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Abstract

We consider a family of isolated inhomogeneous steady states of the gravita-
tional Vlasov—Poisson system with a point mass at the centre. These are parametrised
by the polytropic index k > 1/2, so that the phase space density of the steady state
is C! at the vacuum boundary if and only if k > 1. We prove the following sharp di-
chotomy result: if K > 1, the linear perturbations Landau damp and if 1/2 < k <1
they do not. The above dichotomy is a new phenomenon and highlights the im-
portance of steady state regularity at the vacuum boundary in the discussion of the
long-time behaviour of the perturbations. Our proof of (nonquantitative) gravita-
tional relaxation around steady states with k > 1 is the first such result for the
gravitational Vlasov—Poisson system. The key novelty of this work is the proof that
no embedded eigenvalues exist in the essential spectrum of the linearised system.
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1. Introduction

The problem of the relaxation of stellar systems is a central question in the study
of the dynamics of galaxies. It was explored in the 1960s in the pioneering works
of Lynden-Bell [48,49], who was the first to point out an intimate connection be-
tween galaxy relaxation and the validity of so-called gravitational Landau damping.
Landau damping originally referred to a well-known equilibration mechanism for
the linearised electrostatic Vlasov—Poisson system around spatially homogeneous
steady states discovered in 1946 [41]. In the gravitational case, the term Landau
damping was used in [48] (see also [12] for an exhaustive list of references to the
physics literature) to refer to the decay of macroscopic quantities of the linearised
perturbations about a given steady state.

To study the stability around isolated and localised self-gravitating galaxies,
one is forced to consider spatially inhomogeneous densities and this considerably
complicates the stability analysis. There is a continuum of steady states of the
gravitational Vlasov—Poisson (VP) system whose infinite-dimensional character is
related to the invariance of the VP-system under the action of measure preserving
diffeomorphisms. Moreover, the relevant steady states are compactly supported in
both the space and the velocity variable, which means that particles are trapped in
a finite region of phase-space, and this can act as an obstruction to decay.

In this work we construct a family of steady states for which we show that the
question of relaxation depends strongly on the regularity of the equilibrium at the
vacuum boundary. If the steady state is below a certain regularity threshold we prove
that the linearised operator has pure oscillations in its spectrum and no damping
occurs. If, by contrast, the steady state is above the threshold, there is no pure
point spectrum and one can prove non-quantitative decay results using the RAGE
theorem. This dichotomy is a striking feature of the gravitational dynamics, and we
believe the methods developed in this paper to have a wide range of applicability.

The key mathematical novelty of the paper is the proof of absence of embedded
eigenvalues in the spectrum of the linearised operator around sufficiently regular
steady galaxies, see Sect. 4. Our method is new and exploits in a crucial way the
underlying Hamiltonian geometry of the problem.

To focus on the main ideas, we consider the radial gravitational Vlasov—Poisson
system including a fixed central potential generated by a point mass of size M > 0.
The presence of the latter can be thought of as a Newtonian model for a central
black hole, a feature found in many real-world galaxies. In addition, we assume
that all the particles have angular momentum of fixed modulus.! This symmetry
reduction removes several technical difficulties and allows us to focus on the key
new ideas. The system reads as

M L
3zf+w3rf—<U/+r—2—r—3> dw [ =0, (1.1

! The situation of steady states with fixed modulus of angular momentum is discussed in
[62, Sc. 3.1] and in the plasma case see also [55].
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1 4m " 2 .
U=— s“p(t,s)ds, lim U(t,r) =0, (1.2)
r* Jo r—00

o(t,r) = 12/ £t w) dw. (1.3)
r R

Here f (¢, r, w) > 0 is the phase-space number density, a function of time ¢ € R,
radial position r > 0, and radial velocity w € R, U(t,r) is the gravitational
potential induced by the stars of the galaxy, and p(¢,r) > 0 their macroscopic
mass density. The system (1.1)—(1.3) is the radial VP-system for an ensemble of
particles all of which have angular momentum with the same squared modulus
L > 0.

We consider a class of steady states to (1.1)—(1.3) of the form

fEEr w) = e(E(r,w) = eG(E(r,w),  G(E)=(Eo— E)L, (14

where (...)+ denotes the positive part of the argument, ¢ > 0 is a size-parameter,
and k > % the polytropic exponent. Here

E(r,w) = %w2+\ll(r), (1.5)

M L
Vi) =U0r) ——+53 (1.6)
r 2r
are the particle energy and the effective potential, respectively, while the cut-off
energy Ey < 0isimplicitly determined through the equation satisfied by the steady
state. The gravitational potential U is induced by f%¢ through (1.2)—(1.3). For
completeness of exposition, the existence of such steady states with finite radius
and finite mass is shown in Sect. 3; this is actually easier than in the situation
without a central point mass, cf. [56]. More precisely, fix a k > % Then, for any
& > 0, there exists a whole 1-parameter family of steady states of the form (1.4)
parametrised by the parameter

k:=Eo — U(0) <0, (1.7)

which has the meaning of arelative gravitational potential at the origin. The resulting
phase-space support is compact and the associated macroscopic density p(r) is of
size O¢_.0(¢), supported on a compact spherical shell [Rpyin, Rmax] of thickness
O 0(1) with a delta distribution of mass M centred at the origin, see Fig. 1. The
parameter x determines the inner vacuum radius Ry, > 0 as well as the (finite)
limit of the outer vacuum radius Rpy,x as € — 0. We shall suppress the dependence
on k and fix it to any value satisfying the single gap condition
_2 M?
273 — <k <0. (1.8)
2L
As shown in Corollary 3.11, condition (1.8) ensures that the essential spectrum of
the linearised operator is simply connected for the relevant equilibria. The pivotal
question is the dependence of the stability behaviour of the steady states fX¢ on
the parameters k and ¢.
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Fig. 1. Schematic depiction of the lower hemisphere of the spherical shell (on the left) and
the macroscopic density distribution p () (on the right)

We linearise the system (1.1)—(1.3) around a fixed steady state f k-2 If we denote
the linear perturbation by F, a straightforward calculation gives the linearisation

&F+LF =0, (1.9)

where ~
LF:=T (F + |¢'(E)| Ur), (1.10)

the transport operator T is given by
T:=wd, — V' (r) dy, (1.11)

and UF solves the radial Poisson equation

, 4 [T, dg? 7 .
UF(r)=—2 s ,()F(s)ds=—2 F(s, w)dwds, lim Up(r) =0.
r=Jo r< Jo Jr r—oo

(1.12)
Alternatively, one can apply the classical Antonov trick [1] and split (1.9) into sep-
arate equations for the even and odd in w parts f1.(r, w) = %(F (r,w)x F(r, —w))
of the perturbation F'. The linear evolution is then fully described by the following
second order system for f_:

Zf +Lf =0. (1.13)
The linearised operator (also referred to as the Antonov operator) takes the form
Li=—-T>—R, (1.14)

where the gravitational response operator R is given by
20 w - N
Rg:=4rn |g0 (E)| = f w g(r, w)dw. (1.15)
r R

Functional-analytic properties of the operators £ and £ are discussed in Sect. 3.4.
We shall mostly work with the second order formulation (1.13), although the anal-
ysis can be carried out analogously in the first order formulation (1.9). The natural
Hilbert space for our analysis is the weighted L2-space

H:={f:Q2— R | f measurable and || f ||y < oo},
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where || - || i is induced by the inner product

1
o ghmi= /Q o £ ) g0 ) ) (1.16)

and Q = {f%* > 0} is the interior of the steady state support. Note that the
integrand in (1.16) is well-defined, since

¢ (E(r,w)) <0, (r,w) € Q. (1.17)

Since £ only covers the evolution of the odd-in-w part of the linear perturbation,
we further define the subspace of H consisting of odd-in-w functions as

H:={f € H| fisoddin w a.e.on Q}.

We shall see in Sect. 3.4 that £ is self-adjoint on H when defined on its domain D(L).

The monotonicity condition (1.17) is known as the Antonov linearised stability
criterion. For the case without a central point mass it was shown in the physics
literature [19,38] that it implies the spectral stability, which is equivalent to the non-
negativity of the quadratic form (Lh, h) gz on D(L). This result can also be thought
of as the analogue of the Penrose stability criterion for plasmas [54]. Moreover, by a
simple modification of the arguments in [26,42,43,63] one can prove that the steady
states under consideration are nonlinearly orbitally stable in our symmetry class,
which is essentially due to the energy subcritical nature of the problem. By contrast,
nothing is known about the asymptotic-in-time behaviour of solutions close to such
steady states and, unlike the classical Landau damping for plasmas, it is a priori
unclear whether any form of damping occurs for the linearised dynamics (1.13).

To provide a meaningful formulation of Landau damping, we must consider
initial data in the complement of the kernel of the operator £. Viewed as an operator
on H the kernel of £ is trivial; see Lemma 3.10.

Definition 1.1. (Nonquantitative Landau damping) For k > % and ¢ > O,
let f k.e denote the steady state of the Vlasov—Poisson system (1.1)-(1.3) of the
form (1.4). We say that the linearised Vlasov—Poisson equation (1.13) Landau

damps if, for any initial data fy € D(L) C H,

1T )
lim 7/0 IVUT £ 13 23, 4 = 0, (1.18)

where Ry > t+ — f(t,-) € H is the unique solution to (1.13) with initial data

Definition 1.1 connects to the first-order dynamics as follows: if t > F(z, -)
solves (1.9), then 0,Ur = Uy, r = Uy, 5, = —Ur; = —Ury, where we recall
f+istheeven partof F, f_ = f is the odd part. It follows that (1.18) is equivalent
to the claim

T—00

1T >
lim 7/0 IV Uk 13 2 g, df = 0.
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Formula (1.18) implies a very weak form of decay of the macroscopic quantity
IVUT r, ||i2(R3)’ without a rate. We chose to define Landau damping via (1.18)
for specificity, but one could in principle consider other macroscopic quantities.
We now state our main theorem.

Theorem 1.2. (Oscillation vs. relaxation) For k > % and ¢ > 0, let &€ denote
the steady state of the Vlasov—Poisson system (1.1)—(1.3) of the form (1.4). Then
the following dichotomy holds:

(a) For any % < k < 1 there exists an 9 = ¢eo(k) > 0 such that, for any
0 < ¢ < &g, the system (1.13) does not damp. More precisely, there exists at
least one strictly positive eigenvalue of L.

(b) Forany k > 1 there exists an eg = eo(k) > 0 such that, forany 0 < ¢ < &g the
system (1.13) does Landau damp in the sense of Definition 1.1. In particular,
the point spectrum of L is empty.

Our aim in the present paper is not to compute the rate of decay in the damped
case (k > 1 and 0 < ¢ < 1), but instead to focus on the dichotomy stated in
Theorem 1.2. An important consequence of the theorem is that the gravitational
relaxation is sensitive to the regularity of the underlying steady state. Note that
the steady states f%¢ are always C® in the interior of their phase-space support
and C %14~ Lkl yp to and including the vacuum boundary {E = Eg}. Therefore the
regularity limitation stems from the boundary behaviour.?

The polytropes defined through (1.4) are very commonly studied in the gravi-
tational kinetic theory [12]. However, a simple examination of the proof shows that
it is only the regularity of f%¢ near the phase-space vacuum boundary that dis-
criminates between Landau damping and oscillations. We may therefore use more
general ansatz functions ¢(E) whose Taylor expansion near the vacuum reads as
¢(E) ~ (Eg — E)k + 0E-E, ((Eo — E)k); here k plays the same role as in The-
orem 1.2. For example, linearised perturbations of the King model ¢king(E) =
e(efo=F — 1), with0 < & <« 1 do not damp.

A further direct consequence of the proof of the main theorem is that our
methods can be used to give a criterion for the absence of embedded eigenvalues
for general radial steady states, i.e., with and without the central point mass. The
proof shows that a sufficient condition for the absence of embedded eigenvalues is
for some explicitly computable constant to be sufficiently small, cf. Remark 4.6.
Introducing the smallness parameter 0 < ¢ < 1 gives a natural class of steady states
where the constant is indeed small enough. In addition, the smallness assumption
allows us to rigorously verify many of the structural properties of the steady states,
most notably the monotonicity of the period function. From numerical simulations
such properties are known to be true also when no small parameter is present.

The proof further shows that, in general, embedded eigenvalues can only exist
at low frequencies. For steady states i, w) = (Ey — E)* with k > 1 and
& = 1, there exists an integer mo depending only on the steady state such that

2 We note that the steady states f k. fall in the regularity class for which one can prove
local-in-time well-posedness.
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2,2
4= my

there are no embedded eigenvalues larger than T cf. Corollary 4.7; here, Tin

denotes the minimal period occurring in the steadrgfmstate, see (3.11). For this result
no “smallness” of the steady state is imposed, and it also holds in the case without
a point mass, see Remark 4.8. In the setting of generic radial equilibria of the form
fo(r,w, L) = ¢(E, L) we point the reader to the recent work by one of the authors
[64], where the methods of this work have been extended to show nonquantitative
damping.

The RAGE theorem was used to show nonquantitative damping around certain
steady states of the 2D Euler equations by Lin and Zeng, see, e.g., [46, Thm. 11.7].
Our set-up is manifestly based on the second order formulation (1.13). However we
can equivalently work in the first order formulation (1.9). Following the strategy of
[46] we can restrict the dynamics to the invariant subspace of so-called linearly dy-
namically accessible perturbations im(7') and exhibit weak decay of | VU |12 g3

for the data in the orthogonal complement of the kernel of L. The subject of quan-
titative inviscid damping and the nonlinear stability around (typically) shear flow
solutions of 2D Euler has been a very active area in the past decade, following the
nonlinear stability result of Bedrossian and Masmoudi [8]. Without attempting to
give an exhaustive overview, we refer the reader to the introductions of the recent
articles [35,51], the review article [7], and the lecture [33] for an exhaustive list of
references.

Theorem 1.2 is the first result which shows that Landau damping occurs around
compactly supported, inhomogeneous equilibria of the gravitational Vlasov—Poisson
system. The stated dichotomy between relaxation and oscillation, as well as the
sharp transition threshold k = 1 are, to our knowledge, new. This situation is
reminiscent of the well-known fact in the spectral theory of Schrodinger operators
— A+ V where the smallness of the potential V (in the right sense) helps to exclude
bound states in dimension d = 3 and cannot exclude them when d = 1. In this
analogy, the polytropic index k, which measures the regularity of the steady state
at the vacuum boundary, plays the role of the dimension d. The mechanism that
leads to this regularity threshold is in particular very different from the result of
Lin and Zeng [45] which states that Landau damping in the plasma case around
smooth space-homogeneous equilibria does not occur if the perturbations are not
sufficiently smooth. The obstruction to damping in [45] comes from the existence
of arbitrarily close nontrivial BGK waves which can only exist in a function class
of sufficiently low regularity.

The possibility of oscillatory linear behaviour and the contrast to gravitational
damping have been discussed in the physics literature [12, Ch. 5], see also [3,4,
47,52,66]. The observation that the smoothness of the perturbed steady state is
relevant for the nonlinear damping is made in the numerical work of Ramming and
Rein [57], where radial steady states without a central point mass are considered.
We also point out the influential work of Kalnajs [36,37] where a formal approach
is developed to study the decay of macroscopic quantities for linear perturbations
using action-angle variables, see the discussion in [12, Sc. 5.3.2].

The question of gravitational relaxation was investigated in the pioneering work
of Lynden-Bell [48,49], see also [12,50], who recognised that there exists a phase-
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mixing mechanism which could explain damping around stationary galaxies. By
definition, phase mixing refers to a process according to which macroscopic quan-
tities, like the spatial density or gravitational potential associated to the solutions
of the pure transport problem

3f—-T*f=0, (1.19)

decay in time. This mechanism was informally described by Lynden-Bell [48] and
relies on the crucial monotonicity assumption 7”(E) # 0 on I, where T (E) is the
particle period function and 7 is the action interval of the steady state, see (2.1)—
(2.2). Intuitively, this monotonicity condition allows the particles to explore the
phase space very efficiently and therefore creates a mixing effect. In practice one
can use arguments a la Riemann—Lebesgue lemma [13,62] or vector field com-
mutators [14,53] to obtain decay. However, equation (1.19) is not the linearised
dynamics around the steady state, and Theorem 1.2 shows that no mixing occurs
when % < k < 1 despite the fact that the pure transport part does mix irrespective
of how small the gravitational response term R is. More precisely, we show that the
collective response of the gravitational system as measured by the operator-valued
potential R can create nontrivial pure point spectrum. Furthermore, the fact that
there is some form of mixing in the regime £ > 1 as implied by Theorem 1.2
is highly nontrivial and involves a careful analysis of the response operator R.
More recently, decay results for the pure transport dynamics in the 3-D case and
in the presence of a large point mass potential were shown in [15,28]. The former
work deals with data nontrivially supported near the elliptic points. The latter work
deals only with data supported away from such elliptic trapping, but contains some
nonlinear applications to the VP-flow near the vacuum. We also mention a recent
result [65], wherein the author shows pointwise nonquantitative decay-in-time of
the gravitational force field for data in the absolutely continuous subspace, around
plane-symmetric equilibria of the gravitational VP-system.

In the plasma case, nonlinear Landau damping around spatially homogeneous
steady states was rigorously shown in the celebrated work of Mouhot and Villani
[54], see also [9,23]. The results of [54] also apply to gravitational interactions
(applying the Jeans swindle, see [12,39]), but such steady states do not represent
isolated solutions of the Vlasov—Poisson system, see also the related work [6]. For
plasma dynamics, linear damping around homogeneous equilibria in the whole
space was recently analysed in [11,29], see also [22]. For a recent nonlinear result
see [34], for the so-called screened case see [10,30,32], and for the case of massless
electrons see [21]. Far less is known about damping around spatially inhomoge-
neous steady states. The Guo and Lin [25] constructed examples of stable BGK
waves (that do not contain trapped particles) with a non-empty and with an empty
point spectrum. The first Landau damping result for a class of BGK waves with a
trapping region was shown by Després [18]. For a recent overview of known results
about Landau damping, see [5].

The plan for this paper is as follows: the basic properties of the steady states and
the linearised operator are explained in Sect. 3. In Sect. 4 we prove that there are no
embedded eigenvalues when k > 1 and ¢ is sufficiently small, see Theorem 4.5. In
Sect. 5 we derive the criterion for the existence of eigenvalues outside the essential
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spectrum, see Proposition 5.3. We then use it to show that such eigenvalues exist
when % < k < 1 and do not when k > 1, see Theorems 5.5 and 5.4 respectively.
Theorem 1.2 is finally proved in Sect. 6. In Appendix A we provide many key
results about the underlying family of steady states, most notably various uniform-
in-& bounds for the period function 7 (E) and its derivatives, as they play a crucial
role in our analysis. Before we enter into the detailed proofs, in Sect. 2 we give a
short overview of the general strategy which we employ.

2. An Overview of the Proof

The starting point for our analysis is a reformulation of (1.13) in action-angle
variables [12,50]. We denote the minimal particle energy of the steady state by
Emin. Letting

I:=]Emin, Eol (2.1)

be the “action” interval, we associate to any £ € I twouniqueradiir_(E) < ry(E)
such that W(r+(E)) = E. Particles are trapped inside the potential well defined
by the effective potential W, and at any fixed energy level E € I, they oscillate
periodically between their turning points r_(E) and r(E). The period T (E) of
this motion is given by the formula

i (E) dr
T(E):=2/ ¥ Eel 2.2)
r(E) ~2E—=2¥(r)

The angle 6 parametrises this radial motion, suitably normalised by the period
function. More precisely, for (r, w) € Q with w > 0 and E = E(r, w) given
by (1.5), the angle is defined as

1 r ds 1
TE) )y VIE- 200 2" 23

Letting 6(r, w) = 1 — 0(r, —w) for w < 0 leads to the one-to-one change of
variables (r, w) — (0, E), where €2, i.e. the interior of the support of the steady
state in phase space, is mapped onto the cylinder

O(r,w) =

S' x I.

Here S! is the 1-dimensional torus, i.e. Slzz[O, 1], where O and 1 are identified. In
action-angle variables (0, E), the transport operator 7 is now given by the simple

formula |

T T(E)

99 .-

This allows us to explicitly determine the essential spectrum of —7 2 in terms
of the period function (2.2). Moreover, the gravitational response operator R does
not affect the essential spectrum and we obtain that the operator £ has essential

2 . .
spectrum of the form [%, oo[ for 0 < & « 1, where Tihax < o0 is the maximum
max
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of the period function 7 over I, cf. Corollary 3.11. Proving these statements mainly
relies on a frequency analysis in the angle variable 6. For f € L?(S') we let

f(@);:/l f@) e 2™ 49, ¢ € Z: (2.4)
S

Fourier transformations always refer to the variable 9, also for functions of several
variables.

Absence of embedded eigenvalues (Sect. 4). The hardest part of the proof of
Theorem 1.2 is to show that there are no eigenvalues of £ embedded in the essential
spectrum when k > 1, see Theorem 4.5. If we assume, by contradiction, that there

exists an eigenvalue of £ of the form 4m’m’ for some (m, E,) € N x I, then

T(En )2
+ T2?E’m) is an eigenvalue of £, i.e. there exists an f such that £ f = 2” o s f- We

move to action-angle variables and pass to the Fourier representatlon

f@,E)= Z f(e’ E)eZHiZ(?’ Uf(@, E) = Z [’]‘}(f, E)eZniZG

e 12/

of the unknowns, where a simple calculation then shows that for almost every
Eel,

19" (E)U, (¢ E)

JEE == (k)

, Ecl, Lt eZ":=7\{0}, 2.5)
where T, := T (E,,), see Lemma 4.1.

Gravitational field via the Plancherel identity. The key idea is to use the Poisson
equation (1.12) to express ||VUf”L2(R3) as —16713ff UsT(E)d(0, E). By the
Plancherel identity and (2.5) we then conclude that

T(E)|¢'(E)| 2
167[3 |VUf| dx = Tm[;f e U, B)|"dE.  (2.6)

Recall that by (1.4), |¢'(E)| = O(g), so the way to reach a contradiction is to show
that the right-hand side of (2.6) is bounded by Ce f VU f|2 dx and then use the
smallness of ¢ to absorb ||[VUy||;2(gs3) into the left-hand side. The fundamental
difficulty in doing so is the small denominators appearing inside the integral on
the right-hand side of (2.6). Clearly there can exist frequency-energy pairs (¢, E¢)
such that 7,, — 7T (E¢) = 0.

Log-singularity. The idea is to rewrite such a possible singularity ﬁ
m-—g

— %(E) oF (log(Tm — % T(E ))) in the region where the argument of the logarithm

as

is positive. Note that we are using the property 7’ # 0 on I in a fundamental way.
Our idea is simple; for any frequency ¢ we integrate by parts in E to offload the E-
derivative onto the gravitational potential I/J}(ﬁ, E) so that we schematically deal
with terms of the form

P Z/g(E) ‘log(T ——T(E))’ Ty, E) 19U (€, E) AE,  (2.7)

LeZ*
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where g is some “well-behaved” weight. The log-singularity is very mild and the
hope is that the integration in E will control it. The small factor of ¢ is there
due to the assumption |¢'(E)| < e.3 The first big issue is that the integration-
by-parts produces boundary terms, and they must either vanish or have to show
up with the correct sign. This is a serious issue, and we must carefully analyse
the frequency-energy pairs (¢, E) that produce small and vanishing denominators,
see Lemma 4.3. The introduction of the above log-singularity is necessary only
at frequencies for which the contributions from the right-hand side of (2.5) are
positive. It is a structural feature of the problem that precisely in this range all the
boundary terms are either of good sign or vanish due to the regularity and require no
further estimates. For the vanishing boundary terms, we crucially use the regularity
assumption k > 1 which implies ¢'(Ey) = 0.

The second key issue is that the minimal point of the effective potential W,
corresponding to the radius r, and energy En;p, is a critical point with a strictly
positive second derivative. This property, as shown in Lemma 3.5, implies that for

any 6 € S' the map E > r(0, E) is merely 07 atE = Enin and, in particular,
1970, E) S (E — Emin) ™2, (0, E) €' x I,

which creates singular powers of E — E i, when we try to compare |0 f];r ¢, E)|to
0, U r. This is intimately related to the particle trapping at the space-time cylinder
{r = r}. We get around this by introducing positive powers of E — Enin as
weights to “de-singularise” 85(7}(5, E) and compensate with negative powers of
E — Enin hitting the mild log-singularity, so that we can close the estimates via
Cauchy—Schwarz, see Step 2 of the proof of Theorem 4.5. The proof shows that
the elliptic character of the Poisson equation as manifested through the energy-like
identity (2.6) gives the winning strategy, as it permits us to estimate the function
17}(2, E) by the derivatives of Uy.

Existence vs. absence of eigenvalues in the principal gap (Sect. 5). Existence
of positive eigenvalues of £ below the bottom of the essential spectrum parallels the
classical quantum-mechanical problem of finding bound states below the absolutely
continuous part of the spectrum of a Schrodinger operator. A classical strategy to
study bound states is the Briman-Schwinger principle [44, Sc. 4.3.1], a version of
which was pioneered by Mathur [52] for the Vlasov—Poisson system in a different
context. In [27,40] the authors independently derived a criterion for the existence
of eigenvalues in the principal gap

42
T2

max

G:=10, min oes(£)[ =]0, (2.8)

The work [27] additionally gave examples of steady states where such a criterion
can be verified. We apply a slightly different version of the principle developed in

3 It turns out that the factor ¢ in (2.7) can be refined by an additional factor of ﬁ,

independent of ¢, so that at high frequencies m >> 1, smallness can be enforced without any
smallness assumption on the microscopic equation of state ¢, see Corollary 4.7.
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[27] to obtain a necessary and sufficient condition for the existence of eigenvalues
in the principal gap ]0, min oess(£)[; see Proposition 5.3. If k& > 1 this criterion is
used in Theorem 5.4 to show that there are no eigenvalues in the principal gap and
if % < k < 1, we use it to prove the opposite, namely that there are oscillatory
eigenvalues in the gap and therefore no damping occurs. Both of these proofs are
again performed in the 0 < ¢ < 1 regime in order to control steady state quantities
like the period function 7.

The RAGE theorem and the proof of the main result (Sect. 6). To complete
the proof of Theorem 1.2 we observe that, by the above, the operator £ has empty
point spectrum on H when k > 1 and ¢ > 0 is sufficiently small. We rephrase the
linear dynamics 8,2 f + Lf = 0as a first order system and then apply the RAGE
theorem [60] to show the nonquantitative decay statement (1.18). To make this
work, we only need to show that the operator f +— ‘(p’(E )’ Uty is compact on a
suitable function space, which again works by virtue of the smoothing properties
of the solution operator to the Poisson equation (1.2), see Sect. 6.

Properties of the steady states and the period function 7' (E) (Appendix A).
One of the key analytical tools in our analysis are good uniform-in-¢ estimates for
steady states f5¢ with fixed k > % and 0 < ¢ < 1. Most notably, we show that,
as ¢ — 0, the period function T converges in C? to the explicitly known period
function T° generated by the single point mass:

T M
Vi Cpt

In this way we deduce that 7 = T (E) is strictly increasing in E for 0 < ¢ < 1,
which is a key ingredient in our analysis. In general, (monotonicity) properties
of period functions are important in the analysis of the linearised Vlasov—Poisson
system, cf. [27,40], as well as in the general context of Hamiltonian systems, cf.
[16,17]. Further uniform-in-¢ bounds on T up to its second derivative ensure that
various constants appearing in the proof of Theorem 4.5 are ¢-independent.

TUE) =

3. Steady States and Linearisation

3.1. Existence of Steady States

Lemma 3.1. Fix the parameter k < 0 so that the single-gap condition (1.8) holds.
Then for any k > % and ¢ > 0 there exists a steady state f*¢ of the system (1.1)—
(1.3) defined by (1.4). The steady state is compactly supported in phase space, more
precisely,

V2M  N2M
supp (%) € [Ripin. Ripa] X | === , 3.1)

VR, \/RT.

min min

where 0 < Rr%in < RY .. < oo are given by
0o —M+~M?4 2L 0o —M—VM?+2%L
Rmin:z ’ Rmax:z . (3.2)
2k 2k
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The total mass of the steady state is positive and finite, i.e.,
o0
0< Ms:=47t/ rz,o(r) dr < o0, 3.3)
0

where p is the spatial density associated to f**.

The proof follows the strategy of [24,56]; we give the details in Appendix A.1.
An important quantity associated to the steady state is the effective potential W
defined in (1.6) whose properties we analyse next.

Lemma 3.2. (a) There exists a unique radius ry > 0 such that

min ¥ = V(ry)=:Emnin < 0. (3.4)
10, 00[

This radius is given as the unique zero of ¥’ on )0, oo[ and it holds that W' < 0
on 10, ry[ and &' > 0 on |ry, ool.
(b) Let
A:=]Ewin, 0[ (3.5)

denote the set of all admissible particle energies. Then, for any E € A there
exist two unique radii v (E) satisfying

0<r_(E) <re<ry(E) <00

and
Y (re(E)) = E. (3.6)

Proof. The assertions follow from the asymptotic behavior of ¥ and W' at r =
0, 0o, and the fact that 73’ is strictly increasing. O

In particular, since (A.5) implies that p(r) > 0 is equivalent to W (r) < E for
r > 0, we conclude that

supp (p) = [r—(Eo), r+(E0)1=:[Rmin. Rmax] C [Rjyns Riyax)-~ 3.7)
The steady state has the following regularity properties:

Lemma 3.3. It holds that U € C3([0, 00[) and p € C'([0, oo]). In addition,
U, p e C™(|0, 0o\ {Rmin, Rmax})-

Proof. The continuous differentiability of p on [0, oo[ follows by (A.5) since Ey —
U=y e C0,00]) and g € C!'(R). Twice differentiating (A.1) then yields
U e C3([0, oo[). Moreover, observe that g € C*(R\{0}) andthat E—W(r) =0
is equivalent to r € {Riin, Rmax} by Lemma 3.2. Thus, we conclude that U and p
are indeed infinitely differentiable on [0, 0o[\{ Rmin, Rmax} by iterating the above
argument. O

We note that a larger polytropic exponent k leads to higher regularity of U
and p.
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3.2. Particle Motions and the Period Function

Let f%¢ be a steady state as given by Lemma 3.1 with associated effective
potential W defined in (1.6). Because the particle energy is of the form E (r, w) =
%wz + W(r), the characteristic flow of the steady state is governed by the system

Few, = —W (). (3.8)

Due to the structure of the effective potential established in Lemma 3.2, the be-
haviour of solutions of this system is similar to the three-dimensional case [27,
p. 624f.]: The particle energy E is conserved along solutions of (3.8) and every
solution with negative energy E < 0 is trapped, global in time, and either constant
(with energy E = Ep,) or time-periodic with the period function 7'(E) given
by (2.2).

For E € Alet(R, W)(-, E): R —]0, oo[ xR denote the global solution of (3.8)
satisfying the initial condition

R0, E) =r_(E), W, E) =0.
We further define that

r@,E)=ROT(E),E), wO,E)=W(@ET(E),E), EcA, 0es!,
(3.9)
and note that (r, w)(-, E) is periodic with period 1 for E € A. The period function
and the characteristics enjoy the following regularity properties:

Lemma 3.4. It holds that (R, W) € C2(R x A) and T € C%(A).

Proof. Since W € C3(]0, oo[) by Lemma 3.3, the implicit function theorem implies
that .+ € C3(A). We thus conclude the claimed regularity of (R, W) by basic ODE
theory.

Lebesgue’s dominated convergence theorem yields that 7 is continuous on A,
cf. [27, Lemma B.7]. Because the period function is given as the solution of
W(T(E), E) = 0 with W(T(E), E) > Ofor E € A, applying the implicit function
theorem similarly to [40, Theorem 3.6 et seq.] then implies that T € C 2(A). O

A fundamental ingredient in our analysis is the use of action-angle variables
introduced in (2.1)—(2.3). For functions f: @\ {(r4, 0)} — R, we write that

f0,E) = f((r,w)(®, E))
for (8, E) € S! x I. Note that integrals change via
dwdr =T(E)dOdE. (3.10)

Action-angle coordinates are not defined at (r, w) = (r,, 0) € € since the char-
acteristic system (3.8) possesses a stationary solution associated to the minimal



Arch. Rational Mech. Anal. (2025) 249:45 Page 15 0f 49 45

energy Enmin there (this corresponds to the so-called elliptic point of the Hamilto-
nian). The next result controls the behaviour of the action-angle coordinates at this
singularity. Before we proceed, we introduce the abbreviations

Trin:= irllf T, Tmax:=sup T, 3.1
I

and also let 7' . :=inf; T', T, . :=sup,; T', T."

min* min*
We later verify that each of these values is finite, cf. Remark A.18.

:=inf; T”, and T, :=sup; T".

max-*

Lemma 3.5. Let r: S! x A =10, oo[ be defined as in (3.9). Thenr € C*(S! x A)
and there exists a constant C > 0 such that

[0, E) — 1| + 10gr (0, E)| < C/E — Enin (3.12)
as well as
C
10g7(0, E)| < ——x—, (0,E)eS'x I
hY E — Emin

The constant C is bounded in terms of Tmax, Tmax 111 1Y Lo ([ Runin. R ])>
”\IJH/”LOC([RmimRmax])’ and \I_]”(r*)_l'

Proof. The claimed regularity of r follows by Lemma 3.4. For Epj, < E < 0 let
z =2z(+, E): R — R be the unique global solution of

7=—V"(R(,E)z, z20)=1, z(0)=0, (3.13)

where we set R(-, Enin) = ry. Gronwall’s inequality implies that there exists a
constant C > 0 as described in the statement of the lemma such that |z(s, E)| < C
fors € [0, Thmax], E € 1.

Furthermore, basic ODE theory yields

0pR(s, E) = 0gr_(E) z(s, E), seR, Eel

Because 9zr(0, E) = R(OT(E), E)0T'(E) + 0zR(©O T(E), E) for (0, E) €
S! x I and

|R(s, E)| = /2E — 2W(R(s, E)) < V2\/E — Emin < \/E‘/?—'ig (3.14)

for (s, E) € R x I, it remains to show that

[0pr—(E)| < Eel, (3.15)

C
kY% E — Emnin ’
for some constant C > 0 as specified in the statement of the lemma. In particu-
lar, (3.12) follows by (3.14). In order to establish (3.15), first observe that

1
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for E € I by the implicit function theorem. Moreover, the radial Poisson equa-
tion (A.1) yields

b 2V L
v (r) = — +— +dmp(r), r>0. (3.17)
r
In particular,
a:=U"(r,) > 0= W'(r,) (3.18)

by Lemma 3.2. This implies that in a small neighbourhood of £ = Ep;, the
denominator in (3.17) behaves to the leading order like r_ (E) —r, which then easily
yields (3.15) using standard continuity arguments and the mean value theorem. O

3.3. Limiting Behaviour of Small Steady States

For fixed £ > % and « satisfying (1.8) we study the behaviour of the steady
state family ¢ = ¢(E) = ¢ $(E) given by Lemma 3.1 as ¢ — 0. In this section,
we always add a superscript ¢ to steady state quantities to make the e-dependencies
more visible.

The limiting case ¢ = 0 corresponds to U? = 0. Hence, the associated effective
potential is of the form

L

ﬁ, r>0. (319)
r

0o M
W)=~ — +

The structure of this function is similar as in the case ¢ > 0 described in Lemma 3.2,
with

M? L
in 00 =900 =0 — e 3.20
iny (ry) = Enin L = (3.20)
and
0 —M FVM? +2EL
ri(E) =
2F

for E € AY, where

A%:=1EC. O[. (3.21)

Accordingly, the period function takes on the form

0 i) dr T M
T°(E):=2 _— (3.22)
-

0E) V2E —200(r) 2 (—E)3
for E € AY; the latter identity is due to a straight-forward calculation.

Lemma 3.6. The following assertions hold.

(a) EE. — EO

min min

and ES — Kk as & — 0, recall (3.4) and (3.20).
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(b) T::, — mm and T, — Trgax as ¢ — 0, where the limiting action interval
(compare (2.1)) is
1%:=1E2, k[ (3.23)
and Tnonn, max are defined similar to (3.11); recall (2.2), and (3.22). Moreover,
there exist ¢, C > 0 and g9 > 0 such that forall 0 < ¢ < ¢gpand j € {0, 1,2}
there holds
c<(THY(E)y<C, Eel. (3.24)

In particular, T¢ is strictly increasing on I for 0 < ¢ < &o.
Proof. The proof of these convergences is rather technical and postponed to Ap-

pendix A.2. Part (a) is shown in Lemmas A.1 and A.2, part (b) is proven in Lem-
mas A.9, A.14 and A.17. m]

3.4. Linearisation

In order to analyse the linearised operator £ given by (1.14) with methods from
functional analysis, we first define the transport operator 7 in a weak sense, based
on [61, Def. 2.1]:

For a function f € H the transport term 7 f exists weakly if there exists some
1 € H such that for every test function g € C Cl (),

(. T8 n=—(1n,8n

where 7 g is given by (1.11). In this case, 7 f:=u weakly. The domain D(7") of 7
is the subspace of H where 7 exists weakly, while the domain of the squared
transport operator is defined as

D(TY:={f e H| feDT), TfeDT)

We collect the following properties of the transport operator and its square as
in [27], see also [24, Prop. 5.1] and [61] (further properties of 7 can be derived as
in these papers):

Lemma 3.7. (Properties of 7 and 72)

(a) T: D(T) — H is skew-adjoint as a densely defined operator on H, i.e.,
T* = —T,and T*: D(T?) — H is self-adjoint.

(b) The domains of T and T? can be characterised in action-angle coordinates
as follows:

DT = {f €H| f(.E)e H" forae E el

T(E)l —2j
and Z/ B / 0] (0. E)[2d0 dE < oo}

form € {1, 2}, where

Hy:={y e H'(10,1D |y(0) = y(1)}, Hi:={y € Hj | y € Hy}. (3.25)
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In addition, for f € D(T™) withm € {1,2} and a.e. (9, E) € S' x I,

1 m
(T" ), E) = (ﬁ) (9" )0, E). (3.26)

(c) The kernel of T consists of functions only depending on E, i.e.,

ker(7)={f e H|3g: R— Rs.t. f(r,w)=g(E(r, w)) a.e.onQ}.
(3.27)
(d) T reverses w-parity and the restricted operator TZ|H: D(THNH — His
self-adjoint.
(e) The spectrum and the essential spectrum of —T?* are of the form

2w Ny 2
B g —TH=(=—"2),
o( ) = Oess( ) ( () )
27N\ 2
2 _ 2 _
o(=T |H) = Oess (=7 |H) = (m) .
Proof. The skew-adjointness of 7 can be shown as in [61, Thm. 2.2], which then
yields (a) using von Neumann’s theorem [59, Thm. X.25]. Part (b) follows similarly
to [27, Lemma 5.2 and Cor. 5.4]. The identity (3.26) then implies (c), while (d) is
evident from parity considerations. Part (e) is due the observation that S' x I >
0, E) — sin(27j0) 8g+(E) defines an eigendistribution for —72 or —TZ|H;
Jj € Np or j € N, respectively. The claimed structures of the spectra follow by
applying Weyl’s criterion [31, Thm. 7.2] similarly to [27, Thm. 5.7]. O

We next analyse the response operator R defined in (1.15).

Lemma 3.8. (Properties of R) The linear operator R: H — H is bounded, sym-
metric, and non-negative (in the sense of quadratic forms, i.e., (Rf, f)u > 0 for
f € H). The operator

VR: H — H, VRf(r,w):=277 |¢(E)| W f(r, ) dw (3.28)

w
r2J/p(r) /IR

is bounded, symmetric, non-negative, and «/ﬁx/ﬁ = R on H. Moreover, «/ﬁ f €
Hand Rf € Hfor f € H.

Proof. The claimed statements regarding R follow as in [27, Lemma 4.3]. The
properties of /R can be derived similarly using the important identity

2
/ w? |¢/(E)| dw = Zom, r=o (3.29)
R T
O

The response operator has a natural connection to the gravitational potential of
the linear perturbation. Similarly to [27, Sc. A.1], we thus analyse the properties of
such potentials defined by (1.12).
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Lemma 3.9. Let g € D(T) and f:=Tg € im(T). Then Uy € H> N C'([0, oo[)
with
IUfl g2 + 1Uflee + 1UF NIz < Cllfllm (3.30)

for some constant C > O which can be estimated by ¢ and k. Furthermore,
, 4r?
Upr)=— | wgr,w)dw, r >0, (3.31)
r R

supp (U}) C [Rmins Rmax], and Uy (| - |) € H? N CYR3). In action-angle coordi-
nates, Uy € CL(S! x A) wirth

10pUys| < 10Uyl (3.32)

C
VE - Emin

onS! x I for C > 0 as in Lemma 3.5. Moreover, there exists a constant C > 0
such that for any £ € 7%,

— 2 C
/I|Uf(e, E)|"dE < £—2/|VUf|2dx. (3.33)

Here Us(0,E) = Uy(r(0, E)) for (0,E) € S' x A. For j € Z it holds that
Ur(j,) € CH(A) with dgUys(j,-) = U7 (j, -) on A.

Proof. First observe that

2 2 [ 1 ?
10£ 120,00 =7 /o F(/Rf(r’ w)dw> v

o ) 1 2 2
SC/O </R|(ﬂ (E)Idw> (/Rilw’(E)l Sfr, w) dw>dVSC||f||H

0

since supp (p7) C [RY. . RO, 1. In the last step we used the estimate

/ l¢'(E)| dw = C (Eq — np(r))’_f% <,
R

which follows by a calculation similar to (A.3). Hence the compact support of p ¢
implies that p; € L' N L%(J0, oo[). By Lemma 3.7,

1 o0
P fo oy dr = (19" (E). Tg)n = —(Tl¢'(E)l. g)ir = 0.

In particular, U(r) = 0 for r € [0, oo[\[R%. , R%..1, and Us(r) = O for
r > RY,. Thus, U € C'([0, o0[) and Up, U} € L' N L>®([0, oo]) with

max*

1Uflloo + ||U}||oo < Cllpsll2 by (1.12). Together with the radial Poisson equa-
tion we conclude Uy € H 2([0, oo[) and the estimate (3.30). The identity (3.31)
follows via integration by parts together with a suitable approximation argument
similar to [27, Eqn. (A.2)]. This regularity and Lemma 3.4 further imply that
Ure C!(S! x A). The estimate (3.32) hence follows by Lemma 3.5.
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To show (3.33) we use the assumption £ # 0 to rewrite l/]}(é, E) = L

2mil
Uy (L, E). Therefore, using dgU y = 0, U y0gr,
— C C
/ |U (e, E)|2 dE < — / 197218, U 1> d(0, E) < — / VU | dx,
’ 22 Slx7t 52
(3.34)
where we have used (3.12) in the last line. |
The identity (3.31) implies that for f € D(7) and a.e. (r, w) € €,
Ug(r)
Tf
Rf(r,w) =@ (E) wUr (), VRf(r,w) =" (E)| w——.
| | Tf | | m
(3.35)
The natural domain of definition for the linearised operator £ = —72 — R is

D(L£):=D(7%) NH;

recall that £ governs the dynamics of the odd-in-w part of the linearised perturba-
tion. We obtain the following properties of this operator:

Lemma 3.10. (Properties of £)

(a) The operator L: D(L) — 'H is self-adjoint as a densely defined operator on
H.
(b) The operators /R and R are relatively (—T?)-compact [31, Def. 14.1] and

27N\ 2
Oess(L) = Gess(_Tz|H) = <m) . (3.36)
(c) There exists ¢ > 0 such that for all f € D(L),

Lf. foun = e (IF 1%+ 1T f1). (3.37)
In particular, the kernel of L is trivial and o (L) C]0, ool.
An estimate of the form (3.37) is typically called an Antonov coercivity bound.

Proof. The self-adjointness of L is due to the Kato-Rellich theorem [59, Thm. X.12]
and Lemmas 3.7 and 3.8. For part (b) it suffices to show that

VR: (DO, T2l + 1+ 1) — H

is compact, cf. [20, [IT Ex. 2.18.(1)]. This can be achieved similarly to [27, Thm. 5.9]
using Lemma 3.7 (e), the identity (3.35), the bounds from Lemma 3.9, the compact
embedding H?([0, Rmax]) € H' ([0, Rmax]). and (3.29).

For the last part we first recall the classical [2] Antonov coercivity bound
1 m(r)

B T | f (r, w)? d(r, w) (3.38)

(LS = /Q
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for f € Cf(Q) odd in w, which can be derived as in [26, Lemma 1.1] or [42, (4.6)].
Extending the estimate (3.38) to f € D(L) via a standard approximation argument
[61, Prop. 2] implies o (L) C [0, oo[ and ker(£) = {0}, cf. [27, Cor. 7.2 & 7.3]. In
order to establish the coercivity bound (3.37), we then proceed as in [27, Prop. 7.4]
and deduce that

A=

Lf (1_fo°°r2U/Tf<r>2d’>

DT | T I3, feD(T) 472 | T £)2
Pty 7 fll% Pty 17 f1I%

using Lemmas 3.9 and 3.7. Combining the latter estimate with Lemma 3.7 (e)
similar to [27, Thm. 7.5] then concludes the proof of part (c). O

Corollary 3.11. (Single gap structure) There exists an g9 = &o(k) > 0 such that
forany 0 < & < g, the linearised operator associated to f** satisfies

2
L) =[——, o[
Oess (L) [(Tmax)2 oo[
0
Proof. The single gap condition (1.8) is equivalent to ;'3% > 2 by (A.15), which
by Lemma 3.6 and (3.36) implies the claim. O

4. Absence of Embedded Eigenvalues

For fixed k > % we consider the steady states f%¢ constructed in Lemma 3.1
with 0 < ¢ < &g, where &9 > 0 be such that the statement of Corollary 3.11 and
the uniform estimates from Lemma 3.6 (b) hold. Further ¢-independent bounds on,
e.g., Rmin, Rmax, E0, and Enjn for 0 < ¢ < gg follow by Lemmas 3.1 and 3.6 after
suitably shrinking g9 > O.

The central statement of this section is Theorem 4.5, which states that under
the (regularity) assumption k£ > 1 there are no embedded eigenvalues of £, i.e. no
eigenvalues inside oeg (L) given by Lemma 3.10. We shall prove this by contra-
diction. To that end, we first make a simple observation relating the eigenvalues
of £ to those of £; the latter operator is obviously well-defined on the domain
D(L):=D(T), recall (1.10).

Lemma 4.1. Assume that the operator L: D(L) — H has an embedded eigenvalue

%for some m € N and E,, € I with an eigenfunction h € D(L). Then the

function f = h + %Th enjoys the regularity f € D(7T) and satisfies the
identity

|9/ (E)|U (¢, E)

f,E)=—T, S ET(E) forae E€l, el 4.1
where we have introduced the shorthand
Tn:=T(E,). (4.2)

In addition, the statements of Lemma 3.9 apply to Uy, and VU y # 0.
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Here we employ the convention that a complex-valued function lies in some by
definition real-valued function space like D(7), if its real and imaginary parts do.

Proof. Assume that A% with A € R is an eigenvalue of £ with an associated eigen-
function 4 € D(£) = D(7?) N’H. By Lemma 3.10 we have A # 0. Using (3.35)
and Uy, = O (as h is odd in w), it is then easy to check that the pair of functions
f=h=x; T h are eigenfunctions of the operator L associated to eigenvalues
+il. Observe here that 1 € D(L) implies & :I: 5TheD(T) = D(L). Therefore,

27}”’:" is an eigenvalue of L, and using action- angle coordinates and (3.26) yields

the identity

¥ (f + 19" (E)Uy) = 2mmf, ae.onS' x I, 4.3)

T(E) e,

where we recall (4.2). Since Uy = x A) by Lemma 3.9, we

me
may apply the Fourier transform w.r.t. # € S! to (4.3) to obtain the relation

(f(z E)+ ¢/ (E)| U (. E)) - —f(e, E), forae. Ecl, t€Z,

4.4
where we recall (2.4). It is convenient to rewrite (4.4) in the following form

T(E)

(Tm - %T(E)) f, E) = —T,¢'(E)|U; (¢, E), forae.E€l, £ el

4.5)
The strict monotonicity of / > E + T(E) implies that for any given ¢ € Z*,
there exists at most one energy E, € I such that 7, — —T(Eg) = 0. We hence

conclude (4.1). Lastly, assume that VUy = 0. Then Uy = 0 since it decays to
0 as r — oo and thus f = 0 a.e. by (4.5). By definition of f it follows that
Th = —@h which is impossible since 2 # 0 is odd in w and 7 reverses
w-parity. " O

Remark 4.2. 1f T,, — T (E¢) = 0 for E; = Emin € I, it follows by (4.5) that
Uyr(£, Enin) = 0; wealways extend T’ smoothly on I using Remark A.18. However,
by Lemma 3.9, l’]}(ﬂ, -) is only CO’% at E = Ein, and therefore

Upt,E) 1
m ~ (E — Emin) 2as E — Emin.
In particular, the relation (4.1) does not make sense pointwise at £ = E;j, but it
does weakly, or more precisely in L>~V(I) forany 0 < v < 1.

The previous lemma suggests that the frequency-energy pairs where the denom-
inator on the right-hand side of (4.1) vanishes play a distinguished role in the study
of embedded eigenvalues. The next lemma provides simple quantitative bounds on
the range of frequencies that are nearly resonant.
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4A72m?
T;
value of L. Let 0 < § < %Tmin be given. Consider the §-resonant set

Lemma 4.3. (5-resonant set) Let (m, E,,) € N x I be such that

is an eigen-

- m
L= {e € Z'|3E e 1 suchthat |T,, — ZT(E)| < 5} .
Then L§' C N and there exists a constant Cyey = C(Tmax, Tmin) > 0 such that

L
H +]Z] < Cres. €€ LM (4.6)
m £
Proof. If there exists an E € I such that —§ < T}, — TT(E) < ¢ then clearly

7 > 0 (since § < %Tmin) and

- < — <
2Tmax Tmax - T(E) 14 T(E) a Tmin 2 Tmin

which implies the claim. O

1 Thin Tiin — 6 Ty —38 m T +46 Tmax + 6 3 Tmax
< < < <

’

Decomposition of the 5-resonant set. For (m, E;;) € N x I and § < %Tmin
fixed, we decompose LY' into three disjoint sets

LY =Ry U Py UNpy,
where

Rpi={t e Ly’ |3E € I such that T,, — %7 (E) = 0]
Pie [z €Ll | Ty - %T(E) >0 forall E e i},
Nm:z{ﬂeLg”|Tm—%T(E)<0 forall £ eT}; 4.7

recall that T is continuous on /. We call the frequencies £ € R,,, £ # m, resonant
frequencies. For any such frequency there exists an energy value E; € I at which
the equation (4.5) degenerates, and by the monotonicity of I > E +— T (E) this
energy value is unique. In particular,

0, E E 5 E )
T — 2T(E) ]~ €lE¢, Eol (4.8)
V4 >0, E €[Enin, E¢].

An important piece of notation for the proof of Theorem 4.5 is given in the
following definition:

Definition 4.4. (The function p,, ;) Leté < %Tmin. For any pair (m, £) withm € N
and £ € LY let

m
—1

¢
: )+ Cp. fort € [Toin, Tas] Witht < —T,,.
m

4.9)
Here C), > 0 is chosen independent of m, £, and ¢ so that p;, ¢ > 0 on its domain
of definition; this is possible by Lemma 4.3. Obviously, p,, ¢ is an antiderivative

of the map ¢ T+ﬂz and pp ¢(t) — oo as Ty, — 7t \( 0.
mog

£
Pme(t):=— —log (Tm —
m
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Theorem 4.5. Let k > 1. Then there exists an gy > 0 such that for any 0 < ¢ < &g
the operator L has no embedded eigenvalues.

Proof. By way of contradiction, we assume that there is an eigenvalue in the es-

sential spectrum of £, which by Lemma 3.10 means that it is of the form T ; B
for some m € Nand E,, € I. Let f € D(7) be a function as in Lemma 4.1, i.e.,
the relation (4.1) holds, the statements of Lemma 3.9 apply to Uy, and VU # 0.
Throughout the proof, we keep track of the dependence of constants on the steady
state, and hence on ¢, and on the frequency m.

Step 1. An energy-type identity. We multiply (4.1) by the complex conjugate
of —(/];(E, E), sum over £ € Z*, and integrate against T (E) dE. By Parseval’s
theorem, the left-hand side equals

1
— U;T(E)dOdE = — Upd(r,w) = —= | |VU/|*dx;
/Ifslff() /Qf rd(r, w) 16n3é3| rl7dx
observe that f (0, -) = 0 by (4.4). As a result, we obtain the identity

T(E)|¢'(E)| 2
= 3/|VUf| dx = mg/ T~ BT(E) |Ure, B)|"dE.  (4.10)

Now we let § = leTmin so that the conclusions of Lemma 4.3 apply. It is clear that
there exists a constant C = C(Tin, Tmax) > 0 such that

1
— < C|=|, meZ*'" Eel teZ*\L". 4.11
T, — 3T (E)| ~ 'm Vo R
By (4.10),
T(E)l¢' (E)| 2
o 3/|VUf| dx = Ty, ; / T~ BT(E) |Us e, E)|"dE
le(Lm)C

T(E)|¢/(E)| | ~
(Z Yo+ Z)/nf_)l,‘g;(;') T, B)|* dE.

LeRy  LePy  LeNy,

‘We bound the first term on the right-hand side using (3.33), (4.11), and the bound
Ty — 2T(E)|? = 8% for € € (L) to get

T, Z / T(E)lg'(E)] |Uf(€,E)}2dE

m
— —7T(E)
Le(LfHe
|
c ~ 0|2 _
- Clg'l~ay ||<p ||L iz 5 ez |1f|Uf(£,E)|2dE
20 |m|2 J1
Le(LihHe
C C
< Wi gy 12, S (g3 < OI=0 g 2
82m2 L#£0 52m2

myc
Ee(Lé)
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We thus rearrange the above identity and use (4.8) to obtain

1 Cllg'llL=u
m/WUﬂzdx < vy,

82m2

LT, Z/ T(E)lg'(E)| |Uf(£,E)|2dE

LePy B MT(E)|
T(E)l¢(E)| 2
+ T ————— |Us({, E)| dE. 4.12
% / —a7 ey 101G E) @12

By Definition 4.4, 71595 (pm,o(T(E))) = W for € € Py and E € I or

£ e R, and E < E,. We use this to rewrite the 1ntegrals above and then integrate
by parts in E. For £ € P, this results in

T(E)¢/(E)| _
—— 9 m. (T (E Urll, E)|"dE
/] 0 (P (T (E) [T 2. )

T(E)|¢'(E
— A+ B = D (T ENITHE B, < A+ B

(4.13)

where for £ € P,,,

L T(E)|¢'(E)| ~ =
Api= 2/1 i PmeTENRe (aEUf(z, E)T, (¢, E)) dE, (4.14)

L T(E)|¢'(E)| —~ 2
By:= /IaE (—T,(E) >pm,g(T(E))|Uf(e, E)|"dE. (4.15)

In (4.13), we used k > 1 to conclude that ¢’ (Ey) = 0 and the regularity of ﬁf “,")
from Lemma 3.9 to infer that the boundary term at E = E( vanishes. Analogously,
for £ € R,, we have

Ee T(E)|¢/(E) _
/ WBE(P%K(T(E)))’Uf(E,E)|2dE

 T(EB)¢E)
T'(E)

= Ac+ By P TENTFC B < Ac+Be,
(4.16)
where for £ € R,

Ee T(E)|¢/(E —~ =
Ag:=—2/ Mpm,g(r(ls))lze(awf(z,E)Uf(e,E))dE

min T/(E)
“4.17)
Eq T(E)|¢'(E —
Bym — / o (%) po(T(EY) |T7 (2. E)|* dE. (4.18)

In order to see that the boundary termat £ = E;in (4.16) varﬂshes, first note that we
may assume Ey > Ey;y. If, in addition, E¢, < Eo, we have Uy (€, E¢) = 0by (4.5)
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and thus obtain |Uf o, E)| Pme(T(E)) — O0as E /' E; using the regularities of
U 7 and T. Otherwise, Ey = Ey and the boundary term vanishes because k > 1.
Step 2. Estimates for Ay, £ € P,, UR,,. The main challenge in our estimates is

that the term og U; (¢, E)at E = Ey;, inherits the singular behaviour (E — Ein) ™~ 7
and for any given £ € Z the function E > Jg Uf (¢, -) just fails to be in L2(I). To
go around this we shall introduce powers of

0F := E — Enin

as weights in our estimates. For any £ € P, we first rewrite (7} (¢, E) as ﬁag/U\f
Using (4.14) and Cauchy—Schwarz

2

2 1 T(E)|¢/(E)| . 1= 1
[Agl” < =yl —— o Pm(T(E)OpUys (L, EYSE)20gU s (¢, E)YSE) 2 dE

T'(E)

< & [ |opTr. B2 T(E)SE 1§/ (E)I dE
m2? J; Y
w‘a Us(e, E’ it E)|dE,
/1 S|P |<p< )l

where we have used (4.6). Applying Cauchy’s inequality and summing over £ € Py,
yields

Ylad<em Y /|aEUf(£ E)|’ T(E)SE |¢/(E)| dE
LePy LePy

Pon (T (E)) T
+Cm ™3 Zf o a0 B Qw (E)|dE. (4.19)

By the same arguments as above we conclude that

Z |Ag| < Cm™2 Z/ \aEUf(e E)| T(E)SE |¢'(E)|dE

LERM LERM
Ee pmg(T( ) | ——
(4.20)

The first sums on the right-hand sides of (4.19)—(4.20) respectively combine to give

— Z /|3EUf(£ E)| T(E)SE |¢/|dE
13673

Z/ |3EUf(€ E)| T(E)SE |¢'|dE

m 2 LeR, Emin

< —Z/|3Euf(e E)| T(E)SE |¢'|dE

m2 ez,
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C
= 0pUs|* T(E) SE |¢'1d(0, E), 4.21)
m?2 JSIxI ’
where we have used the Plancherel identity in the last line. We use (3.32) and
change variables 6 +— r, keeping in mind that 2~ 55 = T(E)/2E —2W(r), to obtain

C
— | 8eUs0. )P T(E)SE |¢/1d(0. E)
m?2 JSIxI
C 2 ,
<7 8, Us (6, E)|" T(E)|¢'|d(8. E)

— 1
m?2 JSxI

S fR'“”|a vinf [ 94
= —¢ll>a r —dr
m% o Rumin el W(r) VE —Y(r)

C Rmax 2 1 cl
- 7||¢’||Lw<1)/ 0,07 (Eo — ('t dr < g/l IVUS 2.
m?2 Rmin m?2
(4.22)

In this estimate only the general assumption £ > 1 and the uniform-in-¢ bounds on
Rmin, Rmax> Eo, and Enin have been used; constants denoted by C never depend
one,m,orl.

It remains to estimate the second sums on the right-hand sides of (4.19) and (4.20)
respectively. We start with the resonant contribution from (4.20). We recall that
Ur =0,Uy g—g, change variables 6 — r, and apply the estimates from Lemma 3.6
to find that

Ee pmg(T( )
P> /E e B e B S @i
p2 (T(E) T(E
< 2/ /;agUf(e B TE/(E)Z 5( )| "(E)|d0 dE
ZER mln
r+(E) E¢ T(E 2
< Z/ e Uf|2/ mee/( (2))T E) pE= 2U(r) |¢'(E)| dE dr
R, r-(ED) W(r) (E) SE
Ey
<C Z/ |9, Uf| dr[ pi’e(T(E))(SE)_%kp’(ENdE
ZER min
< CIIVUsl3 Z Ipm, (4.23)
LeER,
where

Ey
o= [ DR T ENGE) iy (B AE.

In order to estimate the energy integrals I, accordingly, we first note that for
L€ Ry and E € [Emin, E¢l,

m m
Tn — ?T(E) = z(T(Ee) —T(E)) = C(E¢ - E), (4.24)



45 Page 28 of 49 Arch. Rational Mech. Anal. (2025) 249:45

where we used Lemmas 3.6 and 4.3. For some o > 0 sufficiently small we estimate
Pm (T (E)) against C(T,, — %T(E ))~* and apply the standard integral identity

b
[ = -9 Leat DUFED o _ gporet,
a MNae+p8+2)

o, B>—1,a<b,

to find that
¢ ke k-1 (Ee — E)>
Iom < Cll——— = llz>u / (Eo — E)'" —F—————=4dE
"= B — T VE = Emin
¢’ k—+—2a ¢’
< Cll— 1o (Eo — Emin)* 272 < Cl|——2—— || 1o (1),
=Cl (Eo—-)k—lnL ()(Eo — Emin) = ”(Eo—~)k—1 | oo (1)

where the constant C > 0 is independent of ¢ and m; recall that k > 1. It then
follows from (4.23) that there exists a constant ¢, > 0 such that

Ec pr (T(E)) 2T(E)
Z /;mm T/(E)z ‘anf(g, E)‘ Fko |dE

= cm| e mlIVUFI, (4.25)

(Eo )"
where we recall that |R,,| < Cm by Lemma 4.3. By a completely analogous
argument

P (T (E) 21w
Zf L e ) a_E""(E)'dE

<C Z / |9, Uf| dr Iy < C3m||( )k 1||L°°(I)||VUf||L2(R3
LePy,

(4.26)

for some ¢, m, £-independent constant c3 > 0. The difference to the estimate (4.23)
is that for £ € P, the energy integrals Iy, extend over the whole energy interval
I, and (4.24) is replaced by

m m
Tn — ?T(E) > ?(T(Eo) —T(E)) = C(Eo — E).

Hence

/

1
¥ k—1-2a k—1-2a —1
Ipyy < Cll—————— |l (Eg — Enj 2 1—s s~ 2ds,
m = || (Eo — _)k—l ”L (I)( 0 min) /(; ( )

which is again uniformly bounded in the same way. In conclusion, from (4.19)—
(4.22) and (4.25)—(4.26) we conclude

/

_1 @
Z [A¢] < cqm™2 ||W||L°°(1) ||VUf||iz(R3) (4.27)
LePUR,,
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for some &, m, £-independent constant ¢4 > 0; notice that ||¢’|| ey < C

||(E()(_pﬁ||m°(1)-
Step 3. Estimates for By, £ € Py UR,,, see (4.15) and (4.18). These estimates
are analogous to the bounds (4.25) and (4.26), and we obtain
> Bl <esm™! (n"%/n oy 2 ) IVUsI2
(€PuUR aen (Eg — k=T T gy — =2 T Sz
(4.28)

for some ¢, m, £-independent constant c5 > 0. Here, we again rely on the assump-
tion k > 1 to guarantee the integrability of ¢” near E = E° and use the uniform
bounds on 7', T/, and T".

Step 4. Conclusion. We use (4.27), (4.28), and (4.12) to get

/ 4

_1 (] @
63 IVUf[3 < Cm™2 <||W”L°°(1) + IIWHU@(U) VU113
4.29)
_1
< Cpnam ™ 2¢ |VU/|I3, (4.30)

where the ¢ in (4.30) appears due to the polytropic choice of the steady state (1.4).
With g9 > 0 small enough this gives the contradiction for 0 < & < &g, recall
VUy # 0 by Lemma 4.1. O

Remark 4.6. The final constant Cfpa > 0 on the right-hand side of (4.30) de-
pends on M, L, k, k, Rmin, Rmaxs Tmin> Tmaxs Tryin» Tmax» and Ty, in an explicitly
computable way. The proof shows that as long as Cfgpg) € is smaller than 1617’

embedded eigenvalues occur.

no

We have carefully tracked the occurrence of the small factor 0 < ¢ < 1 in the
proof of Theorem 4.5, which appears only in (4.30). Due to the presence of the

factor m™~? in (4.29), it follows trivially that at high frequencies m there cannot be
any embedded eigenvalues, even if we do not impose any smallness.

Corollary 4.7. (No embedded eigenvalues at large frequencies for large steady
states) Consider the family of steady states (1.4) with e = 1, i.e.,

flrw) =e(E) = (Eo— B, k>1. (4.31)

Assume further that Tr; > 0. Then there exists an integer my = mo(k) > 0 such

. 4m%md
that the operator L has no embedded eigenvalues larger than ;zmo

min

in

Proof. By (4.31) it is clear that

/ "

¥
M= ——— =) + | 5 =) < oo
O e

Thus, the claim follows directly from (4.29) upon choosing m sufficiently large. O

Remark 4.8. Under the strict monotonicity assumption on the period function E +—
T (E) (which is expected to hold generically), the above corollary applies to a broad
class of steady states satisfying the assumption M, < co. This clearly also includes
isotropic steady states without the central point mass at the origin.
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5. Principal Gap Analysis

Throughout this section let fX¢ be a steady state given by Lemma 3.1 with
fixed k > %ands > 0.

5.1. A Birman—Schwinger Principle

In order to characterise the presence of eigenvalues of the linearised operator
L =—T?—TR:D(L) — H in the principal gap G defined in (2.8), we provide a
criterion similar to [27, Sc. 8], see also [40] and [24, Sc. 6].

Lemma 5.1. (A Birman—Schwinger principle, cf. [27, Lemmas 8.1-8.3]) For A € G
let

0,:=VR (—72—,\)71\/@ H— H. (5.1)

We refer to Q) as the Birman—Schwinger operator associated to L. This operator
is linear, bounded, symmetric, non-negative, and compact. Furthermore, the lin-
earised operator L possessing an eigenvalue in the principal gap G is equivalent
to the existence of . € G such that Q) has an eigenvalue greater or equal than 1.

Proof. The properties of Q; for A € G follow by the properties of —72 and v/R
derived in Lemmas 3.7 and 3.8. In particular, Q;, being compact is due to /R being
relatively (—7 %)-compact, cf. Lemma 3.10 (b).

In order to relate the spectra of Q, and L to each other, we consider the operators

1
EM::—Tz——R:D([,)aH, > 0.
"

Similar to Lemma 3.10, the operators £, are self-adjoint with 0ess (L) = ess (L) =
a(—Tz}H). Furthermore, for A € G and > 1 there holds

Ais aneigenvalue of £, < is an eigenvalue of Q;. 5.2)

This equivalency is due to the following two observations: If f € D(L) \ {0}
solves L, f = Af, then g=vVRf € H\ {0} satisfies Qg = ug. Conversely, if
g € H\ {0} solves Q; g = ug, then f:=(—T2% — 1)~ 'W/Rg € D(L) \ {0} defines
a solution of £, f = Af. Next, we deduce that

L =L hasaneigenvalueinG < 3Ju > 1: L, has an eigenvalue in G (5.3)

by the non-negativity of R (cf. Lemma 3.8) and the positivity of £ with gess(L£) N
G = { (cf. Lemma 3.10) together with the min-max principle for operators [31,
Prop. 5.12].

Combining (5.2) and (5.3) then concludes the proof. O
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We note that Q; slightly differs from the respective operator defined in [27,
Eq. (8.1)]. The benefit of the definition (5.1) is that Q; is symmetric, which is not
the case in [27].

When searching for eigenfunctions of Q, for A € G associated to non-zero
eigenvalues, we may restrict ourselves to the space

im(Q;) Cim(vVR) C(f € H|3F =F(r): f(r,w) = |¢'(E)| w F(r))
={Q> (rnw) — |¢(E)] F(r) | F € L*([Rmin, RmaxD)}.  (5.4)

w
r/p(r)

This leads to the following operator which was first introduced by Mathur [52].

Lemma 5.2. (The Mathur operator, cf. [27, Def. 8.5, Prop. 8.6, and Lemma 8.8])
For F € Lz([Rmin, Rmax]) let f € H be defined via

fr,w) = |¢'(E)| F(r) fora.e. (r,w) e Q.

_w
r/p(r)

Due to (5.4), for any A € G there exists a unique G € Lz([Rmin, Ruax]) such that

0, f(r,w) = |¢'(E)] ——= G(r) forae. (r,w) € Q.

«/p( )

The resulting mapping
M.t L*([Rmin. Rmax]) = L*([Riin: Rmax)). M, F:=G
is the Mathur operator. This operator is linear, bounded, symmetric, non-negative,

and a compact Hilbert-Schmidt operator [58, Thm. VL.22 et seq.]. We have the
representation

Rmax
(MuF)(r) =f K;.(r,s) F(s)ds, F € L*((Rmin, Rmax)). 7 € [Riin, Rmax].

(5.5)
with integral kernel K € C([Rmin, Rmax]z) given by
Ky 5) 1673 & / l¢'(E)| sin27j 6(r, E)) sin(27 6 (s, E) ,
A, 8)=
rs 1nIs) T(E) T4(71152)2j —A
(5.6)

forr,s € [Rmin, Rmax], where 0 is defined in (2.3) and
Ir)y={Ecl|r_(E)<r<ri(E)}, r>0.
Proof. The operator M, being bounded, symmetric, non-negative, and compact

follows by the respective properties of the Birman—Schwinger operator Q; together
with the identity (3.29).
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In order to verify that the Mathur operator is a Hilbert-Schmidt operator, the key
observation is that using action-angle variables (cf. Sect. 3.2 and Lemma 3.7 (b))
yields

(~T*-0"'g®, E)

4 X /’+<E> g@(r, E), E) sin2wjO(r, E)) . sin(2mj6)
pa— r
r_(E) V2E —2V(r) an? 2 ),

T T(E
( )jzl T(E)?

for A € G and g € M. Inserting the definition of ~/R from Lemma 3.8, it is
then straight-forward to verify that the identity (5.5) holds. The continuity of the
kernel K follows by the dominated convergence theorem. O

Due to (5.4), the Mathur operator still contains all the relevant information of
the spectrum of the Birman—Schwinger operator. More precisely, for A € G, any
@ > 0 is an eigenvalue of Q,: H — H if and only if it is an eigenvalue of
M, L2([Rmin, Rmax]) = L2([Rmin, Rmax]); this is similar to [27, Lemma 8.10].
In addition, the properties of the Mathur operator derived above together with [31,
Prop. 5.12] and [58, Thm. VI.6] imply

sup(o (M,)) = max(o (M,)) = Myl
for A € G, where || - || denotes the operator norm on L2([Rmin, Rmax]) given by

M;:=| My || =sup{|M; Flla | F € L*([Rmin, Rmax])s [ Fll2 =1}

=sup((MxF, F)3 | F € L*([Rpin. Rmax)). IFl2 =1}, 1 €g.
(5.7

Opverall, we arrive at the following criterion for the presence of eigenvalues of £ in
the principal gap G defined in (2.8).

Proposition 5.3. (cf. [27, Thm. 8.11]) The linearised operator L possesses an
eigenvalue in the principal gap G if and only if there exists a A € G such that
M, > 1.

5.2. Absence of Eigenvalues in the Principal Gap for k > 1

We now prove the absence of eigenvalues in the principal gap G defined (2.8)
using the Birman—Schwinger principle derived above.

Theorem 5.4. Assume that the polytropic exponent satisfies k > 1. Then there
exists &g > 0 such that the linearised operator L associated to the equilibrium f k.e
has no eigenvalues in the principal gap G for any 0 < ¢ < &.
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Proof. In order to apply Proposition 5.3,let A € G and F € L?([Rmin, Rmax]) With
| F|l2 = 1. Using the representation (5.5) of the Mathur operator M, yields

o0 /
3 ¢/ (E)| 1
(MuF, F)y = 1672 E 5
A2 .
il T(E) T(JJTE)2]2 -

r4(E) F(r)
X / i 10(r, dr ) dE.
r_(E) r

We next apply the Cauchy—Schwarz inequality together with the bounds on Ry
and Rpax from (3.7) to estimate the radial integral; the constant C > 0 changes
from line to line but is always uniform in & €]0, go[. In addition, we use the bound

(5.8)

A< ;7{ and thus arrive at

max

¢/ (E)| 1
CZ TE i dE. (5.9)
T2 T 712

ax

For the first summand, recall that there exists ¢g > 0 such that T = T°¢ is
increasingon I = I° for 0 < ¢ < gy by Lemma 3.6 (b). Together with the uniform
bounds from the latter lemma and the mean value theorem (cf. Lemma 3.4 for the
regularity of 7') we deduce

472 472 _ 472 472
T(E)2 T2 T(E)2 T(Ep )2 =c

max

(Eo —E)

for E € I. Therefore,

"E | £
/|¢T((E))| ax2__ 4n? dEfoEp( )|dE Cke /(Eo E)2dE < Cs
1 _ O_

T(E?  TZ

ax

(5.10)
because k > 1;recallthat I = I¢ is uniformly bounded as ¢ — 0 by Lemma 3.6 (a).
In order to bound the remaining summands on the right hand side of (5.9),

i 4 J? .
observe that T(E)2] - T% > % for j > 2and E € I. Thus,
o ’ 7
¢ (E)| 1 /
2 L TE) = SC/I|«>(E)|dE < Ce. (5.11)

j=2 TE2! T T2

Inserting (5.10) and (5.11) into (5.9) implies M, < Ce. Applying the Birman—
Schwinger—Mathur criterion from Proposition 5.3 then concludes the proof. O
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5.3. Existence of Pure Oscillations for % <k<l

We now apply Proposition 5.3 to prove the existence of pure oscillations a la
[27, Thm. 8.13].

Theorem 5.5. Assume that the polytropic exponent satisfies % < k < 1. Then there
exists €9 > 0 such that the linearised operator L associated to the equilibrium f*¢
possesses an eigenvalue in the principal gap G for any 0 < & < g.

Proof. For » € Gand F € L?>([Rmin, Rmax]) we rewrite (M F, F), as in (5.8) to
deduce

2
k "(E r+(E)
MoF. Py = 1673 [T / sineroe. By L2 ar) ar.
1 T(E) Az~ _ 5 \Jr (B r
T(E)?
Now choose > 0 and a non-empty set S C]Rmin, Rmax[ such that for all £ €
1Eo — n, Eo[ it holds that S Clr_(E), r+(E)[ and sin(2n0(r, E)) > % forr € S;
this is possible since r4 are smooth and 6(-, E): lr_(E), r+(E)[—]0, %[ is one-
to-one for E € [. Setting F:=1¢ leads to

3
M, F, F 472 |8 Ey "(E 1
limsup M; > lim sup (M )2 > w2 |S| lim sup ‘40( )‘ . 4E
472 42 ||F||% R2. a2 JEg—n T(E) 47122 Y
A A= —5— min ),
T 7 T 7 T T(E)
Eo|o'(E)| 1
=CIS dE
o Eo—n T(E) _4n?_ _ 4n?
T(E)2 Tnzlax

for some constant C = C? > (. Using the bounds from Lemma 3.6 (b) implies

4 4712_ il 4 <C(T(E T(E)) < C(E E
T(E)Z_T2 _T(E)z_T(Eo)z_ (T(Eo) —T(E)) <C(Ep — E)

max

for E € 1. Hence,

. B lg'B)] Fo k=2

limsup M, > C|S]| ——dE =C|S|¢k (Ep — E)'dE.

s A1 Eo—n Eo— E Eo—n

Tifax

Because k < 1, the integral in the latter expression is infinite. Applying Proposi-
tion 5.3 then concludes the proof. O

6. Proof of the Main Theorem

We can now complete the proof of Theorem 1.2. Part (a) is the content of
Theorem 5.5. To prove part (b) we first observe that since o (£) C]0, oo[= G U
0ess (L) by Corollary 3.11, Theorems 4.5 and 5.4 imply that there are no eigenvalues
in the spectrum and therefore the pure point spectrum is empty. It remains to show
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the damping formula (1.18). To that end we view the linear evolution (1.13) as a
first order system of the form

W =AY, Y= (a,ff) , A= <_0£ (1)) . 6.1)

Following [20, Sc. V1.3], we consider this system on the Hilbert space X:=(D(7)N
'H) x 'H with

1 o0
(f.8) (F.ON =T f.TF)y — 5 /0 P U () Urp(r) dr + (g, G)
(6.2)
for (f, g), (F, G) € X. Here we recall (1.16). If additionally f € D(L), the above
expression can be rewritten as

(fs8), (F.G)x =(Lf, Fln + (8. G)n

using (3.35). Hence, extending Antonov’s coercivity bound from Lemma 3.10 (c)
onto D(7)N'H via a standard approximation argument [61, Prop. 2] shows that (6.2)
indeed defines an inner product on X'.

The natural domain of definition for the operator A isD(A):=D(L) x (D(7) N H),
which is a dense subset of X'. Moreover, since £: D(L) — H is self-adjoint and
invertible by Lemma 3.10, it is straight-forward to verify that A: D(A) — X
is skew-adjoint, i.e., A* = —A. By Stone’s theorem [20, Thm. 11.3.24], A thus
generates a unitary C°-group and the system (6.1) is well-posed, i.e., any initial
datum (fp, go) € D(A) launches a unique, global solution of the form R > ¢ +—
e’A(fo, go) € D(A), cf. [20, Thm. I1.6.7]. The analogous statement clearly carries
over to the second order equation (1.13).

Consider the operator

: AT 0

which is bounded by Lemma 3.9. Moreover, for any bounded sequence ( f;, g,) C
X we obtain that (7 f,,) C H is bounded by Lemma 3.10 (c). Similar to Lemma
3.10 (b), we thus conclude that K is compact by applying Lemma 3.9. Thus, since
the point spectrum of A is empty by the above discussion, the RAGE theorem [60,
Thm. XI.115] implies

N Y A 2 D B S 2
0= lim /O 1K' (fo. go)lFp di = lim — /O ¢/ (E)UT oI dr.
(6.3)
Furthermore,

1
—IVUr 2 =— | Urs Tf@t,r,w)dr,
167r3” Trioli2 /Q Tro® T f, r,w)d@r, w)

<" ENUT il 1T f Ol

by Cauchy—Schwarz and
IT O3 < CLLF@, FO)u < CIF@), 8 FE)IE = Cll(fo, g5 (6:4)
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due to Lemma 3.10 (c) and (¢’ A),ER being unitary. Therefore,

I c (T
- fo IVUT (1) I7 5 dt < - /0 e’ (EMUT £l 1T f (@) 7 dt

1

1 1
1 T , ) 2 1 T 2 2
<c ?/o " (EYUT f1) Iy 7/0 IT £ N dr

for T > 0 and (1.18) follows by (6.3) and (6.4).

Acknowledgements. The authors thank Alexander Pushnitski for many stimulating discus-
sions. M. Hadzi¢’s research is supported by the EPSRC Early Career Fellowship EP/S02218X/1.
M. Schrecker’s research is supported by the EPSRC Post-doctoral Research Fellowship
EP/W001888/1.

Data Availability Statement All data generated or analysed during this study are
included in this published article.

Declarations
Conflict of interest The authors have no relevant financial or non-financial inter-
ests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

A. Steady state theory

A.l. Proof of Lemma 3.1

The ansatz (1.4) indeed yields a stationary solution of the system (1.1)—(1.3) provided that U
is the potential associated to f ke ie.

4

-
U'(r)= - / sZp(s) ds, r>0, lim U(r) =0, (A.1)
r 0 r—00

where p is induced by fk*g via (1.3), i.e,

p(r)=12/fk’£(r, w) dw. (A2)
r R
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In order to get a closed system for U, we insert the ansatz (1.4) into (A.2) and obtain

E
“[22” s/ " (Eo— B (E—wr) b dE
ve)

r

p(r) =

sTk+1) 1 k+4 e k+3
—Vart S gy —w) = e g - v (A3)
Tk +3) r? o2 +
for r > 0, where the effective potential W is given by (1.6). Hence, defining
k+3
g@)=crzy *, z€R, (A.4)

yields that
M L
p(r) = 5 g(Eg — W(r) = %g(Eo—U(rH— - —2>. (A.5)
r r r 2r

Observe that g € c! (R)NC*®(R\ {0}) since k > % Inspired by [56], we now consider the
quantity
yi=Eqg—U

instead of U. Then y solves

y(r) = —47tzck s/ g (y(s) + M_ %) ds, r>0. (A.6)
r 0 s 2s

We equip this equation with the initial condition
y(0) =« (A7)

for prescribed « satisfying the single gap condition (1.8). It is straight-forward to verify
that there exists a unique solution y € C 1 ([0, oo[) of (A.6)—(A.7), ct. [56]. This solution
possesses a vacuum region at the centre, more precisely, p(r) = 0 and y(r) = « for
0 < r < Rpin With Ryjp = Rgﬁn given by (3.2) and Ry > 0 is the maximal radius with
this property. Furthermore, inserting y < « < 0 into (A.5) yields p(r) = 0 for r > Rgﬂax
where Rgm is given by (3.2). Hence, the limit yoo:=lim;— o0 y(r) €] — 00, O[ exists. Then,
setting Eg:=yoo < 0and U:=E( — y yields a solution of (A.1). The estimate for the w-part
of the support in (3.1) follows by

1 L M

TP < By~ E(row) = () + o — < M ) € supp (4)
2 ' r 2r2 7 Ryin '
where we have used the bounds y < 0, 7 > Ry, and —Zr% < 0 on the galaxy support. O

A.2. Convergence of the steady state family

The aim of this section is to prove Lemma 3.6. For fixed k > % and « as above, this requires

a detailed understanding of the behaviour of the steady states f k.e given by Lemma 3.1 as
& — 0. We hence add a superscript ¢ to all steady state quantities to make the e-dependencies
more visible, i.e., p© is the stationary mass density, U? is the stationary potential, and the
associated local mass function is given by

mé(r):=4mw /r s2pf(s)ds, r=>0. (A.8)
0

The first result is similar to [24, Lemma 3.3] and forms the basis for all further convergence
results. Recall Lemma 3.3 for the regularity properties of p and U®.
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Lemma A.1. Ase¢ — it holds that p®, (p®)" — Quniformly on [0, oo[, M{ — 0, Ej — K,
and
WU — 0 uniformly on [0, oo[, j € {0, 1,2, 3}. (A.9)

Proof. Inserting the uniform bound of the radial support given by (3.7) and the estimate y¢ <
y¢(0) = « into (A.5) yields the uniform convergence p¢ — 0, which immediately implies

that M — 0; recall (3.3). Together with (y®)'(r) = —@ for r > 0 by (A.6) this also

leads to ()" — 0 uniformly. After integration, we then deduce that y* — « uniformly
on [0, oo[ and ES = y5, — «.In addition, after differentiating (A.5) we obtain the uniform
convergence (p®)" — 0. Combining all these limits then also yields the uniform convergence
of the second and third derivative of U*¢ after further differentiating (A.1). m]

We next prove that r§ and r§. converge to rS and r:()t, respectively, ase¢ — 0;recall Lemma 3.2
and Section 3.3 for the definitions of these radii. We start with the minimising radius r£ and
the associated minimal energy value Efnin.

Lemma A.2. It holds that r — rQ and Ef. — Er?lin ase — 0.

Proof. The radius ré is given as the unique zero of the increasing function
&€ &€ & L
£°:10,00[— R, &°(r):i=M +m"(r) — -

for ¢ > 0; in the case ¢ = 0 we have m® = 0. Because m¢ — 0 uniformly on [0, oo[

as ¢ — 0 by Lemma A.1, we obtain that r{ indeed tends to rfk) ase — 0.

Together with the uniform convergence U¢ — 0 from Lemma A.1 we then deduce that
EE. =wi(rt) - W) = E0. ase — 0. o

min min

The next step is to show analogous properties for the radii r§ (E) as well. In addition, we
also analyse the behaviour of these radii for (e, E) — (0, Egﬁn
regime. For this sake, let

), i.e. in the near circular

A:={(e, E) | £ 2 0, E € A%} (A.10)
denote the set of all admissible (¢, E)-pairs; recall that A® :]Er";in, 0[ by (3.5) and (3.21).

Lemma A.3. (a) The mappings A > (¢, E) +— ri.(E) are continuous at ¢ = 0 locally
uniformly in E. More precisely, forany § > 0and E| < O there exists some eg > 0 such
that forall 0 < & < &g, ES. < E < Ey, and Er(1)1in < E* < E{ with |E — E*| < g
it holds that |r§.(E) — rQ.(E*)| < 6.

(b) The radii r.(E) converge to rfk) as E — E:;in and ¢ — 0. More precisely, for any
8 > 0 there exist e > 0 and n > 0 such that for all 0 < & < gg and Efnin < E <
EE. +n < 0it holds that |r§.(E) — 0| <.

Proof. The radius r€ (E) is the unique zero of the decreasing function
£5:10,r{[> R, £ (r)=¥°(r) — E

fore > 0 and E € A®. We continuously extend 0 by setting 0 (Eglm)::rg andlet§ > 0
and E G]Eglin’ O[ be arbitrary. By taking § > O sufficiently small, we ensure that there
exist E e]E0 Eq[ with rg(E) +46 < ri‘). ‘We then observe that, as § > 0, for such E,
£9.(r9(E) + 6) is uniformly negative, that is,

min’

co=supleL O (E) +8) | ES. < E<Ep, r2(E)+5 <10}y <.

min
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Now let &, E*, and E be as specified in the statement of part (a) of the lemma for some g5 > 0
which we define below. If r® (E*) +28 > r£, then r (E) < rf < r% (E*)+25. Otherwise,
ie, 0 (E™) + 28 < rf, we also have 0 (E*)+6 < rg after choosing g > 0 sufficiently
small by Lemma A.2. Due to {— < 0 and the uniform bound rg(E*) +4§ > r9 (Eq), we
then obtain that 52 (r9 (E*) + §) < 0 after potentially shrinking g > 0 again according to

Lemma A.1. This implies that r& (E) < r9 (E*) + §. Showing that r& (E) > rO (E*) —§
works similarly. An analogous proof yields the respective estimates for r4 as well, which
concludes the proof of part (a).

Part (b) then follows by combining part (a) with the convergence of Eélin from Lemma A.2.
[}

In particular, Lemmas A.1 and A.3 imply the convergence of the radial support of the steady
state, i.e.

0 0
Rr€nin = Rinin> Riax = Rmax ase = 0, (A.11)

recall (3.2) and (3.7).

We now consider the period function 7¢ : A® —]0, oo[ for ¢ > 0 defined in (2.2) and (3.22).
The aim is to establish the uniform convergence of T¢ on the energy support T° of the steady
state as ¢ — 0; recall (2.1) and (3.23). The main difficulty in this task is that the set I¢
changes in ¢, in particular, the minimal energy value Efnin depends on . We thus first
consider the case of this “near circular regime”, i.e., the region where E gets close to the
minimal energy value E. . It turns out that 7* is essentially determined by (W¢)”(rf)
in this regime, which is why we start by establishing the following auxiliary result; recall
Lemma 3.3 for the regularity of the effective potential W¢ for ¢ > 0.

Lemma A4. Let j € Ng. Then (‘Ilg)(j)(s) converges to (\PO)(j)(rg) as E — Egnin and
& — O uniformly ins € [ré (E), ri(E)]. More precisely, for any § > 0 there exist &g > 0
and n > 0 such that for all 0 < & < ey and ES, < E < Ef, +1n < 0 it holds that

(&) D(s) — (WD) < 8 fors e [ (E), ré.(E)].
Proof. Applying Lemmas A.1-A.3 and (A.11) implies that there exist 8, &y, n > 0 such that

(€ (E), r¥.(E)] C [RE:. + 28, Riyy — 281 C [RY,, + 8, RO — 31

min min
forEZ. < E < E>. +nand0 <& < go. In particular, (W) exists on [rE (E), ri(E)]
by Lemma 3.3; observe that w0 ¢ C°°(]0, oo[) by (3.19).1If j < 3, the statement then follows
by Lemma A.1. In the case of a larger j one has to iterate the arguments of Lemma A.1,
i.e., further differentiate (A.1) and (A.5), to deduce that (U® )(/ ) 50 uniformly on [R0 +

= - min
5, RV, —8lase — 0. a]

We then obtain the following behaviour of T4 (E) as ¢ — 0 for E in the near circular regime:

Lemma A.5. The period function T (E) converges to TO(Er(])ﬂin) as E — Efnin and e — Q.
More precisely, for any § > 0 there exist ey > 0 and n > 0 such that for all 0 < & < g and
Ef. < E < ES. +n <0itholds that |T¢(E) — TOEY. )| < s.

min min min
Here, TO(E]?qin) denotes the continuous extension of 79 onto E&in’ Due to (3.19), (3.20),
and (3.22), this value is given by

3
L2 2

TOES. — (A.12)
M2 Jwoyed)
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Proof. Forany ¢ > 0 and E € A® we obtain that
T(E) =2 / - dr / e
= " e gy V2E — 295 (r) V2E — 2UE(r)
_ / V2 . / V2
Eria \J(E =) (W) 022 VB J(E = i) (W8 (5. G))?

dn

by changing variables via 7 = W¢(r), r = r%.(7) in both integrals. We focus on the first
integral in the last line of the above calculation; the arguments for the second integral are
similar.

Due to the extended mean value theorem, for every 77 €]EZ
1rE (1), rE[CIre (E), ri[ such that

min® E[ there exists some s €

EV/ (€ (7\)\2 EN (€ (V)2
(‘I/ )(rZ g(n)) _ (‘I; )~(r_(n)) 2w (s):
—Ef,  WECE@) — W)

recall that (W)’ (r€) = 0. Hence, the integrand of the integral under consideration can be
rewritten as

V2 B 1
\/(E—ﬁ)(‘lﬁ)/(ri(ﬁ)ﬂ \/(E—ﬁ)(ﬁ EEL ) (W) (s)

(A.13)

Now Lemma A.4 implies that for any § > O there exist g > 0 and 1 > 0 such that for all
! 1
; -3 0 L
0<e<egpand EL, < E < E5; + nitholds that |(\IJ€)//(S) — WY 92 < 5
for s € [rf (E), r{ (E)]; note that w0y = L3 > 0. Together with (A.12) we thus
conclude the following estimate for the integral under consideration for 0 < ¢ < g and
Ef. <E<ES. 4

min

E
|/ ﬁ di 7%7‘0 Er?nn)|
Erin J(E = i) (W) (2 (7))2
E V2 B 1 E dq
-1/ dan fe,
Ein JE - @2 w0y (E i) (7~ Efyiy)
_ 5 /E e e
R (E—iGi—E5,) 2

m]

In order to establish the desired uniform convergence of T¢ on the energy support as & —
0, we next verify the pointwise convergence of T¢(E). This is based on the following
concavity estimate which originates from [42, Lemma 2.1 (iii)] (the proof only uses the
elliptic equation (A.1)):

Lemma A.6. For any ¢ > 0, E € A®, and r € [r (E), rj_(E)] the following concavity

estimate holds:
(r5(E) =) (r —rE(E)

TG
E-¥zL 272 % (E) 1 (E)

(A.14)

The continuity of 7¢ at & = 0 now follows similar to [27, Lemma B.7].
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Lemma A.7. The mapping A > (s, E) + T¢(E) is continuous at ¢ = 0; recall (A.10).
More precisely, for any § > 0 and E* € AL there exists &0 > 0 such that for all 0 < & < gg
and E € A% with |E* — E| < &g it holds that |T¢(E) — TO(E*)| < 6.

Proof. Forany ¢ > 0 and E € A® the affine change of variables r = r® (E) + (r{.(E) —
r€ (E)) s leads to

1 e _ €
e =i [ rL(E) = rE(E)
0 JE— e (2 () + (5. (B) — 1€ (B s)

Lemmas A.1 and A.3 imply the pointwise convergence of the integrand in the integral above
as (g, E) — (0, E*), the concavity estimate from Lemma A.6 shows that the integrand is
bounded by an integrable, E-independent function. Hence, Lebesgue’s dominated conver-
gence theorem implies the desired continuity statement. O

ds.

Combining Lemmas A.5 and A.7 with standard continuity arguments yields the main result
of the present section.

Lemma A.8. The period function T¢(E) converges to TO9E*) as e — 0and E — E*
locally uniformly. More precisely, for any § > 0 and E1 < O there exists g > 0 such that
forall 0 < ¢ < gy as well as Egﬁn < E* < Eyand Ef; < E < Ey with |[E* — E| < &

it holds that | T (E) — TO(E*)| < 8.

n

‘We now conclude the convergence of the minimal and maximal value of the period function
on the steady state support. Recall that 1¢ =]E® ES[ for ¢ > 0 by (2.1) and (3.23) as

min’
well as the definitions of 7,7, and T3, in (3.11).

Lemma A.9. It holds that lim_,0 TS, = TO. and lime_, ¢ T5ay = Ta. with

min m
3
L2 T M
0 050 0 0
0<Ty,=T (Emin)zznm<ﬁ$:T () =Thax <00 (A.15)

due to (1.8), (3.22), and (A.12).

Proof. Combine Lemma A.8 with the limit results Ef . — Eglin and Ej — kase — 0
established in Lemmas A.1 and A.2. O
We later show that 7°® is increasing on /° for 0 < & < 1, which implies that 7. - and T3,
are attained on the boundary of 7¢.

We now establish results similar to Lemmas A.8 and A.9 for the first and second order
derivatives of the period function; recall the regularity of 7¢ shown in Lemma 3.3. We first
derive suitable representations of these derivatives. Proceeding as in Lemma 3.3 leads to
a relation between dgT¢(E) and (3 Wé)(T¢(E), E), cf. [40, Lemma A.12]. However, as
o W€ is only implicitly known as the solution of a suitable ODE, this quantity is rather hard
to control; in particular in the vicinity of the minimum of the potential well Ey;p.

Instead, we proceed as suggested in [27, Sc. B.3] and derive a suitable integral expression
for dgTE.

Lemma A.10. For ¢ > 0 and E € A¢ it holds that

1 /rfr(E) Gy d
_ ——_dr,
E — E¢ rE(E) ~2E —2We(r)

min
where the continuous function Gf) : 10, oo[— R is defined by

(T*)(E) = (A.16)

(W) () =208 (N —Efy ) (W) (r)

min

&
Go(r)= . BIGE s (A.17)
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Proof. Taylor expanding (A.17) in the limit r — r£ yields

—5 =P WO () (W) () + o((r — rH)?)
(r = r)2 (W) (rf)? + o((r — r$)?)

Gy(r) = —0 asr—rf (A.18)

by (3.18). Thus, GS is indeed continuous and, in particular, the integral on the right-hand
side of (A.16) is well-defined. A calculation similar to [17, Thm. 2.1] then yields the iden-
tity (A.16). m]

It is again crucial to understand the behaviour of (7¢)’(E) in the near circular regime, i.e.
when E gets close to the minimal energy value E; . . One difficulty in this task is the factor
in front of the integral on the right-hand side of (A.16). It is thus convenient to rewrite the
integral expression (A.16) as

I KB GEr
(T*Y(E) = ————— / 07(,) R [\/ZE - 2\1:8(r)} dr (A.19)
E—ES Jrepy (W) ()

fore > 0 and E € A®, with the intention to integrate by parts in (A.19). For this sake we
introduce the function

Gg(r)

: N RCDUON
G5:10,00[—> R,  G5(r):= (_1<$E>”’<ri)
3H0E?

ifr #rg, (A.20)

3 — €
ifr =rg,

with G{; defined in Lemma A.10; recall that (¥*)”(r§) > 0 by (3.18). A Taylor expansion
similar to (A.18) yields that Gi is continuous on ]O, oo[. In fact, recalling from (A.18) that
G{, and (¥®)" are both smooth and O(r — r{) as r — rf, and that (¥*)’ vanishes only
at r¢, we deduce that G‘i is smooth on ]anin, REax[ (recall the regularities established in
Lemma 3.3) and that its derivatives admit explicit representation in terms of derivatives of
we,

For ¢ > 0 and E € A® we now continue the calculation (A.19) and integrate by parts:

v (E)
/j ) (G5) (r) y2E — 2WE () dr. (A21)

&

&y/ _
(T (E) =

min
Let us hence analyse the behaviour of integrals of the latter form in the near circular regime:
Lemma A.11. Let 10, co[> r + F(r) be continuous. For fixed ¢ > 0 it holds that
i (E)
lim F(r)y/2E —2W¥é(r)dr = 0. (A.22)
ENE iy Jre (E)
Morveover, it holds that

ri(E) ri(E) F(r) .
oE / F(r)2E —2Weé(r)dr =/ ———dr, E € A®.
re (E) re(E) ~2E —2VE(r)
(A.23)

Proof. First observe that Lemma 3.2 implies that r{(E) — r{ as E N\ E, ; the proof is
similar to the one of Lemma A.3. Then (A.22) is obvious. The derivative relation (A.23) is
straight-forward to verify using Lebesgue’s dominated convergence theorem. m]
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Due to the mean value theorem together with (A.21), (A.22), and (A.23), we conclude that

for any E € A? there exists some E e]Emm, E[ such that

B G

(T®Y(E) = /
r(E)  Jof — 2\1/8(r)

We hence arrive at the following limiting behaviour of (7€)’ in the near circular regime:

(A.24)

Lemma A.12. The derivative of the period function (T¢) (E) converges to (TO)/
(Eglm) as E — Efmn and ¢ — 0. More precisely, for any § > 0 there exist g9 > 0

and n > 0 such that for all 0 < & < gy and E5, < E < Ef. +1n < 0 it holds that
(7€) (E) — (1% (E9. )| < 8.

min
Here, (TO) (Egnn) denotes the continuous extension of (TO) onto EV.

min- Due to (3.19),
(3.20), and (3.22), this value is given by
5
L2 GO / I"O
Y% B (G XY

m e

Proof. We proceed as in the proof of Lemma A.5 and change variables via 7 = Wé(r)

in (A.24) to deduce that for any ¢ > 0 and E € A? there exists some E €)EE . | E[ such
that

(T (EY (A.25)

min’

(G (rE () (G (r§. ()

I\ il
n J2E =) W GE@? B J2E — i) (05 (5 ()2
(A.206)
Lemma A.4 implies that for any § > O there exist ¢g > 0 and n > O such that for
all0 < & < goand E; < E < EL, + n it holds that [(G})'(5) (W®)"(s)" 2

(GO ) (WO () 2| < L for 5,5 € [r£.(E), r%.(E)]; recall that (G%)' admits explicit
representation in terms only of derivatives of W¢ derived from (A.20). For 0 < ¢ < gy and
Eﬁm <FE < Erfmn +n we thus conclude the following estimate for the first integral in (A.26)
after rewriting the integrand with the extended mean value theorem similar to (A.13):

(T*)(E) = di.

(G (&) 1
/ = dn — 2(T0) (Emm)|
mm \/Z(E — 77) (“IJE) (r (77))2
_ |/‘ (G (&)
Enin J2(E — ) (0) (- ()2

dn

G0 ad)

I —
2\/(\v0)”<r°) / (B — 1) (7 — Efyy)

1)
< —
2

(E =@ — Efyy)
Similar arguments also apply to the second integral in (A.26). m]

The next step is again to verify a suitable pointwise convergence of (7€)’ as ¢ — 0.
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Lemma A.13. The mapping A > (¢, E) — (T¢)'(E) is continuous at ¢ = 0; recall (A.10).

More precisely, for any § > 0 and E* € AL there exists eo > 0 such that for all 0 < ¢ < gg
and E € A® with |E* — E| < &g it holds that |(T¢) (E) — (T9Y (E*)| < 6.

Proof. First observe that Gf) — Gg as ¢ — 0 locally uniformly by Lemmas A.1 and A.2;
recall the definition of Gf) in (A.17). Then the claimed continuity follows similarly to
Lemma A.7 using the concavity estimate (A.14) and Lebesgue’s dominated convergence
theorem applied to the representation (A.16) of (T¢)'(E); also note that E éli n Eglin by
Lemma A.2. o

We then arrive at the desired convergence results for the derivative of the period function.

Lemma A.14. It holds that lime_, o T, = T'0

. le _ /0 .
min min and lime—.0 Ty = Tiax, with

5

2
0<T0 — TOEY y—gn L2 - 3T MS
M4 2«/5 (—k)2

min min

=(T% () =T, < oc0. (A27)

Proof. Combining Lemmas A.12 and A.13 yields that (T¢)'(E) converges to (T9) (E*)
as ¢ — 0and E — E* locally uniformly in E*; see Lemma A.8 for similar arguments.

Because Efnin — Er%in and Eg — Kk as ¢ — 0 by Lemmas A.1 and A.2 we conclude the

desired convergence results. m]
The next step is to establish a similar result for the second derivative of the period function;

recall that T¢ € C? (A%) by Lemma 3.4. Again differentiating (A.21) using (A.23) and
rearranging the integrand yields

ri(E) WE(r)y — E€.
(T¥)'(E) = %)2/ + (Gi)/(r) (M — l DE — 2\1{8(},.)) dr

(E—E i, & (E) V2E —2WE(r) 2
(A.28)
for E € A®. We integrate by parts to rewrite the first summand and arrive at
(T*)"(E)
1 ri(E) We(r)y—EE. ]
= / i or [(Gi)’(r)i( ) o — fG‘i(r)] V2E —2We(r)dr
(E—E )7 Jre) (w#)'(r) 2
(A.29)
for E € I°. This is possible because the function
Weé(r)—EE. 1 .
8[68/ 8/m1n_7G5 ]’ f 8’
55 IR Rl = R, G5(= | LV O m@)™ =261 0] 7
0, ifr=rg,

is continuous by Taylor’s theorem; recall Lemma 3.3 and that G"i defined in (A.20) is
continuously differentiable.

Applying the extended mean value theorem to (A.29) and using (A.23) yields that for any
E € I° there exists E €]E; ... E[ such that

B G5

1
(T%)(E) = 7/ R L
2E = Eqyp) B Jaf —oweqr)

(A.30)



Arch. Rational Mech. Anal. (2025) 249:45 Page 45 0of 49 45

In order to eliminate the factor (E E®. y~1 we integrate by parts again. Observing that

min
G is again O(r —rf)asr — rf and smooth on JR? . | RS, [, we deduce that the function

min’

Gg ]Rmm’ max|— R defined by
G5( .
_|&e itr e,
3( )= 1 (v° )(5)(r5) l (e )///(rs) (e )(4)(r5) é( )///(r*)'g —
~ 10 (qu)//(rg)% (qja)//(rs)él [5) (lll“‘)”(rf)S S =rg,

is continuously differentiable with derivative that is explicitly computable in terms of deriva-
tives of W¢. Here the value of G§ 5(rg) follows from Taylor expansion in G‘E Hence,

ré (E) .
(T*)'(E) = %/ TG () 2E — 2w (r) dr (A.31)
2(E — Ep) Jre(E)

for E € I¢ and E €]E®.. , E[ as in (A.30). The mean value theorem and (A.23) imply the

l’]‘lll’l ’

existence of E e]Emm, E[C]Emm, E[ such that
ré(E) G§
(T)'(E) = + / +O__ 690 (A.32)
rE(E) J2E — 2\D5(r

Because this identity is similar to (A.24), we deduce the following behaviour of (T¢)” (E)
in the near circular regime.

Lemma A.15. The second order derivative of the period function (T€)" (E) converges to
(TO)”(Eglm) as E — EX. and e — 0. More precisely, for any § > 0 there exist gy > 0

and 1 > 0 such that for all 0 < & < g9 and E; < E < E.. +1n < 0 it holds that
[(T#)"(E) = (T%)(EQ)| < 8.

min

Here, (TY)" (Eglm) denotes the continuous extension of (T®)" onto Eglm given by

7
L2 7 (G ) (rd)
(TO"(EQ. ) =30m — == 3L
MS 2 [0yl

Proof. The statement can be proven similarly to Lemma A.12 by using (A.32) and the
properties of Gg derived above. O

(A.33)

The next step is again to verify a suitable pointwise convergence of (7¢)” as ¢ — 0.

Lemma A.16. The mapping A 5 (¢, E) — (T¢)"(E) is continuous at & = 0.
More precisely, for any § > 0 and E* € AL there exists &0 > 0 such that for all 0 < & < gg
and E € A® with |E* — E| < &g it holds that |(T¢)" (E) — (T9)(E*)| < 6.

Proof. First observe that (G’i)’ — (G(l))’ as ¢ — 0 locally uniformly by Lemmas A.1
and A.2; recall that (Gf)’ admits explicit representation in terms of derivatives of W¢.
Then the claimed continuity follows similarly to Lemmas A.7 and A.13 using the concavity
estimate (A.14) and Lebesgue’s dominated convergence theorem applied to the representa-
tion (A.28) of (T¢)"(E). m]

We then arrive at the desired convergence results for the second order derivative of the period
function.
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Lemma A.17. It holds that limg_,o T'¢. = T"9 and lim,_, o Te, = Ty, with

7
L2 15n M
0 < TP = (T@O(EQ;) =30m = < —— = (T°) (k) = Ty < 0.
min min M6 4ﬁ (_K)% max

(A.34)

Proof. The proof is based on Lemmas A.15 and A.16 and proceeds similarly as the proof
of Lemma A.14. O

Remark A.18. Similar arguments as to those in the proofs of Lemmas A.5, A.12, and A.15
imply that

(G5) (rf)

VL)

T¢(E) — (T (E) >

27
NCDUG
T (G5 (%)

2 S ()

as E N\ Ef . for fixed & > 0, where (G{)'(r) and (G5)'(rf) are explicitly computable in
terms of derivatives of W at rf. Together with Lemma 3.4 and (3.18) we hence conclude

& /e e &
that 7, Tmaxs Tmax < 00 as wellas 7. > 0 for any ¢ > 0.

(T°)"(E) —
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