal

component approach to analyze how interventions that change characteristics impact out-

comes and develops strategies for optimal interventions within network games. However,

they assume a unique equilibrium, whereas this paper focuses on models with multiple equi-

libria. Following the same setting, Sun et al. (2023) examines optimal interventions that

alter network structure, while Kor and Zhou (2022) considers interventions that affect both

characteristics and network structure. Nonetheless, these studies differ from ours in terms of

utility specification, objective function, and the definition of the action space.

This paper can be viewed as a specific instance of mechanism design, where treatments

are allocated to incentivize units’ equilibrium behavior towards achieving desired objectives.

Closely related is Morris et al. (2024), which characterizes the set of outcomes achievable

from the smallest equilibrium, referred to as the smallest implementable outcome, in a su-

permodular game. Moreover, within a convex potential game, they show that the optimal out-

come—realized by implementing information to maximize the smallest equilibrium—results

in all players selecting the same action. While our implementation approach differs, the lower

bound of the set-identified social welfare in this paper is similar in concept to these smallest

implementable outcomes. However, it is more complex to characterize this set as the number

of players increases. Additionally, Morris et al. (2024) leaves open the question of which

implementation strategies are needed to achieve these outcomes, a gap this paper addresses.

Outline. The rest of this paper proceeds as follows: Section 3.2 introduces the game

setting and the solution concept. Section 3.3 discusses counterfactual analysis. Section 3.4

focuses on treatment allocation and implementation. Section 3.5 presents theoretical results

related to the implementation of our proposed method. We apply our proposed method to

the Indian micro- finance data, which is studied by Banerjee et al. (2013), and demonstrate
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its performance in Section 3.6. Section 3.7 extends our analysis to the complete information

setting. Section 3.8 concludes. All proofs and derivations are shown in Appendix A.2 to

Appendix A.5.

3.2 Model

3.2.1 Setup

Let N = {1, 2, ..., N} be the target population. Each unit i has a K-dimensional vector of

characteristics Xi observable to the researcher. Xi is assumed to have bounded support, and

we standardize the measurements of Xi to be nonnegative, such that Xi ∈ X ∈ RK
+ . Let

X = [X⊺
1 , ..., X

⊺
N ] ∈ XN be an N ×K matrix whose ith row contains the characteristics of unit

i, and let XN represent the set of all such possible matrices X . Let D = {D1, ..., DN} ∈ D =

{0, 1}N be a vector of binary treatment allocations. For i ∈ N , Di = 1 if unit i is treated and

Di = 0 if not.

The social network is represented by an N × N binary adjacency matrix, denoted by

G = {Gij}i,j∈N ∈ G = {0, 1}N×N . G is assumed to be fixed and exogenous, irrelevant to

treatment allocation. Gij = 1 indicates that units i and j are connected, while Gij = 0

indicates that they are not. Let Ni := {j : Gij ̸= 0} denote the set of neighbors of unit

i. N denotes the maximum number of edges connected to any unit in the network (i.e.,

N = maxi |Ni|), whileN denotes the minimum (i.e., N = mini |Ni|). We adopt the convention

of no self-links (i.e., Gii = 0 for all i ∈ N ). This framework can accommodate both directed

networks, where Gij and Gji can differ, and undirected networks, where Gij = Gji for all

i, j ∈ N . Additionally, we allow the strength of spillover effects to depend not only on the

adjacency matrix Gij but also on the covariates and treatment statuses of units i and j.

We consider a counterfactual equilibrium social welfare in the context of a large simul-

taneous decision game. We use the following notation for our simultaneous decision game.
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Yi ∈ Y = {0, 1} denotes unit i’s decision. The decision vector for all units is denoted by

Y = (Y1, ..., YN) ∈ YN , with y ∈ {0, 1}N representing the realized decision outcomes. Addi-

tionally, we define a vector of idiosyncratic shocks ε = {ε1, ..., εN}, where εi is the shock for

unit i ∈ N .

The game, denoted by Γ, comprises:

Players: A set of individuals that we label N , a social planner;

Payoffs: The preferences (utilities) of units are denoted by {Ui(y,X,D,G; θ)}Ni=1. Follow-

ing de Paula and Tang (2012) and Galeotti et al. (2020), we endow units with a quadratic

utility function

Ui(y,X,D,G; θ) = (αi − εi)yi +
∑
j ̸=i

βijyiyj.

where αi := αi(X,D,G) and βij := βij(X,D,G) are heterogeneous functions that capture

unit i’s individual utility and spillover utility. The utility of Yi = 0 is normalised to 0.

Given a networkG, covariatesX = (X1, ..., XN), and a treatment allocationD = (D1, ..., DN),

the coefficient αi on unit i’s choice depends upon their own covariates and treatment status

as well as those of all of their neighbors; the coefficient βij multiplying the quadratic term

yiyj depends upon their own covariates and treatment status as well as those of unit j. Since

the choice variable is binary, if αi and βij are unconstrained, then this specification of the

utility function is without loss of generality. We endow these utilities with certain properties,

which are specified in Section 3.2.3 and Section 3.4.1.

Information: The literature delineates two information environments: complete informa-

tion and incomplete information. In a complete information setting, players can observe all

characteristics of other units. This setting is studied in Tamer (2003), Ciliberto and Tamer

(2009), Bajari et al. (2010b) and Chesher and Rosen (2020). Since we consider a large net-

work setting, it may not be plausible for players to have perfect information about all the

other units (Ridder and Sheng, 2020). Therefore, in our headline setting, we follow Brock
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and Durlauf (2001), Aguirregabiria and Mira (2007), Bajari et al. (2010a), and de Paula and

Tang (2012), and consider an incomplete information setting. All units and the social plan-

ner are assumed to observe characteristics X and the network structure G, but the vector of

idiosyncratic shocks of units is assumed to be unobservable. The realization of εi is unit i’s

private information. All players are assumed to have a common belief about the distribution

of ε. Formally,

Assumption 12. The set of idiosyncratic shocks ε must satisfy the following conditions:

(i) The {εi}Ni=1 is i.i.d. with a known distribution Fε, which is common knowledge for all the

players;

(ii) The distribution of εi has a density fε, which is bounded above by a constant τ . In addition,

fε is continuously differentiable;

(iii) εi ⊥ X,G,D for all i ∈ N .

These assumptions are standard in the literature (de Paula and Tang, 2012; Leung, 2015;

Ridder and Sheng, 2020). The third assumption can be replaced by a conditional indepen-

dence assumption if we assume that Fε|X,D,G(·|X,D,G) is known.

Actions: At the beginning of the game, the social planner assigns treatment Di to each unit

i ∈ N to maximize the planner’s welfare:

WX,G(D) =
1

N

N∑
i=1

Eε

[
gi(Y,X,D,G)|X,G

]
, (3.1)

subject to the capacity constraint κ (i.e.,
∑N

i=1Di ≤ κ). The expectation in Eq.3.1 is taken

with respect to choices Y given the observed covariates X, network structure G, and the

treatment allocation rule D4. The function gi : YN×XN×D×G → R allows social welfare to
4With multiple equilibria and no assumption imposed on the equilibrium selection mechanism, the expec-

tation becomes a set in which each element is conditional on a specific equilibrium selection mechanism. This
concept will be further formalized in Section 3.2.2.
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deviate from the utilitarian welfare function, which corresponds to gi(·) = Ui(·). We explore

two common types of social welfare functions: Utilitarian welfare, and Engagement welfare.

Section 3.3 discusses each in detail.

After receiving their allocated treatment, units choose action Y simultaneously to maxi-

mize their own payoff given the realization of ε. With complete information unit i’s decision

rule would be:

Yi = 1
{
Ui(1, Y−i, X,D,G) ≥ 0

}
, ∀i ∈ N .

However, since unit i only has partial information about other units, the realization of Y−i

is not observed. Therefore, units make decisions that are best responses given their belief

about other units’ decisions given the public information and their own type. Formally, in the

incomplete information setting,

Yi = 1
{
Eε

[
Ui(1, Y−i, X,D,G)|X,D,G, εi

]
≥ 0

}
, ∀i ∈ N . (3.2)

with

Eε

[
Ui(1, Y−i, X,D,G)|X,D,G, εi

]
= αi +

∑
j ̸=i

βijEε

[
Yj|X,D,G, εi

]
− εi.

As ε is i.i.d. by Assumption 12, this can be simplified to:

Eε

[
Ui(1, Y−i, X,D,G)|X,D,G, εi

]
= αi +

∑
j ̸=i

βijEε

[
Yj|X,D,G

]
− εi. (3.3)

We have now established the game setting. To further elaborate, we introduce additional

notation. Consider the action set Y, defined as {0, 1}. This set is a totally ordered set,

endowed with the usual ordering relation ≤, characterized by reflexivity, antisymmetry, and

transitivity5. The action profile space YN , formed as a direct product of Y, also constitutes a

partially ordered set (Topkis, 1998, §Example 2.2.1). It is equipped with the product relation
5Reflexive: ≤ is reflexive if y ≤ y, for all y ∈ YN . Antisymmetric: ≤ is antisymmetric if y ≤ y′ and y′ ≤ y

implies y = y′. Transitive: if y ≤ y′ and y′ ≤ y′′ implies y ≤ y′′.
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≤, where for any y, y′ ∈ Y, we have y ≤ y′ if and only if yi ≤ y′i for all i ∈ N . Given that YN

is a partially ordered set, we can define a greatest and least element on it. A strategy profile y

is a greatest (least) element on YN if y ≥ y′ (y ≤ y′) for all y′ ∈ YN . In addition, The join of

any two elements y, y′ ∈ YN , written as y ∨ y′, is defined as inf{x ∈ YN : x ≥ y, x ≥ y′}. The

meet, denoted as y∧ y′, is symmetrically defined as: sup{x ∈ YN : x ≤ y, x ≤ y′}. In addition,

a partially ordered set is called a lattice if the join and meet of any pair of elements exist. A

lattice is a complete lattice if it contains the supremum and infimum of any subsets of it.

3.2.2 Equilibrium

As the game introduced in the previous section features incomplete information, it is a

Bayesian game (Harsanyi, 1967), and its Nash equilibria are Bayesian Nash equilibria

(BNE). We use the pure strategy BNE solution concept. This is defined as:

Definition 3.2.1. (Pure Strategy Bayesian Nash equilibrium) Let Y be the set of all possible

decision rules {yi(εi)}Ni=1, where yi(εi) : R→ {0, 1} specifies unit i’s choice for each realization

of their private information εi. A pure strategy BNE of game Γ is a strategy profile (y∗1, ..., y
∗
N)

such that, for every i ∈ N ,

Eε[Ui(y
∗
i , y

∗
−i)|X,D,G, εi] ≥ Eε[Ui(y

′
i, y

∗
−i)|X,D,G, εi],

for all y′i ∈ Y, where Eε[Ui(·)|X,D,G, εi] is defined as in Eq.3.3.

Following Bajari et al. (2010a), we represent the Bayesian Nash equilibrium in the con-

ditional choice probability space. Denote the conditional choice probability (CCP) profile as

σ(X,D,G) = {σi(X,D,G)}Ni=1. An element of the CCP profile:

σi(X,D,G) := Eε[Yi|X,D,G]. (3.4)

139



Combining the specification of Yi (Eq.3.2 and Eq.3.3) with Eq.3.4, we have:

σi(X,D,G) =

∫
1
{
αi +

∑
j ̸=i

βijσj(X,D,G) ≥ εi

}
dFε. (3.5)

Let Ω be a mapping from [0, 1]N to [0, 1]N that collects Eq.3.5 for all units. This is a non-linear

simultaneous equation system. An equilibrium CCP profile σ∗(X,D,G) is a fixed point of this

simultaneous equation system:

σ∗(X,D,G) = Ω(σ∗(X,D,G)). (3.6)

This is one representation of the Bayesian Nash equilibrium. Alternatively, given an equilib-

rium CCP profile σ∗, a fixed X,D,G, and a realization of ε, we can define a Bayesian Nash

equilibrium {y∗i }Ni=1 as:

y∗i = 1
{
αi +

∑
j ̸=i

βijσ
∗
j (X,D,G) ≥ εi

}
, ∀i ∈ N . (3.7)

As the right hand side of Eq.3.5 is equal to Fε(αi+
∑

j ̸=i βijσj), the existence of a fixed point is

guaranteed by the Brouwer fixed-point theorem (Brouwer, 1911). As noted in Echenique and

Komunjer (2009), this type of simultaneous equation system can have multiple fixed points.

In particular, games with strategic complementarity, as in our setting, tend to have a large

number of equilibria (Takahashi, 2008). Let Σ := {σ : σ = Ω(σ)} denote the set of equilibria.

Any equilibrium outcome in this set is a reasonable prediction. In other words, for a given

X,D,G and θ, the model predicts a set of equilibrium outcomes σ∗. If we do not assume

an equilibrium selection mechanism, this multiplicity introduces incompleteness (Jovanovic,

1989). Incompleteness dramatically increases the difficulty of counterfactual analysis since

the model can only identify a set of equilibrium CCP profiles Σ with a newly implemented

policy (i.e., a new treatment allocation rule D).

With a newly implemented policy, the realized equilibrium depends on an equilibrium
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selection mechanism. Let ξ : Σ → [0, 1] denote the probability distribution over equilibria,

and let ∆(Σ) := {ξ :
∑

σ∗∈Σ ξ(σ
∗) = 1} denote the set of all the probability distributions. The

equilibrium selection mechanism is a mapping from the public information (i.e., X,D,G) to

one particular element of ∆(Σ). Formally:

Definition 3.2.2. (Equilibrium Selection Mechanism) The equilibrium selection mecha-

nism is denoted by λ(·|X,D,G) and the equilibrium selection mechanism space is defined

as:

Λ := {λ : XN ×D × G → ∆(Σ)}.

If the equilibrium selection mechanism is observable, the conditional choice probability

becomes complete by conditioning on λ. Since

Pr[Yi = 1|X,D,G, λ] =
∑
σ∗∈Σ

λ(σ∗|X,D,G)σ∗
i , ∀i ∈ N . (3.8)

There are two main difficulties in characterizing the equilibrium outcome under a newly

implemented policy. First, the equilibrium selection mechanism is not directly observable.

The identification of an equilibrium selection mechanism from data is studied in Bajari et al.

(2010b) and Aguirregabiria and Mira (2019), among others. This is useful in the identifica-

tion of parameters, since parameter values are independent of λ. For counterfactual analysis,

however, there is no guarantee that the equilibrium selection mechanism remains fixed when

X,D,G changes. The second difficulty is that the cardinality of Σ increases dramatically

with the number of units in the network. Hence, it is not feasible to evaluate the summation

in Eq.3.8. To improve the tractability of counterfactual analysis, we focus on a game with

strategic complementarity.
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3.2.3 Complementarity and Supermodular Games

Strategic complementarity in games implies that, given an ordering of strategies, a player’s

choice of a higher action incentivizes other players to similarly choose a higher action (Bu-

low et al., 1985). In economics, complementarity is an important and empirically relevant

concept (Molinari and Rosen, 2008). It has many policy applications, such as price setting (Al-

varez et al., 2022), house prices (Guren, 2018), technology adoption (Alvarez et al., 2023),

as well as the additional examples given in Molinari and Rosen (2008), Lazzati (2015), and

Graham and Pelican (2023). The theoretical literature has established that games with strate-

gic complementarities have robust dynamic stability properties (Milgrom and Roberts, 1991;

Milgrom and Shannon, 1994). This means they converge to the set of Nash equilibria even

with simple learning dynamics (Fudenberg and Levine, 1998; Chen and Gazzale, 2004).

Topkis (1998) shows that strategic complementarity and supermodularity are equivalent in

finite strategy games. The mathematical property supermodularity simplifies analysis. It cap-

tures the idea of increasing returns between the choice variables. Therefore, to analyze the

Bayesian Nash equilibrium of our game, we characterize it as a supermodular game. The

definition of supermodular game is:

Definition 3.2.3. Supermodular Game (Milgrom and Roberts, 1990): A game Γ is a su-

permodular game if, for each i ∈ N :

(i) Strategy set Y is a complete lattice;

(ii) Payoff Ui : YN → R is order upper semi-continuous in yi (for fixed y−i) and order

continuous in y−i (for fixed yi), and has a finite upper bound;

(iii) Payoff Ui is supermodular in yi (for a fixed y−i);

(iv) Payoff Ui has increasing differences in yi and y−i.

The definitions of a supermodular function and increasing differences are:
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Definition 3.2.4. Supermodular Function: A function U : YN → R is supermodular on YN

if for all y, y′ ∈ YN :

U(y) + U(y′) ≤ U(y ∧ y′) + U(y ∨ y′).

Definition 3.2.5. Increasing Differences: A function U : YN → R has increasing differences

if for all y−i < y′−i and yi < y′i:

U(yi, y
′
−i)− U(yi, y−i) ≤ U(y′i, y

′
−i)− U(y′i, y−i).

Topkis (1998, §Chapter 2.6.1) shows that, for a real valued utility function, increasing

differences is equivalent to complementarity between units’ decisions. Given the definition of

a supermodular game above, Ui is a supermodular function on YN if and only if Ui exhibits

increasing differences on YN (Topkis, 1998, §Theorem 2.6.1; §Corollary 2.6.1). Therefore,

we have equivalence between complementarity and supermodularity in our game. Topkis’s

characterization theorem (Topkis, 1978, §Section 3) shows that

∂2Ui(y)

∂yi∂yj
≥ 0, ∀j ̸= i

is a necessary and sufficient condition to guarantee a utility function is a supermodular func-

tion on YN . In our specification, this is equivalent to βij ≥ 0 for j ̸= i.

Assuming that βij ≥ 0 for j ̸= i, our game is a supermodular game since {0, 1}N is a

complete lattice and our utility function is continuous. Tarski’s fixed point theorem (Tarski,

1955, §Theorem 1) then guarantees the existence of pure strategy Bayesian Nash equilibrium

y∗. In particular, there always exists a least BNE y∗ and a greatest BNE y∗ (Milgrom and

Roberts, 1990, §Theorem 5). Tarski’s fixed point theorem can be applied to the conditional

choice probability space instead of the strategy profile space to obtain an equivalent result.

[0, 1]N is also a complete lattice, and Ω : [0, 1]N → [0, 1]N in Eq.3.6 is an increasing function

given βij ≥ 0. Therefore, we have a maximal equilibrium CCP profile σ∗ and a minimal
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equilibrium CCP profile σ∗. In section 3.3, we show how strategic complementarity simplifies

counterfactual analysis.

3.3 Counterfactual Analysis for the Target Population

The goal of this paper is to obtain a treatment allocation that maximizes the equilibrium social

welfare of the target population. To achieve this, we first need to characterize the counter-

factual equilibrium social welfare if we implement a policy in the target population, which

may have a different network structure to the training sample. As the equilibrium selection

mechanism is unobservable, the literature typically obtains a point-identified prediction for

welfare by assuming how counterfactual policies affect the equilibrium selection mechanism.

For example, Jia (2008) assumes that a specific equilibrium is always played, Aguirregabiria

and Mira (2010) assumes the equilibrium remains the same after intervention, and Canen

and Song (2020) assumes that the equilibrium selection mechanism is invariant to the inter-

vention. However, it is impossible to test the appropriateness of these assumptions given the

existing method. In contrast, following Tamer (2003), we are fully agnostic about how policy

changes the equilibrium selection mechanism. In other words, the question we focus on is: If

we are agnostic about the equilibrium selection mechanism, what counterfactual outcome does

the model predict?

Recall that our social welfare function is:

WX,G(D) =
1

N

N∑
i=1

Eε

[
gi(Y,X,D,G)|X,G

]
. (3.9)

With multiple equilibria and no assumption imposed on the equilibrium selection mechanism,

our model provides a set-valued equilibrium probability distribution fot Y conditional on

X,D,G. Therefore, the expectation in Eq.3.9 is also a set, with each element an expectation
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conditional on a particular λ. Formally,

WX,G(D) = {WX,G,λ(D) : λ ∈ Λ},

where

WX,G,λ(D) =
1

N

N∑
i=1

Eε

[
gi(Y,X,D,G)|X,G, λ

]
.

This paper considers counterfactual analysis for two standard social welfare functions.

• Engagement Welfare: In certain scenarios, a social planner may prioritize goals other

than maximizing utilitarian welfare. For instance, in tax auditing, the planner might

individualize the assignment of tax audits. Generally, units prefer not to pay taxes,

so if maximizing utilitarian welfare were the sole objective, no one would be audited.

In this case, a more appropriate target might be the average rate of tax compliance6.

Engagement welfare is defined as

WX,G,λ(D) =
1

N

N∑
i=1

Pr(Yi = 1|X,D,G, λ).

• Utilitarian Welfare at Equilibrium: Utilitarian welfare at equilibrium is the average

of the expected utilities of individuals when the system is in equilibrium. This measure

is often targeted in policy interventions as it comprehensively reflects overall societal

benefit (e.g., Brock and Durlauf, 2001; Galeotti et al., 2020). An example where the

utilitarian welfare target is used is job training programs. Here policymakers allocate

limited training resources to unemployed workers to assist them in finding new jobs

(Bloom et al., 1997). In such scenarios, social welfare is defined as:

WX,G,λ(D) =
1

N

N∑
i=1

Eε

[
Ui(Y,X,D,G) + εiYi|X,D,G, λ

]
, (3.10)

6This concept of welfare can be broadened to include situations where the policymaker aims to influence
outcomes indirectly affected by individual decisions, such as total tax revenue, which depends on individuals’
decisions to pay taxes.
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which only depends on the expectation of the deterministic component in the utility

function7. Plugging in our utility function specification, we have:

WX,G,λ(D) =
1

N

N∑
i=1

αi Pr(Yi = 1|X,G, λ) + 1

N

N∑
i=1

∑
j ̸=i

βij Pr(YiYj = 1|X,D,G, λ).

Consider the engagement welfare function. We define bounds for equilibrium welfare, given

covariates X, network G and an arbitrary treatment allocation rule D, as:

WX,G,λ(D) ∈
[
inf
λ∈Λ

WX,G,λ(D), sup
λ∈Λ

WX,G,λ(D)
]
.

Accordingly, let λ be the least-favorable equilibrium selection mechanism and λ the most-

favorable equilibrium selection mechanism :

λ := arg inf
λ∈Λ

WX,G,λ(D), λ := arg sup
λ∈Λ

WX,G,λ(D).

In general it is not possible to solve for these two extreme points. There are two ob-

stacles. First, the number of equilibria increases rapidly with the number of units in the

network. Evaluating the expectation with respect to the joint distribution of Y thus becomes

infeasible. Second, the space of the equilibrium selection mechanisms Λ may be infinite. This

complicates any search for the infimum and supremum λ across Λ.

In the existing literature, counterfactual analysis (Ciliberto and Tamer, 2009) often fo-

cuses instead on the conditional choice probability (CCP). With no assumptions on the equi-

librium selection mechanism, the bounds of the counterfactual CCP are:

Pr(Yi = 1|X,D,G, λ) ∈
[
inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ), sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ)
]
.

These bounds can be computed using off-the-shelf methods (e.g., Sheng (2020) for complete

7Brock and Durlauf (2001, Section 4) show that introducing a shock term in Eq.3.10 would render the
model analytically intractable.
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information settings). However, exact bounds of social welfare cannot be directly obtained

from the bounds of the CCP. This is because:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≤
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ), (3.11)

and

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≥
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ). (3.12)

That is, the lower (and upper) bound of unit i’s conditional choice probability may be ob-

tained under a different equilibrium selection mechanism to the bound for some unit j ̸= i.

Therefore, bounds for social welfare obtained by summing the bounds on the CCP will gen-

erally be loose. However, we show that Eq.3.11 and Eq.3.12 hold with equality in a super-

modular game. Formally,

Theorem 3.3.1. (Engagement Welfare) For a supermodular game, the least favorable equilib-

rium selection rule λ and the most favorable equilibrium selection rule λ are:

λ := δσ∗ , λ := δσ∗ ,

where δσ is the Dirac measure on the set of equilibria Σ. In addition, the following conditions

are satisfied:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).

A proof of Theorem 3.3.1 is provided in Appendix A.3.1. This new result characterizes

the most and least favorable equilibrium selection rules for aggregate social welfare. This

approach enables us to leverage Tarski’s fixed point theorem, which significantly reduces
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the computational burden by obviating the need to calculate all possible Nash equilibria.

Furthermore, it establishes equivalence between the identified set of aggregate social welfare

and the aggregation of identified sets of conditional choice probabilities, concepts studied in

Sheng (2020) and Gu et al. (2022). This equivalence is not guaranteed to hold in the absence

of complementarity. When there are values of ε with unordered multiple equilibria, such as

(Y1 = 1, Y2 = 0) and (Y1 = 0, Y2 = 1) in the two-unit case, the process of identifying the

least and most favorable λ is significantly more complicated. Intuitively, the bounds coincide

because strategic complementarity guarantees the existence of a least BNE and a greatest

BNE for all the values of ε. Since the social welfare function is a monotonically increasing

function of σ, it achieves its lower bound at the least equilibrium σ∗ and its upper bound at the

greatest equilibria σ∗. By definition, the conditional choice probability Pr(Yi = 1|X,D,G, λ)

also achieves its lower bound under σ∗ and its upper bound under σ∗ . The same argument

can be applied to utilitarian social welfare to obtain the following corollary.

Corollary 3.3.1. (Utilitarian Welfare at Equilibrium) Under Assumption 12, given the spec-

ification of our utility function, the predicted set of the expected utilitarian welfare under a

counterfactual policy D is given as:

WX,G,λ(D) ∈
[ 1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j ,

1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j

]
,

where

f(αi) =


Pr(Yi = 1|X,D,G, λ) if αi > 0

Pr(Yi = 1|X,D,G, λ) if αi ≤ 0.

A proof of Corollary 3.3.1 is provided in Appendix A.2.1. This result implies that it is

sufficient to compute the minimal and maximal equilibrium CCP profile for the utilitarian

welfare in the incomplete information setting. This result does not hold in the complete

information setting, where we provide an alternative approach to compute the bounds of the

identified set.
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Remark 3.3.1. The infimum and supremum of the planner’s welfare, calculated over the

equilibrium selection mechanism, are equivalent to the Choquet integral (see Denneberg,

1994 and Gilboa, 2009) of the planner’s welfare with respect to the capacity and its con-

jugate. The capacity v and its conjugate v∗ are non-additive probability measures defined

on the set of equilibrium Σ. In our case, Pr(Yi = 1|X,D,G, λ) is equivalent to Choquet

integration with respect to the capacity v(A) where A = {y∗ : y∗i = 1}. Analogously,

Pr(Yi = 1|X,D,G, λ) is equivalent to Choquet integration with respect to the conjugate v∗(A)

where A = {y∗ : y∗i = 1}. We refer to Kaido and Zhang (2023) for the definition of capacity

and a more detailed discussion on this topic. Despite the complexity typically associated with

Choquet integration, which often requires approximate solution by simulation methods, our

method provides a closed-form expression for the identified set which can be solved without

numerical error. Moreover, the applications of Choquet integration extend to robust Bayesian

analysis to manage multiple priors (see Chamberlain (2000a) and Giacomini et al. (2021)),

which is analogous to a setting with multiple equilibria.

The details of the computation of the maximal and minimal equilibrium conditional choice

probabilities (CCPs) are discussed in Section 3.4.1. The arguments above apply not only to

the counterfactual analysis of treatment allocation policies but also to policy interventions

that alter covariates or the network structure.

3.4 Treatment Allocation

Our model allows for multiple equilibria, but can only predict a set of possible equilibrium

outcomes, denoted as WX,G(D). Consequently, the expected value calculation that deter-

mines social welfare is not well-defined without specifying the equilibrium selection mecha-

nism. Drawing on game theory (Morris et al., 2024) and robust decision theory (Chamber-

lain, 2000a), we apply the maximin welfare criterion to select a treatment allocation rule.

This approach involves a social planner opting for choices that lead to higher welfare while
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preparing for the worst-case scenario of the least favorable equilibrium. Essentially, the plan-

ner anticipates the minimal equilibrium will be realized. For example, Segal (2003, Section

4.1.3) discusses scenarios in contracting where the worst-case equilibrium corresponds to the

Pareto-efficient outcome for the parties involved. Moreover, in settings where action 0 is the

default, games exhibiting strategic complementarity tend to converge toward their minimal

equilibrium.

The planner chooses D to maximise welfare under the assumption that the minimal equi-

librium, conditional on the chosen D, will be realized. We denote the set of feasible alloca-

tions by Dκ := {D ∈ D :
∑N

i=1Di ≤ κ}. Formally:

D∗ = arg max
D∈Dκ

min
λ∈Λ

WX,G,λ(D). (3.13)

Recall that, by Theorem 3.3.1, the lower bound of equilibrium social welfare equals the sum-

mation of individual welfares. Thus, the maximin welfare optimisation problem simplifies

to:

max
D∈Dκ

WX,G,λ(D),

whereWX,G,λ(D) is the social welfare function evaluated at the minimal equilibrium. This for-

mulation converts the maximin welfare problem into a straightforward maximization prob-

lem, providing a clear framework for solving the optimal treatment allocation problem.

3.4.1 Implementation

Identification

The preceding discussion has assumed that true parameter values are observed. To imple-

ment our proposed method, we first describe the identification of structural parameters using

a training sample . Details on the estimation procedure are provided in Section 3.4.1.
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The discussion of counterfactual analysis in Section 3.3 makes no assumptions about the

functional form of parameters {αi}i∈N and {βij}i,j∈N . However, observable data is limited

to units’ choices, covariates X, the network structure G, and a predetermined treatment

allocation D. In practice, we are restricted by what it is possible to identify given this data.

For identification, we follow Bajari et al. (2010a) and adopt the inverse-CDF procedure8.

Let εn be the private information in the training data, which is distinct from ε in the tar-

get population. Recall from Eq.3.7 that, given an equilibrium conditional choice probability

profile in the training data σdata, unit i chooses their actions according to the decision rule

Y n
i = 1

{
αi +

∑
j ̸=i

βijσ
data
j ≥ εni

}
, ∀i ∈ N .

The equilibrium CCP profile is thus:

σdata
i =

∫
1
{
εni ≤ αi +

∑
j ̸=i

βijσ
data
j

}
dFεn = Fεn

[
αi +

∑
j ̸=i

βijσ
data
j

]
. (3.14)

Taking the inverse of the CDF of ε on both sides in Eq.3.14 yields:

F−1
εn (σdata

i ) = αi +
∑
j ̸=i

βijσ
data
j . (3.15)

Even assuming that the equilibrium CCP profile in the training data is observable, identifying

all the parameters in Eq.3.15 remains challenging. Determining all utility parameters in-

volves solving for N ×N unknown parameters on the right-hand side of the above equation.

However, the left-hand side of Eq.3.15, only provides information about N scalars. Given

these limitations, we define our utility function as follows to ensure identifiability and allow

8This approach builds on Hotz and Miller (1993) and Aguirregabiria and Mira (2007).
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for the analysis of general treatment effects:

Ui(y,X,D,G) = yi(

αi︷ ︸︸ ︷
θ0 + θ1Di +X⊺

i θ2 +X⊺
i θ3Di +

1

|Ni|
∑
j ̸=i

θ4mijGijDj −εi)

+
∑
j ̸=i

1

|Ni|
(θ5 + θ6DiDj)mijGij︸ ︷︷ ︸

βij

yiyj,

(3.16)

where mij = m(Xi, Xj) is a (bounded) real-valued function of personal characteristics. mij

measures the distance between unit i’s characteristics and unit j’s characteristics; the spillover

effect is weighted by how similar two units appear. The utility that unit i derives from an

action is the sum of the net benefits that they accrue from their own actions and from those

of their neighbors. We assume that a unit’s utility is only affected by the actions of their direct

neighbors, not one-link-away contacts. The payoff of action Yi = 1 has six components. When

unit i chooses action Yi = 1, they receive utility θ0 irrespective of their allocated treatment.

They also receive additional utility θ1Di depending upon their own treatment status. Their

utility also includes a heterogeneous component X⊺
i (θ2 + θ3Di), which depends upon their

characteristics Xi. Next, there is a spillover effect from the action of unit j. If unit j is a

neighbor of unit i that receives treatment, then this provides θ4mij additional utility to unit

i. The fifth and sixth components represent strategic complementarity. If unit j is a neighbor

of unit i and selects Yj = 1, then unit i’s payoff is increased by θ5mij The final component

corresponds to choice spillovers between neighbors who receive treatment. If both unit i and

unit j receive treatment and both choose action 1, unit i receives additional utility θ6mij.

Accordingly, the structural parameters θ are uniquely determined by the conditional choice

probabilities in the training sample, thus identifying the payoff function. This discussion pro-

vides only an informal overview of the identification process; a formal proof is available in

Bajari et al. (2010a).
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Estimation

For estimation, we employ the two-step maximum likelihood estimation procedure of Leung

(2015). The first step involves estimating the equilibrium conditional choice probability from

the training data. In the second step, structural parameters are estimated by maximizing

the likelihood function given the estimated CCP profiles. To distinguish the training data

from the target population, we denote covariates as X = {Xi}ni=1, the treatment allocation

as D = {Di}ni=1, decisions as Y = {Yi}ni=1, and the network structure as G = {Gij}ni,j=1. In

addition, let S = (X,D,G) .

Let {σdata
i }Ni=1 be the CCP in the training data. Given that the training dataset contains

only a single large network, two necessary conditions on the training data are required to

estimate the conditional choice probability: symmetric equilibrium9 (Leung, 2015) and net-

work decaying dependence condition (Xu, 2018). In general, each unit’s choice depends on all

public information across the network G (i.e., X and D of all units), although direct payoffs

may depend only on immediate spillovers. Under the network decaying dependence condition,

it is sufficient to consider only interactions within a relatively small distance.

Several estimation approaches have been proposed for CCP. These including the empirical

frequency estimator (Hotz and Miller, 1993), sieve estimation (Bajari et al., 2010a), flexible

logit estimation (Arcidiacono and Miller, 2011), and logit Lasso estimation (Chernozhukov

et al., 2022). Here we leave aside the question of the most suitable procedure. Instead, we

assume the existence of an estimator that satisfies the following statistical property:

Assumption 13. (Sub-Gaussian CCP Estimator) There exists a positive constant Cσ such that

for every t ≥ 0, we have

Pr
(
|σ̂data

i − σdata
i | ≥ t

∣∣S, σdata
)
≤ 2 exp

(
− nt2/C2

σ

)
, ∀i = 1, ..., n.

9A symmetric equilibrium implies that two units will exhibit identical conditional choice probabilities if they
receive the same treatment, share identical covariates, and have comparable neighbors, specifically in terms of
the neighbors’ treatments and covariates.
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This assumption is satisfied by the empirical frequency estimator (Leung, 2015; Ridder

and Sheng, 2020) and logit/probit estimation10. The ultimate goal is to choose θ̂ that max-

imizes the likelihood function. As σdata is unobserved, we replace σdata in the likelihood

function with σ̂data and estimate θ by maximizing the quasi-likelihood function Q̂n(σ̂
data,θ).

Q̂n(σ̂
data,θ) =

1

n

n∑
i=1

Yi log
(
Fε(Ẑ

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Ẑ

⊺
i θ)

)
,

where

Ẑi =
(
1,Di,X

⊺
i ,X

⊺
iDi,

1

|Ni|
∑
j ̸=i

mijGijDj,
1

|Ni|
∑
j ̸=i

mijGijσ̂
data
j ,

1

|Ni|
∑
j ̸=i

mijGijσ̂jDiDj

)⊺
. (3.17)

In addition, Zi denotes the vector of regressors that would be obtained if we replaced σ̂data
i

in Ẑi with the true conditional choice probability σdata
i .

Computation of Equilibria

After obtaining estimated parameters, we compute the set of equilibrium social welfare for

given covariates X, network structure G, and a treatment allocation D in the target pop-

ulation. The lower bound and upper bound of this set are: Pr(Yi = 1|X,D,G, λ; θ̂) and

Pr(Yi = 1|X,D,G, λ; θ̂) for all unit i ∈ N . We first rewrite these two conditional probabilities

as:

Pr(Yi = 1|X,D,G, λ; θ̂) =
∫
1
{
α̂i +

∑
j ̸=i

β̂ij Pr(Yj = 1|X,D,G, λ; θ̂) ≥ εi

}
dFε,

Pr(Yi = 1|X,D,G, λ; θ̂) =
∫
1
{
α̂i +

∑
j ̸=i

β̂ij Pr(Yj = 1|X,D,G, λ; θ̂) ≥ εi

}
dFε. (3.18)

10By Hoeffding’s inequality, the frequency estimator easily satisfies the Assumption 13. The probit/logit
estimator satisfies the Assumption 13 by the same argument as the second-stage MLE estimator in Section 3.5.
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From Theorem 3.3.1, Pr(Yi = 1|X,D,G, λ) achieves its upper (lower) bound when the equi-

librium is σ∗ (σ∗) for all i ∈ N . Therefore,

Pr(Yi = 1|X,D,G, λ; θ̂) = ˆ̄σ∗
i , ∀i ∈ N ,

Pr(Yi = 1|X,D,G, λ; θ̂) = σ̂∗
i , ∀i ∈ N ,

where ˆ̄σ∗
i and σ̂∗

i represent the estimators for the maximal and minimal equilibria, respec-

tively. Hence, we need only compute the least and greatest equilibrium CCP profile. Topkis

(1979) provides an easily implemented algorithm that is guaranteed to converge to the least

and greatest equilibrium point of a supermodular game. Hold X,D,G fixed. To obtain the

greatest fixed point σ∗, begin with σ0 = {1, ..., 1}. Define a sequence {σt}Tt=0 : σt+1 = Ω(σt).

By construction, σ0 ≥ Ω(σ0). Since Ω(·) is an increasing function, Ω(σ0) ≥ Ω(σ1). Therefore,

σ0 ≥ σ1 ≥ ... ≥ σT . Suppose the iteration convergences on the M -th step. Then σM is the

greatest equilibrium since, for all the other σ∗, σM = ΩM(σ0) ≥ ΩM(σ∗) = σ∗.

With a symmetric argument, we can obtain the least equilibrium CCP profile. Here we

begin with σ0 = {0, ..., 0}. Define a sequence {σt}Tt=0 : σt+1 = Ω(σt). By construction, we

have σ0 ≤ Ω(σ0). Again, Ω(σ0) ≤ Ω(σ1). Therefore, σ0 ≤ σ1 ≤ ... ≤ σT . Suppose the iteration

convergences on the M -th step. Then σM is the least equilibrium since, for all the other σ∗,

σM = ΩM(σ0) ≤ ΩM(σ∗) = σ∗.

Greedy Algorithm

The previous sections describe the estimation of parameters and computation of the least

equilibrium CCP profile. In this section, we propose an algorithm to allocate treatment in a

manner that maximizes the worst-case social welfare given the estimated parameters. Define

the empirical welfare function to be the welfare function with estimated structural parame-

ters:

W n
X,G,λ(D) = WX,G,λ(D; θ̂).
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We seek to maximize the empirical welfare evaluated at the minimal equilibrium:

D̃ = arg max
D∈Dκ

W n
X,G,λ(D) = arg max

D∈Dκ

W n
X,G,σ∗(D). (3.19)

As shown in Eq.3.18, σ∗ is a solution to a non-linear simultaneous equation system. The

conditional choice probability σ∗
i of unit i depends non-linearly on the conditional choice

probability σ∗
j and treatment assignment of their neighbors {Dj : j ∈ Ni}. Therefore, when

a treatment is assigned to one unit, it not only influences their behavior but also leads to

spillover effects through the network. Hence, Eq.3.19 is a complicated combinatorial op-

timization problem. We propose a greedy algorithm11 (Algorithm 5) to solve this problem

heuristically.

Intuitively, our greedy algorithm assigns treatment to the unit that contributes most to

the welfare objective, and repeats this until a capacity constraint binds. Specifically, in each

round, Algorithm 5 computes the marginal gain of receiving treatment for each untreated

unit, evaluated at the least equilibrium CCP profile. We refer to the unit whose treatment

induces the largest increase in the worst-case welfare as the most influential unit for that

round.
11A greedy algorithm is a heuristic approach used in optimization problems; it makes a series of choices that

appear to offer the most immediate benefit, building a solution step by step to achieve locally optimal results.
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Algorithm 5: Maximizing Over Treatment Allocation Rules

Input: adjacency matrix G, covariates X, parameters θ̂, capacity constraint κ
Output: Treatment allocation regime D̂G

Initialization: D ← 0N×1

if
∑N

i=1Di < κ then
for i with Di = 0 do

Di ← 1, denote new treatment vector as D′

σ∗(D′)← Computing the minimal equilibrium CCP profile given D′

∆i ← W n
X,G,σ∗(D′)−W n

X,G,σ∗(D)

end
i∗ ← argmaxi ∆i

Di∗ ← 1
else

D̂G ← D
end

3.5 Theoretical Analysis

In this section, we analyze the theoretical properties of our proposed treatment allocation

method. To simplify notation, denote the welfare of the targeted population WX,G,σ∗(D)

as W (D), and empirical welfare W n
X,G,σ∗(D) as Wn(D). In addition, let W (D∗) denote the

welfare of the target population at its global optimizer D∗, and W (D̂G) denote the welfare of

the target population welfare under the treatment allocation rule obtained by our proposed

method. Let the regret of the proposed treatment allocation policy be:

R(D̂G) := max
D∈D

W (D)−W (D̂G).

We evaluate the performance of our proposed treatment allocation method using expected

regret, which is defined as:

Eεn

[
R(D̂G)|S, σdata

]
:= max

D∈D
W (D)− Eεn

[
W (D̂G)|S, σdata

]
,
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where the expectation Eεn [·] is taken with respect to the uncertainty in the training data12

conditional on the observed covariates X, treatment allocation D, network G, and equilibrium

σdata. This is because the randomness in our proposed method primarily arises from utiliz-

ing the estimated parameters, which involve only the training data. This criterion captures

the average welfare loss when implementing estimated policy D̂G relative to the maximum

feasible population welfare. Recall that Wn(D̃) is the maximum for empirical welfare. We

decompose regret into (eight terms):

W (D∗)−W (D̂G) = W (D∗)−Wn(D
∗) +Wn(D

∗)−Wn(D̃)

+Wn(D̃)−Wn(D̂G) +Wn(D̂G)−W (D̂G).

The first term measures the deviation arising from the use of the empirical social welfare

function. This term is bounded by:

W (D∗)−Wn(D
∗) ≤ sup

D∈D
|Wn(D)−W (D)|.

The second term measures the performance of the population welfare maximizer in the em-

pirical social welfare function. This term is bounded by:

Wn(D
∗)−Wn(D̃) ≤ 0.

The third term measures the loss caused by using a greedy algorithm to solve the optimization

problem. This is discussed in Section 3.5.3. The final term also measures regret introduced

by using the empirical social welfare function. This term is bounded by:

Wn(D̂G)−W (D̂G) ≤ sup
D∈D
|Wn(D)−W (D)|.

12In the incomplete information setting, the unobserved variables represent units’ private information. If
the units in the training data are the target population, this may coincide for the training data and the target
population. In this case, the expectation in the regret is taken with respect to the uncertainty in the target
population. All discussions in this section are otherwise unchanged.
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Combining all the above results, we conclude that expected regret is bounded by:

Eεn

[
R(D̂G)|S, σdata

]
≤ 2Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
+ Eεn

[
Wn(D̃)−Wn(D̂G)

∣∣∣S, σdata
]
.

(3.20)

In the remainder of this section, we provide a non-asymptotic upper bound for expected

regret.

3.5.1 Sampling Uncertainty

For illustrative purposes, this section focuses on engagement welfare. We begin by address-

ing the regret resulting from the use of estimates in place of true parameters in the payoff

function. This represents the sampling uncertainty of the proposed method. We impose the

following assumption on the parameter space:

Assumption 14. (Compactness) The parameter θ lies in a compact set Θ ⊆ Rdθ .

Assumption 14 is standard. We now proceed to characterize the sampling uncertainty

associated with using the empirical welfare function.

Lemma 3.5.1. Under Assumptions 12 and 14,

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1Eεn

[
∥θ̂ − θ0∥1

∣∣∣S, σdata
]
,

where C1 is a constant that depends on the distribution Fεn, and the supports of the parameter

space, the covariates space X , the network space G and the treatment allocation space D.

A proof of Lemma 3.5.1 is provided in Appendix A.2.2. Lemma 3.5.1 enables us to charac-

terize the regret of maximizing the empirical welfare through the sampling uncertainty of the

structural parameter estimators (i.e., Eεn
[
∥θ̂ − θ∥1

∣∣S, σdata
]
). As there is no closed-form ex-

pression for MLE θ̂ in our case, we study the sampling uncertainty of θ̂ through the sampling
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uncertainty of its associated empirical process

Eεn
[
|Gn(θ̂)−Gn(θ0)|

∣∣S, σdata
]
, (3.21)

where the empirical process Gn(θ) is defined as

Gn(θ) := M̂(θ)−M(θ),

M̂(θ) =
1

n

n∑
i=1

Yi log
(
Fε(Ẑ

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Ẑ

⊺
i θ)

)
,

and

M(θ) =
1

n

n∑
i=1

Eεn

[
Yi log

(
Fε(Z

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Z

⊺
i θ)

)∣∣∣S, σdata

]
.

Recall that Ẑi, as defined in Eq.3.17, serves as the regressor in our likelihood function. Since

we are using a quasi-likelihood ML estimator, the criterion function M̂(θ) is evaluated at the

estimated equilibrium in the data σ̂data. As a result, Eq.3.21 contains two sources of sampling

uncertainty: uncertainty from θ̂, and uncertainty from σ̂data. The difference between Gn(θ̂)

and Gn(θ0), is given by:

Gn(θ̂)−Gn(θ0) = M̂(θ̂)− M̂(θ0) +M(θ0)−M(θ̂). (3.22)

To study the relationship between the estimator and its associated empirical process, we start

with a second-order Taylor expansion with Lagrange remainder for both terms in Eq.3.22:

M̂(θ0)− M̂(θ̂) =
1

2
(θ̂ − θ0)⊺∇2

θM̂(θ́)(θ̂ − θ0), (3.23)

M(θ̂)−M(θ0) =
1

2
(θ̂ − θ0)⊺∇2

θM(θ̀)(θ̂ − θ0), (3.24)

for some θ́ ∈ Rdθ and θ̀ ∈ Rdθ on the segment from θ0 to θ̂. Let η0max denote the largest
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eigenvalue (in magnitude) of ∇2
θM̂(θ́), and η1max denote the largest eigenvalue of ∇2

θM(θ̀).

By Assumption 12 (ii), the Hessian matrix is symmetric. Therefore, by the Courant-Fischer

Theorem13, we can characterize the relationship between the parameter sampling uncertainty

and the deviation of the criterion function through:

M̂(θ0)− M̂(θ̂) ≤ 1

2
η0max∥θ̂ − θ0∥22. (3.25)

M(θ̂)−M(θ0) ≤
1

2
η1max∥θ̂ − θ0∥22. (3.26)

Combining Eq.3.22 with Eq.3.25 and Eq.3.26 yields

−(Gn(θ̂)−Gn(θ0)) ≤
1

2
(η0max + η1max)∥θ̂ − θ0∥22. (3.27)

Applying the mean value Theorem to the left-hand side of Eq.3.27, we have

Gn(θ̂)−Gn(θ0) = (θ̂ − θ0)⊺∇θGn(θ̃), (3.28)

for some θ̃ ∈ Rdθ on the segment from θ0 to θ̂. Since θ̂ is the maximizer of M̂(·) and

θ0 is the maximizer of M(·), Eq.3.28 must be positive given the definition of Gn. By the

Cauchy–Schwarz inequality,

Gn(θ̂)−Gn(θ0) = (θ̂ − θ0)⊺∇θGn(θ̃) = |(θ̂ − θ0)⊺∇θGn(θ̃)| ≤ ∥θ̂ − θ0∥2∥∇θGn(θ̃)∥2. (3.29)

Combining Eq.3.27 and Eq.3.29,

−∥θ̂ − θ0∥2∥∇θGn(θ̃)∥2 ≤
1

2
(η0max + η1max)∥θ̂ − θ0∥22.

Assuming θ̂, an MLE estimator, lies in the interior of the parameter space, the Hessian matrix

13The largest eigenvalue ηmax of a C × C symmetric matrix M is given by the maximum Rayleigh quotient
(i.e., ηmax = maxA∈RC\{0}

A⊺MA
A⊺A ).
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∇2
θM̂(θ́) is negative definite. Therefore, η0max is negative. In addition, as θ0 is the maximizer

of M(θ), η1max also must be negative. Hence,

∥θ̂ − θ0∥1 ≤ dθ∥θ̂ − θ0∥2 ≤ −
2dθ

η0max + η1max

∥∇θGn(θ̃)∥2

≤ − 2dθ
η0max + η1max

∥∇θGn(θ̃)∥1.
(3.30)

If η0max and η1max did not depend on the sample size n (i.e., if they were constant), we could

study the finite sample properties of ∥θ̂ − θ0∥1 through the finite sample properties of the

empirical process ∇θGn(θ̃). However, the Hessian matrix is a function that depends on the

sample, so η0max and η1max also depend on n. This prevents us from characterizing the finite

sample properties of our estimator.

To overcome this difficulty, we establish a uniform constant upper bound for the largest

eigenvalue of the Hessian matrices, which guarantees their strict negativity. We denote the

uniform constant upper bound for the largest eigenvalue as maximal largest eigenvlaue and

as smallest To obtain a over all the possible samples, we impose the following three assump-

tions:

Assumption 15. (Shape) Fε(x) satisfies the condition: F ′
ε(x)

2

Fε(x)−1
< F ′′

ε (x) <
F ′
ε(x)

2

Fε(x)
for all x ∈ R.

Assumption 16. (Full Rank) Let Z denote [Z1, ..., Zn] and Ẑ denote [Ẑ1, ..., Ẑn]. We assume

that the matrices Z and Ẑ each have full row rank.

Assumption 17. (Non-Zero Treatment) There exists a constant Cd > 0 such that 1
n

∑n
i=1Di ≥

Cd, ∀n ∈ Z+.

Assumption 15 imposes a regularity condition on the shape of the CDF function. The

following are two examples of common distributions that satisfy this assumption:

• Logistic Distribution: The cumulative distribution function of the Logistic distribu-

tion is: Fε(x) = 1
1+exp(−x)

. The corresponding probability density function is: F ′
ε(x) =
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exp(−x)
(1+exp(−x))2

. Finally, the second derivative of the CDF is: F ′′
ε (x) =

exp(−3x)−exp(−x)
(1+exp(−x))4

. There-

fore:

F ′
ε(x)

2

Fε(x)− 1
=
− exp(−x)− exp(−2x)

(1 + exp(−x))4
< F ′′

ε (x) <
exp(−3x) + exp(−2x)

(1 + exp(−x))4
=
F ′
ε(x)

2

Fε(x)
.

• Gaussian Distribution: Denote the Gaussian cumulative distribution function by Fε(x) =

Φ(x), its first derivative (the probability density function) by F ′
ε(x) = ϕ(x), and its sec-

ond derivative by F ′′
ε (x) = −xϕ(x). We aim to demonstrate that: F ′′

ε (x) <
F ′
ε(x)

2

Fε(x)
. Sub-

stituting the known forms of F ′
ε(x) and Fε(x), this inequality simplifies to: ϕ(x)

Φ(x)
> −x.

For x ≥ 0, this inequality is always satisfied. When x < 0, we require that: ϕ(−x)
Φ(−x)

> x

for all x > 0. As ϕ(x)
Φ(x)

is the inverse Mills’ ratio,

ϕ(−x)
Φ(−x)

=
ϕ(x)

1− Φ(x)
= E[X|X > x] > x,∀x > 0.

By employing a symmetric argument, we find that: F ′
ε(x)

2

Fε(x)−1
< F ′′

ε (x).

Assumption 17 guarantees that the average number of treated units in the training data is

non-zero for any network size. Building on Eq.3.30, the following Lemma uniformly charac-

terizes the relationship between the sampling uncertainty of θ̂ and the sampling uncertainty

inherent in the empirical process Gn(·). Formally:

Lemma 3.5.2. (Sampling Uncertainty) Under Assumption 12, 15, 16, and 17, we have

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2Eεn

[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
,

where C2 is a constant that depends on the distribution Fεn, and the dimension and supports of

the parameter space, the covariates space X , the network space G and the treatment allocation

space D.

Proof of Lemma 3.5.2 is provided in Appendix A.2.3, where we establish a uniform upper
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bound for the largest eigenvalues (i.e., η0max and η1max), termed the maximal largest eigen-

value. We show that this value is strictly negative and is encapsulated within the constant C2.

As C2 in Lemma 3.5.2 is a constant, characterising the concentration of the empirical process

∇θGn(θ̃) is sufficient. The next section does so.

3.5.2 Finite Sample Result

Recall we are using a two-step ML estimation procedure, so the first step of estimation in-

troduces additional sampling uncertainty through σ̂data. We incorporate these two layers of

sampling uncertainty in the following lemma:

Lemma 3.5.3. Under Assumption 12 to 16, we have

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤
C3 + C4

√
log(n)√

n
,

where C3 and C4 are constants that depend only on the support of covariates, the distribution of

ε, Cσ, the covariates space X , the network space G and the treatment allocation space D.

A proof of Lemma 3.5.3 is provided in Appendix A.2.4. Lemma 3.5.3 analyzes the finite

sample property of the empirical process (i.e., Eεn
[
∥∇θGn(θ)∥1

∣∣S, σdata
]
). By combining the

results of Lemma 3.5.1, Lemma 3.5.2 and Lemma 3.5.3, we have our main theorem. This

theorem characterizes the sampling uncertainty of using the empirical welfare:

Theorem 3.5.1. (Sampling Uncertainty of Regret) Under Assumption 12 to 17, the sampling

uncertainty of the two-step MLE estimator is bounded by:

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2

C3 + C4 log(n)√
n

In addition, the sampling uncertainty of the empirical welfare is bounded by:

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1C2

C3 + C4 log(n)√
n

.
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A proof of Theorem 3.5.1 is provided in Appendix A.3.2. This new result characterizes the

finite sample properties of the sampling uncertainty that emerges when utilizing empirical

welfare in settings of strategic interaction. It shows that the regret associated with empirical

welfare converges at a rate influenced by the size of the network in the training data, as well

as by the covariates and the chosen distribution for private information. Furthermore, this

result characterizes the performance of the two-step maximum likelihood estimation from a

finite sample perspective. This analysis can be extended to general M-estimators, including

the Generalized Method of Moments and broader MLE frameworks.

3.5.3 Regret due to our Greedy Algorithm

Now, we evaluate the second term of Eq.3.20, which is the regret introduced by our greedy

algorithm,

Eεn

[
Wn(D̃)−Wn(D̂G)

∣∣∣S, σdata
]
.

In general, the gap between a greedy optimizer and the global optimizer in terms of the

value of the objective function is unknown. For monotone non-decreasing submodular set

functions, Nemhauser et al. (1978) shows that a greedy algorithm achieves results within

(1 − 1/e) of the global maximum value. Although our optimization problem does not in-

volve a submodular function, our empirical findings in Section 3.6 indicate that our greedy

algorithm performs well, a result echoed in other applications such as experimental design

(Lawrence et al., 2002). Building on these findings, Bian et al. (2017) provides a theoret-

ical performance guarantee for using a greedy algorithm on non-submodular functions by

leveraging the submodularity ratio and curvature of the objective function.

Submodularity, the submodularity ratio, and the curvature of a set function f are defined

as follows.
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Definition 3.5.1. (Submodularity) A set function is a submodular function if:

∑
k∈R\S

[f(S ∪ {k})− f(S)] ≥ f(S ∪R)− f(S), ∀S,R ⊆ N .

Definition 3.5.2. (Submodularity Ratio) The submodularity ratio of a non-negative set

function f(·) is the largest γ such that

∑
k∈R\S

[f(S ∪ {k})− f(S)] ≥ γ[f(S ∪R)− f(S)], ∀S,R ⊆ N .

Definition 3.5.3. (Curvature) The curvature of a non-negative set function f(·) is the small-

est value of ξ such that

f(R ∪ {k})− f(R) ≥ (1− ξ)[f(S ∪ {k})− f(S)], ∀S ⊆ R ⊆ N ,∀k ∈ N \R.

Submodularity is similar to diminishing returns. It states that adding an element to a

smaller set yields a greater benefit than adding it to a larger set. Lovász (1983) highlights

that, in discrete optimization, submodularity plays a role analogous to convexity in contin-

uous optimization. The submodularity ratio measures how close a set function is to being

submodular (Das and Kempe, 2011). Curvature quantifies the extent to which a set function

deviates from being additive.

We evaluate the theoretical performance of our greedy algorithm in scenarios where the

treatment exerts both direct and indirect positive effects on equilibrium welfare, as indicated

by positive values for (θ̂1 + X⊺
i θ̂3) and θ̂5. Additionally, our empirical analysis explores a

variety of other scenarios, including those with a negative direct effect but a positive indirect

effect, among others. The results indicate that the algorithm performs well across a range of

conditions.

To characterize the submodularity ratio and curvature of the objective function, we first

represent it as a set function, which is a real-valued mapping defined over treatment alloca-
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tions sets, D ⊂ N (i.e., D = {i ∈ N : Di = 1}):

Wn(D) =
∑
i∈D

Fε

[
θ̂0+ θ̂1+X

⊺
i (θ̂2+ θ̂3)+

1

|Ni|
∑

j∈D\{i}

(θ̂4+ θ̂6σj)mijGij +
θ̂5
|Ni|

∑
j∈N\{i}

mijGijσj

]
+

∑
k∈N\D

Fε

[
θ̂0 +X⊺

k θ̂2 +
θ̂4
|Nk|

∑
ℓ∈D

mkℓGkℓ +
θ̂5
|Nk|

∑
ℓ∈N\{k}

mkℓGkℓσℓ

]
.

Let γ denote the submodularity ratio. For a nondecreasing function, γ ranges between

[0, 1] and is 1 if and only if the function is submodular. Similarly, the curvature, denoted

by ξ, of a nondecreasing function ranges between [0, 1], and is 0 if and only if the function

is supermodular. As our objective function involves a system of simultaneous equations,

evaluating its curvature and submodularity ratio directly is challenging. Instead, we focus on

the upper bound for curvature and submodularity, and ensure that their values remain within

(0, 1). Combining this result with Bian et al. (2017, Theorem 1) of leads to:

Proposition 3.5.1. Under Assumption 12 and Assumption 14, the curvature ξ of Wn(D) and

the submodularity ratio γ of Wn(D) are in (0, 1). The greedy algorithm enjoys the following

approximation guarantee for the problem in Eq.3.19:

Wn(DG) ≥
1

ξ
(1− e−ξγ)Wn(D̃),

where DG is the treatment assignment rule that is obtained by Algorithm 5.

A proof is provided in Appendix A.3.3. This proof is similar to Kitagawa and Wang

(2023a). The first part of Proposition 3.5.1 implies that the performance guarantee is a

non-trivial bound. Although the curvature and submodularity ratio of our objective function

are unknown, for a particular application, it is possible to evaluate them empirically. As a

consequence,

Eεn

[
Wn(D̃)−Wn(D̂G)

∣∣∣S, σdata
]
≤ O(1)(1− 1

ξ
(1− e−ξγ)), (3.31)
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where O(1) captures the Eεn [Wn(D̃)|S, σdata]. Combining Eq.3.31 with Theorem 3.5.1, we

obtain our main theorem:

Theorem 3.5.2. (Regret Bound) Let D∗ denote the maximizer of W (D) and DG be the as-

signment vector obtained by Algorithm 5. Under Assumptions 12 to 16, given curvature ξ and

submodularity ratio γ, the regret is bounded from above by:

Eεn

[
R(D̂G)|S, σdata

]
≤ C1C2

C3 + C4 log(n)√
n

+O(1)(1− 1

ξ
(1− e−ξγ)). (3.32)

Theorem 3.5.2 is our key result. The first term in Eq.3.32 characterizes the sampling

uncertainty, whose convergence rate depends on the network size. The dependence upon the

parameters in the utility function, network structure, and private information distribution

are shown implicitly via the terms C1 in Lemma 3.5.1, C2 in Lemma 3.5.2, and C3 and C4 in

Lemma 3.5.3. The second term comes from the use of a greedy algorithm, and converges to

a constant.

3.6 Empirical Application

We illustrate our proposed method using data from Banerjee et al. (2013), which explores

the impact of information provision on microfinance adoption. Banerjee et al. (2013) studies

a microfinance loan program. This program was introduced by Bharatha Swamukti Samsthe

(BSS), a non-governmental microfinance institution in India, and implemented across 43

villages in Karnataka. BSS invited influential units, such as teachers, leaders of self-help

groups, and shopkeepers, to an informational meeting about the availability of microfinance

(the treatment). In total, 1262 units were assigned treatment, an average of 25.75 per village.

After the intervention, researchers collected data on the network structure and household

characteristics—including access to electricity, latrine quality, and per capita counts of beds

and rooms in all participating villages. The number of households in each village varied from
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107 to 341, with 10 to 51 households per village receiving information about the program.

The program commenced in 2007, and the survey of microfinance adoption was completed

by early 2011. We treat each household’s decision to purchase microfinance as an equilibrium

outcome within a simultaneous decision network game.

We consider each village as a distinct target population. Structural parameters in the pay-

off function for each village are estimated separately using the two-step maximum likelihood

estimation (MLE) method of Leung (2015). This setup assumes that the training data, which

includes several villages, acts as a representative sample, with each village in the training

dataset mirroring a corresponding village in the target population in terms of covariates and

network structure.

In the first stage of our analysis, following Arcidiacono and Miller (2011), we estimate

the conditional choice probability using a flexible Logit approach (Chi-square goodness of

fit test result is provided in Appendix A.1). This includes each unit’s covariates and their

second powers, as well as the covariates of directly linked neighbors and interactions among

these covariates, which is under the network decaying dependence assumption (Xu, 2018).

Although our estimator allows for incorporating covariates from neighbors at higher levels of

linkage, we focus on directly linked neighbors’ covariates in this estimation. We treat these

estimates as the true parameters and assess the presence of strategic complementarity in each

village. We find strategic complementarities in 16 of the 43 villages in the dataset14, which

are the focus of this exercise. We assume the policymaker utilizes all available covariates

to determine the treatment allocation mechanism. We assume that the private information

follows a logistic distribution, and we define the measure of closeness between units i and j

to be m(Xi, Xj) =
1

1+|Xi−Xj | .

14The indices of those 16 villages in the original data set are: 1, 4, 6, 7, 12, 14, 17, 18, 20, 24, 25, 29, 31,
39, 40, and 41. To enhance clarity, we discard their original indices and re-label them as villages 1 to 16.
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3.6.1 Policy evaluation

In this application, the objective is to maximize engagement welfare, measured as the micro-

finance participation rate, evaluated at the minimal equilibrium under a treatment capacity

constraint (as in Eq.3.13) within our target population. To ensure comparability with the orig-

inal study, we set the capacity constraint equal to the number of treatments used by Bharatha

Swamukti Samsthe (BSS). We compare our method (‘Robust’) with two different treatment

allocation regimes: the allocation rule adopted by BSS in the original study (‘Original’), and

a random allocation rule (‘Random’).

Table 3.1 presents predicted village-level microfinance take-up probabilities under three

different treatment allocations. For each allocation rule, we report both the upper and lower

bounds of the prediction set. The first column lists the 16 villages that exhibit strategic

complementarities. The second column (Sample Avg.) contains the empirical average take-up

rate for these villages. The third column (Welfare under Original) shows the average adoption

rates for the original treatment allocation used by BSS. Four villages—Villages 2, 3, 6, and

12—exhibit multiple equilibria under this rule. To further assess our proposed method’s

performance, we generate 500 random treatment allocations within the capacity constraint

for each village. The average purchasing probability across these 500 allocations is reported

in the fourth column (Welfare under Random). Under random allocation, multiple equilibria

arise in Villages 2, and 9, highlighting that the occurrence of multiple equilibria can

vary with the allocation method used. The share of households adopting microfinance

according to the robust optimal treatment allocation is shown as Welfare under Robust, where

the multiple equilibria only presents in the Village 2.

Note first that the equilibrium average share of households adopting microfinance under

the original allocation closely tracks the observed data for all villages except for Village 7 15.

Second, we find that the equilibrium average share of households purchasing microfinance

15The goodness of fit test indicates that the estimation for Village 7, referred to as Village 17 in Table A.2,
may not adequately fit the data, potentially due to inaccuracies in the first-stage Conditional Choice Probability
(CCP) estimation.
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Village Sample Avg. Welfare under Welfare Gain∗

Original Random Robust Level Percentage

1 0.24 [0.25, 0.25] [0.20, 0.20] [0.41, 0.41] 0.16 66%
2 0.08 [0.04, 0.07] [0.03, 0.04] [0.13, 0.16] 0.10 270%
3 0.18 [0.17, 0.23] [0.25, 0.25] [0.37, 0.37] 0.20 122%
4 0.30 [0.26, 0.26] [0.29, 0.29] [0.44, 0.44] 0.18 68%
5 0.15 [0.15, 0.15] [0.16, 0.16] [0.37, 0.37] 0.22 146%
6 0.17 [0.15, 0.19] [0.17, 0.17] [0.39, 0.39] 0.24 158%
7 0.19 [0.48, 0.48] [0.40, 0.40] [0.66, 0.66] 0.18 37%
8 0.19 [0.17, 0.17] [0.18, 0.18] [0.28, 0.28] 0.11 64%
9 0.19 [0.19, 0.19] [0.20, 0.23] [0.33, 0.33] 0.14 72%
10 0.24 [0.24, 0.24] [0.23, 0.23] [0.28, 0.28] 0.05 20%
11 0.23 [0.22, 0.22] [0.22, 0.22] [0.34, 0.34] 0.12 57%
12 0.10 [0.09, 0.10] [0.11, 0.11] [0.30, 0.30] 0.20 223%
13 0.15 [0.13, 0.13] [0.15, 0.15] [0.45, 0.45] 0.31 238%
14 0.21 [0.23, 0.23] [0.19, 0.19] [0.46, 0.46] 0.23 101%
15 0.16 [0.18, 0.18] [0.18, 0.18] [0.41, 0.41] 0.24 132%
16 0.16 [0.16, 0.16] [0.19, 0.19] [0.29, 0.29] 0.13 85%

Table 3.1: Comparison using 16 Indian villages microfinance data from Banerjee et al. (2013)
∗ Minimal Welfare Gain compares the minimal simulated equilibrium welfare under the Robust allo-
cation method and the simulated equilibrium welfare under the Original allocation implemented by
BSS.

under random allocation is similar to the original BSS allocation method. When comparing

our robust optimal treatment allocation regime with the original allocation rule, our method

consistently outperforms the original rule in terms of both minimal and maximal equilib-

rium welfare. As depicted in Figure 3.1, improvements in welfare with minimal equilibrium

vary from 20% to 270%. Notice that the welfare at the minimal equilibrium of our approach

surpasses the maximal welfare under the other two approaches. This suggests that the in-

formation diffusion facilitated by the original treatment may not have significantly impacted

adoption rates. Additionally, Wang et al. (2024) finds that households with higher centrality,

such as the leaders selected by BSS, tend to have a lower borrowing probability compared

to less central households. It is possible that more central households have greater access to

alternative borrowing sources within their networks, thus diminishing their need for microfi-

nance, and reducing the spillover effects through strategic interactions.
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Figure 3.1: Comparisons between three approaches

3.7 Extension

3.7.1 Complete Information Game

In a complete information setting, units observe all the characteristics of other units partic-

ipating in the game. This means that units are informed of others’ choices before making

their own decisions, allowing them to play the best response to the observed actions rather

than basing their actions on beliefs, as is common in a private information setting. As a

consequence, unit i’s decision rule is:

Yi = 1
{
Ui(1, Y−i, X,D,G) ≥ 0

}
, ∀i ∈ N .

One main distinction from incomplete information settings is that the solution concept tran-

sitions to a pure-strategy Nash equilibrium. A pure-strategy Nash equilibrium is defined by a
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set of actions y∗ = {y∗1, ..., y∗N} such that

Ui(y
∗
i , y

∗
−i, X,D,G) ≥ Ui(y

′
i, y

∗
−i, X,D,G)

for any y′i ∈ Y and for all i ∈ N . We denote the set of all such equilibria as Σ(X,D,G, ε) :=

{y∗}, given covariates X, treatment allocation D, network structure G, and the idiosyncratic

shock ε. To simplify the notation, we subsequently refer to it as Σ(ε). Let ξ : Σ→ [0, 1] denote

the probability distribution over equilibria, and let ∆(Σ) := {ξ :
∑

y∗∈Σ ξ(y
∗) = 1} denote the

set of all the probability distributions.

In scenarios with strategic complementarity, there exists a maximal and a minimal Nash

equilibrium, denoted by y∗ and y∗. For our counterfactual analysis, which is analogous to

the framework established in Theorem 3.3.1 under an incomplete information setting, we

propose the following:

Proposition 3.7.1. For a supermodular game, the least favorable equilibrium selection rule λ

and the most favorable equilibrium selection rule λ are:

λ := δy∗ , λ := δy∗ ,

where δy is the Dirac measure on Σ. In addition, the following conditions are satisfied:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).

The proof of Proposition 3.7.1 mirrors that of Theorem 3.3.1, with the primary modifica-

tion being the substitution of Bayesian Nash equilibrium with Nash equilibrium. Computing

the conditional choice probability differs from the previous analysis since it is no longer a si-

multaneous equation system. With complete information, the conditional choice probability
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is given by:

Pr(Yi = 1|X,D,G, λ) =
∫

1
{
∃y−i : (1, y−i) ∈ Σ(ε) and ∀y−i, (0, y−i) /∈ Σ(ε)

}
dFε

Pr(Yi = 1|X,D,G, λ) =
∫

1
{
∃y−i : (1, y−i) ∈ Σ(ε)

}
dFε

The above expression is hard to compute. To further simplify the computation, let us define

event A :=
{
∃y−i : (1, y−i) ∈ Σ(ε)

}
and event B :=

{
∃y−i, (0, y−i) ∈ Σ(ε)

}
. Given Pr(A ∩

Bc|X,D,G) = Pr(A ∪B|X,D,G)− Pr(B|X,D,G), we hence have:

Pr(Yi = 1|X,D,G, λ) = 1− Pr(Yi = 0|X,D,G, λ).

As a consequence, it is enough to compute Pr(Yi = 1|X,D,G, λ) and Pr(Yi = 0|X,D,G, λ),

which are given by:

Pr(Yi = 1|X,D,G, λ) =
∫

1

{
max

y−i:(1,y−i)∈Σ(ε)
Ui(1, y−i, X,D,G) ≥ 0

}
dFε, (3.33)

Pr(Yi = 0|X,D,G, λ) =
∫

1

{
min

y−i:(1,y−i)∈Σ(ε)
Ui(1, y−i, X,D,G) < 0

}
dFε. (3.34)

Let us define iC as the complement of unit i and their neighbor set, i.e., iC := N \ (Ni ∪ {i}).

Define yNi
as the collection of neighbors’ choices of unit i. Consequently, y−i can be expressed

as (yNi
, yiC ), where yiC represents the choices of units in iC . For the optimization problems

defined in Eq.3.33 (maximization) and Eq.3.34 (minimization), it is necessary to explore all

possible equilibria for each value of ε within the network game. Given our utility function

specification, the choice of unit i depends only on k ∈ iC through the choices of units directly

connected with i. Thus, we can simplify the maximization problem in Eq.3.33 to:

max
yNi

,y
iC

Ui(1, yNi
, X,D,G)
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with constraints:

yj = 1{Uj(1, yNj\{i}, X,D,G) ≥ 0},∀j ∈ Ni, (3.35)

yk = 1{Uk(1, yNk
, X,D,G) ≥ 0},∀k ∈ iC . (3.36)

These constraints (Eq.3.35 and Eq.3.36) ensure that (1, yNi
, yiC ) forms a Nash equilibrium. In

the optimization, Ui(1, yNi
, X,D,G) does not depend directly on yiC but needs to confirm that

(1, yNi
, yiC ) is a Nash equilibrium for any given yNi

. If for some yNi
, multiple yiC ensure y−i as

a Nash equilibrium, the existence of any yiC that satisfies this condition is sufficient for our

purposes. We search for yNi
∈ Y |Ni| that maximizes Ui(yNi

, X,D,G), denoted as y∗Ni
. Given

the supermodular nature of our game, where neighbors’ choices are strategic complements to

unit j’s choice, we select yiC such that (yNi
, yiC ) constitutes the largest Nash equilibrium for

the given yNi
, leveraging the increasing monotonicity between yNi

and yiC . We then search

the yNi
that maximizes the objective function.

3.8 Conclusion

This paper proposes a method for constructing individualized treatment allocations to max-

imize equilibrium welfare robust to the presence of multiple equilibria in large simultane-

ous decision games with complementarity. Our approach, takes into account the inherent

complexity introduced by the presence of multiple Nash equilibria, and the resulting incom-

pleteness. We refrain from making assumptions about the equilibrium selection mechanism,

which leads to both analytical and numerical challenges in evaluating counterfactual equilib-

rium welfare. Due to the inherent uncertainties in our model, we use the maximin welfare

criterion to evaluate treatment allocation rules. This leads to treatment allocation rules that

are optimized to maximize the worst-case equilibrium social welfare, ensuring their robust-

ness. The use of a greedy optimization algorithm further enhances the applicability of our

approach.
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We acknowledge that several questions remain open, and there are multiple ways in which

our work can be extended. First, we have not explored counterfactual analysis within the

broader framework of general simultaneous decision games. Second, although we parametrize

the utility function and the distribution of idiosyncratic shock in this work, adopting a non-

parametric utility function and a non-parametric distribution of idiosyncratic shock could

significantly enhance the robustness and applicability of our approach. Third, while we have

assumed independence among idiosyncratic shocks, recent literature, such as Grieco (2014)

and de Paula and Tang (2020), have begun to relax this assumption, suggesting another

avenue for refining our model.
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Supplement to “Robust Network
Targeting with Multiple Nash Equilibria”

A.1 Chi-Square Goodness of Fit Test

Number of Rooms Number of Rooms
Village 1-2 3-4 5-6 ≥ 7 Village 1-2 3-4 5-6 ≥ 7

1 0.08 0.04 0.61 0.38 23 0.06 0.22 3.27 0.00
2 92.90 17.03 0.13 – 24 0.31 0.19 0.60 –
3 0.75 0.14 0.53 – 25 0.06 0.86 1.52 –
4 4.81 0.50 0.62 0.00 26 0.04 0.14 0.15 –
5 0.02 0.02 2.08 0.15 27 0.20 0.13 0.80 0.01
6 0.35 0.15 0.02 0.04 28 345.59 115.88 6.39 1.76
7 0.82 0.45 0.74 0.00 29 0.02 0.01 1.03 0.08
8 0.07 0.10 0.00 0.45 30 2.42 1.02 0.00 0.00
9 1.76 0.81 0.05 – 31 0.18 0.97 0.19 –
10 0.01 0.02 1.38 0.01 32 0.76 0.36 0.00 0.87
11 0.09 0.03 0.34 0.10 33 1.61 0.12 0.72 1.55
12 0.00 1.16 1.47 0.35 34 0.12 0.31 0.11 –
13 1.67 0.06 0.26 3.79 35 0.21 0.45 0.45 0.09
14 0.01 0.10 0.92 0.00 36 0.11 0.80 0.68 0.93
15 0.05 0.00 0.58 1.11 37 0.04 0.03 0.17 0.03
16 0.03 0.04 0.24 0.01 38 0.00 0.09 0.32 –
17 80.36 7.58 0.37 0.34 39 0.35 0.03 0.09 –
18 2.20 1.76 0.73 5.54 40 0.43 0.02 0.03 –
19 0.00 2.02 0.60 0.24 41 0.01 0.00 0.07 0.00
20 0.04 0.23 0.01 0.89 42 49.43 10.70 1.26 0.00
21 0.04 0.00 0.25 0.14 43 0.82 0.00 0.58 0.03
22 0.42 0.93 2.04 0.05

Table A.2: Chi-square values based on number of rooms for 43 Indian villages
microfinance data from Banerjee et al. (2013)
At 0.05 significance level, the critical value is given by 7.815.
′−′ symbol indicates that there are no households with more than 7 rooms.

A.2 Lemmas

We first introduce notation. We define m := maxij |mij|, and F ε := minθ∈Θ
z∈Z

Fε(z
⊺θ). In addi-

tion, we define υ := min{F ε, 1−F ε}. We measure the distance between parameters θ with the
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L1 metric, which we denote by ∥θ−θ′∥1 :=
∑dθ

k=1 |θk−θ′k|. For a K×L matrix A, ∥A∥∞ denotes

the operator norm of A induced by the L∞ norm, which is given as: ∥A∥∞ = max
k=1,...,K

L∑
l=1

|Akl|.

A.2.1 Proof of Corollary 3.3.1

Corollary A.2.1. (Utilitarian Welfare at Equilibrium) Under Assumption 12, given the spec-
ification of our utility function, the predicted set of the expected utilitarian welfare under a
counterfactual policy D is given as:

WX,G,λ(D) ∈
[ 1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j ,

1

N

N∑
i=1

αif(αi) +
1

N

N∑
i=1

∑
j ̸=i

βijσ
∗
iσ

∗
j

]
,

where

f(αi) =

{
Pr(Yi = 1|X,D,G, λ) if αi > 0

Pr(Yi = 1|X,D,G, λ) if αi ≤ 0.

Proof. Given

WX,G,λ(D) =
1

N

N∑
i=1

E
[
Ui(Y,X,D,G)− εiYi|X,D,G, λ

]
,

we have,

WX,G,λ(D) =
1

N

N∑
i=1

αi Pr(Yi = 1|X,D,G, λ) + 1

N

N∑
i=1

∑
j ̸=i

βij Pr(YiYj = 1|X,D,G, λ). (A.37)

Therefore, if αi > 0, αi Pr(Yi = 1|X,D,G, λ) achieves its lower bound by choosing the equi-
librium selection rule λ. When αi ≤ 0, αi Pr(Yi = 1|X,D,G, λ) achieves its lower bound by
choosing the equilibrium selection rule λ. For the second term, since βij ≥ 0 for all i, j ∈ N ,
it achieves its upper bound by choosing the equilibrium selection rule as λ and it achieves its
lower bound by choosing the equilibrium selection rule as λ. This is because

Pr(YiYj = 1|X,D,G, λ)

=
∑
σ∗∈Σ

λ(σ∗|X,D,G)
∫
1
{
αi +

∑
k ̸=i

βikσ
∗
k(X,D,G) ≥ εi

}
1
{
αj +

∑
k ̸=j

βjkσ
∗
k(X,D,G) ≥ εj

}
dFεidFεj

=
∑
σ∗∈Σ

λ(σ∗|X,D,G)
∫
1
{
αi +

∑
k ̸=i

βikσ
∗
k(X,D,G) ≥ εi

}
dFε

∫
1
{
αj +

∑
k ̸=j

βjkσ
∗
k(X,D,G) ≥ εj

}
dFε,

where the second equality holds by Assumption 12. Therefore,

Pr(YiYj = 1|X,D,G, λ) =
∑
σ∗∈Σ

λ(σ∗|X,D,G) Pr(Yi = 1|X,D,G, σ∗) Pr(Yj = 1|X,D,G, σ∗).
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From Theorem 3.3.1, {Pr(Yj = 1|X,D,G, σ∗)}Ni=1 achieves their upper bound under the most
favorable equilibrium selection rule λ, where σ∗ happens with probability 1. Therefore,

Pr(YiYj = 1|X,D,G, λ) = Pr(Yi = 1|X,D,G, σ∗) Pr(Yj = 1|X,D,G, σ∗)

≥ Pr(YiYj = 1|X,D,G, λ), ∀λ ∈ Λ.

By the symmetric argument, we have

Pr(YiYj = 1|X,D,G, λ) = Pr(Yi = 1|X,D,G, σ∗) Pr(Yj = 1|X,D,G, σ∗)

≤ Pr(YiYj = 1|X,D,G, λ), ∀λ ∈ Λ.

Therefore, for all i, j ∈ N ,

βij Pr(YiYj = 1|X,D,G, λ) ∈ [βijσ
∗
iσ

∗
j , βijσ

∗
iσ

∗
j ]. (A.38)

Plugging Eq.A.38 into Eq.A.37 completes the proof.

A.2.2 Proof of Lemma 3.5.1

Lemma A.2.1. Under Assumptions 12 and 14,

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1Eεn

[
∥θ̂ − θ∥1

∣∣∣S, σdata
]

where C1 is a constant that only depends on the distribution Fεn, the maximum link in the
network N , and the support of true parameter θ0.

Proof. By the Triangle inequality, an upper bound for our objective function is:

|Wn(D)−W (D)| =
∣∣∣ 1
N

N∑
i=1

(
σi(θ̂)− σi(θ)

)∣∣∣ ≤ 1

N

N∑
i=1

|σi(θ̂)− σi(θ)|.

We know:

σi(θ) =

∫
1

{
αi +

∑
j ̸=i

βijσj(θ)− εi ≥ 0
}
dF (ε)

= Fε

(
θ0 + θ1Di + θ⊺2Xi + θ⊺3XiDi +

θ4
Ni

∑
j ̸=i

GijmijDj +
1

Ni

∑
j ̸=i

(θ5 + θ6DiDj)Gijmijσj(θ)
)
.

Let r(i, θ) := θ0+θ1Di+θ
⊺
2Xi+θ

⊺
3XiDi+

θ4
Ni

∑
j ̸=iGijmijDj+

1
Ni

∑
j ̸=i(θ5+θ6DiDj)Gijmijσj(θ).

Therefore, ∣∣σi(θ̂)− σi(θ)
∣∣ = ∣∣Fε

(
r(i, θ̂)

)
− Fε

(
r(i, θ)

)∣∣.
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By the Mean Value Theorem,∣∣σi(θ̂)− σi(θ)
∣∣ = ∣∣∇θFε

(
ri(θ̃)

)
(θ̂ − θ)

∣∣
=

∣∣F ′
ε

(
r(i, θ̃)

)
∇θr(i, θ̃)(θ̂ − θ)

∣∣
= F ′

ε

(
r(i, θ̃)

)∣∣∇θr(i, θ̃)(θ̂ − θ)
∣∣

≤ τ
∣∣∇θr(i, θ̃)(θ̂ − θ)

∣∣.
For some θ̃ ∈ Rdθ on the segment from θ to θ̂. By the Cauchy–Schwarz inequality, we have:∣∣σi(θ̂)− σi(θ)

∣∣ ≤ τ∥∇θr(i, θ̃)∥2∥θ̂ − θ∥2 ≤ τ∥∇θr(i, θ̃)∥1∥θ̂ − θ∥1. (A.39)

To deal with the simultaneity within ∇θr(i, θ̃), define

∇θr(θ) :=
[
∇θ0r(θ) · · · ∇θdθ

r(θ)
]
,

where

∇θkr(θ) =


∇θkr(1, θ)

...

∇θkr(N, θ)

 ,
for all k = 1, ..., dθ. Then,

∥∇θr(i, θ)∥1 ≤ ∥∇θr(θ)∥∞, ∀i ∈ N , (A.40)

where recall ∥∇θr(θ)∥∞ = maxi=1,...,N ∥∇θr(i, θ)∥1 is the operator norm induced by the L∞
norm. To bound ∥∇θr(θ)∥∞, we define an implicit function I : RN × Rdθ → RN such that

I(r, θ) =


r(1, θ)− a1 −

θ4
|N1|

∑
j ̸=1

G1jm1jDj −
1

|N1|
∑
j ̸=1

(θ5 + θ6D1Dj)G1jm1jFε

(
r(j, θ)

)
...

r(N, θ)− aN −
θ4
|NN |

∑
j ̸=N

GNjmNjDj −
1

|NN |
∑
j ̸=N

(θ5 + θ6DNDj)GNjmNjFε

(
r(j, θ)

)


,

where ai = θ0 + θ1Di− θ⊺2Xi− θ⊺3XiDi. By the Implicit Function Theorem, ∇θr(θ) is given by:

∇θr(θ) = −
(
∇rI(r, θ)

)−1∇θI(r, θ), (A.41)
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where ∇rI(r, θ) is:

∇rI(r, θ) =


1 − 1

|N1|F
′
ε(r(1, θ))(θ5 + θ6D1D2)G12m12 · · ·

− 1
|N2|F

′
ε(r(2, θ))(θ5 + θ6D2D1)G21m21 1 · · ·

...
... . . .

− 1
|NN |F

′
ε(r(N, θ))(θ5 + θ6DND1)GN1mN1 − 1

|NN |F
′
ε(r(N, θ))(θ5 + θ6DND2)GN2mN2 · · ·


,

and ∇θI(r, θ) is:

∇θI(r, θ) =

−1 −D1 −X⊺
1 −D1X

⊺
1 −

∑
j ̸=1

G1jm1jDj

|N1|
−

∑
j ̸=1

F ′
ε(r(j, θ))G1jm1j

|N1|
−

∑
j ̸=1

F ′
ε(r(j, θ))D1DjG1jm1j

|N1|

−1 −D2 −X⊺
2 −D2X

⊺
2 −

∑
j ̸=2

G2jm2jDj

|N2|
−

∑
j ̸=2

F ′
ε(r(j, θ))G2jm2j

|N2|
−

∑
j ̸=2

F ′
ε(r(j, θ))D2DjG2jm2j

|N2|
...

...
...

...
...

...
...

−1 −DN −X⊺
N −DNX⊺

N −

∑
j ̸=N

GNjmNjDj

|NN |
−

∑
j ̸=N

F ′
ε(r(j, θ))GNjmNj

|NN |
−

∑
j ̸=N

F ′
ε(r(j, θ))DNDjGNjmNj

|NN |



.

Therefore, supremum norm of Eq.A.41 is bounded by

∥∇θr(θ)∥∞ = ∥
(
∇rI(r, θ)

)−1∇θI(r, θ)∥∞ ≤ ∥
(
∇rI(r, θ)

)−1∥∞∥∇θI(r, θ)∥∞. (A.42)

The last inequality holds because norm ∥A∥∞ on matrix A is the operator norm induced by
L∞ norm, which is a matrix norm. This ensures that it satisfies the submultiplicativity prop-
erty. Therefore, we have the inequality. Assuming ∇rI(r, θ̃) is non-singular, and by invoking
Lemma A.4.1 — a corollary of Berge’s Maximum Theorem — the norm ∥

(
∇rI(r, θ̃)

)−1∥∞ is
a continuous function with respect to the entries of ∇rI(r, θ̃). Given, for all i, j ∈ N , Di and
Gij are binary, Xi has bounded support, θ is in a compact parameter space (Assumption 14),
and F ′

ε(·) ∈ [0, τ ], the Extreme Value Theorem (Lemma A.5.1) guarantees the existence of a
uniform maximum of ∥

(
∇rI(r, θ̃)

)−1∥∞ among all the values of X, D, G, which only depends
on the support of each variable. We denote this uniform maximum as ζ. For ∥∇θI(r, θ̃)∥∞ in
Eq.A.42, we know:

∥∇θI(r, θ̃)∥∞ = max
i∈N

1 +Di + ∥Xi∥1 +Di∥Xi∥1 +
1

|Ni|
∑
j ̸=i

DjGij|mij|

+
1

|Ni|
∑
j ̸=i

F ′
ε(r(j, θ̃))(1 +DiDj)Gij|mij|.

(A.43)

Furthermore, Eq.A.43 is upper bounded by 2+2maxi∈N ∥Xi∥1+2mτ , wherem := maxi,j∈N |mij|.
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Therefore, we have
∥∇θI(r, θ̃)∥∞ ≤ 2 + 2∥X∥∞ +m+ 2mτ. (A.44)

Combining Eq.A.39, Eq.A.40 and Eq.A.44, we have:

1

N

N∑
i=1

∣∣σi(θ̂)− σi(θ)
∣∣ ≤ ζτ(2 + 2∥X∥∞ +m+ 2mτ)∥θ̂ − θ∥1.

To complete the proof, let C1 = ζτ(2 + 2∥X∥∞ +m+ 2mτ).

A.2.3 Proof of Lemma 3.5.2

Lemma A.2.2. (Sampling Uncertainty) Under Assumption 12, 15, 16, and 17, we have

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2Eεn

[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
,

where C2 is a constant that depends on the distribution Fεn, and the dimension and supports of
the parameter space, the covariates space X , the network space G and the treatment allocation
space D.

Proof. The Hessian matrices in the Taylor expansions of M̂(θ0)− M̂(θ̂) and M(θ̂)−M(θ0) are:

∇2
θM̂(θ́) =

1

n

n∑
i=1

[
Yiω0(Ẑ

⊺
i θ́)− (1− Yi)ω1(Ẑ

⊺
i θ́)

]
ẐiẐ

⊺
i ,

∇2
θM(θ̀) =

1

n

n∑
i=1

Eεn

[[
Yiω0(Z

⊺
i θ̀)− (1− Yi)ω1(Z

⊺
i θ̀)

]
ZiZ

⊺
i

∣∣∣S, σdata
]
,

where

ω0(a) =
F ′′
ε (a)Fε(a)− F ′

ε(a)
2

Fε(a)2
, ω1(a) =

F ′′
ε (a)[1− Fε(a)] + F ′

ε(a)
2

[1− Fε(a)]2
,

and a ∈ R. Combining the above equations with Eq.3.23 and Eq.3.24, we have:

M̂(θ0)− M̂(θ̂) =
1

2n

n∑
i=1

[
Yiω0(Ẑ

⊺
i θ́)− (1− Yi)ω1(Ẑ

⊺
i θ́)

][
(θ̂ − θ0)⊺Ẑi

]2
≤ 0. (A.45)

M(θ̂)−M(θ0) =
1

2n

n∑
i=1

[
σiω0(Z

⊺
i θ̀)− (1− σi)ω1(Z

⊺
i θ̀)

][
(θ̂ − θ0)⊺Zi

]2
≤ 0, (A.46)

where σi = Eεn [Yi|S, σdata]. Although Eq.A.45 and Eq.A.46 are non-positive, they do not pin
down the sign of the coefficient on the quadratic term (i.e., Yiω0(Ẑ

⊺
i θ́)− (1− Yi)ω1(Ẑ

⊺
i θ́) and

σiω0(Z
⊺
i θ̀) − (1 − σi)ω1(Z

⊺
i θ̀)). Under Assumption 15, we have ω0(a) < 0 and ω1(a) > 0 for

all a ∈ R. Furthermore, Assumption 14 ensures that Θ is a compact parameter space, which
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guarantees that θ̂ resides within this compact set. Consequently, θ́ and θ̀ are also confined
within the same compact set. Given this setup, all elements in Zi and Ẑi for each i = 1, . . . , n
also exist within a compact set. Therefore, the products Ẑ⊺

i θ́ and Z⊺
i θ̀ are confined within a

compact set, denoted as Ξ. We define the following bounds for ω0 and ω1 across Ξ:

ω0 := max
x∈Ξ

ω0(x), ω1 := max
x∈Ξ
−ω1(x), ω0 := min

x∈Ξ
ω0(x), ω1 := min

x∈Ξ
−ω1(x).

By Assumption 12 and 15, the probability density function of εn and its derivative are bounded.
In addition, under Assumption 12 they are continuous functions. Therefore, the Extreme
Value Theorem guarantees the existence of ω0 and ω1. Define ω as max{ω0, ω1}, and ω as
min{ω0, ω1}. We have ω0(Ẑ

⊺
i θ́) ≤ ω and ω0(Z

⊺
i θ̀) ≤ ω for any i = 1, ..., n. In addition,

−ω1(Ẑ
⊺
i θ́) ≤ ω and −ω1(Z

⊺
i θ̀) ≤ ω for any i = 1, ..., n. Combining the above arguments with

Eq.A.45 and Eq.A.46:

Gn(θ̂)−Gn(θ0) ≥ −ω(θ̂ − θ0)⊺
1

2n

n∑
i=1

(ZiZ
⊺
i + ẐiẐ

⊺
i )(θ̂ − θ0). (A.47)

Under Assumption 16, 1
n

∑n
i=1 ẐiẐ

⊺
i and 1

n

∑n
i=1 ZiZ

⊺
i are positive definite matrices for all

X ∈ X n and G ∈ G. This guarantees that the smallest eigenvalues of 1
n

∑n
i=1 ẐiẐ

⊺
i and

1
n

∑n
i=1 ZiZ

⊺
i are positive. However, the smallest eigenvalue still depends on the size of the

training sample. Lemma A.4.2 addresses this by guaranteeing the existence of a uniform
lower bound on the smallest eigenvalue. Lemma A.4.2 is a corollary of Berge’s Maximum
Theorem (Lemma A.5.2). A proof is provided in Appendix A.4.2. Given that any element
in Zi and Ẑi is a linear combination of products between Xi, Gij, σdata

i , Di, and D ∈ {0, 1}n,
σdata ∈ [0, 1]n, G ∈ {0, 1}n×n, and X ∈ X n are both compact, the Extreme Value Theorem
(Lemma A.5.1) guarantees the existence of a minimum smallest eigenvalue, which only de-
pends on the bound of each element16 and is independent of the training data. Assumption 17
guarantees that the average number of treated units in the training data is non-zero for any
network size. Combined with the above arguments, this ensures that the matrices formed
by 1

n

∑n
i=1 ẐiẐ

⊺
i and 1

n

∑n
i=1 ZiZ

⊺
i have strictly positive minimum smallest eigenvalues. We

denote these minimum smallest eigenvalues as ς0min and ς1min, respectively. In addition, let
ςmin = min{ς0min, ς

1
min}. Therefore,

(θ̂ − θ0)⊺
1

2n

n∑
i=1

(ZiZ
⊺
i + ẐiẐ

⊺
i )(θ̂ − θ0) ≥ ςmin∥θ̂ − θ0∥22 > 0. (A.48)

Combining Eq.3.30 with Eq.A.47 and Eq.A.48, we conclude that the sampling uncertainty of
θ̂ is characterized by the empirical process Gn(·). Formally:

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ dθ
−ωςmin

Eεn
[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
.

16Although the equilibrium σ and σ̂data may not be continuous functions of X, D, and G, the inherent com-
pactness of Zi and Ẑi for all i = 1, . . . , n suffices to apply the Extreme Value Theorem.
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To complete the proof, let C2 =
dθ

−ωςmin
.

A.2.4 Proof of Lemma 3.5.3

Lemma A.2.3. Under Assumption 12 to 16, we have

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤
C3 + C4

√
log(n)√

n
,

where C3 and C4 are constants that depend only on the support of covariates, the distribution of
ε, Cσ, the covariates space X , the network space G and the treatment allocation space D.

Proof. Recall we are using a two-step ML estimation procedure, so the first step of estimation
introduces additional sampling uncertainty through σ̂data. To separate the sampling uncer-
tainty of the first and the second steps, we introduce M(θ), which is the likelihood function
evaluated at the true equilibrium in the training data σdata:

M(θ) =
1

n

n∑
i=1

Yi log
(
Fε(Z

⊺
i θ)

)
+ (1− Yi) log

(
1− Fε(Z

⊺
i θ)

)
.

We then decompose the initial empirical process Gn(θ) into two parts:

Gn(θ) = M̂(θ)−M(θ) +M(θ)−M(θ).

The first term measures the uncertainty of using the estimated equilibrium σ̂data, and the sec-
ond term measures the uncertainty of using the estimated parameter θ̂. Rewrite the gradient
of the empirical process as

∇θGn(θ̃) = ∇θM̂(θ̃)−∇θM(θ̃) +∇θM(θ̃)−∇θM(θ̃).

By the triangle inequality, we have:

∥∇θGn(θ̃
′)∥1 ≤ ∥∇θM̂(θ̃)−∇θM(θ̃)∥1 + ∥∇θM(θ̃)−∇θM(θ̃)∥1. (A.49)

The gradient of Gn(·), M̂(·), M(·) and M(·) are dθ × 1 vectors. Let ∇kGn(·), ∇kM̂(·), ∇kM(·)
and ∇kM(·) denote their k-th elements. In addition, we define a sequence of empirical pro-
cesses {Bk(θ)}dθk=1 where Bk(θ) := ∇kM(θ)−∇kM(θ), and a sequence of stochastic processes
{Ak(θ)}dθk=1 where Ak(θ) := ∇kM̂(θ)−∇kM(θ). The first term in Eq.A.49 is then

∥∇θM̂(θ̃)−∇θM(θ̃)∥1 =
dθ∑
k=1

|Ak(θ̃)|, (A.50)
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and the second term in Eq.A.49 is

∥∇θM(θ̃)−∇θM(θ̃)∥1 =
dθ∑
k=1

|Bk(θ̃)|. (A.51)

Combining Eq.A.49 with Eq.A.50 and Eq.A.51, we conclude

Eεn
[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
≤

dθ∑
k=1

Eεn
[
|Ak(θ̃)|

∣∣S, σdata
]
+

dθ∑
k=1

Eεn
[
|Bk(θ̃)|

∣∣S, σdata
]
. (A.52)

An upper bound for the first term in Eq.A.52 is provided by Lemma A.4.3. An upper bound
for the second term in Eq.A.52 is provided by Lemma A.4.4. Combining them,

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤ dθ

CA

√
1 + ln(2) + 1√

n
+
d
3/2
θ CB1√
n

√
log(1 + CB2

√
n).

In addition, given n ≥ 2,

log(1 + CB2

√
n) ≤ 2 log(CB2

√
n) = 2 log(CB2) + log(n).

As a consequence,

Eεn
[
sup
θ∈Θ
∥∇θGn(θ)∥1

∣∣S, σdata
]
≤ dθ

CA

√
1 + ln(2) + 1√

n
+
d
3/2
θ CB1√
n

√
log(CB2)+

d
3/2
θ CB1√
n

√
log(n).

To complete the proof, let C3 = (CA

√
1 + ln(2) + 1)dθ + d

3/2
θ CB1, and C4 = d

3/2
θ CB1.

A.3 Theorems and Propositions

A.3.1 Proof of Theorem 3.3.1

Theorem A.3.1. For a supermodular game, the least favorable equilibrium selection rule λ and
the most favorable equilibrium selection rule λ are given as:

λ := δσ∗ , λ := δσ∗ ,

where δσ is the Dirac measure on Σ. In addition, the following conditions are satisfied:

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),

sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).
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Proof. Recall that the conditional choice probability is:

Pr(Yi = 1|X,D,G, λ) =
∑

y−i∈YN−1

Pr(Yi = 1, Y−i = y−i|X,D,G, λ)

=
∑

y−i∈YN−1

∫
λ(1, y−i|X,D,G, ε)dFε

=

∫ ∑
y−i∈YN−1

λ(1, y−i|X,D,G, ε)dFε.

Summing over all the units yields

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

∑
y−i∈YN−1

Pr(Yi = 1, Y−i = y−i|X,D,G, λ)

=
N∑
i=1

∑
y−i∈YN−1

∫
λ(1, y−i|X,D,G, ε)dFε

=
N∑
i=1

∫ ∑
y−i∈YN−1

λ(1, y−i|X,D,G, ε)dFε

Given the properties of a supermodular game, there always exists a maximal pure strategy
Bayesian Nash equilibrium yε and a minimal pure strategy Bayesian Nash equilibrium y

ε
for

all ε. Recall Eq.3.7, for a given ε ∈ RN , these two extreme equilibria can be represented by:

yi
ε
= 1

{
αi +

∑
j ̸=i

βijσ
∗
j(X,D,G) ≥ εi

}
, ∀i ∈ N .

yiε = 1
{
αi +

∑
j ̸=i

βijσ
∗
j(X,D,G) ≥ εi

}
, ∀i ∈ N .

Therefore, y
ε

happens with probability 1 under our defined least favorable equilibrium selec-
tion rule λ, and yε happens with probability 1 under our defined most favorable equilibrium
selection rule λ. We know that yε ≥ y

ε
for any ε where the order in here is product order. For

any Bayesian Nash equilibrium yε ∈ Σ(X,D,G, ε), we must have yiε ≥ yiε ≥ yi
ε

for any i ∈ N ,
ε ∈ RN . Therefore, there are only three possible scenarios for each unit i:

• yiε = yiε = yi
ε
= 1.

• yiε = yiε = yi
ε
= 0.

• yiε = 1, yi
ε
= 0 and yiε ∈ {0, 1}.

Recall Pr(Yi = 1|X,D,G, λ, ε) =
∑

y−i∈YN−1 λ(1, y−i|X,D,G, ε), for any ε ∈ RN , we must
have:
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• when yiε = yi
ε
= 1, Pr(Yi = 1|X,D,G, λ, ε) = 1 for all λ ∈ Λ and for all i ∈ N ;

• when yiε = yi
ε
= 0, Pr(Yi = 1|X,D,G, λ, ε) = 0 for all λ ∈ Λ and for all i ∈ N ;

• when yiε = 1 and yi
ε
= 0, Pr(Yi = 1|X,D,G, λ, ε) = 0 for all i ∈ N ;

• when yiε = 1 and yi
ε
= 0, Pr(Yi = 1|X,D,G, λ, ε) = 1 for all i ∈ N .

Therefore, for all ε ∈ RN and i ∈ N ,

Pr(Yi = 1|X,D,G, λ, ε) ≤ Pr(Yi = 1|X,D,G, λ, ε), ∀λ ∈ Λ,

Pr(Yi = 1|X,D,G, λ, ε) ≥ Pr(Yi = 1|X,D,G, λ, ε), ∀λ ∈ Λ.

As a consequence, the following two conditions are also satisfied:

Pr(Yi = 1|X,D,G, λ) ≤ Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ, (A.53)

Pr(Yi = 1|X,D,G, λ) ≥ Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ, (A.54)

Therefore, we must have:

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≤
N∑
i=1

Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ,

N∑
i=1

Pr(Yi = 1|X,D,G, λ) ≥
N∑
i=1

Pr(Yi = 1|X,D,G, λ), ∀λ ∈ Λ.

As a consequence,

λ = argmin
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ).

λ = argmax
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ).

In addition, given Eq.A.53 and Eq.A.54, we have:

λ = argmin
λ∈Λ

Pr(Yi = 1|X,D,G, λ), ∀i ∈ N .

λ = argmax
λ∈Λ

Pr(Yi = 1|X,D,G, λ), ∀i ∈ N .

Therefore,

inf
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

inf
λ∈Λ

Pr(Yi = 1|X,D,G, λ),
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sup
λ∈Λ

N∑
i=1

Pr(Yi = 1|X,D,G, λ) =
N∑
i=1

sup
λ∈Λ

Pr(Yi = 1|X,D,G, λ).

A.3.2 Proof of Theorem 3.5.1

Theorem A.3.2. (Sampling Uncertainty of Regret) Under Assumption 12 to 17, the sampling
uncertainty of the two-step MLE estimator is bounded by:

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2

C3 + C4 log(n)√
n

In addition, the sampling uncertainty of the empirical welfare is bounded by:

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1C2

C3 + C4 log(n)√
n

.

Proof. Recall
Eεn

[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2Eεn

[
∥∇θGn(θ̃)∥1

∣∣S, σdata
]
. (A.55)

Plugging Lemma 3.5.3 into Eq.A.55 leads to

Eεn
[
∥θ̂ − θ0∥1

∣∣S, σdata
]
≤ C2

C3 + C4 log(n)√
n

.

Combining Lemma 3.5.1 with Eq.A.55, we conclude:

Eεn

[
max
D∈D
|Wn(D)−W (D)|

∣∣∣S, σdata
]
≤ C1C2

C3 + C4 log(n)√
n

.

A.3.3 Proof of Proposition 3.5.1

Proposition A.3.1. Under Assumptions 12 and Assumptions 14, the curvature ξ of Wn(D) and
the submodularity ratio γ of Wn(D) are in (0, 1). The greedy algorithm enjoys the following
approximation guarantee for the problem in Eq.3.19:

Wn(DG) ≥
1

ξ
(1− e−ξγ)Wn(D̃),

where DG is the treatment assignment rule that is obtained by Algorithm 5.

Proof. The curvature is defined as the smallest value of ξ such that

Wn(R ∪ {k})−Wn(R) ≥ (1− ξ)[Wn(S ∪ {k})−Wn(S)] ∀S ⊆ R ⊆ N ,∀k ∈ N \R.
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As a consequence,

ξ = max
S⊆R⊂N ,k∈N\R

1− Wn(R ∪ {k})−Wn(R)

Wn(S ∪ {k})−Wn(S)
.

The submodularity ratio of a non-negative set function is the largest γ such that∑
k∈R\S

Wn(S ∪ {k})−Wn(S) ≥ γ[Wn(S ∪R)−Wn(S)], ∀S,R ⊆ N .

As a consequence,

γ = min
S ̸=R

∑
k∈R\S[Wn(S ∪ {k})−Wn(S)]

Wn(S ∪R)−Wn(S)

Recall the utility specification in Eq.3.16, we denote θ̂0 + θ̂1Di + X⊺
i θ̂2 + X⊺

i θ̂3Di as α̂1i and
θ̂0 +X ′

i θ̂2 as α̂0i. To connect to the set function notation, we further denote DR = {Di = 1 :
i ∈ R}. Therefore, for i ∈ R, we have:

W i
n(R∪ {k})−W i

n(R) = Fε

(
α̂1i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijDj +
1

|Ni|
∑
j ̸=i

θ̂5mijGijσj +
1

|Ni|
∑
j ̸=i

θ̂6DjmijGijσj

)
− Fε

(
α̂1i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijD
′
j +

1

|Ni|
∑
j ̸=i

θ̂5mijGijσ
′
j +

1

|Ni|
∑
j ̸=i

θ̂6D
′
jmijGijσ

′
j

)
,

where σb = Pr(Yb = 1|X,G,DR∪{k}, λ; θ̂) and σ′
b = Pr(Yb = 1|X,G,DR, λ; θ̂) for all b =

1, ..., N . For m ∈ N \ R ∪ {k}, their empirical welfare is given as:

Wm
n (R∪ {k})−Wm

n (R) = Fε

(
α̂0i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijDj +
1

|Nm|
∑
j ̸=m

θ̂5mmjGmjσj

)
− Fε

(
α̂0i +

1

|Ni|
∑
j ̸=i

θ̂4mijGijD
′
j +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmjσ
′
j

)
.

For the unit k, her empirical welfare is given as:

W k
n (R∪ {k})−W k

n (R)

= Fε

(
α̂1k +

1

|Nk|
∑
j ̸=k

θ̂4mkjGkjDj +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkjσj +
1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
− Fε

(
α̂0k +

1

|Nk|
∑
j ̸=k

θ̂4mkjGkjD
′
j +

1

|Nk|
∑
j ̸=k

θ̂5mkjGkjσ
′
j

)
.
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In addition, the empirical welfare increments from assigning unit k treatment is given as:

Wn(R∪ {k})−Wn(R) =
∑
i∈R

W i
n(R∪ {k})−W i

n(R) +
∑

m∈N\R∪{k}

Wm
n (R∪ {k})−Wm

n (R)

+W k
n (R∪ {k})−W k

n (R).

Applying the Mean Value Theorem, and Assumption 12, Wn(R ∪ {k}) − Wn(R) is upper
bounded by:

Wn(R∪ {k})−Wn(R)

≤ τ

N

∑
i∈R

( 1

|Ni|
∑
j ̸=i

θ̂5mijGij(σj − σ′
j) +

1

|Ni|
∑
j ̸=i,k

θ̂6DjmijGij(σj − σ′
j) +

1

|Ni|
(θ̂4 + θ̂6σk)mikGik

)
+
τ

N

∑
m∈N\R∪{k}

( 1

|Nm|
θ̂4mmkGmk +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmj(σj − σ′
j)
)

+
τ

N

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkj(σj − σ′
j) +

1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
,

where |θ| denotes the element-wise absolute value of θ. Since (σi − σ′
i) ∈ [0, 1] and Di, σi ∈

{0, 1} for all i ∈ N , and recall m := maxij |mij|, we can further upper bound the above
equation by:

Wn(R∪ {k})−Wn(R)

≤ τ

N

∑
i∈R

( 1

|Ni|
∑
j ̸=i

θ̂5mGij +
1

|Ni|
∑
j ̸=i

θ̂6mGij +
θ̂4mGik

N

)
+
τ

N

∑
m∈N\R∪{k}

( θ̂4mGmk

N
+

1

|Nm|
∑
j ̸=m

θ̂5mGmj

)
+
τ

N

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mGkj +
1

|Nk|
∑
j ̸=k

θ̂6mGkj

)
.

Given 1
|Ni|

∑
j ̸=iGij = 1 for all i, j ∈ N , we can further upper bound the empirical welfare

increase by:

Wn(R∪ {k})−Wn(R)

≤ τ

N

∑
i∈R

(θ̂5 + θ̂6)m+
τ

N

∑
m∈N\R∪{k}

θ̂5m+
τ

N

(
θ̂1 +X⊺

i θ̂3 + (θ̂5 + θ̂6)m
)
+
τ

N

θ̂4mN

N
.

Summarizing all the units together, we have:

Wn(R∪ {k})−Wn(R) ≤ τ(θ̂5 + θ̂6)m+
τ

N
(θ̂1 +X⊺θ̂3 +

θ̂4mN

N
),
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where X = {Xi : maxXi∈X X
⊺θ̂3}. The lower bound of W (R∪ {k})−W (R) is:

Wn(R∪ {k})−Wn(R)

≥ F ε

N

∑
i∈R

( 1

|Ni|
∑
j ̸=i

θ̂5mijGij(σj − σ′
j) +

1

|Ni|
∑
j ̸=i,k

θ̂6DjmijGij(σj − σ′
j) +

1

|Ni|
(θ̂4 + θ̂6σk)mikGik

)
+
F ε

N

∑
m∈N\R∪{k}

( 1

|Nm|
θ̂4mmkGmk +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmj(σj − σ′
j)
)

+
F ε

N

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkj(σj − σ′
j) +

1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
.

(A.56)

There are three different effects of assigning treatment to unit k. The first effect is the direct
treatment effect on unit k, which is the third term in Eq.A.56:

σk − σ′
k ≥ F ε

(
θ̂1 +X⊺

i θ̂3 +
1

|Nk|
∑
j ̸=k

θ̂5mkjGkj(σj − σ′
j) +

1

|Nk|
∑
j ̸=k

θ̂6DjmkjGkjσj

)
.

Given σj − σ′
j ≥ 0 and σj ≥ 0 for all j ∈ N , we further bounds the direct effect from below

by:
σk − σ′

k ≥ F ε(θ̂1 +X⊺
k θ̂3). (A.57)

For the units in the treated and untreated groups, the indirect treatment effects manifest
differently. Specifically, for units i in the treated group, their indirect treatment effects are
given by the first term in Eq.A.56:

σi−σ′
i ≥ F ε

( 1

|Ni|
∑
j ̸=i

θ̂5mijGij(σj−σ′
j)+

1

|Ni|
∑
j ̸=i,k

θ̂6DjmijGij(σj−σ′
j)+

1

|Ni|
(θ̂4+θ̂6σk)mikGik

)
.

(A.58)
We then further bound the indirect effects in Eq.A.58 by:

σi − σ′
i ≥ F ε

1

|Ni|
θ̂4mikGik ≥

F ε

N
θ̂4mikGik. (A.59)

For units m not in the treated group, the indirect treatment effects, which is given by the
second term of Eq.A.56, can be quantified as follows:

σm − σ′
m ≥ F ε

( 1

|Nm|
θ̂4mmkGmk +

1

|Nm|
∑
j ̸=m

θ̂5mmjGmj(σj − σ′
j)
)
.

This is further bounded below by:

σm − σ′
m ≥

F ε

N
θ̂4mmkGmk. (A.60)
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Combining Eq.A.57, Eq.A.59 and Eq.A.60 with Eq.A.56 leads to

Wn(R∪ {k})−Wn(R) ≥
F ε

NN

∑
i∈N\{k}

(
θ̂4mikGik

)
+
F ε

N
(θ̂1 +X⊺

i θ̂3).

Given that unit k has at least N neighbors, we have:

Wn(R∪ {k})−Wn(R) ≥
F εmθ̂4N

NN
+
F ε

N
(θ̂1 +X⊺

i θ̂3).

Therefore,

Wn(R ∪ {k})−Wn(R)

Wn(S ∪ {k})−Wn(S)
≥

F εmθ̂4N

NN
+

F ε

N
(θ̂1 +X⊺

i θ̂3)

τ(θ̂5 + θ̂6)m+ τ
N
(θ̂1 +X⊺θ̂3 +

θ̂4mN
N

)
,

which ranges between (0,1). As a consequence, the submodularity ratio

ξ = max
S⊆R⊂N ,k∈N\R

1− Wn(R ∪ {k})−Wn(R)

Wn(S ∪ {k})−Wn(S)
∈ (0, 1).

In addition, the curvature

γ = min
S ̸=R

∑
k∈R\S[Wn(S ∪ {k})−Wn(S)]

Wn(S ∪R)−Wn(S)
∈ (0, 1).

Combining with Bian et al. (2017, Theorem 1), we finish the proof.

A.4 Preliminary Lemmas

A.4.1 Lemma A.4.1

Lemma A.4.1. The ∥∇σI(σ, θ)
)−1∥∞ is a continuous function with respect to any entries of

∇σI(σ, θ).

Proof. Let A denote∇σI(σ, θ) and A−1 denote
(
∇σI(σ, θ)

)−1. By the definition of the Uniform
norm,

∥∇σI(σ, θ)
)−1∥∞ = max

i∈N

N∑
j=1

|A−1
ij |1.

To prove this maximum is a continuous function, two conditions of Berge’s Maximum Theo-
rem must be satisfied:

• Continuous Function: Let fi(A) =
∑N

j=1 |A
−1
ij |. Then, fi(A) = ∥A−1

i,: ∥, where Ai,: de-
notes the i-th row of matrix A. fi(A) is continuous with respect to the entries of A by
matrix inverse operation and the continuity of the ℓ1 norm calculation with respect to
the vector entries.
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• Compact Parameter Space: The set over which the maximum is taken (the set of row
indices i) is trivially compact as it is finite.

Therefore, by Berge’s Maximum Theorem, ∥∇σI(σ, θ)
)−1∥∞ is a continuous function with

respect to any entry of ∇σI(σ, θ).

A.4.2 Lemma A.4.2

Lemma A.4.2. Under Assumption 12, the smallest and largest eigenvalues of 1
n

∑n
i=1 ẐiẐ

⊺
i and

1
n

∑n
i=1 ZiZ

⊺
i are continuous functions of any element of Zi and Ẑi, for any i = 1, ..., n.

Proof. Denote the matrix 1
N

∑N
i=1 ZiZ

⊺
i as B. B is a symmetric matrix. Therefore, its smallest

(ηmin) and largest (ηmax) eigenvalues are given by

ηmin(B) = min
θ ̸=0∈Rdθ

θ⊺Bθ

θ⊺θ
, (A.61)

ηmax(B) = max
θ ̸=0∈Rdθ

θ⊺Bθ

θ⊺θ
. (A.62)

Since we are studying the continuous property of ηmin (ηmax) to Z given a θ, we restrict θ to
be a unit vector (i.e., ∥θ∥2 = 1) without lose of generality. Rewrite above equations as:

ηmin(B) = min
θ:∥θ∥2=1

θ⊺Bθ.

ηmax(B) = max
θ:∥θ∥2=1

θ⊺Bθ.

Now, we apply the Berge Maximum Theorem to Eq.A.61 and Eq.A.62 to study the continuous
property. Two conditions of the Berge Maximum Theorem must be satisfied:

• Continuous Function: Given θ⊺Bθ is a quadratic function, and ∥θ∥2 = 1 (i.e., θ ̸= 0), it
must be a continuous function w.r.t. θ and Zi for all i ∈ N .

• Compact Parameter Space: Given ∥θ∥2 = 1, the parameter space is compact.

Therefore, by Berge’s Maximum Theorem, the largest and smallest eigenvalues are continu-
ous functions of any element of Zi. By employing a symmetric argument to 1

n

∑n
i=1 ẐiẐ

⊺
i , we

finish the proof.

A.4.3 Lemma A.4.3

Lemma A.4.3. Under Assumptions 12, 13, and 15:

Eεn
[
sup
θ∈Θ
|Ak(θ)|

∣∣S, σdata
]
≤ CA

√
1 + ln(2)

n
,

where CA is a constant that depends only on the support of covariates, the distribution of ε and
Cσ.
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Proof. Recall Ak(θ) = ∇kM̂(θ)−∇kM(θ), and

∇kM̂(θ) =
1

n

n∑
i=1

[
Yi
F ′
ε(Ẑ

⊺
i θ)

Fε(Ẑ
⊺
i θ)
− (1− Yi)

F ′
ε(Ẑ

⊺
i θ)

1− Fε(Ẑ
⊺
i θ)

]
Zik,

∇kM(θ) =
1

n

n∑
i=1

[
Yi
F ′
ε(Z

⊺
i θ)

Fε(Z
⊺
i θ)
− (1− Yi)

F ′
ε(Z

⊺
i θ)

1− Fε(Z
⊺
i θ)

]
Zik.

Let θ̃ := arg supθ∈Θ |Ak(θ)|. Therefore,

Ak(θ̃) =
1

n

n∑
i=1

[
Yi

(F ′
ε(Ẑ

⊺
i θ̃)

Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

Fε(Z
⊺
i θ̃)

)
− (1− Yi)

( F ′
ε(Ẑ

⊺
i θ̃)

1− Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

1− Fε(Z
⊺
i θ̃)

)]
Zik.

Applying the Mean value theorem,

F ′
ε(Ẑ

⊺
i θ̃)

Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

Fε(Z
⊺
i θ̃)

= (Ẑi − Zi)
⊺∇Z

F ′
ε(Z̃

⊺
i θ̃)

Fε(Z̃
⊺
i θ̃)

,

and
F ′
ε(Ẑ

⊺
i θ̃)

1− Fε(Ẑ
⊺
i θ̃)
− F ′

ε(Z
⊺
i θ̃)

1− Fε(Z
⊺
i θ̃)

= (Ẑi − Zi)
⊺∇Z

F ′
ε(Z̃

⊺
i θ̃)

1− Fε(Z̃
⊺
i θ̃)

,

for some Z̃i ∈ Rdθ on the segment from Ẑi to Zi. Therefore,

|Ak(θ̃)| =
1

n

n∑
i=1

|Yiω0(Z̃
⊺
i θ̃)(Ẑi − Zi)

⊺Z̃i − (1− Yi)ω1(Z̃
⊺
i θ̃)(Ẑi − Zi)

⊺Z̃i|Zik

≤ 1

n

n∑
i=1

[
Yi|ω0(Z̃

⊺
i θ̃)∥(Ẑi − Zi)

⊺Z̃i|+ (1− Yi)|ω1(Z̃
⊺
i θ̃)∥(Ẑi − Zi)

⊺Z̃i|
]
Zik

≤ 1

n

n∑
i=1

|ω∥(Ẑi − Zi)
⊺Z̃i|Zik.

By the Cauchy–Schwarz inequality, we have:

|Ak(θ̃)| ≤
1

n

n∑
i=1

|ω∥Ẑi − Zi∥1∥Z̃i∥∞Zik

≤ |ω|z̄2 1
n

n∑
i=1

∥Ẑi − Zi∥1,
(A.63)

where z := maxi=1,...,n ∥Zi∥∞. Recall the definition of Ẑi from Eq.3.17:

Ẑi =
(
1,Di,X

⊺
i ,X

⊺
iDi,

1

|Ni|
∑
j ̸=i

mijGijDj,
1

|Ni|
∑
j ̸=i

mijGijσ̂
data
j ,

1

|Ni|
∑
j ̸=i

mijGijσ̂
data
j DiDj

)⊺
.
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Therefore, we rewrite ∥Ẑi − Zi∥1 as:

∥Ẑi − Zi∥1 =
∣∣∣ 1

|Ni|
∑
j ̸=i

mijGij(σ̂
data
j − σdata

j )
∣∣∣+ ∣∣∣ 1

|Ni|
∑
j ̸=i

mijGij(σ̂
data
j − σdata

j )DiDj

∣∣∣.
By triangle inequality,

∥Ẑi − Zi∥1 ≤
1

|Ni|
∑
j ̸=i

|mij|Gij(1 + DiDj)|σ̂data
j − σdata

j |.

Applying Lemma A.4.5, and defining m := maxi,j∈N |mij|, we have

Eεn [∥Ẑi − Zi∥1|S, σdata] ≤ 3mCσ

√
1 + ln(2)

n
. (A.64)

Plug Eq.A.64 into Eq.A.63,

Eεn
[
sup
θ∈Θ
|Ak(θ)|

∣∣S, σdata
]
≤ 3|ω|z̄2mCσ

√
1 + ln(2)

n
.

Setting CA = 3|ω|z̄2mCσ, completes the proof.

A.4.4 Lemma A.4.4

Lemma A.4.4. Define z := maxi=1,..,n ∥Zi∥∞. Under Assumption 12 to 16, we have:

Eεn

[
sup
θ∈Θ
|Bk(θ)|

∣∣∣S, σdata
]
≤ 1√

n

(
1 + CB1

√
dθ log(1 + CB2

√
n)
)
,

where CB1 is a universal constant that only depend on the distribution Fεn and CB2 = 4|ω|z2.

Proof. For a given δ ≥ 0 and associated covering numberH = Nc(δ,Θ, L1), let U := {θ1, ..., θH}
be a δ-cover of Θ. For any θ ∈ Θ, we can find some θℓ such that ∥θ − θℓ∥1 ≤ δ. Let
θ̃ := arg supθ∈Θ |Bk(θ)|. Therefore,

|Bk(θ̃)| = |Bk(θ̃)− Bk(θ
ℓ) + Bk(θ

ℓ)|
≤ |Bk(θ̃)− Bk(θ

ℓ)|+ |Bk(θ
ℓ)|

≤ sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)|+ max

ℓ=1,...,H
|Bk(θ

ℓ)|.
(A.65)

Apply Lemma A.4.6 to bound the first term in Eq.A.65:

Eεn

[
sup

γ,γ′∈Θ
∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)|
∣∣∣S, σdata

]
≤ |ω|z̄2δ, (A.66)
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where z := maxi=1,..,n ∥Zi∥∞. To bound the second term in Eq.A.65, we introduce {ε̃i}ni=1, an
independent copy of εn that follows the same distribution Fεn. Hence, the associated {Ỹi}ni=1

(i.e., Ỹi = 1{αi +
∑

j ̸=i βijσ
data
j − ε̃i ≥ 0}) has the same distribution as {Yi}Ni=1 conditional on

the S and σdata. We denote the expectation with respect to ε̃ as Eε̃(·). Recall that the criterion
function is:

mYi,Zi
(θ) := Yi log(Fε(Z

⊺
i θ)) + (1− Yi) log(1− Fε(Z

⊺
i θ)).

Denote the empirical measure of our criterion function with {Ỹi}Ni=1 as M̃(θ):

M̃(θ) :=
1

n

n∑
i=1

mỸi,Zi
(θ).

By definition of Ỹi, we have M(θ) := Eεn [M(θ)|S, σdata] = Eε̃[M̃(θ)|S, σdata]. Therefore,

Eεn

[
max

ℓ=1,...,H
|Bk(θ

ℓ)|
∣∣∣S, σdata

]
= Eεn

[
max

ℓ=1,...,H

∣∣∣∇kM(θℓ)−∇kEε̃[M̃(θℓ)|S, σdata]
∣∣∣S, σdata

]
= Eεn

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

[
∇kmYi,Zi

(θℓ)−∇kEε̃[mỸi,Zi
(θℓ)

∣∣S, σdata]
]∣∣∣∣∣S, σdata

]
= Eεn

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

Eε̃

[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

∣∣S, σdata
]∣∣∣∣∣S, σdata

]
(By Leibniz rule)

≤ Eεn,ε̃

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

]∣∣∣∣∣S, σdata
]
.

Define i.i.d Rademacher variables ν := (ν1, ..., νn) such that Pr(νi = 1) = Pr(νi = −1) = 1
2
.

Since mYi,Zi
(θℓ)−mỸi,Zi

(θℓ) ∼ νi[mYi,Zi
(θℓ)−mỸi,Zi

(θℓ)], we have

Eεn,ε̃

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

]∣∣∣∣∣S, σdata
]

= Eεn,ε̃,ν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi
[
∇kmYi,Zi

(θℓ)−∇kmỸi,Zi
(θℓ)

]∣∣∣∣∣S, σdata
]

≤ Eεn,ε̃,ν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmYi,Zi
(θℓ)

∣∣+ max
ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmỸi,Zi
(θℓ)

∣∣∣∣∣S, σdata
]

= 2Eεn,ν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmYi,Zi
(θℓ)

∣∣∣∣∣S, σdata
]

= 2Eεn

[
Eν

[
max

ℓ=1,...,H

∣∣ 1
n

n∑
i=1

νi∇kmYi,Zi
(θℓ)

∣∣∣∣∣S, σdata
]∣∣∣S, σdata

]
.
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By Lemma A.4.7, 1
n

∑n
i=1 νi∇kmYi,Zi

(θℓ) is a sub-Gaussian process with parameter τ/
√
nυ2.

Therefore, by the upper bound of sub-Gaussian maxima (Lemma A.5.5), we have:

E
[

max
ℓ=1,...,H

|Bk(θ
ℓ)|
∣∣∣S, σdata

]
≤ 2τ√

nυ

√
log(Nc(δ,Θ, L1)). (A.67)

Now, apply Lemma A.4.8 to bound the L1-metric entropy log(Nc(δ,Θ, L1)):

log(Nc(δ,Θ, L1)) ≤ dθ log
(
1 +

2

δ

)
. (A.68)

Combining Eq.A.67 with Eq.A.68, we have:

E
[

max
ℓ=1,...,H

|Bk(θ
ℓ)|
∣∣∣S, σdata

]
≤ 2τ

√
dθ√

nυ

√
log

(
1 +

2

δ

)
. (A.69)

Combining Eq.A.65 with Eq.A.66 and Eq.A.69, we have:

E
[
|Bk(θ̃)|

∣∣∣S, σdata
]
≤ ωz̄2δ +

2τ
√
dθ√

nυ

√
log

(
1 +

2

δ

)
.

By choosing δ = 1
ωz̄2

√
n
, we conclude:

E
[
sup
θ∈Θ
|Bk(θ)|

∣∣∣S, σdata
]
≤ 1√

n

(
1 +

2τ

υ

√
dθ log(1 + 2|ω|z̄2

√
n)
)
.

To finish the proof, define CB1 = 2τ/υ, and CB2 = 2|ω|z̄2.

A.4.5 Lemma A.4.5

Lemma A.4.5. Under Assumption 13, for all i = 1, ..., n,

Eεn
[
|σ̂data

i − σdata
i |

∣∣S, σdata
]
≤ Cσ

√
1 + ln(2)

n
.

Proof. This proof follows the same proof strategy as Lemma 5.1 in Kitagawa and Wang
(2023b). Recall that for any nonnegative random variable Y, E(Y ) =

∫∞
0

Pr(Y ≥ t)dt. Hence,
for any a > 0,

E(|σ̂data
i − σdata

i |2) =
∫ ∞

0

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt

=

∫ a

0

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt+

∫ ∞

a

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt

≤ a+

∫ ∞

a

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt.
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Assumption 13 implies that Pr(|σ̂data
i − σdata

i | ≥
√
t) ≤ 2e−Nt/C2

σ . Hence,

E(|σ̂data
i − σdata

i |2) ≤ a+

∫ ∞

a

Pr(|σ̂data
i − σdata

i |2 ≥ t)dt

= a+

∫ ∞

a

Pr(|σ̂data
i − σdata

i | ≥
√
t)dt

≤ a+ 2

∫ ∞

a

e−nt/C2
σdt

= a+ 2
C2

σ

n
e−Na/C2

σ .

Set a = C2
σ ln(2)/n and we have

E(|σ̂data
i − σdata

i |2) ≤ ln(2)C2
σ

n
+
C2

σ

n
= C2

σ

1 + ln(2)

n
.

Therefore,

E(|σ̂data
i − σdata

i |) ≤
√

(E(|σ̂data
i − σdata

i |2) ≤ Cσ

√
1 + ln(2)

n
.

A.4.6 Lemma A.4.6: Lipschitz Property

Lemma A.4.6. (Lipschitz Property) Define z := maxi=1,...,n ∥Zi∥∞. The following condition on
G̃n(·) is satisfied:

sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)| ≤ |ω|z̄2δ.

Proof. First, we have:

sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)| ≤ sup

γ,γ′∈Θ
∥γ−γ′∥1≤δ

|∇kM(γ)−∇kM(γ′)|+ sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|∇kM(γ′)−∇kM(γ)|.

(A.70)

The first term in Eq.A.70 is:

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

Yi

[F ′
ε(Z

⊺
i γ)

Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

Fε(Z
⊺
i γ

′)

]
Zik

− 1

n

n∑
i=1

(1− Yi)
[ F ′

ε(Z
⊺
i γ)

1− Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

1− Fε(Z
⊺
i γ

′)

]
Zik.
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The second term in Eq.A.70 is:

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

Eεn

[
Yi
[F ′

ε(Z
⊺
i γ)

Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

Fε(Z
⊺
i γ

′)

]
Zik

∣∣∣S, σdata
]

− 1

n

n∑
i=1

Eεn

[
(1− Yi)

[ F ′
ε(Z

⊺
i γ)

1− Fε(Z
⊺
i γ)
− F ′

ε(Z
⊺
i γ

′)

1− Fε(Z
⊺
i γ

′)

]
Zik

∣∣∣S, σdata
]
.

Applying the Mean Value Theorem to both, we have:

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

[
Yiω0(Z

⊺
i γ́)− (1− Yi)ω1(Z

⊺
i γ́)

]
ZikZ

⊺
i (γ − γ′),

∇kM(γ)−∇kM(γ′) =
1

n

n∑
i=1

[
σn
i ω0(Z

⊺
i γ̀)− (1− σi)ω1(Z

⊺
i γ̀

n)
]
ZikZ

⊺
i (γ − γ′).

where σn
i = Eεn [Yi|S, σdata], and for some γ́ ∈ Rdθ , γ̀ ∈ Rdθ on the segment from γ to γ′. Then,

|∇kM(γ)−∇kM(γ′)| ≤ 1

n

n∑
i=1

|Yiω0(Z
⊺
i γ̀)− (1− Yi)ω1(Z

⊺
i γ̀)| · |Zik| · |Z⊺

i (γ − γ′)|. (A.71)

By Assumption 15, ω0(a) < 0 and ω1(a) > 0 for all a ∈ R. Recall that

ω0 := min
x∈Ξ

ω0(x), ω1 := min
x∈Ξ
−ω1(x), ω := min{ω0, ω1}. (A.72)

Combining Eq.A.71 with Eq.A.72, we have

|∇kM(γ)−∇kM(γ′)| ≤ |ω|
n

n∑
i=1

|Z⊺
i (γ − γ′)| · |Zik|

≤ |ω|
n

n∑
i=1

∥Zi∥22||γ − γ′∥1

(By Holder’s Inequality)
≤ |ω|z̄2∥γ − γ′∥1,

where z := maxi=1,...,n ∥Zi∥∞. By the same argument,

|∇kM(γ)−∇kM(γ′)| ≤ |ω|z̄2∥γ − γ′∥1.

Combining above two equations with Eq.A.70 gives:

sup
γ,γ′∈Θ

∥γ−γ′∥1≤δ

|Bk(γ)− Bk(γ
′)| ≤ |ω|z̄2δ.
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A.4.7 Lemma A.4.7: Sub-Guassian Process

Lemma A.4.7. (Sub-Guassian Process) Define z := maxi=1,...,n ∥Zi∥∞. 1
n

∑n
i=1 νi∇kmYi,Zi

(θℓ)

is a sub-Gaussian process with parameter τ/
√
nυ2.

Proof. We start from the expectation of the moment-generating function of 1/n
∑n

i=1 νi∇kmYi,Zi
(·),

which is

Eν

[
exp

[ 1
n

n∑
i=1

sνi∇kmYi,Zi
(θℓ)

]∣∣∣S, σdata
]
=

n∏
i=1

Eν

[
exp

[ s
n
νi∇kmYi,Zi

(θℓ)
]∣∣∣S, σdata

]
,

where the equality holds as {εi}ni=1, {vi}ni=1 are i.i.d. In addition, the gradient of mYi,Zi
(θℓ) is:

∇θmYi,Zi
(θℓ) =

[
Yi
F ′
ε(Z

⊺
i θ

ℓ)

Fε(Z
⊺
i θ

ℓ)
− (1− Yi)

F ′
ε(Z

⊺
i θ

ℓ)

1− Fε(Z
⊺
i θ

ℓ)

]
Zi.

Therefore,

Eν

[
exp

[ 1
n

n∑
i=1

sνi∇kmYi,Zi
(θℓ)

]∣∣∣S, σdata
]

=
n∏

i=1

Eν

[
exp

[sνi
n

(
Yi
F ′
ε(Z

⊺
i θ

ℓ)

Fε(Z
⊺
i θ

ℓ)
− (1− Yi)

F ′
ε(Z

⊺
i θ

ℓ)

1− Fε(Z
⊺
i θ

ℓ)

)
Zik

]∣∣∣S, σdata
]
.

By Hoeffding’s Lemma (Lemma A.5.4),

Eν

[
exp

[ 1
n

n∑
i=1

sνi∇kmYi,Zi
(θℓ)

]∣∣∣S, σdata
]

≤
n∏

i=1

exp
[ s2
2n2

(
Yi
F ′
ε(Z

⊺
i θ

ℓ)

Fε(Z
⊺
i θ

ℓ)
− (1− Yi)

F ′
ε(Z

⊺
i θ

ℓ)

1− Fε(Z
⊺
i θ

ℓ)

)2

Z2
ik

]
≤

n∏
i=1

exp
[ s2
2n2

(
Yi
τ

υ
+ (1− Yi)

τ

υ

)2

Z2
ik

]
= exp

[ s2τ 2
2n2υ2

n∑
i=1

Z2
ik

]
≤ exp

[ s2τ 2
2nυ2

z̄2
]
.

Recall υ := min{F ε, 1 − F ε}, where F ε := minθ∈Θ
z∈Z

Fε(z
⊺θ), and F ε := maxθ∈Θ

z∈Z
Fε(z

⊺θ). There-

fore, 1
n

∑n
i=1 νi∇kmYi,Zi

(θℓ) is a sub-Gaussian process with parameter τ/
√
nυ2.
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A.4.8 Lemma A.4.8: Covering Number

Lemma A.4.8. (Covering Number) The δ-covering number of a compact parameter space Θ ∈
Rdθ with L1 metric Nc(δ,Θ, L1) is upper bounded by (1 + 1

δ
)dθ .

Proof. As parameter space Θ is compact, there exists a constant Cθ such that supθ∈Θ ∥θ∥1 ≤
Cθ < ∞. Let us denote Cθ-ball as B := {θ ∈ Rdθ | ∥θ∥1 ≤ Cθ}. Then, the covering num-
ber of the parameter space Nc(δ,Θ, L1) is bounded by the covering number of the Cθ-ball
Nc(δ, B, L1). Applying Lemma A.5.3, we have:

Nc(δ, B, L1) ≤
vol

(
(1 + 2

δ
)B

)
vol(B)

=
(
1 +

2

δ

)dθ ,
where the first inequality holds as the Cθ-ball is defined using the same metric as the covering
number. Therefore,

Nc(δ,Θ, L1) ≤
(
1 +

2

δ

)dθ .

A.5 Results from Previous Literature

Lemma A.5.1. (Extreme Value Theorem) If f is continuous on a closed interval [a, b], then f
attains both an absolute maximum value and an absolute minimum value at some numbers in
[a, b] .

Lemma A.5.2. (Berge’s Maximum Theorem (Berge, 1963)) Let X ⊆ RL and Y ⊆ RK , let
f : X × Y → R be a continuous function and Γ : X → Y be a compact-valued and continuous
correspondence. Then the function v : X → R such that v(x) = supy∈Γ(x) f(x, y) is continuous.

Lemma A.5.3. (Volume ratios and Metric Entropy (Wainwright, 2019, §Lemma 5.7)) Con-
sider a pair of norms ∥ · ∥ and ∥ · ∥′ on Rd, and let B and B′ be their corresponding unit balls
(i.e., B = {θ ∈ Rd | ∥θ∥ ≤ 1}, with B′ similarly defined). Then the δ-covering number of B in
the ∥ · ∥′-norm obeys the bounds(

1

δ

)d
vol(B)

vol(B′)
≤ Nc(δ;B, ∥ · ∥′) ≤

vol
(
2
δ
B +B′)

vol(B′)
.

Lemma A.5.4. (Hoeffding’s Lemma) Let X be a random variable with EX = 0, a ≤ X ≤ b.
Then, for s > 0,

E(esX) ≤ es
2(b−a)2/8.

Lemma A.5.5. (Upper bounds for Sub-Gaussian maxima) Let λ > 0, n ≥ 2, and let
Y1, . . . , Yn be real-valued random variables such that, for all s > 0 and 1 ≤ i ≤ n, E(esYi) ≤
eλ

2s2/2 holds. Then,

(i) E(maxi≤n Yi) ≤ λ
√
2 lnn,
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(ii) E(maxi≤n |Yi|) ≤ λ
√

2 ln(2n) ≤ 2λ
√

ln(n).

Lemma A.5.6 (Hoeffding’s inequality (Hoeffding, 1963)). LetX1, ..., Xn be independent bounded
random variables such that Xi falls in the interval [ai, bi] with probability one. Denote their sum
by Sn =

∑n
i=1Xi. Then for any ε > 0 we have

Pr{Sn − ESn ≥ ε} ≤ e−2e2/
∑n

i=1(bi−ai)
2

,

and
Pr{Sn − ESn ≤ −ε} ≤ e−2e2/

∑n
i=1(bi−ai)

2

.
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