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Abstract: Distributed generation (DG) sources play a special role in the operation of active energy
networks. The microgrid (MG) is known as a suitable substrate for the development and installation
of DGs. However, the future of energy distribution networks will consist of more interconnected and
complex MGs, called multi-microgrid (MMG) networks. Therefore, energy management in such an
energy system is a major challenge for distribution network operators. This paper presents a new
energy management method for the MMG network in the presence of battery storage, renewable
sources, and demand response (DR) programs. To show the performance of each connected MG’s
inefficient utilization of its available generation capacity, an index called unused power capacity
(UPC) is defined, which indicates the availability and individual performance of each MG. The
uncertainties associated with load and the power output of wind and solar sources are handled by
employing the chance-constrained programming (CCP) optimization framework in the MMG energy
management model. The proposed CCP ensures the safe operation of the system at the desired
confidence level by involving various uncertainties in the problem while optimizing operating costs
under Mixed-Integer Linear Programming (MILP). The proposed energy management model is
assessed on a sample network concerning DC power flow limitations. The procured power of each
MG and power exchanges at the distribution network level are investigated and discussed.

Keywords: energy management; optimization; chance-constrained; multi-microgrid; demand response;
renewable energy; confidence level

1. Introduction

The emergence of new players in the electrical distribution network, such as dis-
tributed generation (DG), demand response programs (DPRs), energy storage systems, etc.,
leads to the transition from passive networks to active networks [1]. A microgrid (MG) as
an active network is a collection of dispersed energy supplies and interconnected loads
that function as a coordinated entity concerning the upstream grid. The global MG market
size was estimated at USD 76.88 billion in 2023 and is projected to grow up to 17.1% by the
end of 2030 [2]. This rapid integration requires the identification of leading requirements
and challenges. Hence, in this section, the main motivation of the research, the literature
review, and gaps, as well as the main contributions of this study, are introduced separately.

1.1. Background and Motivation

The substantial need to benefit from a distribution network with high reliability and
flexibility and the related issues of distribution systems is always one of the critical chal-
lenges for energy producers. Expanding the system with DGs is one of the solutions for
resolving such challenges. An MG can be characterized as an active power network that
employs distributed energy resources to supply backup or off-grid power to meet the de-
mands of local electricity consumers [3,4]. MGs provide a suitable opportunity to facilitate
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the installation of DGs for several purposes such as power loss minimization, reliability
improvement, cost minimization, etc. Additionally, MGs yield service reliability enhance-
ment, emission reduction, and power quality improvement for end-users by exploiting
demand response (DR) and energy storage technology [5].

Along with the aforementioned benefits for MGs, the rapid growth of renewable
resources with a probabilistic nature causes various challenges in the optimal operation
of such networks; if these are not effectively managed, the security and reliability of the
network will be compromised [6]. The importance of these challenges multiplies with
the growing interest in MG development and installation for various purposes, such as
improving reliability, reducing costs, reducing pollution, and digitalization, which grounds
anew trend in the future of distribution networks, where each area of the network operates
in a decentralized manner in the form of a multi-microgrid (MMG) grid. The MMG network
consists of more than one MG connected to the grid operating together to serve the local
community more efficiently [7]. Hence, energy management in such a distribution network
with a high penetration of uncertain/intermittent energy resources is necessary to improve
the system’s efficiency and economic benefits.

1.2. Literature Review

Many researchers have addressed the problem of MG energy management using aging
optimization techniques and meta-heuristic methods [8-23]. In [8], the risk-based operation
of the islanded MG to enhance the energy management model by using the cloud and
a big data framework was developed. Furthermore, the authors of [9] adopted a multi-
layer ant colony optimization approach to schedule MG day-ahead energy scheduling.
Although metaheuristic approaches are known to be strong in identifying solutions to
complicated optimization problems, the final solution cannot be decisively claimed to be
globally optimal. As a result, mathematical techniques are proper candidates for solving
energy management problems in most cases [10]. In [11], optimal energy management
has been proposed for the multi-energy type MGs, whose model has been formulated as a
multi-objective scenario-based stochastic problem.

The most critical research gap in the corresponding literature relates to considering the
related uncertainties in the problem’s formulation, as well as flexible emerging technolo-
gies’ integration into MG operation, such as energy storage and DR. The electrical power
systems have already been affected by uncertainties resulting from the load and renewable
energy variations. Consequently, the uncertainty sources must be included in the MG
systems’ energy management model where deterministic methods cannot be utilized. The
factual accuracy of the daily power output of renewable sources is low and has already
been approved in [12]; hence, the researchers must consider the uncertainty in the prob-
lems of day-ahead energy management. It should be noted that probabilistic methods are
conventional approaches to addressing day-ahead energy management problems [13]. In a
conducted study [14], a stochastic framework was suggested for optimal hybrid AC-DC
MGs alongside renewable energy sources. Ref. [15] proposed a new energy strategy trading
approach for multi-sector MGs by utilizing a stochastic game model based on recourse.
Furthermore, the researchers have presented a data-driven charging method for electric
vehicles in MG [16]. In this research, electric vehicles” behaviors and demand levels have
been taken into account as uncertainty sources, which are managed to employ conditional
value at risk. In another study [17], an enhanced energy management framework for opti-
mal MG operation in the presence of emission constraints has been provided; nevertheless,
as a weak point similar to that of the study mentioned above, the network constraints have
not been modeled. In [18], the optimal scheduling of hybrid AC-DC reconfigurable MGs
has been studied; the proposed strategy has been formulated as a multi-objective problem
to minimize the cost and emission rate using a heuristic method. The multi-objective
energy management of islanded MG incorporated with high solar power integration was
developed by [19]. This paper focused on renewable source control to manage voltage
without considering load management. Short-term MG energy management with online
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optimization was studied by [20]. This paper only focused on battery management online
services for MG applications. The role of the Internet of Things, digital twins, and the high
penetration of renewable energy in MG management was evaluated by [21]. This paper
developed the net-zero concept for smart MG based on the communication infrastructure.
Fuzzy-based multi-objective energy management of MG integrated with a battery storage
system was studied by [22]. Both economic and environmental objectives are addressed
with the slime mold algorithm. As expected, the solution is not completely optimal.

Renewable energy sources like wind, PV systems, and load changes introduce uncer-
tainty into the energy management problem of MMG systems, making it more difficult and
complex. In [23], the CCP approach was developed in the unit commitment problem under
the high-level uncertainty of the wind power and load demand. The authors of this study
used the Benders decomposition to relax the complex optimization problem. The CCP
framework has been developed by [24] to coordinate, pre-contingency, the reserve and en-
ergy operation of a virtual power plant in the presence of renewable energy. The proposed
model was evaluated on 33 and 95 IEEE test systems, and the numerical results reveal that
while the confidence level of the system increased, the energy and reserve costs increased,
consequently. The generation expansion planning of the power system in the presence of
flexible emerging resources under the distributionally robust chance-constrained method
was evaluated by [25]. The proposed model improved the reliability of the system, while the
investment cost grew notably. In [26], a hybrid CCP multi-objective strategy of multi-carrier
MG integrated with energy storage and carbon recycling technology was developed. The
numerical results show a 50% reduction in carbon emission, while the total cost increased
by 2.5%. The cooperation of a hybrid MG in the hydrogen, heat, and electricity sectors
to co-optimize energy and reserve schemes under the chance-constrained approach was
developed by [27]. Authors in [28] proposed a chance-constrained performance strategy for
smart distribution systems, considering virtual power lines under the second-order cone
programming OPF challenge. This study focused on the technical challenges in the power
system, and the numerical results show the efficiency of the model in terms of power loss
and voltage regulation, ignoring the economic term. Ref. [29] proposed the distributionally
robust chance-constrained operation of a hybrid MG integrated with large-scale battery
storage and renewable energy. The results of this research show the performance of the
proposed model in terms of reliability, operation cost, and computational complexity. Some
studies have addressed this issue by using Monte-Carlo simulations and a robust CCP
approach to deal with the uncertainties [3]. However, these studies only focused on a
single MG and ignored the network constraints. Therefore, more research is needed to
schedule the MMG systems in the presence of flexible resources, while considering the
security limitations. In [30], a distributionally robust approximation approach for MG
operation considering chance constraint was studied. This paper only analyzed the risk
of the profit in MG, and no confidence level was considered under the chance constraint.
In [31], a comprehensive review of the most recent mathematical formulation for applica-
tions of smart technologies in future microgrids was developed. To this end, the standard
of communication in smart microgrids, the Internet of Things, cybersecurity, and big data,
are discussed.

On the other hand, the rapid growth of MG penetration into the distribution network
generates a new concept called MMG systems. In this regard, many distribution system
sections become active MGs. The investigation of the energy management of such sys-
tems has gained researchers’ interest, so numerous studies have been conducted to tackle
the emerging issues caused by MMG systems development [32]. A robust strategy in
MMG energy management based on peer-to-peer trading has been developed [33]. In this
paper, we have developed a robust model to handle the demand and renewable energy
output. Ref. [34] presented a framework to schedule MMG systems by exploiting a hybrid
stochastic—robust approach in which day-ahead and real-time energy prices have been
considered in the energy management process. In one study, the authors introduced an
energy management strategy for MMG systems to address contingency issues along the
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MMG lines using contingency probability [35]. In the study conducted in [36], the authors
propose a novel approach for managing the energy of distribution networks with MMG,
incorporating demand response programs and accounting for uncertainties in renewable
energy sources, loads, and prices. They modeled energy management as a problem with
multiple objectives and solved it using the NSGA-II meta-heuristic method. In the research
carried out in [37], joint methods have been proposed to perform energy scheduling in
the MMG network. A new measure of performance/success for the energy distribution
process has been constructed in this research while taking into account uncertainties and
factors caused by load, wind, and PV systems. Moreover, the authors in [38] have presented
a distributed energy management method for the joint operation of MMG systems that
includes both heat and power systems. Flexible energy technologies such as DR, trans-
active energy, and supercapacitor storage are integrated into MMG under the stochastic
framework [39]. Although this paper outlines a flexible schematic of MMG, the network
constraints have been ignored. In [40], a comprehensive machine learning approach is
applied to forecast CO2 emissions in energy systems. This paper compares various machine
learning approaches, including linear regression and neural networks.

1.3. Contributions and Research Gaps

The corresponding literature features the evaluation of various aspects of MGs and
MMG systems’ performance and functions, carried out by different methods. Table 1 lists
the most closely related methodologies presented so far in the operation and modeling
of MGs and MMG functions. According to the research conducted in the field, it can
be perceived that MMG systems energy management is a demanding research subject.
Moreover, it is deduced that energy management is a primary tool contributing to the
system’s reliable and economic operation.

Table 1. The main technologies and novelties of the current study compared to the related works.

Ref Uncertain Parameter Power Demand Single/Multi Uncerta%nty Conﬁc.ien.ce': Level and
Load PV Wind Flow Response MG Modelling Reliability Index
[17] - v v - - Single MG Scenario-based -
[29] v v v v v Single MG CCP Confidence level
[30] v v v - - Single MG Robust/CCP -
[33] v v v - - MMG Robust Confidence level
[35] - - - v - MMG - -
[38] v v v - v MMG Robust -
[39] v v - - v MMG Stochastic -
[41] - v v - - Single MG Scenario-based -
[42] - v v - - Single MG Scenario-based -
[43] - - v - - Single MG CcCp -
[44] - v v v v MMG Scenario-based -
Deov s 0 e cr Comeindd

In terms of optimization techniques, it should be mentioned that the CCP approach is
an appropriate choice for addressing uncertainties in MMG energy management, and with
low computational complexity, it facilitates the modeling of uncertain parameters in the
problem. The computational burden plays a significant role in hierarchical methods where
there are multiple optimization stages. This issue can be effectively overseen by exploiting
the features of the CCP method.
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The comprehensive literature review mentioned above reveals four main shortcomings
(“Sh.”), as follows:

Sh.1. Refs. [8-22] focused on the energy management of a single MG without the
integration of DR and comprehensive uncertainty modeling. In some cases, energy man-
agement is conducted to improve the system’s dynamic without involving uncertain
parameters;

Sh.2. Refs. [24-31], while developing novel optimization techniques in single-MG
management and operation, such as robust optimization, CCP, and machine learning
frameworks, to handle the uncertainty, power flow limitation is rarely addressed. This
leads to an unrealistic model. Also, the reliability index for energy availability is not
provided for MG by these studies;

Sh.3. Refs. [14-16,19-23,30-34] have not considered DR and flexible load as a main
component of MG. The DR flexibility service will play a critical role in MMG scheduling,
which has been ignored in a wide range of research;

Sh.4. Refs. [32-39] are focused on MMG management and operation. However, the
interdependency and energy exchange between neighboring MGs under the coordinated
strategy have not been addressed. Also, the reliability index used to improve energy
balance in the networked MG incorporated with load and renewable energy uncertainty
has been ignored.

To tackle these shortages in previous research, this paper concentrates on the optimal
performance of MMG networks integrated with local DG and flexible demand-side man-
agement sources, under the CCP framework. For each MG, a new index, namely, unused
power capacity (UPC), is defined to provide some useful information about its energy level,
individually. The proposed model ensures the safe operation of the MMG network. Each
MG serves a local load, which has both responsive and non-responsive users. The DR is
implemented for the responsive loads (RLs) to give more flexibility to the entire system. So,
the main points of the current work can be listed as follows:

e Proposing the multi-microgrid network infrastructure to provide more flexibility
for the distribution network. The interconnected MGs can receive/inject the power
from/into the corresponding bus;

e  Proposing the chance-constrained programming approach to guarantee the confidence
level of the system’s operation with high reliability. A model identifies the uncertainty
of wind, PV, as well as load demand. Unlike scenario generation-based methods, the
CCP guarantees the safety performance of the whole system with a lower burden of
calculations;

e Developing the demand response program in individual MG to smooth the load curve,
besides improving the flexibility of MMG;

e Introducing a new index named “UPC” for individual MG yields a more efficient
energy management strategy at the microgrid and distribution network levels.

1.4. Paper Organization

The rest of this paper is summarized as: The MMG network structure and the problem
description are presented in Section 2. Section 3 presents the problem formulation. Also,
the CCP method is discussed at the end of this section. The results and case studies are
discussed in Section 4. Finally, Section 5 concludes the paper.

2. Multi-Microgrid Structure

Eelectrical distribution systems are evolving towards a grid consisting of small-scale
interconnected MGs that exchange power to serve local loads. MGs operate under the
supervision and control of a single operator in a distributed manner. In the meantime,
MGs can exchange energy with their respective bus (connected to the grid). The term
interconnected MGs, the so-called MMG infrastructure, refers to distribution networks
consisting of various MGs, as shown in Figure 1.
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Figure 1. The structure of MMG with multiple types of DGs.

According to Figure 1, each MG is equipped with energy storage systems, renewable
sources, loads, and distributed generators. These connected MGs can exchange energy in
the neighborhood and manage local loads through local resources in a distributed manner.

For the better management of resources and to address surpluses or shortages of
available energy, the status of each MG should be monitored. In this way, the network
operator can implement the energy management model with a better view to ensure the
reliable performance of the network. Hence, the UPC index is defined to show the level
of available energy in an individual MG. The interconnected MGs are operated under the
single distribution network operator (DNO) and exchange (sell/purchase) power to/from
the common coupling point. Note that the DNO purchases the power from the upstream
grid to meet the demands of energy consumers. There are several consumers at the level of
the distribution network. To model the uncertain behavior of renewable energy sources and
load demands in optimizing MMG operation, we exploit the CCP approach that guarantees
a reliable operation with the desired confidence level. The CCP approach, unlike the
scenario generation framework, determines the probability of a reliable operation. In other
words, the CCP technique involves the uncertainties introduced by multiple sources into
the optimization problem, and provides an efficient tool to the system operator to guarantee
the whole system’s reliable operation.

3. Problem Formulation

The main objective of the proposed scheme for the energy management of the MMG
network is to minimize the operation cost related to several components. The objective
function is formulated in (1), including six terms. The cost of purchasing power from the
upstream grid is defined in the first term. The operation cost of the dispatchable unit,
including generation cost and start-up cost, is presented in the second term of (1). In this
paper, the linear generation cost is used instead of the quadratic function. The operation
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min Z =

cost related to battery degradation cost is shown in the third term of the objective function
(1). This degradation cost results from the additional cycling of the battery, which is a key
factor affecting the battery’s lifespan and performance. To model battery degradation, we
utilize the Wohler curve, which describes the relationship between the depth of discharge
and the number of charge-discharge cycles a battery can endure before failure. As the
depth of discharge increases, the number of cycles to battery failure decreases exponentially,
reflecting the higher wear and tear on the battery when it is subjected to deeper discharges.
The parameters of the Wohler curve, typically denoted as a and b, are specific to the type of
battery used, and are obtained based on empirical testing and manufacturer data [45]. The
last line of (1) refers to DR cost, wind spillage cost, and PV spillage cost.

2 -\ 2
AT parid N§M (Fe(Pis) +SUns) +a* {(P w )+ (P) ]+ (1)
! ! = Dr pd,Dr W pw,SP PV pPV,SP
m=1| CPrp#br cWpusSP | cPvply

3.1. Problem Constraints

The strategy proposed for the energy management of MMG is limited by constraints
imposed by the operating conditions of grid components, which are described below.

e Diesel generator constraints

Constraints (2)—(9) define the limitations of the dispatchable generator. Constraint (2)
restricts the generator’s power output. Ramp-up and ramp-down limits are specified in
(3) and (4), respectively. Equations (5)—(8) pertain to the minimum up- and downtime
requirements [46]. Equation (9) formulates the start-up cost. It should be noted that the
shut-down cost is ignored in this paper.

Py, < P < PETUL 2
P, B, <REY ®)
P1 = Py < RE™ @

Ly — Iy < Iiﬁwg (5)

g
ru={§ < vurs ©
If?rf—l —lis1- Ii,HTDﬁ @)

¢ [ u u<MDTS
TD”_{O u> MDTE ®)

SUy, = CUR IS, )
e Demand response modeling

As discussed, the demand response program based on the responsive loads is consid-
ered in this work. It should be mentioned that this paper only incorporates the shiftable
load in the DR program to shift the load from peak hour to off-peak. The equations defining
the DR scheme by determining the program’s responsive load are given in (10)—(12). How-
ever, the shiftable load should be compensated for in other periods. This limit is presented
in Equation (13).

0 < Dy} <9 x Py, (10)

0 < DrYlt < o x P, (11)

Y Driit =Y Drii (12)
t t
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PLY" = P, + Dryy) — Dri (13)

m,t
o  Battery storage constraints

Battery storage is one of the flexible sources that MG can rely on to meet the consumers’
demand. Constraints (14)—(19) show limits on the battery’s operating conditions. The limits
on the charging and discharging are respectively given in (14) and (15). The energy capacity
limits are given in (16)—(18). Hence, to prevent the simultaneous occurrence of charging
and discharging operation mode, Equation (19) is used [47].

0 < Pet < phehmax. xbeh (14)
0< P]Ziis < P%dis,max.xzﬁis (15)

b Pt
Efn,tﬂ = Erhn,t + et x meft - 17';1,;11.5] x At (16)
E;mt < Epy < Epm (17)

b b

Et=0 = Emi=24 (18)
Xy + X" <1 (19)

e Network Constraints

The power flow and power balance constraints must be met in the operation of the
MMG network. The power balance constraint is represented by Equation (20). It should be
noted that the first term in (20) is only established for the bus exchanging power with the
upstream grid. The DC power flow is considered in this paper, as presented in (22). Also,
the value of the power that flows through each line is bounded based on (23).

. NM '
P Y (P — PP P — Pt B, Py — P — P PT) > P (20)
m=1
L
Pyt = Bpa(@pt — 0qt) (21)
_PL,max < Pﬁ,q,t < PL,max (22)

e  Wind power modeling

Wind power is a primary source of uncertainty in the MG operation. The power output
of the wind turbine is a function of wind speed. Based on the study carried out in [48], the
wind turbine’s power output is formulated based on the wind speed (23). Equation (24)
defines the upper bound for wind spillage.

0 0 S Vt S chtfin
w o (ﬂ1 +a Vi + a3V,32)Pw'mwd Veur—in < Vi < Viated (23)
mt Pw,ruted Vrated < Vt < chtfout
0 chtfout S Vt
A (24)

e PV power modeling

The output power generated by the PV panel is a function of the irradiation and air
temperature formulated by (25) [49]. Similarly to the wind spillage, the PV power spillage
is limited based on (26)

PRY = 7SV G (1 — 00051 T) =

PV,SP
PP < PrY (26)
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e UPCindex

As discussed in the Introduction section, in this study, we have introduced a new index,
named unused power capacity (UPC), showing the available energy level for each MG. This
index shows how much surplus or shortage of power in each MG can be exchanged to/from
the upstream grid. This index can be calculated by dividing the net load (demanded power)
(obtained by subtracting the MG’s generations from its consumptions) by the maximum
capacity of power generation (27). This value should satisfy the desired UPC (target value),
as per Equation (28). The net load (demanded power) is formulated based on the existing
component, as defined in (29)—-(31).

d,Net
UPCy = = max (27)
m,t
UPC,, > UPCL"8 (28)
PN = Pl = BT = P, BN P i o)
PV ,Net __ pPV PV,SP
Pm,t “ = Pm,t - Pm,t (30)
,Net __ ,SP
Poy " =Py — Py (31)

3.2. Chance-Constrained Programming

CCP is a method that manages the uncertainty associated with problems that affect the
best solution. CCP considers how the input parameters can vary in the model and makes
sure the system has a high chance of safety. As per [50,51], the basic methodology of using
CCP to deal with uncertainty can be written as (32)—(34)

min Z =f(x) (32)

Subject to :
h(x) >0 ke, (33)
Pr{gi(x,¢) >0} >a jeO (34)

Equation (33) shows the fixed limits on the model of a problem that involves finding
the best solution. Constraint (34) makes sure that the chance of limits being imposed on
variables that can change is higher than «, including a set of limits with variable(s) that can
change and a set of random variables. Constraint (34) can be rewritten as (35):

Q;
Pr{ﬂlgj(xfé) > 0} > (35)
=

In the energy management problem of MMG, the power derived from renewable
sources (PV and wind) and the electricity demand are uncertain factors that affect the
model. Based on (35), for each bus with a connected MG, the power balance limitation can
be written in the CCP as (36):

Pr{Nng S — Y PL, > PN } > (36)
qeQy

Equation (36) represents the combined likelihood that the generation side, minus the

net power flow, meets or exceeds the electricity demand, which must meet or surpass a

specified confidence level. Various methods in the literature address the complex constraint

defined by Equation (36). However, the standard approach is to model the predicted errors

of wind, PV, and load demand using a single probability function. In this study, it is
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assumed that these uncertainties follow a Gaussian distribution, allowing the net load to
be represented as follows:

dnet _ pdnet
Pm”:g = Pm;‘e + Aep t (37)
where Pfé’rt‘et is the actual value of net demand, and Ae;, ; shows the total forecasted error.

The probabilistic distribution function (PDF) of net forecasted error can be guessed by
breaking the net error chance into smaller pieces. In [51], a 13-interval approximation has
been used. However, in [52], a 5-interval estimate is used to model the predicted error. We
assumed that a seven-part estimate of Gaussian distribution could show wind, PV, and
load demand prediction errors. In this way, the chance of the left-hand side in Equation (36)
is found. More information can be found in [53]. The overall schematic of the proposed
CCP for MMG scheduling is shown in Figure 2.

Glput Data including MGs Characteristic,\
load data, line data, generator data, and
\_ renewable energy forecasting W,

!

Calculate the probability of total forecast
error of net demand based on the piece
wise approximation

!

Formulate the proposed model based on
the MILP framework considering
connection between MGs and DR

!

Solve the CCP-based energy management
problem for MMG using (33)-(37)

!

Calculate UPC index for each individual MG

\ 4

For each MG

Re-dispatch the local UPC > desired UPC

dispatchable units

Does the model
guarantee the
onfidence levell

Reduce confidence level

Determine the power exchange between MGs,
power exchange between MMG and upstream grid,
power dispatch, total cost, and UPC for all MGs

Figure 2. Flowchart of the proposed CCP-based energy management of MMG.

4. Simulation and Results

In this section, the optimal energy management mode for MMG is examined on the
test system. For this purpose, the benchmark system of a six-bus distribution network with
three interconnected MGs is considered, as shown in Figure 3. All MGs are equipped with
a battery, PV panel, wind turbine, and micro-turbine (MT). The characteristics of the grid,
including line and bus data, are provided in [54]. Table 2 provides information about each
MG’s components. Figure 4 shows the load profile for the three involved MGs. It should
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be noted that only 15% of the load demand in each MG can participate in the DR program.
Also, Figure 5 shows the electricity price [55].

Diesel
Generator

BUS 3

Diesel

Diesel
Generator

Figure 3. The structure of a 6-bus distribution network with three MGs.

Table 2. Characteristics of the components in each MG [56].

MG 1 MG 2 MG 3
pg/min / pgmax (k) 0/300 0/300 0/200
MUTS /MDTS(h) 2 2 1
R&" / R&MP (KW) 40 40 30
78 ($/kW) 0.12 0.12 0.1
CUs($) 10 10 8
phiismax 7 pb,ehmax () 100 50 100

pwrated (kW) 200 200 150
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Figure 5. Daily electricity market price.

All required programming is performed in the GAMS software, 46.4.1, in the 64-bit
version of Windows and an 8-GB RAM personal computer in the personal computer that
the CPLEX solver 22. 1. 0 solves.

There are two generators in the distribution network level connected to buses 4 and
6, with 500 and 400 kW rated power and coefficient costs of 0.08 and 0.15 USD/kW,
respectively.

To illustrate the effectiveness of the proposed model, the following study cases are
examined:

Case 1—Optimal energy management of the MMG network, while the uncertainty of
wind, PV, and load are ignored;

Case 2—CCP-based performance of MMG with &« = 0.98;

Case 3—CCP-based performance of MMG with o = 0.95.

In addition to the provided data, it should be noted that the PV efficiency and standard
temperature for all PV units are 30% and 25 °C, respectively. Also, the cut-in, cut-out, and
rated wind speeds for wind power output modeling are 3 m/s, 25 m/s, and 12 m/s,
respectively.
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Although various types of loads can be embedded in each microgrid, this paper
assumes that all loads are residential, and the load profiles in all three microgrids follow
the consumption pattern of a summer day [56]. The main reason for this is that one of the
objectives of this paper is to examine the effects of DR based on load shifting by providing
incentives to residential consumers. It is worth mentioning that, since the DC power flow
model is used in this paper, only the active load profile is provided for the three microgrids.

4.1. Case 1

Under the deterministic energy management of MMG, the procured powers of MG 1,
MG 2, and MG 3 follow Figures 6-8, respectively. For each MG, the DR program shifts the
flexible loads from peak hours to off-peak ones, which leads to a smoother load curve. The
battery energy storage restricted to energy capacity limits is charged at the initial hours of
the day (hours with the lower power price), and then, at peak hours, it is discharged; this
procedure is true for all MGs.

800 -
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600
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400
300
200
100

0
-100 A
-200

Power (kW)

1 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24
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Figure 6. The procured power of MG 1 in case 1.
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Figure 7. The procured power of MG 2 in case 1.
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Figure 8. The procured power of MG 3 in case 1.

In MG2, the MT operates with a maximum capacity at hours 16-24. The 50 kW battery
is charged at hours 1-3 and 6-7 to provide more flexibility at 14-16 and 20-21. At hour 13,
MG 2 injects the surplus power back into the distribution network (see Figure 7).

Figure 8 shows the power dispatch in MG 3. MG 3 injects more power into the
distribution network compared with other MGs. According to Figure 8, at hours 14-15
and 21, the surplus power is back into the corresponding bus, which provides a suitable
opportunity for the operator to reduce the dependency of the distribution network on the
power market, especially at peak (power price) hours. MT in MG 3 is only operated with
the maximum capacity at hours 12-16 and 18-22. Also, during hours 16-17, MT turns off.

Figure 9 illustrates the optimal power dispatch of the distribution network for case 1,
including power exchanges with the MGs, power purchased from the electricity market,
and the hourly dispatch of G1 and G2.
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0
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Figure 9. The power purchased and power exchanged schedule of the distribution network, besides
G1 and G2, in case 1.
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The total operation cost under the deterministic model is USD 5794.67. Moreover,
the UPC indexes for MG1, MG2, and MG3 are, respectively, 0.613, 0.759, and 0.766. This
means that MG 1 does not use its production capacity optimally, because, as mentioned, a
higher value of this index (closer to 1) indicates a more efficient utilization of the available
production capacity.

In this case, the reliable operation of the system is not guaranteed. In the next study
cases, the energy management of the MMG is analyzed considering the confidence level of
the system.

4.2. Case 2

In this case, the CCP-based energy management of the MMG network with o = 0.98 is
analyzed. The proposed CCP approach involves the uncertainty of wind, PV, and load in
the energy management model. Considering the CCP approach, it is stated that the power
balance constraint is not violated with a probability of 0.98. Ensuring this requires more use
of controllable resources to cover variations in renewable resources and load consumption.
The load curve of MGs after implementing DR for case 2 is shown in Figure 10. Compared
to case 1, the operator shifts MGs’ load more (from peak hours to off-peak intervals) to
abide by the power balance constraint. Figure 11 shows the resource scheduling of each
MG in case 2 with uncertainty handled by the CCP approach.
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=8-=MG1 DR =—#=MG2 DR =E=MG3 DR
Figure 10. Effects of DR on the load curve of MGs in case 2.

Hence, in contrast to case 1, here, all three MTs generate more power at most time
points. Also, the amount of power injected into all three MGs at the corresponding bus is
here increased compared to the first case. To manage the breaking of the electricity balance
limit and ensure the desired confidence level in the system’s operation, more power is
supplied to all three MGs. This, in turn, increases operating costs. It is worth noting that in
case 2 with o« = 0.98, the battery covers load fluctuations better.

The information on the operation of the distribution network in case 2, including the
power exchanges with connected MGs, the optimal scheduling of the generators, and the
amount of power purchased from the electricity market, is shown in Figure 12. Ensuring
the system’s safety operation with o = 0.98 necessitates the distribution network buy more
power to support changes brought about by uncertain parameters.
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Figure 11. The procured power of MGs in case 2.
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Figure 12. The distribution network’s procured power in case 2.

As shown in Figure 12, during low-power-price hours, the operator purchased more
electricity from the upstream grid. Besides this, G1 and G2 generators have been committed
for more hours to provide power to consumers. Although the optimal distribution network
and MGs operation when applying the CCP approach (x = 0.98) increase the operation
costs, by utilizing the proposed method, reliable network operation is guaranteed, and the
status of the UPC index for all MGs improves as well.

The cost of each MG and distribution network, along with problem-solving time
and the amount of UPC indeX, in all three study cases are given in Table 3 (at the end of
this section). According to Table 3, the total operating cost in this case is USD 6520.05.
This means that with only an 11% increase in system operation costs, reliable network
performance with a probability of 0.98 is guaranteed. Also, in this case, the UPC index
improved for all MGs, which confirms that when applying the proposed method, the
generation capacity of all three MGs can be used more efficiently.
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Table 3. Comparison of major results for three study cases.
Cost (USD)
UPC, UPC, UPC3 Time-Solving (S)
MG1 MG2 MG3 Distribution Network
Case 1 170045 1158.63  1215.09 1720.5 0.613 0.759 0.766 38
Case 2 1918.37 129411 137724 1930.33 0.802 0.794 0.809 79
Case 3 1875.61  1194.07  1288.64 1797.26 0.783 0.77 0.703 75
4.3. Case 3

The proposed model employing the CCP approach with a= 0.95 is investigated in
case 3. Reducing o« means reducing the confidence level, yielding less reliable network
operation (compared to case 2) as a result. In other words, to guarantee the system’s
performance with « = 0.95, compared to « = 0.98, the generating units are scheduled in
such a way that the power balance constraint is satisfied with a probability of 0.95. The
results of this case, including the impact of DR, the resource scheduling of each MG, and the
distribution network, are shown in Figures 13-15, respectively. Comparing Figure 13 with
Figure 10 shows that in case 3 (with a lower confidence level), the operator shifts less load
at peak intervals based on the DR program. Figure 14 also shows that the power output
and power exchanges between MGs and the corresponding busses are more negligible than
those of case 2, and greater than those of case 1.
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Figure 13. Effects of DR on the load curve of MGs in case 3.

The optimal operation of G1 and G2, besides the power purchased from the grid
presented in Figure 15, reveals that MG3 exports more power to the distribution network at
hours 13 and 14. Also, G1 and G2 are less committed in case 3. In comparison with case 2,
G2 is only committed at hours 10, 11, and 23.

The total cost in case 3 is USD 6155.58. According to Table 3, the computational time,
in this case, is approximately equal to that of the second case. However, the computational
complexity of case 2 and case 3 (applying the CCP approach) is more than that of the
deterministic case. Furthermore, in case 3, the UPC index is improved only for the first and
second MGs. The reason behind this is the tendency of MG3 to import electricity instead of
using the internal generation capacity of G3. This case also shows that with just a 5% rise
in operating costs, system performance is ensured, with a chance of 0.95 in any situation.
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Figure 14. The procured power of MGs in case 3.
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Figure 15. Distribution network procured in case 3.

5. Conclusions

The optimal energy management of a multi-microgrid (MMG) network, considering
battery storage, renewable-based energy sources (wind and solar), and demand response
programs based on the shiftable load, has been elaborated in this paper. A new performance
index named unused power capacity (UPC) was introduced to show the efficient operation
of the individual MG in terms of using its generation capacity. Hence, the proposed
model improved the UPC of each MG while minimizing the operation cost. The chance-
constrained programming (CCP) approach was developed to involve variations in solar,
wind, and load in the energy management model, with the desired confidence level.
Employing the CCP approach, the power balance limit was defined via the intended
confidence level, which guarantees the reliable operation of the system. The proposed
model was examined on the test system with three interconnected MGs. The effects of each
technology in MGs, besides the optimal resource scheduling and power exchange between
MGs and the distribution network, were studied for deterministic and uncertain cases.
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The numerical results reveal that under CCP-based energy management, reliable network
performance is guaranteed with a probability of 0.98, imposing an 11% increase in the cost.

Future Works

Future research will explore several avenues to enhance the energy management of
multi-microgrid networks. One promising direction is the integration of machine learning
techniques and smart technologies to further refine and optimize energy management
strategies. Advanced machine learning models, such as reinforcement learning and deep
learning algorithms, could be utilized to improve forecasting accuracy and adapt to real-
time changes in renewable generation and load demands. Furthermore, future studies will
investigate the application of a bi-level optimization framework for energy management,
where multiple operators manage distinct microgrids and distribution networks. This
approach will address the coordination challenges among different entities and seek to
balance individual and collective objectives within the network.

These advancements aim to push the boundaries of current energy management
practices, leading to more sustainable, efficient, and resilient multi-microgrid systems.
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Nomenclature
Index
t Index of time
m Index for microgrid
g Index for generator
L Index for line
u Index of minimum on/off time limits from 1 to max{MUT$, MDT3}
b Index for battery
d Index for load
p/q Bus nodes
w Index for wind turbine
Parameter
NT Number of time span
NM Number of microgrids
Qp Set of buses
/\f rid Market price
F Objective function
MDTS8 Minimum down time of generator
MUTE Minimum up time of generator
Rﬁ{d" Ramp down of generator
RSP Ramp up of generator
cLs Load shedding cost
cw Wind spillage cost
crv PV spillage cost
Bpa Susceptance of line
PV panel efficiency
sV Surface of PV panel
Gy Solar irradiation

Tt Air temperature
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References

Ts Standard temperature
LIPC,tq;a rget Target UPC index
nbech /ybidis Charging/discharging efficiency
At Time period (1 hour in this work)
Ebmin / pbmax N inimum/maximum capacity of battery
pLmax Maximum power flows in line
plychimax Maximum power charged of battery
phdismax Maximum power discharged of battery
p§™" /PS™™ Min/max power output of generator
v Load factor for participating in DR
Variable
Ptgrzd Power exchange with upstream grid
me Power output of generator in microgrid m
SUy ¢ Start-up cost
DS Number of continuous times that the generator must be turned off
TUs Number of continuous times that the generator must be turned on
Pgl”tD ’ Value of load participate in DR
PnIQSt Load shedding value
pusP Value of wind spillage in microgrid m
P,IZY Value of PV power output in microgrid m
PZiis,Psl"Cth Power discharging, charging of battery in microgrid m
qu,t Value of load demand in microgrid m
Py, Power output of wind turbine in microgrid m
Pr‘ff,t Value of demand response in microgrid m
pt Power flow in line
Op ¢ Magnitude of bus angel
Xf;fth / Xz;ils Binary variable for charging/discharging mode
Erbn,t Energy capacity of battery in microgrid m
Pil‘f’s P Value of PV power spillage
UPCy, Unused power capacity in microgrid m
r’let\] ot Net load demand
ﬁht Binary variable for generator operation
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