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Abstract. We present a new antithetic multilevel Monte Carlo (MLMC) method for the estimation of expec-5
tations with respect to laws of diffusion processes that can be elliptic or hypo-elliptic. In particular,6
we consider the case where one has to resort to time discretization of the diffusion and numerical7
simulation of such schemes. Inspired by recent works, we introduce a new MLMC estimator of expec-8
tations, which does not require any Lévy area simulation and has a strong error of order 2 and a weak9
error of order 2. We then show how this approach can be used in the context of the filtering problem10
associated to partially observed diffusions with discrete time observations. We illustrate that in11
numerical simulations our new approaches provide efficiency gains for several problems, particularly12
when the diffusion process is hypo-elliptic, relative to some existing methods.13
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1. Introduction. We consider N -dimensional stochastic differential equation (SDE):16

(1.1) dXt = σ0(Xt)dt+
∑

1≤j≤d
σj(Xt)dB

j
t , X0 = x ∈ RN ,17

where {Bt}t≥0 is the d-dimensional standard Brownian motion defined upon the filtered prob-18

ability space (Ω,F , {Ft}t≥0,P), and σj : RN → RN satisfies some regularity conditions, to be19

made precise later, with σj = [σ1
j , . . . , σ

N
j ]> for 0 ≤ j ≤ d. Throughout the paper, the matrix20

a = σσ> can be degenerate, with σ ≡ [σ1, . . . , σd]. Thus, this class of diffusion process includes21

certain elliptic and hypo-elliptic diffusion processes that can be found in applications; see for22

instance [25]. In particular, a lot of interest is shown recently in the literature for numerical23

analysis and statistical inference methods for hypo-elliptic diffusions (see e.g. [7, 13, 17, 16]).24

We consider the context that one cannot obtain an exact solution of the SDE, despite its ex-25

istence, and has to resort to time-discretization of the diffusion and the associated numerical26

simulation and, again, there are many examples of such processes that are used in practice27

[25].28

The collection of problems that we focus upon in this article is, firstly, the computation29

of expectations with respect to (w.r.t.) laws of diffusion processes; we call this the forward30

problem. That is, given a function ϕ : RN → R that is integrable w.r.t. the transition law of the31
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diffusion, the objective is the computation of a numerical approximation of E[ϕ(XT )] for some32

given terminal time T > 0. Secondly, we consider the filtering problem for partially observed33

diffusion processes that are discretely observed in time. In other words (1.1) is a latent process34

that is observed through noisy data, only at discrete times (which we take as unit times for35

simplicity). The objective is then to compute an approximation of the conditional expectation36

of Xt at each observation time and given all the data available up-to that time. This is a37

classical problem in engineering, statistics and applied mathematics, see e.g. [2, 4] for further38

references and applications.39

For both aforementioned problems, one must resort to a time discretization of (1.1) whose
properties can be critical for any resulting numerical approximation method relying on it.
There are several numerical methods in the literature, such as the Euler-Maruyama (E-M)
method and the Milstein scheme; see for instance [25]. The main properties that are often of
interest to inform the efficiency of the approximation are the weak and strong error, which we
shall define, loosely, as follows – a full definition can be found later on. For a time discretization
on a regular grid of spacing ∆ > 0, and a corresponding numerical approximation {X̄t}t≥0

the weak error (assuming it exists) is the discrepancy:

|E[ϕ(XT )]− E[ϕ(X̄T )]|

for an appropriate test function ϕ : RN → R. We remark that the numerical approximation
may be defined in continuous time by interpolation between points on the time grid. The
strong error1 (assuming it exists) is taken as:

E
[
‖XT − X̄T ‖2

]
where ‖ · ‖ is the L2−norm. There are several results for well-known discretization methods;40

e.g., E-M has weak error of O(∆) (weak error 1) and strong error of O(∆) (strong error 1)41

and the Milstein scheme has weak error 1 and strong error 2. In the context of the methods42

to be used in this article, one generally would like the order of weak and strong error to be43

‘large’ at a cost of O(∆−1) for directly simulating the approximation. We note that direct44

simulation, without for instance solving linear equations of cost of order O(Nm), m > 2, is45

critical for practical problems, especially filtering.46

In this work we consider both elliptic and hypo-elliptic diffusion processes and in the latter47

case we have N ≥ 2. In such scenarios, the Milstein method (or the strong 1.5 scheme, see [25],48

with weak error 2 and strong error 3) cannot often be simulated directly, without a restrictive49

commutative condition (given later on), as one has to compute an intractable Lévy area. In50

such cases one resorts to the E-M approach, which can be simulated exactly, but the order of51

weak and strong error is comparatively low. Whilst there are some higher order discretization52

methods based upon stochastic Runge-Kutta approaches (see e.g. [29]), generally for many53

Monte Carlo simulation-based methods a strong error of 2 generally suffices for ‘optimal’ (to54

be clarified later on) variance properties. An elegant methodology that side-steps sampling55

1In the literature,
{
E
[
‖XT − X̄T ‖2

]}1/2
is used as the standard definition of strong error. However, we

make use of the squared version of the definition because it aligns with the analysis on the variance of couplings
in the context of multilevel Monte Carlo.
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of Lévy areas but preserves strong error 2 was developed in [11] based upon the multilevel56

Monte Carlo (MLMC) approach [9, 10, 14].57

MLMC works with a hierarchy of time-discretised diffusions, that is with a collection of58

step-sizes 0 < ∆0 < · · · < ∆L, L ∈ N. Then one rewrites the expectation of interest as a59

decomposition of the difference of the exact (no time discretization) expectation and the one60

with the finest time discretization and then a telescoping sum of differences of expectations61

associated to increasingly coarse step-sizes. Then, if one can appropriately simulate dependent62

(coupled) time discretizations for pairs of step-sizes it is possible to reduce the cost of a Monte63

Carlo based algorithm (e.g. the cost versus a direct simulation of the time discretised diffusion64

with a single step-size ∆L) to achieve a pre-specified mean square error (MSE) using MLMC;65

see e.g. [10] for a review. [11] introduce an antithetic MLMC (AMLMC) using the truncated66

Milstein scheme (defined in Section 2.2.2) which has weak error 1 and stong error 1 without67

requiring the simulation of intractable Lévy areas, but the variance of couplings at each level68

decays w.r.t. the step-size at the same rate as the case of a time discretization having strong69

error 2, which leads to an optimal computational complexity.70

In this article we develop a new method (multilevel-based) for time discretization which71

is effective in both the elliptic and hypo-elliptic contexts. Motivated by the work in [11],72

we derive a new AMLMC based on the numerical scheme proposed in [16] achieving weak73

error 2 and strong error 1 (the latter is proven in this article), which still gives an optimal74

computational complexity (for the forward problem). The method can also be simulated75

directly with a cost of O(∆−1) per-pair of levels 0 < ∆ < ∆′. An AMLMC with a weak76

error 2 has also been investigated in [1], where they used an alternative numerical scheme77

with a weak error 2 and emphasized its efficiency due to the reduction of the number of time-78

discretizations, which is an advantage over the AMLMC that uses the truncated Milstein79

scheme (weak error 1). A comparison between our proposed AMLMC and the method by [1]80

is given later in Section 2.4. In addition, we show that our new methodology can be used81

for the filtering problem. Some of the state-of-the-art numerical methods for this problem82

are based upon particle filters (e.g. [4, 6]) related to the MLMC approach, which are termed83

multilevel particle filters (MLPFs) see e.g. [18, 24]. Based upon the methodology developed84

herein, we derive a new MLPF. To summarize, the main contributions of this article are:85

• We introduce a locally non-degenerate scheme of weak error 2 for both elliptic and hypo-86

elliptic contexts, inspired by [16]. We prove that the scheme has strong error 1.87

• We then develop a new AMLMC method that does not contain Lévy areas and prove that88

the variance of the AMLMC estimator decays (w.r.t the step-size) at the same rate as for89

a discretization scheme that would achieve a strong error 2.90

• We show how to use the new AMLMC method for filtering within the context of MLPFs.91

• We present numerical results to show that our method can out-perform some competing92

approaches.93

We further elaborate on some of the bullet points above. In the case of the forward problem,94

the second bullet point leads to the new AMLMC estimator having a cost of O(ε−2) to give95

a MSE of O(ε2), ε > 0, i.e. the method attains the optimal cost for (stochastic) Monte Carlo96

based methods. Such a MSE is also achieved by [11], however the higher rate of weak error97

is expected to provide efficiency gains – verified in our numerical experiments – due to the98

necessity of the use of a finite L (the most precise level) in simulations. In the case of filtering,99
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we compare to the MLPF approaches in [18, 24]. In [18] the authors prove that, in the elliptic100

case, to achieve a MSE of O(ε2) there is a cost of O(ε−2.5). In [24] the authors show that101

in simulations to achieve a MSE of O(ε2) there is a cost of O(ε−2 log(ε)2); this latter MLPF102

corresponds to an embedding of the multilevel approach of [11] within the filtering problem.103

We verify in our simulations that, as one expects based upon [18], our new MLPF has costs104

consistent with the anticipated rate O(ε−2 log(ε)2) to achieve a MSE of O(ε2). However, as105

the discretization schemes underpinning the methods in [18, 24] have weak error 1, we again106

observe efficiency gains for finite L. Finally, we note that our numerical scheme is locally non-107

degenerate under a hypo-elliptic setting, while this is not the case for the truncated Milstein108

scheme. The existence of the density (non-degeneracy) is important in the filtering problem109

when utilising guided proposals [5] to improve the performance of particle filters.110

This paper is structured as follows. In Section 2 we consider several numerical schemes111

for SDEs and introduce our approach. In Section 3 we describe how our idea can be used in112

the context of the filtering problem and derive the new MLPF. In Section 4 we present our113

numerical results to illustrate our theoretical derivations. The mathematical proofs of our114

main results are given in the Appendix.115

116

Notation: Let CKb (Rn;Rm), n,m,K ∈ N, be the space of K-times differentiable functions117

f : Rn → Rm such that partial derivatives up to order K are bounded. For a vector y ∈ RN ,118

we define the norm ‖ · ‖ as ‖y‖ ≡
√∑

1≤i≤N y
2
i .119

2. Numerical schemes.120

2.1. Basic assumptions and error. To study a broad class of SDEs including the case121

where the matrix a = σσ> is degenerate, we consider the following structure for model (1.1):122

dXt =

[
dXS,t

dXR,t

]
=

[
σS,0(Xt)
σR,0(Xt)

]
dt+

∑
1≤j≤d

[
0NS

σR,j(Xt)

]
dBj

t , X0 = x ∈ RN ,(2.1)123

124

where we have set σS,0 : RN → RNS , σR,j : RN → RNR , 0 ≤ j ≤ d, with integers NS ≥ 0,125

NR ≥ 1 such that NS +NR = N . We write for x ∈ RN :126

σ0(x) =
[
σS,0(x)>, σR,0(x)>

]>
, σj(x) =

[
0>NS

, σR,j(x)>
]>
, 1 ≤ j ≤ d,127128

and a ≡ σσ> with σ ≡ [σ1, . . . , σd]. Notice that when NS ≥ 1, the matrix a is degenerate. We129

write [σ0, σj ](x) ≡
∑

1≤k≤N
{
σ̃k0 (x)∂xkσj(x)−σkj (x)∂xk σ̃0(x)

}
, 1 ≤ j ≤ d, where σ̃0 : RN → RN130

is the drift function when the Itô-type SDE (2.1) is written as a Stratonovich one, specifically,131

σ̃0(x) ≡ σ0(x)− 1
2

∑
1≤i≤N

∑
1≤j≤d σ

i
j(x)∂iσj(x).132

We introduce the following assumptions related to Hörmander’s condition (see e.g. [28]).133

Assumption 2.1. σj ∈ C∞b (RN ;RN ), 0 ≤ j ≤ d.134

Assumption 2.2. (i) Ellipticity. When NS = 0, it holds that for any x ∈ RN :135

Span
{
σ1(x), . . . , σd(x)

}
= RN .136137

(ii) Hypo-ellipticity. When NS ≥ 1, it holds that for any x ∈ RN :138

Span
{
σR,1(x), . . . , σR,d(x)

}
= RNR , Span

{
σ1(x), . . . , σd(x), [σ0, σ1](x), . . . , [σ0, σd](x)

}
= RN .139140
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For a numerical scheme {X̄k∆}k=0,1,...,2` with constant step-size ∆ = T/2` and non-negative
integer `, weak and strong error of order m ≥ 1, respectively, are given as follows:∣∣E [ϕ(XT )]− E

[
ϕ(X̄T )

]∣∣ = O(∆m), E
[

max
0≤k≤2`

∥∥Xk∆ − X̄k∆

∥∥2p]
= O(∆mp), p ≥ 1,

for some appropriate test function ϕ : RN → R.141

2.2. Discretizations. We introduce a discretization scheme of weak order 2 and also men-142

tion other popular discretization schemes (e.g. the Milstein scheme) for comparison. Let T > 0143

be a terminal time and ∆` = T/2` be a step-size of discretization with a non-negative integer144

`. We make use of the notation tk = k∆`, 1 ≤ k ≤ 2`, and ∆Bt,s = Bt −Bs, 0 ≤ s ≤ t. For a145

sufficiently smooth function ϕ : RN → R, we set:146

L0ϕ(x) =
∑

1≤k≤N
σk0 (x)∂xkϕ(x) + 1

2

∑
1≤j≤d

∑
1≤k1,k2≤N

σk1j (x)σk2j (x)∂xk1∂xk2ϕ(x);147

Liϕ(x) =
∑

1≤k≤N
σki (x)∂xkϕ(x), 1 ≤ i ≤ d.148

149

We define, for 1 ≤ i1, i2 ≤ d:150

[σi1 , σi2 ](x) = Li1σi2(x)− Li2σi1(x), x ∈ RN ,151152

where Li1σi2(x) = [Li1σ1
i2

(x), . . . ,Li1σNi2 (x)]> ∈ RN .153

2.2.1. Milstein scheme. The Milstein scheme, of weak order 1 and strong order 2, writes154

as follows, for 0 ≤ k ≤ 2` − 1:155

X̄Mil
tk+1

= X̄Mil
tk

+ σ0(X̄Mil
tk

)∆` +
∑

1≤j≤d
σj(X̄

Mil
tk

)∆Bj
tk+1,tk

+ 1
2

∑
1≤j1,j2≤d

Lj2σj1(X̄Mil
tk

)
(
∆Bj1

tk+1,tk
∆Bj2

tk+1,tk
−∆` · 1j1=j2 −∆Aj1j2tk+1,tk

)
,

(Milstein)156

157

with X̄Mil
0 = x, where ∆Aj1j2tk+1,tk

is a Lévy area specified as ∆Aj1j2tk+1,tk
≡
∫ tk+1

tk

∫ s
tk
dBj1

u dB
j2
s −158 ∫ tk+1

tk

∫ s
tk
dBj2

u dB
j1
s . Note that in general there is no effective way to directly simulate the Lévy159

area. However, if the commutative condition holds, i.e. for any x ∈ RN ,160 [
σj1 , σj2

]
(x) = 0, 1 ≤ j1, j2 ≤ d, j1 6= j2,(2.2)161162

then the Lévy area does not appear in the Milstein scheme and the latter becomes tractable.163

2.2.2. Truncated Milstein scheme. The truncated Milstein scheme, used by the AMLMC164

method of [11], has weak and strong errors both of order equal to 1, and writes as follows, for165

0 ≤ k ≤ 2` − 1:166

X̄T-Mil
tk+1

= X̄T-Mil
tk

+ σ0(X̄T-Mil
tk

)∆` +
∑

1≤j≤d
σj(X̄

T-Mil
tk

)∆Bj
tk+1,tk

+ 1
2

∑
1≤j1,j2≤d

Lj1σj2(X̄T-Mil
tk

)
(
∆Bj1

tk+1,tk
∆Bj2

tk+1,tk
−∆` · 1j1=j2

)
,

(T-Milstein)167

168

with X̄T-Mil
0 = x. Since the scheme omits the Lévy area ∆Aj1j2tk+1,tk

, the strong convergence169

rate is the same as for the E-M scheme unless the commutative condition holds.170
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2.2.3. Second order weak scheme. Motivated from [16], we introduce two nondegenerate171

discretization schemes for elliptic (NS = 0) and hypo-elliptic (NS ≥ 1) cases, separately. That172

is, for 0 ≤ k ≤ 2` − 1:173

X̄tk+1
= X̄tk + σ0(X̄tk)∆` +

∑
1≤j≤d

σj(X̄tk)∆Bj
tk+1,tk

+
∑

0≤j1,j2≤d
Lj1σj2(X̄tk)∆ηj1j2tk+1,tk

+ 1
2

∑
1≤j1<j2≤d

[σj1 , σj2 ](X̄tk)∆Ãj1j2tk+1,tk
,

(Weak-2)174

175

with X̄0 = x, where the random variables ∆ηj1j2tk+1,tk
and ∆Ãj1j2tk+1,tk

are given as:176

∆ηj1j2tk+1,tk
=

∆ηEll,j1j2
tk+1,tk

(NS = 0);

∆ηH-Ell,j1j2
tk+1,tk

(NS ≥ 1),
∆Ãj1j2tk+1,tk

= ∆Bj1
tk+1,tk

∆B̃j2
tk+1,tk

,177

178

where B̃t = (B̃2
t , . . . , B̃

d
t ), t ≥ 0, is a standard (d− 1)-dimensional Brownian motion indepen-179

dent of {Bt}t≥0 and:180

∆ηEll,j1j2
tk+1,tk

= 1
2

(
∆Bj1

tk+1,tk
∆Bj2

tk+1,tk
−∆` · 1j1=j2 6=0

)
, 0 ≤ j1, j2 ≤ d;181

∆ηH-Ell,j1j2
tk+1,tk

=


∆ηEll,j1j2

tk+1,tk
(1 ≤ j1, j2 ≤ d or j1 = j2 = 0);∫ tk+1

tk

∫ s
tk
dudBj2

s (j1 = 0, 1 ≤ j2 ≤ d);∫ tk+1

tk

∫ s
tk
dBj1

u ds (1 ≤ j1 ≤ d, j2 = 0).

182

183

In the above specification of ∆ηj1j2tk+1,tk
, we use the interpretation ∆B0

tk+1,tk
= ∆`. The defini-184

tion of the scheme under the hypo-elliptic setting slightly differs from the original one given185

in [16]. In particular, the latter includes additional random variables in the approximation186

of the smooth component XS,t for the purpose of improving the performance of parameter187

estimation. Without such additional variables, it is shown that (Weak-2) achieves a weak188

error 2 since the random variables used in the scheme satisfy the moment conditions outlined189

in [26, Lemma 2.1.5] that are sufficient for the attained order of weak convergence.190

We give several remarks on scheme (Weak-2). First, comparing with the truncated Mil-191

stein scheme, we observe that the scheme contains the terms ∆Ã and random variables of size192

O(∆
3/2
` ) or O(∆2

` ). Due to the inclusion of these terms, (Weak-2) is shown to achieve weak er-193

ror 2. In particular, variable ∆Ã is interpreted as a proxy to the Lévy area in the distributional194

(but not pathwise) sense. Thus, as we will show in Section 2.3, the order of strong conver-195

gence for (Weak-2) is not as good as that of the Milstein scheme which uses the true Lévy area196

(though the latter cannot be exactly simulated in general). Second, under the hypo-elliptic set-197

ting (NS ≥ 1), the scheme, in particular ∆ηH-Ell
tk+1,tk

, involves
∫ tk+1

tk

∫ s
tk
dudBj2

s ,
∫ tk+1

tk

∫ s
tk
dBj1

u ds198

that can be directly simulated by Gaussian variables that preserve the covariance structure199

between these integrals and the Brownian motion. Together with Assumption 2.2, use of these200

variables leads to the current state X̄tk+1
given X̄tk containing a locally Gaussian approxima-201
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tion with non-degenerate covariance, that is:202

X̄S,tk+1
≈ X̄S,tk + σS,0(X̄tk)∆` +

∑
1≤j≤d

LjσS,0(X̄tk)∆ηH-Ell,j0
tk+1,tk

;

X̄R,tk+1
≈ X̄R,tk + σR,0(X̄tk)∆` +

∑
1≤j≤d

σR,j(X̄tk)∆Bj
tk+1,tk

.
(2.3)203

204

Note that if ∆ηH-Ell,j0
tk+1,tk

above is replaced with ∆ηEll,j0
tk+1,tk

≡ 1
2∆Bj

tk+1,tk
∆` which is used in the205

elliptic setting (NS = 0), then the covariance of the right hand side (R.H.S.) of (2.3) is no206

longer positive definite.207

2.3. Strong convergence of the weak second order scheme and summary. The strong208

error rate of scheme (Weak-2) is the same as for the truncated Milstein and the E-M scheme.209

The proof of the following result is in Appendix A.210

Proposition 2.3. For any p ≥ 1, there exists a constant C > 0 such that

E
[

max
0≤k≤2`

‖Xtk − X̄tk‖
2p
]
≤ C∆p

` .

Table 1 summarises the weak and strong errors for some of the most popular discretization211

schemes. The result for the strong error of scheme (Weak-2) is new.212

Table 1
Numerical scheme for general SDEs (i.e. commutative condition (2.2) not assumed to hold).

Scheme Rate of weak/strong convergence Is Lévy area required?

Milstein 1.0 / 2.0 Yes

T-Milstein 1.0 / 1.0 No

Weak-2 2.0 / 1.0 No

2.4. Antithetic MLMC with weak second order scheme. The aim is to combine the213

weak order 2 method (Weak-2) with the ideas of [11] and consider a new antithetic MLMC214

(AMLMC) estimator so that the variance of couplings at each level decays w.r.t. the step-size215

at the same rate as the case of a time discretization having strong error 2. Throughout this216

subsection, let ` = 0, . . . , L be the level of discretization (2−`), where L ∈ N is the finest217

level of discretization. We write T > 0 for the length of the time interval and ∆` = T/2` for218

the discretization step-size. To define the antithetic estimator, we design discretizations on219

coarse/fine grids based upon scheme (Weak-2). For a fixed ` ≤ L, we define the coarse grids220

gc,[`−1] = {tk}k=0,1,...,2`−1 and the fine grids gf,[`] = {tk, tk+1/2}k=0,1,...,2`−1−1 ∪ {T}, where221

tk = k∆`−1, tk+1/2 =
(
k + 1/2

)
∆`−1. For notational simplicity, we introduce two integrators222

It,s, Ĩt,s : RN → RN , 0 ≤ s ≤ t, associated with scheme (Weak-2), so that for x ∈ RN :223

It,s(x) ≡ x+
∑

0≤j≤d
σj(x)∆Bj

t,s +
∑

0≤j1,j2≤d
Lj1σj2(x)∆ηj1j2t,s + 1

2

∑
1≤j1<j2≤d

[
σj1 , σj2

]
(x)∆Ãj1j2t,s ;224

Ĩt,s(x) ≡ x+
∑

0≤j≤d
σj(x)∆Bj

t,s +
∑

0≤j1,j2≤d
Lj1σj2(x)∆ηj1j2t,s − 1

2

∑
1≤j1<j2≤d

[
σj1 , σj2

]
(x)∆Ãj1j2t,s .225

226
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Notice that the difference between the above two integrators is in the sign of the last term. On227

the coarse grids gc,[`−1], we define a discretization scheme {X̄c,[`−1]
t }t∈gc,[`−1] and its antithetic228

version {X̃c,[`−1]
t }t∈gc,[`−1] as follows. For 0 ≤ k ≤ 2`−1 − 1:229

X̄
c,[`−1]
t0

= x, X̄
c,[`−1]
tk+1

= Itk+1,tk(X̄
c,[`−1]
tk

);(2.4)230

X̃
c,[`−1]
t0

= x, X̃
c,[`−1]
tk+1

= Ĩtk+1,tk(X̃
c,[`−1]
tk

).(2.5)231
232

Similarly, on the fine grids gf,[`], we define a numerical scheme {X̄f,[`]
t }t∈gf,[`] and its antithetic233

version {X̃f,[`]
t }t∈gf,[`] as follows. For 0 ≤ k ≤ 2`−1 − 1:234

X̄
f,[`]
t0

= x, X̄
f,[`]
tk+1/2

= Itk+1/2,tk(X̄
f,[`]
tk

), X̄
f,[`]
tk+1

= Itk+1,tk+1/2
(X̄

f,[`]
tk+1/2

);(2.6)235

X̃
f,[`]
t0

= x, X̃
f,[`]
tk+1/2

= Ĩtk+1,tk+1/2
(X̃

f,[`]
tk

), X̃
f,[`]
tk+1

= Ĩtk+1/2,tk(X̃
f,[`]
tk+1/2

).(2.7)236
237

The antithetic scheme (2.7) features the following two key properties: 1. On the interval238

[tk, tk+1], the Gaussian increments used in the standard discretisation (2.6) are exchanged239

between the first and second halfs; 2. The sign of the last term in the integrator is minus.240

We note that the first point (exchange of Gaussian increments) is featured in the antithetic241

truncated Milstein scheme proposed in [9] as well, but the second point (change of sign) is242

not. Let ϕ : RN → R be some suitable test function. In the next section we will define an243

antithetic estimator based upon the weak second order scheme (Weak-2) and use the identity:244

E[ϕ(X̄
f,[L]
T )] = E[Pϕ0 ] +

∑
1≤`≤L

E
[
Pϕf,` − P

ϕ
c,`−1

]
,(2.8)245

246

where we have set, for 1 ≤ ` ≤ L:247

Pϕf,` ≡
1
2

(
ϕ(X̄

f,[`]
T ) + ϕ(X̃

f,[`]
T )

)
, Pϕc,`−1 ≡

1
2

(
ϕ(X̄

c,[`−1]
T ) + ϕ(X̃

c,[`−1]
T )

)
, Pϕ0 ≡ ϕ(X̄

c,[0]
T ).(2.9)248

249

We notice that E[Pϕ0 ] = E[Pϕc,0], E[Pϕf,`] = E[Pϕc,`], 1 ≤ ` ≤ L − 1. For s1 ∈ gc,[`−1] and250

s2 ∈ gf,[`] with ` = 1, . . . , L, we define:251

X̂c,[`−1]
s1 = 1

2

(
X̄c,[`−1]
s1 + X̃c,[`−1]

s1

)
, X̂f,[`]

s2 = 1
2

(
X̄f,[`]
s2 + X̃f,[`]

s2

)
,(2.10)252253

and study the Lp bound for the coupling Pϕf,` − P
ϕ
c,`−1.254

Lemma 2.4. Let ϕ ∈ C2
b (RN ;R) and 1 ≤ ` ≤ L. For any p ≥ 2, there exist constants255

C1, C2, C3 > 0 such that256

E
[(
Pϕf,` − P

ϕ
c,`−1

)p] ≤ C1E
[
‖X̂f,[`]

T − X̂c,[`−1]
T ‖p

]
+ C2E

[
‖X̄f,[`]

T − X̃f,[`]
T ‖2p

]
257

+ C3E
[
‖X̄c,[`−1]

T − X̃c,[`−1]
T ‖2p

]
.(2.11)258259
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Proof. The second order Taylor expansion yields: Pϕf,` = ϕ(X̂
f,[`]
T ) + F ξ1,ξ21 and Pϕc,`−1 =260

ϕ(X̂
c,[`−1]
T ) + F ξ3,ξ42 , where we have set:261

F ξ1,ξ21 ≡ 1
16(X̄

f,[`]
T − X̃f,[`]

T )>
(
∂2ϕ(ξ1) + ∂2ϕ(ξ2)

)
(X̄

f,[`]
T − X̃f,[`]

T );262

F ξ3,ξ42 ≡ 1
16(X̄

c,[`−1]
T − X̃c,[`−1]

T )>
(
∂2ϕ(ξ3) + ∂2ϕ(ξ4)

)
(X̄

c,[`−1]
T − X̃c,[`−1]

T ),263264

for some ξ1, ξ2, ξ3, ξ4 ∈ RN , where ∂2ϕ(·) is the N ×N matrix of 2nd derivatives. Thus:265

Pϕf,` − P
ϕ
c,`−1 = ∂ϕ(ξ5)>

(
X̂
f,[`]
T − X̂c,[`−1]

T

)
+ F ξ1,ξ21 − F ξ3,ξ42 ,(2.12)266

267

for some ξ5 ∈ RN , where ∂ϕ(·) is the N×1 vector of 1st derivatives. Due to the boundedness268

of the test function ϕ and the standard inequality given in (A.1), we conclude from (2.12).269

Our objective is to derive bounds for each term in the R.H.S. of (2.11) over a coarse time270

step ∆`−1. For the first term, we have the following result:271

Theorem 2.5. Let 1 ≤ ` ≤ L. For all p ≥ 2, there exists a constant C such that272

E
[

max
t∈gc,[`−1]

‖X̂f,[`]
t − X̂c,[`−1]

t ‖p
]
≤ C ∆p

`−1.273

274

Proof. Let 0 ≤ n ≤ 2`−1 and Ŝn ≡ E
[
max0≤k≤n ‖X̂

f,[`]
tk
− X̂c,[`−1]

tk
‖p
]
. It holds that for any275

p ≥ 2, there exists a constant Cp > 0 such that:276

Ŝn ≤ Cp
∑

1≤j≤N
E
[

max
0≤k≤n

|X̂f,[`],j
tk

− X̂c,[`−1],j
tk

|p
]
.(2.13)277

278

Then, it suffices to show that there exists a constant C > 0 such that:279

E
[

max
0≤k≤n

|X̂f,[`],j
tk

− X̂c,[`−1],j
tk

|p
]
≤ C

(
∆p
`−1 + ∆`−1

∑
0≤k≤n−1

Ŝk
)
,(2.14)280

281

which leads to the desired result by applying the discrete Grönwall inequality to (2.13). Re-282

cursive application of (B.5) and (B.8) given in Lemmas B.2 and B.3 respectively yields:283

X̂
f,[`],j
tk

− X̂c,[`−1],j
tk

=
∑

0≤i≤k−1
0≤m≤d

(
σjm(X̂

f,[`]
ti

)− σjm(X̂
c,[`−1]
ti

)
)
∆Bm

ti+1,ti(2.15)284

+
∑

0≤i≤k−1
1≤m1,m2≤d

(
Lm1σ

j
m2

(X̂
f,[`]
ti

)− Lm1σ
j
m2

(X̂
c,[`−1]
ti

)
)
∆ηm1m2

ti+1,ti
+

∑
0≤i≤k−1

(
M̂j

ti+1,ti
+ N̂ j

ti+1,ti

)
,285

286

where the remainder terms are such that E
[
M̂j

ti+1,ti
|Fti

]
= 0, 0 ≤ i ≤ 2`−1 − 1, and for any287

p ≥ 2 there exist constants C1, C2 > 0 such that max0≤i≤2`−1−1 E
[
|M̂j

ti+1,ti
|p
]
≤ C1∆

3p/2
`−1 and288

max0≤i≤2`−1−1 E
[
|N̂ j

ti+1,ti
|p
]
≤ C2∆2p

`−1. Given (2.15), the bound (2.14) holds by following the289

same argument as in the proof of [11, Theorem 4.10], and we conclude.290
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Also, we have that, for any p ≥ 1 there exist constants C1, C2 > 0 such that:291

E
[

max
t∈gc,[`−1]

‖X̄f,[`]
t − X̃f,[`]

t ‖2p
]
≤ C1∆p

`−1;

E
[

max
t∈gc,[`−1]

‖X̄c,[`−1]
t − X̃c,[`−1]

t ‖2p
]
≤ C2∆p

`−1,
(2.16)292

293

which are obtained from the strong convergence rate of scheme (Weak-2) and the same argu-294

ment used in the proof of [11, Lemma 4.6]. Hence, from Theorem 2.5, Lemma 2.4 and (2.16),295

we obtain the following result.296

Corollary 2.6. Let ϕ ∈ C2
b (RN ;R) and 1 ≤ ` ≤ L. For any p ≥ 2 there exists constant297

C > 0 such that E[(Pϕf,` − P
ϕ
c,`−1)p] ≤ C ∆p

`−1.298

Remark 2.7. The AMLMC estimator under scheme (Weak-2) is designed to have four dif-299

ferent integrations, as given in (2.4)-(2.7), while the antithetic estimator under the truncated300

Milstein scheme [11] uses three types of integrators without the antithetic coarse approxi-301

mation X̃c,[`−1]. In the case of (Weak-2), use of only three integrators would lead to no302

improvement in strong convergence due to the presence of the term involving ∆Ãj1j2tk+1,tk
with a303

size of O(∆`). X̃
c,[`−1] is exploited to deal with the above O(∆`)-term and obtain the higher304

rate of strong convergence (Theorem 2.5).305

Remark 2.8. [1] constructed an AMLMC method based on the Ninomiya-Victoir (N-V)306

scheme [27], an alternative scheme of weak error 2. They showed that the strong error of307

the N-V scheme is 1 and then improved it with the technique of the antithetic multilevel308

estimator. The advantages of the proposed AMLMC based on (Weak-2) against that of the309

N-V scheme are summarized as follows: (i) Scheme (Weak-2) is always explicit while the310

N-V is a semi-closed scheme in the sense that it requires solving ODEs defined via the SDE311

coefficients and their solvability depends on the definition of coefficients; (ii) Our antithetic312

scheme uses four different integrators (2.4)-(2.7), while the antithetic estimator with the N-V313

scheme uses six integrators; (iii) Our (Weak-2) scheme is designed to be locally non-degenerate314

for both elliptic/hypo-elliptic settings (Section 2.1) as we explained in Section 2.2.3. Such a315

non-degenerate scheme is beneficial for the filtering problem as we described in Section 1.316

2.5. AMLMC for forward problem. In order to estimate E [ϕ(XT )], one simply needs to317

sample the systems (2.4)-(2.7) using the same source of randomness (i.e. the same Brownian318

motion and Gaussian variates) as implied in (2.4)-(2.7). We will sample these afore-mentioned319

systems multiple times (independently) so will use an argument ‘(i)’ to indicate the ith-sample.320

For instance, from (2.4), we will write X̄
c,[`]
tk

(i) for the ith-sample associated to recursion (2.4)321

where the associated Brownian motion and Gaussians variates have been generated anew for322

each sample. Similarly, in the context of (2.9) we will write Pϕf,`(i), P
ϕ
c,`−1(i) and Pϕ0 (i).323

The AMLMC procedure is as follows. We first set L and the sample sizes M0, . . . ,ML324

to be used at each pair of levels; we will state below how this can be done. Then one can325

follow the approach in Algorithm 2.1. The new AMLMC estimator is given in (2.17) that is326

contained in Algorithm 2.1 and can be computed using any test function of interest when the327

underlying quantity E [ϕ(XT )] is well defined.328
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To specify L and M0, . . . ,ML one can appeal to the results of Theorem 2.5, Corollary 2.6,329

as well as the weak error of the scheme (Weak-2) and follow standard computations in MLMC330

(e.g. [10]). That is, when considering the MSE, E
[( ̂E[ϕ(XT )]− E[ϕ(XT )]

)2]
, then under the331

assumptions made above, one has an upper-bound on the MSE as O
(∑

0≤`≤L ∆2
`/M` + ∆4

L

)
.332

Therefore, for ε > 0 given, one can achieve a MSE of O(ε2) by choosing L = O(log(ε−1/2))333

and M` = O(ε−2∆
3/2
` ). The cost to achieve this MSE is

∑
0≤`≤L ∆−1

` M` = O(ε−2) which is334

the best possible using stochastic Monte Carlo methods and was also obtained in [11]. In335

most practical simulations, one generally sets L as on standard computing equipment it is not336

feasible to generate beyond L = 10 and this determines ε. Therefore, as the bias (weak error)337

of this method is O(∆2
L), versus O(∆L) in the antithetic Milstein method in [11], one might338

expect to see benefits for L’s that are used in practice. We consider this in Section 4.339

Algorithm 2.1 AMLMC using the weak second order scheme (Weak-2).

1. Input L ≥ 1 and M0, . . . ,ML. Set ` = 0 and go to 2..

2. For i = 1, . . . ,M0 independently simulate (2.4) to produce X̄
c,[0]
T (1), . . . , X̄

c,[0]
T (M0). Set

` = `+ 1 and go to 3..

3. For i = 1, . . . ,M`, independently simulate (2.4)-(2.7) to produce {X̄c,[`−1]
T (i)}M`

i=1,

{X̃c,[`−1]
T (i)}M`

i=1, {X̄f,[`−1]
T (i)}M`

i=1, {X̃f,[`−1]
T (i)}M`

i=1. If ` ≤ L − 1, set ` = ` + 1 go to the
start of 3. otherwise go to 4..

4. Compute the MLMC estimator:

̂E[ϕ(XT )] := Pϕ,M0
0 +

∑
1≤`≤L

{
Pϕ,M`
f,` − Pϕ,M`

c,`−1

}
(2.17)

where Pϕ,M0
0 := 1

M0

∑
1≤i≤M0

Pϕ0 (i), Pϕ,M`
f,` := 1

M`

∑
1≤i≤M`

Pϕf,`(i), Pϕ,M`
c,`−1 :=

1
M`

∑
1≤i≤M`

Pϕc,`−1(i). Return (2.17) and stop.

3. Application to filtering.340

3.1. State-space model. We consider a sequence of observations obtained sequentially341

and at unit times, Y1, Y2, . . . , Yk ∈ RN , k ∈ N. The assumption of unit times is mainly for342

simplicity of notation and any time grid could be considered. Associated to this sequence is343

an unobserved diffusion process exactly of the type (1.1). For the data, we shall assume that,344

at any time k ∈ N, Yk has a (bounded) positive probability density that depends only on345

the position, Xk, of the diffusion process at time k and is denoted g(xk, yk). We denote the346

transition kernel of the diffusion process over a unit time and starting at z ∈ RN as Q(z, ·),347

for instance E[ϕ(X1)] =
∫
RN ϕ(x1)Q(x, dx1), where the expectation on the R.H.S. is w.r.t. the348

law of the diffusion (1.1), which we recall starts at x ∈ RN , and ϕ : RN → R is bounded,349

measurable (the collection of such functions is denoted Bb(RN )).350

The object of interest is the filtering distribution. For any k ∈ N we define the filtering351

expectation:352

(3.1) πk(ϕ) :=
E
[
ϕ(Xk)

{∏k
p=1 g(Xp,yp)

}]
E
[{∏k

p=1 g(Xp,yp)
}] .353
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Note that the fact that ϕ and g(·, y) are bounded (for any y ∈ RN ) ensure that the filter is354

well-defined, but these assumptions are not needed in general – again we seek to simplify the355

discussion. We will compute a numerical approximation of (3.1) sequentially in time, as an356

exact computation is seldom possible.357

In practice we often cannot (i) simulate from Q(z, ·) and/or we may not have an (ii)358

explicit expression for the density of Q(z, ·) or (iii) an unbiased estimate of such density. One359

of the afore-mentioned properties (i)-(iii) is needed in order to deploy numerical methods360

which are used in the approximation of the filter (3.1) in continuous time (see e.g. [18] for361

an explanation). Therefore we consider time discretization via the weak second order method362

(Weak-2), with step-size ∆` = 2−`. Now, for any starting point z ∈ RN and ending at a363

time 1 we denote the time discretised transition kernel as Q[`](z, ·), for instance, E[`][ϕ(X̄1)] =364 ∫
RN ϕ(x1)Q[`](x, dx1), where we have modified the notation of the expectation operator to365

E[`][·] to emphasize dependence on the discretization level. We consider the approximation of366

the time discretised filter, k ∈ N:367

(3.2) π
[`]
k (ϕ) :=

E[`][ϕ(Xk){∏k
p=1 g(Xp,yp)}]

E[`][{∏k
p=1 g(Xp,yp)}] .368

Note, to clarify, the R.H.S. of the above equation can be alternatively written as:

∫
RNk ϕ(xk){∏k

p=1 g(xp,yp)}∏k
p=1Q

[`](xp−1,dxp)∫
RNk{∏k

p=1 g(xp,yp)}∏k
p=1Q

[`](xp−1,dxp)

where x0 = x. Even with time discretization, one still needs to resort to numerical methods369

to approximate (3.2).370

3.2. Multilevel particle filters. Our objective is now to approximate the time discretised371

filter (3.2). We start with the ordinary particle filter (PF) which can do exactly the former task372

and is described in Algorithm 3.1. This algorithm presents the most standard and well-known373

PF with several possible extensions. Also note that the estimates of the filter, in equation374

(3.5) of Algorithm 3.1, are typically returned recursively in time.375

The PF on its own is typically much less efficient than using a multilevel version, which376

has been developed and extended in several works; see e.g. [18, 19, 20, 23, 24] and [22] for a377

review. We describe the method of [18], except replacing the Euler-Maruyama discretization378

with the weak second order scheme. The basic idea is based upon the identity:379

π
[L]
k (ϕ) = π

[0]
k (ϕ) +

∑
1≤`≤L

{
π

[`]
k (ϕ)− π[`−1]

k (ϕ)
}
.(3.3)380

381

We remark that on the R.H.S. of (3.3) one need not start at level 0, but we adopt this choice382

for ease of exposition. The idea is to use the PF to recursively approximate π
[0]
k (ϕ) and then to383

use a coupled particle filter (CPF) for the approximation of π
[`]
k (ϕ)−π[`−1]

k (ϕ), independently384

for each index `. The coupling is described in Algorithm ?? and then the CPF is given in385

Algorithm ??, which are presented in Section ?? in the Supplementary Material.386

Algorithm ?? presents a way to simulate a maximal coupling of two positive probability387

mass functions with the same support. It allows one to couple the resampling operation388
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across two different levels of discretization as is done for a single level in Algorithm 3.1. This389

is then incorporated in Algorithm ?? which provides a way to approximate π
[`]
k (ϕ)−π[`−1]

k (ϕ)390

recursively in time.391

The overall multilevel Particle Filter (MLPF) can be summarized as follows, given L the392

maximum level and the number of samples M0, . . . ,ML; we show how these parameters can393

be chosen below.394

1. Run Algorithm 3.1 at level ` = 0 with M0 samples.395

2. Independently of 1. for ` = 1, . . . , L, independently run Algorithm ?? in the Supplementary396

Material with M` samples.397

Based on this process, a biased approximation of πk(ϕ) is then

π̂k(ϕ) := π
[0],M0

k (ϕ) +
∑

1≤`≤L

{
π

[`],M`

k (ϕ)− π[`−1],M`

k (ϕ)
}
,

where π
[`],M
k (ϕ) is the PF estimate of π

[`]
k (ϕ) with the number of particles M specifically given398

in (3.5). The bias of this approximation is from the discretization level L and the bias of the399

PF/CPF approximation, e.g. that in general, E
[
π

[`],M`

k (ϕ)−π[`−1],M`

k (ϕ)
]
6= π

[`]
k (ϕ)−π[`−1]

k (ϕ),400

where E is used to denote the expectation w.r.t. the probability law used in generating our401

estimators. Now, if one combines the theory in [16] for the weak error, the strong error result402

in Proposition 2.3 and the results in [18] one can consider the MSE, E
[(
π̂k(ϕ) − πk(ϕ)

)2]
.403

Under the assumptions in the current paper and in [18] it can be proved that the MSE has404

an upper-bound which is:405

(3.4) O
( ∑

0≤`≤L
∆

1/2
` /M` + ∆4

L

)
.406

We do not prove this bound as it is a fairly trivial application of the results in the afore-407

mentioned papers. The exponent of ∆`, in the summand, is 1/2 and this reduction of the408

strong error of Euler-Maruyama is due to the resampling mechanism that has been employed;409

we do not know of any general method that can maintain the strong error rate. We also410

remark that there is an additional additive term on the R.H.S., but this term is much smaller411

than the term given above, so we need not consider it. Using the standard approach that has412

been adopted in MLMC (i.e. as discussed in Section 2.5) one can show that for ε > 0 given,413

setting L = O(log(ε−1/2)), M` = ε−2∆
3/4
` ∆

−1/4
L gives a MSE of O(ε2) for a cost (per time step414

k) of O(ε−2.25). This is lower than the cost of the approach in [18] due to the increased weak415

error relative to the Euler-Maruyama discretization used in [18].416

In the recent work of [24], the authors show how to use the antithetic Milstein scheme417

within the context of the MLPF; we abbreviate to AMMLPF (antithetic Milstein MLPF).418

They show empirically that to achieve a MSE (associated to their estimator) of O(ε2) there419

is a cost (per time step k) of O
(
ε−2 log(ε)2

)
. The objective now is to show how our new420

antithetic MLMC method can be extended to MLPFs. As in the case of MLMC, we expect421

for this new method the error-cost calculation to be of the same order as the AMMLPF,422

but when using smaller L, as would be adopted in practice, that improvements are seen in423

simulations, due to the decreased weak error.424
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Algorithm 3.1 Particle Filter using the weak second order scheme (Weak-2). The algorithm
is stopped at a time T , but need not be.

1. Input: level of discretization ` ∈ N0, final time T ∈ N and number of samples M . Set

X̄
[`]
0 (i) = x, i = 1, . . . ,M and k = 1. Go to 2..

2. Sampling: For i = 1, . . . ,M , simulate X̄
[`]
k (i)|x̄[`]

k−1(i) using the dynamics (Weak-2) up-to

time 1, with starting point x̄
[`]
k−1(i) and step-size ∆`. Go to 3..

3. Resampling: For i = 1, . . . ,M compute: w
[`]
k (i) :=

g(X̄
[`]
k (i),yk)∑M

j=1 g(X̄
[`]
k (j),yk)

. For any ϕ ∈ Bb(RN ) we

have the estimate:

(3.5) π
[`],M
k (ϕ) :=

∑
1≤i≤M

w
[`]
k (i)ϕ(X̄

[`]
k (i)).

For i = 1, . . . ,M sample an index j(i) ∈ {1, . . . ,M} using the probability mass function

w
[`]
k (·) and set X̌

[`]
k (i) = X̄

[`]
k (j(i)). For i = 1, . . . ,M , set X̄

[`]
k (i) = X̌

[`]
k (i), k = k + 1, if

k = T + 1 go to 4. otherwise go to 2..

4. Return the estimates π
[`],M
1 (ϕ), . . . , π

[`],M
T (ϕ) from (3.5).

3.3. New multilevel particle filter. Our new MLPF, which we shall call the antithetic425

multilevel Particle Filter (AMLPF), is similar to the approach that was illustrated in the426

previous section. At level 0, we shall use a PF to approximate π
[0]
k (ϕ). To approximate the427

differences π
[`]
k (ϕ)−π[`−1]

k (ϕ) we shall use a combination of the antithetic MLMC weak second428

order scheme of Section 2.4, which will be the ‘sampling’ part of a PF and a type of ‘coupling’429

for the ‘resampling step’. As we have already introduced the former, we introduce the latter430

as Algorithm ?? in Section ?? in the Supplementary Material. As has been commented by431

[23] in the context of coupling two probability mass functions (as in Algorithm ??) there is432

nothing that is optimal about using Algorithm ??. Indeed, when used as part of a MLPF, we433

expect just as in the case of Algorithm ?? when used for Algorithm ??, the strong error rate434

from the forward problem is reduced by a factor of two; see (3.4). It remains an open problem435

to find a general coupling method which can maintain the forward error rate (as was the case436

in [3] in dimension 1 only) and a linear complexity in terms of the samples M .437

Given Algorithm ??, we are now in a position to give our new coupled particle filter in438

Algorithm 3.2. Just as in the previous section, the AMLPF can be summarized as follows,439

given L the maximum level and the number of samples M0, . . . ,ML; we show how these440

parameters can be chosen below.441

1. Run Algorithm 3.1 at level ` = 0 with M0 samples.442

2. Independently of 1. for ` = 1, . . . , L, independently run Algorithm 3.2 with M` samples.443

Thus our new approximation of πk(ϕ) is:

π̃k(ϕ) := π
[0],M0

k (ϕ) +
∑

1≤`≤L

{
π̂

[`],M`

k (ϕ)− π̂[`−1],Ml

k (ϕ)
}
.

where we recall that π̂
[`],M`

k (ϕ)− π̂[`−1],Ml

k (ϕ) is given in (3.6) in Algorithm 3.2.444
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We can again consider the MSE E
[(
π̃k(ϕ) − πk(ϕ)

)2]
. As noted in [24], which considers445

the AMMLPF, although it is fairly easy to establish a bound on the R.H.S. which is of the446

type (up-to some other terms which are smaller) O(
∑

0≤`≤L ∆ν
l /Ml+∆4

L), obtaining the value447

of ν that is observed in simulation is not easy to achieve with the current proof method that448

has been adopted in [18, 24]. As a result, we do not give a theoretical analysis in this paper.449

However, as we shall see in Section 4, it appears that the correct value of ν = 1 and hence we450

use this as our guideline to choose L,M0, . . . ,ML. Following the arguments that have been451

used previously, for ε > 0 given, setting L = O(log(ε−1/2)), M` = ε−2∆`L gives a MSE of452

O(ε2) for a cost (per time step k) of O
(
ε−2 log(ε)2

)
.453

4. Numerical results. In this section, we provide a series of numerical illustrations de-454

tailing our methodology for both forward and filtering problems. Specifically, we compare455

their performance against both multilevel and standard Monte Carlo (Std MC) methods and456

particle filters. We here summarise the labels of the algorithms that we use in the numerics:457

• Forward problem: Std MC, MLMC (standard method with scheme (Weak-2)), AMLMC458

(the new antithetic method with scheme (Weak-2)) and AMMLMC (the antithetic method459

of [11] with scheme (T-Milstein)).460

• Filtering problem: PF, MLPF (standard method, using scheme (Weak-2)), AMLPF (the461

new antithetic PF method with scheme (Weak-2)) and AMMLPF (the antithetic PF method462

studied in [24] with scheme (T-Milstein)).463

4.1. Models. We consider two SDE models in our experiments. The first model is the464

stochastic FitzHugh-Nagumo (FHN) model, which is a well-known hypo-elliptic model in465

neuroscience:466

dXt = 1
ε

(
Xt −X3

t − Zt − s
)
dt, dZt = (γXt − Zt + β) dt+ σdB1

t .467

The values of the parameters in the simulations are set as follows: Xt0 = 0, Yt0 = 0, ε = 0.1,468

σ = 0.3, γ = 1.5, β = 0.3 and s = 0.01. For the forward problem, we estimate the value of469

E[XT ] with T = 100 time units. For the filtering case, we estimate E[Xn|y0:n] with n = 100.470

The observation data yk we choose is yk | (Xkδ, Zkδ) ∼ N (Xkδ, τ
2) with δ = 1, τ = 0.1, where471

N (m,σ2) denotes the Gaussian distribution of mean m and variance σ2.472

The second model example is the Heston model [15] given as an elliptic SDE not satisfying473

the commutative condition (2.2):474

dSt = rStdt+
√
vtStdB

1
t , dvt = α(θ − vt)dt+ µ

√
vt(ρdB

1
t +

√
1− ρ2dB2

t ).475

The values of the parameters used in the simulations are set as: St0 = 100, vt0 = 0.09,476

r = 0.04, α = 2.0, θ = 0.09, µ = 0.1 and ρ = 0.7. For the forward problem, our target477

quantity is E[ST ] with T = 1.0. For the filtering case, we estimate E[Sn|y0:n] with n = 100,478

where each observation yk is obtained as yk | (Skδ, vkδ) ∼ N (Skδ, τ
2) with δ = 0.01 and τ = 2.479

We stress here that in the above model settings, the test functions are unbounded for the480

filtering problem, while we have assumed boundedness in Section 3. As we will show in the481

numerical results below, such a discrepancy can be negligible under suitable scenarios; e.g.482

the case where the moments of underlying process are uniformly bounded in the time-interval.483

484
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4.2. Set-Up and results. For our numerical experiments, we applied our algorithms to485

obtain the multilevel estimators. Given the unavailability of an analytical solution, we will486

use std MC and PF with a high-resolution L = 9 to approximate the ground truth for the487

forward and filtering problem, respectively that shall serve as the benchmark solution. For488

the filtering problem, though we did not discuss about stochastic resampling for our proposed489

AMLPF in Section 3, we will run particle filters with adaptive resampling to showcase the490

practical extendability of AMLPF. Specifically, resampling is performed when the effective491

sample size (ESS) is less than 1
2 of the particle numbers. For the coupled filters, we use the492

ESS of the coarse filter as the measurement of discrepancy. The error within the estimators493

in our simulations will be evaluated using the mean square error (MSE), which will be com-494

puted by conducting 50 independent simulations for each method (Std MC, MLMC, AMLMC495

and AMMLMC) for the forward problem, and (PF, MLPF, AMLPF and AMMLPF) for the496

filtering case with the ground truth obtained as described above.497

The primary target is to compare the costs of these methods at the same MSE level. In498

the AMLMC and AMLPF, one needs to determine the number of samples to approximate499

the multilevel estimators at levels ` and ` − 1, denoted by M`. In particular, we set M` for500

the AMLMC and AMLPF as M` = c1,` × ε−2∆
3/2
` and M` = c2,` × ε−2∆`L, respectively, for501

some constants c1,`, c2,` > 0 and a given L to attain a target MSE of O(ε2), ε > 0, with a cost502

of O(ε−2) for AMLMC and O(ε−2 log(ε)2) for AMLPF. For the AMMLMC and AMMLPF,503

we also choose M` as above. In our experiments, we initially simulate the Std MC and PF504

algorithms with L ∈ {1, 2, 3, 4} and obtain the corresponding MSE and cost values, where505

the computational cost is computed as
∑L

`=0M`/∆`. Subsequently, we use the MLMC and506

MLPF estimators to achieve identical MSE levels and record their corresponding cost values.507

Finally, we compute the AMLMC and AMLPF estimators to attain similar MSE levels and508

note their respective cost values. Due to the lower order of weak convergence, the AMMLMC509

and AMMLPF estimators are computed with L = {2, 4, 6, 8}.510

We present our numerical simulations to show the benefits of applying AMLMC/AMLPF511

to the above SDE models, compared to Std MC, MLMC, AMMLMC/PF, MLPF, AMMLPF.512

Figures 1-2 show the MSE against the cost. The figures show that as we increase the levels513

from L = 1 to L = 4, the difference in the cost between the methods also increases. Table514

2 presents the estimated change rates of log(cost) against log(MSE) for both problems. The515

reported rates align with our theoretical expectations. We observe that the computational516

costs are of sizes consistent to the theoretical ones ofO(ε−3) for the Std MC and PF,O(ε−2) for517

the AMLMC, and O(ε−2 log(ε)2) for the AMLPF. Moreover, we see from the bottom two plots518

of Figures 1-2 that AMLMC/AMLPF (using the weak second order scheme) outperformed519

AMMLMC/AMMLPF (using the truncated Milstein scheme) in terms of cost vs MSE. We520

note that when choosing the number of samples M` in the experiments, the constants c1,` and521

c2,` to determine M` (indicated above) are allowed to be set lower for the case of the weak522

second order scheme compared with that of the truncated Milstein scheme. We expect this523

is due to the tighter variance bounds for the couplings of the AMLMC under a small-noise524

diffusion setting, i.e. the case some small parameter is contained in the diffusion coefficient,525

which we detail in Section ?? in Supplementary Material.526
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Figure 1. Cost versus MSE for the forward problem.

Table 2
Estimated change rate of log(cost) against log(MSE). Left: Forward problem. Right: Filtering problem.

Model Std MC MLMC AMLMC

FHN -1.48 -1.1 -1.03
Heston -1.47 -1.11 -1.05

Model PF MLPF AMLPF

FHN -1.46 -1.17 -1.11
Heston -1.49 -1.24 -1.14

5. Conclusion. Our work has investigated the use of a weak second order scheme within527

the multilevel Monte Carlo (MLMC) framework. We first proved that our scheme has a strong528

error 1. Then, in the context of MLMC, we developed a new antithetic estimator based on529

our weak second order scheme which achieves the optimal cost rate O(ε−2), ε > 0, to obtain530

a MSE of O(ε2). Such an optimal cost rate is also reported for the different antithetic MLMC531

approach of [11] which makes use of a truncated Milstein scheme of weak error 1. The new532

antithetic estimator is shown to possess a benefit versus the one of [11], that is, our estimator533

is expected to be more efficient for a finite maximum level of discretization L used in practice534

due to the higher order weak convergence. As an application, we have proposed an antithetic535

multilevel particle filter (AMLPF) by building upon previous works [18, 24] for the purposes536

of efficient filtering of diffusion processes from observations. Our simulation studies are in537

support of the anticipated cost of the proposed AMLPF being O(ε−2 log(ε)2) to achieve an538

MSE of O(ε2). Also, all our numerics support the understanding that the new antithetic539

estimator using the weak second order scheme outperforms the antithetic Milstein scheme-540
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Figure 2. Cost versus MSE for the filtering problem.

based estimator in both forward/filtering problems. We emphasize that our numerical scheme541

is locally non-degenerate under both elliptic/hypo-elliptic settings, whereas the truncated542

Milstein scheme is degenerate in the hypo-elliptic case. The non-degeneracy of the scheme543

makes possible its deployment within particle filters with guided proposals so that stochastic544

weights required to be assigned to particles are well-defined and available as the ratio of545

products involving the density expression for the numerical scheme and the proposal, though546

the exploration of this direction is left for future work.547

Appendix A. Proof of Proposition 2.3.548

Proof. Let 1 ≤ i ≤ 2`. We have that

Si ≡ E
[

max
0≤k≤i

‖Xtk − X̄tk‖
p
]
≤ Np−1

∑
1≤j≤N

E
[

max
0≤k≤i

|Xj
tk
− X̄j

tk
|p
]
,

where we made use of the following inequality:549 ( ∑
1≤j≤N

|xj |
)p
≤ Np−1

∑
1≤j≤N

|xj |p, x = (x1, . . . , xN ) ∈ RN .(A.1)550

551

We will show that for any p ≥ 2, there exists a constant C > 0 such that:552

Si ≤ C
(

∆
p/2
` +

∑
0≤n≤i−1

Sn ·∆`

)
,(A.2)553

554
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which leads to the conclusion due to the discrete Gronwall’s inequality. Application of sto-555

chastic Taylor expansion for Xj
tn , 0 ≤ n ≤ k − 1, yields that, for 1 ≤ j ≤ N :556

Xj
tk
− X̄j

tk
=

∑
0≤n≤k−1
0≤m≤d

∫ tn+1

tn

(
σjm(Xs)− σjm(X̄tn)

)
dBm

s557

−
∑

0≤n≤k−1
0≤m1,m2≤d

Lm1σ
j
m2

(X̄tn)∆ηm1m2
tn+1,tn

− 1
2

∑
0≤n≤k−1

1≤m1<m2≤d

[
σm1 , σm2

]j
(X̄tn)∆Ãm1m2

tn+1,tn
558

=
∑

0≤n≤k−1
0≤m≤d

(
σjm(Xtn)− σjm(X̄tn)

)
∆Bm

tn+1,tn559

+ 1
2

∑
0≤n≤k−1

1≤m1,m2≤d

(
Lm1σ

j
m2

(Xtn)− Lm1σ
j
m2

(X̄tn)
){

∆Bm1
tn+1,tn

∆Bm2
tn+1,tn

−∆`1m1=m2

}
560

− 1
2

∑
0≤n≤k−1

1≤m1<m2≤d

{
[σm1 , σm2 ]j(Xtn)∆Am1m2

tn+1,tn
+ [σm1 , σm2 ]j(X̄tn)∆Ãm1m2

tn+1,tn

}
561

+
∑

0≤n≤k−1

(
Mj

tn+1,tn
+N j

tn+1,tn

)
,562

563

where the terms Mj
tn+1,tn

, N j
tn+1,tn

are such that E
[
Mj

tn+1,tn
|Ftn

]
= 0 for 0 ≤ n ≤ k − 1 and564

it holds under Assumption 2.1 that for any p ≥ 2, there exist constants C1, C2 > 0 such that565

max
0≤n≤k−1

E
[
|Mj

tn+1,tn
|p
]
≤ C1∆

3p/2
` , max

0≤n≤k−1
E
[
|N j

tn+1,tn
|p
]
≤ C2∆2p

` .(A.3)566
567

Thus, inequality (A.1) yields E
[
max0≤k≤i

∣∣Xj
tk
− X̄j

tk

∣∣p] ≤ Cp∑1≤α≤6 T
(α),j
i for some constant568

Cp > 0, where we have set:569

T (1),j
i = E

[
max
0≤k≤i

∣∣ ∑
0≤n≤k−1

(
σj0(Xtn)− σj0(X̄tn)

)
∆`

∣∣p];570

T (2),j
i = E

[
max
0≤k≤i

∣∣ ∑
0≤n≤k−1
1≤m≤d

(
σjm(Xtn)− σjm(X̄tn)

)
∆Bm

tn+1,tn

∣∣p];571

T (3),j
i = E

[
max
0≤k≤i

∣∣ ∑
0≤n≤k−1

1≤m1,m2≤d

(
Lm1σ

j
m2

(Xtn)− Lm1σ
j
m2

(X̄tn)
)(

∆Bm1
tn+1,tn

∆Bm2
tn+1,tn

−∆`1m1=m2

)∣∣p];572

T (4),j
i = E

[
max
0≤k≤i

∣∣ ∑
0≤n≤k−1

1≤m1<m2≤d

{
[σm1 , σm2 ]j(Xtn)∆Am1m2

tn+1,tn
+ [σm1 , σm2 ]j(X̄tn)∆Ãm1m2

tn+1,tn

}∣∣p];573

T (5),j
i = E

[
max
0≤k≤i

∣∣ ∑
0≤n≤k−1

Mj
tn+1,tn

∣∣p], T (6),j
i = E

[
max
0≤k≤i

∣∣ ∑
0≤n≤k−1

N j
tn+1,tn

∣∣p].574

575

Applying inequality (A.1), we have under Assumption 2.1 that:576

T (1),j
i ≤ ip−1

∑
0≤n≤i−1

E
[
|σj0(Xtn)− σj0(X̄tn)|p

]
∆p
` ≤ c1T

p−1
∑

0≤n≤i−1

Sn ·∆`577
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for some constant c1 > 0 independent of ∆` since i∆` ≤ T . Similarly, we have:578

T (6),j
i ≤ ip−1

∑
0≤n≤i−1

E
[
|N j

tn+1,tn
|p
]
≤ c6T

p∆p
`(A.4)579

580

for some constant c6 > 0. We consider the other four terms. Since they involve martingales,581

we make use of the discrete Burkholder-Davis-Gundy inequality to obtain:582

T (2),j
i ≤ c2,1E

[( ∑
0≤n≤i−1

∑
1≤m≤d

{
(σjm(Xtn)− σjm(X̄tn))∆Bm

tn+1,tn

}2)p/2]
583

≤ c2,2 i
p/2−1

∑
0≤n≤i−1

∑
1≤m≤d

E
[∣∣(σjm(Xtn)− σjm(X̄tn))∆Bm

tn+1,tn

∣∣p]584

≤ c2,3 i
p/2−1

∑
0≤n≤i−1

Sn ·∆p/2
` ≤ c2,3 T

p/2−1
∑

0≤n≤i−1

Sn ·∆`585

586

for some constants c2,1, c2,2, c2,3 > 0, where we applied (A.1) in the second inequality. Simi-587

larly, we have that:588

T (3),j
i ≤ c3i

p/2−1
∑

0≤n≤i−1

Sn ·∆p
` ≤ c3T

p/2−1∆
p/2
`

∑
0≤n≤i−1

Sn ·∆`;589

T (5),j
i ≤ c5,1 i

p/2−1
∑

0≤n≤i−1

E
[∣∣Mj

tn+1,tn

∣∣p] ≤ c5,2 i
p/2∆

3p/2
` = c5,2 T

p/2∆p
`590

591

for some constants c3, c5,1, c5,2 > 0. Finally, for T (4),j
i , we obtain:592

T (4),j
i ≤ c4,1i

p/2−1
∑

0≤n≤i−1

∑
1≤m1<m2≤d

E
[
|∆Am1m2

tn+1,tn
|p + |∆Ãm1m2

tn+1,tn
|p
]
≤ c4,2T

p/2∆
p/2
`(A.5)593

594

for constants c4,1, c4,2 > 0, where we used that E|∆Am1m2
tn+1,tn

|p = O(∆p
` ), E|∆Ã

m1m2
tn+1,tn

|p = O(∆p
` )595

for any p ≥ 2. Note that
∑

0≤n≤i−1 Sn does not appear in the upper bound of T (4),j
i . Thus,596

we obtain inequality (A.2) and conclude.597

Appendix B. Auxiliary results for Theorem 2.5. Throughout this section, let 1 ≤ j ≤ N ,598

1 ≤ ` ≤ L, 0 ≤ k ≤ 2`−1 − 1 and tk = k∆`−1.599

Lemma B.1. It holds that:600

X̄
f,[`],j
tk+1

= X̄
f,[`],j
tk

+
∑

0≤m≤d
σjm
(
X̄
f,[`]
tk

)
∆Bm

tk+1,tk
+

∑
0≤m1,m2≤d

Lm1σ
j
m2

(
X̄
f,[`]
tk

)
∆ηm1m2

tk+1,tk
601

− 1
2

∑
1≤m1,m2≤d

Lm1σ
j
m2

(
X̄
f,[`]
tk

)(
∆Bm1

tk+1,tk+1/2
∆Bm2

tk+1/2,tk
−∆Bm1

tk+1/2,tk
∆Bm2

tk+1,tk+1/2

)
602

+ 1
2

∑
1≤m1<m2≤d

[
σm1 , σm2

]j(
X̄
f,[`]
tk

)(
∆Ãm1m2

tk+1/2,tk
+ ∆Ãm1m2

tk+1,tk+1/2

)
+ M̄f,j

tk+1,tk
+ N̄ f,j

tk+1,tk
,603

604

where the remainder terms are such that E
[
M̄f,j

tk+1,tk
|Ftk

]
= 0, and for any p ≥ 2 there exist

constants C1, C2 > 0 so that:

max
0≤k≤2`−1−1

E
[
|M̄f,j

tk+1,tk
|p
]
≤ C1∆

3p/2
`−1 , max

0≤k≤2`−1−1
E
[
|N̄ f,j

tk+1,tk
|p
]
≤ C2∆2p

`−1.

This manuscript is for review purposes only.



ANTITHETIC MULTILEVEL METHODS FOR DIFFUSIONS WITH APPLICATIONS 21

Similarly, it holds that:605

X̃
f,[`],j
tk+1

= X̃
f,[`],j
tk

+
∑

0≤m≤d
σjm
(
X̃
f,[`]
tk

)
∆Bm

tk+1,tk
+

∑
0≤m1,m2≤d

Lm1σ
j
m2

(
X̃
f,[`]
tk

)
∆ηm1m2

tk+1,tk
606

+ 1
2

∑
1≤m1,m2≤d

Lm1σ
j
m2

(
X̃
f,[`]
tk

)(
∆Bm1

tk+1,tk+1/2
∆Bm2

tk+1/2,tk
−∆Bm1

tk+1/2,tk
∆Bm2

tk+1,tk+1/2

)
607

− 1
2

∑
1≤m1<m2≤d

[
σm1 , σm2

]j(
X̃
f,[`]
tk

)(
Ãm1m2
tk+1/2,tk

+ Ãm1m2
tk+1,tk+1/2

)
+ M̃ f,j

tk+1,tk
+ Ñ f,j

tk+1,tk
,608

609

where the remainder terms M̃ f,j
tk+1,tk

and Ñ f,j
tk+1,tk

satisfy the same properties as M̄f,j
tk+1,tk

and610

N̄ f,j
tk+1,tk

, respectively.611

Proof. From the definition of the fine discretization scheme (2.6), we have:612

X̄
f,[`],j
tk+1

= X̄
f,[`],j
tk

+
∑

0≤m≤d

{
σjm(X̄

f,[`]
tk

)∆Bm
tk+1/2,tk

+ σjm(X̄
f,[`]
tk+1/2

)∆Bm
tk+1,tk+1/2

}
(B.1)613

+
∑

0≤m1,m2≤d

{
Lm1σ

j
m2

(
X̄
f,[`]
tk

)
∆ηm1m2

tk+1/2,tk
+ Lm1σ

j
m2

(
X̄
f,[`]
tk+1/2

)
∆ηm1m2

tk+1,tk+1/2

}
614

+ 1
2

∑
1≤m1<m2≤d

{
[σm1 , σm2 ]j

(
X̄
f,[`]
tk

)
Ãm1m2
tk+1/2,tk

+ [σm1 , σm2 ]j
(
X̄
f,[`]
tk+1/2

)
Ãm1m2
tk+1,tk+1/2

}
.615

616

The Itô-Taylor expansion gives, for 0 ≤ m ≤ d:617

σjm(X̄
f,[`]
tk+1/2

) = σjm(X̄
f,[`]
tk

) +
∑

0≤m1≤d
Lm1σ

j
m(X̄

f,[`]
tk

)∆Bm1
tk+1/2,tk

+ Ef,jtk+1/2,tk
,(B.2)618

619

where under Assumption 2.1 the remainder term Ef,jtk+1/2,tk
is such that, for any p ≥ 2, there620

exists a constant C > 0 so that max0≤k≤2`−1−1 E
[
|Ef,jtk+1/2,tk

|p
]
≤ C∆p

` . Furthermore, we note621

that the standard Taylor expansion gives that for any f ∈ C1
b (RN ):622

f(X̄
f,[`]
tk+1/2

) = f(X̄
f,[`]
tk

) +
∑

1≤i≤N
∂if(ξ)

(
X̄
f,[`],i
tk+1/2

− X̄f,[`],i
tk

)
(B.3)623

624

for some variable ξ ∈ RN , and it holds that:625

∆Bm1
tk+1,tk

∆Bm2
tk+1,tk

= ∆Bm1
tk+1,tk+1/2

∆Bm2
tk+1,tk+1/2

+ ∆Bm1
tk+1,tk+1/2

∆Bm2
tk+1/2,tk

626

+ ∆Bm1
tk+1/2,tk

∆Bm2
tk+1,tk+1/2

+ ∆Bm1
tk+1/2,tk

∆Bm2
tk+1/2,tk

.(B.4)627
628

Thus, applying (B.2), (B.3) and (B.4) to (B.1), we obtain that:629

X̄
f,[`],j
tk+1

= X̄
f,[`],j
tk

+
∑

0≤m≤d
σjm(X̄

f,[`]
tk

)∆Bm
tk+1,tk

+
∑

0≤m1,m2≤d
Lm1σ

j
m2

(
X̄
f,[`]
tk

)
∆ηm1m2

tk+1,tk
630

− 1
2

∑
1≤m1,m2≤d

Lm1σ
j
m2

(
X̄
f,[`]
tk

)(
∆Bm1

tk+1,tk+1/2
∆Bm2

tk+1/2,tk
−∆Bm1

tk+1/2,k
∆Bm2

tk+1,tk+1/2

)
631

+ 1
2

∑
1≤m1<m2≤d

[σm1 , σm2 ]j
(
X̄
f,[`]
tk

)(
Ãm1m2
tk+1/2,tk

+ Ãm1m2
tk+1,tk+1/2

)
+ M̄f,j

tk+1,tk
+ N̄ f,j

tk+1,tk
,632

633
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where the remainder terms M̄f,j
tk+1,tk

and N̄ f,j
tk+1,tk

have the properties stated in Lemma B.1.634

The assertion for X̃f,[`] follows from the same discussion above, and the proof is now com-635

plete.636

Lemma B.2. It holds that:637

X̂
f,[`],j
tk+1

= X̂
f,[`],j
tk

+
∑

0≤m≤d
σjm(X̂

f,[`]
tk

)∆Bm
tk+1,tk

+
∑

1≤m1,m2≤d
Lm1σ

j
m2

(X̂
f,[`]
tk

)∆ηm1m2
tk+1,tk

+ M̂f,j
tk+1,tk

+ N̂ f,j
tk+1,tk

,

(B.5)638

639

where the remainder terms M̂f,j
tk+1,tk

and N̂ f,j
tk+1,tk

satisfy the same properties as M̄f,j
tk+1,tk

and640

N̄ f,j
tk+1,tk

in Lemma B.1, respectively.641

Proof. For notational simplicity, we omit the subscript “[`]” during the proof. Due to642

Lemma B.1, we get:643

X̂f,j
tk+1

= X̂f,j
tk

+
∑

0≤m≤d
σjm(X̂f

tk
)∆Bm

tk+1,tk
+

∑
1≤m1,m2≤d

Lm1σ
j
m2

(X̂f
tk

)∆ηm1m2
tk+1,tk

644

+
∑

1≤i≤6

E(i),j
tk+1,tk

+ 1
2

{
M̄f,j

tk+1,tk
+ M̃ f,j

tk+1,tk
+ N̄ f,j

tk+1,tk
+ Ñ f,j

tk+1,tk

}
,(B.6)645

646

where we have set:647

E(1),j
tk+1,tk

=
∑

1≤m≤d

(
1
2σ

j
m(X̄f

tk
) + 1

2σ
j
m(X̃f

tk
)− σjm(X̂f

tk
)
)
∆Bm

tk+1,tk
;648

E(2),j
tk+1,tk

=
(

1
2σ

j
0(X̄f

tk
) + 1

2σ
j
0(X̃f

tk
)− σj0(X̂f

tk
)
)
∆`−1 +

(
L0σ

j
0(X̄f

tk
) + L0σ

j
0(X̃f

tk
)
)∆2

`−1

4 ;649

E(3),j
tk+1,tk

=
∑

1≤m1,m2≤d

(
1
2Lm1σ

j
m2

(X̄f
tk

) + 1
2Lm1σ

j
m2

(X̃f
tk

)− Lm1σ
j
m2

(X̂f
tk

)
)

∆ηm1m2
tk+1,tk

;650

E(4),j
tk+1,tk

= 1
2

∑
1≤m≤d

{(
Lmσj0(X̄f

tk
) + Lmσj0(X̃f

tk
)
)
∆ηm0

tk+1,tk
+
(
L0σ

j
m(X̄f

tk
) + L0σ

j
m(X̃f

tk
)
)
∆η0m

tk+1,tk

}
;651

E(5),j
tk+1,tk

= −1
4

∑
1≤m1,m2≤d

{(
Lm1σ

j
m2

(X̄f
tk

)− Lm1σ
j
m2

(X̃f
tk

)
)

652

×
(
∆Bm1

tk+1,tk+1/2
∆Bm2

tk+1/2,tk
−∆Bm1

tk+1/2,tk
∆Bm2

tk+1,tk+1/2

)}
;653

E(6),j
tk+1,tk

= 1
4

∑
1≤m1<m2≤d

(
[σm1 , σm2 ]j(X̄f

tk
)− [σm1 , σm2 ]j(X̃f

tk
)
)(

∆Ãm1m2
tk+1,tk+1/2

+ ∆Ãm1m2
tk+1/2,tk

)
.654

655

We immediately have that, E
[
E(i),j
tk+1,tk

|Ftk
]

= 0, i ∈ {1, 3, 4, 5, 6}. Applying second order656

Taylor expansion around X̂f
tk

, we have under Assumption 2.1 that, for g ∈ C2
b (RN ;R) and657

p ≥ 2, there exist constants C1, C2 > 0 such that for all 0 ≤ k ≤ 2`−1 − 1:658

E
[∣∣1

2

(
g(X̄f

tk
) + g(X̃f

tk
)
)
− g(X̂f

tk
)
∣∣p] ≤ C1∆p

`−1, E
[∣∣g(X̄f

tk
)− g(X̃f

tk
)
∣∣p] ≤ C2∆

p/2
`−1,659660
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where we made use of the following result: for any p ≥ 2, there exists C > 0 such that661

max
0≤k≤2`−1−1

E
[
‖X̄f

tk
− X̃f

tk
‖p
]
≤ C∆

p/2
`−1.(B.7)662

663

The bound (B.7) is obtained by noticing that

max
0≤k≤2`−1−1

E
[
‖X̄f

tk
− X̃f

tk
‖p
]
≤ E

[
max

0≤k≤2`−1−1
‖X̄f

tk
− X̃f

tk
‖p
]

and applying the same argument used in the proof of [11, Lemma 4.6] with the strong conver-664

gence result (Proposition 2.3) to the right-hand-side of the above inequality. Then, we have665

that: max0≤k≤2`−1−1 E
[
|E(2),j
tk+1,tk

|p
]
≤ C1∆2p

`−1, max0≤k≤2`−1−1 E
[
|E(i),j
tk+1,tk

|p
]

= C2∆
3p/2
`−1 , j ∈666

{1, 3, 4, 5, 6} for some positive constants C1, C2. Setting M̂f,j
tk+1,tk

≡
∑

i∈{1,3,4,5,6} E
(i),j
tk+1,tk

+667

1
2

(
M̄f,j

tk+1,tk
+ M̃ f,j

tk+1,tk

)
and N̂ f,j

tk+1,tk
≡ E(2),j

tk+1,tk
+ 1

2

(
N̄ f,j
tk+1,tk

+ Ñ f,j
tk+1,tk

)
, we conclude.668

Lemma B.3. It holds that:669

X̂
c,[`−1],j
tk+1

= X̂
c,[`−1],j
tk

+
∑

0≤m≤d
σjm(X̂

c,[`−1]
tk

)∆Bm
tk+1,tk

+
∑

1≤m1,m2≤d
Lm1σ

j
m2

(X̂
c,[`−1]
tk

)∆ηm1m2
tk+1,tk

+ M̂c,j
tk+1,tk

+ N̂ c,j
tk+1,tk

,
(B.8)670

671

where the remainder terms M̂c,j
tk+1,tk

and N̂ c,j
tk+1,tk

satisfy the same properties as M̄f,j
tk+1,tk

and672

N̄ f,j
tk+1,tk

in Lemma B.1, respectively.673

Proof. For notational simplicity, we omit the subscript “[` − 1]” during the proof. From674

the discretizations (2.4) and (2.5), we have:675

X̂c,j
tk+1

= X̂c,j
tk

+
∑

0≤m≤d
σjm(X̂c

tk
)∆Bm

tk+1,tk
+

∑
1≤m1,m2≤d

Lm1σ
j
m2

(X̂c
tk

)∆ηm1m2
tk+1,tk

+
∑

1≤i≤5

R(i),j
tk+1,tk

,676

677

where we have defined:678

R(1),j
tk+1,tk

=
(

1
2σ

j
0(X̄c

tk
) + 1

2σ
j
0(X̃c

tk
)− σj0(X̂c

tk
)
)
∆`−1 +

(
L0σ

j
0(X̄c

tk
) + L0σ

j
0(X̃c

tk
)
)∆2

`−1

4 ;679

R(2),j
tk+1,tk

=
∑

1≤m≤d

(
1
2σ

j
m(X̄c

tk
) + 1

2σ
j
m(X̃c

tk
)− σjm(X̂c

tk
)
)
∆Bm

tk+1,tk
;680

R(3),j
tk+1,tk

=
∑

1≤m1,m2≤d

(
1
2Lm1σ

j
m2

(X̄c
tk

) + 1
2Lm1σ

j
m2

(X̃c
tk

)− Lm1σ
j
m2

(X̂c
tk

)
)
∆ηm1m2

tk+1,tk
;681

R(4),j
tk+1,tk

= 1
4

∑
1≤m1<m2≤d

(
[σm1 , σm2 ]j(X̄c

tk
)− [σm1 , σm2 ]j(X̃c

tk
)
)
∆Bm1

tk+1,tk
∆B̃m2

tk+1,tk
;682

R(5),j
tk+1,tk

= 1
2

∑
1≤m≤d

{
(Lmσj0(X̄c

tk
)+Lmσj0(X̃c

tk
))∆ηm0

tk+1,tk
+ (L0σ

j
m(X̄c

tk
) + L0σ

j
m(X̃c

tk
))∆η0m

tk+1,tk

}
.683

684

From the argument used in proof of Lemma B.2, we have that M̂c,j
tk+1,tk

=
∑

2≤i≤5R
(i),j
tk+1,tk

685

and N̂ c,j
tk+1,tk

= R(1),j
tk+1,tk

satisfy the properties in the statement of Lemma B.3, and then we686

conclude.687
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Algorithm 3.2 New Coupled Particle Filter using the antithetic weak second order scheme.
The algorithm is stopped at a time T , but need not be.

1. Input: level of discretization ` ∈ N, final time T ∈ N and number of samples M . Set

X̄
c,[`−1]
0 (i) = X̃

c,[`−1]
0 (i) = X̄

f,[`]
0 (i) = X̃

f,[`]
0 (i) = x, i = 1, . . . ,M and k = 1. Go to 2..

2. Sampling: For i = 1, . . . ,M , simulate(
X̄
c,[`−1]
k (i), X̃

c,[`−1]
k (i), X̄

f,[`]
k (i), X̃

f,[`]
k (i)

)
|
(
x̄
c,[`−1]
k−1 (i), x̃

c,[`−1]
k−1 (i), x̄

f,[`]
k−1(i), x̃

f,[`]
k−1(i)

)
using the coupled dynamics (2.4)-(2.7) up-to time 1, with:

• starting point x̄
c,[`−1]
k−1 (i), step-size ∆`−1 for (2.4)

• starting point x̃
c,[`−1]
k−1 (i), step-size ∆`−1 for (2.5)

• starting point x̄
f,[`]
k−1(i) and step-size ∆` for (2.6)

• starting point x̃
f,[`]
k−1(i) and step-size ∆` for (2.7).

Go to 3..
3. Resampling: For i = 1, . . . ,M compute

w
c,[`−1]
k (i) :=

g(X̄
c,[`−1]
k (i),yk)∑M

j=1 g(X̄
c,[`−1]
k (j),yk)

, w
f,[`]
k (i) :=

g(X̄
f,[`]
k (i),yk)∑M

j=1 g(X̄
f,[`]
k (j),yk)

;

w̃
c,[`−1]
k (i) :=

g(X̃
c,[`−1]
k (i),yk)∑M

j=1 g(X̃
c,[`−1]
k (j),yk)

, w̃
f,[`]
k (i) :=

g(X̃
f,[`]
k (i),yk)∑M

j=1 g(X̃
f,[`]
k (j),yk)

.

For any ϕ ∈ Bb(RN ) we have the estimate:

π̂
[`],M
k (ϕ)− π̂[`−1],M

k (ϕ) := 1
2

∑
1≤i≤M

{
w
f,[`]
k (i)ϕ(X̄

f,[`]
k (i)) + w̃

f,[`]
k (i)ϕ(X̃

f,[`]
k (i))

}
− 1

2

∑
1≤i≤M

{
w
c,[`−1]
k (i)ϕ(X̄

c,[`−1]
k (i)) + w̃

c,[`−1]
k (i)ϕ(X̃

c,[`−1]
k (i))

}
.(3.6)

For i = 1, . . . ,M sample indices
(
jc,[`−1](i), j̃c,[`−1](i), jf,[`](i), j̃f,[`](i)

)
∈ {1, . . . ,M}4

using Algorithm ?? in Supplementary Material with probability mass functions

(w
c,[`−1]
k (·), w̃c,[`−1]

k (·), wf,[`]k (·), w̃f,[`]k (·)), cardinality M and set

X̌
c,[`−1]
k (i) = X̄

c,[`−1]
k (jc,[`−1](i)), X́

c,[`−1]
k (i) = X̃

c,[`−1]
k (j̃c,[`−1](i));

X̌
f,[`]
k (i) = X̄

f,[`]
k (jf,[`](i)), X́

f,[`]
k (i) = X̃

f,[`]
k (j̃f,[`](i)).

For i = 1, . . . ,M , set X̄
c,[`−1]
k (i) = X̌

c,[`−1]
k (i), X̃

c,[`−1]
k (i) = X́

c,[`−1]
k (i), X̄

f,[`]
k (i) = X̌

f,[`]
k (i),

X̃
f,[`]
k (i) = X́

f,[`]
k (i). Set k = k + 1, if k = T + 1 go to 4. otherwise go to 2..

4. Return the estimates π̂
[`],M
1 (ϕ)− π̂[`−1],M

1 (ϕ), . . . , π̂
[`],M
T (ϕ)− π̂[`−1],M

T (ϕ) from (3.6).
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