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Abstract Vertical plasma drift, vz, plays a key role in the dynamics, morphology, and space weather effects
of the equatorial and low latitude ionosphere. Modeling the drift has been an on‐going effort for climatology‐
based prediction. To address daily prediction, the Vertical drIfts: Predicting Equatorial ionospheRic dynamics
(VIPER) model has been developed. VIPER is a machine learning model that is trained on total electron content
(TEC) data to predict low‐latitude vertical plasma drift observed by the C/NOFS mission across the period
2009–2015. The uniqueness of VIPER is that it uses TEC data for the prediction, and the data is globally and
readily available. A Gaussian fitting routine is developed to strengthen the link between TEC and vz. VIPER is a
multi‐layer perceptron framework with Monte Carlo (MC) uncertainty estimation capabilities. It has a mean
absolute error of 8.3 m/s, an R of 0.89/1, and a skill of 0.78/1, all of which are strong scores. The model is capped
at quiet and unsettled activity levels (Kp < 3). MC analysis reveals that predictions should be interpreted as
distributions and the uncertainty can vary with distributions of TEC data and regions of prediction even if the
predicted value is the same. VIPER offers longitudinally global coverage and uncertainty estimation
capabilities. It could also be expanded to handle storm‐time conditions with additional work.

Plain Language Summary Themotion of plasma is responsible for transporting particles and energy
from one region of Earth's ionosphere to another, changing its state, characteristics, and behavior. Over the
years, studies have aimed to predict this plasma motion (drift), but most have focused on climatological patterns
rather than daily or weather variations. To address this, the Vertical drIfts: Predicting Equatorial ionospheRic
dynamics (VIPER) model has been developed. VIPER is a machine learning model that is trained on total
electron content (TEC) data to predict the vertical plasma drift observed by the C/NOFS mission from 2009 to
2015. The uniqueness of VIPER is that it uses TEC data for the prediction, and the data is readily available.
VIPER offers global coverage and uncertainty estimation capabilities. The next step for VIPER is to make
predictions during geomagnetic storms.

1. Introduction
Vertical plasma drift, vz, plays a key role in the equatorial and low‐latitude ionosphere, modifying its electron
density distribution mostly in latitude and altitude dimensions. At the magnetic equator, vertical plasma drift is
also known as the E × B drift, a direct consequence of the Lorentz force and its constituent zonal electric and
ambient geomagnetic fields. The E × B drift can push ionospheric plasma to different altitudes where the plasma
lifetime is longer or shorter depending on the ion and electron recombination and molecular dissociation rates in
the region. At latitudes off the magnetic equator, in addition to the E × B drift, the neutral wind also exerts a
significant influence on the dynamics and distribution of plasma. In the low‐latitude F region, the wind can push
plasma to move along the magnetic field lines, bringing it to higher or lower altitudes. During quiet times, vz
magnitudes are generally between − 40 and 40 m/s (e.g., Fejer et al., 2008; Immel et al., 2021; Scherliess &
Fejer, 1999). These dynamical effects modulate the peak electron densities and its altitude. The E × B drift and
wind are crucial inputs to physics‐based uncoupled global ionospheric models.

One of the characteristics of ionospheric variations at low latitudes due to the dynamical effects is the Equatorial
Ionization Anomaly (EIA) phenomenon (Appleton, 1946). It features two plasma density or total electron content
(TEC) crests around ±15° magnetic latitude (Mlat) and an ionization trough at the magnetic equator. The EIA is
attributed to the equatorial fountain effect (e.g., Martyn, 1955; Mitra, 1946), that is, as the plasma is pushed to
higher altitudes, it diffuses poleward along the magnetic field lines under the action of gravity and pressure
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gradients. The EIA crests are easily identifiable in latitudinal profile of total electron content (TEC), and in Global
Ionospheric Maps (GIMs) (e.g., Iijima et al., 1999; Mannucci et al., 1998) as well as in global assimilative models
(e.g., Pi et al., 2009).

Several previous studies have successfully predicted different aspects of vertical plasma drift. Scherliess and
Fejer (1999) developed an empirical model for predicting vz using the ion drift meter observations on the At-
mospheric Explore E (AE‐E) spacecraft. Their climatological model operates during quiet‐times (Kp < 3) and is
based on earlier observations using the same spacecraft, which discussed the effects of solar activity, season, and
longitude on vz (Fejer et al., 1995). Anderson et al. (2004) built a neural network using ground‐based geomagnetic
measurements to predict daytime vertical E × B drift between 10 and 16 LT. More recently, Shidler and
Rodrigues (2020) predicted quiet‐time localized vertical plasma drift using Jicamarca observatory data and a
random forest regressor. They used UT, day‐of‐the‐year, solar flux and altitude as inputs, and they compared their
results with the Scherliess and Fejer (1999) model. Later based on ROCSAT‐1 data, Fejer et al. (2008) developed
an empirical equatorial F region vertical drift model for geomagnetically quiet conditions; this was followed up
by Kil et al. (2009) who developed a high‐longitude‐resolution model using data from the same spacecraft. Both
studies validate their findings against the Jicamarca radar data.

In this study we present Vertical drIfts: Predicting EquatoRial dynamics (VIPER). VIPER is a machine learning
model that predicts vertical plasma drift (vz) in the equatorial and low latitude ionosphere using TEC data, whilst
also estimating the uncertainty of its predictions. VIPER is the first‐of‐its‐kind and could be used as a test bed for
future research into daily (weather) vz predictions. First, we describe the data sets, followed by the novel Gaussian
fitting routine to extract meaningful quantities from the TEC data. Then we perform feature engineering, creating
new features before presenting the ML architecture and optimized parameters. Finally, we showcase the results
and discuss the performance with respect to the existing models and frameworks.

2. Data and Instrumentation
TEC is the column density measured in electrons per square meter, that is, the integral of ionospheric electron
density distributed along a specific direction. It is usually measured in TEC units (1 TECU = 1016 electrons/m2).
Such line‐of‐sight TEC can also be converted to vertical direction, and the process of slant to vertical mapping is
well established (e.g., Iijima et al., 1999; Mannucci et al., 1998). GIMs are TEC products whereby all the TEC
values are projected onto a single map at a specific time interval. This study utilizes the publicly available Jet
Propulsion Laboratory (JPL) GIM database (https://sideshow.jpl.nasa.gov/pub/iono_daily/gim_for_research/
jpld/). The GIMs are generated every 15 min from 200 ground stations. An example GIM captured at 0130 LT on
the 21 December 2014 is shown in Figure 1. The EIA is observable in the Pacific region as a ~115 TECU
enhancement at ±15° latitude. Also shown are the ground stations (white dots) and the day‐night terminator
at 0 km.

We convert the JPLGIMs into magnetic coordinates using theApexPy package (https://pypi.org/project/apexpy/).
ApexPy is a Python wrapper based on the original Apex Fortran code (Emmert et al., 2010; Meeren et al., 2021).
It takes geographic latitude, longitude, altitude as inputs and outputs magnetic latitude and magnetic local time
using the process developed by Richmond (1995). We then average over all 96 daily GIMs sampled at 15 min, to
produce a single 24 hr map for each date. This is necessary to pair the 2D GIMs with the 1D satellite measure-
ments of vz. In addition, we split geographic longitude into eight sectors across −180°–180° using the same
boundaries as Fejer et al. (2008).

We use vz data from the Ion Velocity Meter (IVM) onboard the Communications/Navigation Outage Forecasting
System (C/NOFS) satellite across the period January 2009 to August 2015. The vz data covers all vertical drift
between −28° and 28° Mlat, including vertical E × B drift at the equator. We chose to predict vertical drift for
two main reasons: it is the original data provided by the IVM, and TEC at low latitudes (±28° Mlat) is largely
determined by multi‐dynamical effects, including not only vertical E × B drift, but also wind‐driven drift and
diffusion effects. The IVM data covers the ascending phase of solar cycle 24. Solar minimum during this period
was particularly deep with <10 sunspot numbers for most of 2009. C/NOFS had a low inclination orbit of 13° and
a moderately elliptical orbit of 375 km (perigee) and 850 km (apogee) (De La Beaujardière, 2004). A limitation of
the IVM is that data should only be used when Ni (O+) > 8 × 103 cm−3 (correspondence with R. Heelis, IVM
Principal Investigator). This means there is less data available during post‐midnight hours (00–06MLT) when the
electron density is naturally lower owing to continuous chemical recombination and a lack of substantial ion
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photoionization, which is more eminent during low solar activity than high solar activity years. This adds an
unavoidable imbalance in the data set across local time and solar activity.

We remove any data where Kp > 3, which means that VIPER is a quiet (Kp = 0–2) and somewhat unsettled
(Kp = 2–3), time model only. This decision was primarily based on the limited amount of drift data during space
weather and geomagnetic active conditions. Future works may include Kp > 3 data and this is considered further
in the Discussion section. We only use IVM data which has a flag of 0 which indicates it is of the highest quality.
Finally, the IVM data is converted from a time series and binned by date, Mlat, MLT, and Glon which provides a
like‐for‐like with the GIM data. At this stage the vertical drift values from C/NOFS are directly mapped to
corresponding TEC values.

3. Feature Engineering
To improve the prediction power of VIPER, we develop a novel fitting routine to strengthen the association
between TEC and vz. This process is informed by the characteristics of vertical drift, its relationship with the EIA,
and the influence of the model inputs, such as local time or the SYM‐H index.

3.1. Fitting Routine

The EIA is driven by vertical plasma drift, which is a combination of E × B drift, wind, gravitational effects, and
pressure gradients. To identify and quantify the features of the EIA, we fit two independent Gaussians to the TEC
data: one for the northern hemisphere and one for southern. The fit is performed using the Levenberg‐Marquardt
(LM) algorithm (Moré, 1978), and the LM fit module for Python (https://lmfit.github.io/lmfit‐py/). We modify a
traditional Gaussian expression to also include a “peak magnitude” parameter α,

Figure 1. An example GIM on 2014‐12‐21 at 0130 UTC. The EIA is observed in the Pacific region. The white dots represent the ground stations and the day‐night
terminator at 0 km highlights the dependence of TEC on solar insolation.
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f(t,ϕ,λ) = α · exp(−
(λ − μ)2

2 · σ
) (1)

where f represents the TEC values for a given magnetic local time t and geographic longitude ϕ, across all
concerned magnetic low latitudes λ. α is the value of the peak of the Gaussian in TECU, μ is location of the peak in
Mlat, and σ is the latitudinal width of the distribution. We assess the quality of the Gaussian fit using the reduced
chi squared χ2

r score

χ2
r =∑

N

i
r2i /(N − Nv) (2)

where ri is the residual error after the least‐squares LM optimization, N is the number of data samples, and Nv is
the number of parameters. As χ2

r is largely driven by the residuals, ri, a smaller value indicates a better fit. To
constrain the fit and improve processing times, we place upper and lower bounds on the parameters to be opti-
mized: α = 60 to 150 TECU; µ = 7° to 20° Mlat; and σ ≤ 19° Mlat.

Figure 2 shows a selection of fits across different seasons and local times. In Figure 2a we do not observe any EIA
and this is correctly reflected by the poor fit of the Northern Gaussian and Southern Gaussian to the data, and the
high χ2

r scores. In Figure 2b, we see that the fits are improved, but mainly in the southern hemisphere, indicating
an asymmetric EIA. In the bottom panels, we see good quality fits as indicated by χ2

r < 1.5 (Figures 2c and 2d).
This suggests that the distributions are close to the symmetric EIA. To identify when the EIA is present, we rely
on a low χ2

r and reject any fits where χ2
r > 2. We also mandate that the EIA cannot occur close to the equator

(Mlat > 7°) and that the width of the peaks must not exceed ±20° Mlat. This is because the data is only examined
over ∼30° in each hemisphere.

Figure 2. Gaussian fitting routing applied to four example TEC distributions. The fitting routine has the best fit and lowest χ 2
r

in the bottom panel (c–d) and the worst fits in the top (a–b). The dates and local times indicate that the fit is best during the
day or immediately post‐sunset and during the equinoxes. This is when the EIA is most likely to occur and is most symmetric.
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3.2. EIA Features

Once we have established that a distribution of TEC is likely to be the EIA, we
then define another set of variables from the data. Firstly, the Peak‐2‐Trough
(P2T) magnitude,

P2T = ((
αn + αs) / 2)

trough
, (3)

where αn and αs represent the peak TECU values for the northern and
southern hemispheres, respectively, and trough is the TECU value at 0° Mlat.
Next, Distance Of the Peaks (DOP), which may also relate to the magnitude
of vz at and near the magnetic equator,

DOP =
⃒
⃒ μn − μs

⃒
⃒. (4)

Finally, Asymmetry Of the Peaks (AOP), which assesses the asymmetry
between the northern and southern hemispheres. Quantifying the asymmetry
is important because it can be caused by the inter‐hemispheric wind and
hemispheric asymmetries in ion production during non‐equinox months,

AOP = (
αn − αs)

(αn + αs)
∗ 100. (5)

The purpose of these additional features is to further help the model connect vzmagnitudes with the characteristics
of the EIA. For example, if the P2T is large, DOP is roughly 30°, and the AOP is close to 0, then the EIA is likely
dominated by the upward E × B drift. The model can capture vertical E × B drift when Mlat ≈ 0°. Finally, we
must also deal with cyclical features, such as day‐of‐the‐year, longitude, and MLT. We convert these values into
signals with

sin
2πγ
n

, cos
2πγ
n

, (6)

where γ is the feature to be turned into a signal and n is the maximum frequency of that signal. For example,
n = 365 for day‐of‐the‐year, n = 360° for longitude, or n = 24 for MLT. The process described above is outlined
in Figure A1 of Appendix A.

3.3. Feature Inputs

Figure 3 shows the model inputs and the R2 relationship between them. Generally, there is little‐to‐no correlation
between the features. In some instances, linear correlation is expected. For example, we expect the width of the
peaks to increase with their location in magnetic latitude. Despite these relationships, it is helpful to keep certain
correlated features for post‐training analysis in order to link the predictions back to the physics of the system.

For our input selection, we considered the works of Anderson et al. (2004), Fejer et al. (1995), and Shidler and
Rodrigues (2020), and the availability of the data. For example, we exclude any inputs which are not readily
available data products or rely on other models (e.g., wind or chemical constituents). As we are predicting on a
daily basis, SYM‐H has been represented by its daily minimum, maximum, and range. The total numbers of
samples are ~930 k, with 744 k for training, 93 k for testing, and 93 k for validation (80%–10%–10% split).

4. Machine Learning
To predict vz from TEC, we use a machine learning approach. Specifically, we use a Multi‐Layer Perceptron
(MLP) model, which is a fully connected feed‐forward neural network (Popescu et al., 2009)

Figure 3. The model inputs and their linear relationships (see Equation 9).
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ŷ(x)≈ ∑

N(ϵ)

i=1
aiσ(wi · x + bi), (7)

where:

• ŷ is the VIPER prediction of vz
• Nϵ is the number of neurons in the hidden layers, which is optimized and

finalized in Table 1
• ai is the weight associated with the i‐th neuron in the output layer
• σ is the ReLU activation function
• wi is the weight vector associated with the i‐th neuron in the hidden layer
• x is the feature input vector to the MLP (see Figure 3)
• bi is the bias term associated with the i‐th neuron in the hidden layer

During the training process, the model computes the difference between the
predicted vz and the actual vz from C/NOFS drift data. This error (see

Equation 8) is then used to adjust the model's weights and biases through backpropagation, ensuring that the
model learns from both TEC and drift data. Table 1 shows the number of layers and neurons Nϵ in the MLP, the
neuron search range, and final choice of values. Training and optimization were performed on a high‐performance
computing cluster hosted at the UCL Mullard Space Science Laboratory. The setup consisted of a 128 × 64‐core
processors at 2.0 GHz and 1×NVIDIA A‐100 GPU with 40 GB of RAM. The training and optimization time was
between 2 and 15 min. The final hyperparameter selection was based on performance (lowest possible error in m/
s), as well as generalization (acceptable overfitting), and training time (<15 min on the MSSL GPU).

Lastly, we also used a step function to anneal the learning rate, reducing it by a factor of 0.6 every 10 epochs. This
further improves model convergence and reduces the training time.

4.1. Assessment Metrics

Several metrics are used to assess the performance, association (R), and skill of the VIPERmodel.Mean Absolute
Error (MAE) is a typical performance test for regression problems (Chai & Draxler, 2014),

MAE =
1
n
∑
n

i=1

⃒
⃒ ( ŷi − yi)

⃒
⃒ (8)

where yi is the C/NOFS IVMmeasurement of vz (target variable), ŷi is the prediction of yi, and n is the number of
samples. Accuracy metrics tell us how close the prediction is to the true value, but they do not tell us how well the
model captures the up‐and‐down trends of the data set. Further, errors scale with the range of the target variable,
and vertical drift is known to vary across local time, geolocation, season and geomagnetic activity. To combat
this, we also use the Pearson correlation coefficient R

R =
∑( yi − y) ( ŷi − ŷ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑ ( yi − y)2∑( ŷi − ŷ)2
√ . (9)

This tells us if the predictions are close to the target in some part of the data range, but not in others. An ideal value
is R = 1. Finally, we examine the skill of the model by looking at its Prediction Efficiency which is based on its
mean square error (Murphy, 1988)

PE = 1 −
∑( ŷi − yi)

2

∑( yi − y)2
. (10)

Amodel with perfect skill has a PE = 1, while PE < 0 shows that the model is no better at making predictions that
the average of the target values, 〈y〉.

Table 1
Hyper‐Parameter Optimization for VIPER

Hyperparameter Search range VIPER

Nϵ in layer 1 64–1,024 1,024

Nϵ in layer 2 64–1,024 512

Nϵ in layer 3 32–512 256

Nϵ in layer 4 32–512 128

Dropout Rate 0.05–0.3 0.2

Learning Rate 10− 5–10− 2 10–3

Batch Size 8–256 128

Note. We tested several combinations and the final selection offers a good
balance of performance, generalization, and training time.
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5. Results
The following section outlines the prediction capability of the VIPER model. Its performance is assessed for low
latitudes globally (longitudinal wise) and then across its features. We then introduce the Monte Carlo dropout
technique and estimates of prediction uncertainty, before presenting a preliminary examination of daily
predictions.

5.1. Performance and Errors

Firstly, we examine the performance against the test set whose size is n ≈ 93 k samples. Figure 4a shows VIPER
performance in terms of the frequency of predictions versus observations. It also shows that although the observed
distribution is Gaussian‐like, there are more negative vertical drifts than positive ones. This is supported by the
mean vertical drift value, which is − 3 m/s.

The model underestimates the frequency of 0 m/s drift and overestimates those from ≥+20 m/s. Further im-
balances between the upward and downward drift were also caused by the removal of lower quality data during
the ML preparation process. This suggests that upward drifts have more flags, and potentially more errors, and
this cannot be avoided at this stage. Figure 4b is a 2D histogram that shows the probability of various prediction
and observation pairs. A perfect model, with an error of 0 m/s, would place the entire distribution on the white
diagonal line. VIPER performs well, with the probability distributions in‐line with those shown in Figure 4a. The
model has a MAE error of 8.3 m/s, an R score of 0.89/1, and a PE of 0.79/1, all of which are strong scores. A R of
0.5–0.7 is said to be good in magnetospheric modeling applications (Liemohn et al., 2021), although this is only a
general rule‐of‐thumb.

Figure 4 tells us how the model is performing at a global level, but it does not tell us how well it is doing across the
various inputs. For example, does VIPER perform better at specific times or locations? Figure 5 shows the error,
ŷ − y, across the feature space. Error bars are calculated using the standard error.

Generally, the error tracks to the availability of the data (gray histograms). Performance is consistent across most
features but shows the greatest variance in magnetic local time. For example, the error doubles when making a
prediction at 6 MLT compared to 15 MLT (Figure 5a).

Figure 6 examines the derived EIA data products (Equations 3–5) as a function of VIPER error, also using the
standard error. Firstly, we see VIPER performs well across a range of DOP's, but the error increases when the data
diminishes around 28°Mlat. DOP can be a proxy for an EIA effect of geomagnetic activity, which can be enhanced
under active magnetic conditions. Secondly, VIPER performs best when the peak asymmetry is between − 5 and 5
(Figure 6b), which is most common around the equinoxes (e.g., Balan et al., 2013, 2018). AOP is also associated
with trans‐hemispheric winds (e.g., Hanson & Moffett, 1966; Huang et al., 2018), but VIPER does not have the
ability to confirm if this is the primary driver. Finally, when the Peak‐2‐Trough (P2T) ratio is lower, so too is the
error (Figure 6c). A low P2T means that the EIA is less prominent or absent, which in turn indicates that vertical
E × B drift magnitudes are small. This corresponds to a VIPER prediction of vz ≈ 0 m/s near the equator.

Figure 4. VIPER performance on the 10% test set, whose size is ∼93 k samples. (a) VIPER predicts both upward and
downward drift well, with limited levels of under‐ or over‐estimation. (b) The probability of prediction‐observation pairs and
model performance. VIPER has a MAE of 8.3 m/s, R of 0.89, and skill of 0.78.
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5.2. Monte Carlo Uncertainty

To better understand the uncertainty within VIPER, we adopt the Monte Carlo drop out technique developed by
Gal and Ghahramani (2016). Dropout is a type of regularization to prevent overfitting and it involves randomly
removing neurons during the training process (Srivastava et al., 2014).

Like regular dropout, neurons are randomly deactivated, but with MC Dropout this occurs during both training
andwhen making a prediction (evaluation). This means that each prediction of plasma drift will differ for a single
set of inputs. By making multiple predictions from a single set of features, a probability distribution function
emerges thus giving us the uncertainty of a prediction. MC dropout is a Gaussian‐approximate method, but
without a prohibitive computation cost (Gal & Ghahramani, 2016).

Figure 7 shows theMonte Carlo uncertainty of four example vz predictions in the test set. The distribution consists
of 500 MC samples, which is considered high enough to enable good statistics, without being computationally
expensive. As seen, the distributions are non‐Gaussian and the use of mean or standard deviation is not appro-
priate (Figure 7). Instead, we use Median Absolute Deviation (MAD) which is calculated with:
MAD = median(

⃒
⃒Zi − Z̃

⃒
⃒), where Z= 500 predictions for a single set of inputs (x), Zi is an individual prediction,

and Z̃ is median(Z). A smaller MAD indicates lower variance and therefore a greater level of confidence in the

Figure 6. VIPER errors across the engineered EIA features. 0 m/s is a perfect score. The gray histograms represent the data
availability.

Figure 5. VIPER errors across six selected features within the test set. 0 m/s is a perfect score. The uncertainties are calculated
via a bootstrapping method, and are represented by the shaded areas. The gray histogram bars represent the availability of the
data.
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prediction. As seen, the uncertainty varies among predictions, even if the predicted value of vz is the same: for
example, 0 m/s (Figures 7a and 7b). For these two predictions the MAD varies from 0.12 to 0.61 m/s. As the
magnitude of the plasma drift increases, so too does the MAD, with a prediction of − 9.5 m/s having a MAD of
0.83 m/s (Figure 7c), and 32 m/s with MAD = 1.82 m/s (Figure 7d). This analysis shows that uncertainty is both
non‐Gaussian and non‐uniform, even amongst identical predictions of drift (i.e., vz = 0 m/s).

Comparing errors to uncertainty: MAE (Equation 8) shows how far off predictions are on average, while MC
dropout shows how confident the model is about a specific prediction of vz. To calculate the total error on pre-
dictions we simply combine to two: Error = MAE + MAD.

5.3. Preliminary Daily Prediction

The following example shows an initial investigation into VIPER's ability to make daily predictions of vertical
plasma drift between − 5° and 5° Mlat. In this example, the selected date is excluded from the training process and
VIPER has not seen this datum before making predictions. Figure 8 shows VIPER predictions of vertical drift for
four longitude sectors on 2014‐03‐16, a near equinox day with low geomagnetic activity. The drift is upward
during the daytime, downward at night, and the pre‐reversal enhancement is captured around sunset (∼18 MLT).
These basic features align with the climatological pattern derived from averaging AE‐E and ROCSAT‐1 drift

Figure 7. Four examples of uncertainty quantification via the Monte Carlo dropout method. The probability distribution is
non‐Gaussian and so median absolute deviation [m/s] is used to quantify the prediction distribution.

Figure 8. Daily predictions of vertical plasma drift as a function of magnetic local time and geographic longitude between
− 5° and 5° Mlat. Error bars are calculated with MAE + MAD.
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observations during similar levels of solar activity (Fejer et al., 1995, 2008) and from the drift empirical model
(Scherliess & Fejer, 1999). Across the longitudes we can see subtle differences in the drift predictions with respect
to the climatological models, and this may be attributed to the daily nature of the drift. That said, VIPER might
also be making noisier predictions.

VIPER is intended to reproduce vertical plasma drift by incorporating physical information embedded in 2D
patterns of TECmaps. Although the preliminary results are promising, it is important to note that TEC coverage at
low latitudes is poor in certain longitude sectors, particularly over oceans, as shown in Figure 1. The C/NOFS data
also show large errors near the solar minimum during 2009–2010. These subsequently affect the model per-
formance. The results indicate that further development is necessary to reduce noise and increase the accuracy,
which can be pursued in the future by dealing with TEC data coverage and augmenting drift data for further
training VIPER.

6. Discussion
VIPER has a MAE of 8.3 m/s, association of R: 0.89, and skill of PE: 0.78, all of which are considered good
scores. The model performs well across a range of spatial‐temporal and seasonal conditions and produces the best
results when the availability of the data is highest. Monte Carlo techniques provide mathematically rigorous
estimates of prediction uncertainty improving the utility of the model. VIPER showcases some promising pre-
liminary results into daily (weather) predictions of vz. This section will compare VIPER with the existing vertical
drift and vertical E × B drift models. Additionally, it will discuss the Gaussian fitting procedure and provide
preliminary insights into conceivable storm‐time performance.

6.1. Comparing Models

Scherliess and Fejer (1999) developed an empirical model of vertical drift using the Atmospheric‐Explorer E
spacecraft data (1977–1979) and the Jicamarca ground station data (1968–1992). Their model focuses on daytime
drifts and, like this study, also limits its scope to geomagnetically quieter conditions, Kp < 3. The Scherliess and
Fejer (1999) model appears to be more of a climatological model, outputting predictions at seasonal time scales
(e.g., May–August, November–February, and equinox), but finer resolutions might be achievable. The Scherliess
and Fejer (1999) also includes vertical plasma data across 2.5 solar cycles, which is far greater than 0.5 cycle for
this study.

Anderson et al. (2004) built a machine learning model to predict daytime vertical E × B drift between 10–16 LT,
presenting an error of 2.9 m/s, although it is not known whether this is on the training or test set. VIPER has a test
set MAE of 8.3 m/s, but can perform at all hours (0–23 LT). Further, Anderson et al. (2004) are predicting vertical
E × B drift with geomagnetic perturbation in horizontal direction (ΔH), whereas VIPER predicts all vertical
drift, including the equatorial vertical E × B drift, with TEC. The use of TEC data for daily predictions is
appealing since the data can be readily obtained from several sources and has a low cost of operation.

More recently, Shidler and Rodrigues (2020) also used an ML approach to predict localized vertical drifts using
the Jicamarca observatory data, comparing their results to the Scherliess and Fejer (1999) model. On the test set,
VIPER has an R2 of 0.8 and their random forest model has an R2 of 0.71. Their model does not include MLT or a
geomagnetic index as an input, which we have shown to have a strong influence on vertical plasma drift. The
Shidler and Rodrigues (2020) model also covers a full 24 hr period, with higher data availability post‐midnight
compared to this study as they are not constrained by the minimumO+ density requirement which exists on the C/
NOFS IVM. Both VIPER and the Shidler and Rodrigues (2020) model include altitude, which has been shown to
influence vertical drift in a linear manner (Pingree & Fejer, 1987), that is, faster drifts occur at higher altitudes.
This might explain why altitude is marked as the least important feature in the Shidler and Rodrigues (2020),
model, but its removal from the VIPER input space resulted in a non‐trivial drop in performance. We have not
investigated the reasons for this further at this stage.

Finally, all non‐coupled first‐principle ionospheric models require vertical E × B drift velocity as an input to
predict the EIA (e.g., Bailey et al., 1997). Subsequently, the VIPERmodel could be used as a physics‐surrogate to
provide the necessary vertical E × B drift inputs (around 0° Mlat) for frameworks such as physics‐based first‐
principle ionospheric models.
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6.2. Gaussian Fits

Figure 2 shows the Gaussian fitting routine in action. A Gaussian method was chosen because of the likeness of
the EIA in two‐dimensions to a pair of normal distributions. This is shown in Figure 2 and is justified by the low
χ2

r scores in Figures 2c and 2d. From a physics perspective, this process is driven by the fountain effect. Whilst a
Gaussian distribution is deterministic, the natural phenomena it describes are often associated with randomness.
For example, the central limit theorem states that for a large enough sample of independent and random variables,
their final approximate distribution will be Gaussian. Therefore, it would be advantageous to explore whether
other functional forms are more appropriate.

6.3. Increasing Geomagnetic Activity

At present, VIPER has been capped at predicting vertical plasma drift during quiet and unsettled times only
(Kp ≤ 3). The complexity of a prediction increases with geomagnetic activity, which, when lacking sufficient
storm‐time data, could result in an unrealistic or inaccurate model. Therefore, we focused on capturing Kp ≤ 3
conditions first, with a view to adding storm‐time effects later. This means that VIPER is largely predicting vz
based on the effects of equatorial E and F region dynamics (Fejer et al., 1995; Immel et al., 2021). Under active
geomagnetic conditions, prompt penetration electric fields and the disturbance dynamo can modify vertical drift
and thus the EIA (e.g., Pi et al., 2003). Existing studies have shown that ML models exhibit unusual behavior
when predicting events at, or beyond, the boundary of their training distribution. Smith et al. (2020) looked at four
different models and showed the results of predictions that were out of distribution. Each exhibited very different
behavior, presenting different predictions despite being more similar within the training distribution. This pro-
vides a cautionary tale for interpreting ML results when data is sparse. To conclude, VIPER could be expanded to
include storm‐time data and increased levels of geomagnetic activity, but more storm‐time data is required. The
inclusion of drift data from AE‐E (e.g., Scherliess & Fejer, 1999), ICON, the planned Global Dynamics
Constellation (Akbari et al., 2024), or localized ground based observations (e.g., Shidler & Rodrigues, 2020)
could help improve model performance. Alternatively, these data sets could be used as further validation of the
model performance in addition to the test and validation sets.

7. Conclusions
This study introduced a novel neural network model called VIPER which uses TEC data to predict vertical plasma
drift in the low latitude and equatorial ionosphere. The main findings from this study are outlined below:

• The 2D distribution of the EIA at fixed local times resembles a Gaussian distribution. By fitting this, we can
extract the width, magnitude, and peak of the EIA, before feeding it into the model. These quantities are linked
to vz, which helps to make VIPER physics‐informed.

• A novel process has been developed whereby the TEC data passes through a series of checks with additional
features added along the way (see Figure A1 of Appendix A). This includes adding new physical products or
parameters like P2T, DOP and AOP.

• VIPER has a MAE of 8.3 m/s, R of 0.89, and PE of 0.78, all of which are considered respectable scores.
VIPER predicts low‐latitude vertical plasma drift across a range of spatial‐temporal, seasonal and geomag-
netic conditions, with no obvious bias for over‐ or under‐estimating drift magnitudes.

• The findings indicate that the TEC GIMs include physical information useful to predictions at all times. This
could pave the way for future studies ionospheric dynamics with TEC data, which can be readily obtained
from global and regional GNSS networks.

• VIPER can reproduce vertical plasma drift at 24 hr resolution, which is necessary to capture the day‐to‐day
(weather) variability of the ionosphere. However, the poor coverage of TEC data in certain longitude sectors
and the large uncertainties in C/NOFS data during years near the solar minimum subsequently affect the model
performance. Further development is necessary to reduce noise and increase the daily prediction accuracy,
which can be pursued in the future by dealing with TEC data coverage and augmenting drift data for training
VIPER.

• Uncertainty quantification reveals that the prediction itself can be interpreted as a probability distribution. The
distributions are non‐Gaussian, so the median and median absolute deviation are used to interpret the spread.
They also reveal that identical predictions of vz can have different error estimates and so bespoke MC error
calculations are required each time.
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• VIPER could be expanded to include geomagnetic storms, but there is much less data for these conditions and
the effects on the overall model performance are not yet fully understood.

As summarized in the flowchart in Figure A1, the procedure of identifying and selecting key features and
applying ML techniques is very promising. With ingestion of a constantly increasing database of observations
from TEC and new satellites, VIPER can become a valuable ML tool for predicting daily vertical plasma drift,
which modifies electron densities and consequently the integrity of satellite navigation and communications,
amongst other impacts.

Appendix A

Figure A1. Cleaning and fitting the TEC data in preparation for VIPER training. Data are categorized into either no EIA (0),
single peak (1), or double peak (2). This is then merged with C/NOFS and fed into the machine learning models. The main
purpose of this process is to add more physical meaning to the input space and to aid interpretation.
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Data Availability Statement
The Jet Propulsion Laboratory Global Ionospheric Maps (GIMs) are freely available via: https://sideshow.jpl.
nasa.gov/pub/iono_daily/gim_for_research/jpld/. The Communication/Navigation Operations Forecasting Sys-
tem and OMNI data is freely available at: https://hapi‐server.org/servers/#server=CDAWeb. The major Python
packages used include: PyTorch, NumPy, Matplotlib, scikit‐learn, and pandas. The VIPER model (model, scaler,
and weights) is available at: https://github.com/reddy‐sachin/VIPER‐TEC as well as a.ipynb script to reproduce
Figure 8.
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