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Antithetic Multilevel Methods for Elliptic and Hypo-Elliptic Diffusions with
Applications*

Yuga lguchit, Ajay Jasra®, Mohamed Maama®, and Alexandros Beskos'

Abstract. We present a new antithetic multilevel Monte Carlo (MLMC) method for the estimation of expec-
tations with respect to laws of diffusion processes that can be elliptic or hypo-elliptic. In particular,
we consider the case where one has to resort to time discretization of the diffusion and numerical
simulation of such schemes. Inspired by recent works, we introduce a new MLMC estimator of expec-
tations, which does not require any Lévy area simulation and has a strong error of order 2 and a weak
error of order 2. We then show how this approach can be used in the context of the filtering problem
associated to partially observed diffusions with discrete time observations. We illustrate that in
numerical simulations our new approaches provide efficiency gains for several problems, particularly
when the diffusion process is hypo-elliptic, relative to some existing methods.
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1. Introduction. We consider N-dimensional stochastic differential equation (SDE):

(1.1) dX; = oo(X)dt + Y 0;(X))dB], Xo==z RV,
1<5<d

where {B;}+>¢ is the d-dimensional standard Brownian motion defined upon the filtered prob-
ability space (Q, F, {F; }+>0,P), and o, : RY — R¥ satisfies some regularity conditions, to be
made precise later, with o; = [0]1-, e ,UJN]T for 0 < j < d. Throughout the paper, the matrix
a =00 can be degenerate, with o = [01,...,04]. Thus, this class of diffusion process includes
certain elliptic and hypo-elliptic diffusion processes that can be found in applications; see for
instance [25]. In particular, a lot of interest is shown recently in the literature for numerical
analysis and statistical inference methods for hypo-elliptic diffusions (see e.g. [7, 13, 17, 16]).
We consider the context that one cannot obtain an exact solution of the SDE, despite its ex-
istence, and has to resort to time-discretization of the diffusion and the associated numerical
simulation and, again, there are many examples of such processes that are used in practice
[25].

The collection of problems that we focus upon in this article is, firstly, the computation
of expectations with respect to (w.r.t.) laws of diffusion processes; we call this the forward
problem. That is, given a function ¢ : R — R that is integrable w.r.t. the transition law of the
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2 Y. IGUCHI, A. JASRA, M. MAAMA, AND A. BESKOS

diffusion, the objective is the computation of a numerical approximation of E[p(X7)] for some
given terminal time T" > 0. Secondly, we consider the filtering problem for partially observed
diffusion processes that are discretely observed in time. In other words (1.1) is a latent process
that is observed through noisy data, only at discrete times (which we take as unit times for
simplicity). The objective is then to compute an approximation of the conditional expectation
of X; at each observation time and given all the data available up-to that time. This is a
classical problem in engineering, statistics and applied mathematics, see e.g. [2, 4] for further
references and applications.

For both aforementioned problems, one must resort to a time discretization of (1.1) whose
properties can be critical for any resulting numerical approximation method relying on it.
There are several numerical methods in the literature, such as the Euler-Maruyama (E-M)
method and the Milstein scheme; see for instance [25]. The main properties that are often of
interest to inform the efficiency of the approximation are the weak and strong error, which we
shall define, loosely, as follows — a full definition can be found later on. For a time discretization
on a regular grid of spacing A > 0, and a corresponding numerical approximation {X;}¢>o
the weak error (assuming it exists) is the discrepancy:

[Elp(X7)] = Elp(X)]]

for an appropriate test function ¢ : RN — R. We remark that the numerical approximation
may be defined in continuous time by interpolation between points on the time grid. The
strong error! (assuming it exists) is taken as:

E[|| X7 — X7[]

where || - || is the Ly—norm. There are several results for well-known discretization methods;
e.g., E-M has weak error of O(A) (weak error 1) and strong error of O(A) (strong error 1)
and the Milstein scheme has weak error 1 and strong error 2. In the context of the methods
to be used in this article, one generally would like the order of weak and strong error to be
‘large’ at a cost of O(A~!) for directly simulating the approximation. We note that direct
simulation, without for instance solving linear equations of cost of order O(N™), m > 2, is
critical for practical problems, especially filtering.

In this work we consider both elliptic and hypo-elliptic diffusion processes and in the latter
case we have N > 2. In such scenarios, the Milstein method (or the strong 1.5 scheme, see [25],
with weak error 2 and strong error 3) cannot often be simulated directly, without a restrictive
commutative condition (given later on), as one has to compute an intractable Lévy area. In
such cases one resorts to the E-M approach, which can be simulated exactly, but the order of
weak and strong error is comparatively low. Whilst there are some higher order discretization
methods based upon stochastic Runge-Kutta approaches (see e.g. [29]), generally for many
Monte Carlo simulation-based methods a strong error of 2 generally suffices for ‘optimal’ (to
be clarified later on) variance properties. An elegant methodology that side-steps sampling

'In the literature, {E[|| X7 — X7|’] }1/2 is used as the standard definition of strong error. However, we
make use of the squared version of the definition because it aligns with the analysis on the variance of couplings
in the context of multilevel Monte Carlo.

This manuscript is for review purposes only.
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ANTITHETIC MULTILEVEL METHODS FOR DIFFUSIONS WITH APPLICATIONS 3

of Lévy areas but preserves strong error 2 was developed in [11] based upon the multilevel
Monte Carlo (MLMC) approach [9, 10, 14].

MLMC works with a hierarchy of time-discretised diffusions, that is with a collection of
step-sizes 0 < Ag < --- < Ap, L € N. Then one rewrites the expectation of interest as a
decomposition of the difference of the exact (no time discretization) expectation and the one
with the finest time discretization and then a telescoping sum of differences of expectations
associated to increasingly coarse step-sizes. Then, if one can appropriately simulate dependent
(coupled) time discretizations for pairs of step-sizes it is possible to reduce the cost of a Monte
Carlo based algorithm (e.g. the cost versus a direct simulation of the time discretised diffusion
with a single step-size Ap) to achieve a pre-specified mean square error (MSE) using MLMC;
see e.g. [10] for a review. [11] introduce an antithetic MLMC (AMLMC) using the truncated
Milstein scheme (defined in Section 2.2.2) which has weak error 1 and stong error 1 without
requiring the simulation of intractable Lévy areas, but the variance of couplings at each level
decays w.r.t. the step-size at the same rate as the case of a time discretization having strong
error 2, which leads to an optimal computational complexity.

In this article we develop a new method (multilevel-based) for time discretization which
is effective in both the elliptic and hypo-elliptic contexts. Motivated by the work in [11],
we derive a new AMLMC based on the numerical scheme proposed in [16] achieving weak
error 2 and strong error 1 (the latter is proven in this article), which still gives an optimal
computational complexity (for the forward problem). The method can also be simulated
directly with a cost of O(A™!) per-pair of levels 0 < A < A’. An AMLMC with a weak
error 2 has also been investigated in [1], where they used an alternative numerical scheme
with a weak error 2 and emphasized its efficiency due to the reduction of the number of time-
discretizations, which is an advantage over the AMLMC that uses the truncated Milstein
scheme (weak error 1). A comparison between our proposed AMLMC and the method by [1]
is given later in Section 2.4. In addition, we show that our new methodology can be used
for the filtering problem. Some of the state-of-the-art numerical methods for this problem
are based upon particle filters (e.g. [4, 6]) related to the MLMC approach, which are termed
multilevel particle filters (MLPFs) see e.g. [18, 24]. Based upon the methodology developed
herein, we derive a new MLPF. To summarize, the main contributions of this article are:

e We introduce a locally non-degenerate scheme of weak error 2 for both elliptic and hypo-
elliptic contexts, inspired by [16]. We prove that the scheme has strong error 1.

e We then develop a new AMLMC method that does not contain Lévy areas and prove that
the variance of the AMLMC estimator decays (w.r.t the step-size) at the same rate as for
a discretization scheme that would achieve a strong error 2.

e We show how to use the new AMLMC method for filtering within the context of MLPFs.

e We present numerical results to show that our method can out-perform some competing
approaches.

We further elaborate on some of the bullet points above. In the case of the forward problem,

the second bullet point leads to the new AMLMC estimator having a cost of O(e72) to give

a MSE of O(€?), € > 0, i.e. the method attains the optimal cost for (stochastic) Monte Carlo

based methods. Such a MSE is also achieved by [11], however the higher rate of weak error

is expected to provide efficiency gains — verified in our numerical experiments — due to the

necessity of the use of a finite L (the most precise level) in simulations. In the case of filtering,

This manuscript is for review purposes only.
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we compare to the MLPF approaches in [18, 24]. In [18] the authors prove that, in the elliptic
case, to achieve a MSE of O(e?) there is a cost of O(e7%5). In [24] the authors show that
in simulations to achieve a MSE of O(¢?) there is a cost of O(¢~2log(e)?); this latter MLPF
corresponds to an embedding of the multilevel approach of [11] within the filtering problem.
We verify in our simulations that, as one expects based upon [18], our new MLPF has costs
consistent with the anticipated rate O(e=2log(€)?) to achieve a MSE of O(e?). However, as
the discretization schemes underpinning the methods in [18, 24] have weak error 1, we again
observe efficiency gains for finite L. Finally, we note that our numerical scheme is locally non-
degenerate under a hypo-elliptic setting, while this is not the case for the truncated Milstein
scheme. The existence of the density (non-degeneracy) is important in the filtering problem
when utilising guided proposals [5] to improve the performance of particle filters.

This paper is structured as follows. In Section 2 we consider several numerical schemes
for SDEs and introduce our approach. In Section 3 we describe how our idea can be used in
the context of the filtering problem and derive the new MLPF. In Section 4 we present our
numerical results to illustrate our theoretical derivations. The mathematical proofs of our
main results are given in the Appendix.

Notation: Let C’Iff (R™;R™), n,m, K € N, be the space of K-times differentiable functions
f: R™ — R™ such that partial derivatives up to order K are bounded. For a vector y € RV,

we define the norm |[| - [| as [[y|| = /> i< n y2.
2. Numerical schemes.

2.1. Basic assumptions and error. To study a broad class of SDEs including the case
where the matrix a = oo is degenerate, we consider the following structure for model (1.1):

dXs; Uso(Xt)] [ On } j N
2.1 dx, = |43se] _ |95, dt + s |aBl,  Xy=zcRY,
( ) t |:dXR,t:| |:O'R70(Xt) 1<]Z<d UR,](Xt) t 0 x

where we have set og : RN — RNs, ORj : RY — RNr 0 < j < d, with integers Ng > 0,
Npg > 1 such that Ng + N = N. We write for z € RV:

o0(z) = [os0(@) soro(@)T] T, oj(x) = [0, or(@) ], 1<j<d,

and a = oo " with o = [01,...,04]. Notice that when Ng > 1, the matrix a is degenerate. We
write [0, 0](z) = ZlngN{a’g(x)axkaj(x)fa;?(x)amkao(x)}, 1 <j <d,wheregy: RY — RY
is the drift function when the It6-type SDE (2.1) is written as a Stratonovich one, specifically,

oo(z) = oo(z) — % 213251\1 Z1§j§d U}(x)aio'j(f)'
We introduce the following assumptions related to Hérmander’s condition (see e.g. [28]).

Assumption 2.1. o € CEO(RN;RN), 0<j<d.
Assumption 2.2. (i) Ellipticity. When Ng = 0, it holds that for any x € RV:
Span{o1(z),...,04(z)} = RY.
(ii) Hypo-ellipticity. When Ng > 1, it holds that for any » € RV:

Span{aR,l(x)7 - 70'R,d(x)} = RNRv Span{al (‘T)7 ce ,O’d(:L’), [007 01](.T), SRR [007 Ud](x)} =R".

This manuscript is for review purposes only.
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ANTITHETIC MULTILEVEL METHODS FOR DIFFUSIONS WITH APPLICATIONS 5

For a numerical scheme {Xja}p—q 1, o¢ with constant step-size A = T/ 2¢ and non-negative
integer £, weak and strong error of order m > 1, respectively, are given as follows:

[Blo(Xr)] — E [p(Xr)]| = 0(A™),  E[ max [|Xia = Xia["] = 0(A™), p>1,

for some appropriate test function ¢ : RV — R.

2.2. Discretizations. We introduce a discretization scheme of weak order 2 and also men-
tion other popular discretization schemes (e.g. the Milstein scheme) for comparison. Let 7" > 0
be a terminal time and A, = T/2° be a step-size of discretization with a non-negative integer

¢. We make use of the notation t; = kAy, 1 < k < 2¢, and AB;s= DBy — B, 0 < s <t For a
sufficiently smooth function ¢ : RN — R, we set:

Lop(x) = Z 00( )0 ﬂﬂk(p )+ 2 Z Z 0';?1( ) (z )al'klal'k2 (@);

1<k<N 1<j<d 1<k1,ka<N
Lip(x)= > of(@)oue(@), 1<i<d
1<k<N
We define, for 1 < iy,i9 < d:
[0iy,00,)(x) = Liyoiy(x) — Liyo4, (x), z e RV,
where L, 04, () = [Li01 (@), ..., Liyol) (z z)]T € RV,

2.2.1. Milstein scheme. The Milstein scheme, of weak order 1 and strong order 2, writes
as follows, for 0 < k < 2¢ —1:

XMll XM11+O_O(XM11 AZ“’ Z Uj Xg\;hl)AB

th41 tet1,tk
. . 1<5<d
(Milstein) ) il
§ : i J1 J2 . Jijz2
+ 2 EJQO-JI X )(ABtk+1 tkABtk+1 tr AZ : 1]1:]2 AAtk+1,tk)
1<j1,52<d
Mil _ Jijz ) : J1j2 — tk+1 J1 gnj2

with X} = 2, where AAy " 4, is a Lévy area specified as AAy -5, = ft dBy' dBs

ff:“ ftk dB2dBJ*. Note that in general there is no effective way to directly simulate the Lévy
area. However, if the commutative condition holds, i.e. for any z € RV,

(22) [O’jl,O'jQ]($) :O’ 1 Sjl’j2 Sd7 jl 7éj27
then the Lévy area does not appear in the Milstein scheme and the latter becomes tractable.

2.2.2. Truncated Milstein scheme. The truncated Milstein scheme, used by the AMLMC
method of [11], has weak and strong errors both of order equal to 1, and writes as follows, for
0<k<20—1:

XT—MI] XT M11+0' (XT Mil A + Z O_J XT Mll)ABJ

tet1 Tyt
. . 1<j<d
(T—MllSteln) l Z Lo o XT Mll) (ABJI ABJ A1 )
+3 J1 J2 tht1,tk tht1,tk ¢ Lii=j2)>

1<51,52<d

with X ™! = 2. Since the scheme omits the Lévy area AAgifhtk, the strong convergence

rate is the same as for the E-M scheme unless the commutative condition holds.

This manuscript is for review purposes only.
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6 Y. IGUCHI, A. JASRA, M. MAAMA, AND A. BESKOS

2.2.3. Second order weak scheme. Motivated from [16], we introduce two nondegenerate
discretization schemes for elliptic (Ng = 0) and hypo-elliptic (Ng > 1) cases, separately. That
is,forOﬁk:SQe—lz

th-u = th + UO(th)AZ + Z Uj(th)ABg

k+1,0k
1<j<d
Weak-2 -
( ) + L. (X )A J1j2 +1 [ ) ](X )Agjl.h
G102\ Aty )My ", T 2 315 Oja [\ Nty ot 15t
0<j1,j2<d 1<51<j2<d

with Xy = z, where the random variables An/*’? , and AAJ? , are given as:
k+1:tk k+1,tk

A Ellj172 (NS _ O);

Jij2 ket 15tk Jij2 ARt j2
M1t = H-Ell,j1j2 AAtk+17tk - ABtk+17tkABtk+1ytk’
41tk (NS 2 1)7
where B; = (B?,...,B%), t > 0, is a standard (d — 1)-dimensional Brownian motion indepen-

dent of {B;}+>0 and:

11,517 j j ..
Anptdife = L(ABI | ABP = Ag-15_,20), 0= 1,2 < d;

tet1,tk U1,k
Ang 2 (1< j1,ja <dorjy = jo = 0);
H-Ell,j1j t ; . .
Ay Bh9 = [ [P dud B (j1 = 0,1 < jp < d);
S [0 aBitds (1< g1 < d,j = 0).

In the above specification of An{éﬁ,tk, we use the interpretation AB?H L, = Ay. The defini-
tion of the scheme under the hypo-elliptic setting slightly differs from the original one given
in [16]. In particular, the latter includes additional random variables in the approximation
of the smooth component Xg; for the purpose of improving the performance of parameter
estimation. Without such additional variables, it is shown that (Weak-2) achieves a weak
error 2 since the random variables used in the scheme satisfy the moment conditions outlined
in [26, Lemma 2.1.5] that are sufficient for the attained order of weak convergence.

We give several remarks on scheme (Weak-2). First, comparing with the truncated Mil-
stein scheme, we observe that the scheme contains the terms AA and random variables of size
O(AZ’/ %) or O(A%). Due to the inclusion of these terms, (Weak-2) is shown to achieve weak er-

ror 2. In particular, variable AAis interpreted as a proxy to the Lévy area in the distributional
(but not pathwise) sense. Thus, as we will show in Section 2.3, the order of strong conver-
gence for (Weak-2) is not as good as that of the Milstein scheme which uses the true Lévy area
(though the latter cannot be exactly simulated in general). Second, under the hypo-elliptic set-
ting (Ng > 1), the scheme, in particular An&'ﬁl}tk, involves ft’:““ fti dudBY?, tt:“ fti dB}'ds
that can be directly simulated by Gaussian variables that preserve the covariance structure
between these integrals and the Brownian motion. Together with Assumption 2.2, use of these

variables leads to the current state th 41 glven th containing a locally Gaussian approxima-
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ANTITHETIC MULTILEVEL METHODS FOR DIFFUSIONS WITH APPLICATIONS 7

tion with non-degenerate covariance, that is:

Xstp = Xgp, +050(Xe, ) A + Z chS’O(th)AnH-En,jO.

tot1,lk
<i<d
(2.3) s
Xppen = Xpy, +oro(X)Ar+ > ory th)ABthrl t
1<j<d

Note that if Ant}i Elti O above is replaced with Ani lif ka = 1ABJ wi1,te D¢ which is used in the

elliptic setting (Ng = 0), then the covariance of the rlght hand side (R.H.S.) of (2.3) is no
longer positive definite.

2.3. Strong convergence of the weak second order scheme and summary. The strong
error rate of scheme (Weak-2) is the same as for the truncated Milstein and the E-M scheme.
The proof of the following result is in Appendix A.

Proposition 2.3. For any p > 1, there exists a constant C' > 0 such that

X, ||2P p
E[Og}gag;l Hth th” ] S CAZ

Table 1 summarises the weak and strong errors for some of the most popular discretization
schemes. The result for the strong error of scheme (Weak-2) is new.

Table 1
Numerical scheme for general SDEs (i.e. commutative condition (2.2) not assumed to hold).

Scheme  Rate of weak/strong convergence Is Lévy area required?

Milstein 1.0 /2.0 Yes
T-Milstein 1.0/ 1.0 No
Weak-2 2.0/1.0 No

2.4. Antithetic MLMC with weak second order scheme. The aim is to combine the
weak order 2 method (Weak-2) with the ideas of [11] and consider a new antithetic MLMC
(AMLMC) estimator so that the variance of couplings at each level decays w.r.t. the step-size
at the same rate as the case of a time discretization having strong error 2. Throughout this
subsection, let £ = 0,...,L be the level of discretization (2*5), where L € N is the finest
level of discretization. We write 7' > 0 for the length of the time interval and A, = T'/2¢ for
the discretization step-size. To define the antithetic estimator, we design discretizations on
coarse/fine grids based upon scheme (Weak-2). For a fixed ¢ < L, we define the coarse grids

gol=l = {1}, 01,201 and the fine grids gl = {t;, thtr1/2 k=01, 20-1—1 U {T'}, where
tk = kAg 1 tegr/2 = (k: +1/ 2)Ag 1. For notational simplicity, we introduce two integrators

It,S,It s : RN RN, 0 < s <t associated with scheme (Weak-2), so that for 2 € RYV:
It s =T+ Z JJ ABt s + Z ‘CJ10]2( )An]1j2 l Z [Ujlaajz]( )AAiIgZa

0<j<d 0<j1,52<d 1<j1<j2<d

J J1j2 1 . ) AJd1J2

Zts )=+ E : oj(x)AB; , + E , Lj o, (x)An s — 5 E [Ujlaajz](m)AAt,s :
0<j<d 0<j1,j2<d 1<j1<j2<d

This manuscript is for review purposes only.
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Notice that the difference between the above two integrators is in the sign of the last term. On

c,[0— 1]

the coarse grids g we define a discretization scheme {X;’ elt=1l }tegc,[eﬂ] and its antithetic

Version {)?f’[e_l]}tegc,[e_l] as follows. For 0 < k < 26-1 — 1.

/—1 e, [f—1 - >, [f—1
(2‘4) Xto[ = =7, th[H ] = Itk+17tk (th[ ]);

/—1 e [l—1 = c,[f—1
(2‘5) Xto[ = =, th[+1 ] = Ztk+17tk (th[ ])‘

Similarly, on the fine grids g/l), we define a numerical scheme {th ’m}teg 1,10 and its antithetic
version {Xiﬁ[g]}tegf,[e] as follows. For 0 < k <21 —1:

v file v filL 7 /ol s vl .
(2.6) Xto[ ] =z, th‘E'l/Q = Itk+1/2»tk (th[ }), X kg_}l Itk+1,tk+1/2( tki}l/Q)’

v il file T v /il I file
(2'7) Xto[ ] =z, th_u/g Itk+17tk+1/2 (th[ ])7 thEj Itk+1/2:tk (th-[kl/Q)'

The antithetic scheme (2.7) features the following two key properties: 1. On the interval
[tk,tr+1], the Gaussian increments used in the standard discretisation (2.6) are exchanged
between the first and second halfs; 2. The sign of the last term in the integrator is minus.
We note that the first point (exchange of Gaussian increments) is featured in the antithetic
truncated Milstein scheme proposed in [9] as well, but the second point (change of sign) is
not. Let ¢ : RV — R be some suitable test function. In the next section we will define an
antithetic estimator based upon the weak second order scheme (Weak-2) and use the identity:

(2.8) Efp(X51")] = Z E[Pf, — P ,),

where we have set, for 1 < /¢ < L:
S A4 oy N _ >c,[0— e, [l— _ -c,[0
(2.9) PE, = (X2 + o(XE1)), P2y = Lo ) + (X)), PE = (X5,

We notice that E[Py] = E[ngo], E[P}fz] = E[P(fg], 1 <¢<L—1. For s € gl and
so € gl with ¢ =1,..., L, we define:

(2.10) X = (XX, X = o (KL X,

and study the LP bound for the coupling P}De —P7

Lemma 2.4. Let ¢ € Cg(RN;R) and 1 < £ < L. For any p > 2, there exist constants
C1,C5,C3 > 0 such that

E[(Pf, - P,y)"] < GE[IXF - X019] + GE[)|XF1 — XE1) 2]

C,

(2.11) + CgE[HX';’[Z—l] _ X‘]C_:[g_l]HQp].

This manuscript is for review purposes only.
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ANTITHETIC MULTILEVEL METHODS FOR DIFFUSIONS WITH APPLICATIONS 9

Proof. The second order Taylor expansion yields: 73}'9Z = @(X%’m) + Fgl’£2 and P? -1 =
@(X%w_”) + F§3’§4, where we have set:

SHI S S AU Al
% = J (X1 = XET (@) + 0% () (X711 - X1,
F2§3,€4 — %(X;[éfl} o X;[ffl])T(a%(&) +82¢(§4))(X;’[471} - X;[éfl})j

for some &1, &, &3,&4 € RN, where 0%p(+) is the N x N matrix of 2nd derivatives. Thus:
> fi[l >c,[f—1 , ,
(2.12) ,P}O,Z — ,ngf—l = 8@(55)T(X£” _ XT[ ]) + F1§1 & _ F2€3 547

for some &5 € RN, where 0¢(-) is the N x 1 vector of 1st derivatives. Due to the boundedness
of the test function ¢ and the standard inequality given in (A.1), we conclude from (2.12). H

Our objective is to derive bounds for each term in the R.H.S. of (2.11) over a coarse time
step Ay_1. For the first term, we have the following result:

Theorem 2.5. Let 1 < /¢ < L. For all p > 2, there exists a constant C' such that

E[ max HXfm xel-p <oar
tegelt=

Proof. Let 0 <n <21 and S, = E [maxo<r<n ”th,;m - Xf};[g_l] [P]. It holds that for any
p > 2, there exists a constant C}, > 0 such that:

(2.13) §.<Cp Y E[max |Xf’[£]’7 Xl e,
1<j<N -

Then, it suffices to show that there exists a constant C' > 0 such that:

) 4 7 j - Cs - , j -
(2.14) E[ max X[ el < C(Ng_l NSRS Sk>,
0<k<n-—1

which leads to the desired result by applying the discrete Gronwall inequality to (2.13). Re-
cursive application of (B.5) and (B.8) given in Lemmas B.2 and B.3 respectively yields:

STl pelt—1) RS Al j
(215) X[ - xpE = N (08 (R0 — ol (X7 ) aBy

k m 7,+17
0<i<k—1
0<m<d
f 4] J c,[¢—1] mima E
+ Z mi1 mz X ) ‘legmz (Xt )) tz+1 ti + t1+1 t; +N;1+1 tl)
0<i<k—1 0<i<k— 1

1<mi,ma2<d

where the remainder terms are such that IE[M%H 17,f2,|.7:75i] =0, 0<i<2"1—1, and for any
p > 2 there exist constants C1,Cy > 0 such that maxg<;<ge-1_1 E[‘Mgi+lati P] < ClAZ’]i/f and

maxXg<;<of-1_1 EU tz+1,t1‘ ] < CgA?’jl. Given (2.15), the bound (2.14) holds by following the
same argument as in the proof of [11, Theorem 4.10], and we conclude. [ ]
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Also, we have that, for any p > 1 there exist constants C7,Cy > 0 such that:

E[ max [|IXP1 - XM < canp s
(2.16) e

E[ max [|X770 - X2 < opnr
tegc,[é—l]

which are obtained from the strong convergence rate of scheme (Weak-2) and the same argu-
ment used in the proof of [11, Lemma 4.6]. Hence, from Theorem 2.5, Lemma 2.4 and (2.16),
we obtain the following result.

Corollary 2.6. Let ¢ € Cf(RN;R) and 1 < £ < L. For any p > 2 there exists constant
C > 0 such that E[(Pf, — P, )’] < CA]_,.

Remark 2.7. The AMLMC estimator under scheme (Weak-2) is designed to have four dif-
ferent integrations, as given in (2.4)-(2.7), while the antithetic estimator under the truncated
Milstein scheme [11] uses three types of integrators without the antithetic coarse approxi-
mation X%~ In the case of (Weak-2), use of only three integrators would lead to no

improvement in strong convergence due to the presence of the term involving AA? | with a

- tht1,tk
size of O(Ay). X1 is exploited to deal with the above O(Ay)-term and obtain the higher
rate of strong convergence (Theorem 2.5).

Remark 2.8. [1] constructed an AMLMC method based on the Ninomiya-Victoir (N-V)
scheme [27], an alternative scheme of weak error 2. They showed that the strong error of
the N-V scheme is 1 and then improved it with the technique of the antithetic multilevel
estimator. The advantages of the proposed AMLMC based on (Weak-2) against that of the
N-V scheme are summarized as follows: (i) Scheme (Weak-2) is always explicit while the
N-V is a semi-closed scheme in the sense that it requires solving ODEs defined via the SDE
coefficients and their solvability depends on the definition of coefficients; (ii) Our antithetic
scheme uses four different integrators (2.4)-(2.7), while the antithetic estimator with the N-V
scheme uses six integrators; (iii) Our (Weak-2) scheme is designed to be locally non-degenerate
for both elliptic/hypo-elliptic settings (Section 2.1) as we explained in Section 2.2.3. Such a
non-degenerate scheme is beneficial for the filtering problem as we described in Section 1.

2.5. AMLMC for forward problem. In order to estimate E [p(X7)], one simply needs to
sample the systems (2.4)-(2.7) using the same source of randomness (i.e. the same Brownian
motion and Gaussian variates) as implied in (2.4)-(2.7). We will sample these afore-mentioned
systems multiple times (independently) so will use an argument (i)’ to indicate the i*"-sample.
For instance, from (2.4), we will write Xfém (4) for the i*"-sample associated to recursion (2.4)
where the associated Brownian motion and Gaussians variates have been generated anew for
each sample. Similarly, in the context of (2.9) we will write Pf,(i), P7, (i) and Pg (i)

The AMLMC procedure is as follows. We first set L and the sample sizes My, ..., My,
to be used at each pair of levels; we will state below how this can be done. Then one can
follow the approach in Algorithm 2.1. The new AMLMC estimator is given in (2.17) that is
contained in Algorithm 2.1 and can be computed using any test function of interest when the
underlying quantity E [p(X7)] is well defined.

This manuscript is for review purposes only.
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To specify L and My, ..., M, one can appeal to the results of Theorem 2.5, Corollary 2.6,
as well as the weak error of the scheme (Weak-2) and follow standard computations in MLMC
(e.g. [10]). That is, when considering the MSE, E[(E[?()?T)] — E[np(XT)])2], then under the
assumptions made above, one has an upper-bound on the MSE as O(ZO<Z<L A%/Mg + A%).
Therefore, for € > 0 given, one can achieve a MSE of O(e?) by choosing L = O(log(e~/?))
and M, = O(G_QA?/Q). The cost to achieve this MSE is Y /ey A; "My = O(¢2) which is
the best possible using stochastic Monte Carlo methods and was also obtained in [11]. In
most practical simulations, one generally sets L as on standard computing equipment it is not
feasible to generate beyond L = 10 and this determines e. Therefore, as the bias (weak error)
of this method is O(A?2), versus O(Ap) in the antithetic Milstein method in [11], one might
expect to see benefits for L’s that are used in practice. We consider this in Section 4.

Algorithm 2.1 AMLMC using the weak second order scheme (Weak-2).

1. Input L > 1 and My, ..., M. Set £ =0 and go to 2..

2. For i = 1,..., My independently simulate (2.4) to produce X7 [0 ]( 1), ...,X;’[O](Mo). Set
(=0+1 and go to 3..

3. For i = ., My, independently simulate (2.4)-(2.7) to produce {X clt= 1]( )}?iél,
(Xsk1 )}Z 3 {XfV HanMe (XEEUayM e 110 < L—1, set £ = £+ 1 go to the
start of 3. otherwise go to 4..

4. Compute the MLMC estimator:

(2.17) [ (X7)] == 73907M0+ Z {73‘:07M£7 %Mz
1<¢<L
aM "— y 7M . . 7]\4 .
where PO = 5p Yican, PO0), PR = an Laciea, Proi)s POI =

MLZ > 1<i<n, Piy1(@). Return (2.17) and stop.

3. Application to filtering.

3.1. State-space model. We consider a sequence of observations obtained sequentially
and at unit times, Y7,Ys,..., Y, € RY, k € N. The assumption of unit times is mainly for
simplicity of notation and any time grid could be considered. Associated to this sequence is
an unobserved diffusion process exactly of the type (1.1). For the data, we shall assume that,
at any time k£ € N, Y has a (bounded) positive probability density that depends only on
the position, Xy, of the diffusion process at time k£ and is denoted g(zk,yr). We denote the
transition kernel of the diffusion process over a unit time and starting at z € RV as Q(z,-),
for instance E[p(X1)] = [pn ©(21)Q(x, dx1), where the expectation on the R.H.S. is w.r.t. the
law of the diffusion (1.1), which we recall starts at * € RY, and ¢ : RN — R is bounded,
measurable (the collection of such functions is denoted B,(RY)).

The object of interest is the filtering distribution. For any & € N we define the filtering
expectation:

E [W(Xk){l_[];ﬂ Q(wap)}}
BT oK) }]

(3.1) (@) =

This manuscript is for review purposes only.
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Note that the fact that ¢ and g(-,%) are bounded (for any y € R"V) ensure that the filter is
well-defined, but these assumptions are not needed in general — again we seek to simplify the
discussion. We will compute a numerical approximation of (3.1) sequentially in time, as an
exact computation is seldom possible.

In practice we often cannot (i) simulate from @(z,-) and/or we may not have an (ii)
explicit expression for the density of Q(z, ) or (iii) an unbiased estimate of such density. One
of the afore-mentioned properties (i)-(iii) is needed in order to deploy numerical methods
which are used in the approximation of the filter (3.1) in continuous time (see e.g. [18] for
an explanation). Therefore we consider time discretization via the weak second order method
(Weak-2), with step-size A, = 27¢. Now, for any starting point z € RY and ending at a
time 1 we denote the time discretised transition kernel as Q! (z, -), for instance, El¥[p(X;)] =
S ©(x1)QY(z, dz1), where we have modified the notation of the expectation operator to
El [-] to emphasize dependence on the discretization level. We consider the approximation of
the time discretised filter, k € N:

@, . EUeX){II5_ 9(Xpyp)}]
(3.2) ™, () = BT, 9(Xpp) ]

Note, to clarify, the R.H.S. of the above equation can be alternatively written as:

fRNk W(mk){H§:1 g(mp:yp)} HI;:I QY (zp—1,dzp)
Janvk {H’;:1 g(xp,yp)} HI;:1 Q¥ (zp—1,dzp)

where z¢g = z. Even with time discretization, one still needs to resort to numerical methods
to approximate (3.2).

3.2. Multilevel particle filters. Our objective is now to approximate the time discretised
filter (3.2). We start with the ordinary particle filter (PF) which can do exactly the former task
and is described in Algorithm 3.1. This algorithm presents the most standard and well-known
PF with several possible extensions. Also note that the estimates of the filter, in equation
(3.5) of Algorithm 3.1, are typically returned recursively in time.

The PF on its own is typically much less efficient than using a multilevel version, which
has been developed and extended in several works; see e.g. [18, 19, 20, 23, 24] and [22] for a
review. We describe the method of [18], except replacing the Euler-Maruyama discretization
with the weak second order scheme. The basic idea is based upon the identity:

(3.3) ) =)+ 3 {me) — N0}

1<¢<L

We remark that on the R.H.S. of (3.3) one need not start at level 0, but we adopt this choice
for ease of exposition. The idea is to use the PF to recursively approximate 77,&0] (¢) and then to
use a coupled particle filter (CPF) for the approximation of W,[f] (p) — i (), independently
for each index ¢. The coupling is described in Algorithm ?? and then the CPF is given in
Algorithm ?7?, which are presented in Section ?? in the Supplementary Material.

Algorithm ?? presents a way to simulate a maximal coupling of two positive probability
mass functions with the same support. It allows one to couple the resampling operation

This manuscript is for review purposes only.
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across two different levels of discretization as is done for a single level in Algorithm 3.1. This
is then incorporated in Algorithm ?7? which provides a way to approximate 77,[5 } (p) — w,{fﬁl} (p)
recursively in time.

The overall multilevel Particle Filter (MLPF) can be summarized as follows, given L the
maximum level and the number of samples My, ..., M;; we show how these parameters can
be chosen below.

1. Run Algorithm 3.1 at level ¢ = 0 with My samples.

2. Independently of 1. for £ = 1,..., L, independently run Algorithm ?7? in the Supplementary
Material with M, samples.

Based on this process, a biased approximation of m(¢p) is then

() = 1M (o) + S M (o) — Al TIMe ),
1<¢<L

where 7T][f ]’M(go) is the PF estimate of W,[f ](90) with the number of particles M specifically given
n (3.5). The bias of this approximation is from the discretization level L and the bias of the
PF/CPF approximation, e.g. that in general, E[wg}’Mz(w) [e 1 Me( )] # 7rk ( )— ,[f 1 (),
where E is used to denote the expectation w.r.t. the probablhty law used in generating our
estimators. Now, if one combines the theory in [16] for the weak error, the strong error result

in Proposition 2.3 and the results in [18] one can consider the MSE, E[(m - Wk(go))Q].
Under the assumptions in the current paper and in [18] it can be proved that the MSE has
an upper-bound which is:

(3.4) O( > AP /M +AY).

0<e<L

We do not prove this bound as it is a fairly trivial application of the results in the afore-
mentioned papers. The exponent of Ay, in the summand, is 1/2 and this reduction of the
strong error of Euler-Maruyama is due to the resampling mechanism that has been employed;
we do not know of any general method that can maintain the strong error rate. We also
remark that there is an additional additive term on the R.H.S., but this term is much smaller
than the term given above, so we need not consider it. Using the standard approach that has
been adopted in MLMC (i.e. as discussed in Section 2.5) one can show that for e > 0 given,
setting L = O(log(e~/?)), M, = €_2A2/4A21/4 gives a MSE of O(e?) for a cost (per time step
k) of O(¢=225). This is lower than the cost of the approach in [18] due to the increased weak
error relative to the Euler-Maruyama discretization used in [18].

In the recent work of [24], the authors show how to use the antithetic Milstein scheme
within the context of the MLPF; we abbreviate to AMMLPF (antithetic Milstein MLPF).
They show empirically that to achieve a MSE (associated to their estimator) of O(e?) there
is a cost (per time step k) of O(e 2?log(e)?). The objective now is to show how our new
antithetic MLMC method can be extended to MLPFs. As in the case of MLMC, we expect
for this new method the error-cost calculation to be of the same order as the AMMLPF,
but when using smaller L, as would be adopted in practice, that improvements are seen in
simulations, due to the decreased weak error.

This manuscript is for review purposes only.
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Algorithm 3.1 Particle Filter using the weak second order scheme (Weak-2). The algorithm

is stopped at a time T, but need not be.

1. Input: level of discretization ¢ € Ny, final time 7" € N and number of samples M. Set
X(ga(i) =xz,i=1,...,M and k = 1. Go to 2..

2. Sampling: For i = 1,..., M, simulate X,[f] (z)\igﬂl(z) using the dynamics (Weak-2) up-to

time 1, with starting point a’:Ef]_l(z) and step-size Ay. Go to 3..
9%, ()yn)

_ 9K W) € By(RY
SM K Gy Y # (BT we

3. Resampling: For i =1,..., M compute: w!f (i) :=

have the estimate:

(3.5) M) = ST wl )X (0).

1<i<M

For i = 1,..., M sample an index j(i) € {1,..., M} using the probability mass function
wi(-) and set X[2(i) = x(j(i)). Fori =1,... M, set X[%i) = X[04), k = k+ 1, if
k=T +1 go to 4. otherwise go to 2..

4. Return the estimates 7r¥]’M(g0), Cee 7T¥]’M(g0) from (3.5).

3.3. New multilevel particle filter. Our new MLPF, which we shall call the antithetic
multilevel Particle Filter (AMLPF), is similar to the approach that was illustrated in the
[0]

previous section. At level 0, we shall use a PF to approximate m,"(¢). To approximate the
differences w,[f } (p)— 7r,[f_1] () we shall use a combination of the antithetic MLMC weak second
order scheme of Section 2.4, which will be the ‘sampling’ part of a PF and a type of ‘coupling’
for the ‘resampling step’. As we have already introduced the former, we introduce the latter
as Algorithm 7?7 in Section 77 in the Supplementary Material. As has been commented by
[23] in the context of coupling two probability mass functions (as in Algorithm ?7) there is
nothing that is optimal about using Algorithm ??7. Indeed, when used as part of a MLPF, we
expect just as in the case of Algorithm 7?7 when used for Algorithm 7?7, the strong error rate
from the forward problem is reduced by a factor of two; see (3.4). It remains an open problem
to find a general coupling method which can maintain the forward error rate (as was the case
in [3] in dimension 1 only) and a linear complexity in terms of the samples M.

Given Algorithm 7?7, we are now in a position to give our new coupled particle filter in
Algorithm 3.2. Just as in the previous section, the AMLPF can be summarized as follows,
given L the maximum level and the number of samples My,..., My; we show how these
parameters can be chosen below.

1. Run Algorithm 3.1 at level ¢ = 0 with My samples.
2. Independently of 1. for £ =1,..., L, independently run Algorithm 3.2 with M, samples.
Thus our new approximation of 7 () is:

m(e) = mo M)+ ST {FM (o) — Al M ()}
1<¢<L

where we recall that 7. ) — LM, ) is given in (3.6) in Algorithm 3.2.
k k
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We can again consider the MSE E[(m(¢) — ﬂk(go))Q]. As noted in [24], which considers
the AMMLPF, although it is fairly easy to establish a bound on the R.H.S. which is of the
type (up-to some other terms which are smaller) O(Y "y, AY/M;+ A1), obtaining the value
of v that is observed in simulation is not easy to achieve with the current proof method that
has been adopted in [18, 24]. As a result, we do not give a theoretical analysis in this paper.
However, as we shall see in Section 4, it appears that the correct value of v = 1 and hence we
use this as our guideline to choose L, My, ..., M. Following the arguments that have been
used previously, for € > 0 given, setting L = O(log(e~'/?)), M; = e 2A,L gives a MSE of
O(€?) for a cost (per time step k) of O(e~?log(€)?).

4. Numerical results. In this section, we provide a series of numerical illustrations de-
tailing our methodology for both forward and filtering problems. Specifically, we compare
their performance against both multilevel and standard Monte Carlo (Std MC) methods and
particle filters. We here summarise the labels of the algorithms that we use in the numerics:
e Forward problem: Std MC, MLMC (standard method with scheme (Weak-2)), AMLMC
(the new antithetic method with scheme (Weak-2)) and AMMLMC (the antithetic method
of [11] with scheme (T-Milstein)).

e Filtering problem: PF, MLPF (standard method, using scheme (Weak-2)), AMLPF (the
new antithetic PF method with scheme (Weak-2)) and AMMLPF (the antithetic PF method
studied in [24] with scheme (T-Milstein)).

4.1. Models. We consider two SDE models in our experiments. The first model is the
stochastic FitzHugh-Nagumo (FHN) model, which is a well-known hypo-elliptic model in
neuroscience:

Xy =1(X, - X} - Z, — s) dt, dZ, = (yX; — Z; + B) dt + odB}.

The values of the parameters in the simulations are set as follows: X;, =0, Y3, =0, e = 0.1,
oc=03,v=15=0.3and s = 0.01. For the forward problem, we estimate the value of
E[X7] with T = 100 time units. For the filtering case, we estimate E[X,|yo.,] with n = 100.
The observation data y;, we choose is y | (Xis, Zrs) ~ N (Xps, 72) with § = 1, 7 = 0.1, where
N(m, 0?) denotes the Gaussian distribution of mean m and variance o2.

The second model example is the Heston model [15] given as an elliptic SDE not satisfying

the commutative condition (2.2):

dSy = rSydt + v SidB},  dvy = o — vy)dt + p/vi(pdB} + \/1 — p2dB?).

The values of the parameters used in the simulations are set as: S;, = 100, v;,, = 0.09,
r =004, a = 20, 0 = 0.09, o = 0.1 and p = 0.7. For the forward problem, our target
quantity is E[S7] with 7" = 1.0. For the filtering case, we estimate E[S,,|yo.,] with n = 100,
where each observation y, is obtained as y, | (Sks, vrs) ~ N (Sks, 72) with § = 0.01 and 7 = 2.
We stress here that in the above model settings, the test functions are unbounded for the
filtering problem, while we have assumed boundedness in Section 3. As we will show in the
numerical results below, such a discrepancy can be negligible under suitable scenarios; e.g.
the case where the moments of underlying process are uniformly bounded in the time-interval.
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4.2. Set-Up and results. For our numerical experiments, we applied our algorithms to
obtain the multilevel estimators. Given the unavailability of an analytical solution, we will
use std MC and PF with a high-resolution L = 9 to approximate the ground truth for the
forward and filtering problem, respectively that shall serve as the benchmark solution. For
the filtering problem, though we did not discuss about stochastic resampling for our proposed
AMLPF in Section 3, we will run particle filters with adaptive resampling to showcase the
practical extendability of AMLPF. Specifically, resampling is performed when the effective
sample size (ESS) is less than % of the particle numbers. For the coupled filters, we use the
ESS of the coarse filter as the measurement of discrepancy. The error within the estimators
in our simulations will be evaluated using the mean square error (MSE), which will be com-
puted by conducting 50 independent simulations for each method (Std MC, MLMC, AMLMC
and AMMLMC) for the forward problem, and (PF, MLPF, AMLPF and AMMLPF) for the
filtering case with the ground truth obtained as described above.

The primary target is to compare the costs of these methods at the same MSE level. In
the AMLMC and AMLPF, one needs to determine the number of samples to approximate
the multilevel estimators at levels £ and ¢ — 1, denoted by M,. In particular, we set M, for
the AMLMC and AMLPF as My = ci ¢ x 5_2A2/2 and My, = co X e 2AL, respectively, for
some constants ¢ g, ca ¢ > 0 and a given L to attain a target MSE of O(e?), e > 0, with a cost
of O(¢72) for AMLMC and O(e 2log(¢)?) for AMLPF. For the AMMLMC and AMMLPF,
we also choose M, as above. In our experiments, we initially simulate the Std MC and PF
algorithms with L € {1,2,3,4} and obtain the corresponding MSE and cost values, where
the computational cost is computed as Zf:o My/Ay. Subsequently, we use the MLMC and
MLPF estimators to achieve identical MSE levels and record their corresponding cost values.
Finally, we compute the AMLMC and AMLPF estimators to attain similar MSE levels and
note their respective cost values. Due to the lower order of weak convergence, the AMMLMC
and AMMLPF estimators are computed with L = {2,4,6,8}.

We present our numerical simulations to show the benefits of applying AMLMC/AMLPF
to the above SDE models, compared to Std MC, MLMC, AMMLMC/PF, MLPF, AMMLPF.
Figures 1-2 show the MSE against the cost. The figures show that as we increase the levels
from L = 1 to L = 4, the difference in the cost between the methods also increases. Table
2 presents the estimated change rates of log(cost) against log(MSE) for both problems. The
reported rates align with our theoretical expectations. We observe that the computational
costs are of sizes consistent to the theoretical ones of O(e~3) for the Std MC and PF, O(e~2) for
the AMLMC, and O(e2log(¢)?) for the AMLPF. Moreover, we see from the bottom two plots
of Figures 1-2 that AMLMC/AMLPF (using the weak second order scheme) outperformed
AMMLMC/AMMLPF (using the truncated Milstein scheme) in terms of cost vs MSE. We
note that when choosing the number of samples M, in the experiments, the constants c; y and
ca2 to determine M, (indicated above) are allowed to be set lower for the case of the weak
second order scheme compared with that of the truncated Milstein scheme. We expect this
is due to the tighter variance bounds for the couplings of the AMLMC under a small-noise
diffusion setting, i.e. the case some small parameter is contained in the diffusion coefficient,
which we detail in Section 77 in Supplementary Material.

This manuscript is for review purposes only.



ANTITHETIC MULTILEVEL METHODS FOR DIFFUSIONS WITH APPLICATIONS

106,

10°

FHN Model

|-a -Std MC

-0 -MLMC

—* -AMLMC
—Fitted Std MC
—Fitted MLMC
—Fitted AMLMC]|

MSE

FHN Model

107

= "AMMLMC

- -AMLMC
—Fitted AMMLMC
—Fitted AMLMC

106,

10°

Heston Model

-= -Std MC

-0 -MLMC

=+ -AMLMC
|—Fitted Std MC
—Fitted MLMC
—Fitted AMLMC]|

Heston Model

= -AMMLMC
=*-AMLMC
(—Fitted AMMLMC
— Fitted AMLMC

)
~

NN
N O TR WD = O O

Co

Ne)

v Ot Ot Ot Ot Ot Ot Ot Ot Qv Ot Ot Ot Ot

iy
)

Cost
Cost

100" . - : 100"

Figure 1. Cost versus MSE for the forward problem.

Table 2
Estimated change rate of log(cost) against log(MSE). Left: Forward problem. Right: Filtering problem.

Model Std MC MLMC AMLMC Model PF MLPF AMLPF
FHN -1.48 -1.1 -1.03 FHN -146 -1.17 -1.11
Heston -147 -1.11 -1.05 Heston -1.49 -1.24 -1.14

5. Conclusion. Our work has investigated the use of a weak second order scheme within
the multilevel Monte Carlo (MLMC) framework. We first proved that our scheme has a strong
error 1. Then, in the context of MLMC, we developed a new antithetic estimator based on
our weak second order scheme which achieves the optimal cost rate O(¢72), € > 0, to obtain
a MSE of O(£?). Such an optimal cost rate is also reported for the different antithetic MLMC
approach of [11] which makes use of a truncated Milstein scheme of weak error 1. The new
antithetic estimator is shown to possess a benefit versus the one of [11], that is, our estimator
is expected to be more efficient for a finite maximum level of discretization L used in practice
due to the higher order weak convergence. As an application, we have proposed an antithetic
multilevel particle filter (AMLPF) by building upon previous works [18, 24] for the purposes
of efficient filtering of diffusion processes from observations. Our simulation studies are in
support of the anticipated cost of the proposed AMLPF being O(¢~2log(¢)?) to achieve an
MSE of O(g?). Also, all our numerics support the understanding that the new antithetic
estimator using the weak second order scheme outperforms the antithetic Milstein scheme-
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Figure 2. Cost versus MSE for the filtering problem.

based estimator in both forward/filtering problems. We emphasize that our numerical scheme
is locally non-degenerate under both elliptic/hypo-elliptic settings, whereas the truncated
Milstein scheme is degenerate in the hypo-elliptic case. The non-degeneracy of the scheme
makes possible its deployment within particle filters with guided proposals so that stochastic
weights required to be assigned to particles are well-defined and available as the ratio of
products involving the density expression for the numerical scheme and the proposal, though
the exploration of this direction is left for future work.

Appendix A. Proof of Proposition 2.3.
Proof. Let 1 <1 < 2¢. We have that

— %, P < N1 [ j_‘jp]
8 = E|max |1 X; — Xy [P < N 1<ZQNE max [ X5, — X317
)

where we made use of the following inequality:

(A.1) (Z |wj|)”gNP*1 S P, @ =(a1,...,2n) € RV

1<j<N 1<j<N

We will show that for any p > 2, there exists a constant C > 0 such that:

(A.2) s<o(a?+ Y s.-a),

0<n<i—1
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which leads to the conclusion due to the discrete Gronwall’s inequality. Application of sto-
chastic Taylor expansion for XZ ,0<n<k-—1,yields that, for 1 < j < N:

. . tn+1 .
Xi - Xf = / (02,(X,) — ol (X,,))dBT"
0<n<k—1"tn
0<m<d
= Y Laoh, (K )ARTE =3 D (o om ) (Xe ) AATITS
0<n<k-1 0<n<k-1
0<mi,ma<d 1<m1<ma<d
= D (oh(Xe,) — o (X)) ABE,
0<n<k-1
0<m<d
1
+3 Z (£m1 Oma (th) ﬁml Oy th ){ABZZL,%AB;:H tn Aflml:mZ}
0<n<k-—1
1<mi,m2<d
- % Z {[0m1’0m2]j(th>AAtmnl+1% + [0m17am2] (th)AAZZiTEn}
0<n<k—1
1<m1<m2<d
J
+ Z tn+1,tn +Nn+1, )
0<n<k—1

t"n«&»latn are such that E[M¥n+17tn|ftn] =0for0<n<k-—1and
it holds under Assumption 2.1 that for any p > 2, there exist constants C,Cs > 0 such that

J 3p/2 2p
(A.3) ogrggl}élE“Mt"“’t” P] < CL1AP"7, o nax E[IN 7] < CoAP.

where the terms M?{ | N}
n+1,ln

n+l 7tn

Thus, inequality (A.1) yields E[maxogkgi}thk — ng |p] <G, Zlgagcs 7;(04),]‘ for some constant
Cp > 0, where we have set:
T(l)’j = E[max Z (O‘é(th) — Ug()_(tn))AAp];

v 0<k<i
0<n<k—1

T =Elaax] D2 (o (%) — o (X)) ABL 1]

0<n<k-—1
1<m<d
3),J
7;( )] E[Oril]?i(z‘ Z (Emlo—mg (th) Emlo—mg (th)) (ABZnil tnABan_1 tn Ae]‘T"»l:"nZ) ‘p]’
— 0<n<k—-1
1<m1,ma<d
0 | -
T —Blmax| Y {lom ol (5,)AAS, + o ol (K ) AXLS, J )
0<n<k—1
1<mi<ma<d
(5)d _ P (6).J _
TOM =Elmax| 3 M [Tl T =EBlmax] > AL
0<n<k—1 0<n<k—1

Applying inequality (A.1), we have under Assumption 2.1 that:

T <t ST E[lod(Xe,) - (X )AL < 7P NS, A,
0<n<i—1 0<n<i—1
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578 for some constant ¢; > 0 independent of Ay since iA, < T'. Similarly, we have:
70 (Ad) TOT <@t 3 B[V, 0,7 < coTPAY
580 0<n<i—1

581 for some constant cg > 0. We consider the other four terms. Since they involve martingales,
582 we make use of the discrete Burkholder-Davis-Gundy inequality to obtain:

- 2),j ; Do 2\p/2
83 TP <euE[(( Y {0h(X0) — oh (X )ABE L, ¥
0<n<i—11<m<d
584 e YT Y E[[(0h,(Xe,) — o (X )AB [
0<n<i—11<m<d
585 <c23 ip/2_1 Z Sy - A?ﬂ <c23 Tp/2_1 Z Sn Ay
586 0<n<i—1 0<n<i—1

587 for some constants cg 1,22, c23 > 0, where we applied (A.1) in the second inequality. Simi-
588 larly, we have that:

589 T <eip/20 N S, A< e TPPIANR NS, Ay
0<n<i—1 0<n<i—1
5).7 /2 j . 3p/2
90 709 < o5 /2! > E[M L7 < ese iPAPP = o5, TVPAY
591 0<n<i—1

. 4),j .
592 for some constants c3, c5 1, c52 > 0. Finally, for 7;( ) , we obtain:

03 (A5) T <t Y ST E[AATE P |AAT™S 7] < cqnTP2AD

tn+17tn tn+17tn
595 for constants cq,1,cq,2 > 0, where we used that E|AA"2 P = O(AY), E|AK§Z1+T§TL P = o(AD)
596 for any p > 2. Note that ) ., ., 1 S, does not appear in the upper bound of 7;(4)’]. Thus,
597 we obtain inequality (A.2) and conclude. [ ]
598 Appendix B. Auxiliary results for Theorem 2.5. Throughout this section, let 1 < j < N,
509 1<l<L,0<k<2'—1andt,=kAr;.
600 Lemma B.1. It holds that:
J8 7f’£7. 7f7£" j 7f’£ j 7f’£
601 thﬂj = th[ b + Z O'ajn (th[ ])AB;:+17tk + Z ['mlagnz (th[ ])A";:ﬁi
0<m<d 0<mi,ma<d
e 1 7 o £ m m _ m m
602 2 Z L, Timy (th ) (ABthlr17tk+1/2 ABtkil/Q’tk ABtkil/QatkABtkil7tk+1/2)
1<mi,ma2<d

e 1 Il Amim Amim —~f.J 7fJ
603 + 2 Z [aml’am2] (th )(AAtk.lH/zz,tk + AAtklﬂylkaH/z) + Mtk+17tk + tet1,te?
604 1<mi<ma<d

where the remainder terms are such that E[M{,il,ﬂftk] =0, and for any p > 2 there exist

constants C1,Cy > 0 so that:

max E[[Mf’j P] < L AP/? max ]E“/\_/f’j P] < CoAZP
0§k§2£71_1 bt 1tk - =1 0§k§2£71—1 tet1,th - /—1-
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Similarly, it holds that:
vl _ 1l i (vl i (vl
th+1 - th + Z Jgn (th )ABZ:HM + Z Eml 0-5712 (th )An::r:tzk
0<m<d 0<mi,ma<d
1 i (vl my mo _ my ma
+3 Z £mlam2 (th )(ABtk+1atk+1/2 lgt1/2:0k ABtk+1/2,tk tk+17tk+1/2)
1<m1,m2<d
1 3 (LY ¢ Fmama Amims g fd YL
T2 Z [Gm170m2] (th )(Atk+1/21tk + Atk+17tk+1/2) + Mtk+17tk +Mk+1atk’
1<mi<mo<d
y Nf7] X/’f?] y y v f:]
where the remainder terms Mtkﬂ,tk and torn b satisfy the same properties as Mthrlytk and
./\_ft];]r Lty Tespectively.

Proof. From the definition of the fine discretization scheme (2.6), we have:

Xf:[e] J

tet1

TN i e i vl
(B.1) = x4 N L (X aBy,, L+ ol (XY

)
tk+1/2 tk+1:tk+1/2
0<m<d

+ Z {»le afn,z

0<my,m2<d

2

1<mi<ma<d

mimo
lkt1/2:tk

(x/1)an + Loyl (X1

) mimso
tet1/2

tkt15lk41/2

+ [Gm1 Y Um2]] (X‘ﬂ[ﬂ )A

. — 7[ ~
+ % {[0m1 s Um2]] (Xt];[ })AmlmQ tht1/2

trt1/2:tk th+1

The Ito-Taylor expansion gives, for 0 < m < d:

. —_ 7€ . —_ 7£ . —_ 7£ m
(B.2) o (X0 Y=ol (XD + Y Lol (X haBp
0<mi<d

where under Assumption 2.1 the remainder term Etj;i Lot

exists a constant C' > 0 so that maxy<p<ge-1_ EHS&’L/Q%

that the standard Taylor expansion gives that for any f € C}(RY):

Amimo

j
!

k412

f7j
+ gtk+1/2:tk’

is such that, for any p > 2, there

]p] < CAY. Furthermore, we note

vhHl N end ) o flei o1l
(B3) f(th+1/2) - f(th ) + Z 8lf(€) (th+1/2 - th )
1<i<N
for some variable £ € RV, and it holds that:
ABZZLJIQABZ:L% = ABZZL,%H/Q Z:ilvtk+1/2 + AB;ZJlrlvtk+1/2 ;:il/%tk
m m m m
(B'4) + ABtkil/thk Btkilvtk+1/2 + ABtkil/thk tkiuz,tk'
Thus, applying (B.2), (B.3) and (B.4) to (B.1), we obtain that:
ool o/l iy ol i (e file
th[+]1j = th[ b + Z 0%1(th[ })AB?ZH,% + Z ‘leggnz (th[ ])A"Z:ﬁ?k
0<m<d 0<mi,ma<d
1 i (vl
2 Z Lmlag@ (th )(ABZZL,%H/QABZZ?H/Q,% o ABZZ}LI/Q,I@ABZ:ilvthA/Q)
1<mq,m2<d
1828t A it fid
+ % Z [Ormys Omy ) (th[ ]) (A;Zf/i,tk + A?Zﬂ?kﬂ/z) + M{ki»l:tk + M{cilytk’
1<mi<mo<d
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631 where the remainder terms M{ki L, and /\/tk+1 ¢, have the properties stated in Lemma B.1.
635 The assertion for X7l follows from the same discussion above, and the proof is now com-
636 plete. |
637 Lemma B.2. It holds that:

1ol o o143 i (ol file

X kH] th[ ) + Z Ugn(th[ ])ABZ:HM + Z Emloan(X H)A Zi??k
638 (B.5) 0<m<d 1<miq,ma<d
S fid
639 + Mtk+17tk '/\/;fk+17tk’
610 where the remainder terms /\/ltk L, and ./\/;/JZ’J1 1, Satisfy the same properties as Mg,il,tk and
641 /\/tj; i L, 0 Lemma B.1, respectively.
642 Proof. For notational simplicity, we omit the subscript “[¢]” during the proof. Due to
643 Lemma B.1, we get:
644 X[ =X+ 3T el (XDABE, L+ D L od, (XD AnT
0<m<d 1<my,ma<d

. (Z J + LN fii f.d £
645 (B.6) Z tht 1tk §{Mtk+1,tk + Mtk+1 ty Mk+lytk Mk+1 tk}
646 1<i<6
647 where we have set:
T 1 D j — j %
o g, = N (Lol (X)) + Sol (X)) — od (X)) ABET 4

1<m<d
z 2 I j j ¥
o0 €D, = (Soh(XL) + Sod(KL) — of(XL)) Aec + (Lood(KL) + Looh(KL)) 22
. g X ‘
650 gt(k,j_lj,tk - Z (%E mi ’n’L2 (Xf) ‘le mQ( ) ‘le o—gng( é))AnZZ‘i’Tﬁk’

1<my,m2<d
. 4,5 o
6ol t(k-?-f,tk Z { mUO + EmUO( ))Antk+l tk (‘COJin(th;) + EOU] ( >)Antk+1ytk}

1§m§d
- 5 _ 1
652 gt(kj-ljytk =1 Z {(ﬁmlaﬁm( ) Emlaan (XtJ;))

1<mi,mae<d

oy m m m m .
653 (ABtkihtk.;.l/Q ABtkil/Qvtk o ABﬁkil/zﬂfk ABtkilutk+1/2) }7

. 6),7 i v mim Tmim
i EO =1 ST (o om P (XL) — [oma omo P (X)) (AAT™: - AAT ),

1 Tt 1tky1/2 ter1/2:0k
655 1<mi<mo<d

656  We immediately have that, IE[ \]—"tk] =0, € {1,3,4,5,6}. Applying second order
657 Taylor expansion around th, we have under Assumption 2.1 that, for g € C’g (RV:R) and

658 p > 2, there exist constants C,Cy > 0 such that for all 0 < k < 261 —1:

tk+1 Wtk

g ElSe) +oXD) — o] < cidly, E[lg(X]) - 9(X))I"] < cea}ls,
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where we made use of the following result: for any p > 2, there exists C' > 0 such that

v/ _ v/f p/2
(B.7) ngrélQ%}fl—lE[”th ~ X[ |IP] < oAbz,

The bound (B.7) is obtained by noticing that

v/ _ v/ p v/ _ v/ p

OSkISHQ%)_%_lE[Hth thH ] < E[ngrgné?_(l_l Hth thH ]
and applying the same argument used in the proof of [11, Lemma 4.6] with the strong conver-
gence result (Proposition 2.3) to the right-hand-side of the above inequality. Then, we have

2),J , 3p/2 .
that: maXOSkS2Z7171 ]E[‘gt(kif,tk|pi| < CIA[ 1 ma’X0<k<2£ 1 1E[| t(]ZJr.i tk|p] = C2Afg/1’ J €

{1,3,4,5,6} for some positive constants 01,02 Setting Mtk+1 b = Zi€{1737475’6} gt(;:litk +

1 (gl : — £(2),j ; ;
2 (M{kjﬂ,tk + Mt{cil tk) and '/\/’tk+1 te — tk+1 b T ('/\/;J;j»l te T 'N;fjlytk)’ we conclude. u
Lemma B.3. It holds that:
e [0=1). c[0=1],j [13 1]
thﬂ tlc + Z UJ )ABtkH’tk
0<m<d
(Bg) £ j XC,[@—H A mi1mso M \7C.J
+ Z m10m2( tg ) T,tk+17tk + tkt1,tk + trt1,tk?
1<mi,m2<d
where the remainder terms Mtk+1 ¢, and j\/’tk+1 +,, satisfy the same properties as /\;l[,ibtk and

N in Lemma B.1, respectively.

tot1,tk
Proof. For notational simplicity, we omit the subscript “[¢ — 1]” during the proof. From
the discretizations (2.4) and (2.5), we have:

cJ C.J E i (ve m § : mimsa E :
th+1 th + O-m(th)ABthrl,tk + Eml mz (th) tk:+1 Stk + Rtk+1,tk7
0<m<d 1<mi,mo<d 1<i<5

where we have defined:

1),5 . .~ PN . .o~ AQ_
Ripit i = (300(X5) + 309(X5,) — 0 (X5,)) Aema + (Lot (X7,) + Loo (X7, ) =
2),j e e -
Rl = 20 Goh(Xa) + 300(X5) — oh(X0))ABY,, 1
1<m<d
3).j >
R = 2 (3Lmha(XE) + §Lmi s (X5) = Lyt (X5)) AR
1<my,m2<d
"y, — o~
Rito =5 20 (lomom (X5) = lom, oml (X)) ABIL ( AB2
1<mi<mo<d
5).j
Ri e =5 2 A (Lmod(XE)+Lmod(XENAM, 4, + (Loot(X,) + Lot (X5 DA, 1}
1§m§d
From the argument used in proof of Lemma B.2, we have that /\/ltk+1 e = Da<i<s R tk+1 1
and fki e = R,Ekil ¢, satisfy the properties in the statement of Lemma B.3, and then we
conclude. [ |
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Algorithm 3.2 New Coupled Particle Filter using the antithetic weak second order scheme.

The algorithm is stopped at a time 7', but need not be.

1. Input: level of discretization ¢ € N, final time T" € N and number of samples M. Set
xel 6y = xe 0 = P = XY@y =2, i=1,...,M and k = 1. Go to 2..

2. Sampling: For i =1,..., M, simulate

(xel =), XetY a6y, XMy, X)) (@ 6), 75171 6), 2096, 7201 )

using the coupled dynamics (2.4)-(2.7) up-to time 1, with:
e starting point fi’w;l](') step-size Ay_; for (2.4)
), step-size Ay_; for (2.5)

i
e starting point :Ei’[ i(z) and step-size Ay for (2.6)
~fle ]( )

e starting point l’k

e starting point ;" (i) and step-size A, for (2.7).
Go to 3..

3. Resampling: For ¢ = 1,..., M compute

cle=1 oy _ a(X ) 1Ay o oK)
w0 = G L W ) S R G
—efe=1] oK) ) 10y (XY ) ve)

L Q ML X T G ) @) M X))

For any ¢ € By(RY) we have the estimate:

M) = a M @) =4 Y {wM@ex 6@ + # M @ e }

1<i<M

3 {u M pt M o e}

<i<M

(3.6)

w\»—-

For 7 = 1,...,M sample indices (jc’w_l]() el=1(), j A0 ),}f’m(i)) c {1,...,M}*
using Algorithm 7?7 in Supplementary Material with probability mass functions
(wZ’[é_l](-),@Z’V—”(), w,’:’[z](-),ﬁl{’m(-)), cardinality M and set
X = X Ge G, X 6) = XPIGEE @),
ALy Shl, . ) o ¢
X0 = xR, X0 = KEOGHG)
FOI' 7/ — 1 M Set XC,[Z—l]() _ "C,[e—l](.) ~C7[€—1](-) [Z 1]( ) Xf7[£]( ) Xka,[f](l),

Xf’m( ) = Xfm( ). Set k=k+1,if k=T +1 go to 4. 0therw1se go to 2..
4. Return the estimates TI'[Z] (p) — [16 1M (), ... ,fré@’M(@) - gj .M () from (3.6).
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