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Abstract We present a first global closure test of the fixed
parameterisation (MSHT) approach to PDF fitting. We find
that the default MSHT20 parameterisation can reproduce
the features of the input set in such a closure test to well
within the textbook uncertainties. This provides strong evi-
dence that parameterisation inflexibility in the MSHT20 fit is
not a significant issue in the data region. We also present the
first completely like-for-like comparison between two global
PDF fits, namely MSHT and NNPDF, where the only differ-
ence is guaranteed to be due to the fitting methodology. To
achieve this, we present a fit to the NNPDF4.0 data and theory
inputs, but with the MSHT fixed parameterisation. We find
that this gives a moderately, but noticeably, better fit qual-
ity than the central NNPDF4.0 fits, both with perturbative
and fitted charm, and that this difference persists at the level
of the PDFs and benchmark cross sections. The NNPDF4.0
uncertainties are found to be broadly in line with the MSHT
results if a textbook T 2 = 1 tolerance is applied, but to be
significantly smaller if a tolerance typical of the MSHT20 fit
is applied. This points to an inherent inconsistency between
these approaches. We discuss the need for an enlarged toler-
ance criterion in global PDF fits in detail, and demonstrate the
impact of data/theory inconsistencies in the closure test set-
ting; namely, these do not lead to any increase in the T 2 = 1
PDF uncertainty. We also investigate the impact of restricting
the PDF parameterisation to have fewer free parameters than
the default MSHT20 case, and find this can be significant at
the level of both closure tests and the full fit.
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1 Introduction

With the wealth of data being taken at the Large Hadron Col-
lider (LHC), and the advanced theoretical calculations being
performed to match this, the LHC physics programme now
lies firmly in the high precision regime. A key ingredient,
and indeed bottleneck, in almost all precision LHC analyses
derives from our knowledge of the structure of the proton, as
encoded in the parton distribution functions (PDFs). Indeed,
for many recent experimental analyses, most notably Elec-
troweak precision studies, PDFs represent the dominant, or
one of the most dominant, sources of uncertainty [1–5]. More
broadly they play a significant role in Higgs physics [6–9]
and searches for physics beyond the Standard Model, see
e.g. [7,10,11].

Motivated by this, there has been much progress in recent
years towards precision determinations of the PDFs in global
fits from the CT, MSHT and NNPDF groups [12–14] (see
also [15–17] for other determinations). These extract the
PDFs by fitting to a wide range of data, from low energy
fixed-target experiments, to HERA and the Tevatron and
LHC hadron colliders. Within this, high precision data from
the LHC is now in particular playing an increasingly sig-
nificant role in such determinations. The theoretical predic-
tions entering such fits are almost without exception now
at the level of next-to-next-leading-order (NNLO) in the
QCD coupling, while electroweak and QED corrections are
also accounted for, in the latter case currently via dedi-
cated fits [18–21]. More recently, these analyses have been
extended to approximate N3LO (aN3LO) order by the MSHT
and then the NNPDF groups [22,23]. These combine the
significant amount of known information about the N3LO
results while including approximations for the unknown
parts, with corresponding theoretical uncertainties associated
with these and included in the PDF fit. Given the amount
of known N3LO information available, these allow for an
increased level of accuracy in comparison to previous NNLO
PDF determinations. A variety of follow-up studies on dif-
ferent aspects of the aN3LO PDFs have also been performed
[24–27] showing reduced data tensions, a preference in the
fits for this level of theoretical precision and consistency
amongst the two groups for the PDF evolution.

The progress in each of the individual global PDF fits,
as described above, is therefore without doubt significant.
However, there remain important questions when the com-
parison of the different fits is considered that so far remain
unresolved. In particular, there are key differences in the fit-
ting methodologies that can in principle have a major impact
on the resulting PDFs and their uncertainties.

Two particularly relevant, and connected, differences
relate to the parameterisation of the PDFs and the defini-
tion of their corresponding uncertainties. In the NNPDF fits
a neural network (NN) is used to parameterise the PDFs at

the input scale, with in NNPDF4.0 [14] there being 763 free
parameters in the NN, albeit such that these are effectively
constrained via the usual process of training and validation
a well as other prior constraints. In the CT and MSHT fits,
on the other hand, a fixed polynomial basis is used to param-
eterise the PDFs. For MSHT20 [13] a basis of Chebyshev
polynomials is used, with 52 free parameters in total, while
in CT18 the baseline set is parameterised in terms of Bern-
stein polynomials, and has rather fewer free parameters.

In terms of the PDF uncertainties, rather different approa-
ches are also taken by all three groups. In the CT and MSHT
fits, the PDF uncertainties are defined directly in terms of
an expansion of the Hessian matrix of second derivatives of
the χ2 with respect to the PDF parameters around the mini-
mum of the fit to the global dataset. These uncertainties are
in particular not defined using the textbook �χ2 = T = 1
criterion, which would be applicable to the ideal scenario
of complete statistical compatibility between the multiple
datasets entering the fit, a completely faithful evaluation of
the experimental uncertainties within each dataset, and theo-
retical calculations that match these exactly. There is a great
deal of evidence that the first two situations do not hold in a
PDF fit (see e.g. [28–30]). For example, at the simplest level
of the global fit quality, even in the most recent approximate
N3LO fits [22,23], which come from both fixed parameter-
isation and neural network approaches, the χ2 per number
of data points is ∼ 7 standard deviations away from unity.
Moreover, it is of course well known that the fixed-order
theoretical predictions are not exact; although as described
above there has been recent progress in evaluating the uncer-
tainty due to this [22,23,31], the above χ2 already accounts
for this.

Given this, there is much support for using an enlarged
‘tolerance’ �χ2 = T 2 in such global PDF fits [28–30,32–
34]. The motivation for this has been arrived at from various
perspectives, but is in general based upon observation of the
global and dataset fit qualities in global PDF fits, with often
significant departures observed from the behaviour one might
expect if the more stringentT 2 = 1 parameter fitting criterion
were to apply. Moreover, when fits to subsets of the global
datasets are performed with a tolerance of T 2 = 1, these are
often found to be statistically in tension [12,30,34]. In both
the CT and MSHT fits, an enlarged tolerance is therefore
taken. In the MSHT20 fit, a ‘dynamic’ tolerance criterion is
applied to evaluate the most appropriate enlarged tolerance
to apply, with T 2 ∼ 10 on average. For CT18 a different
approach is taken, which arrives at a somewhat larger value
(see [12] for details) and includes the effect of varying the
parameterisation basis from their baseline (which is more
restricted than in MSHT20).

In the NNPDF fit, on the other hand, no explicit tolerance
is applied. Indeed, here the method of error propagation itself
is not directly amenable to the methods applied by the CT and
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MSHT collaborations for including such an enlarged toler-
ance. The NNPDF approach relies upon fitting a set of pseu-
dodata replicas derived from fluctuating the global dataset by
its corresponding uncertainties, with the ensemble of result-
ing fits providing the final PDF set and its uncertainties. This
Monte Carlo (MC) replica error generation can equally be
applied using a fixed parameterisation as in CT/MSHT, and
indeed it is has long been established [34] in such a case
that the MC replica error generation is closely equivalent to
the Hessian one, but only if T 2 = 1 is taken. In the NNPDF
approach, on the other hand, given a more flexible NN param-
eterisation is used and a training/validation split of the data
performed to avoid overfitting, this direct connection is less
transparent. Indeed, the fit results and most notably the size
of the PDF uncertainties are observed to change quite sensi-
tively with changes to the underlying NN methodology [14].

Given the above discussion, we may reasonably expect
the different approaches to global PDF fitting to lead to dif-
ferent results for the PDFs and their uncertainties, even if
the data and theory underlying the fit are the same. Indeed
this was observed in [35,36], for a set of benchmark NNLO
fits, where each collaboration performed their default fit but
to a common reduced dataset, with common cuts, and with
the theory settings (quark masses, perturbative charm etc)
also unified as much as possible. In this way any residual
differences could be largely assigned to those of method-
ology alone. While the results for the PDFs were broadly
compatible, differences in the PDF uncertainties were evi-
dent, with the NNPDF3.1 uncertainty in particular being on
average markedly lower. Given the updated methodology of
the NNPDF4.0 fit [14] results in a further reduction in PDF
uncertainties for the same dataset, this difference is certain
to be seen even more clearly in any updated benchmarking.
Indeed, such a difference at the level of the PDF uncertain-
ties is observed in the comparison between NNPDF4.0 and
MSHT20 and CT18, even if here the underlying datasets and
the treatment of them is also different.

These differences between the PDF sets, due to method-
ology alone, are therefore certainly significant and an under-
standing of them is arguably as relevant to the LHC precision
programme as the continued important progress being made
within each fit discussed above. It is the aim of this paper to
begin to address these questions directly.

Focusing on the MSHT fit, we are left with three possible
explanations of the differences observed in the benchmark
fits [35], which may in principle all be true to some extent.
Namely, the NNPDF uncertainties may be too aggressive (i.e.
too small), the MSHT uncertainties may be too large (i.e. too
conservative) or the MSHT fit may be less accurate, due to the
less flexibly underlying fixed parameterisation, and hence an
enlarged PDF uncertainty is required. The latter explanation
in particular relates to the question of the enlarged tolerance,
and to what extent this is required by parameterisation inflex-

ibility, rather than any inherent feature of the data/theory
comparison itself. Any contribution from these inherent fea-
tures, in particular, should also in general be accounted for
in a NN fit.

To address these questions, in this paper we perform for the
first time a global closure test of the MSHT20 fixed parame-
terisation approach. Namely, we generate pseudodata, which
is by construction self-consistent, corresponding to a global
PDF dataset and perform a fit using the MSHT20 param-
eterisation. Such closure tests have long been used by the
NNPDF collaboration in order to assess the faithfulness of
the NN approach in these conditions [37], but have thus far
not been applied to global PDF fits with fixed parameteri-
sations. We will in particular find that the default MSHT20
parameterisation can reproduce the features of the input set
in such a closure test to well within the T 2 = 1 uncertain-
ties (which is the appropriate definition for a, by construction
self-consistent, closure test). This provides strong evidence
that parameterisation inflexibility in the MSHT20 fit is not a
significant issue in the data region, and that it should not be
a major contribution in any enlarged tolerance.

The above closure tests are performed by making use of
the publicly available NNPDF code [38]. While this is set up
by default to allow the user to perform PDF fits within the
NNPDF framework, it is readily amenable to instead using
the MSHT20 fixed parameterisation for the PDFs at the input
scale. We implement this modification in the current paper,
which allows us to perform a full global PDF fit to precisely
the same data and theory settings that enter the NNPDF4.0
NNLO fit, with the only difference being due to the methodol-
ogy of how the PDFs are parameterised and the uncertainties
defined.

We perform this fit with both fitted and perturbative
charm, and then compare the resulting fit qualities, PDFs
and their uncertainties that come from fitting the NNPDF4.0
data/theory with the MSHT parameterisation with the result
of the public NNPDF4.0 fit itself. Crucially, we find that the
fit quality in the MSHT case is somewhat better than that of
NNPDF4.0, for both treatments of the charm PDF. More sig-
nificantly, the resulting PDFs and the predicted benchmark
cross sections, are often not compatible within the nominal
NNPDF uncertainties.

Given the in principle increased flexibility of the NN fit,
this result may appear somewhat counter-intuitive, and can in
part be explained by additional prior constraints on the PDFs
imposed by NNPDF, most notably positivity of the low x
gluon in the perturbative charm fit. However, even account-
ing for this, non-negligible differences remain. We therefore
study in detail the resulting PDFs, and find that indeed the
MSHT fit have moderately more flexibility associated with
them, which therefore results in a better fit to the data being
achieved. On the other hand, from a close examination of the
breakdown in the fit quality between datasets, the form of the
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underlying PDFs, and the impact of restricting or extending
the number of free parameters in the fit we find no particu-
lar evidence of overfitting (which is controlled against in the
NNPDF fits, given the more flexible NN architecture).

Putting the reasons for this difference aside, the fact that
the MSHT fit quality is better than the central NNPDF4.0
case is again strong evidence that parameterisation inflexi-
bility is not playing a major in any enlarged tolerance that is
required, or more precisely an increased role in comparison
to the NNPDF fit. Further to this, we also compare the corre-
sponding PDF uncertainties and indeed find that with respect
to the quark flavour decomposition the NNPDF4.0 uncer-
tainties are rather closely in line with the MSHT T 2 = 1
uncertainties, while the gluon and quark singlet uncertain-
ties are somewhat larger, but still significantly lower than
the T 2 = 10 uncertainties, which are representative of the
enlarged tolerance applied in e.g. MSHT20. This demon-
strates in a completely unambiguous way what was already
suggested by the comparison of [35], but highlights that it is
the tolerance that is playing the major role here; if a textbook
T 2 = 1 uncertainty were instead used in the MSHT analysis,
then the PDF uncertainties would be much more closely in
line with the NNPDF ones. Given we have provided strong
evidence that parameterisation inflexibility is not a major
factor in this for the MSHT fit, this points to an inherent
inconsistency between the approaches that requires resolu-
tion. In particular, while MSHT20 uncertainties are quoted
with a tolerance of T 2 ∼ 10, the NNPDF4.0 uncertainties
correspond more closely to a tolerance of T 2 ∼ 1, while
there is no evidence that the differing methodologies should
require such a difference.

Indeed, as described above, there are very good reasons
for including an enlarged tolerance in global PDF fits. In
the current study, we discuss in detail the role of depar-
tures from textbook statistics in a global PDF fit, and the
tensions between datasets that are a feature of this1. We
explicitly demonstrate the impact of including such tensions
in a global closure test and show that these have essentially
no impact on the resulting PDF uncertainties. Hence, these
are found to be unrepresentative, as they do not account for
the increased spread in the PDF error due to these tensions.
This is completely in line with first principles considera-
tions, and demonstrates the need for a modification of the
textbook uncertainty definition in either the Hessian or MC
replica approach, in the presence of such tensions. This has
recently also been discussed in [39]. We also compare the
result of the public MSHT20 fit with the MSHT fits presented

1 As mentioned above, these can be due to the incomplete nature of
the theoretical predictions in the fit, an incomplete evaluation of the
experimental uncertainties and their correlations in particular datasets,
other deficiencies in the data, or to all of these effects. Our analysis is
agnostic with respect to this question.

here. In other words, these compare the difference due to the
change in dataset and theory setting alone (keeping the fit-
ting methodology fixed) in the resulting PDFs. We find broad
consistency at the level of the PDFs and benchmark cross sec-
tions if an enlarged T 2 = 10 definition is used, but crucially
not if the T 2 = 1 definition is used, when evident significant
tensions appear. This provides further support for the need
for an enlarged error definition, as provided by the tolerance.

Finally, we also address the question of parameterisation
flexibility from the point of view of restricting the number
of free parameters to be less than the nominal 52 in the
MSHT20 case. This number, and indeed the basis of Cheby-
shev polynomials that is used, was motivated by the original
study of [40] and in particular the observation that this choice
allows a fit with sub-percent level precision, it being expected
that this would be required by the increasingly high precision
LHC data now entering the fit. By restricting the PDF parame-
terisation to instead have 28 or 40 free parameters, we confirm
that these more restricted parameterisations are insufficient
to match the input of the global closure test within the T 2 = 1
(and even in some cases T 2 = 10) uncertainties. Hence, in
such cases parameterisation inflexibility would clearly play
a more significant role in requiring an enlarged tolerance,
but this can be largely avoided by simply taking a suitably
flexible parameterisation. Similarly large differences are also
seen in the fit to the real data when these more restricted
parameterisations are used. These results are directly rele-
vant to e.g. the ABMP16, ATLASpdf21, CT18 and HERA-
PDF2.0 sets [12,15–17]), where the baseline parameterisa-
tion has fewer free parameters than in MSHT20. Conversely,
we have investigated the impact of increasing the number
of free parameters moderately, and find no particular evi-
dence that overfitting is occurring. A fortiori, the fact that the
more restricted parameterisations cannot faithfully describe
the input of a global closure indicates that overfitting will not
be expected to occur in these cases.

The outline of this paper is as follows. In Sect. 2 we out-
line the general approach and the MSHT PDF parameterisa-
tion used, as well as the method of uncertainty propagation.
In Sect. 3 we present a set of closure tests: in Sect. 3.1 we
briefly present the result of closure tests to directly PDF-level
pseudodata; in Sect. 3.2 we present the result of an ‘unfluc-
tuated’ global closure test, namely without the pseudodata
being fluctuated by their corresponding errors; in Sect. 3.3
we present the result of a ‘fluctuated’ closure test, with these
fluctuations included. In Sect. 4 we consider the role of the
tolerance, and of dataset tensions in it: in Sect. 4.1 we first
provide some general discussion of the impact of tensions on
PDF uncertainties within a toy model, while in Sect. 4.2 we
present a set of closure tests with dataset tensions included to
demonstrate this impact in a full PDF fit. In Sect. 5 we present
the results of a full global PDF fit within the NNPDF4.0
data/theory settings, but applying the MSHT parameterisa-
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tion: in Sect. 5.1 we consider the perturbative charm case, and
in Sect. 5.2 the fitted charm case. In Sect. 6 we examine the
role of parameterisation flexibility, focussing on restricting
the number of free parameters in both the closure test and full
PDF fit. In Sect. 7 we present some LHC benchmark cross
section predictions that come from the MSHT fits, and com-
pare them to the NNPDF4.0 results. In Sect. 8 we describe the
public availability of PDF sets related to the current study.
Finally, in Sect. 9 we conclude, and in the appendices we
present a more detailed study of the treatment of the PDF
uncertainty eigenvectors in the Hessian approach, consider
the role of PDF integrability in the MSHT fit, and present
further fit quality and PDF comparisons.

2 General approach

This study will make use of the publicly available NNPDF
fitting code [41], described in detail here:
https://docs.nnpdf.science

This is set up to allow the user to perform PDF fits within
the NNPDF framework, i.e. via a neural net (NN) parame-
terisation of the PDFs. However, the code is modular, and
it is in particular possible to evaluate the fit quality within
the NNPDF framework (i.e. with their theory and choice of
dataset, or any subset of it) but for an arbitrary PDF set at
the input scale Q0. In more detail, the NNPDF code is set
up to make use of their EKO [42] and FastKernel (FK)
methodologies (see [37] and references therein), namely via
interpolation grids that provide the theoretical prediction in
a PDF independent way, but taking as an input the PDFs at
input scale Q0. That is, the effect of DGLAP evolution is
also accounted for in the FK grids.

While the NNPDF public code is set up to apply the FK
grids to input PDFs that come from a NN parameterisation,
they can equally well be applied to those parameterised in an
arbitrary fixed polynomial basis to produce the correspond-
ing theory predictions in such a case. Combined with the pub-
licly available treatment of the matching input datasets for
these predictions, it is then possible to evaluate a data/theory
comparison, and a fit quality χ2, for exactly the same data
and theory settings as in the NNPDF fits (or some variation of
them), but with the only difference being in the parameterisa-
tion of the underlying PDFs at input scale Q0. We can then in
the usual way use this data/theory comparison and χ2 eval-
uation as the basis for a PDF fit, where the χ2 is minimised
and errors evaluated according to a given procedure.

This is the approach taken in the current study. To
be specific, the parameterisation of the PDFs used in the
MSHT20 [13,43] global PDF fit is used. Here the PDF basis
is given in terms of

uV , dV , S, s+, s−, d/u, g , (1)

where

qV = q − q, s± = s ± s, S = 2
(
u + d

) + s+ . (2)

Each PDF is then given in terms of Chebyshev polynomials,
following the original study of [40]. That is, with the excep-
tion of the gluon and s−, the PDFs are parameterised in the
general form

x f (x, Q0) = Axδ(1 − x)η
(

1 +
6∑

i=1

ai Ti (y(x))

)

, (3)

where Ti is the i th Chebyshev polynomial, and y = 1 −
2
√
x . As described in more detail in [40], the motivation for

using this basis is that it naturally avoids large cancellations
between subsequent terms in the expansion withn, increasing
the stability of the result. For the d/u we fix δ = 0 so that
this tends to a constant value (in principle, left free in the fit),
at low x . For the gluon, a somewhat modified form is taken
to allow greater flexibility at low x , such that

xg(x, Q0) = Agx
δg (1 − x)ηg

(

1 +
4∑

i=1

ag,i Ti (y(x))

)

+Ag−x
δ(1 − x)ηg− xδg− . (4)

Historically, when only a small number of terms was
present in the polynomial in the gluon PDF two powers were
required to provide flexibility at very low x values, but when
a large number of polynomials, some of high order, are used
this is no longer necessary, and indeed, may arguably give too
much flexibility at low x . Therefore, we will where relevant
also present results where the parameterisation of the form
(3) is instead used, in particular in Sect. 6. Jumping ahead,
this gives a very similar fit quality and resulting PDFs, but
with a somewhat smaller PDF uncertainty at low x . For the
relatively poorly constrained s− we take

xs−(x, Q0) = As−x
δs− (1 − x)ηs−

(
1 − x

x0

)
, (5)

although there is no in principle issue with instead using a
parameterisation of the form (3), with e.g. a smaller basis of
Chebyshev polynomials and one coefficient ai suitably fixed
to satisfy the zero strangeness sum rule.

After imposing sum rule constraints, the default MSHT20
parameterisation has 52 free parameters. With the basis and
PDF parameterisation above, we can then evaluate the fit
quality for precisely the same data and theory settings as in
the NNPDF fit. We emphasise again that as well as the data
entering the fit, that the theory settings, i.e. the heavy flavour
scheme and quark masses, form of the DGLAP evolution
from Q0 that is implicit in the FK grids, value of the strong
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coupling and the precise perturbative cross section calcula-
tion for each process, are completely identical to those used in
the corresponding NNPDF fit. Therefore, while the MSHT20
parameterisation is used, this will otherwise differ from the
result of the MSHT20 fit. In this way, the comparison is com-
pletely like-for-like, with the only difference being due to the
PDF parameterisation. We will also use this framework as the
basis for the closure tests that we will first consider in the fol-
lowing sections, before moving to the result of a full global
fit.

Finally, for the uncertainty evaluation we will as usual fol-
low the Hessian approach described in e.g. [13]. Namely, the
deviation of the fit quality from the best fit value is expanded
around the minimum of the global fit quality as

�χ2
global = Hi j (pi − p0

i )(p j − p0
j ) , (6)

where pi is the i th input parameter, with value p0
i at the

global minimum, and the Hessian matrix has components

Hi j = 1

2

∂2χ2
global

∂pi∂p j

∣∣∣∣
min

. (7)

The PDF uncertainties are defined by rotating to a basis that
diagonalises the Hessian matrix and then requiring that the
deviations in fit quality along these orthogonal directions

match the required ‘tolerance’ T =
√

�χ2
global for the corre-

sponding confidence interval. Namely, we have

Hi jv jk = λkvik , (8)

where λk is the kth eigenvalue and vik is the i th component of
the kth eigenvector of H . The PDF parameter displacements
are then given in terms of the rescaled eigenvectors

ei j ≡ vik√
λk

, (9)

so that a given eigenvector set S±
k is produced with parame-

ters given by

ai (S
±
k ) = a0

i ± ti eik . (10)

The rescaling of the eigenvectors according to (9) implies that
in the Gaussian approximation (i.e. where (6) is exact) taking
ti = 1 would correspond to a deviation of �χ2

global = T = 1,
though to be precise (and as is essential for higher eigenvec-
tors where deviation from Gaussian behaviour becomes more
pronounced) t is chosen in order to match the desired value
of T . In the textbook case we would have T = 1 at 68%
confidence, but as discussed in the introduction, and further
in Sect. 4, there is much evidence that this is not sufficient for
global PDF fits, and an enlarged tolerance needs to be taken.

In the MSHT20 study the value of T is chosen according
to the ‘dynamic tolerance’ procedure (see [13] for a detailed
explanation) for which T takes a different value for each
eigenvector direction. However, it is has been noted in [24]
(and elsewhere) that this gives a result that is on average quite
close to taking a fixed value of T 2 = 10, as we will verify
later on. We will therefore, where appropriate, show either
the result of the fixed T 2 = 10 or the dynamic tolerance
criteria when we wish to demonstrate the size of the PDF
uncertainties in the MSHT approach.

We note that, as discussed in [33,44], when it comes to
considering variations of the PDF parameters around the
global χ2 minimum in the Hessian formalism presented
above, it is common for there to be a certain amount of
redundancy between some of these PDF parameters, such
that small changes in the values of some parameters can be
largely compensated for by changes in other parameters. As
a result of this high degree of correlation, the behaviour of
certain PDF eigenvectors about the χ2 minimum can become
highly non-quadratic. A practical solution to this issue is pre-
sented in [33,44] and is applied in the MSHT20 fits. Namely,
certain PDF parameters are fixed at their best fit values when
evaluating the Hessian, if these exhibit a significant degree of
correlation with other PDF parameters. In this way, a set of
more quadratic eigenvectors is arrived at, and a more stable
application of the Hessian approach becomes possible.

This is discussed in detail in Appendix A, where it is
emphasised that this redundancy in certain PDF parameters
about the minimum, and the fixing of some of these in the
MSHT20 approach at the uncertainty evaluation stage, does
not imply that there is any reduced parametric freedom in the
overall fit. That is, the full set of PDF parameters are allowed
to be free in the minimisation stage. In the current paper we in
fact take a slightly different approach, and now allow all PDF
parameters to be free in the eigenvector evaluation, without
fixing any PDF parameters. However, as discussed in detail in
Appendix A this has a very minor impact on the PDF uncer-
tainties, as the contribution to this from the non-quadratic
eigenvectors with lower eigenvalues is very small.

3 Closure tests

3.1 PDF level closure test

We begin by briefly repeating, and extending, the closure test
performed in [40]. That is, we do not yet consider the cross
section observables that enter a PDF fit, but instead simply
generate pseudodata corresponding directly to the values of
the PDF themselves at different x points. We in particular take
the NNPDF4.0 NNLO perturbative charm central replica as
our input, and generate 500 pseudodata points spread evenly
in ln x between 10−5 and 0.99, scattered by a 1% error on
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Fig. 1 Fractional deviations of the fit to direct PDF pseudodata relative to the NNPDF4.0 (p. charm) input

the size of the input PDF. However, the precise results do
not depend sensitively on this choice, e.g. on the size of the
error, whether scattering is including or not, and the number
of datapoints. We note that in what follows we will usually
omit the ‘NNLO’ label for brevity, but this is always implied.

The parameterisation is as described above, and corre-
sponds to that used in the MSHT20 fit2. We generate pseu-
dodata for the 7 PDF combinations that enter the MSHT20
parameterisation directly, namely uV , dV , S = 2(u + d) +
s + s, s+ = s + s, d/u, s− = s − s, g although generating
these in other combinations will lead to similar results. We
then perform a fit to these pseudodata, imposing the number
and momentum sum rules in the usual way.

The fractional deviations from the input NNPDF set are
shown in Fig. 1 for various PDF combinations. We can see in
all cases other than s− that these lie between 1 per mille and
1% across most of the x range, with the exception of the high-
est x values, where this can be somewhat larger. Thus, consis-
tently with the results in [40], a sub-percent level description
of a set of PDFs generated with an in principle more flexible
underlying set, is achieved in many regions with the default
MSHT20 parameterisation. The one exception to this is the
s−, for which we have only 3 free parameters. In this case,
we can see that only ∼ 10% level precision is achieved, away
from the artificial peak at x ∼ 0.005 where the PDF passes
through zero. As we will see below, however, when it comes
to a global closure test this is improved rather at larger scales
and in the region where s− is most significantly different from
zero. Nonetheless, this indicates that as expected a more flex-
ible parameterisation will be needed when greater precision
is required in the description of this particular distribution.

2 In fact, this is with the minor exception that we allow the low x power,
δs− , of the strangeness asymmetry, s−, to be free, whereas in [13] it was
fixed.

3.2 Unfluctuated global closure test

We now move on to considering a closure test at the level of
the observables that enter a global PDF fit. We in particular
generate pseudodata corresponding to the NNPDF4.0 global
dataset, and with the same input of the NNPDF4.0 (perturba-
tive charm) central replica as above. In this section, we will
consider a closure test without shifting the pseudodata by
their underlying experimental uncertainties. In other words,
if the PDF parameterisation in the fit is flexible enough, then a
perfect fit (with χ2 = 0) is in principle achievable. However,
as the NNPDF4.0 set is due to an in principle more flexible
underlying parameterisation than the fixed MSHT20 param-
eterisation, we will expect some departure from a perfect fit,
with the χ2 being somewhat larger.

We note that this is similar to the ‘level 0’ closure test first
used by the NNPDF collaboration in [37], where this also
refers to the cases of fitting unfluctuated pseudodata. How-
ever it is not identical, as we will only consider the result
of a single fit to the unfluctuated pseudodata, whereas in
the original level 0 closure test multiple fits are considered,
with different random initialisation points; we will comment
on this point further at the end of the section. We will also
evaluate the corresponding PDF error that comes from prop-
agating through the experimental uncertainties on the unfluc-
tuated data in the fit. This in particular is something that is
only explored in the context of fluctuated data as part of the
NNPDF ‘level 2’ closure test. Given there is no exact one-to-
one correspondence between the labelling of the closure tests
used by NNPDF and those considered here, we will not use
this terminology but will instead refer to the current closure
test as an ‘unfluctuated’ closure test, for preciseness.

Performing the above closure test, we find a fit quality of
χ2 = 2.4 for the 4627 points in the fit3 i.e. ∼ 0.0005 per

3 Note this is higher than the quoted 4618 points quoted in [14] for the
fitted charm case, due to the more stringent Q2 cut that is imposed for
Fc

2 then.
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point. While indeed non-zero, this is still encouragingly low.
Indeed, in [45] a χ2/Npts of 0.002 (0.012) in the NNPDF
4.0 (3.1) methodology is quoted for the L0 closure tests, i.e.
O(10) (O(50 − 60)) in total. So this level of agreement is
rather similar to that found by NNPDF with their default
setup in this study, although the precise value in that case
depends on the specific parameters of the text, e.g. if a larger
training length of the NN were taken a lower value could be
achieved.

While this gives some indication that the MSHT20 param-
eterisation is performing well for this specific closure test, a
clearer picture is only found by looking at results at the level
of the PDFs. In Fig. 2 we start by showing two representative
PDFs at input scale Q0 = 1 GeV, with both the textbook
T 2 = 1 and an enlarged T 2 = 10 tolerance shown. As
discussed in Sects. 2 and 4 there is much evidence that an
enlarged tolerance is required to provide an appropriate error
estimate when performing a genuine PDF fit, with T 2 = 10
being on average rather similar to that found in the MSHT20
fit. A significant cause of this, and arguably the dominant
one, is due to inconsistencies between the data and theory
as well as between different datasets in the fit which ren-
der the application of the textbook T 2 = 1 criterion overly
aggressive. Another possible reason for this, within the fixed
parameterisation approach, is that the parameterisation itself
may not be sufficiently flexible, such that the enlarged toler-
ance effectively accounts for part of the uncertainty due to the
fixed choice of parameterisation, as in e.g. [12]. In the context
of this closure test the former cause, i.e. that of data/theory
and dataset inconsistencies, will clearly not be present, as we
have perfect consistency by construction. However, by show-
ing the T 2 = 10 error, and in particular examining the level
of any disagreement between the input set and the output fit
relative to this, we can therefore evaluate the extent to which
parameterisation inflexibility may play a role, at least in the
context of the closure test.

Clearly the fit results match the input set in the case of
Fig. 2 rather well, with some deviation observed at very low
x , but always safely within the T 2 = 1 uncertainty band, and
well within the T 2 = 10 case. The PDFs in this region are
however not directly constrained by data, and it is only at
higher x and/or scale, and by plotting PDF ratios that a more
precise and representative comparison can be made.

These are shown in Fig. 3, at Q2 = 104 GeV2 and with
both the textbook T 2 = 1 and an enlarged T 2 = 10 tolerance
again shown. The agreement between the input and fit result is
in general very good in the data region. At low to intermediate
x the deviation is in general at the per mille level, being largest
(a few per mille) for the quark flavour decomposition, e.g.
in the case of the strangeness. The deviation is generally at
the ∼ 10% level of the overall T 2 = 1 uncertainty, but can
approach ∼ 50% in some x regions, but generally at rather
higher x , i.e. towards the extrapolation region, which we will

discuss further below. For the s−s the deviation is somewhat
larger, but again most notably at rather low x where current
constraints are limited; some increased flexibility may be
preferable for future fits, when these increase.

We also consider the valence uV and dV distributions in
Fig. 3. In the x ∼ 0.01 − 0.3 region where the valence dis-
tributions are largest, we can see that the level of deviation is
very small. However, at low x and for the dV at high x this is
no longer the case. It has been shown in [13] that the valence
quarks in similar regions are affected quite significantly by
the extension of the MMHT14 [46] parameterisation, such
that 6 rather than 4 Chebyshev polynomials are used, and the
d/u combination, rather than d − u, is parameterised. More
precisely, the deviations here occur at rather lower x than
the changes observed in [13] due to the extended param-
eterisation. These are therefore occurring in a region of x
where direct constraints on (and indeed the phenomenologi-
cal impact of) the PDFs are rather limited, but clearly in these
regions parameterisation inflexibility is playing an increasing
role, as we would expect.

Considering the T 2 = 10 uncertainties, also shown, these
are as expected larger (by ∼ 3) than the T 2 = 1 case. The
absolute difference between the T 2 = 1 and T 2 = 10 uncer-
tainty bands is almost universally significantly larger than
any deviation between the output PDFs and the input set,
while the ratio of the deviation to the T 2 = 10 uncertainty is
almost universally at the level of a few percent. This there-
fore provides good evidence that in the significant majority
of cases the size of the T 2 = 10 PDF uncertainties is not
required by any parameterisation inflexibility in the MSHT20
fit. The exceptions are again the s−, where we can see that the
enlarged tolerance uncertainty now encompasses the devia-
tion between the output PDF and the input away from the
peak region, and similarly for the uV , dV at low and very
high x , as well as other distributions at high enough x .

We can also make a first comparison between the actual
size of the T 2 = 1 and T 2 = 10 PDF uncertainties in the
unfluctatued closure test and those in the NNPDF4.0 (per-
turbative charm) global fit. The size of the PDF uncertainties
in the latter cases are determined by a fit to the real data,
rather than in a closure test, and hence this is clearly not an
entirely like-for-like comparison. Nonetheless, this compar-
ison can serve as a first indication of the size of the PDF
uncertainties in the NNPDF and MSHT fixed parameterisa-
tion approaches. These are shown in Fig. 4, and we can see
that at intermediate to higher x , for the quark flavour decom-
position the NNPDF uncertainty is very similar in size to
the T 2 = 1 case. The exception to this is most notably the
gluon, and (related to this) the quark singlet, with some dif-
ference also seen in the uV and for various distributions at
high x � 0.3 − 0.4, where the NNPDF uncertainty is rather
larger, and somewhere between the T 2 = 1 and T 2 = 10
cases. For the s− we can also see that the NNPDF uncer-
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Fig. 2 The input (Q2 = 1 GeV2) gluon and quark singlet PDFs that
result from an unfluctuated closure test fit to the NNPDF4.0 dataset,
using the MSHT20 parameterisation. The PDF uncertainties calculated
with a T 2 = 1 (T 2 = 10) fixed tolerance are shown in purple (green)

and the NNPDF4.0 (p. charm) input is given by the dashed red line. The
T 2 = 10 is shown for the sake of comparison, whereas the T 2 = 1 case
is the appropriate definition for such a self-consistent closure test

tainty is larger than the T 2 = 1 case away from the x ∼ 0.1
peak region, as we would expect. This is therefore already an
indication that in many cases the NNPDF uncertainty may be
roughly equivalent to taking a T 2 = 1 tolerance in the data
region; we will verify this later in the context of a full fit. For
the most significant exception of the gluon, we note that the
PDF uncertainty itself is on average rather smaller in the data
region than for other partons. In such as case, the uncertainty
may be driven more by the particular NNPDF methodology.

We end this section with a few comments and caveats, and
some further analysis based on these. First, we comment on
a difference between the level 0 closure tests performed by
NNPDF and the unfluctuated closure tests performed here.
Namely, the fact that we show the result of a single fit to
the unfluctuated pseudodata, whereas in the NNPDF level 0
closure test multiple fits are considered, with different ran-
dom initialisation points. This is sensible in the context of
a NNPDF fit, where the significantly increased flexibility of
the NN architecture allows for multiple solutions with sim-
ilar fit qualities. However, the role of such multiple minima
will be greatly reduced within the context of a single fixed
parameterisation basis, and indeed in principle there will be a
unique global minimum, given the input NNPDF set derives
from a more flexible underlying PDF parameterisation than
the MSHT20 fixed basis we use. In practice, for a given fit
starting point it may be that the minimisation stops at some
distance away from this global minimum, e.g. at a saddle
point or a local distinct minima. More generally, by adopting
a different input fixed parameterisation the location of the
minimum will also change, and one can consider the varia-
tion that this entails, although we do not attempt a study of
this question here.

To explore this point further, in Fig. 5 we show a similar
comparison to Fig. 3 but with an additional selection of clo-
sure test fit results, where the fits are started with different
input PDF parameters. We note that the baseline fit takes as
its input the PDF-level fit discussed in the previous section.
In addition to this, we then first consider the case where as
an input the baseline fit result is taken, but with all n = 5, 6
Chebyshev coefficients then set to zero (and allowing them to
be non-zero in the subsequent fit). While all other free PDF
parameters are as in the baseline best fit, this still results in a
very different set of PDFs, with an extremely poor fit quality
of ∼ 34 per point, i.e. ∼ 160 thousand in total. Nonetheless,
on refitting we can see from Fig. 5 that we arrive back at a
set of PDFs that lie very close to the baseline fit; the χ2 is
∼ 2.7, i.e. very close to the baseline value of 2.4, although
these precise numbers will depend mildly on the choice of
stopping criterion etc in the minimisation algorithm.

On the other hand, the potential issue of additional saddle
points and/or local minima is in fact illustrated if we instead
take the MSHT20 NNLO set [13] as in input. The input fit
quality is ∼ 650, i.e. relatively poor, but not dramatically so,
as we may expect from the fact the MSHT20 and NNPDF4.0
fits share many similar features in terms of experimental and
theoretical inputs. After refitting, the final fit quality is now
∼ 20, that is still relatively low but still rather higher than
the baseline value of 2.4. The impact of this is evident in
Fig. 5: while there remains a very close matching between
the input and fit in the singlet sector, some deviations exist
in terms of the quark flavour decomposition, albeit such that
these remain generally well below the T 2 = 1 uncertainty
band. We note that this minimum is genuinely distinct from
the baseline case, in the sense that if we e.g. consider a line
in PDF parameter space that connects the two minima, then
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Fig. 3 A selection of PDFs at Q2 = 104 GeV2 that result from
an unfluctuated closure test fit to the NNPDF4.0 dataset, using the
MSHT20 parameterisation. The PDF uncertainties calculated with a
T 2 = 1 (T 2 = 10) fixed tolerance are shown in purple (green) and the
NNPDF4.0 (p. charm) input is given by the dashed orange line. Results

are shown as a ratio to the MSHT fits (the central value for the tolerance
choices is by definition the same), with the exception of the s−, where
the absolute PDFs are plotted. The T 2 = 10 is shown for the sake of
comparison, whereas the T 2 = 1 case is the appropriate definition for
such a self-consistent closure test
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Fig. 4 PDF uncertainties at Q2 = 104 GeV2 that result from an unfluc-
tuated closure test fit to the NNPDF4.0 dataset, using the MSHT20
parameterisation. The PDF uncertainties calculated with a T 2 = 1

(T 2 = 10) fixed tolerance are shown as well as the NNPDF4.0 (p.
charm) input for comparison, although the latter plays no role in the
closure test
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Fig. 5 As in Fig. 3 but with an additional selection of closure test
fit results shown, where the fits are started with different input PDF
parameters, as indicated in the caption. Namely, the previous baseline is
shown, as well as the result of taking this result and setting all n = 5, 6
Chebyshev coefficients to zero (but allowing them to be non-zero in
the subsequent fit), and of starting from the same input as the MSHT20

NNLO set [13]. In all cases, the lines indicate the ratio of the NNPDF4.0
(perturbative charm) input set to the fit, while the uncertainties bands
correspond to the baseline fit; these are rather similar for the other fits.
Note we show a somewhat different selection of PDFs to Fig. 3 for
clearer illustration
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the fit quality rapidly deteriorates as we move in either direc-
tion along this. As is apparent from the PDF comparisons,
it is largely a feature of quark flavour decomposition and
hence presumably of the extent to which the baseline dataset
can allow a somewhat different decomposition with a similar
(if slightly worse) fit quality. In addition, if a subset of the
baseline input PDFs are set to the MSHT20 case then the fit
tends to converge on the lower baseline minimum. Hence the
presence of the distinct minimum is a feature of the differing
balance in the quark flavour decomposition that exists in the
complete MSHT20 input.

This question of possible saddle points and/or local min-
ima is therefore certainly an important issue that has to be
confronted in such fixed parameterisation fits. In the con-
text of the MSHT20 fits (and earlier versions), care is always
taken to perform multiple fits from different starting points
to moderate the impact of this effect. Nonetheless, it remains
encouraging that even for the case of the higher local mini-
mum discussed above, the resulting PDFs generally lie well
within the T 2 = 1 uncertainty, and certainly the T 2 = 10
one. Therefore, even if the enlarged error definition may to
some extent account for this effect, there is no evidence that
is close to the dominant contribution to it.

In the context of the current closure test, we have in
addition briefly explored to possibility of taking a randomly
fluctuated set of input PDF parameters, by fluctuating these
around the baseline best fit, subject to the usual constraints on
low and high x powers, and that the calculated gluon momen-
tum fraction that results lies within a reasonable range, and
is crucially not negative, as can often occur for unphysical
combinations of PDF parameters that may result. In such a
case, for 10 fits we find that 4 converge to χ2 values below 20,
with 3 lying very close to the original best fit. The remaining
fits show distinct issues with convergence, indicating that the
input sets may be rather too extreme, even within the con-
straints discussed above. Nonetheless, the key point is that
within such a context a global minimum close to the baseline
is achieved for some of the fits, and indeed most of those
which converge at all.

We next discuss the fact that we have for concreteness so
far only considered a closure test to a single input PDF set.
While this corresponds in principle to a more flexible under-
lying set, such that the good level of agreement observed
between the input set and the fits is indeed non-trivial, clearly
if a different input where used (or a non-central replica of
this set) our results will change at some level. Indeed, as we
will show explicitly in Sect. 6, the PDFs that result from a
fit with the MSHT parameterisation to the real data show
moderately more variation then the central NNPDF4.0 set.
With this in mind, we also consider the results of the same
unfluctuated closure fit to that above, but where the input
sets are now individual replicas of the NNPDF4.0 perturba-
tive charm set. There are 100 of these in total, such that the

central set corresponds to their average. Given this, we can
expect the variability of the individual replicas to be greater
and hence for the agreement between the fit and input set to
be somewhat less good than in the central set case. However,
we note that the flexibility of the MSHT20 set is chosen in
order for the central best fit PDF to match the level of preci-
sion required by a global PDF fit to data of the sort contained
within the NNPDF4.0 dataset. Given this, the most appropri-
ate comparison remains that for which the central NNPDF set
is used as in input, and not of any individual replica, where
the variability in the set is generally greater.

For these fits, the best fit χ2 will vary from input to input,
but is on average somewhat higher than in the central case,
with 〈χ2〉 ∼ 15, i.e. ∼ 0.003 per point, though this is still
of the same order of the value quoted in [45]. In Fig. 6 we
show the ratio of the MSHT unfluctuated closure test fits to
the 100 NNPDF replica inputs for a selection of PDFs, with
the T 2 = 1 uncertainty from the fit to the central set given for
guidance; for any individual fit the uncertainty will be sim-
ilar. We can see that on average the agreement between the
fit and input remains very good, and well within this uncer-
tainty in the data region. However, clearly the spread is larger
and for a handful of sets the agreement can lie outside the
quoted uncertainty band in some regions. In Fig. 7 we show
for illustration the ratio of the input replicas to the central
NNPDF set for the gluon and strangeness PDFs, along with
the corresponding uncertainty band, purely for guidance. We
can see that for the degree of variability in these replicas is
indeed as expected often quite a bit larger than for the central
set. Given this, it can be expected that the MSHT20 parame-
terisation does not always achieve as good a matching to the
input set as to the central set, even if in general it remains
good.

Indeed, another interesting way to demonstrate the aver-
age matching (or lack of it) between these fits and the input
replica sets is to simply compare the original NNPDF4.0
PDF set to that of the set of MSHT closure test fits, with the
central (average) value and the uncertainty calculated from
the corresponding MC ensembles. This is shown in Fig. 8
and we can see that the matching is rather good, albeit with
some inflation in the spread of MSHT replicas in particular
at low x , as a result of the noise present due to the mismatch
between the individual fits and the input replicas that can
occur, and tends to be larger in such less well constrained
regions.

Finally, while we have shown that the MSHT parameter-
isation is sufficiently flexible to perform well in a closure
test (both unfluctuated, and as we will see fluctuated), these
assume by construction complete consistency between data
and theory and between the datasets in the fit. It is certainly
possible that parameterisation flexibility may play more of a
role in the more complicated, but more realistic context of a
global fit and/or closure tests without such consistency built

123



  316 Page 14 of 84 Eur. Phys. J. C           (2025) 85:316 

Fig. 6 PDF ratios at Q2 = 104 GeV2 of the result of unfluctuated clo-
sure tests, using the MSHT20 parameterisation, to the corresponding
NNPDF4.0 (perturbative charm) input. Each black curve corresponds
to such a fit using a given replica from the NNPDF input set as input,

such that there are 100 shown in total. For guidance, the Hessian PDF
uncertainties calculated with a T 2 = 1 fixed tolerance that results from
the fit to the central input set is shown, as in e.g. Fig. 3. For clarity a
limited, but representative, selection of 25 replicas is shown

Fig. 7 The ratio of the input replicas to the central NNPDF set (i.e. the replica average), with the MC replica uncertainty given for guidance, for
the gluon and strangeness PDFs
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Fig. 8 PDF ratios at Q2 = 104 GeV2 of the result of unfluctuated clo-
sure tests, using the MSHT20 parameterisation, to the corresponding
NNPDF4.0 (pch) input. The results of the same 100 fits shown in Fig. 6

but now with the average and MC uncertainty on the replica ensemble
shown both for the set of closure test fits (‘MSHT replica fits’) and the
NNPDF4.0 replica inputs

in. We will consider this point further, which is inevitably
tied up with the question of the PDF uncertainty treatment,
in Sect. 4. However, we note here that an issue that is related
to this is that in the real global fit it can be necessary to fix
certain poorly constrained parameters, such that the low x
power of the strangeness to be the same as that of the sea,

in order to avoid unexpected behaviour in the quark flavour
decomposition at low x . Indeed, such unphysical behaviour
is often observed to be driven by an attempt to compensate
for the non-ideal nature of the underlying fit. This can e.g.
prefer for there to be some violation of the momentum sum
rule from the PDFs in the data region, which can be achieved
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by rather unphysical behaviour at low x outside of this region.
At the level of closure tests, on the other hand (where such
behaviour is not present by construction, due to the behaviour
of the input PDF set), we find this is not the case.

3.3 Fluctuated global closure test

3.3.1 PDF-level comparisons

We now consider the case where the pseudodata are fluctu-
ated by their uncertainties due to the experimental covariance
matrix. This is clearly closer to the case of a real PDF fit, as
in principle a perfect fit to the data is no longer achievable.
Indeed we expect, and find, a χ2/Npts ∼ 1 for theory predic-
tions corresponding to the original PDF input that has gen-
erated the underlying pseudodata, or more precisely within
1 ± 2/

√
Npts at 68% confidence. On the other hand, we are

still assuming that the data errors are completely faithful,
i.e. that there are no tensions between datasets beyond those
due to statistical fluctuations, and in particular the theory
used to produce the pseudodata (prior to fluctuations) exactly
matches that used to evaluate the fit quality.

In the previous section we note that we evaluated the PDF
uncertainty due to the unfluctuated closure test purely as a
means to measure the significance of any deviation between
the fit and input PDF set. In other words, it assessed the
faithfulness of the MSHT fixed parameterisation approach in
fitting the central value of the input set. The aim of performing
a fluctuated closure test, on the other hand, is to validate the
faithfulness of the PDF uncertainties that come out of the
fit. This is directly analogous to the ‘level 2’ closure tests
performed by the NNPDF collaboration [37]. In particular,
if the uncertainties are faithful, then we expect the input PDF
set to lie within the 1σ uncertainty band of the fitted PDFs
with close to 68% confidence. As we will see, this is indeed
the case.

To show this we begin by generating 100 pseudodata sets
due to the same NNPDF4.0 (p. charm) input set as before,
in each case with the pseudodata fluctuated with a different
random number seed. Fitting the ensemble of these we can
therefore generate a set of 100 fluctuated fits. The correspond-
ing PDF uncertainty on the original unfluctuated fit can then
be evaluated according to the MC error propagation proce-
dure, rather than the Hessian one considered in the previous
section. The general expectation here is that the MC uncer-
tainty should match the Hessian uncertainty with T 2 = 1
in regions and for PDFs where the Gaussian approximation
for the χ2 minimum in the PDF parameters is good, while
for regions where this is less good, i.e. in the unconstrained
extrapolation regions, the matching may be less close.

The results of this comparison are shown in Fig. 9 and
we can indeed see that in the most constrained regions of x
the matching between the MC and Hessian result is rather

encouraging. The MC results are calculated using the text-
book result for the 1σ standard deviation of the ensemble of
fits, though we have confirmed that the results are very sim-
ilar if instead the 68% C.L. is calculated directly. For clarity
we recall that the central value of the MC result is derived
from the average of the fits to the fluctuated pseudodata,
while the Hessian result derives from a fit to the unfluctu-
ated pseudodata. Hence there is no strict requirement for the
central values to agree, due either to finite sample effects or
a breakdown in the Gaussian approximation. Indeed differ-
ences are observed, most dominantly in the less constrained
high x region, and for the valence distributions at low x ,
where again constraints are limited.

In Fig. 10 we show the corresponding PDF uncertainties,
along with the NNPDF4.0 (p. charm) input PDF uncertainty
for comparison, although as discussed in the previous section
this plays no role in the closure test and is instead derived
from the NNPDF fit to the real data. Again for most PDFs and
in most regions of x , notably in the most directly constrained
regions, the agreement between the Hessian (T 2 = 1) and
MC uncertainties is very good.

As described above, however, there are regions where the
agreement between the Hessian and MC results is less good,
in particular at high x , where direct constraints start to run
out. We can see from Fig. 10 that in this region the MC uncer-
tainty tends to be larger, and interestingly tends to match the
NNPDF4.0 input set rather more closely, though we empha-
sise again that this is a comparison of the NNPDF uncer-
tainty that comes from a fit to the real data to the MSHT
fixed parameterisation to pseudodata, so is not like for like.
Nonetheless, this may indicate that the MC error propagation,
irrespective of whether a suitably flexible fixed polynomial
basis or a neural network is used to parameterise the PDFs,
may be a significant and perhaps even the primary factor in
the fact that the NNPDF uncertainty in the high x extrapo-
lation region tends to be more conservative than a Hessian
one, as in the case of e.g. MSHT20.

To examine this further we focus on the high x region in
Fig. 11, where the absolute PDFs are shown, and a number
of features are clear. We can see that while for the gluon
and light quarks the input set is consistent with the Hessian
output of the closure test within the T 2 = 1 uncertainties
out to rather high x , for the less well determined antiquarks
this is less true. In particular, clear deviations are evident at
x � 0.4−0.5 for the u and d , which is precisely where direct
data constraints on these PDFs run out, and hence is largely
in the extrapolation region. This highlights one of the poten-
tial shortcomings of the fixed parameterisation approach, at
least with a Hessian uncertainty evaluation, namely that in
such regions the corresponding PDF uncertainties may not be
conservative enough (although we note that for the T 2 = 10
uncertainties the deviations are at somewhat, though not dra-
matically, higher x). This issue is not one that the MSHT20
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Fig. 9 A selection of PDFs at Q2 = 104 GeV2 that result from a fluctu-
ated closure test fit to the NNPDF4.0 dataset, using the MSHT20 param-
eterisation. The Hessian PDF uncertainties calculated with a T 2 = 1
fixed tolerance that result from the unfluctuated closure test are shown

in purple (and are as in Fig. 3), while the result of MC error generation
are shown in green. The NNPDF4.0 (p. charm) input is given by the
dashed red line. Results are shown as a ratio to the MSHT (T 2 = 1) fit
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Fig. 10 PDF uncertainties at Q2 = 104 GeV2 that result from a fluctu-
ated closure test fit to the NNPDF4.0 dataset, using the MSHT20 param-
eterisation. The Hessian PDF uncertainties calculated with a T 2 = 1
fixed tolerance are shown in purple (and are as in Fig. 4), while the

result of MC error generation are shown in green. The NNPDF4.0 (p.
charm) input is also shown for comparison, although this plays no role
in the closure test
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Fig. 11 A selection of PDFs at Q2 = 104 GeV2 that result from
an unfluctuated closure test fit to the NNPDF4.0 dataset, using the
MSHT20 parameterisation, now focussing on the high x region. The
Hessian PDF uncertainties calculated with a T 2 = 1 fixed tolerance

are shown in purple (and are as in Fig. 3), while the result of the MC
error generation are shown in green. The NNPDF4.0 (p. charm) input
is given by the dashed red line
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dynamic tolerance is designed to address directly, given this
is driven by a hypothesis testing criterion that is by construc-
tion applied to the data region, and hence this may indicate
a future avenue of improvement.

On the other hand, we can indeed see again that the MC
uncertainties are significantly larger than the Hessian ones
in this region. This may be due to the particularly non-linear
dependence of the PDFs on the PDF parameters and indeed
non-linear effects in the data fluctuations themselves (given
the data errors can be comparable to the size of the data) at
high x , in this region where the PDFs are very small.

We note that in [47] a recent critical discussion of the MC
method is presented, where some indication that it can prove
unreliable in certain scenarios, notably when non-linearity is
present, is demonstrated. In particular, differences between
the MC approach and a Bayesian method are seen in a range
of toy PDF fits. Here, the non-linearity is restricted by con-
struction to be due purely to the quadratic dependence of
hadronic observables on the PDFs, rather than in the param-
eterisation itself. This may explain why in such a case, the
difference is instead focused at low x . In a more realistic
scenario, such an approach may shed light on the differences
observed here.

We next turn to the overall faithfulness of the PDF uncer-
tainties in the context of the level 2 closure test discussed
above, namely whether the input set is consistent with each
of the 100 fluctuated fits within their corresponding (Hes-
sian) 1σ uncertainty with 68% confidence. To demonstrate
this, we in principle would have to perform a PDF eigenvec-
tor scan for each of the 100 fits above in order to evaluate
their corresponding uncertainty. However, this is not in fact
necessary, as for any given such fit, if we evaluate its Hessian
uncertainty, we find the size of this is very stable across the
fits, and indeed matches very closely with the Hessian uncer-
tainty from the fit to the unfluctuated pseudodata shown in
Fig. 10. This is demonstrated explicitly in Fig. 12 for a small
selection of fluctuated fits, where it is clear that the relative
Hessian uncertainty is very stable, and similar to the result of
the unfluctuated fit. We note a similar observation, namely of
the stability of the uncertainty between different fluctuated
fits, is made in [37], see the last paragraph of Section 4.3. The
above observations are then in fact sufficient to demonstrate
that the closure test has been passed. In particular: the central
value of any of the 100 fluctuated fits will by definition lie
within the (green) MC uncertainty band in Fig. 9, which is
very closely centred on the input set in the data region, with
68% probability; this uncertainty band very closely matches
to the Hessian uncertainty from the unfluctuated fit and hence
the relative Hessian uncertainty on any individual fluctuated
best fit; therefore, if a given central value of one of the 100
fits lies within the 68% MC uncertainty band it will also be
consistent with the input within its 1σ Hessian uncertainty.
Putting this all together, each of these 100 fits will be consis-

tent within its 1σ Hessian uncertainty with the input set with
68% frequency, as required.

As mentioned above, the above closure test is directly
analogous to the ‘level 2’ closure tests performed by the
NNPDF collaboration. There are procedural distinctions in
how these are implemented, but we note that these sim-
ply reflect the fact that different underlying fitting method-
ologies, and corresponding PDF uncertainty definitions, are
being tested. In particular, both the current and the NNPDF
closure tests start with a particular set of fluctuated pseudo-
data and perform a standard fit with the PDF fitting frame-
work to this. In the NNPDF case, this requires fluctuating
these pseudodata a second (multiple) set of times, to generate
a replica ensemble that is used to define the PDF uncertain-
ties. In the MSHT methodology, on the other hand, we start
with the same pseudodata that has been fluctuated once, but
as the PDF uncertainties are defined via the Hessian method-
ology, these are not fluctuated a second time. However, the
fundamental test is the same.

3.3.2 Statistical estimators

To demonstrate the above results quantitatively, we next con-
sider a range of statistical estimators described in [14,45]. We
start with the PDF-level estimator defined in [37]:

ξ
(pdf)
nσ = 1

nflav

1

nx

1

nfit

nflav∑

i=1

nx∑

j=1

nfit∑

l=1

I[−nσ i(l)(x j ),nσ i(l)(x j )]
(
qi(l)(x j ) − qi(l)input(x j )

)
. (11)

Here, qi(l)(x j ) is the resulting PDF of flavour i for the lth

fluctuated closure test at a point x j , whileqi(l)input(x j ) is the cor-
responding (NNPDF4.0 perturbative charm) input set. The
standard deviation PDF uncertainty on the fit PDF is denoted
by σ i(l)(x j ), while IA(x) is only non-zero, and equal to unity,
if its argument (i.e. the difference between the fit PDF and the
input) lies within the relevant ±nσ interval. In other words,
this gives the fraction of the fit PDFs, summed over different
flavours and at some specified x points that are consistent
with the input set within their nσ uncertainty.

We will consider the n = 1 case here, for which we will
expect ξPDF

1σ ≈ 0.68 if the uncertainties are faithful. However,
there are various caveats to this [14], notably that it assumes
a Gaussian distribution in the fluctuated fit results at a given
x value, which will be less true away from the data region,
and it does not account for the correlation between neigh-
bouring x points. Nonetheless, it is a useful indicator. With
this in mind, we evaluate ξPDF

1σ for 20 x points spaced loga-
rithmically between 10−5 and 0.3, while we have nfit = 100,
as described above. In order to avoid performing an eigen-
vector scan for all 100 of these fits, we use in our quoted
results that the 1σ uncertainty on any given fluctuated fit is
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Fig. 12 PDF uncertainties at Q2 = 104 GeV2 that result from a fluc-
tuated closure test fit to the NNPDF4.0 dataset, using the MSHT20
parameterisation, for the up quark and gluon PDFs. The result of the

unfluctuated closure test, as shown in Fig. 4, is given as well as the
Hessian uncertainty on the fit to four of the fluctuated pseudodata fits
that enter the fluctuated closure test. All uncertainties are for T 2 = 1

constant and identical to that on the unfluctuated fit, which as
described above is observed to hold very closely. However,
we have confirmed for a smaller (but sufficient) number of
fits, nfit = 25, that evaluating these uncertainties exactly
gives a very similar result, within the larger statistical uncer-
tainty on ξ that comes from this smaller nfit. The results are
shown in Table 1 for Q2 = 104 GeV2, and we can see that
indeed ξPDF

1σ ≈ 0.68 is satisfied rather well. There is some
very slight tendency for the overall estimator to lie below
the textbook 1σ value, but given the imperfect nature of this
estimator, as described above, we judge this to be more than
sufficient to demonstrate a successful closure test. We note
that if the evaluation is instead made at e.g. the input scale
Q0, and/or with a larger x range, then the value of ξPDF

1σ is
relatively stable.

We next consider the equivalent estimator defined in data
space

ξ (data)
nσ = 1

Ndata

1

nfit

Ndata∑

i=1

nfit∑

l=1

I[−nσ i(l),nσ i(l)]
(
g(l)
i − fi

)
.

(12)

Here fi is the theoretical prediction for the i th datapoint
using the (NNPDF4.0 perturbative charm) input set, without
fluctuation, i.e. exactly corresponding to the ‘true’ value. The
g(l)
i are the predictions from the lth fluctuated closure test fit

and σ i(l) is the PDF uncertainty on this prediction, calculated
using the PDF eigenvectors from this fit in the usual way.
To be precise, we apply the appropriate asymmetric error
definition, with

σ
i(l)
+ =

√√
√√√

Neig∑

k=1

{
max

[
g(l)
i (S+

k ) − g(l)
i (S0), g(l)

i (S−
k ) − g(l)

i (S0), 0
]}2

,

σ
i(l)
− =

√√
√√√

Neig∑

k=1

{
max

[
g(l)
i (S0) − g(l)

i (S+
k ), g(l)

i (S0) − g(l)
i (S−

k ), 0
]}2

,

(13)

where S±
k corresponds to the kth ± eigenvector and S0 the

central PDF set. We can then either symmetrise the above
positive and negative uncertainties to give σ i(l) or alterna-
tively modify (12) to count the fraction of the data points
for which fi lies above or below g(l)

i within the correspond-
ing ± uncertainty. These give very similar results, however
we note that if the uncertainty is instead symmetrised at the
eigenvector level, i.e.

σ i(l)
sym = 1

2

√√√√
√

Neig∑

k=1

[
g(l)
i (S+

k ) − g(l)
i (S−

k )
]2

, (14)

then as we will see the results differ somewhat. For recent
discussion of the Hessian PDF uncertainty definition in the
presence of asymmetric uncertainties see [48].

This estimator therefore gives the fraction of the predicted
datapoints that are consistent with the ‘true’ input values
within the quoted PDF uncertainty. To be consistent with the
discussion in [14] we present this estimator in the basis that
diagonalises the experimental covariance matrix, such that
the sum over the number of datapoints becomes a sum over
the eigenvectors of the experimental covariance matrix.

We present results for this estimator evaluated on the same
full dataset as that which enters into the fit. This in contrast
to [14], where the closure test fits are performed to a subset
of the NNPDF4.0 dataset, namely a NNPDF3.1-like dataset.
While in principle this may provide a more general test of
the fitting procedure, we note in practice that as discussed
in [14] the kinematic coverage of the testing dataset in that
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Table 1 The ξPDF
1σ estimator at Q2 = 104 GeV2, described in the text, for different parton flavours and for the sum over all flavours. The statistical

uncertainty due to the finite number of points in x , flavour and fit space is given

s u d g d u s Total

ξPDF
1σ 0.67 ± 0.02 0.64 ± 0.02 0.66 ± 0.02 0.64 ± 0.02 0.65 ± 0.02 0.69 ± 0.02 0.65 ± 0.02 0.656 ± 0.006

Bold value represents the total result

Table 2 The ξData
1σ estimators

for different dataset types and
for the total global dataset, in
the basis that diagonalises the
experimental covariance matrix.
The statistical uncertainty due to
the finite number of datapoints
and fits is given. Results with
and without the PDF
uncertainties symmetrised are
shown, along with the
corresponding values of
erf(Rvb/

√
2)

DIS DY Top Jets Total

ξData
1σ 0.64 ± 0.01 0.68 ± 0.01 0.67 ± 0.02 0.64 ± 0.02 0.65 ± 0.01

erf(1/
√

2Rbv) 0.66 ± 0.01 0.72 ± 0.01 0.70 ± 0.03 0.62 ± 0.02 0.69 ± 0.005

Bold value represents the total result

study is similar to the dataset entering the fit, and indeed this
is necessary in order to ensure Gaussianity. That is, the testing
data should be sensitive to the PDFs in a region where they are
well constrained by the fitted data, and hence by construction
the estimator is less reliable in any regions where this is not
the case, e.g. in regions of extrapolation from the fitted data.
Therefore, given the test and fitted data are generated from the
same underlying true input PDF set and the relevant quantity
in [14] is the value of the statistical estimator due to the
test data in a region that is constrained by the fitted data,
it is arguable how much can be gained from performing this
division. Moreover, this necessarily implies reducing the size
of the dataset entering the closure test fit, which is undesirable
from the point of view of producing a direct comparison with
the results above. Nonetheless, an extension in this direction
may be of use in the future.

The corresponding values of the 1σ estimator, along with
the statistical uncertainty due to the finite number of fits (now
taken with nfit = 40 for improved precision4) for the total
dataset and some representative divisions of it, are shown
in Table 2. We can see that the total value is slightly lower
than the textbook ∼ 0.68, indicating that the uncertainties
may be slightly smaller than is required, but rather close to
it in a manner that can give us some confidence in the over-
all faithfulness of the PDF uncertainties according to this
estimator. This is particular true given that the value of this
estimator is ∼ 1 if we e.g. instead take PDF uncertainties
evaluated according to a T 2 = 10 fixed tolerance, that is the
test would fail dramatically in such a case, with the uncer-
tainties being significantly too conservative. Considering the

4 As the PDF uncertainties are evaluated using the eigenvectors for each
fit, the full set of 100 fits used in the PDF-level estimator is not useable
here.

Fig. 13 The normalized distribution of relative differences δdata in data
space in the basis that diagonalises the experimental covariance matrix.
σasym corresponds to the appropriate asymmetric PDF uncertainty def-
inition, while for σsym these are symmetrised at the eigenvector level.
The latter case is shown for the sake of comparison. The black curve
corresponds to a normal distribution with unit variance

data subsets, we can see that there is some variation between
these, but overall rather good consistency with expectations
is observed.

Looking in more detail, in Fig. 13 we plot the values of

δ
(l)
I = g(l)

i − fi
σ i(l)

, (15)

where the quantities on the right hand side are as defined in
(12) and we again evaluate these in the basis that diagonalises
the experimental covariance matrix. If the PDF uncertainties
are faithful, then these should be normally distributed with
unit variance, and we can see that this is indeed very close to
being true. There is a very mild tendency for the plotted values
to have a larger tail than the normal distribution, consistent
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with the value of ξ
(data)
nσ being slightly lower than 0.68, but

this is clearly a small effect. To be precise, σ i(l) in the above
expression is calculated by symmetrising the result of the
asymmetric error definition (13). However, if the symmetric
definition (14) is instead used the distribution deviates more,
as is is shown in the figure for comparison, indicating that
this definition is indeed not to be preferred.

Also shown in Table 2 is the value of

erf

(
1√

2Rbv

)
≈ ξData

1σ , (16)

where this approximate equality is expected to hold for suc-
cessful closure tests5. Here, Rbv is the bias-to-variance ratio
defined in [45], which is given by

Rbv =
√

Efits[bias]
Efits[variance] , (17)

where

Efits[bias] = 1

Ndata

1

nfit

nfit∑

l=1

(g(l) − f )iC
−1
i j (g(l) − f ) j ,

(18)

Efits[variance] = 1

Ndata

1

nfit

nfit∑

l=1


var
[
g(l)
i , g(l)

j

]
C−1
i j , (19)

are defined in analogy to the quantities defined in [45] but for
the Hessian uncertainty definition. Here the variance 
var is
given in the case of a symmetric PDF uncertainty definition
by


var
[
g(l)
i , g(l)

j

]
= 1

4

Neig∑

k=1

(g(l)
i (S+

k ) − g(l)
i (S−

k ))(g(l)
j (S+

k )

−g(l)
j (S−

k )) . (20)

However, given as noted above this is observed to be a less
faithful uncertainty definition, we instead present results with
the asymmetric treatment. This is possible by evaluating (19)
after diagonalising the covariance matrix, in which case we
simply have


var
[
g(l)
i , g(l)

j

]
→

(
σ i(l)

)2
, (21)

defined in the basis that diagonalises the experimental covari-
ance matrix, and this can be evaluated using the asymmetric
error definition. We note that if the symmetric error definition
were used this would give the same results as applying (20)

5 We note that in [14,45] the Rbv in (16) is in the numerator of the erf
function, however this has been confirmed by the authors as a typo [49].

in the data basis, given (19) is basis independent. Results are
shown in Table 3, again for the total dataset and for some sub-
sets of it. For faithful PDF uncertainties we expect Rbv ≈ 1
and we can indeed see that this holds rather closely. The value
of erf(1/

√
2Rbv) corresponding to these is given in Table 2

and we can see that the agreement is reasonable, though not
perfect.

Finally, in Table 4 we show the expectation over the same
nfit = 40 fits of

Efits[�(l)
χ2 ] = 1

nfits

1

Ndata

nfit∑

l=1

(
χ2(g(l), z(l)) − χ2( f, z(l))

)
.

(22)

as defined in [14], where the χ2 values are evaluated accord-
ing to the fluctuated pseudodata z with theory inputs given by
the closure test fit value g or the true values f . As discussed
in this reference, this provides a measure of the amount of
under- or over-fitting. In particular, if Efits[�(l)

χ2 ] > 0 then
this indicates that under-fitting is occurring, i.e. in the cur-
rent context a lack of flexibility in the PDF parameterisation.
On the other hand, ifEfits[�(l)

χ2 ] < 0 then this is acceptable as
long as the absolute magnitude is sufficiently small. We can
see from the Table that this is certainly true, and indeed the
total value is very similar to that found by NNPDF in their
analysis [14], albeit there with a different underlying fit and
testing dataset.

In summary, we have considered a range of statistical esti-
mators in both PDF and data space, and confirmed that in the
context of the current (self-consistent) closure test that the
PDF uncertainties are faithfully represented by the MSHT20
fixed parameterisation fit with textbook T 2 = 1 uncertain-
ties, and in particular that there is very limited evidence of
any significant degree of under-fitting due to parameterisa-
tion inflexibility. In the following section we will enlarge
this discussion to consider the case were the pseudodata, or
indeed real dataset, are not completely self-consistent, and
motivate the need for a tolerance in that context.

4 The role of the tolerance

4.1 General remarks

Having set up the global closure test above, where so far
exact data and theory consistency has been imposed by con-
struction, it is interesting to consider a closure test but where
dataset inconsistencies are injected into the fit. We will do this
in the following section, but before doing so it is instructive
to make some general remarks about the tolerance, and the
relationship between the Hessian and Monte Carlo replica
approach, within the context of a simple toy example.
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Table 3 The bias-to-variance
ratios for different dataset types
and for the total global dataset.
The statistical uncertainty due to
the finite number of datapoints
and fits is given. Results with
and without the PDF
uncertainties symmetrised are
shown, as described in the text

DIS DY Top Jets Total

Rbv 1.04 ± 0.02 0.92 ± 0.02 0.97 ± 0.06 1.15 ± 0.05 0.98 ± 0.01

Bold value represents the total result

Table 4 The value of Efits[�(l)
χ2 ] for different dataset types and for the total global dataset. The statistical uncertainty due to the finite number of

datapoints and fits is given

DIS NC DIS CC DY Top Jets Total

Efits[�(l)
χ2 ] −0.0059 ± 0.0006 −0.0054 ± 0.0009 −0.0184 ± 0.0013 −0.0136 ± 0.047 −0.0065 ± 0.0014 −0.0084 ± 0.0003

Bold value represents the total result

We in particular consider the simplest possible case of a
fit to two measured values, Di (i = 1, 2), of a single observ-
able O , with true value D0. The fit theoretical prediction,
t , which we assume to be otherwise unconstrained, simply
corresponds to the best fit value of the observable, O , that
comes from this pair of measurements. We will assume that
the Di have the same experimental uncertainty, σ , in which
case we have

t0 = 1

2
(D1 + D2) , (23)

i.e. the best fit theory value is given by the average of the two
data values. This is assumed for simplicity, but we could
readily take the errors to be different, in which case this
would instead be a suitable weighted average of the two
measured values, and the discussion below would be qual-
itatively unchanged. Similarly, generalising to the case of
more than one datapoint in each dataset would lead the basic
result unchanged; we will briefly discuss this at the end of
the section.

Writing t = t0 + �t , it is straightforwards to show that
the �χ2 as we deviate from this best fit value is simply given
by

�χ2 = 2�t2

σ 2 , (24)

i.e. it is independent of the specific value of t0 and the partic-
ular values of the Di . This is of course completely consistent
with the underlying statistics of the measurement, namely
that the �χ2 = 1 error is given by

�t = ± σ√
2

(25)

as we would expect. In particular, the D1,2 are given by

D1,2 = D0 + σδ1,2 , (26)

where are δ1,2 are normally distribution with unit variance,
i.e. the D1,2 are sampled from a normal distribution with
true value D0 and error σ . In this case, if the experiments
corresponding to D1 and D2 are repeated multiple times,
then D0 will lie within the corresponding t0 ± |�t | with 1σ

(∼ 68%) frequency. Equivalently, the distribution of the fit t0
over multiple repeated experiments will be centred on 〈t0〉 =
D0 with standard deviation given by (25). In other words,
provided the underlying errors are faithful, and the measured
Di are due to an underlying distribution that is statistically
consistent with the true value D0, then the �χ2 = 1 error in
the fit value of t0 correctly indicates the expected 68% C.L.
consistency of this with the underlying true data value D0.

The above discussion then immediately tells us what will
happen if there is some inconsistency or tension in the mea-
sured data. We can in particular imagine that we instead have

D1,2 = a1,2 + (D0 + σδ1,2) , (27)

where the δ1,2 are drawn from the same normal distribution as
before, i.e. for simplicity we assume that the statistical error
σ is correctly known, though one could generalise to the case
where this is not true without adding to the discussion below.
However, we now introduce the a1,2 as constant offsets that
represent the (unknown) sources of inconsistency in the two
measurements. Namely, they are non-zero in generating the
measured values of D1,2, but they are not accounted for in
the fit, which still (now incorrectly) assumes that the D1,2 are
representative of the underlying true value D0 with statistical
uncertainty σ . In this case, the best fit value of t0 would be
given by the same average as in (23), which we can write
explicitly as

t0 = 1

2
(a1 + a2) + D0 + σ

2
(δ1 + δ2) , (28)
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and applying the �χ2 = 1 criterium would give exactly
the same error (25) as before; as this is independent of the
particular value of t0 it will clearly be independent of the ai .
This will however no longer be statistically consistent with
the underlying true value, D0. Indeed, if the experiments are
repeated multiple times we will have

〈t0〉 = 1

2
(a1 + a2) + D0 , (29)

and so for non-zero a1,2 the average value of t0 will be offset
from the true value of D0 in a manner that is not accounted for
by the quoted uncertainty (25). In other words, the �χ2 = 1
uncertainty on the fit value of t0 does not account at all for
any deviation between the measured Di and the true value D0

or any tension between the measured Di . The corresponding
error is in particular identical to the case of exact data/theory
consistency above.

The above results can be understood rather intuitively.
Namely, the uncertainty (25) corresponds to the statistical
uncertainty on the average (23) of the two measured values
D1,2 that is purely due to their statistical errors σ1,2 = σ . In
the case of complete data/theory consistency (a1,2 = 0) this
is the correct statistical uncertainty on the fit to the true value
D0, in the frequentist sense described above. If we introduce
some inconsistency (a1,2 	= 0) then (25) still correctly corre-
sponds to the statistical uncertainty, due to the errors σi = σ ,
on the average of the two measured values D1,2, which will
indeed be consistent with (29) at 68% confidence accord-
ing to the error given by (25). It is simply that this average
is no longer representative of the true value D0 due to the
a1,2 	= 0 offset, and as the above discussion makes clear, the
quoted �χ2 = 1 uncertainty is completely unrelated to that
disagreement.

If we consider instead the MC replica approach to uncer-
tainty propagation, this should be completely consistent with
the discussion above, though it is worth verifying this for
complete clarity. In this approach, we generate Nrep pseu-
dodata replicas of the two data points. Assuming complete
data/theory consistency for now, these will be given by

D j
1,2 = σδ

j
1,2 + D1,2 , (30)

where the index j labels the j th replica, the δ
j
1,2 are as before

drawn from a normal distribution with unit variance, and D1,2

(without the j superscript) correspond to the measured data
values, as defined above (23). The fit to the j th replica will
give

t j = 1

2

(
D j

1 + D j
2

)
, (31)

for which we have

t0 =
〈
t j

〉
= 1

Nrep

∑

j

t j = 1

2
(D1 + D2) , (32)

and

�t =
⎛

⎝ 1

Nrep − 1

∑

j

(t j − t0)
2

⎞

⎠

1/2

= σ

2

⎛

⎝ 1

Nrep − 1

∑

j

(δ1
j + δ2

j )
2

⎞

⎠

1/2

= ± σ√
2

, (33)

in the large Nrep limit. These are consistent with the results
above, as we would of course expect. We can in particular
again see that the uncertainty on t is again independent on the
particular value of t0. So indeed error propagation through
MC replicas leads to exactly the same issue as before, and
for exactly the same reasons6.

While the discussion above has focused on a simple toy
example, it should be clear that the issue will continue to
occur in a genuine global PDF fit, in the presence of tensions
between different datasets and between data and theory. In
particular, the key issue will remain as above, namely that the
best fit PDF will correspond to a fit to a suitable average of the
data entering the fit, analogous to (29), though in a much more
complicated and indirect manner and now weighted by the
corresponding data uncertainties. However, the PDF uncer-
tainties evaluated using a �χ2 = 1 criterion, or completely
equivalently MC replica generation, will only correspond to
the uncertainty on this average due to the quoted data errors
(and any theoretical errors also included in the fit). In par-
ticular, as demonstrated above, if the underlying datasets are
in tension or there is otherwise some underlying data/theory
inconsistency, then the fit to this average will not in general
coincide with the ‘true’ PDF we wish to extract within the
�χ2 = 1 uncertainty.

A proposed resolution to the above issue, or at least
improvement to the situation, has been discussed at length
in the literature [28–30,32–34], and necessitates an enlarge-
ment of the textbook �χ2 = 1 criterion. Focusing briefly
on the ‘dynamic’ tolerance developed in [33], it is instruc-
tive to examine how this would enter the toy model discussed
above. Here, the uncertainty range is set by a hypothesis test-
ing criterion, whereby all datasets entering the fit should be

6 We note that NNPDF4.0 fit, which applies this error treatment, does
however propose a mechanism to assess the consistency of each dataset
with the bulk of the data included in the fit and discard inconsistent
datasets from the global fit, in an effort to avoid the need for any enlarged
error definition.
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suitably described within their 68% C.L. limits around the
best fit value. To be precise, we require that

χ2
i < ξ68

(
χ2
i,0

ξ50

)

, (34)

where χ2
i corresponds to the fit quality to dataset i , and χ2

i,0
the corresponding value at the global best fit. The ξ rep-
resent the appropriate 50th and 68th percentiles of the χ2

distribution for the Ni
dat degrees of freedom of the dataset i ;

we have ξ50 ∼ Ndat for sufficiently large Ndat. The factor
of χ2

i,0/ξ50 is introduced as in general the value of χ2
i,0 may

depart rather significantly from a textbook ‘good’ fit quality,
and this renormalisation corrects for that.

If we assume for concreteness that D1 < D2 then the
upper limit on t0, which we denote �t+, will be set by D1,
in which case we have

(D1 − t0 − �t+)2

σ 2 = ξ68

ξ50

(D1 − t0)2

σ 2 . (35)

Rearranging, we find we pick up a contribution of order

�t+ ∝ D1 − D2 ∼ a1 − a2 , (36)

in the presence of dataset tensions. Thus, the dynamic tol-
erance will result in an uncertainty that is in general larger
than the �χ2 = 1 criterion, but which is representative of
the spread in the datasets entering the fit, due to the non-zero
values of the ai .

We note that in the MC replica approach such a spread can
in principle be accounted for by a suitable modification of
the method for generating and sampling the MC replicas. In
the current toy approach this could e.g. correspond to dataset
1 being highly weighted in the fit for some of the replica
generation, and vice-versa for dataset 2 in other cases. A more
general approach to this question has also been discussed
recently in [39]. We also note that the impact of training and
validation on the corresponding uncertainties has not been
considered in the above discussion, though it is considered
in e.g. [50].

Finally, we note that the precise value of the overall con-
stant of proportionality in (36) is not particularly relevant
here, and indeed the toy example of two datasets with a sin-
gle datapoint each is rather far from the case of a global PDF
fit. It is therefore instructive to briefly consider a generalisa-
tion of our toy model to the case where the two datasets now
each have N/2 datapoints generated according to (27), i.e.
with each individual datapoint having the same uncertainty
σ as before, and with a constant offset a1,2 between the two
datasets.

One thing this will clarify is the extent to which one can
have ai that are sufficiently non-zero to cause issues with the

representative nature of the evaluated �χ2 = 1 uncertainties
without leading to significant deterioration in the overall fit
quality. As discussed in [28], the fact that this can occur is due
to the fundamental difference between the hypothesis testing
criterion, whereby a fit to a given dataset is good provided
the χ2 lies within ±√

2N of N , and the parameter fitting
criterion discussed above, which applies the much stronger
�χ2 = 1 constraint. Therefore, we can expect deviations in
the fit quality due to non-zero values of ai that are still well
within the ±√

2N range of acceptable values, but which lead
to deviations that are well outside the �χ2 = 1 uncertainty
estimate on t .

To show this in the context of our toy model, one can
readily show that (25) generalises to give

�t = ± σ√
2N

. (37)

Taking the large N limit for simplicity, we have

t0 = 1

2
(a1 + a2) + D0 , (38)

and

χ2
0 = N

(
1 + 1

2σ 2 (a1 − a2)
2
)

. (39)

Requiring that the deviation from ideal fit quality N be less
than

√
2N gives

|a1 − a2| < (8N )1/4 · �t , (40)

i.e. for reasonable values of N the deviation can be sig-
nificantly larger than the textbook �χ2 = 1 uncertainty
(37) without giving a particularly poor fit quality; for N =
10−1000 the prefactor ranges from ∼ 3−10. This is of note
as, dependent on the signs of the ai in the current example,
if the L.H.S of (40) is such a factor larger than �t , then this
can result in a deviation in the best fit value, t0, of this order.

Turning to the dynamic tolerance, in the same large N
limit we again find for non-zero a1,2 that �t+ picks up a
contribution that is proportional to a1 − a2, as required. It is
also interesting to consider the case where there is in fact no
underlying tension, i.e. a1,2 = 0. In this case we find that

�t+ =
(

ξ68

ξ50
− 1

)1/2

σ ∝ σ

N 1/4 , (41)

where we have used that ξ50 ∼ N and ξ68 − ξ50 ∝ √
N .

This highlights a potential issue with the dynamic tolerance
(and indeed any enlarged tolerance) criteria, namely that in
the absence of any dataset tensions it does not reproduce the
underlying�χ2 = 1 uncertainty, and in particular the scaling
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of the uncertainty reduction with N is more gradual than the
textbook ∼ 1/

√
N case. We note however that this is not

in itself inconsistent, and the dynamic tolerance procedure
assumes by definition that we are not in this situation, and
there is much evidence that in a real global fit we are not.

4.2 Global closure tests and the tolerance

Having set the general problem up in the context of a toy
model, we now consider some example cases where we per-
form a closure test but now explicitly construct these so that
the theory used to generate the pseudodata and that used to
perform the fit are not consistent. This will provide arguably
a more accurate model of a genuine PDF fit, where 100%
consistency between data and theory and different datasets
is not always achieved.

We begin by dividing the NNPDF4.0 global dataset into
two subsets, in one case containing all low energy Drell Yan
(DY) and DIS data, as well as the HERA collider DIS data,
and in the other case all hadron collider data from the Teva-
tron and LHC. The former subset has 3294 datapoints and
the latter 1332, however while the hadron collider dataset is
smaller in terms of the number of datapoints it contains some
rather constraining high precision data from the LHC in par-
ticular. Hence this provides a (roughly) comparable division
of the global dataset in terms of constraining power, even if
clearly there are some regions of x and some PDFs that are
more or less constrained by either subset.The kinematic cov-
erage of these subsets can be read off from Fig. 2.1 of [14]
and we can e.g. see that the HERA data extend to rather lower
x than the hadron collider data. However, as we shall see, the
dominant differences between the fits to these subsets that
we will describe below lie in regions of PDF parameter space
that are rather well constrained by both, such as on the quark
sector at intermediate x . We use the same MSHT parame-
terisation described in Sect. 2, with the same number of free
parameters. These may be more flexible than is required for
fitting these reduced datasets with the required level of pre-
cision, but for the purposes of the current comparison this is
not a significant issue.

Having chosen this division, we now generate the two sub-
sets of pseudodata with two different underlying input sets.
The basic idea here is to model the tendency in a real global
fit for a given subset of the data to prefer a somewhat differ-
ent set of PDFs to other subsets, beyond the expectations of
statistical fluctuations alone. Of course in reality the ‘true’
underlying PDF set would be the same in both cases, and it
would be inconsistencies in the actual data and/or theory that
lead to differing result in the fit. Nonetheless, without inject-
ing further inconsistencies into the closure test, and simply
modifying the input PDF sets in this way, we can effectively
model the more complex situation that would occur in reality,
although we will show an example of instead modifying the

data rather than the input PDF set at the end of the section.
We perform a fluctuated closure test, with the pseudodata
fluctuations performed consistently at the level of the full
global dataset (i.e. using the global covariance matrix) with
a given input set before selecting the subset to be used.

To be precise, we take the same NNPDF4.0 (perturba-
tive charm) set as before, and now consider also the HER-
APDF2.0 NNLO set [15] as an input. We choose this as it
is sufficiently different from the NNPDF4.0 set to clearly
demonstrate the issue of dataset inconsistencies7. We will
show the case that the low energy DY/DIS + HERA pseudo-
data are generated by the HERAPDF2.0 set, and the hadron
collider data by the NNPDF4.0 set, and for one particular
fluctuated dataset, but we have confirmed that the basic con-
clusions are unchanged if this choice is swapped and/or a
different random number seed is used for the pseudodata
fluctuations. An example of this is shown in Appendix B
where equivalent plots to Figs. 15, 16, 17 are shown, but
with a different set of pseudodata fluctuations.

To give an idea of the difference that these two input
sets lead to at the level of observable quantities, in Fig. 14
we show normalized cross section differences between the
NNPDF4.0 and HERAPDF2.0 unfluctuated predictions for
(top) the HERA e + p 920 GeV NC [15] and (bottom) the
CMS 8 TeV inclusive jet [51] data. In the left figures these
are normalized to the NNPDF4.0 predictions, and we can
see clear fractional deviations at both low and high x for the
HERA data, and deviations at high jet p⊥ (i.e. high x) for
the jet data. These effects are driven by the differences in
the PDFs, in these cases principally the gluon, at the rele-
vant scales of the data. In the right plots the differences are
instead normalized to the square root of the diagonal ele-
ment, δdiag, of the experimental covariance matrix, to give
some indication of the level of this with respect to the size of
the experimental uncertainties. This provides a clearer pic-
ture of the impact at the level of the fit quality; for example
in the jet case we can see that while some of the higher p⊥
points provide the largest fractional deviation in the pure pre-
dictions, the larger experimental uncertainties tend to wash
this out. The largest impact is in the forward rapidity bin, i.e.
the left most line of points in the bottom left figure. More
broadly, at the level of the χ2 per point that comes from the
prediction for the unfluctuated pseudodata generated with
one set, using the other, we find this is ∼ 0.1, 0.9 and 0.5
for the HERA, hadron collider and fixed-target data, respec-
tively. This is consistent with expectations that the biggest
difference should lie within data beyond HERA, and from
the LHC in particular.

7 We note that the CT family of global sets, e.g. CT18 [12], cannot
straightforwardly be used in this study, as this requires the PDFs at
Q0 = 1 GeV, whereas the CT PDFs are only made available at a higher
starting value of Q0.
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Fig. 14 Normalized cross section differences between the NNPDF4.0
and HERAPDF2.0 unfluctuated predictions for (top) the HERA e + p
920 GeV NC [15] and (bottom) the CMS 8 TeV inclusive jet [51] data.

In the left figures these are normalized to the NNPDF4.0 prediction,
while in the right they are normalized to the square root of the diagonal
element, δdiag, of the experimental covariance matrix

The fit results are shown in Figs. 15, 16, 17 for four choices
of PDF, namely the gluon, up quark, up antiquark and charge
weighted quark singlet. These are taken to be representa-
tive, and in certain x regions there is an evident, but not too
extreme deviation between the underlying PDF inputs. In
each case, we show: (top left) the ratio of the fits to the two
subsets to the fit to the combined global set when these are
both consistently generated with the NNPDF4.0 (perturba-
tive charm) set, i.e. as in the closure tests in the previous
sections; (top right) the ratio of the fits to the two subsets
to the fit to the combined global set, but where the HER-
APDF2.0 set is now used to generate the DY/DIS + HERA
pseudodata; (bottom left) the PDF uncertainties for the global
pseudodata fits in the upper plots; (bottom right) the ratio of
the HERAPDF2.0’ input set to the NNPDF4.0 input, to serve
as an indication of any expected tension between the results
in the upper right figure. In all cases the PDF uncertainties
correspond to the T 2 = 1 criterion, with the exception of the
global fit in the top right plots, where the result of a dynamic
tolerance procedure is also shown8.

8 For the dynamic tolerance uncertainties shown here, and elsewhere in
this paper, to be precise we treat all ATLAS and CMS datasets that are

Here the prime on the HERAPDF2.0’ indicates that this is
the result of taking the input set at Q0 = 1 GeV and evolving
to Q2 = 104 GeV2 using the NNPDF public code, as strictly
speaking this is what is effectively used in the generation of
the pseudodata. This differs a small amount from the default
HERAPDF2.0 set due to e.g. differing quark masses in the
evolution and so on. We also emphasise again that the global
fit shown in the top right figure is to the pseudodata formed
of the combination of the two (inconsistent) subsets that are
produced with differing PDF inputs.

Starting with the fit quality, we find that the result of the fit
to the global, inconsistent dataset is χ2/Npt ∼ 1.036, which
is less than 2σ above 1, i.e. while showing some mild devi-
ation from ideal behaviour is clearly not so far from it to be

from the same measurement as the same dataset, while also combin-
ing all HERA inclusive DIS and HERA heavy flavour measurements
into two combined datasets, consistent with the treatment in the MSHT
approach. We also exclude all datasets with fewer than 5 points from
the error evaluation; while in general this has very little effect, it can be
the case that a dataset with e.g. 1 datapoint (of which there are a hand-
ful in the default NNPDF4.0 dataset) can have an unrealistically large
effect on the PDF uncertainty, due to the fact that the dynamic tolerance
procedure is more applicable to datasets with a sufficient number of
points.
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Fig. 15 The gluon PDF at Q2 = 104 GeV2 that results from a fluc-
tuated closure test fit, using the MSHT20 parameterisation, to the
NNPDF4.0 global dataset and to the low energy DIS/DY + HERA,
and hadron collider datasets, such that the combination of these corre-
sponds to the global case. Results are shown as a ratio to the respective
global fits, and in the top left plot the input pseudodata are all generated
with the NNPDF4.0 (perturbative charm) as input, while in the top right
plot the HERAPDF2.0 set is instead used for the low energy DIS/DY

+ HERA pseudodata. In both cases the global fit corresponds to a fit
to the corresponding combination of these two subset. In the bottom
left plot the corresponding PDF uncertainties for the two global closure
tests fits in the top plots are shown. In the bottom right plot the ratio
of the central HERAPDF2.0’ set to the NNPDF4.0 (pch) set is shown.
All uncertainties are evaluated with T 2 = 1 with the exception of the
global fit, where the result of applying a dynamic tolerance procedure
is also shown

considered a bad fit, not least in the context of global PDF
fits where the fit quality is in general significantly worse.
This is due to the fact that, while the input PDFs show
some disagreement for certain PDFs in certain regions of
x , the fit quality will remain good for many datasets (and
within many datasets) which are not sensitive to this. The
net effect of this will be to obscure the disagreement that is
present in certain cases, when the global fit quality alone is
considered. For the fit to the consistent pseudodata, gener-
ated with the NNPDF4.0 (perturbative charm) input set, we
find χ2/Npt ∼ 0.995, which is clearly in very good agree-
ment with the expectation value of unity. Looking in more
detail, while for the consistent fit we find that the χ2/Npt

for the fixed-target, HERA and hadron collider datasets is
∼ 1.00, 0.96 and 1.02, for the inconsistent case these deteri-
orate to ∼ 1.05, 0.98 and 1.07 per point. There is therefore
some trend for the hadron collider and fixed-target data to be

worse fit, although these values remain within 2σ of unity.
Those datasets with the largest deviations are certain LHCb
and ATLAS charged and neutral current DY data, with var-
ious NMC, SLAC and NuTeV datasets showing some rea-
sonable deterioration.

Considering first the top left plots, which show the result
of fitting to completely self-consistent pseudodata, we can
see broad consistency between the fits to the two subsets
in comparison to the global fit. There are as expected some
regions of x where the fit to a given subset disagrees with
the global fit outside the quoted 68% uncertainties, but this
is to be expected given these are 1σ uncertainties alone, and
indeed the agreement is almost always at the ∼ 2σ level.
In the bottom left plots we can see that the uncertainties for
the global fits are very close to identical, up to differences
due to statistical fluctuations and the fact that the underlying
HERAPDF2.0’ set is somewhat simpler than the NNPDF4.0,
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Fig. 16 As in Fig. 15 but for the up quark

leading to slightly smaller uncertainties in a closure test gen-
erated with this input. There is certainly no evidence at all
that the T 2 = 1 uncertainty in the inconsistent case is any
larger, completely consistent with the discussion in the pre-
vious section.

Turning now to the top right plots, we can see that clear
differences emerge. Starting with the gluon, as indicated in
Fig. 15 (bottom right) the largest disagreement between the
underlying HERAPDF2.0’ and NNPDF4.0 sets is at high
x , where the former gluon is considerably softer. This is
matched by the fits in the top right plot, with the low energy
DY/DIS + HERA case (generated with HERAPDF2.0’)
being significantly softer than the hadron collider case (gen-
erated with NNPDF4.0). The global result lies somewhere
between the two, as we would expect, but these are evidently
far from being consistent within the quote uncertainties.

Once the dynamic tolerance is applied to the global fit in
the top right plot, however, we can see that the consistency is
greatly improved. There is still some tendency for the subset
fits to lie outside even this uncertainty band at the highest x
values, which is completely consistent with the underlying
dynamic tolerance procedure; namely, the upper error band
will be set by the fact that at some point the gluon becomes

inconsistent with the pseudodata in the low energy DY/DIS
+ HERA subset in a manner that is not guaranteed to overlap
with the fit to the hadron collider pseudodata. In principle
this might indicate some further room for further refinement
of the procedure, but it should be emphasised that the con-
sistency is still greatly improved with respect to the T 2 = 1
case. We note that the subset fits only show the T 2 = 1 uncer-
tainties, whereas in a genuine fit the dynamic tolerance would
also be applied here (and would correspondingly increase the
PDF uncertainties). However, in the current set up the indi-
vidual subsets are completely self-consistent, and hence the
T 2 = 1 criterium is the most appropriate. It should also be
emphasised that at high x we are entering the extrapolation
region for the gluon PDF, where it is less well constrained
by either datasets.

Considering the up quark shown in Fig. 16, a distinct dif-
ference in pulls between the two dataset is observable in the
x � 0.01 region in the top right plot, driven again by the
difference in the underlying input sets shown in the bottom
right plot. The individual results are clearly multiple σ away
from the global fit in some regions, indicating significant
tension between the results, which is again not matched by
any increase in the PDF uncertainty in the global fit. Indeed
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Fig. 17 As in Fig. 15 but for the charge weighted quark singlet

this provides a particularly clear illustration of the issue dis-
cussed in the previous section, namely that the global fit cor-
responds to a suitably weighted average of the fits to the
two subsets, but that the T 2 = 1 uncertainty is not related
to the spread between them when some tension is present.
When the dynamic tolerance is instead used, the consistency
is clearly greatly improved, even if again at high x there some
indication of a residual (but significantly reduced) tension
between the global and hadron collider results. We note that
the input to the fit is cross section observables, rather than the
PDFs directly, and these depend on different combinations
of PDFs in different x regions in a non-trivial manner. There
is therefore no strict requirement for the global fit result to
lie between the individual fits, as is indeed observed not to
occur in the low x region of the top left figure.

Finally, for the charge weighted quark singlet in Fig. 17,
the trend follows to a large extent that of the up quark, but
is rather more marked due to the fact that this PDF combi-
nation is more equally constrained by both datasets. Now,
the difference in pulls between the two dataset is observ-
able in the x � 0.001 region, and again it is only when the
dynamic tolerance procedure is applied to the global fit that

overall consistency is achieved, with the exception again of
the highest x region for the hadron collider result.

We next briefly consider an alternative closure test, where
the fluctuated pseudodata are now consistently generated
with the same NNPDF4.0 (perturbative charm) input across
the entire global dataset, but we now explicitly shift the nor-
malisation of the datasets entering the fit by a given amount,
in order to model inconsistencies between datasets and/or the
theory used to describe them. In particular, the normalization
of each dataset is randomly fluctuated with a standard devi-
ation δ and average N . For these we take three choices for
concreteness, driven by the requirement that the fit quality
is not unrealistically poor, namely δ = (5%, 3%, 3%) and
N = (1, 1, 0.97), respectively. To be precise, we treat each
dataset as given by the default NNPDF labelling convention
individually, such that e.g. each subset of the HERA inclu-
sive data, and for multiple LHC datasets the W+ vs. W− or
differing rapidity regions of the same DY measurement, are
shifted independently. This therefore to some extent will also
allow for inconsistencies within the same measurements as
well as across them to be modelled.

For the corresponding fit qualities we find χ2/Np ∼
1.36, 1.18, 1.10 for the δ = (5%, 3%, 3%) (N = (1, 1, 0.97))
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Fig. 18 The average value of the ratio (Ni −1)/δi,diag for each dataset i , where Ni is the corresponding normalization factor, calculated as described
in the text, and δi,diag is the square root of the diagonal element experimental covariance matrix for each datapoint in the dataset

cases, respectively. These therefore demonstrate significant
deviation away from the expected fit quality, given a 1σ devi-
ation corresponds to ∼ 0.02 per point. Nonetheless, with the
exception of the rather more extreme first case, these are
not larger than the fit qualities that tend to be observed in
genuine NNLO global PDF fits. In a little more detail, in
Fig. 18 we show the average value of the ratio (Ni −1)/δi,diag

for each dataset i , where Ni is the corresponding normal-
ization factor, and δi,diag is the square root of the diagonal
element experimental covariance matrix for each datapoint
in the dataset. This therefore provides some indication of
the level of deviation from the correct normalization that
these fluctuations induce, although given this measure omits
the contribution from off-diagonal terms in the covariance
matrix, i.e. uncertainty correlations, it is only intended to
serve as a rough guide. Nonetheless we can see that in the
δ = 3%, N = (1, 0.97), cases in particular the normalization
shifts are in the majority of cases lower than or comparable to
the average (diagonal) experimental uncertainty, and hence
do not correspond to particularly dramatic shifts in absolute
terms. For the δ = 5% case there are a few more significant
outliers, consistent with the poorer fit quality in this case.

The results are shown in Fig. 19 for a representative selec-
tion of PDFs, namely the u, u, d and d quarks. Clear devi-

ations are observed at the level of the T 2 = 1 uncertain-
ties in all three cases, with the results sometime lying well
away from the baseline (self-consistent) fit. In the right plots
the corresponding PDF uncertainties are given, which again
emphasises the point that, up to minor fluctuations, the PDF
uncertainty is independent of whether the underlying dataset
is self-consistent, or has some tension present in it. For sim-
plicity we do not consider the result of applying a dynamic
tolerance here, but given this roughly coincides with a fixed
T 2 = 10 tolerance, i.e. to a factor of ∼ 3 increase in PDF
uncertainty, it is clear that this would largely resolve any
tensions between these fits and the self-consistent baseline.

In summary, we have considered in this section two differ-
ent closure tests where the pseudodata and the theory used to
perform the fits are by construction not fully consistent, but
where the corresponding fit qualities are nonetheless accept-
able by the standards currently achieved in global PDF fits.
We have shown in all cases that the PDF uncertainty is essen-
tially independent of whether there is self-consistency in the
closure test or not. The net result of this is that if T 2 = 1
uncertainties alone are used, then the corresponding PDF
uncertainties are no longer representative for the case that
the underlying closure test includes inconsistencies in the
data and/or theory. However, if an enlarged tolerance crite-
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Fig. 19 A selection of PDFs at Q2 = 104 GeV2 that results from a
fluctuated closure test fit, using the MSHT20 parameterisation, to the
NNPDF4.0 global dataset. As well as the baseline case, we also show the
results of fits where inconsistencies are included in the global dataset,
on a dataset by dataset basis. In particular, the normalization of each

dataset is fluctuated with a standard deviation given by the parameter
δ and average given by N . The ratio of the PDFs to the baseline are
shown in the left plots, while the corresponding PDF uncertainties are
given in the right plots
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rion is instead applied, such as the dynamic tolerance of the
MSHT collaboration, then the situation is greatly improved
and the PDF uncertainties are much more in line with what
is required. We note that these results are exactly as expected
from the discussion in the previous section. Given we have
already verified the minimal role that parameterisation flexi-
bility plays in the context of the self-consistent closure tests
of Sects. 3.2 and 3, this is clearly a result that would also
apply for other suitably flexible methods of parameterising
the PDFs, such as in the NNPDF approach. Finally, while the
size of the above effects is so large in the chosen examples
that a detailed quantitative analysis is not essential, it would
clearly be useful in future studies to apply a more quantitative
approach, including applying different statistical estimators
and a larger set of fluctuated fits.

5 Full global PDF fits

5.1 Perturbative charm

In the previous sections we have considered pure closure
tests, namely where pseudodata are generated with an input
PDF set, which is then fit with the MSHT20 parameterisation.
We now apply exactly the same approach as in these tests, but
instead fit the real data corresponding to the same NNPDF4.0
dataset; we will refer to these as ‘MSHT fits’ for brevity. To
be precise, we in fact now fix two PDF parameters in order
to improve the stability of the fit in relatively unconstrained
regions. Namely, as in MSHT20 we fix the low x power of the
strangeness to be the same as that of the sea in order to avoid
potentially unphysical behaviour at low x and low Q2 in the
quark flavour decomposition. As we will discuss below, this
is in fact also effectively done by the NNPDF collaboration,
through the T8 integrability that they impose. We also fix
the low x power of the strangeness asymmetry in order to
improve the speed of convergence of the χ2 minimisation,
although in this case this parameter could be left free without
affecting the eventual results of the fit in anything but a very
minor manner.

We recall in particular that both the data in the fit, but also
the theory settings, are completely identical to those used in
the corresponding NNPDF fit. The comparison is therefore
completely like-for-like at the level of the full global PDF
fit, with the only difference being due to the PDF parameter-
isation. Here, as we will discuss, there are various prior (i.e.
non-data) constraints on the PDFs in the NNPDF fit, due to
positivity and integrability as well as the training/validation
split in the minimisation itself. Hence the PDF ‘parameter-
isation’ is understood to denote also those additional con-
straints, and we will consider the impact of them as well in
what follows.

We start by considering the case of a purely perturbatively
generated charm PDF. The first question to explore is how
the fit quality itself compares between the fit with the MSHT
parameterisation and in the NNPDF fit quality. The latter is
as usual given by the value of the fit quality of the central
NNPDF4.0 replica to the data and we have verified that the
results found by taking the public NNPDF4.0 (perturbative
charm) set as an input is consistent with the value quoted
in [14]9.

The χ2 fit qualities are shown in Table 5, for both the
NNPDF4.0 public fit and the default MSHT fit, as well as the
MSHT fit with positivity imposed, as will be described below.
The global fit qualities are given, as well as the fit qualities for
the different major subsets that constitute the global dataset.
Within each subset, the fit quality for the individual experi-
ments in these subsets where the difference with respect to the
NNPDF4.0 case is roughly larger than ±0.5σ = ±√

Npts/2
for either MSHT fit, is shown. When these differences are
less than −0.5σ the result is highlighted in blue, while the
result is highlighted in red when it is greater than 0.5σ . We
note that fit qualities for certain individual datasets (e.g. a
given HERA DIS subset) do not include the contribution
from the correlation of this with other datasets, where rele-
vant, and so are only to be take as a reasonable guide. The χ2

values correspond to those in the t0 definition, which is also
the figure of merit used in the fit itself, in order to avoid the
d’Agostini bias [73]. However for the global fit quality we
also show the experimental definition, for the sake of com-
parison. We note it is the latter definition that is used when fit
qualities are quoted in [14] for the NNPDF results. The χ2

for the experimental definition is somewhat lower than in the
t0 case, consistent with expectations in the simplest examples
when the d’Agostini bias enters. In terms of the comparison
between the different fits, however, the results are qualita-
tively similar irrespective of which definition is used for the
final fit results (although not, we emphasise, necessarily for
the figure of merit used in the fit, for which we only use the
t0 definition).

The first observation is that the global fit quality for the
MSHT fit is significantly better, by just over 190 points in
absolute value, or ∼ 0.04 per point, than in the nominal
NNPDF4.0 fit; for the experimental definition this is slightly
less at ∼ 144 points, but still comparable in size. In terms
of the data subsets, the most significant improvements are in
the fixed-target DIS, HERA DIS and collider DY data, which
improve by ∼ 0.02, 0.04 and 0.12 per point, respectively.
For the fixed-target DY dataset, on the other hand, there is a
moderate deterioration by ∼ 0.06 per point, although the fit
quality remains good in this case. For the fixed-target data,

9 To be precise, the quoted value in [14] of 1.18 per point is incor-
rect [71], and the correct value is instead 1.198 as given in [72] and as
we find in Table 5 below.
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Table 5 χ2 values for the NNPDF4.0 (perturbative charm) fit and the
MSHT fits to the NNPDF dataset/theory settings. The fit quality for the
different major subsets the constitute the global dataset are given in bold,
and above each subtotal the fit qualities for individual experiments in
these subsets where the difference with respect to the NNPDF4.0 cases is
roughly larger than ±0.5σ = ±√

Npts/2 for either MSHT fit is shown.
When these differences are less than −0.5σ the result is highlighted in
blue, while the result is highlighted in red when it is greater than 0.5σ .

Both the absolute χ2 and the per point value in brackets, is given in
all cases, while the number of points is indicated in brackets next to
the dataset description. For the total χ2 both the experimental and t0
definitions are shown, while in all other cases only the latter definition
is used. Results with and without positivity imposed are shown for the
MSHT fit, though we note that the most appropriate comparison with
the NNPDF4.0 result is with this imposed
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there are moderate improvements in the fit quality for the
NMC and BCDMS Neutral Current (NC) data, while there
is a mild deterioration in the case of the NuTeV ν charged
current (CC) data. For the HERA DIS data, there is some
improvement in the NC data at 575 and 920 GeV, in e− p and
e+ p collisions, respectively, with the biggest improvement in
the latter. There is also some improvement in the case of the
bottom quark NC data. For the collider DY data, a significant
improvement is seen across a wide range of datasets (9 in
total), with some deterioration seen in two datasets, namely
the ATLAS 2D DY data at 8 TeV, and the CMS electron
asymmetry at 7 TeV. For the fixed target DY, the deterioration
is driven by the E886 NuSea proton data.

We therefore observe improvements for datasets that are
sensitive to the quark flavour decomposition, as well as struc-
ture function data sensitive to both low and high x . That is,
the improved fit quality occurs in a broad range of datasets
that are sensitive to a broad range of PDF space, and we
will expect this to be reflected in rather different PDF sets
resulting from the fit, as we will confirm below. Before doing
so, we first consider the interpretation of this apparently sur-
prising result. As discussed in e.g. [74] there are reasons to
expect that the fit quality of the central replica set for a given
NNPDF fit will not correspond to an absolute minimum of
the χ2 fit quality. In particular, three potential reasons are
considered in [74] (end of Section 3), and which we consider
here in increasing order of relevance.

Two of these reasons, which are related, refer to the sta-
tistical properties of the PDF replica ensemble itself. These
can be summarised by the statement that the replica ensem-
ble does not have to (and in general will not) be completely
symmetric and Gaussian in χ2 space, in a manner that is
assumed by construction in a Hessian fit. Given this, it is
perfectly possible for the fit quality away from that of the
average central replica, to be better than the central value.
Indeed, it is observed directly that the fit quality for cer-
tain non-central replicas can be better than that of the cen-
tral replica. This improvement is however limited to being
a handful of points in χ2 (see Fig. 3.1 of [74]). Given the
significant level of improvement observed in Fig. 5 and as
we will see the rather large difference then seen at the level
of the PDFs themselves, it seems clear that this is not a rele-
vant factor here. More generally, it is clear that the value of
the central PDF replica, and in particular its corresponding
fit quality to the data in the fit, is a meaningful measure of
the quality of the overall fit, as represented by the replica
ensemble, in matching the data, and indeed it is used in this
manner by the NNPDF collaboration themselves. Therefore,
we should expected any differences due to the above effects
to be minor, and well within PDF uncertainties.

Turning to the potentially more relevant reason, for
NNPDF the fit quality to any given pseudodata replica (and
therefore of the central replica) does not correspond to the

absolute minimum χ2 due to the stopping procedure that is
implemented in order to avoid overfitting. In broad terms, the
data are divided into a training and a validation set, and the
fit is performed to the training dataset alone, with the min-
imisation stopped when the χ2 for the validation data begins
to deteriorate (see [14] for a detailed description of the pre-
cise implementation of this procedure). This is in principle
essential when performing a PDF fit with highly flexible neu-
ral network (the NNPDF default case has 763 free parameters
in total [14]) in order to avoid overfitting, that is fitting the
statistical noise in the data in a manner that does not pro-
duce reliable results; although we note that to some extent
this validation will be automatically achieved by the fact that
the global dataset contains multiple overlapping individual
datasets that constrain similar PDFs in similar x regions.

The default MSHT parameterisation that we use has 52
free parameters, that is over an order of magnitude fewer,
and hence in principle there should be rather limited scope
for any overfitting. We also note that the improvement in
the fit quality occurs across a wide range of datasets, e.g.
in the case of the DY data for various individual datasets,
each of which constrain overlapping regions of PDF param-
eter space. This would arguably to a large extent exclude
overfitting in the sense of fitting noise in any given indi-
vidual dataset(s). Moreover, the fluctuated closure tests in
Sect. 3 are performed with a pseudodataset that is derived
from the same underlying data/theory as enters the fit here.
Here, if the MSHT parameterisation allowed for a significant
degree of overfitting, we might expect to see evidence of this
occurring in the fits to the pseudodata replicas, but this is
not observed, with the corresponding PDF uncertainties that
result being found to be consistent with 68% C.L. expecta-
tions. On first consideration, it therefore appears unlikely that
this issue should be the relevant factor here, in the sense that
the fit with the MSHT parameterisation (for which not train-
ing/validation is performed) might be overfitting. We will
however reconsider this question in more detail in Sect. 6.

However, related to the above point is that there are fur-
ther constraints imposed in the NNPDF fit that effectively
form a prior PDF likelihood, and which we have not so far
accounted for. One aspect of this is PDF integrability, which
relates to the behaviour of the quark flavour decomposition at
low x . This is discussed in Appendix C, and is found to not be
a significant cause of any difference. Another more relevant
factor is that positivity at the level of both certain observ-
ables and the PDFs is imposed by NNPDF, see [75,76] for
the motivation of this. The precise implementation of this
in the NNPDF case is described in detail in Section 3.1.3
of [14]. Positivity is in particular imposed at the level of var-
ious physical observables as well as directly on the PDFs
at Q2 = 5 GeV2 for a fixed grid of 10 x points logarithmi-
cally spaced between 5 · 10−7 and 0.1 and 10 points linearly
spaced between 0.1 and 0.9. Focusing on the PDF positivity
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for concreteness, a χ2 penalty of

�k ·
[
− f (xi , Q

2 = 5 GeV2)
]

(42)

is imposed for each xi point, if the PDF is negative, with
�k = 106 by the end of the fit, and something similar
for the physical observables. A suitable smooth dependence
between this and the positive PDF case is applied, where the
contribution is negligible for positive PDFs, see [14] for more
details.

These positivity requirements are available as part of the
public NNPDF code, and hence we can also apply them to
the fit with the MSHT parameterisation. In practice, given
the lower degree of flexibility of the MSHT parameterisa-
tion, taking �k = 106 is too stringent a requirement, leading
to rather unstable fit results; if e.g. even a single PDF is neg-
ative and O(10−4) in size at the highest xi value of 0.9, this
can begin to overwhelm the fit and the fixed MSHT parame-
terisation may not be sufficiently flexible to avoid this, even
though it is well outside the data region. We therefore take a
value of �k = 103 (for both PDF and physical observables)
in the final fit iteration, though we will monitor the extent to
which any negativity remains after this. As we will see, the
principle effect of imposing positivity, namely on the low x
gluon, is already achieved with such a constraint.

The global fit quality in this case is also shown in Table 5,
and we can see that this is rather higher than the default fit,
but still ∼ 90 points lower than the NNPDF4.0 case. The
remaining positivity penalty (not included in the table value)
is ∼ 5 points in χ2, and is driven by the d PDF being negative
but very small at x = 0.8 and the σDY,dd observable simi-
larly being negative at very forward rapidities. In principle,
it may well be possible to further increase the stringency of
the positivity requirement, but we judge this to be sufficient
for our purposes, not least because the stability of a fixed
parameterisation fit around the χ2 minimum begins to be
called into question when such stringent positivity require-
ments are imposed.

The above results therefore indicate that PDF positivity is
clearly playing some role in determining the eventual result of
the fit. Indeed, if we examine the value of the χ2 penalty that
corresponds to the output of the MSHT fit without positivity
imposed then we find that this is significant, being O(104)

(with �k = 103). By far the largest effect is in the low x
gluon, which is negative at low scales. That this negativity is
preferred by the fit to the data alone has been known for a long
time, see e.g. [33] for some early discussion, and is observed
in the MSHT and MSTW global PDF fits [13,33,46], as well
as in the HERAPDF fit to the HERA DIS data alone [15].
We will discuss in more detail the impact of this negativity
on the data, and the comparison to the fitted charm case, in
the next section.

While this results in no negative observables in the fit
itself, the prediction for the longitudinal structure function
FL will become negative at low enough x and Q2, which
is certainly unphysical. This is however in a region where
the perturbative stability of the prediction is poor, as well
as there being potential sensitivity to higher twist effects;
a full account of low x resummation effects would in par-
ticular be required (see e.g. [33] for some early discussion
and references and more recently [77–79]). Given this, it is
arguably an open question as to whether it is better in a purely
fixed order fit to obtain a negative FL outside the data region,
which would eventually be cured by higher orders/higher
twists and/or low x resummation, or impose positivity on the
gluon and achieve a worse fit quality to the existing DIS data.
Certainly, the positivity arguments presented in [75,76] focus
on the high x region (see also [80] for further relevant discus-
sion), and in particular only apply where there is perturbative
stability in the predicted result.

In any case, the comparison in Fig. 20 (left) makes this
apparently sharp distinction rather less clear. Here we show
the resulting gluon PDFs at Q2 = 5 GeV2, where positivity is
imposed in the NNPDF fit. It is clear that the default NNPDF
result (as well as the MSHT fit with positivity imposed)
remains negative at low x , indeed precisely at x values just
below the lowest x point where positivity is imposed, whereas
when positivity is not imposed it is simply that this occurs
at somewhat higher x . Thus, in either case some amount of
negativity outside the data region appears to be preferred by
the fit.

In the right plot we show the result of performing a fit
directly with the NNPDF framework, that is using the default
NN architecture, but without imposing positivity. This is
produced without further hyperparameter optimisation and
hence the precise result may be treated with caution, though
should be broadly representative. This gives an improvement
in the fit quality of ∼ 100 in the fit quality, corresponding
to a similar level of improvement in the fit quality for the
MSHT (no positivity) fit in comparison to when positivity is
imposed. We can see that this gives a gluon that is negative
at lower x and more in line with the MSHT result.

Returning to Table 5, in terms of the breakdown in the
fit quality, the most significant difference with respect to
the case without positivity imposed is in the fixed-target
and HERA DIS data. In the latter case the difference is as
expected focused on the low x region, and is driven by the
change in the gluon in this region when positivity is imposed.
The fixed-target data on the other hand are not directly sensi-
tive to this low x region, but are indirectly via the momentum
sum rule, and indeed are known to be in some tension with
HERA DIS data due to this, see [13] for a detailed discus-
sion. Imposing positivity would appear to increase this ten-
sion further, resulting in some deterioration in the fit quality
here. There is also some more moderate deterioration in the
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Fig. 20 (Left) The gluon PDFs at Q2 = 5 GeV2 that result from a
global PDF fit to the NNPDF4.0 (perturbative charm) dataset/theory set-
ting, but using the MSHT20 parameterisation. Results with and without
a positivity constraint applied, as described in the text, are shown. PDF
uncertainties for the MSHT fits correspond to a fixed T 2 = 10 tolerance,

and the NNPDF4.0 (perturbative charm) fit to the same dataset/theory
settings is also shown. (Right) A comparison of the NNPDF4.0 (per-
turbative charm) public result to a fit within the NNPDF framework to
the same dataset/theory settings, but without the positivity constraints
imposed

fit quality to various DY datasets, in particular those from
LHCb, which is again consistent with the dominant change
being at low x . However, overall the trend in the MSHT fit
with positivity imposed with respect to the NNPDF4.0 fit is
similar to that observed in the fit without positivity imposed,
with some improvement observed in the description of the
fixed-target DIS, HERA DIS and collider DY data, albeit
somewhat milder, in particular for the fixed-target data, in
comparison to the case without positivity. Most notable is
the improved description of the collider DY data, with the
ATLAS high precision W, Z data [59] still being improved
by ∼ 20 points in χ2 relative to the NNPDF4.0 perturbative
charm fit, which makes up almost half of the improvement
of the collider DY data.

Considering now the impact on the PDFs, these are shown
in Fig. 21. For the MSHT fits we quote the errors with
T 2 = 10, which are representative of the result of apply-
ing the dynamic tolerance criterion. We do not show results
with this applied as in the case where positivity is imposed,
it is not completely clear how to do so consistently, given in
this case the χ2 deterioration away from the best fit value for
some eigenvectors has a major contribution from the positiv-
ity penalty. Indeed, even taking a fixed tolerance, we can see
for the case with positivity imposed that the PDF uncertain-
ties are rather smaller than in the result without positivity,
and can be rather asymmetric10.

10 In fact, given how strict the positivity requirement (42) is we find that
behaviour of the global χ2 around the minimum can be strongly non-
Gaussian, calling into question the applicability of the Hessian approach
to evaluating PDF uncertainties in this case. The PDF uncertainties for
the fit with positivity imposed can therefore only be taken as a rough
guide.

In broad terms, we can see that while there are regions of
agreement between the NNPDF4.0 result and the MSHT fits,
there are also distinct differences. A significant difference
across all PDF sets is at low x , without positivity applied to
the MSHT fit, in which case these lie up ∼ 10 − 20% below
the NNPDF result11. This effect is precisely driven by the
negativity of the low x and Q2 gluon, and the corresponding
reduction this leads to for all of the shown PDF combina-
tions at higher x scale due to evolution. Indeed, if we impose
positivity, the MSHT result lies significantly closer to the
NNPDF result at low x , for all PDFs. For the gluon PDF, this
also improves the agreement in the intermediate x region,
such that the MSHT fit with positivity imposed results in
a rather similar result for the gluon in the data region. The
positivity constraint also has some impact on certain quark
distributions at very high x and lower scales, but these are
not visible on the current plots. In Appendix E.3 we show
the result of performing a fit within the NNPDF approach,
using precisely the same settings as the NNPDF4.0 (perturba-
tive charm) fit, but without the positivity constraints applied,
and this confirms that in this case the NNPDF result at low
x matches that of the MSHT fit (without positivity) more
closely (Fig. 22).

Even after imposing positivity, there remain however sig-
nificant differences in terms of the quark flavour decompo-
sition, which is as we would expect largely insensitive to
the positivity constraint away from the low x region. That
is, while there is broad stability in the overall quark singlet

11 A qualitatively consistent trend is observed in the recent NNPDF
study [81], where a comparison between imposing the positivity con-
straint on the gluon and quark singlet at the default scale Q2 = 5 GeV2

and a lower scale Q2 = 1 GeV2 is presented.
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Fig. 21 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 (perturbative charm) dataset/theory
setting, but using the MSHT20 parameterisation. Results with and with-
out a positivity constraint applied, as described in the text, are shown.

PDF uncertainties for the MSHT fits correspond to a fixed T 2 = 10
evaluation. Results are shown as a ratio to the NNPDF4.0 (perturbative
charm) fit to the same dataset/theory settings
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Fig. 22 The PDF uncertainties at Q2 = 104 GeV2 resulting from a
global PDF fit to the NNPDF4.0 (perturbative charm) dataset/theory
setting, but using the MSHT20 parameterisation. Results without a pos-
itivity constraint applied, as described in the text, are shown. PDF uncer-

tainties for the MSHT fits correspond to dynamic and fixed tolerances
are given as well as the corresponding uncertainty for the NNPDF4.0
(perturbative charm) fit to the same dataset/theory settings
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(and the charge-weighted singlet, not shown), there are non-
negligible deviations in the individual u, d, s quark and anti-
quark distributions. We note that while we show PDF uncer-
tainties on the MSHT results for the sake of comparison,
given the fit quality in the MSHT case is actually better than
that of the NNPDF4.0 fit, the correct assessment of the over-
all consistency of the NNPDF PDFs with the MSHT result is
between the central value of the MSHT and NNPDF PDFs,
within the NNPDF errors. With this in mind, we can see that
the differences are in many cases highly significant, with
the MSHT result (either with or without positivity imposed)
lying several standard deviations outside the NNPDF uncer-
tainty band in many x regions and for many PDFs.

It is unclear why this remaining difference, in either the
fit quality or PDFs, is present once we have accounted for
the differing treatment of PDF positivity, in particular for
the low x gluon. All we can straightforwardly establish is
that the MSHT fit arrives at a somewhat better description
of certain datasets, most notably the LHC DY data, and
that this is achieved by a rather distinct flavour decompo-
sition in the intermediate to high x region to the NNPDF
fit. The further difference at low x is then explained by the
differing treatment of PDF positivity. It is unclear what pre-
cisely in the NNPDF prior (i.e. the specific architecture, train-
ing/validation etc) leads to this, though we will investigate
the question of parameterisation flexibility further in Sect. 6.
However, one potentially relevant observation is that, in [14]
(Fig. 8.6) we can see that qualitatively some of these differ-
ences in the u and d sector follow the difference that comes
from using a flavour rather than an evolution basis, although
the effect we see is clearly larger, and moreover the results
in [14] concern the fitted rather than perturbative charm.

This difference in the absolute values of the PDFs notwith-
standing, it is also interesting to compare the size of the PDF
uncertainties, as in Fig. 4 but now for a fit to the real data
rather than in a closure test, for the MSHT result. The results
are in fact very similar to this case, with the MSHT uncer-
tainties with fixed tolerance being rather close to the uncer-
tainties in the closure test. This is due to the fact that, as
discussed in detail in Sect. 4, the size of the PDF uncertain-
ties is driven by the experimental (or in some recent fits,
theoretical) uncertainties that are propagated through the fit,
and is not determined by any underlying tensions between
the datasets themselves, as will be present in a real fit but
absent in a closure test (although we recall that the larger
T 2 = 10 uncertainty is applied to reflect such tensions).
There are some differences in detail, however, given the fits
are not identical.

In broad terms, we therefore again find that at intermediate
to higher x , for the quark flavour decomposition the NNPDF
uncertainty is very similar in size to (though on average very
slightly larger than) the MSHT fit with T 2 = 1, with the
most notable exception of the gluon and the related quark

singlet, where the NNPDF uncertainty is rather larger, and
somewhere between the T 2 = 1 and T 2 = 10 cases, though
rather lower than the latter. In other words, in many cases the
NNPDF uncertainty is indeed roughly equivalent to taking a
T 2 = 1 tolerance with the MSHT parameterisation in the data
region, in the context of a global PDF fit. This uncertainty
is in particular significantly lower than the result of taking
T 2 = 10, and the dynamic tolerance criterion, which we now
show; the latter is, as claimed, similar in size to the T 2 = 10,
if slightly larger on average.

Finally, a comparison between the MSHT fit, without pos-
itivity, and the MSHT20 [13] result is given in Appendix E.1.
Further discussion is given in the appendix, but here we sim-
ply note that a comparison is presented in Figs 50 and 51
between the default MSHT20 result and the MSHT fit with
a dynamic tolerance, and the cases where a fixed T 2 = 1
tolerance is instead used (in the MSHT20 case this is approx-
imated by dividing the PDF uncertainties by a factor of 3).
These fits differ only in the choice of datasets (and their
treatments), and the underlying theory settings, while the fit-
ting methodology is identical. Therefore, while differences
in the underlying PDFs would be expected, and indeed are
observed, these should remain compatible within them if the
PDF uncertainties are representative. From this comparison,
however, it is clear that there is strong statistical incompatibil-
ity between the two results if the textbook T 2 = 1 criterion
is used. On the other hand, for the dynamic tolerance the
compatibility is greatly improved, with no significant ten-
sion observed; although we note that a full account of the
compatibility of these sets in this case would also require an
evaluation of the correlation between them, which will cer-
tainly be non-zero given the similarly in many of the datasets
in the fits.

5.2 Fitted charm

Having considered a comparison to the NNPDF fit with per-
turbative charm, it is also instructive to account for the pos-
sibility of fitted charm, given this is the default treatment in
the NNPDF fit. Here, the charm quark PDF is freely parame-
terised, rather than being determined from the other QCD
partons via perturbatively calculated matching conditions
(i.e. effectively via perturbative g → cc splittings). As dis-
cussed in [14,72,82], this permits higher-order corrections to
these perturbative matching conditions to be absorbed into
the initial charm PDF, as well as allowing for a possible non-
perturbative ‘intrinsic’ charm component (see also [83,84]
for studies by the CT collaboration and discussion of the def-
inition of intrinsic charm and its process dependence). Pro-
cedurally, our fit works in exactly the same way as before, but
now the input can take an arbitrary set of PDFs defined at a
higher value of Q0 = 1.65 GeV (> mc = 1.51 GeV), rather
than Q0 = 1 GeV, i.e. the PDFs are parameterised at this
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higher scale, but otherwise using the same MSHT20 param-
eterisation as before. The modifications to the DGLAP evo-
lution and the DIS cross section predictions are then consis-
tently and automatically accounted for by the public NNPDF
code, such that the PDF fit can be performed in a completely
analogous manner to the previous case.

The charm PDF is therefore now freely parameterised
at this scale, rather than being determined perturbatively in
terms of the other PDFs. We do this by assuming that c = c
for simplicity at input (see [85] for a study where this con-
straint is not imposed), while for c+ = c + c we take the
standard 6 Chebyshev parameterisation:

xc+(x, Q0) = Ac+x
δc+ (1−x)ηc+

(

1 +
6∑

i=1

ac,i Ti (y(x))

)

.

(43)

This therefore represents the first PDF fit with fitted (i.e.
freely parameterised) charm outside of a neural network
approach to PDF parameterisation.

Starting with the fit qualities, these are shown in Table 6.
We can see that the MSHT fit is again better than the NNPDF
result, but by rather less ∼ 50 points, rather than the ∼ 190
points in the cases of the perturbative charm in Table 5.
Nonetheless, this is a non-negligible improvement in fit qual-
ity. Looking at the breakdown between different data subsets,
the only particularly significant changes are now limited to
the HERA DIS and collider DY data, both of which show
moderate improvements. The difference in the latter case
in particular indicates that again the quark flavour decom-
position will play a role here. For the fixed-target data, the
fit quality is on average relatively stable even if, for certain
individual datasets there are reasonable improvements and
deteriorations in the fit quality.

Interestingly, the role of positivity is now found to be
almost negligible. The penalty (42) that results from the fit
with no positivity imposed is only ∼ 20 (with �k = 103),
due to the d being slightly negative at high x , and Fc

2 being
slightly negative at x ∼ 0.1. After imposing positivity, these
no longer occur, at the expense of a slightly worse fit qual-
ity, which remains improved with respect to the NNPDF4.0
result. The changes with respect to the case where positiv-
ity is not imposed are divided relatively evenly between the
different data subsets, with the fit quality improving in some
cases and deteriorating in others, in all cases by a handful of
points in χ2.

Turning now to the PDF comparison, this is shown in
Fig. 23 for the case ofT 2 = 1 uncertainties, which we show in
order to demonstrate more clearly the difference with respect
to the NNPDF case. We recall that, given the fit quality in the
MSHT cases is actually better than that of the NNPDF4.0 fit,
the more appropriate assessment of the overall consistency

of the NNPDF result with the MSHT case is between the
central value of the MSHT and NNPDF PDFs, within the
NNPDF errors. The first observation is that, in comparison
to the perturbative charm case shown in Fig. 21, the agree-
ment between the MSHT fit and the NNPDF result is greatly
improved, but that nonetheless some significant differences
with respect to the NNPDF uncertainty remain. For certain
PDFs, such as the gluon and up quark, there is near complete
consistency, and indeed the most important areas of disagree-
ment relate to the quark flavour decomposition, as we might
expect given the discussion of the fit quality. For e.g. the u,
d and strangeness in certain x regions, the PDFs from the
MSHT fit remain several standard deviations away from the
NNPDF case, with respect to the NNPDF uncertainties.

The difference between the cases with and without posi-
tivity imposed is also rather small, as we would expect given
the small difference in fit qualities seen in Table 6. Of partic-
ular note is the behaviour at low x , for which we do not see
any significant deviation between the two cases, with no trend
for the PDFs without positivity imposed to lie below those
with positivity imposed, as was the case for the perturbative
charm fit shown in Fig. 21; we will return to this issue below.
Indeed, more generally the two sets of PDFs are completely
compatible even within the reduced T 2 = 1 uncertainties.
The charm quark at x ∼ 0.1 is observed to be somewhat
higher when positivity is imposed, as a result of the Fc

2 posi-
tivity constraint in this region. In Appendix E.3 we show the
result of performing a fit within the NNPDF approach, using
precisely the same settings as the NNPDF4.0 fit, but without
the positivity constraints applied, and find trends consistent
with this, namely limited changes in the PDFs in general and
an increase in the charm quark around x ∼ 0.1, again to avoid
the negativity of the charm structure function in this region
at Q2 = 5 GeV2. We note that this will have an impact on
any interpretation of these results in terms of the statistical
significance of any (positive) intrinsic charm in the high x
region. This is arguably problematic, given one would expect
the significance of any preference from the data for such a
positive intrinsic charm component to be independent of such
a positivity requirement via a hypothetical Fc

2 observable.
Turning to the uncertainties, these are shown in Fig. 24,

and we can see that once again the NNPDF uncertainties are
broadly of order (though on average very slightly larger than)
the T 2 = 1 ones, with the main exception of the gluon and
quark singlet. However, interestingly here the gluon uncer-
tainty is somewhat closer to (though still somewhat larger
than) the T 2 = 1 uncertainty than in the perturbative charm
case.

We next return to the question of PDF positivity, in par-
ticular of the gluon at low x , and the observed differences
between the perturbative and fitted charm cases. First, to
highlight the difference with respect to the perturbative charm
case, we show the gluon at Q2 = 5 GeV2 in Fig. 25 for the
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Table 6 χ2 values for the
NNPDF4.0 fit and the MSHT
fits to the NNPDF dataset/theory
settings, with fitted charm. The
fit quality for the different major
subsets the constitute the global
dataset are given in bold, and
above each subtotal the fit
qualities for individual
experiments in these subsets
where the difference with
respect to the NNPDF4.0 cases
is roughly larger than
±0.5σ = ±√

Npts/2 for either
MSHT fit is shown. When these
differences are less than −0.5σ

the result is highlighted in blue,
while the result is highlighted in
red when it is greater than 0.5σ .
Both the absolute χ2 and the per
point value in brackets, is given
in all cases, while the number of
points is indicated in brackets
next to the dataset description.
For the total χ2 both the
experimental and t0 definitions
are shown, while in all other
cases only the latter definition is
used. Results with and without
positivity imposed are shown for
the MSHT fit, though we note
that the most appropriate
comparison with the NNPDF4.0
result is with this imposed

NNPDF4.0 set as well as the MSHT fits. We can see that
the NNPDF4.0 result now falls much more gently at low x
in comparison to the perturbative charm case, with only a
mild tendency to be slightly negative at very low x ∼ 10−8

values. The central value of the MSHT fit without positivity
imposed is on the other hand in fact increasing at low x , with
no negativity occurring at all, although within the extremely
large PDF uncertainties in this region that do allow for nega-
tive values. When positivity is imposed, the negative region
of the PDF uncertainty band is excluded, and the result lies
much closer to the NNPDF case. We recall however that the
size of the PDF uncertainties in the Hessian approach when
positivity is imposed cannot be interpreted too literally, given
the lack of Gaussian behaviour around the χ2 minimum this
results in. We also find that if a somewhat different param-
eterisation of the gluon is taken, as in the form of (43) than
the behaviour of the low x gluon without positivity imposed
lies rather closer to the NNPDF result, i.e. without a trend to
increase at low x . It is equally true if we perform a fit within
the NNPDF framework, but remove positivity, that the result
lies close to the default result, as shown in the right plot.
Therefore, in summary it is clear that there is no compara-
ble trend for the low x gluon to prefer to be negative at low

scales that occurs in the perturbative charm fit, either with
the NNPDF4.0 or the MSHT parameterisation.

To shed light on the question of why this trend is so
different between the fitted and perturbative charm cases,
in Fig. 26 we show the resulting gluon PDFs at low scale
Q = 1.65 GeV (i.e. the input scale for the fitted charm case)
for the fitted charm case, with positivity imposed, as well
as the perturbative charm case with and without positivity
imposed. In the left plots the MSHT fits are shown, while in
the right the NNPDF fits; we show both to demonstrate that
the impacts on the gluon of these choices is rather similar
between the two fits. In the latter case the perturbative charm
fit without positivity imposed comes from performing a fit
directly with the NNPDF public code, while the other two
results simply correspond to the relevant public releases. For
the perturbative charm fit, the negativity of the low x and
Q2 gluon occurs in a region of x that is largely outside the
data region, but is seen to allow for a somewhat larger gluon
around x ∼ 10−2, due to the small (at Q2 = 5, per mille
level) negative contribution to the momentum sum rule this
provides at low scales. Both this effect, and more directly
the impact of the reduced gluon at lower x on the relevant
DIS cross sections are observed to match the HERA DIS
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Fig. 23 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 dataset/theory (fitted charm) setting,
but using the MSHT20 parameterisation. Results with and without a
positivity constraint applied, as described in the text, are shown. PDF

uncertainties for the MSHT fits correspond to a fixed T 2 = 1 toler-
ance. Results are shown as a ratio to the NNPDF4.0 fit to the same
dataset/theory settings
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Fig. 24 The PDF uncertainties at Q2 = 104 GeV2 resulting from
a global PDF fit to the NNPDF4.0 dataset/theory setting (with fitted
charm), but using the MSHT20 parameterisation. Results without a pos-
itivity constraint applied, as described in the text, are shown. PDF uncer-

tainties for the MSHT fits correspond to dynamic and fixed tolerances
are given as well as the corresponding uncertainty for the NNPDF4.0
fit to the same dataset/theory settings
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Fig. 25 The gluon PDF at Q2 = 5 GeV2 that results from a global PDF
fit to the NNPDF4.0 (fitted charm) dataset/theory setting, but using the
MSHT20 parameterisation. Results with and without a positivity con-
straint applied, as described in the text, are shown. PDF uncertainties
for the MSHT fits correspond to a fixed T 2 = 10 tolerance, and the

NNPDF4.0 fit to the same dataset/theory settings is also shown. (Right)
A comparison of the NNPDF4.0 public result to a fit within the NNPDF
framework to the same dataset/theory settings, but without the positivity
constraints imposed

better, namely by providing a reduction in the NC cross sec-
tion at up to x ∼ 10−4 and an increase at up to x ∼ 10−3.
Imposing positivity, on the other hand, leads to a lower gluon
around x ∼ 10−2, but also somewhat unexpected behaviour
at lower x , with a larger gluon (which as we have seen in
Fig. 20 becomes negative at low enough x) in comparison
to the fitted charm case. In terms of the comparison between
the MSHT and NNPDF fits, it is clear that the trends of the
three fit results are rather similar, indicating that parameter-
isation is not playing a significant role in generating these
differences.

For the fitted charm result, a rather similar increase in the
gluon around x ∼ 10−2 and at Q = 1.65 GeV is observed
with respect to the perturbative charm case with positiv-
ity imposed. However here, as seen by comparing Figs. 20
and 25, there is a much milder trend for the gluon to be nega-
tive at low x , although it it still decreasing in a manner that is
distinct from the quark sector. Instead, it is now the freedom
for the charm PDF to be fitted that allows the DIS data as
well as other data sensitive to the quark flavour decomposi-
tion, most notably LHC DY measurements, to be fit well but
with a reduction in the overall momentum fraction carried by
the down-type d and s quarks/antiquarks. This can be seen in
Appendix E.2, Fig. 52 where a comparison of the MSHT fit-
ted and perturbative charm fits is shown. The strangeness dis-
tribution, in particular, is suppressed in the fitted charm case
(as is also observed in the NNPDF fits [14]). This results in
an overall reduction in the momentum fraction carried by the
quark sector (despite the fact that the charm quark momen-
tum fraction is increased in the fitted charm case), and hence
allows the gluon to be increased in this region. Indeed, also
at rather higher x � 0.05, in the fitted charm case the gluon

momentum fraction is increased, which may explain why the
LHC jet data are somewhat better described in this fit, see
Appendix D for a detailed set of comparisons, in both the
MSHT and baseline NNPDF fits.

Thus the freedom allowed by fitting the charm PDF allows
for a modification in the quark flavour decomposition with
respect to the perturbative charm case that permits a some-
what larger momentum fraction carried by the gluon, as is
preferred by the data in the fit. In Fig. 27 we show the result-
ing charm PDF at Q = 1.65 GeV, for both the MSHT and
baseline NNPDF fits. We also show for comparison the result
of the perturbative charm fits, at the same scale. While in both
cases there is a peak towards the high x � 0.1 region, it is
clear that the modification of the charm quark with respect to
the perturbative charm case is not limited to this region. The
trend for the fitted charm quark at low x to be significantly
larger than the (negative) perturbative charm case (which is
a consequence of the to matching conditions) is driven by
the fit to the HERA charm structure function data, which at
low x tends to lie above the result of the purely perturba-
tive charm fits (both MSHT and NNPDF). A reduction in the
fitted charm is also preferred in the x ∼ 0.01 − 0.1 region
(albeit within the T 2 = 10 MSHT uncertainties) which is
again driven by the details of the fit to the HERA charm
structure function data and also likely driven to some extent
by the fit to LHC DY data. We note this reduction indicates
that there will be a negative intrinsic, or more precisely fitted,
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Fig. 26 (Left) The gluon PDF at Q = 1.65 GeV that results from a
global PDF fit to the NNPDF4.0 dataset/theory setting, with fitted and
perturbative charm, and using the MSHT20 parameterisation. MSHT

PDF uncertainties correspond to a fixed T 2 = 10 tolerance. (Right)
The gluon PDF at Q = 1.65 GeV for the NNPDF4.0 fits, with fitted
and perturbative charm

Fig. 27 (Left) The charm quark PDF at Q = 1.65 GeV that results
from a global PDF fit to the NNPDF4.0 dataset/theory setting, with fit-
ted and perturbative charm, and using the MSHT20 parameterisation.

MSHT PDF uncertainties correspond to a fixed T 2 = 10 tolerance.
(Right) The charm quark PDFs at Q = 1.65 GeV for the NNPDF4.0
fits, with fitted and perturbative charm

charm contribution in this region12, as is observed in [72]13.
Similarly, the enhancement at low x will correspond to a sig-
nificant positive intrinsic charm component, which is incon-
sistent with the valence-like models that are commonly used
for this, see [72,87]. Note that this significant component of
fitted charm at very low x , as well as the relative decrease
compared to perturbative charm near x = 0.01, could well
be mimicking the effect of missing higher orders/small-x
resummation, which are not known very precisely for heavy

12 This provides a good but not exact indication as the perturbative
charm distribution corresponds to the result of a different fit; to be
precise we must evaluate the charm quark PDF in the 3-flavour scheme
of the same set, as described in [72].
13 We note that the negativity of the intrinsic charm component around
x ∼ 0.01 − 0.1 becomes less statistically significant once MHOUs
are included at NNLO, but is found to be statistically significant at
approximation N3LO in the most recent NNPDF analysis [23].

flavours for Q2 in the region of the heavy quark mass. Note,
however, that a correction to the prediction for HERA charm
structure function data can just as easily come from missing
higher order corrections to the hard cross section as from the
matching conditions for the charm PDF.

In terms of the MSHT fit to the charm PDF, it is not the aim
here to present a precise analysis of its implications for the
intrinsic charm content of the proton. However, here we make
a few observations. First, we can see in Fig. 27 that the MSHT
fit qualitatively matches the behaviour of the NNPDF results
in terms of the difference between the perturbative and fitted
charm. That is, at low x the fitted charm exceeds the pertur-
bative significantly (albeit increasing rather more steeply at
low x in comparison to the NNPDF result), at intermediate x
it lies below it, and at high x there is a distinct peak structure.
It is interesting to observe that in the intermediate x region,
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Fig. 28 The charm quark PDF at Q = 1.65 GeV that results from
a global PDF fit to the NNPDF4.0 dataset/theory setting, with fitted
and perturbative charm, and using the MSHT20 parameterisation. The
MSHT fit with fitted charm and the dynamic tolerance criterium applied
for the PDF uncertainty is shown

the MSHT fitted charm qualitatively tracks the peaked shape
of the perturbatively generated charm (within large uncer-
tainties) in a manner that is not seen in the NNPDF fit.

In Fig. 28 we focus on the high x region, where we
show the fitted charm quark PDF at Q = 1.65 GeV, for the
NNPDF4.0 default result and the MSHT fit, with fitted and
perturbative charm. The MSHT fitted charm result does not
have positivity imposed and the dynamic tolerance criterion
is applied. To give an estimate of the implications of this for
the intrinsic charm content of the proton, we simply observe
that at higher x the perturbative charm PDF is very close to
zero, and hence to good approximation we can simply iden-
tify the deviation from zero of the fitted charm PDF as the
statistical significance for intrinsic charm. While the result
without positivity imposed will correspond in some cases to
Fc

2 cross sections at Q2 = 5 GeV2 that are negative, in par-
ticular at the lower end of the uncertainty band, these will
occur by construction in regions where the intrinsic charm
is negative. Hence we are free to use this result as a suitable
evaluation of the statistical significance of positive intrinsic
charm at high x , as dictated by the fit to the data alone (recall-
ing also that no other PDFs exhibit significant negativity in
this fit), bearing in mind that some of the lower region of
the uncertainty band should in principle be excluded by the
additional constraint of positivity. Indeed, arguably from the
point of view of evaluating the statistical significance of any
positive intrinsic charm this is the more appropriate approach
to take; certainly if this is modified significantly by directly
imposing positivity of Fc

2 at the level of the fit then this would
indicate some caution is needed in the interpretation. With
this in mind, it seems clear that the significance of intrin-
sic charm would be less in the MSHT fits, which given the
observations above about the in general larger uncertainties

implied by the MSHT tolerance, is not surprising (a similar
conclusion is arrived at in [84] for related reasons). On the
other hand, if positivity is imposed as in Fig. 27 this sig-
nificance becomes somewhat larger, if still less than that of
NNPDF, though here we recall that the PDF uncertainties in
the Hessian approach should be treated with caution, given
the breakdown in Gaussian behaviour that occurs around the
minimum when positivity is imposed.

6 The role of parameterisation flexibility

It has been observed in the previous sections, see in particular
Tables 5 and 6, that the fits to exactly the same dataset and
theory setting as in the NNPDF4.0 case, but applying the
fixed MSHT20 parameterisation, in fact have a better global
fit quality to the data entering the fit. In the perturbative charm
fit, this is in part explained by the impact of positivity, while
the impact of integrability constraints have been assessed in
Appendix C and found to be small. Accounting for these,
there remains a improvement of ∼ 90 (40) point in χ2 in
the perturbative (fitted) charm cases, i.e. ∼ 0.02 (0.01) per
point. More significantly, these result in PDFs that, as seen
in Figs. 21 and 23, in many cases lie outside the quoted PDF
uncertainty bands for the NNPDF fits.

The remaining most obvious source of difference in the
fit methodologies then relates to the question of overfitting,
namely that in the NN approach the data are divided into
training and validation sets, and the χ2 for the validation sets
(which are not fit to) is monitored in order to avoid fitting
noise in the data with the very flexible input NN. Indeed, it
is argued in [74] that overfitting is the cause of the improved
fit qualities observed in [88] when suitable linear combina-
tion of the NNPDF4.0 replicas are form via the so-called
‘hopscotch’ scans, although this is not demonstrated with
certainty.

In the current case the default MSHT parameterisation has
52 free parameters and so on the face of it appears unlikely
that this would result in a significant degree of overfitting,
but certainly this is a question that is worth exploring further.
To examine this, in this section we present the result of a
number of closure test and real fits with modified MSHT
parameterisation containing both more and fewer Chebyshev
polynomials, and examine the sensitivity of the results to
these. In particular, we recall the basic form of the MSHT
parameterisation:

x f (x, Q0) = Axδ(1 − x)η
(

1 +
n∑

i=1

ai Ti (y(x))

)

, (44)

for which we have n = 6 by default for all distributions other
than the gluon, for which a differing parameterisation is by
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default taken as in (4), and the s−, which is more restricted. A
straightforward check is then to repeat our analysis, but with
n set to less or greater than 6. In the cases of the gluon we
will instead change the number of Chebyshev polynomials
in the first term in (4) (i.e. away from the default of 4), while
we do not modify the s−, for simplicity.

We start by repeating exactly the same unfluctuated clo-
sure test described in Sect. 3.2, but now restricting the MSHT
parameterisation to have n = 2, 4 (i.e. for the gluon n = 0, 2
in the first term). While the default n = 6 parameterisa-
tion has 52 free parameters in the current closure tests, this
restricts the number of free parameters to be 28 40, respec-
tively. We note it is quite common in the literature for fits
with similar number of free parameters to be performed: for
example, the latest global CT18 fit [12] has 29 free parame-
ters, i.e. very similar to the n = 2 case here, though we note
the parameterisation basis itself is different14. In the case
of the HERAPDF2.0 [15] set there are 14 free parameters,
ABMP16 [16] has 25, while for the ATLASpdf21 set [17] has
21, and so these are significantly fewer than even the n = 2
case, although these are of course not all global PDF fits.
It is also common practice in a range of LHC experimental
analyses to assess the impact of a given new dataset on PDFs
via a parameterisation that is identical or very close to the
HERAPDF2.0 case.

In terms of the fit quality, we recall that we find χ2 = 2.4
for the 4627 points for the default n = 6 case. For the n = 2
and 4 Chebyshev fits the results are as expected worse, with
χ2 = 103.8 and 69.0, respectively, that is 0.022 and 0.015
per point, as opposed to 0.0005 in the default case. These
deteriorations are relatively significant, and certainly larger
than the difference in the number of free parameters, which
is 12 (24) fewer in the n = 4 (2) case. The results for the
PDFs are given in Fig. 29, which shows the same ratio of the
NNPDF4.0 (pch) input to the default MSHT fit as in Fig. 3,
but in addition the ratio of the input set to the n = 2, 4
Chebyshev fits. The T 2 = 1 and 10 uncertainties for the
default fit are given, for comparison. We also consider the
case of extending the MSHT parameterisation to have n = 7
and 8, i.e. 64 and 76 free parameters, respectively. The fit
quality is only observed to improve marginally, with χ2 =
2.3 and 2.1, respectively, while the impact on the matching
between the input and fits is similarly mild, and is not shown
here for brevity.

We can clearly see that the precision with which the
n = 2, 4 fits match the input set is significantly worse than
in the default case. For the n = 4 fit, while there are regions
of good agreement, e.g. for the gluon at intermediate x , in

14 Note also that the 29 parameters have been chosen as representative
after an investigation of fit quality obtained from a range of about 250
fits with different bases, and a sometimes larger, i.e. 35-40, number of
free parameters.

general the agreement between the input and the fit is only
towards the edge of the T 2 = 1 uncertainty bands, and some-
times (notably at lower x) outside it. For the n = 2 fit the
agreement is as expected worse again, and in some cases
even at the level or outside of the T 2 = 10 uncertainty bands,
notably for the gluon and strangeness, but also for other dis-
tributions. It is therefore clear that these parameterisations
do not have sufficient flexibility to match the input set at the
level of precision corresponding to the T 2 = 1 PDF uncer-
tainty. Given this uncertainty is representative of the overall
experimental precision in current state-of-the art global PDF
fits, we can therefore also conclude that these more limited
parameterisations are insufficient to match this. The n = 5
case is not shown for clarity, but we note that this in rather
better agreement with the input than the n = 4 case, as we
would expect, but that the matching is still rather less good
than the default n = 6 fit in certain regions.

In this closure test setting the T 2 = 1 uncertainties are
therefore not faithful representations of the PDF uncertain-
ties for these restricted n = 2, 4 fits, in the sense that if a
fluctuated closure test were performed we would not expect
the fit to agree with the input within these uncertainties at
68% confidence. These results then indicate that an enlarged
tolerance would certainly be required here, and by extension
in a real PDF fit, due to parameterisation inflexibility alone,
in a manner that is not apparent for the more flexible default
MSHT parameterisation. For the n = 2 parameterisation, it is
even the case in some regions that the enlarged T 2 = 10 tol-
erance would not be sufficient, given the agreement between
the input set and fit can be at the edge of or even beyond these
uncertainties.

As described above, in the CT18 analysis [12], in the
default parameterisation there are 29 free parameters, in line
with the n = 2 case, albeit with a different underlying param-
eterisation. The above results therefore indicates that this
number of free parameters would be insufficient to provide
a faithful representation of a global fit of the sort performed
by CT18. Indeed, this point is acknowledged in this analysis,
where an enlarged uncertainty band is formed by performing
multiple fits with differing forms of the parameterisation,
and numbers of free parameters (in some cases more than
29) and ensuring that the nominal PDF uncertainty covers
these. However, as the above results show, the n = 2 MSHT
fit would result in a significant loss of accuracy at the level
of this closure test and hence we would expect at the level
of a genuine fit. Enlarging the PDF uncertainties to account
for this loss of accuracy may in the end ensure that the PDF
uncertainty is representative, but only at the cost of an unnec-
essary loss of precision that could be avoid by taking a more
flexible parameterisation.

In [12] it is argued that increasing the number of free
parameters beyond ∼ 29 would result in overfitting of sta-
tistical noise in the data, and destabilisation of the fits. We
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Fig. 29 As in Fig. 3 but also showing the ratio of the NNPDF4.0 (perturbative charm) input to the fit result with the number of Chebyshev
polynomials fixed to 2 and 4 (i.e. reduced by 4 and 2, respectively, for each PDF in comparison to the default)
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Table 7 Fit qualities for a range of MSHT fits to the NNPDF
dataset/theory settings, with perturbative charm. The value of n indi-
cates the number of Chebyshev polynomials used in the parameterisa-
tion of each parton set, as described in the text, with n = 6 being the
default MSHT20 parameterisation, with 52 free parameters. The rela-

tive number of free parameters is then given by the change in n with
respect to this, multiplied by 6. The absolute global χ2 for the default
case (which is the same as in Table 5) is given, while the change in χ2

with respect to this is given in all other cases. All results correspond to
the t0 definition

n = 2 n = 3 n = 4 n = 5 n = 6 (default) n = 7 n = 8

+215.9 (0.047) +147.5 (0.032) +128.3 (0.028) +71.1 (0.015) 5736.7 (1.240) − 4.3 (0.0009) − 7.2 (0.0016)

will discuss this further below, but note here that while in
the context of the unfluctuated global fit overfitting is by
construction less of an issue, the fact that the n = 2 (and
n = 4) fits provide a rather poor description of the input set
at the level of the T 2 = 1 uncertainties (which are due to the
experimental errors on the data) would indicate that overfit-
ting is unlikely to occur at this point, at least in the context of
the MSHT parameterisation. That is, overfitting would only
be expected to occur in the case of a parameterisation that
has sufficient flexibility to provide a good description of the
underlying data, and this is not seen to be the case for the
n = 2, 4 fits. As further evidence for this point in the case of
the default n = 6 fit, we recall that we do also perform fluc-
tuated closure tests in Sect. 3, where overfitting could occur
more readily, and find no evidence that the PDF uncertain-
ties are not faithful, as would be expected to occur if there a
significant amount of overfitting occurring to the fluctuated
pseudodata replicas15.

We next turn to the impact of modifying the number of
free parameters on the full global fit, starting with the per-
turbative charm case. In Table 7 we show the impact on the
fit quality of reducing the number of free parameters, now
with n = 2 to 5 (i.e. 28 to 46 free parameters), and also of
increasing them, with n = 7, 8 (i.e. 58 to 64 free parameters).
A clear trend for an increase in the χ2 as we decrease n is
observed, as we would expect, and indeed the deterioration
is larger than in the closure test: the χ2 increases by a factor
of ∼ 2 more for the n = 2, 4 cases considered there. This is
perfectly possible, as the underlying best fit distribution will
be different in the baseline n = 6 case, and bearing in mind
the fact that the pseudodata in the closure test case are not
fluctuated. Moreover, the underlying nature of the real data
in the fit, with the known departures from statistical consis-

15 We note that evidence for overfitting is found in [30], see Fig. 4,
when the number of free parameters extends beyond ∼ 30. This is
however to the CT14HERA2 dataset, for which the precision and extent
of data entering the fit is more in line with the older MMHT14 fit [46],
where indeed fewer free PDF parameters, 37 rather than the 52 used
in MSHT20, are required. In addition the fit is performed at NLO,
which to some extent is expected to be less stable than a NNLO fit. A
parameterisation in terms of Chebyshev polynomials is also not used,
which we recall is motivated in part by the avoidance of overfitting.
There are therefore various potential reasons for this apparently different
result, though a detailed analysis of this would be useful in future work.

tency between data and theory, and between datasets may be
more sensitive to parameterisation inflexibility.

On the other hand, when the number of free parameters is
increased we actually observe a relatively limited improve-
ment in the fit quality. Some caution may be needed in the
interpretation of these n = 7, 8 results, however as given
the increasing number of free parameters the possibility that
e.g. a saddle point, rather than the true global minimum of
the χ2, has been found in the minimisation becomes more
likely. Therefore it is possible that some further improvement
in the fit quality may be achievable here, although clearly no
trend for any significant further improvement is seen.

We recall that in the MSHT20 analysis [13], the impact
of increasing the number of free parameters from 36 (cor-
responding to the MMHT14 parameterisation16) to 52, i.e.
by 16 was found to improve the fit quality by ∼ 73 points.
Given the 36 free parameter case lies in terms of the number
of free parameters between the n = 3 and 4 fits in Table 7,
this is a somewhat milder, but qualitatively similar change;
given the underlying fits are rather different, this is perfectly
consistent.

The impact on the PDFs are shown in Figs. 30 and 31,
which give the ratio of the n = 2, 4, 5 and n = 7, 8 fits,
respectively, to the baseline at Q2 = 104 GeV2 (with T 2 =
10 uncertainties given) for a range of PDFs. Only the central
values are given for the fits with n 	= 6, but we note that
there is a moderate but non-negligible trend observed for a
reduction in PDF uncertainty with reducing n, such that in
the n = 2 case these are in many regions a factor of ∼ 1.5−2
smaller. This point will be relevant when considering other
public PDF fits with more restricted parameterisations.

Starting with Fig. 30, we can see a clear trend for the
n = 2 fit but also the n = 4 to disagree with the baseline
result at a level that is comparable to and often even larger
than the quoted T 2 = 10 uncertainties. Indeed, this level of
disagreement is greater than that observed in the case of a
closure test as shown in Fig. 29 for the n = 2 fit, consistent
with the larger deterioration in fit quality observed. This dif-
ference is somewhat larger in the case of the quark flavour

16 In [46] this is described as being 37, but in this definition the low x
power of the strangeness asymmetry is considered to be free, when it is
in fact fixed to a sensible value, as is done here. Accordingly, labelling
this as a fixed parameter the number of free parameters is 36.
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Fig. 30 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 dataset/theory (perturbative charm)
setting, but using the MSHT20 parameterisation. The default result,
and fits with the number of Chebyshev polynomials fixed to 2, 4 and 5

(i.e. decreased by 4, 2 and 1, respectively, for each PDF in comparison
to the default) are shown. Results are shown as a ratio to the default fit,
with T=2 = 10 uncertainties indicated
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Fig. 31 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 dataset/theory (perturbative charm)
setting, but using the MSHT20 parameterisation. The default result,
and fits with the number of Chebyshev polynomials fixed to 7 and 8

(i.e. increased by 1, and 2, respectively, for each PDF in comparison to
the default) are shown. Results are shown as a ratio to the default fit,
with T=2 = 10 uncertainties indicated
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decomposition, though is also non-negligible for the gluon
and quark singlet in the n = 2 case in particular. It is there-
fore clear that these fits are not compatible with the baseline,
even within the T 2 = 10 uncertainties of this fit, and this
strongly suggests that performing fits with such a restricted
number of parameters will lead to unrepresentative results.

For the n = 5 case the agreement with the baseline result
is significantly better, although far from perfect in some
regions. Therefore we can see that there is some trend towards
stability as we increase n, with the n = 5 case providing a
better but imperfect representation of the baseline. Related to
this, and turning now to Fig. 31, we can see that the impact of
increasingn further to 7 and 8 is in general very limited. There
are some PDFs where the change as n is increased is more
visible, most notably for the strangeness and d, although
these changes are always within the T 2 = 10 uncertainties.
Broadly then we can see an encouraging degree of stability,
with limited changes in the PDFs as n is increased above
the baseline value of 6, but on the other hand a more sig-
nificant effect if n is reduced. The choice of n = 6 for the
MSHT20 fit [13] was motivated by the original study of [40]
and in particular the observation that this choice allows a fit
with sub-percent level precision, it being expected that this
would be required by the increasingly high precision LHC
data now entering the fit. Our results here clearly support this
expectation quantitatively.

Having discussed the overall trend with changing n, it is
interesting to consider these results in light of the original
comparison in Sect. 5.1 to the NNPDF4.0 fit. From Table 5
we can see that once positivity is imposed the fit quality
remains ∼ 90 points better for the baseline MSHT fit, while
we can see in Table 7 that a similar level of difference is seen
between the MSHT fits with n = 4, 5 and the baseline case.
It is therefore interesting to compare directly the resulting
PDFs to the NNPDF4.0 set. This is shown in Fig. 32 where we
compare the n = 4 fit, with positivity now imposed in order
to be consistent with the NNPDF4.0 fit, to the NNPDF4.0
(perturbative charm) result, as well as the baseline MSHT
fit, again with positivity imposed. Rather strikingly, we can
see that the MSHT fit with n = 4 is in significantly better
agreement with the NNPDF4.0 fit. This result, along with the
comparison of the fit qualities, is therefore suggestive that
the NNPDF case may be characterised by a lower degree of
variation or flexibility than the baseline MSHT set, and be
more in line with the n = 4 case; we will return to this issue
later in the section. In terms of the fit quality, once positivity
is imposed the n = 4 result is actually ∼ 100 worse than the
NNPDF result, but this deterioration is arguably indicative of
the difficulty the rather less flexible parameterisation has in
satisfying such stringent positivity requirement on the PDFs
at rather high x , in this case the d .

We do not present a detailed analysis of the fitted charm
case here for brevity, but in Fig. 33 we show the same com-

parison as in Fig. 32 but for the fitted charm case, and in this
cases without positivity imposed. The impact on the fit qual-
ity is to give a deterioration of ∼ 54 points (i.e. very closely
in line with the NNPDF4.0 fit quality), which is rather less
than is observed in the perturbative charm fit, see Table 7.
This is most likely in part driven by the fact that the number
of free parameters in the baseline fitted charm case is higher,
due to the treatment of the charm, with 61 rather than 52 free
parameters. Hence the n = 4 case has 49 free parameters
in total, which may be still be sufficient to provide a rea-
sonable description of the data. This effect is also observed
in the PDFs, for which the change is rather more moderate.
There is arguable some tendency though for the u, d and s
(s) quarks to lie closer to the NNPDF4.0 case, but this is less
clear for the u and d. A rather lower charm quark at high
x appears also to be preferred, though here the role of Fc

2
charm positivity is most significant.

We note that, for the reasons described above we do not
consider increasing the value of n to 7 and/or 8, as was inves-
tigated in the perturbative charm case, as at that this point the
overall stability of the fit may become unclear. Similarly, we
in fact find that for the reduced n = 2 fit the charm parame-
terisation is not sufficiently flexible to give a suitable descrip-
tion of the fitted charm, with the resulting fit becoming rather
unstable in order to compensate for this. We therefore do not
show any results in this case either.

We also note that in [39] two measures of overfitting
are discussed, namely the Akaike information criterion
(AIC) [89] and Bayesian information criterion (BIC) [90],
whereby the improvement in fit quality with an increase in
the number of free parameters, Npar, for a given number
of datapoints, Npt, is judged in comparison to the increase
in Npar ln Npt and 2Npar, respectively. In the context of the
unfluctuated closure tests, the improvement in the χ2 also
corresponds to an improvement in the BIC, for which the
addition of 2Npar corresponds to 48 and 24 in the n = 2, 4
cases, while the χ2 improves by 103.8 and 69, respectively.
On the other hand, for the BIC we find that Npar ln Npt (which
gives ∼ 200 and 100, for the n = 2, 4 cases, respectively)
is larger than these improvements, and so according to that
criterion using the n = 6 parameterisation would not corre-
spond to a relevant improvement in the fit. However, looking
at Fig. 29 it is clear that at the level of the PDFs the n = 2, 4
fits are significantly worse at representing the input set, which
calls into question to use of the BIC in this context. In the
full fit, as indicated in Table 7, the improvement in the AIC
is again evident in going from n = 2, 4 to n = 6, while for
the BIC it is marginal. For the n = 7, 8 case there is clearly
no improvement in either measure.

Finally, it is useful to consider in a little more detail the
form of the fit PDFs themselves, given the evidence we
have found above that the MSHT baseline fits may actu-
ally be representative of a higher degree of flexibility than
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Fig. 32 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 dataset/theory (perturbative charm)
setting, but using the MSHT20 parameterisation. The default result,
without positivity applied, and a fit with the number of Chebyshev
polynomials fixed to 4 (or more generally reduced by 2 for each PDF in

comparison to the default), and with and without a positivity constraint
applied, are shown. PDF uncertainties for the MSHT fits correspond to
T 2 = 1. Results are shown as a ratio to the NNPDF4.0 fit to the same
dataset/theory settings
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Fig. 33 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 dataset/theory (fitted charm) setting,
but using the MSHT20 parameterisation. The default result, and a fit
with the number of Chebyshev polynomials fixed to 4 (or more gener-

ally reduced by 2 for each PDF in comparison to the default), in both
cases with a positivity constraint applied, are shown. PDF uncertainties
for the MSHT fits correspond to T 2 = 10. Results are shown as a ratio
to the NNPDF4.0 fit to the same dataset/theory settings

123



Eur. Phys. J. C           (2025) 85:316 Page 57 of 84   316 

the NNPDF4.0 central sets. To this end, we consider the so-
called PDF kinetic energy discussed in [74], defined as

KE =
√

1 +
(

d

d ln x
x f (x, Q2)

)2

, (45)

such that this variable integrated over ln x gives the arc-
length of the curve of the PDF as a function of ln x . This
is then in essence is a measure of the amount of variation
in a curve, given for any two fixed endpoints in x a PDF
with a larger value of the arc-length will by definition vary
more between the points. Of course for any given compari-
son between two PDF sets the values at fixed endpoints in x
are not the same, and hence this interpretation requires some
care. Indeed in [74] the kinetic energy is discussed in terms
of the context of the ‘wiggliness’ of the PDFs, with a larger
local (or average) value of the KE corresponding to more of
this property, however as we will see even a relatively smooth
change in the PDF such that it increases or decreases in a cer-
tain region can result in a larger KE with respect to a PDF set
that exhibits less change. This point should be kept in mind
in the comparison which follow.

In Fig. 34 we show the kinetic energy for a selection
of PDFs at the input scale Q0 = 1 GeV for the perturba-
tive charm fit. We compare the default MSHT fit with the
NNPDF4.0 (pch) result, while also plotting the central val-
ues for the n = 2, 4, 8 cases. Care should be taken to note the
y scales on these plots, which differs significantly between
partons in order to highlight the principle features. For the
default fit, the T 2 = 10 uncertainties are shown, which con-
sistent with the discussion above tend to be rather larger then
the NNPDF4.0 uncertainties. Broadly speaking, we can see
that in various regions of x there are certain peaking struc-
tures in the KE, the most significant of which occur in similar
fashions in the NNPDF and MSHT fits. In some cases these
are essentially guaranteed by the sum rules, e.g. for the u and
d quark we can see sizeable peaks (beyond the upper limit
of the presented y axes) in the high x region, driven by the
non-zero up and down valence structure of the proton PDFs,
which results in turn overs of the PDFs in this region. Other
peaks are simply preferred by the fit to the data, e.g. in the
u, d, s and gluon at higher x .

We note that there is no evidence for a particularly larger
KE in general, and indeed the arc-length integrated over the
displayed x regions agree at the sub permille level in all cases,
with the exception of the gluon in the perturbative charm fit,
where the behaviour at low x leads to a ∼ 10% increase with
respect to the NNPDF4.0 PDFs. However, there are some
regions of increased structure in the MSHT default fits. In
particular, the u shows moderate local increase above the
NNPDF result around x ∼ 0.05 and again at lower x . Simi-
larly for the d, the peak in the KE at x ∼ 0.03 is somewhat

larger in the MSHT case. The strangeness at large x is one
exception, where the NNPDF result exhibits some peaking
not seen in the MSHT fit. For the low x gluon the rather strik-
ing behaviour at low x is driven by the turn over of the gluon
as it become negative, which as discussed above is not present
in the NNPDF fit, where positivity is imposed. While these
effects appear relatively prominent when the results are plot-
ted in terms of the KE, in Fig. 35 we show the corresponding
PDFs at Q0 = 1 GeV, and we can see that in general there is
no particularly obvious lack of smoothness for these PDFs.
The one exception is arguably the u, though this not dramatic.

In terms of the fits with modified number of Chebyshevs,
we can clearly see that for the n = 2, 4 cases these match
the KE of the NNPDF set more closely. For example, the
additional peaking structure in the u at x ∼ 0.05 is absent,
and the peak in the d at x ∼ 0.03 is much more in line with
the NNPDF case. It therefore seems clear for this perturbative
charm case that the NNPDF fit, while initially deriving from
a significantly more flexible NN parameterisation, provides
an inherent degree of flexibility that is more in line with the
restricted n = 2, 4 cases then the default n = 6 MSHT
fit, once the NNPDF methodology (training/validation, post-
selection etc) has been applied to produce the PDF prior.
This lower degree of variation is also evident in Fig. 35, at
the level of the PDFs, where again the n = 2, 4 results are
more in line with (though not in perfect agreement with) the
NNPDF case. For the n = 8 case this is largely in line with
the baseline result, with the most significant exception of
some additional features in the strangeness at intermediate x
seen in Fig. 34; however here differences are also observed
in the n = 2, 4 cases.

Therefore, while the default MSHT parameterisation does
result in some local regions of larger PDF KE, these are in
general moderate and do not provide any particularly strong
evidence that a significant degree of overfitting is occurring.
Moreover, we emphasise that in Fig. 34 (and in Fig. 36 below
for the fitted charm case) there are clear regions of locally
increased kinetic energy in both the MHST and NNPDF4.0
fits, at a similar level. For example, the increases in the up
quark case around x ∼ 0.1 or the gluon around x ∼ 0.2 are
clearly preferred by both fits. With this in mind, it is arguably
not clear to what extent one can identify the ‘correct’ amount
of variation in the kinetic energy.

We next turn to the fitted charm case, for which the KE is
shown in Fig. 36. Here, the difference between the baseline
MSHT and NNPDF is less visible, in line with the closer fit
qualities in this case. There is some mild indication of a larger
peak in the u are x ∼ 0.1, and the rather different behaviour
of the low x gluon also results in evident differences in this
region, albeit within large PDF uncertainties in the MSHT
case. The one exception is the charm quark, where some more
prominent peaking structure at intermediate to high x is seen,
again within reasonable PDF uncertainties. In terms of the
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Fig. 34 The PDF Kinetic energy, defined in the text, for a selection
of PDFs at Q = 1 GeV that result from a global PDF fit to the
NNPDF4.0 dataset/theory (perturbative charm) setting, but using the
MSHT20 parameterisation. The default result, and fits with the number
of Chebyshev polynomials fixed to 2, 4 and 8 (i.e. in the first cases

reduced by 4 and 2 and in the last increased by 2, respectively, for each
PDF in comparison to the default) are shown. For the gluon, the result
without an explicit second term in the parameterisation, of the form
given in (3), is also shown

fit with n = 4 the differences with respect to the baseline are
generally moderate, but not negligible.

The PDFs at input Q0 = 1.65 GeV are shown in Fig. 37,
with results in line with these findings, i.e. no significant
degree of additional variation in the gluon and light quark
PDFs. For the charm, a dominant factor here is that we have
not imposed positivity in the case of the MSHT fit; if this is
imposed the dip around x ∼ 0.1 is no longer present and the

KE is correspondingly lower. Indeed we have verified that
performing a NNPDF4.0 fit directly, but with Fc

2 positivity
removed, results in a similar dip structure in this region. In
terms of the large KE at lower x , we can see in Fig. 27
that the peak around x = 0.03 may be expected, given the
corresponding peak in the purely perturbative component in
this region.
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Fig. 35 A selection of PDFs at Q = 1 GeV that result from a global
PDF fit to the NNPDF4.0 dataset/theory (perturbative charm) setting,
but using the MSHT20 parameterisation. The default result, and fits
with the number of Chebyshev polynomials fixed to fixed to 2, 4 and

8 (i.e. in the first cases reduced by 4 and 2 and in the last increased by
2, respectively, for each PDF in comparison to the default) are shown.
The NNPDF4.0 (pch) set is also shown
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Fig. 36 The PDF Kinetic energy, defined in the text, for a selection
of PDFs at Q = 1.65 GeV that result from a global PDF fit to the
NNPDF4.0 dataset/theory (fitted charm) setting, but using the MSHT20
parameterisation. The default result, and fits with the number of Cheby-
shev polynomials fixed to 2, 4 and 8 (i.e. in the first cases reduced by

4 and 2 and in the last increased by 2, respectively, for each PDF in
comparison to the default) are shown. For the gluon, the result without
an explicit second term in the parameterisation, of the form given in
(3), is also shown
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Fig. 37 A selection of PDFs at Q = 1.65 GeV that result from a global
PDF fit to the NNPDF4.0 dataset/theory (fitted charm) setting, but using
the MSHT20 parameterisation. The default result, and fits with the num-
ber of Chebyshev polynomials fixed to 2, 4 and 8 (i.e. in the first cases

reduced by 4 and 2 and in the last increased by 2, respectively, for each
PDF in comparison to the default) are shown. The NNPDF4.0 set is also
shown
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In summary we have seen clear evidence, at the level of
both closure test and fit to the real data that restricted parame-
terisations with fewer Chebyshev polynomials present in the
input PDFs are not sufficient to describe the data entering
current global PDF fits with sufficient precision and accu-
racy. This is achieved by the default n = 6, for which there
is no strong evidence of overfitting, or of the fit quality and
description changing dramatically if further free parameters
are included. In terms of the comparison to NNPDF, it would
appear the resulting PDFs are more in line with the restricted
n = 4 parameterisation (i.e. with 12 fewer free parame-
ters then the baseline case of 52), with the default MSHT
fit exhibiting a moderately increased degree of variation for
certain PDFs, in the perturbative charm case. For fitted charm,
this distinction is less evident, perhaps because of the addi-
tional freedom allowed by fitting the charm PDF.

In the future, it would be interesting to extend these studies
to the case of fluctuated closure tests, to e.g. provide a more
quantitative assessment of the (lack of) faithfulness of the fits
with restricted parameterisations in that context. Beyond this,
the question of overfitting clearly deserves further attention:
a more detailed evaluation of this, for example by considering
a partition of the data into training and validations sets, will
be the focus of a future study.

7 Cross section benchmarks

Having compared the MSHT and NNPDF fits at the level of
the fit quality and PDFs, it is useful to also compare the cor-
responding predictions for some relevant LHC observables.
In this section we therefore show some benchmark cross sec-
tion results. In particular, we use n3loxs [91] to calculate
the Higgs boson production cross section in gluon fusion,
and the Z ,W± production cross sections, both at 14 TeV.
The theoretical settings are as described in [21].

7.1 Unfluctuated closure tests and restricted
parameterisations

First, we show in Fig. 38 the result of using the unfluctuated
closure test. In the left plot the Z boson and ggH produc-
tion cross sections are shown, with the corresponding PDF
uncertainty ellipses for the MSHT fits, with both T 2 = 1 and
T 2 = 10. As usual, the corresponding axes of the ellipses
indicate the size of the PDF uncertainties, while the angle
indicates the correlation between the two predictions. In the
right plot the W± results are shown. The difference between
the input and unfluctuated closure test result is as expected
almost invisible on the plot, and much less than the T 2 = 1
(or 10) uncertainties, providing further support for the minor
role of parameterisation flexibility at the level of such a clo-
sure test, and in the default MSHT20 parameterisation.

We also give the results of taking a restricted parameter-
isation as described in Sect. 6, with n = 2, 4 Chebyshevs,
corresponding to 28 and 40 free parameters in total. While
the n = 4 case in fact shows rather good agreement with
the input at the level of these cross sections, for n = 2 we
can see that the agreement reaches the edge of the T 2 = 1
uncertainty. This is in fact a rather closer matching then is
always seen at the level of the PDFs shown in Fig. 29, which
is perhaps unsurprising given these cross sections involve
sums over various PDF combinations and integrals over their
x dependence, that may be rather better constrained than a
given individual PDF. It is in particular of note that there is
much DY cross section data entering the fits.

7.2 Impact of PDF positivity

Next, in Fig. 39 we show the results for the MSHT fits to
the real data entering the NNPDF fits, with perturbative and
fitted charm in the left and right hand figures, respectively.
The MSHT fit results are shown with T 2 = 1 uncertainties
for clarity of the comparison. In the perturbative charm case
we can see that there is as expected rather poor agreement
between the NNPDF prediction and the MSHT fits without
positivity. The Higgs cross section is larger in the MSHT fit,
in line with the discussion relating to Fig. 25 where it was
observed that perturbative charm fits without positivity of the
low x, Q2 gluon imposed allow a larger gluon at intermediate
x . The Z cross section is mildly suppressed, due to the differ-
ing flavour decomposition. Both the W± are also suppressed,
due to the suppression in the u, d and d observed in the rel-
evant x region in Fig. 21, while for the u some enhancement
is seen, leading to a milder suppression for the W−.

When positivity is imposed the agreement is greatly
improved, as we would expect given the discussion before.
Of particular note is the improved agreement for the Higgs
cross section, an effect which is again in line with the dis-
cussion relating to Fig. 25, although improved agreement is
also seen in the W− case in particular. Nonetheless, some
difference remains. We recall in particular that, as described
in the case of the PDF comparison, given the fit quality in the
MSHT cases is actually better than that of the NNPDF4.0 fit,
the correct assessment of the overall consistency between the
NNPDF and the MSHT results is between the central value
of the MSHT and the NNPDF results, within the NNPDF
errors. With this in mind, we can see that the central MSHT
result for the Higgs and Z case lies at the edge of the NNPDF
uncertainty band, while for the W± it is over 2σ away.

In the fitted charm case, the agreement between the MSHT
and NNPDF results is better, and the difference between
the cases with and without positivity imposed smaller, as
we would expect given the results in the previous sections.
However, again given the fit quality is better in the MSHT
fit, the relevant comparison is between the central value of

123



Eur. Phys. J. C           (2025) 85:316 Page 63 of 84   316 

Fig. 38 Cross section predictions for Higgs production via gluon
fusion and on-peak Z production, calculated as described in the text.
Results shown for the unfluctuated closure test with T 2 = 1 and
T 2 = 10 errors, and the central value from the input NNPDF set is

shown (the difference is barely visible from the predicted central value).
Also shown are the central values of the MSHT fits with restricted
n = 2, 4 parameterisations

Fig. 39 Cross section predictions for Higgs production via gluon
fusion and on-peak Z ,W± production, calculated as described in the
text. Results shown for the (left) perturbative and (right) fitted charm

cases, and with the MSHT fits to the NNPDF dataset/theory settings
with T 2 = 1 uncertainties, both with and without positivity imposed.
The corresponding NNPDF4.0 results are also shown
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the MSHT and the NNPDF results, within the NNPDF errors
alone. Here we can see that there are still clear differences,
with the central MSHT prediction lying roughly ∼ 1 − 2σ

away from the NNPDF central result, with respect to the
NNPDF uncertainties.

7.3 PDF uncertainties and role of tolerance

In Fig. 40 we show the same cross section results as in Fig. 39
but now without positivity imposed, and also including the
MSHT fit results with T 2 = 10 uncertainties. In terms of
the size of the PDF uncertainties, for the perturbative charm
fits the NNPDF result is found to lie somewhere between the
T 2 = 1 and T 2 = 10 case, with the biggest departure from
the MSHT T 2 = 1 case being in the Higgs cross section, as
we would expect given the previous comparison of the PDF
uncertainties. For fitted charm, the NNPDF result is clearly
closer to the T 2 = 1 case (though still somewhat larger
than it) than for the perturbative charm fit, and is certainly
significantly smaller than the T 2 = 10 case.

For the sake of comparison we also show the result of
the MSHT20 fit, which applies the same parameterisation as
the MSHT fits presented here, but with different theoretical
and data inputs. The size of the uncertainty is in line with
the MSHT T 2 = 10 case, as we would expect. In the per-
turbative charm case, comparing the MSHT20 and MSHT
(T 2 = 10) results provides an indication of the level of dif-
ference between the MSHT20 and NNPDF4.0 fits due to the
datasets included and theory settings alone. These are clearly
playing an important role and interestingly some degree of
tension is observed in the predicted Z production cross sec-
tion, though the agreement in the W± case is rather better.
However, we also show in the dashed ellipse the case with the
MSHT20 uncertainties scaled down by a factor of 3, approx-
imately corresponding to T 2 = 1 PDF errors. From this, we
can see that both comparisons provides further evidence of
the need for a tolerance in the fit; clearly if T 2 = 1 uncertain-
ties are used we would find significant tension between these
predictions, which can only be due to the fact that different
datasets are fit (or given datasets are treated differently) and
theoretical inputs are used.

7.4 Comparison to Hopscotch study

In [88], by taking a suitable linear combination of the
NNPDF4.0 replicas via a so-called ‘hopscotch’ scan, bet-
ter fit qualities were found to the central data than for the the
central NNPDF replica, and cross section predictions outside
the quoted NNPDF uncertainty band were found. Taking the
subset of the publicly available replicas [92] that correspond
to an improvement with respect to the t0 definition of the fit
quality, we compare these predictions against our fit results in
Fig. 41. As discussed in [88] the precise distribution of these

replicas does not have a statistical interpretation but is due
to the hopscotch scan methodology. Moreover, the major-
ity of these replicas correspond to changes in the fit quality
that are significantly lower than the improvement observed
in the MSHT fit17. Nonetheless, it is interesting to examine
to what extent these lie in a region of cross section space that
is consistent with the MSHT best fit.

Comparing to these we observe a similar trend for larger
Higgs production cross section to be larger. On the other
hand, for the Z cross section no particular trend is observed.
For the W± cross sections there is again an interesting level
of consistency between the general region of hopscotch repli-
cas that lie outside of the NNPDF uncertainty band and the
MSHT fit results. However, the majority of these that lie
towards the MSHT fit region show rather milder improve-
ments in fit qualities of less than −20.

8 PDF sets: availability

To enable further studies and comparisons by the community
we make a selection of PDF sets resulting from the MSHT fits
to the NNPDF4.0 data and theory settings publicly available
at the following website:
https://www.hep.ucl.ac.uk/msht/NNPDFgrids.shtml

The perturbative charm sets described in Sect. 5.1 are
available via the following links:
MSHT_NNPDF40input_pch_Teq1
MSHT_NNPDF40input_pch_Teq10
while the fitted charm sets described in Sect. 5.2 are available
via the following links:
MSHT_NNPDF40input_fch_Teq1
MSHT_NNPDF40input_fch_Teq10
In both cases the PDF sets without positivity imposed, and
with a fixed tolerance of T 2 = 1 and 10 are made available.
We do not make the sets with positivity imposed available
because, as discussed in earlier sections, the Hessian uncer-
tainty is rather unstable in this case.

9 Summary and outlook

In recent years there has been a great deal of progress in
the development of global PDF fits, as exemplified by the
CT, MSHT and NNPDF fitting collaborations. These com-
bine high precision theory, such that NNLO is the standard
and now even approximate N3LO QCD precision is being
accounted for, with a wealth of global measurements, in par-
ticular with much high precision data from the LHC. Comb-

17 See also [74] where a response to this analysis is presented by
NNPDF; it is not the aim of the current paper to comment further on the
discussion presented in these papers, which we simply highlight here.
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Fig. 40 Cross section predictions for Higgs production via gluon
fusion and on-peak Z ,W± production, calculated as described in the
text. Results shown for the (left) perturbative and (right) fitted charm
cases, and with the MSHT fits to the NNPDF dataset/theory settings
with both T 2 = 1 and 10 uncertainties. Positivity is not imposed in

the MSHT fits. In the left plots the MSHT20 prediction is shown for
comparison, where the dashed ellipse corresponds to dividing the uncer-
tainty by a factor of 3, approximately corresponding to T 2 = 1 PDF
errors. The corresponding NNPDF4.0 results are also shown

Fig. 41 Cross section predictions for Higgs production via gluon
fusion and on-peak Z ,W± production, calculated as described in the
text. The MSHT fits to the NNPDF dataset/theory settings, with T 2 = 1

uncertainties, are compared to the hopscotch scans of [88] for the
case that �χ2 < 0 and -20, in the t0 definition. The corresponding
NNPDF4.0 results are also shown
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ing these ingredients, we can hope to constrain proton struc-
ture with high levels of precision and accuracy, in order to
match the ever increasing precision requirements of the LHC
physics programme.

However, as well as differing in the data and the relevant
theoretical ingredients that enter the fit, these global PDF
analyses also differ rather significantly in the methodologies
they apply. Moreover, these methodological effects alone
are observed to have a significant impact on the resulting
PDFs and, crucially, their uncertainties. Therefore, arriving
at more complete understanding of this source of difference
is arguably as important to the LHC precision programme as
the continued progress being made within each fit. It has been
the aim of this paper to begin to address this issue directly. To
achieve this, it is certainly necessary that the fitting method-
ology of each individual collaboration be tested as robustly
as possible. However, it is also essential that a completely
direct comparison between the different methodologies be
made, in order to make real progress.

We have presented results that aim to address both of these
directions of investigation. With the first issue in mind, we
have presented the first full global closure test of a fixed
parameterisation approach to PDF fitting, focusing on the
MSHT20 case. We have found that the default MSHT20
parameterisation can reproduce the features of the input set in
such a closure test to well within the textbook�χ2 = T 2 = 1
uncertainties. This non-trivial result provides strong evidence
that parameterisation inflexibility in the MSHT20 fit is not
a significant issue in the data region, and hence that should
not be a major contribution in the enlarged error definition
(a so called ‘tolerance’), which is commonly applied in PDF
fits. In the extrapolation region, most notably at very high x ,
some discrepancy is found, highlighting a potential limita-
tion of the fixed parameterisation approach. Interestingly, if
instead MC replica error generation is applied, but with the
same fixed parameterisation, then the PDF uncertainties at
high x are potentially more representative.

With the second issue in mind, we have also presented the
first completely like-for-like comparison between two global
PDF fits, namely MSHT and NNPDF, where the only differ-
ence is guaranteed to be due to the fitting methodology, and
PDF parameterisation in particular. To achieve this, we have
made use of the public NNPDF fitting code to perform a
PDF fit to exactly the same data and theory settings that are
used in the NNPDF4.0 NNLO public release, but with the
MSHT20 fixed parameterisation applied instead of a neural
network (NN). Two fits, one with perturbative and one with
fitted charm, have been presented; in the latter case this repre-
sents the first model independent fitted charm determination
outside of the NN approach. Somewhat surprisingly we find
that, despite the inherently larger flexibility in the NN used in
the NNPDF4.0 case, the fit with the MSHT parameterisation
produces a moderately, but noticeably, better fit quality than

the central NNPDF results, both with perturbative and fitted
charm. More significantly, we have found that the resulting
PDFs and various predicted benchmark cross sections due to
the public NNPDF4.0 releases are not compatible with these
MSHT fits within the nominal NNPDF uncertainties.

The role of prior constraints, in particular the PDF posi-
tivity that is imposed by NNPDF, are considered and this is
found to play an important role in the fit with perturbative
charm with respect to the gluon at low x , but is not found to
explain the difference entirely. The question of whether the
MSHT fit may lead to overfitting (which is controlled against
in the NNPDF fits, given the more flexible NN architecture)
is also considered by a close examination of the breakdown
in the fit quality between datasets, the form of the underlying
PDFs, and the impact of restricting and extending the number
of free parameters in the fit. No particular evidence for this is
found, although if on further analysis some evidence for this
were indicated, we note that this would only serve to further
support the result that parameterisation inflexibility is not a
major issue in the MSHT fit. Studying in detail the form of
the resulting PDFs, we have found that the MSHT fit case
appears to have moderately more flexibility associated with
them, which therefore results in a better fit to the data being
achieved. This is also supported by restricting the number
of free parameters in the MSHT parameterisation; reducing
this from 52 to 40 gives a result more closely in line with
the NNPDF4.0 case, although it should be emphasised that
this performs rather less well in the closure tests fits than the
default MSHT parameterisation.

Putting aside the reason for this difference in the under-
lying PDFs, we have also compared the corresponding PDF
uncertainties and have indeed found that with respect to the
quark flavour decomposition the NNPDF4.0 uncertainties are
rather closely in line with the MSHT T 2 = 1 uncertainties,
while the gluon and quark singlet being somewhat larger,
but still significantly lower than the T 2 = 10 uncertainties,
which are representative of the enlarged tolerance applied in
e.g. MSHT20. In other words, the NNPDF4.0 fit, as a result
of changes in methodology alone, produces PDF uncertain-
ties that are rather more closely in line with those of the fixed
MSHT20 parameterisation if the textbook T 2 = 1 criterion is
applied. Given it has long been argued by the MSHT collabo-
ration, and others, that this T 2 = 1 criterion is not applicable
in global PDF fits, this at a minimum points to an inher-
ent inconsistency between the approaches. In particular, the
possibility that the MSHT approach is less accurate due to
its fixed parameterisation and therefore requires an enlarged
error definition due to this, has been largely ruled out by the
results of this study, namely the successful closure tests and
the improved fit quality that is seen with respect to NNPDF
in the real fit. Therefore, either the NNPDF uncertainties are
too aggressive (i.e. too small), or the MSHT uncertainties are
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too conservative (i.e. too large), or the truth lies somewhere
in between.

We have formulated our conclusion in this rather agnostic
way in order to state this key result as clearly, and with as
minimal additional interpretation, as possible. In this way,
we believe it could serve as a motivation for further devel-
opments both on the fixed parameterisation side, through the
refinement of the tolerance criterion that is applied, but also
on the NN side, through a reconsideration of how the uncer-
tainties are defined. However, it should be emphasised that
there are very good reasons for including an enlarged toler-
ance in global PDF fits. In particular, the textbook �χ2 = 1
criterion is applicable to the ideal scenario of complete sta-
tistical compatibility between the multiple datasets entering
the fit, a completely faithful evaluation of the experimental
uncertainties within each dataset, and theoretical calculations
that match these exactly. There is a great deal of evidence that
the first two situations do not hold in a PDF fit, while for the
latter case it is of course well known that the fixed-order theo-
retical predictions are not exact (although as described above
there has been recent progress in evaluating the uncertainty
due to this [22,23,31]). Indeed, at the level of the global fit
quality, and the pulls of individual datasets in global fits,
departures from textbook statistics are certainly evident.

In the current study, we have also compared the result
of the public MSHT20 fit with the MSHT fits presented
here. In other words, these compare the difference due to
the change in dataset and theory setting alone (keeping the
fitting methodology fixed) in the resulting PDFs. We find
broad consistency at the level of the PDFs and benchmark
cross sections if an enlarged T 2 = 10 definition is used, but
crucially not if the T 2 = 1 definition is used, when evident
significant tensions appear. This provides further support for
the need for an enlarged error definition, as provided by the
tolerance. Further to this, we have also presented a detailed
discussion of the role of statistical incompatibilities within
a toy model, and highlighted the fact that tensions between
datasets are not reflected by increased PDF uncertainties if
the textbookT 2 = 1 criterion is applied. These are then found
to be unrepresentative, as they do account for any increased
spread in the PDF error that should be present due to these
tensions. We have then demonstrated this effect explicitly in
the context of a set of global closure tests, where incompati-
bility between different datasets, or between data and theory,
is included in the test.

Finally, we have as described above addressed the ques-
tion of parameterisation flexibility from the point of view
of restricting the number of free parameters to be less than
the nominal 52 in the MSHT20 case. By restricting the PDF
parameterisation to instead have 28 or 40 free parameters,
we confirm that these more restricted parameterisations are
insufficient to match the input of the global closure test within
the T 2 = 1 (and even in some cases T 2 = 10) uncertainties.

Hence, in such cases parameterisation inflexibility would
clearly play a more significant role in requiring an enlarged
tolerance, but this can be largely avoided by simply taking
a suitably flexible parameterisation. This result should be of
particular relevance to those PDF analyses, such as CT and
ATLASpdf, where more restricted parameterisation are taken
by default.

We have in addition considered the evidence for intrinsic
charm within the MSHT fit to the NNPDF4.0 data and theory.
Given the discussion above about the increased uncertainties
in the default MSHT fit (with the appropriate T 2 = 10 uncer-
tainty definition) it is not surprising that the statistical signif-
icance of an intrinsic charm component at high x is observed
to be markedly lower than in the nominal NNPDF4.0 fit.
However, a mild preference for this is evident, albeit one
where the significance is rather increased by imposing pos-
itivity of the predicted Fc

2 structure functions at relatively
low scale. The most significant improvement in the fit qual-
ity that comes from fitting charm, is observed to lie in the
low to intermediate x region, which indicates that the most
statistically significant intrinsic charm, or more strictly fitted
charm component may lie in this region, where it is even
found to be negative at intermediate x . However, a full anal-
ysis of these effects and indeed precise interpretation of our
results in terms of purely intrinsic charm has not been pre-
sented here, and is beyond the scope of this study.

In summary, we have presented in this study the first full
global closure test of a fixed parameterisation approach to
PDF fitting, focusing on the MSHT20 case, and the first com-
pletely like-for-like comparison between two global PDF fits,
namely MSHT and NNPDF, where the only difference is
guaranteed to be due to the fitting methodology, and PDF
parameterisation in particular. The closure tests are success-
fully passed, and we in particular find no evidence that param-
eterisation inflexibility plays a significant role in the uncer-
tainty budget of the MSHT fit. At the level of the full fit, we
find a moderate improvement in the MSHT fit quality with
respect to the NNPDF4.0 central results, and a non-negligible
difference in the corresponding PDFs and benchmark cross
sections. At the level of the PDF uncertainties, the NNPDF4.0
case is found to be broadly in line with the MSHT result, but
only if the textbook tolerance of T 2 = 1 of used, which is
arguably unsuitable in the non-trivial environment of a global
PDF fit. Indeed, in this study we have explicitly demonstrated
the impact of including data/theory tensions in a global clo-
sure test and show that these have essentially no impact on
the resulting PDF uncertainties. Hence, these are found to
be unrepresentative, as they do not account for the increased
spread in the PDF error due to these tensions. These results
are completely in lines with first principles considerations,
and should apply whether a NN or fixed parameterisation is
used.
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This indicates an inherent inconsistency between these
approaches that clearly begs to be resolved if progress is
going to made with respect to the LHC precision physics pro-
gramme. On the NN side, these results indicate that a critical
reassessment of the origin of the current PDF uncertainties in
this approach, and extension to account for an effective tol-
erance may be required. On the fixed parameterisation side,
refinement and reassessment of the current approaches to
including such a tolerance is well motivated, and related to
this further work towards an explicit account of the elements
in a fit that contribute to such a tolerance in the fit. Future
studies and comparisons of the two approaches are planned,
including providing the fixed parameterisation fitting code
used in this study for public use. More broadly, progress has
already been made and is ongoing on for example the inclu-
sion of theoretical uncertainties from missing higher orders,
and an estimation of the error on experimental systematic
uncertainties, both of which will play a role in this. Through
continued such work, and collaboration between groups that
apply different fitting approaches we can hope to continue to
make progress in high precision LHC era.
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A Subleading eigenvectors and parameter fixing in
Hessian PDF uncertainties

In this appendix we demonstrate in more detail the role of
subleading eigenvectors and the fixing of PDF parameters in
the Hessian matrix when the PDF uncertainties are evaluated
according to the eigenvector prescription described in Sect. 2.
In particular, it has been demonstrated clearly in Sect. 6 that
a given degree of parameterisation flexibility is required in
order to match the requirements of a given PDF fit. Nonethe-
less, when it comes to considering variations of these PDF
parameters around the global χ2 minimum it is common for
there to be a certain amount of redundancy between some
of these PDF parameters, such that small changes in the val-
ues of some parameters can be largely compensated for by
changes in other parameters. As a result of this high degree of
correlation, the behaviour of certain PDF eigenvectors about
the χ2 minimum can become highly non-quadratic.

Further details are provided in [33,44], where a practical
solution of fixing certain PDF parameters at their best fit
values, when these exhibit a significant degree of correlation
with other PDF parameters, is proposed. In this way, a set of
more quadratic eigenvectors is arrived at, and a more stable
application of the Hessian approach becomes possible. We
emphasise that this is not the same as starting with fewer
free parameters to start with in the fit, e.g. setting higher
Chebyshev coefficients to zero as in Sect. 6, and there is
in particular no contradiction that fewer free parameters are
required in the eigenvector evaluation stage than in the initial
fit. Moreover, as discussed in [34,44], this method of fixing
certain PDF parameters provides PDFs uncertainties that are
consistent with other methods of error propagation, such as
Lagrange multiplier scans and the MC replica technique.

Nonetheless, it is useful to return to this issue here, not
least given the emphasis placed in this study on having a suf-
ficiently flexible fixed parameterisation at the fit stage. We
first show in Fig. 42 the values of the rescaled PDF eigenvec-
tor variations, ti , defined in (10) for unfluctuated closure test
fits to the NNPDF4.0 global dataset, as well as the HERA
only and hadron collider only subsets. The ti are defined such
that a χ2 variation of T 2 = 1 occurs for each eigenvector,
and these are ordered by decreasing size of the eigenvalues,
λi . These are provided, in particular, without fixing any PDF
parameters in the Hessian before performing the eigenvec-
tor evaluation18. In general, doing this can result in a Hessian
matrix with negative eigenvalues, in which case these are dis-
carded as they correspond effectively to directions where the
global minimum has not been reached. This does not occur

18 To be precise, these particular fits are performed with the low x
power of the strangeness free, but of the strangeness asymmetry fixed,
and hence have 53 free parameters in total.
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Fig. 42 Values of the rescaled PDF eigenvector variations, ti , defined
in (10) for unfluctuated closure test fits to the NNPDF4.0 global dataset,
as well as the HERA only and hadron collider only subset. The ti are
defined such that a χ2 variation of T 2 = 1 occurs for each eigenvector,

and these are ordered by decreasing size of the eigenvalues, λi , defined
in (8). The positive/negative values correspond to the ± variations for
each eigenvector

in the full global case, but does for 2 (3) eigenvectors in the
hadron collider (HERA) only fits.

Focusing on the global dataset shown in the top left figure,
we can see that there is a noticeable trend for the first 35 eigen-
vectors to have ti ∼ 1 rather closely, indicating that these
exhibit good quadratic behaviour, but beyond this there is a
rather distinct change in behaviour, with ti � 1, indicating
a higher degree of redundancy for these higher eigenvectors
in the manner described above. It is notable that this is rather
close to the number of eigenvectors that are produced in the
MSHT20 fit [13], where 32 is arrived at through the process
of PDF parameter fixing. For the more constrained fits, on the
other hand, there is a clear trend for the onset of this ti � 1
behaviour to occur for a lower number of eigenvectors, in
particular at ∼ 20 (30) for the HERA (hadron collider) only
fits. This is of course exactly as we would expect: for these
reduced fits a lower degree of parameterisation flexibility is
required, and this translates into a higher degree of redun-
dancy between PDF parameters. The negativity of certain
eigenvalues for these reduced fits can be understood in the
same light (Fig. 44).

A further noticeable trend in all cases (with the exception
of two eigenvectors in the HERA only fit) is that the trend
with increasing eigenvalue is for ti to decrease rather close
to monotonically beyond the point where ti ∼ 1. This is con-
sistent with the interpretation given in [33,44], namely that
while these correspond to those eigenvectors with smaller
eigenvalues, such that according to (9) these are nominally
less well constrained parameter directions, in reality this sim-
ple counting masks the fact that non-quadratic terms tend to
dominate for these variations. As a result, the compensation
between PDF parameters fails rather dramatically with only
a small variation from the minimum, and the χ2 rises sharply.
This results in rather low values of ti . This is particularly true
for the lowest eigenvalues, where the contribution to the PDF
uncertainty becomes negligible, and the precise determina-
tion of ti less numerically stable.

We next turn to the impact of these higher eigenvectors,
and of fixing PDF parameters in the Hessian matrix, on
the PDF uncertainties themselves. This is shown in Fig. 43
for the same unfluctuated global closure test discussed in
Sect. 3.2. We consider the T 2 = 1 uncertainty for concrete-
ness, although note that the comparison with T 2 = 10 leads
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Fig. 43 The T 2 = 1 PDF uncertainties that result from the unfluctu-
ated closure test fit to the NNPDF4.0 dataset, as shown in Fig. 3, but now
also with the result of including only the first 35 eigenvectors (out of 53)
shown, as ordered in decreasing size of the corresponding eigenvalue,

and of fixing PDF parameters in the Hessian matrix such that only 32
are left free in the eigenvector evaluation. The latter case is indicated
by the MSHT20 label
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Fig. 44 As in Fig. 43 but for the HERA only fit. The result including only the first 20 eigenvectors (out of 54) is shown, while that of fixing PDF
parameters is not given. Note the different y scale in certain cases

to very similar conclusions. Here the T 2 = 1 uncertainty
band corresponds to precisely that shown in ***Fig. 3.2, but
we also indicate the size of the PDF uncertainty if instead of
including all eigenvectors in the uncertainty evaluation only
the first 35 are included, guided by the observation in Fig. 42.

We can see that broadly the contribution to the PDF uncer-
tainty that comes from these higher eigenvectors is negligi-
ble, especially in the data region. The only visible exception

is in the down and up quark valence at relatively low x , and
in certain distributions, such as the gluon, at very high x .
Clearly, to very good approximation we could just account
for the first 35 eigenvectors, for which quadratic behaviour
is well observed, and get a realistic evaluation of the uncer-
tainty in the Hessian approach in almost all cases. It is in
particular encouraging that the contribution from the higher
eigenvectors, where a breakdown in quadratic behaviour and
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the linear assumptions underlying linear error propagation is
observed, is very small.

If instead we fix the same 32 PDF parameters as in the
MSHT20 fit we can see again this rather closely matches the
result of including all eigenvectors, that is of not fixing any
parameters. The PDF uncertainties are somewhat smaller in
some cases in comparison to the 35 eigenvector results, most
notably at higher x and in strangeness at intermediate x , but
these differences are relatively minor. This therefore vali-
dates the approach taken so far in the MSHT global PDF fits.
We note in particular that as the underlying data being fit
here and in the MSHT20 fits are far from identical, there is
not strict requirement for the number of relevant eigenvector
here, namely 35, to exactly match the number of parame-
ters left free in the MSHT20 uncertainty evaluation, namely
32. In particular, a direct application of the parameter fix-
ing approach to this differing dataset may well lead, upon
inspection of the corresponding Hessian matrix and the cor-
relations between different PDF parameters, to the fixing of
fewer parameters, more closely in line with the 35 eigenvec-
tor result.

We note that the above trend is not guaranteed to occur
in all fits, and is in particular a feature of a more global
PDF fit where all PDFs in the plotted regions are relatively
well constrained by data. To demonstrate this, in Fig. 44 we
show the equivalent comparison for the HERA only fit, but
where the number of eigenvectors is limited to 25 eigenvec-
tors, again guided by Fig. 42. For some PDFs in the plotted
region, notably the gluon and up quark sector, there is again
a close matching between the restricted and full eigenvector
uncertainties. However for the strangeness and down quark
sector there is a clear trend for the 25 eigenvector uncertainty
to lie below the full result, most notably for the d . These
are the PDF combinations that are least well constrained by
HERA data alone. In this case, some of the higher eigenvec-
tors will be particularly sensitive to these PDF combinations,
with the lower eigenvalues genuinely indicating that these
PDF directions are rather poorly constrained by the data. By
removing these, or simply restricting the parameterisation in
the first place [15], we are therefore liable to underestimate
the true uncertainty on these PDFs. We note that by including
25 eigenvectors, we are already accounting for some cases
where the t ∼ T equivalence has broken down significantly,
and hence if we took a more restrictive choice of e.g. 15
eigenvectors, demanding that the quadratic t ∼ T behaviour
is always obeyed, then the corresponding PDF uncertainty
would be smaller still in some cases.

Finally, we emphasise for concreteness that in all results
shown in this paper, we include all (positive) eigenvectors in
the PDF uncertainty evaluation. However, as shown above
we could take an approach that more closely matches that
taken in the MSHT20 family of fits, with little impact on the
overall comparisons.

B Global closure tests with inconsistent inputs:
additional results

In this section we show equivalent plots to Figs. 15, 16, 17
but for a different set of pseudodata fluctuations. While the
specific results are of course different, the most important
trends, namely the incompatibility between the subset fits
with inconsistent inputs (in the up quark and charge weighted
quark singlet at intermediate to high x and in the gluon at high
x) and the lack of overlap with the global fit with T 2 = 1
uncertainties, is clear (Figs. 45, 46, 47).

C Role of integrability

In this appendix we discuss the impact of imposing integra-
bility on the MSHT fits, as is done in the case of the NNPDF
fits, see [14]. In principle, this corresponds to requiring that

lim
x→0

x f (x, Q2) → 0 , (46)

for all Q2 for the relevant PDF combinations that we will con-
sider below. In practice this is imposed by NNPDF at Q2 = 5
GeV2 at certain low x points xi ∈ {10−9, 10−8, 10−7}, with a
χ2 penalty imposed to suppress larger values of xi f (xi , Q2).
In the MSHT fit this can instead be imposed directly at the
level of the PDF parameterisation (albeit at the somewhat
lower value of the input scale Q0). The integrability of the
valence distributions is at low enough x is guaranteed by
the relevant sum rules, while numerically we have confirmed
they satisfy the integrability criteria imposed by NNPDF very
well. The remaining distributions where this is not by default
imposed in the MSHT fits are for

T3 = (u + u) − (d + d) , (47)

T8 = (u + u + d + d) − 2(s + s) . (48)

In the former case this would correspond to requiring that
d/u → 1 at low x , which while in general rather well sat-
isfied is not required; this could be readily imposed by fix-
ing the normalization of the d/u distribution in terms of the
coefficients and the known low x behaviour of the Chebyshev
polynomials. For T8 while the low x power of the strangeness
is fixed to that of the sea, this is not sufficient to ensure that
T8 vanishes at low x , but this can be achieved by suitably
fixing the normalization of the strangeness in terms of the
normalization of the sea, and again the coefficients and the
known low x behaviour of the Chebyshev polynomials in
these distributions.

In general, as observed in[14] for the case of the MSHT20
fit, the central values of the T3,8 distributions do not vanish as
x approaches zero, but these are consistent with zero within
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Fig. 45 As in Fig. 15 but for a different set of pseudodata fluctuations. The global fit result applying the dynamic tolerance is not shown here for
simplicity, while the plot of PDF ratios is exactly as in Fig. 15

uncertainties. This is as we might hope for if there are gen-
eral expectations for these to vanish, but this is not imposed
directly, i.e. the fit itself prefers distributions that are consis-
tent with zero. It is not the purpose of the current discussion
to consider in detail the merits of imposing the constraints
at the level of the fit, however we do note that in the case
of T8 in particular the larger strange quark mass is expected
to lead to some deviation in this behaviour, as is clearly true
when considering e.g. the rather more massive charm quark
distribution, especially at the rather stringent level imposed
by NNPDF. Hence it is an open question as to what extent it
is sensible to impose this integrability, rather than observe to
what extent it is (or is not) preferred by the fit. However, we
note that not imposing this will clearly lead to more conser-
vative PDF uncertainties in the low x region.

Here, we focus for simplicity on the T8 distribution, for
which the MSHT fits tend to show larger deviations from zero
at low x than the T3. Fixing the strangeness normalization so
that this integrability is imposed at low x , we find that the
fit quality in the perturbative charm case is almost indistin-
guishable from the case that this is allowed to be free, while
for the fitted charm case the fit quality deteriorates by ∼ 3
points. That is, in both fits the impact of this is very minor

indeed on the fit quality. The impact on the PDFs is shown in
Figs. 48 and 49, both on T8 at Q2 = 5 GeV2 but also on any
relevant distributions where some change is seen at higher
scale Q2 = 100 GeV2. We can see that a non-zero value
of T8 is indeed permitted by both fits at Q2 = 5 GeV2, but
that these are consistent with zero within the representative
T 2 = 10 uncertainties.

Imposing integrability of T8, in the perturbative charm
case, we can see that T8 vanishes at low x as required. The
impact on the PDFs in the data region is very small, consistent
with the smaller impact on the fit quality. The strangeness dis-
tribution exhibits the only noticeable change, must notably
at the level of the PDF uncertainties, which are rather smaller
due to the additional constraint imposed. For the fitted charm
case, the deviation of T8 is somewhat larger, and the impact of
imposing integrability correspondingly a little more signifi-
cant, consistent with the somewhat larger (though still small)
impact on the fit quality. The impact on the low x strangeness
is clearly non-negligible, and brings the result closer in line
with the NNPDF fit, with a notably smaller uncertainty. For
the u, d PDFs the central values at intermediate to low x in
fact lie somewhat further away from the NNPDF baseline.
However all changes are within the MSHT uncertainties. We
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Fig. 46 As in Fig. 45 but for the up quark

Fig. 47 As in Fig. 45 but for the charge weighted quark singlet
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Fig. 48 (Left) The T8 distribution, defined in the text, at Q2 = 5 GeV2,
result from a MSHT fits to the NNPDF dataset/theory settings, with
perturbative charm, with the low x behaviour allowed to be free (the
default), or fixed to vanish as in the NNPDF fit. (Right) The impact of fix-

ing the low x behaviour of the T8 distribution on the strangeness, which
is only distribution that shows any noticeable change, at Q2 = 100
GeV2. The NNPDF (pch) result is given in both cases for comparison
and the MSHT uncertainties correspond to a fixed T 2 = 10 tolerance

Fig. 49 (Top) As in Fig. 48 but for the fitted charm case. As well as the impact of fixing the low x behaviour of the T8 distribution on the strangeness
at Q2 = 100 GeV2, the impact on the up and down quark distributions is shown
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Table 8 χ2 values for the MSHT fits to the NNPDF dataset/theory
settings, without positivity imposed, and with and without fitted charm.
The fit quality for the different major subsets the constitute the global
dataset are given in bold, and above each subtotal the fit qualities for indi-
vidual experiments in theses subsets where there difference with respect
to the perturbative charm case is roughly larger than ±0.5σ = √

Npts/2.
When these differences are less than −0.5σ the result is highlighted in
blue, while the result is highlighted in red when it is greater than 0.5σ .
Both the absolute χ2 and the per point value in brackets, is given in
all cases, while the number of points is indicated in brackets next to
the dataset description. For the total χ2 both the experimental and t0
definitions are shown, while in all other cases only the latter definition
is used. For the sake of comparison the same cuts as in the fitted charm
case are applied for both fits

note however that integrability is imposed at the input scale
Q0, i.e. slightly lower than in the NNPDF case, and so this
may enlarge its impact somewhat.

In summary, the impact of imposing integrability of T8 at
the level of the fit quality is very mild and in general small
at the level of the PDFs. The biggest exception is for the
strangeness in the fitted charm case, where imposing inte-
grability has a clear impact on the PDF uncertainty at low
x .

D Fit quality: perturbative vs. fitted charm

In this appendix we compare the fit qualities between the
fits with purely perturbative and fitted charm. In Tables 8
and 9 we show results for the MSHT fits to the NNPDF
dataset/theory, with and without positivity imposed, respec-
tively. In Table 10 we show results for the default NNPDF4.0
fits.

Table 9 χ2 values for the MSHT fits to the NNPDF dataset/theory set-
tings, with positivity imposed, and with and without fitted charm. The
fit quality for the different major subsets the constitute the global dataset
are given in bold, and above each subtotal the fit qualities for individ-
ual experiments in these subsets where the difference with respect to
the perturbative charm case is roughly larger than ±0.5σ = √

Npts/2.
When these differences are less than −0.5σ the result is highlighted in
blue, while the result is highlighted in red when it is greater than 0.5σ .
Both the absolute χ2 and the per point value in brackets, is given in
all cases, while the number of points is indicated in brackets next to
the dataset description. For the total χ2 both the experimental and t0
definitions are shown, while in all other cases only the latter definition
is used. For the sake of comparison the same cuts as in the fitted charm
case are applied for both fits

E Further PDF comparisons

E.1 MSHT fits with perturbative charm: comparison to
MSHT20

In this appendix (Fig. 50) we compare the results of the
public MSHT20 fit [13] to the MSHT fit to the NNPDF4.0
data/theory settings,

123



Eur. Phys. J. C           (2025) 85:316 Page 77 of 84   316 

Table 10 χ2 values for the default NNPDF fits and with and without
fitted charm. The fit quality for the different major subsets the consti-
tute the global dataset are given in bold, and above each subtotal the fit
qualities for individual experiments in these subsets where the differ-
ence with respect to the perturbative charm case is roughly larger than
±0.5σ = √

Npts/2. When these differences are less than −0.5σ the
result is highlighted in blue, while the result is highlighted in red when
it is greater than 0.5σ . Both the absolute χ2 and the per point value in
brackets, is given in all cases, while the number of points is indicated
in brackets next to the dataset description. For the total χ2 both the
experimental and t0 definitions are shown, while in all other cases only
the latter definition is used. For the sake of comparison the same cuts
as in the Fitted charm case are applied for both fits

consistently with perturbative charm. The PDF param-
eterisation is therefore identical in the two cases, and the
difference is due purely to the differing data and theory set-
tings entering these fits. The NNPDF4.0 (perturbative charm)
result is also shown for guidance.

As discussed further in the main body of the text, it is
clear that there is strong statistical incompatibility between
the two results if the textbook T 2 = 1 criterion is used. For
the dynamic tolerance the compatibility is greatly improved,
with no significant tension observed. On the other hand, even
if these are broadly consistent within these uncertainties,

there are differences between the underlying PDFs. We do
not present a full analysis of this here, but note that for exam-
ple: in the case of the high x gluon, this is found [13] to be
rather sensitive to the precise choice and treatment of LHC
data that are sensitive to this region, and which is known
to be rather different between the NNPDF4.0 and MSHT20
fits; the difference in the down quark may be due in part
to the differing treatments of deuteron corrections, which in
NNPDF4.0 are by default centred on zero [94], while being
allowed to vary away from this in MSHT20 [13]; the treat-
ment of the D → μ branching ratio differs between the two
groups, which enters into the neutrino-induced dimuon pro-
duction cross section in DIS and has an important impact on
the strangeness (Fig. 51).

E.2 MSHT fits with perturbative and fitted charm:
comparison

In this appendix we compare directly the MSHT fits with per-
turbative charm (both with and without positivity imposed)
and with fitted charm, as shown in Fig. 52.

E.3 NNPDF fits without positivity imposed

In this appendix we compare in Figs. 53 and 54 the baseline
NNPDF4.0 fits with perturbative and fitted charm, respec-
tively, to the case where a fit within the same NNPDF4.0
framework is performed, but positivity is not imposed. The
MSHT fit, with T 2 = 1 and no positivity imposed, is shown
for guidance.
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Fig. 50 A selection of PDFs at Q2 = 104 GeV2 that result from a
global PDF fit to the NNPDF4.0 dataset/theory (perturbative charm)
setting, but using the MSHT20 parameterisation. This results of the

MSHT fit with the dynamic tolerance criterium applied for the PDF
uncertainty are shown, as well as the MSHT20 and the NNPDF (per-
turbative charm) PDFs, for comparison
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Fig. 51 As in Fig. 50 but the
MSHT fit is shown with T 2 = 1
uncertainties, while the
MSHT20 PDF uncertainties are
divided by 3, approximately
corresponding to T 2 = 1
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Fig. 52 A comparison of the PDFs at Q2 = 104 GeV2 that result from
MSHT fits to a global PDF fit to the NNPDF4.0 dataset/theory with
perturbative and fitted charm. In the perturbative charm case, results

both with and without positivity imposed are shown, whereas for the
fitted charm result only the case with positivity imposed are shown
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Fig. 53 A selection of PDFs at Q2 = 104 GeV2 due to the baseline NNPDF4.0 (perturbative charm) fit, a fit within the same NNPDF4.0 framework
but without positivity imposed, as well as the MSHT fit to the NNPDF4.0 dataset/theory with T 2 = 1 (and no positivity imposed)
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Fig. 54 As in Fig. 53 but for the fitted charm case
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