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Abstract
This paper introduces LLT-ECG, a novel semi-supervised method for electrocardiogram (ECG)
signal classification that leverages principles from theoretical physics to generate features without
relying on backpropagation or hyperparameter tuning. The method identifies linear laws that
capture shared patterns within a reference class, enabling compact and verifiable representations of
time series data. We evaluate the method on two PhysioNet datasets, TwoLeadECG and variable
projection networks (VPNet). On TwoLeadECG, a minimal configuration—using only the linear
law-based transformation (LLT) and a linear decision rule—reaches 73.1% accuracy using just two
features. On VPNet, LLT-ECG combined with classifiers like k-nearest neighbors and support
vector machines achieves up to 96.4% accuracy, comparable to deep learning models. These results
highlight LLT-ECG’s promise for lightweight, interpretable, and high-performing ECG
classification.

1. Introduction

The success of machine learning systems hinges heavily on how data are represented and processed before
being fed into models. The optimal data representation is often task-specific and may evolve as the problem
or data changes. A significant portion of machine learning research has been devoted to improving data
representations through feature engineering—manually transforming raw data into formats better suited for
learning algorithms. While these handcrafted techniques can boost model performance, they have inherent
limitations. Feature engineering often relies on human intuition, which can lead to suboptimal or
non-generalizable representations. As the scale and complexity of data increase, these methods also become
labor-intensive and less effective, highlighting the need for more automated approaches to data
preprocessing and feature extraction (Bengio et al 2013).

To address the challenges posed by increasing data complexity and variety, modern machine learning has
shifted towards methods that enable algorithms to learn data representations autonomously. This paradigm
shift has yielded impressive advances across various fields, including speech (Dahl et al 2010, 2012) and
image recognition (Krizhevsky et al 2012), where models are now capable of dynamically learning
hierarchical representations from raw data. Hierarchical data organization has also led to breakthroughs in
natural language processing (Bengio et al 2003, Collobert et al 2011), demonstrating its versatility across
domains. Additionally, this concept has roots in neuroscience, particularly in visual information processing
(Hubel and Wiesel 1959), where hierarchies play a crucial role in the brain’s ability to interpret complex
visual stimuli. This idea has inspired the design of convolutional neural networks (CNNs), which mimic the
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hierarchical structure of the human visual cortex (Lecun et al 1998). CNNs have become a cornerstone of
computer vision, demonstrating the power of data-driven representation learning.

Despite these successes, deep learning models such as CNNs are not without significant drawbacks. They
often require large volumes of labeled data and substantial computational resources to train effectively. Their
performance is sensitive to hyperparameter choices and prone to overfitting when data are limited (Kiymaç
and Kaya 2023). Moreover, the inner workings of such models are typically opaque, which poses a challenge
in domains where transparency and trust are critical—such as in healthcare (Hanin 2018, Kemker et al
2018). These limitations motivate the exploration of alternative, lightweight, and more transparent
approaches to learning from time series data.

Electrocardiogram (ECG) signals, a key diagnostic tool in cardiology, present a particularly compelling
use case for such methods. The classification of ECG signals is a well-established research area, with
traditional approaches often relying on handcrafted features derived from domain knowledge (Clifford et al
2006, Mar et al 2011). These methods are often applied alongside preprocessing steps that address issues such
as incompleteness and class imbalance in medical data, both of which pose additional challenges for classifier
models (Hassler et al 2019). Although effective, these methods struggle to scale or adapt to variations
between patients. On the other hand, deep learning-based techniques offer high performance but tend to
require substantial amounts of annotated data, often lack transparency, and can be computationally
expensive to train and deploy. Thus, there exists a gap in the literature: a need for feature extraction
techniques that combine the efficiency and transparency of traditional methods with the adaptability and
robustness of modern representation learning.

In this paper, we aim to bridge this gap by proposing LLT-ECG, a novel semi-supervised method for ECG
classification that generates features without the need for backpropagation or hyperparameter tuning.
LLT-ECG builds on the idea of linear laws—common, conserved relationships within a class of time series
data—and draws inspiration from theoretical physics, particularly from principles such as renormalization.
These laws allow us to extract compact, class-specific representations from raw time series, enabling a
lightweight yet effective transformation of ECG signals into a feature space that is often linearly separable.
This transformation supports efficient and transparent classification using even basic models.

Our method is particularly well-suited for real-world medical applications, where data may be limited,
transparency is essential, and computational efficiency is critical. Unlike prior work on the linear law-based
transformation (LLT), which focused on general-purpose time series classification (Kurbucz et al 2022,
2024), the current study adapts and extends the method to the unique structure of ECG data. This includes
accounting for the periodic and spike-like nature of heartbeats, as well as evaluating performance across
benchmark datasets with varying characteristics.

The main contributions of this paper are as follows:

• We introduce LLT-ECG, a novel method that integrates ECG signal preprocessing with semi-supervised
feature extraction based on linear laws—approximate, class-specific linear relationships that persist across
time-embedded segments. Inspired by principles from physics, LLT-ECG captures underlying structure in
ECG signals, enabling interpretable and accurate classification.

• We introduce a hyperparameter-free, forward-only transformation that avoids backpropagation, gradient-
based optimization, or large-scale parameter tuning. This design results in a lightweight and interpretable
representation that is especially suitable for healthcare and edge-device applications.

• Unlike black-box deep learningmodels, LLT-ECG generates mathematically transparent features that reflect
class similarity, allowing for traceable decisions and reducing the reliance on large labeled datasets.

• We demonstrate that the LLT transformation typically maps raw ECG signals into nearly linearly separ-
able spaces, enabling effective classification using simple linear models—thereby highlighting the method’s
practical efficiency without sacrificing performance.

The remainder of this paper is structured as follows. Section 2 provides an overview of related work in ECG
signal classification and feature extraction. Section 3 presents the proposed LLT-ECG classification pipeline,
including its mathematical foundations, feature extraction process, and its application to multiclass and
anomaly detection scenarios. Section 4 describes the datasets used for evaluation. The experimental results
and performance comparisons are presented in section 5, followed by a detailed discussion in section 6.
Finally, section 7 concludes the paper and outlines directions for future work.
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2. Related work

2.1. ECG classification
Computer-assisted ECG analysis has a long history (Luz et al 2016) and remains an active area of research,
driven by the increasing volume of data generated by modern technologies. Advances in data acquisition
tools—such as the Internet of things, wearable devices, and smart technologies (Serhani et al 2020)—have
facilitated commercial applications in ECG monitoring. These innovations have resulted in the generation of
vast datasets that necessitate efficient storage, processing, and interpretation. Key challenges within this field
include data labeling for training purposes and the extraction of pertinent features that encapsulate medical
information while mitigating noise interference. Data labeling is typically labor-intensive and costly, thereby
constraining the availability of training datasets. To address this limitation, self-supervised learning
methodologies have been developed (Rafiei et al 2022). Concurrently, feature extraction remains a complex
endeavor, achievable either through manual feature engineering or via automated representation learning
techniques (Kiranyaz et al 2016, Kovács et al 2022).

2.2. Feature extraction in clinical settings
In clinical settings, decision-making processes must be transparent, often leading to a preference for
handcrafted features that combine medical expertise with signal processing knowledge. Temporal and
statistical features—such as RR intervals, ECG durations, and moment-based indices—are widely studied in
the literature (Mar et al 2011, Luz et al 2016). Additionally, morphological features related to the shapes of
key ECG waveforms (including the QRS complex, T-wave, and P-wave) are critical, especially for detecting
arrhythmias, which is the primary focus of this section (Clifford et al 2006).

2.3. Morphological and frequency-based feature extraction
Several methodologies exist for extracting morphological features from ECG signals. Time-domain
approaches operate directly on ECG signal samples (de Chazal et al 2004), calculating metrics such as power,
derivatives, and extreme values (Jekova et al 2008, Letz et al 2023). However, these features are often
susceptible to noise, prompting a frequent transition to frequency-domain feature extraction. Spectral
methods, such as linear filtering, presume weak stationarity of the signal—a condition frequently unmet in
ECG data due to physiological variabilities like respiration, body movement, and arrhythmia. To
accommodate the nonstationary nature of ECG signals, joint time–frequency representations have been
proposed, including the short-time Fourier transform, Choi–Williams distribution, and multiwindow
spectrogram (Cakrak and Loughlin 2001). Unlike these techniques, wavelet transformations employ time
windows of varying widths, thereby enhancing temporal and spectral localization of nonstationary features.
This flexibility has rendered wavelets a preferred tool for ECG signal processing (Addison 2005).

2.4. Adaptive data-driven transformations
Despite the availability of diverse joint time–frequency representations, the foundational components—such
as window functions or mother wavelets—are typically predetermined, which can be restrictive in ECG
analysis where morphological features exhibit temporal and inter-individual variability. To overcome this
limitation, adaptive data-driven transformations have been introduced. These approaches represent ECG
signals using a series of basis functions optimized according to specific criteria. Techniques like variable
projections with parameterized basis functions (e.g. Hermite, spline, and rational functions) offer optimal
representations in a least-squares sense (Bognár and Fridli 2020, Kovács et al 2020). In contrast, principal
component analysis (PCA) transforms data by identifying orthogonal directions that maximize variance
(Castells et al 2007), while independent component analysis (ICA) seeks to maximize higher-order statistics,
such as kurtosis, to achieve blind source separation (Chawla 2009). Linear transformations, including PCA
and ICA, which map input features into well-separated spaces, can also be derived from data-driven learning.
For instance, the neural dynamic classification algorithm (Rafiei and Adeli 2017) constructs a feature map
that minimizes intra-class variance while maximizing inter-class variance.

3. Methodology

This section introduces the LLT-ECG methodology, which integrates time-series embedding, the
construction of linear laws, and feature transformation into a unified classification framework. We begin
with an overview of the classification pipeline, then introduce the mathematical formulation of the
approach, and finally describe how it supports both multiclass classification and anomaly detection.

3
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Figure 1. LLT-ECG pipeline.

3.1. Overview of the LLT-ECG pipeline
The proposed ECG classification method, LLT-ECG, consists of the following four stages, as summarized in
figure 1:

1. Preprocessing: the dataset is segmented into various subsets based on lead differentiation and beat
classification scenarios, followed by standard noise filtering and data normalization procedures.

2. Learning phase: linear laws are fitted to the normal class within the training set, capturing the underlying
factors that characterize normal ECG patterns in the dataset.

3. Feature extraction: the established linear laws are utilized to transform the data into a new
representation, thereby enhancing features pertinent to classification. This step builds upon previous
work involving linear laws (Jakovác et al 2022, Kurbucz et al 2022) and introduces the LLT method,
specifically tailored to accommodate the spike-like characteristics of ECG signals.

4. Classification: classifiers are trained within the transformed feature space, and their performance is
subsequently evaluated using the test set.

This structured pipeline integrates the LLT algorithm with robust classifiers, enabling accurate and
lightweight ECG analysis. Furthermore, this approach offers potential for developing transparent AI
methods for ECG classification (see proposed future work in section 7).

3.2. Mathematical formulation of linear laws
We now present the mathematical foundations necessary for understanding linear laws (Jakovac et al 2020,
Jakovac 2021, Jakovác et al 2022, Kurbucz et al 2022) and how they are used in the LLT-ECG transformation
for ECG signal classification.

Consider a time series y : R→ V, whereV is a finite-dimensional Hilbert space. In practice, we work with
finite-dimensional representations; thus, we assume that a faithful finite-dimensional representation of the
time series is provided. Consequently, we can construct a finite set of n-length samples from this time series:

Y =

{
Y(k) ∈ Vn+1

∣∣∣∣ Y(k)
i = y(tk − i∆t) , i ∈ {0, . . . ,n} , k ∈ {n, . . . ,K}

}
, (1)

where K,n ∈ N,∆t is the sampling interval of the time series, and y(tk) denotes the value of the time series at
time tk. This construction is known as the time delay embedding of the time series, which is sufficient to
capture the dynamic state of the system (Packard et al 1980, Takens 1981). The selection of tk values that
serve as base points for the n-length samples can be adapted to suit specific applications. In this work, we
generate maximally overlapping n-length samples for a time series of length L. To achieve this, we consider
mappings of the following form:

F : Vn+1 → R, F
(
Y(k)

)
= 0, ∀k. (2)

In this study, we focus exclusively on linear mappings. This assumption constrains the form of F in

equation (2). For convenience, we introduce matrix notation for the embedded time series Y(k)
i from

equation (1):

Yki = Y(k)
i = y(tk − i∆t) . (3)

Using this notation, the linear mapping F can be expressed as:

F
(
Y(k)

)
=

n∑
i=0

Ykiwi ≡ (Yw)k = 0, ∀k, (4)

where w is a weight vector of length n+ 1. We refer to this construction as a ‘linear law’ F , represented by the
vector w. As mentioned in the introduction, the intuition behind this nomenclature originates from physics:

4
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F can be considered a ‘law’ on the set Y because it satisfies equation (4). This represents an ideal scenario
that cannot be achieved empirically due to factors such as noise. Therefore, we utilize linear mappings that
satisfy equation (4) with a random quantity ξ instead of zero, where ⟨ξ ⟩= 0. We refer to these linear
mappings as ‘laws’.

3.3. Determining linear laws from data
To determine the coefficients wi of the linear law, we express equation (4) as ∥Yw∥= 0. Using the standard
quadratic norm, this becomes:

∥Yw∥2 = 1

K
(Yw)T (Yw) = wTCw= 0, (5)

where

C=
1

K
YTY, (6)

is the correlation matrix of the dataset.
To avoid the trivial solution w= 0, we impose ∥w∥= 1, transforming the problem into a constrained

minimization task. Using Lagrange multipliers, we define:

χ2 (λ) = wTCw−λ
(
wTw− 1

)
→minimize, (7)

where λ is the Lagrange multiplier. The solution satisfies the eigenvalue equation

Cw(λ) = λw(λ), (8)

yielding n+ 1 eigenvectors with corresponding eigenvalues λ. To select the optimal eigenvector, consider that
an exact linear law satisfies ∥Yw∥= 0. However, due to noise, the laws yield a non-zero quantity:

F
(
Y(k)

)
=

n∑
i=0

Ykiwi ≡ ξk, (9)

where ⟨ξ ⟩= 0. Substituting into equation (5) gives:

∥Yw∥2 = 1

K

K∑
k=1

ξ2k =
〈
ξ2
〉
. (10)

Meanwhile, from equation (8), we have

∥Yw∥2 = λwTw= λ. (11)

Comparing equations (10) and (11), the variance
〈
ξ2
〉
equals λ. Therefore, the optimal linear law

corresponds to the eigenvector with the smallest eigenvalue, minimizing the variance and approximating
∥Yw∥= 0. This eigenvector is guaranteed to exist as C is symmetric and positive definite.

The linear law is similar to the PCA method, but instead of the largest eigenvalue, we select the smallest.
Thus, wi is orthogonal to the dataset, indicating minimal variation in the direction of w. This identifies a
common property, analogous to the normal vector of a hyperplane fitting the data.

In practice, the laws are never exact due to variations such as noise in the data. Consequently, the values
of the optimal laws fall within a narrow range around zero for each respective class. When used to generate
features, this results in class elements clustering near zero, while non-class elements are positioned farther
from zero. This property provides a natural framework for classification algorithms.

Our formulation assumes a long time series sample, embedded into the matrix Yki. In many cases,
however, the learning set consists of labeled time series samples ym(t), wherem ∈ N. This situation can be

reduced to the previous case. By applying the embedding process to each sample, we generate matrices Y(m)
k′i ′ ,

which can be concatenated along their first axis (rows) to form a compound matrix Yki. Since the rows
represent time-embedded samples and their order is irrelevant for calculating the linear law, this
concatenation simply increases the learning set.

5
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In standard notation, this augmentation forms a larger block matrix with extended rows. If each sample

has a uniform length L and the embedding depth is I, the matrix Y(m)
k′i ′ has dimensions (L− I+ 1)× I. ForM

samples, concatenating them yields a matrix Yki with dimensions ((L− I+ 1) ·M)× I:

Yki =


Y(1)
k′i ′

Y(2)
k′i ′

...

Y(m)
k′i ′

 . (12)

This augmented matrix can be treated as Yki in the previous formulation. Thus, the linear law determination
process remains consistent, independent of the dataset’s structure, as all samples are embedded into a unified
matrix.

3.4. Feature extraction and classification
After deriving the linear laws from the training data, we now explain how they are used to extract features
and perform classification. In particular, this section describes how linear laws transform datasets and
generate class-specific feature representations, supporting both multiclass and anomaly detection tasks.

We assume that linear laws encapsulate properties common to the elements of a defining set. This is
formalized as a mapping from classes to linear laws:

H : Cj → w( j)
i , (13)

where Cj represents the sets corresponding to the classes in the dataset (j ∈ N). The elements of a class can be
transformed by linear laws as follows. Let ym(t) denote a sample from a given class, which is a time series.
First, the time series is embedded in the standard manner, as described in equations (1) and (3). This maps

the L-length time series sample into an (L− n+ 1)× nmatrix Y(m)
ki . Then, the linear law w( j)

i is applied to
the sample, analogous to equation (9):

n∑
i=0

Y(m)
ki w( j)

i = ξ
(m,j)
k , (14)

where the vector ξ(m,j)
k contains the transformed features of samplem according to the linear law w( j)

i , which
corresponds to class Cj. As illustrated by equation (9), these features quantify how effectively a linear law can
transform the subsamples of a given sample to zero. The closer the transformed subsamples are to zero, the

better the linear law describes the sample. Intuitively, the linear law w( j)
i transforms elements of class Cj

closer to zero than samples from other classes. Consequently, the features resulting from the transformation

with w( j)
i act as similarity detectors for elements of class Cj.

3.4.1. Multiclass classification
The LLT features defined in equation (14) can be utilized for multiclass classification as follows. To assess a
sample’s similarity to each class, it must be transformed by the linear laws of all classes. Conceptually, when
transforming an unknown sample, it is necessary to apply all linear laws corresponding to the possible classes
to facilitate comparison. Using this transformed information, a classifier can be trained to recognize how
elements of each class appear after being transformed by the linear laws of other classes. If the linear laws of
different classes produce distinct transformations, the resulting feature vectors will be significantly different,
especially when using the correct class’s linear law. This separation in the abstract feature space enhances the
performance of classifier algorithms by increasing the distance between samples from different classes.

Let the jth class (and its corresponding linear law, as per equation (13)) be indexed by j. Then, the
transformed features for a sample ym(t) can be organized into a feature vector as follows:

ξm =
[
ξ
(m,1)
k , ξ

(m,2)
k , . . . , ξ

(m,J)
k

]
. (15)

This vector comprises the feature vectors corresponding to each class5. Depending on the application, this
feature vector can be processed differently. One approach is to flatten ξm by concatenating the individual

5 The feature generation approach in the LLT-ECGmethod presented in this paper differs from the original LLT algorithm (Kurbucz et al
2022). In this method, we segment the signals to detect deviations from healthy patterns, whereas the original LLT analyzes the entire
series using statistical measures such as mean and variance.
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ξ
(m,j)
k sequentially. Generally, this results in a feature vector of length (L− n+ 1) · J, where J is the number of
classes and n is the length of the linear law. In practice, this feature vector can be downsampled if a less
detailed representation suffices for classification.

3.4.2. Application to anomaly detection
In binary classification scenarios (J= 2), the feature vector ξ can be significantly simplified. It suffices to use
the linear law corresponding to the reference class:

ξm = ξ
(m,1)
k . (16)

This simplification is particularly advantageous for anomaly detection, where a well-defined reference class is
provided, and the objective is to distinguish samples from this class from others that may not belong to any
predefined class. By using only the reference class’s linear law, the classifier focuses on determining whether a
given sample resembles the reference class. This approach can also be considered a form of outlier detection,
as it does not require a linear law for the outliers, which may not be well-defined or existent. Nonetheless,
some outlier samples are necessary to train the classifier after the LLT transformation.

For example, in classifying ECG signals between normal and ectopic types, numerous ectopic variations
exist, but the goal is not to classify these variations individually. Instead, the task is to identify whether an
ECG signal is healthy. Normal heartbeats are selected as the reference class, and ectopic signals are classified
as ‘not normal.’ Each sample is transformed using the linear law derived from normal heartbeats, and the
resulting features quantify the similarity of a sample to normal ECG signals. This constitutes a
semi-supervised feature learning approach in which only a subset of the data, specifically the reference class
samples, needs to be labeled.

In our experiments, the linear laws were derived exclusively from samples labeled as normal (healthy)
heartbeats in the training set. Then these laws were used to transform all ECG signals, including ectopic
samples, into the LLT feature space. This design enables LLT-ECG to function as a semi-supervised method,
since labeled data are required only for the reference class during feature construction. Note that this is
advantageous in clinical settings, where the majority class primarily consists of normal heartbeats, which are
much easier to collect than rare abnormalities. This makes the proposed framework well-suited for
personalized training scenarios, where just a few seconds of data can be used to adapt the model to an
individual patient.

4. Employed datasets

In this study, we utilized two datasets: TwoLeadECG (Keogh 2019) and variable projection networks (VPNet)
(Kovács et al 2022). Both datasets are derived from the PhysioNet MIT-BIH Arrhythmia Database (Moody
and Mark 2001).

4.1. TwoLeadECG dataset
To demonstrate the transformation capabilities of the LLT algorithm in the ECG context—as applied by the
proposed LLT-ECG approach—we employed the TwoLeadECG dataset, a subset of the MIT-BIH Long-Term
ECG database (Moody and Mark 2001). This dataset comprises long-term recordings from the same patient
using two different leads. It contains a total of 1162 samples, with 581 labeled as Class 1 and 581 labeled as
Class 2. Each sample consists of 82 consecutive measurements. The classification task involves distinguishing
between signals originating from each lead. Following the approach of Harada et al (2019), we randomly
divided the dataset into training and test sets, resulting in 523 signals for training and 639 signals for testing.

4.2. VPNet dataset
For training and testing purposes, we utilized the VPNet dataset (Kovács et al 2022), which consists of QRS
complexes. This balanced subset of the MIT-BIH database (Moody and Mark 2001) includes only healthy
and ectopic beats. The training-testing split adheres to the protocol defined by de Chazal et al (2004),
ensuring that samples from the same patients are not present in both the training and testing sets. This
separation guarantees that the results generalize well to new samples. The training set comprises 8520
samples, while the test set contains 6440 samples. Examples from the dataset are illustrated in figure 2.

For this study, the VPNet dataset was further divided into three parts: 40% of the training set was
allocated for training, and the remaining 60% was designated as a validation set, primarily used to tune the
hyperparameters of various classifiers. The original test set remained unchanged and was solely used to
evaluate classification accuracy.

Samples were processed using standard procedures (Clifford et al 2006, Joshi et al 2013, Gospodinov et al
2019). Initially, low-pass and high-pass filters with cutoff frequencies of 20Hz and 0.5Hz, respectively, were

7
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Figure 2. Examples from the learning set.

applied to remove noise and baseline shifts. Subsequently, the signals were standardized to have a zero mean
and normalized by their maximum value. The QRS peaks were identified, and each sample was segmented to
include 30 data points centered on the QRS complex peak, corresponding to L= 30 in equation (12).

Although LLT-ECG constructs its features using only the annotated normal class, all classifiers (including
LLT-ECG) were trained using the full labeled training set to ensure a fair comparison, since the baseline
methods cannot operate under partial labeling.

5. Experimental results

5.1. Evaluating LLT transformation using the TwoLeadECG dataset
This section provides an in-depth demonstration of how LLT-ECG transforms the input feature space to
support classification. We use the TwoLeadECG dataset (Keogh 2019), a binary classification task derived
from the MIT-BIH Arrhythmia Database (MIT-BIH 2005). The dataset includes 523 training and 629 test
signals, each comprising 82 consecutive samples. The objective is to distinguish between signals from two
different ECG leads recorded from the same patient6.

Rather than applying end-to-end training, we evaluate the discriminative power of the LLT
transformation itself. Specifically, we apply LLT to the test set and assess how well the transformed features
separate the two classes using a simple linear decision rule. This analysis highlights the transformation’s
ability to yield linearly separable representations.

5.1.1. LLT-based feature transformation and evaluation protocol
We construct linear laws using a rolling window of length 11 applied to the test signals7. Each 82-length
signal yields 72 embedded subsequences, generating a total of 45 288 linear laws across the test set. These laws
are grouped into two sets based on class labels.

To increase the classification challenge and simulate streaming data, we randomly selected a single
11-length series from each test signal. We then took the first test signal, applied a 6th-order time-delay
embedding, and computed its product with both law matrices. The results were squared to ensure all values
were non-negative8. We computed the column means of the squared matrices and stored 25 percentiles (poc ,
where o ∈ {1,2, . . . ,25}) for each class c.9 Finally, we evaluated the accuracy of each percentile pair as a linear
separator between the two classes (c ∈ {1,2}) using the following equation:

(Count( po1 ⩽ po2 ∗α | c= 1 ) +

Count( po1 > po2 ∗α | c= 2 )) / 523,
(17)

where α ∈ 0.01,0.02, . . . ,2.00, and N is the total number of signals (in this case, N = 629). The accuracy of
each percentile pair is depicted in figure 3.

As shown in figure 3, the 16th percentiles (p161 and p162 ) achieved the best separation, reaching a total
accuracy of 73.07% with α= 0.97. The discriminative power of these two features is illustrated in figure 4.

6 The complete experimental configuration for both datasets, including embedding details and classifier settings, is provided in appendix.
7 This corresponds to a 6th-order time-delay embedding. The resulting embedded matrix is symmetric, with the latest sample at the final
diagonal position.
8 These calculations were performed using the LLT R package (Kurbucz et al 2024).
9 The column means represent the ‘goodness of fit’ of the laws; lower percentiles correspond to better-fitting laws.
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Figure 3. Accuracy of each percentile pair in linear discrimination.

Figure 4. Discriminative power of the best percentile pair.

5.1.2. Comparison to benchmark classifiers
For benchmarking, classifiers were applied to the raw signals—optionally transformed using standard
dimensionality reduction techniques—without the LLT transformation. We trained 34 variations of 11
standard classifiers, both with and without dimensionality reduction techniques such as PCA, kernel PCA
(Schölkopf et al 1998), uniform manifold approximation and projection (UMAP) (McInnes et al 2018), and
t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton 2008), on the test set10.
Table 1 summarizes their average and maximum accuracies.

5.2. Classification results on the VPNet dataset
Here, we present the results of the LLT-ECG method compared to both simple learning methods—such as
random forests (RFs) (Ho 1995), k-nearest neighbors (KNNs) (Altman 1992), support vector machines
(SVMs) (Cortes and Vapnik 1995), and a basic NN (McCulloch and Pitts 1943, Lippmann 1987, Abadi et al
2015)—as well as more complex classifiers, including deep NNs (DNNs).

5.2.1. Simple learning methods
The performance of LLT-ECG-based classification methods is summarized in table 2.11

Standard performance metrics were used to evaluate the classifiers. Total accuracy (ACC) is defined as:

ACC=
TP+TN

TP+ FN+TN+ FP
, (18)

10 Each classifier was evaluated using 10-fold cross-validation. The KPCA, UMAP, and t-SNE transformations were performed using the
kernlab, umap, and Rtsne R packages, respectively. t-SNE yielded 2 components, while the other methods provided 5 components.
11 To confirm the class-specificity of LLT features, we computed statistical descriptors (e.g. mean, median, standard deviation, minimum,
maximum, interquartile range) for each sample and applied the Wilcoxon test (3878 healthy vs 4250 ectopic). Most metrics showed
significant differences (p< 10−50), except for skewness and kurtosis (p= 0.75, p= 0.79).
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Table 1. Benchmark classification accuracies on the TwoLeadECG test set. LLT with linear discriminator achieves 73.07% accuracy using
only two features (16th percentiles).

Classifier Num. of ver. Versions (best is italics) Mean acc. (%) Max. acc. (%)

Binary GLM logistic
regression

1 49.452 49.452

Binary GLM logistic
regression (PCA)

1 52.895 52.895

Binary GLM logistic
regression (KPCA)

1 52.895 52.895

Binary GLM logistic
regression (UMAP)

1 50.704 50.704

Binary GLM logistic
regression (t-SNE)

1 55.399 55.399

Discriminant 2 Linear, quadratic 51.487 53.678
Discriminant (PCA) 2 Linear, quadratic 52.895 52.895
Discriminant (KPCA) 2 Linear, quadratic 53.521 54.304
Discriminant (UMAP) 2 Linear, quadratic 53.834 56.964
Discriminant (t-SNE) 2 Linear, quadratic 55.086 55.399
Efficient linear SVM 1 48.357 48.357
Efficient linear SVM (PCA) 1 50.861 50.861
Efficient linear SVM (KPCA) 1 53.678 53.678
Efficient linear SVM (UMAP) 1 51.017 51.017
Efficient linear SVM (t-SNE) 1 53.678 53.678
Efficient logistic regression 1 48.357 48.357
Efficient logistic regression
(PCA)

1 52.895 52.895

Efficient logistic regression
(KPCA)

1 53.365 53.365

Efficient logistic regression
(UMAP)

1 50.704 50.704

Efficient logistic regression
(t-SNE)

1 55.399 55.399

Ensemble 5 Bagged-, boosted-, RUSboosted trees, subs.
KNN, -disc.

65.509 78.091

Ensemble (PCA) 5 Bagged-, boosted-, RUSboosted trees, subs.
KNN, -disc.

59.906 67.919

Ensemble (KPCA) 5 Bagged-, boosted-, RUSboosted trees, subs.
KNN, -disc.

62.754 68.075

Ensemble (UMAP) 5 Bagged-, boosted-, RUSboosted trees, subs.
KNN, -disc.

61.565 70.110

Ensemble (t-SNE) 5 Bagged-, boosted-, RUSboosted trees, subs.
KNN, -disc.

61.064 69.640

Kernel 2 Logistic regression, SVM 69.405 71.049
Kernel (PCA) 2 Logistic regression, SVM 62.363 62.441
Kernel (KPCA) 2 Logistic regression, SVM 62.676 63.850
Kernel (UMAP) 2 Logistic regression, SVM 65.102 65.101
Kernel (t-SNE) 2 Logistic regression, SVM 54.851 56.182
KNN 6 Fine, medium, coarse, cosine, cubic, weighted 69.014 78.404
KNN (PCA) 6 Fine, medium, coarse, cosine, cubic, weighted 63.589 69.484
KNN (KPCA) 6 Fine, medium, coarse, cosine, cubic, weighted 63.250 66.510
KNN (UMAP) 6 Fine, medium, coarse, cosine, cubic, weighted 63.485 67.762
KNN (t-SNE) 6 Fine, medium, coarse, cosine, cubic, weighted 65.023 71.987
Naive Bayes 2 Gaussian, kernel 55.008 56.964
Naive Bayes (PCA) 2 Gaussian, kernel 54.617 56.495
Naive Bayes (KPCA) 2 Gaussian, kernel 55.947 58.842
Naive Bayes (UMAP) 2 Gaussian, kernel 53.443 53.521
Naive Bayes (t-SNE) 2 Gaussian, kernel 54.773 55.086
NN 5 Narrow, medium, wide, bilayered, trilayered 74.773 77.465
NN (PCA) 5 Narrow, medium, wide, bilayered, trilayered 71.487 73.396
NN (KPCA) 5 Narrow,medium, wide, bilayered, trilayered 71.362 74.961
NN (UMAP) 5 Narrow, medium, wide, bilayered, trilayered 68.263 71.362
NN (t-SNE) 5 Narrow, medium, wide, bilayered, trilayered 71.424 75.743

(Continued.)
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Table 1. (Continued.)

Classifier Num. of ver. Versions (best is italics) Mean acc. (%) Max. acc. (%)

SVM 6 Linear, quadratic, cubic, fine-, medium-,
coarse Gaussian

58.764 79.030

SVM (PCA) 6 Linear, quadratic, cubic, fine-, medium-,
coarse Gaussian

53.365 65.102

SVM (KPCA) 6 Linear, quadratic, cubic, fine-, medium-,
coarse Gaussian

57.512 69.640

SVM (UMAP) 6 Linear, quadratic, cubic, fine-, medium-,
coarse Gaussian

53.469 60.720

SVM (t-SNE) 6 Linear, quadratic, cubic, fine-, medium-,
coarse Gaussian

53.599 65.571

Tree 3 Fine, medium, coarse 61.189 68.232
Tree (PCA) 3 Fine, medium, coarse 61.189 65.884
Tree (KPCA) 3 Fine, medium, coarse 61.242 67.293
Tree (UMAP) 3 Fine, medium, coarse 61.607 69.953
Tree (t-SNE) 3 Fine, medium, coarse 62.493 67.293

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, false positives, and false
negatives, respectively. Sensitivity (Se), also known as recall, is defined as:

Se=
TP

TP+ FN
. (19)

Precision (+P), or positive predictive value, is defined as:

+P=
TP

TP+ FP
. (20)

These performance metrics were calculated for both the validation and test sets to examine how well the
LLT-generated features generalize to a new group of patients. The validation set contains ECG signals from
the same patients as the training set, whereas the test set comprises signals from different patients than those
in the training and validation sets. These results characterize the real-world performance of the proposed
method on new, previously unseen data. As observed in table 2, the metrics are similar for both sets, falling
within the range of state-of-the-art methods (Luz et al 2016).

5.2.2. DNNs
Table 3 summarizes the classification accuracy, specificity (Sp), and sensitivity (Se) for state-of-the-art ECG
classification methods.

The first group of methods (CNN, SNN, SCNN, and VPNet) was trained on the balanced VPNet dataset,
as detailed in section 4.2, and underwent an extensive hyperparameter search covering the learning rate,
optimizer, number of hidden neurons, and activation function. Consequently, table 3 reports the
performance of the models with their best-performing configurations.

In contrast, the state-of-the-art DNN architectures in the second group were trained on an imbalanced
version of the VPNet dataset, where the majority class (normal) was not downsampled to match the number
of ectopic samples. Both groups followed the same training-test split protocol as used in the balanced dataset
version (de Chazal et al 2004), ensuring the results in tables 2 and 3 are comparable.

The bottom row of table 3 presents the corresponding inter-patient performance ranges of
state-of-the-art methods, derived from the entries in table 5 of Qiao et al (2023), which were trained and
tested on the DS1/DS2 subsets of the MIT-BIH Arrhythmia Dataset (Goldberger et al 2000). Based on Qiao
et al (2023), we also report the performance metrics of specific deep learning models for which the number
of parameters was either published or could be calculated. These include DNNs with three and six fully
connected hidden layers, as well as variations of DenseNet, ResNet, CNN, LSTM, and an adaptation of the
VGGNet architecture (Simonyan and Zisserman 2015) known as O-WCNN. In addition, we have indicated
the top-performing LLT-ECG classifier model from table 2.

6. Discussion

6.1. Results on the TwoLeadECG dataset
The benchmark classifiers presented in table 1 explored a broad spectrum of machine learning
paradigms—including logistic regression, discriminant analysis, SVMs, decision trees, ensemble methods,
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Table 2. LLT-ECG-based classification performance of simple methods evaluated on the VPNet dataset (Kovács et al 2022). The general performance ranges of state-of-the-art (sota) methods, which are not necessarily trained on the
same dataset, are also presented in the last two rows based on da S. Luz et al (2016) and Ansari et al (2023). The highest value in each column is highlighted.

Validation Test

Normal Ectopic Normal Ectopic

Method Total accuracy Se +P Se +P Total accuracy Se +P Se +P

RF 93.6% 94.3% 93.1% 93.0% 94.2% 92.1% 92.9% 91.4% 91.2% 92.8%
SVM (rbf) 95.0% 96.3% 93.8% 93.6% 96.2% 94.3% 94.4% 94.2% 94.2% 94.4%
SVM (linear) 89.4% 89.9% 89.0% 88.9% 89.8% 91.8% 93.2% 90.6% 90.4% 93.0%
NN 95.2% 95.7% 94.7% 94.7% 95.6% 93.1% 94.0% 92.3% 92.2% 93.9%
KNN (k= 4) 96.4% 97.4% 95.5% 95.4% 97.4% 91.5% 95.0% 88.8% 88.0% 94.6%
sota till 2016 N/A N/A N/A N/A N/A N/A 80%–99% 85%–99% 77%–96% 63%–99%
sota 2017–2023 N/A N/A N/A N/A N/A 96%–99% N/A N/A 71%–100% 44%–98%
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Table 3. Classification performances of DNNs on the test set.

Architecture Number of parameters Accuracy Sp Se

Proposed (LLT-ECG+ SVM (rbf) 12 94.3% 94.4% 94.2%

CNN Kovács and Samiee (2022) 212610 95.92% 96.09% 95.75%
SNN Kovács and Samiee (2022) 58880 95.59% 93.73% 97.45%
SCNN Kovács and Samiee (2022) 376704 95.42% 95.31% 95.53%
VPNet Kovács et al (2022) 39 96.65% 96.83% 96.61%

Raw data+ DNN Xu et al (2019) 61900 99.70% 99.89% 97.68%
6 features+ DNN Jun et al (2016) 11700 99.41% N/A 96.08%
DenseNet+ BiLSTM Gan et al (2021) 857700 92.37% 94.51% 68.29%
Deep residual CNN Li et al (2022) >2026 88.99% 94.75% 52.10%
O-WCNN Jangra et al (2023) >52mil 99.43% 99.69% 91.06%

State-of-the-art Qiao et al (2023) N/A 88%–99% 88%–99% 52%–98%

KNNs, naïve Bayes, and shallow NNs—each with multiple configurations and hyperparameter settings.
These configurations involved various kernel types (e.g. linear, RBF, polynomial), regularization strategies,
distance metrics, and network architectures, contributing to the complexity of these models. Despite this,
most benchmark configurations did not surpass the performance of the proposed approach, which applies
the LLT transformation to ECG signals and classifies them using a simple linear decision rule, achieving an
accuracy of 73.071% using only two features.

Only a small number of benchmark methods exceeded this accuracy: for example, the
highest-performing SVM variant reached 79.030%, KNN peaked at 78.404%, and ensemble methods
achieved up to 78.091%. However, these models required more complex architectures and hyperparameter
tuning, often relying on all 11 original features or reduced representations obtained via dimensionality
reduction (e.g. 2 components with t-SNE, 5 components for PCA, KPCA, and UMAP). In contrast,
LLT-ECG achieved its results with a minimalist, transparent setup.

These findings suggest that the LLT transformation, as applied in LLT-ECG, successfully maps the
original ECG signals into a nearly linearly separable feature space (see figure 4). This enables competitive
classification performance using simple models, bypassing the need for deep learning architectures or
complex pre-processing pipelines. Unlike approaches that require backpropagation and large-scale
optimization, LLT-ECG is lightweight, transparent, and easy to audit—making it especially suitable for
applications where transparency is critical.

6.2. Results on the VPNet dataset
In our second experiment (see table 2), we first applied several simple classifiers within the LLT-ECG
framework and compared their performance to state-of-the-art methods. We then extended the comparison
to include complex DNNs to evaluate the proposed method against advanced architectures.

6.2.1. Simple learning methods
According to the results presented in table 2, basic learning methods—such as RF, KNN, SVM, and
NN—were effectively trained as part of the ECG-LLT framework. For the RF classifier, we balanced the
number of estimators and tree depth to avoid overfitting. By selecting 10 estimators with trees of depth 6, we
achieved comparable performance on both validation and test sets, indicating successful generalization.

The KNN classifier was optimized using the validation set, resulting in k= 4 with the Chebyshev metric.
This configuration yielded the highest overall accuracy on the validation set, although its performance on the
test set was less convincing, particularly in terms of sensitivity for ectopic beats. Since KNN relies on
proximity to training samples, new patient data in the test set that are farther from training samples in the
feature space led to reduced accuracy. In contrast, NN and SVM can better generalize due to their ability to
learn more complex patterns.

The SVM classifier, particularly with a nonlinear kernel, is well-suited to the LLT-transformed feature
space, effectively finding separating hypersurfaces between clusters. It provided high and consistent accuracy,
exceeding 94% on both validation and test sets, demonstrating that the LLT-ECG successfully extracts
meaningful features. Even a linear SVM achieved approximately 90% accuracy, suggesting that the proposed
method maps samples into distinct regions that are linearly separable.

Furthermore, a simple NN with one hidden layer—an input layer of 24 neurons, a hidden layer of 8
neurons, and an output layer of 2 neurons—was sufficient to achieve good classification performance. The
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NN generalized well, with similar accuracies on validation and test sets (table 2). This simplicity indicates
that the LLT-ECG effectively captures the necessary features.

6.2.2. DNNs
The proposed LLT-ECG classification method typically achieves a test accuracy that is about 1%–2% lower
than the first group of methods and approximately 5% lower than the top-performing DNN approaches. On
the other hand, all of these methods require training via backpropagation, and most of them yield deep AI
models with high complexity. In contrast, the proposed method operates without the need for error
backpropagation, and the number of parameters, i.e. the length of the linear law (n), is equal to 11.
Moreover, as presented in section 5.1, the LLT transformation extracts valuable features for classifying
streaming data without the necessity for precise data alignment. This does not apply to its end-to-end DNN
counterparts (Jun et al 2016, Xu et al 2019), which segment and align heartbeats using the characteristic
points of ECG waveforms (such as QRS, T, P). For this reason, improper peak detection and beat alignment
may lead to high variability in the feature vectors (Xu et al 2019), potentially degrading classification
accuracy on noisy data. The proposed LLT transformation, however, provides more robust features with
decent discrimination power.

6.3. Real-world applicability and limitations
The primary computational complexity in constructing linear laws is determined by the column dimension
of the matrix Yki in equation (12). Specifically, the eigenvectors of the correlation matrix C in equation (6)
can be computed using singular value decomposition, which requires 4mn2 + 8n2 floating-point operations
(flops) for anm× nmatrix, wherem≥ n—see table 8.6.1 in Golub and Van Loan (2013). It is important to
note that the column dimension is typically small and fixed prior to training, as it is equal to 11 in our ECG
case study. Consequently, linear laws can be efficiently updated with new data samples, unlike traditional
DNNs that rely on backpropagation and necessitate retraining on the entire dataset. In practice, new
time-embedded data samples only increase the row dimension of Yki in equation (12), without impacting the
column dimension that primarily governs computational complexity. This characteristic renders LLT
features well-suited for incremental learning scenarios, such as clinical applications, where substantial
amounts of physiological data are continuously collected.

However, the LLT-ECG-based approach presents certain limitations within the context of ECG
applications. Although it has demonstrated robustness against various time series distortions, including
noise and amplitude scaling Kurbucz et al (2022), see, it remains sensitive to scaling along the time axis—a
common occurrence in ECG signals (Keogh 1997). Another limitation pertains to the continuous filtration
of laws obtained through streamed data classification. While employing a time-window approach can help
maintain the method’s speed and lightweight nature, ensuring an efficient algorithm that is free from
catastrophic forgetting necessitates the inclusion of a law screening step following each classification.

Lastly, it is important to highlight that the proposed LLT features capture the similarity between the time
embeddings of the input data and the extracted linear laws. In this regard, the LLT-ECG method embodies
mathematical transparency, a form of interpretability (Lipton 2018). Nevertheless, the clinical explainability
concerning how the linear laws correlate with medical features remains an open question. To elucidate such
relationships, post-hoc explanation methods can be utilized to evaluate the relevance between input features
and the model’s output after training. For example, similar to the approach in Bender et al (2024), the
average attribution per class could be computed for each linear law using the integrated gradients method
(Sundararajan et al 2017).

7. Conclusions and future work

In this paper, we introduced a novel technique for learning features from time series data and successfully
applied it to the task of binary ECG signal classification. This new method extracts features in a data-driven,
forward manner, resulting in a classifier-agnostic feature space. These characteristics are achieved through
the use of the principle of linear laws and the LLT method (Jakovác et al 2022, Kurbucz et al 2022). Linear
laws are defined as common linear relationships among points in samples that belong to the same class. As a
result, linear laws provide a concise and effective representation of classes. Moreover, the proposed LLT-ECG
transformation offers a lightweight feature learning procedure that avoids the need for resource-intensive
training via backpropagation, thereby eliminating the vanishing gradient problem. Additionally, the
LLT-based approach demonstrated high data efficiency, achieving performance comparable to
state-of-the-art methods while using less than half the training samples.
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The proposed method provides the following key advantages:

• Semi-supervised feature learning that requires labeled data only from a reference class, making it highly
practical in scenarios where annotated data is scarce.

• A fully forward and interpretable transformation that avoids backpropagation and hyperparameter tuning.
• Lightweight and computationally efficient processing, suitable for deployment on edge devices and real-time
systems.

• Generation of nearly linearly separable feature spaces, enabling strong performance with simple classifiers.
• Broad generalizability, demonstrated on real-world ECG datasets from PhysioNet across different patients
and signal types.

Future work on the LLT-ECG method could focus on two main research areas: developing techniques that
build on the core ideas presented in this paper to enhance the medical interpretability of the classifications,
and exploring self-selection mechanisms for the laws to ensure LLT-ECG remains up-to-date and
lightweight, even in streaming data classification tasks. In addition to these research directions, we plan to
release the LLT-ECG Python package to serve as a foundation for further development. Beyond ECG data,
the original LLT algorithm has already shown success in various time series classification tasks, such as
human activity recognition (Kurbucz et al 2022) and price movement prediction (Kurbucz et al 2023). In our
future research, we plan to explore additional applications, including the classification of visually evoked
potentials (Dózsa et al 2021) and tire sensor data (Dózsa et al 2022). Since these signals exhibit
morphological characteristics similar to ECG data, we expect that our method will perform well in the
corresponding classification and regression tasks.

Data availability statement

All the raw data generated in this study are available from the corresponding author upon reasonable request.

Acknowledgment

Project No. PD142593 was implemented with the support provided by the Ministry of Culture and
Innovation of Hungary from the National Research, Development, and Innovation Fund, financed under the
PD_22 ‘OTKA’ funding scheme. P K was supported by the ÚNKP-22-5 New National Excellence Program of
the Ministry for Culture and Innovation from the source of the National Research, Development and
Innovation Fund. Project No. TKP2021-NVA-29 and K146721 have been implemented with the support
provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA and the K_23 ‘OTKA” funding schemes,
respectively.

Conflict of interest

The authors declare no competing interests.

Author contributions

Péter Pósfay 0000-0002-6769-3302
Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal),
Software (equal), Validation (equal), Visualization (equal), Writing – original draft (equal), Writing – review
& editing (equal)

Marcell T Kurbucz 0000-0002-0121-6781
Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal),
Software (equal), Validation (equal), Visualization (equal), Writing – original draft (equal), Writing – review
& editing (equal)

Péter Kovács 0000-0002-0772-9721
Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal),
Software (equal), Validation (equal), Visualization (equal), Writing – original draft (equal), Writing – review
& editing (equal)

15

https://orcid.org/0000-0002-6769-3302
https://orcid.org/0000-0002-6769-3302
https://orcid.org/0000-0002-0121-6781
https://orcid.org/0000-0002-0121-6781
https://orcid.org/0000-0002-0772-9721
https://orcid.org/0000-0002-0772-9721


Mach. Learn.: Sci. Technol. 6 (2025) 035001 P Pósfay et al

Antal Jakovác 0000-0002-7410-0093
Conceptualization (equal), Formal analysis (equal), Methodology (equal), Software (equal),
Supervision (equal), Validation (equal), Writing – original draft (equal), Writing – review & editing (equal)

Appendix. Experimental configuration summary

This appendix summarizes the key dataset characteristics, feature extraction strategies, classification settings,
and evaluation protocols of the two complementary experimental pipelines presented in this study.

Experiment 1: TwoLeadECG dataset

• Dataset: TwoLeadECG (a subset of the MIT-BIH Long-Term ECG Database; see section 4.1).
• Feature extraction: performed using the LLT R package (Kurbucz et al 2024). Each 82-sample signal was
embedded using a 6th-order time-delay embedding (window length = 11), resulting in 72 embedded sub-
sequences per signal.

• Feature representation: for each LLT-transformed signal, 25 percentiles of the squared residuals were
calculated. The 16th percentile from each class was selected as the final two-feature representation for
classification.

• Benchmark classifiers: classification was carried out using MATLAB’s Classification Learner App. A total
of 34 configurations across 11 classifier families were evaluated, including logistic regression, discriminant
analysis (linear and quadratic), SVMs (linear, Gaussian, polynomial), decision trees, KNNs, naïve Bayes,
ensemble methods (bagging, boosting, RUSBoost), and shallow NNs with various architectures.

• Dimensionality reduction techniques: PCA, KPCA, UMAP, and t-SNE were applied to the raw signals as
baseline transformations. PCA, KPCA, and UMAP reduced each signal to 5 components; t-SNE yielded a
two-dimensional representation.

• Training procedure: all classifiers were evaluated using 10-fold cross-validation with default hyperparamet-
ers as provided by MATLAB’s Classification Learner App.

Experiment 2: VPNet dataset

• Dataset: VPNet (QRS complex subset from the MIT-BIH Arrhythmia Database; see section 4.2).
• Preprocessing: low-pass and high-pass filtering with cutoff frequencies of 20Hz and 0.5Hz, respectively.
Zero-mean standardization, amplitude normalization, and QRS-centered beat segmentation (30 samples
per beat).

• Feature extraction: performed using Python. A window size of 11 was used, resulting in a 20× 11 embed-
ding matrix for each sample.

• Feature representation: LLT features were derived using only the linear laws associated with the normal
class, resulting in a feature vector for each sample that quantifies its similarity to normal ECG signals.

• Benchmark classifiers: four classification models were evaluated: KNNs (k= 4, Chebyshev distance), RF
(10 estimators, maximum depth= 6), SVMs (linear and RBF kernels), and a shallow NN (one hidden layer
with 8 ReLU neurons).

• Training procedure: the dataset was split into training (40%), validation (60%), and a held-out test set for
evaluation.
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