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Abstract

We consider a family of isolated inhomogeneous steady states of the gravita-
tionalVlasov–Poisson systemwith apointmass at the centre.These are parametrised
by the polytropic index k > 1/2, so that the phase space density of the steady state
isC1 at the vacuum boundary if and only if k > 1.We prove the following sharp di-
chotomy result: if k > 1, the linear perturbations Landau damp and if 1/2 < k ≤ 1
they do not. The above dichotomy is a new phenomenon and highlights the im-
portance of steady state regularity at the vacuum boundary in the discussion of the
long-time behaviour of the perturbations. Our proof of (nonquantitative) gravita-
tional relaxation around steady states with k > 1 is the first such result for the
gravitational Vlasov–Poisson system. The key novelty of this work is the proof that
no embedded eigenvalues exist in the essential spectrum of the linearised system.
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1. Introduction

The problem of the relaxation of stellar systems is a central question in the study
of the dynamics of galaxies. It was explored in the 1960s in the pioneering works
of Lynden-Bell [48,49], who was the first to point out an intimate connection be-
tween galaxy relaxation and the validity of so-called gravitational Landau damping.
Landau damping originally referred to a well-known equilibration mechanism for
the linearised electrostatic Vlasov–Poisson system around spatially homogeneous
steady states discovered in 1946 [41]. In the gravitational case, the term Landau
damping was used in [48] (see also [12] for an exhaustive list of references to the
physics literature) to refer to the decay of macroscopic quantities of the linearised
perturbations about a given steady state.

To study the stability around isolated and localised self-gravitating galaxies,
one is forced to consider spatially inhomogeneous densities and this considerably
complicates the stability analysis. There is a continuum of steady states of the
gravitational Vlasov–Poisson (VP) system whose infinite-dimensional character is
related to the invariance of the VP-system under the action of measure preserving
diffeomorphisms. Moreover, the relevant steady states are compactly supported in
both the space and the velocity variable, which means that particles are trapped in
a finite region of phase-space, and this can act as an obstruction to decay.

In this work we construct a family of steady states for which we show that the
question of relaxation depends strongly on the regularity of the equilibrium at the
vacuumboundary. If the steady state is below a certain regularity thresholdwe prove
that the linearised operator has pure oscillations in its spectrum and no damping
occurs. If, by contrast, the steady state is above the threshold, there is no pure
point spectrum and one can prove non-quantitative decay results using the RAGE
theorem. This dichotomy is a striking feature of the gravitational dynamics, and we
believe the methods developed in this paper to have a wide range of applicability.

The key mathematical novelty of the paper is the proof of absence of embedded
eigenvalues in the spectrum of the linearised operator around sufficiently regular
steady galaxies, see Sect. 4. Our method is new and exploits in a crucial way the
underlying Hamiltonian geometry of the problem.

To focus on themain ideas, we consider the radial gravitational Vlasov–Poisson
system including a fixed central potential generated by a point mass of size M > 0.
The presence of the latter can be thought of as a Newtonian model for a central
black hole, a feature found in many real-world galaxies. In addition, we assume
that all the particles have angular momentum of fixed modulus.1 This symmetry
reduction removes several technical difficulties and allows us to focus on the key
new ideas. The system reads as

∂t f + w ∂r f −
(

U ′ + M

r2
− L

r3

)
∂w f = 0, (1.1)

1 The situation of steady states with fixed modulus of angular momentum is discussed in
[62, Sc. 3.1] and in the plasma case see also [55].
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U ′ = 4π

r2

∫ r

0
s2ρ(t, s) ds, lim

r→∞U (t, r) = 0, (1.2)

ρ(t, r) = π

r2

∫
R

f (t, r, w) dw. (1.3)

Here f (t, r, w) ≥ 0 is the phase-space number density, a function of time t ∈ R,
radial position r > 0, and radial velocity w ∈ R, U (t, r) is the gravitational
potential induced by the stars of the galaxy, and ρ(t, r) ≥ 0 their macroscopic
mass density. The system (1.1)–(1.3) is the radial VP-system for an ensemble of
particles all of which have angular momentum with the same squared modulus
L > 0.

We consider a class of steady states to (1.1)–(1.3) of the form

f k,ε(r, w) = ϕ(E(r, w)) = ε ϕ̃(E(r, w)), ϕ̃(E) = (E0 − E)k+ , (1.4)

where (. . .)+ denotes the positive part of the argument, ε > 0 is a size-parameter,
and k > 1

2 the polytropic exponent. Here

E(r, w) = 1

2
w2 +�(r), (1.5)

�(r) = U (r)− M

r
+ L

2r2
(1.6)

are the particle energy and the effective potential, respectively, while the cut-off
energy E0 < 0 is implicitly determined through the equation satisfied by the steady
state. The gravitational potential U is induced by f k,ε through (1.2)–(1.3). For
completeness of exposition, the existence of such steady states with finite radius
and finite mass is shown in Sect. 3; this is actually easier than in the situation
without a central point mass, cf. [56]. More precisely, fix a k > 1

2 . Then, for any
ε > 0, there exists a whole 1-parameter family of steady states of the form (1.4)
parametrised by the parameter

κ:=E0 −U (0) < 0, (1.7)

whichhas themeaningof a relative gravitational potential at the origin.The resulting
phase-space support is compact and the associated macroscopic density ρ(r) is of
size Oε→0(ε), supported on a compact spherical shell [Rmin, Rmax] of thickness
Oε→0(1) with a delta distribution of mass M centred at the origin, see Fig. 1. The
parameter κ determines the inner vacuum radius Rmin > 0 as well as the (finite)
limit of the outer vacuum radius Rmax as ε → 0. We shall suppress the dependence
on κ and fix it to any value satisfying the single gap condition

−2− 2
3

M2

2L
< κ < 0. (1.8)

As shown in Corollary 3.11, condition (1.8) ensures that the essential spectrum of
the linearised operator is simply connected for the relevant equilibria. The pivotal
question is the dependence of the stability behaviour of the steady states f k,ε on
the parameters k and ε.
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Fig. 1. Schematic depiction of the lower hemisphere of the spherical shell (on the left) and
the macroscopic density distribution ρ(r) (on the right)

We linearise the system (1.1)–(1.3) around a fixed steady state f k,ε. If we denote
the linear perturbation by F , a straightforward calculation gives the linearisation

∂t F + L̃F = 0, (1.9)

where
L̃F :=T (F + ∣∣ϕ′(E)

∣∣ UF
)
, (1.10)

the transport operator T is given by

T :=w ∂r −� ′(r) ∂w, (1.11)

and UF solves the radial Poisson equation

U ′
F (r) = 4π

r2

∫ r

0
s2 ρF (s) ds = 4π2

r2

∫ r

0

∫
R

F(s, w) dw ds, lim
r→∞UF (r) = 0.

(1.12)
Alternatively, one can apply the classical Antonov trick [1] and split (1.9) into sep-
arate equations for the even and odd inw parts f±(r, w) = 1

2 (F(r, w)±F(r,−w))

of the perturbation F . The linear evolution is then fully described by the following
second order system for f−:

∂2t f− + L f− = 0. (1.13)

The linearised operator (also referred to as the Antonov operator) takes the form

L:= − T 2 −R, (1.14)

where the gravitational response operator R is given by

Rg := 4π2
∣∣ϕ′(E)

∣∣ w

r2

∫
R

w̃ g(r, w̃)dw̃. (1.15)

Functional-analytic properties of the operators L̃ and L are discussed in Sect. 3.4.
We shall mostly work with the second order formulation (1.13), although the anal-
ysis can be carried out analogously in the first order formulation (1.9). The natural
Hilbert space for our analysis is the weighted L2-space

H := { f : 	 → R | f measurable and ‖ f ‖H < ∞} ,
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where ‖ · ‖H is induced by the inner product

〈 f, g〉H :=
∫

	

1

|ϕ′(E)| f (r, w) g(r, w) d(r, w) (1.16)

and 	 = { f k,ε > 0} is the interior of the steady state support. Note that the
integrand in (1.16) is well-defined, since

ϕ′(E(r, w)) < 0, (r, w) ∈ 	. (1.17)

Since L only covers the evolution of the odd-in-w part of the linear perturbation,
we further define the subspace of H consisting of odd-in-w functions as

H := { f ∈ H | f is odd in w a.e. on 	}.
Weshall see inSect. 3.4 thatL is self-adjoint onHwhendefinedon its domainD(L).

The monotonicity condition (1.17) is known as the Antonov linearised stability
criterion. For the case without a central point mass it was shown in the physics
literature [19,38] that it implies the spectral stability, which is equivalent to the non-
negativity of the quadratic form 〈Lh, h〉H on D(L). This result can also be thought
of as the analogue of the Penrose stability criterion for plasmas [54].Moreover, by a
simplemodification of the arguments in [26,42,43,63] one can prove that the steady
states under consideration are nonlinearly orbitally stable in our symmetry class,
which is essentially due to the energy subcritical nature of the problem. By contrast,
nothing is known about the asymptotic-in-time behaviour of solutions close to such
steady states and, unlike the classical Landau damping for plasmas, it is a priori
unclear whether any form of damping occurs for the linearised dynamics (1.13).

To provide a meaningful formulation of Landau damping, we must consider
initial data in the complement of the kernel of the operatorL. Viewed as an operator
on H the kernel of L is trivial; see Lemma 3.10.

Definition 1.1. (Nonquantitative Landau damping) For k > 1
2 and ε > 0,

let f k,ε denote the steady state of the Vlasov–Poisson system (1.1)–(1.3) of the
form (1.4). We say that the linearised Vlasov–Poisson equation (1.13) Landau
damps if, for any initial data f0 ∈ D(L) ⊂ H,

lim
T→∞

1

T

∫ T

0
‖∇UT f (t,·)‖2L2(R3)

dt = 0, (1.18)

where R+ 
 t → f (t, ·) ∈ H is the unique solution to (1.13) with initial data
f (0, ·) = f0.

Definition 1.1 connects to the first-order dynamics as follows: if t �→ F(t, ·)
solves (1.9), then ∂tUF = U∂t F = U∂t f+ = −UT f− = −UT f , where we recall
f+ is the even part of F , f− = f is the odd part. It follows that (1.18) is equivalent
to the claim

lim
T→∞

1

T

∫ T

0
‖∇∂tUF(t,·)‖2L2(R3)

dt = 0.
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Formula (1.18) implies a very weak form of decay of the macroscopic quantity
‖∇UT f (t,·)‖2L2(R3)

, without a rate. We chose to define Landau damping via (1.18)
for specificity, but one could in principle consider other macroscopic quantities.
We now state our main theorem.

Theorem 1.2. (Oscillation vs. relaxation) For k > 1
2 and ε > 0, let f k,ε denote

the steady state of the Vlasov–Poisson system (1.1)–(1.3) of the form (1.4). Then
the following dichotomy holds:

(a) For any 1
2 < k ≤ 1 there exists an ε0 = ε0(k) > 0 such that, for any

0 < ε < ε0, the system (1.13) does not damp. More precisely, there exists at
least one strictly positive eigenvalue of L.

(b) For any k > 1 there exists an ε0 = ε0(k) > 0 such that, for any 0 < ε < ε0 the
system (1.13) does Landau damp in the sense of Definition 1.1. In particular,
the point spectrum of L is empty.

Our aim in the present paper is not to compute the rate of decay in the damped
case (k > 1 and 0 < ε � 1), but instead to focus on the dichotomy stated in
Theorem 1.2. An important consequence of the theorem is that the gravitational
relaxation is sensitive to the regularity of the underlying steady state. Note that
the steady states f k,ε are always C∞ in the interior of their phase-space support
and C�k�,k−�k� up to and including the vacuum boundary {E = E0}. Therefore the
regularity limitation stems from the boundary behaviour.2

The polytropes defined through (1.4) are very commonly studied in the gravi-
tational kinetic theory [12]. However, a simple examination of the proof shows that
it is only the regularity of f k,ε near the phase-space vacuum boundary that dis-
criminates between Landau damping and oscillations. We may therefore use more
general ansatz functions ϕ̃(E) whose Taylor expansion near the vacuum reads as
ϕ̃(E) ≈ (E0 − E)k + oE→E0

(
(E0 − E)k

)
; here k plays the same role as in The-

orem 1.2. For example, linearised perturbations of the King model ϕKing(E) =
ε(eE0−E − 1)+ with 0 < ε � 1 do not damp.

A further direct consequence of the proof of the main theorem is that our
methods can be used to give a criterion for the absence of embedded eigenvalues
for general radial steady states, i.e., with and without the central point mass. The
proof shows that a sufficient condition for the absence of embedded eigenvalues is
for some explicitly computable constant to be sufficiently small, cf. Remark 4.6.
Introducing the smallness parameter 0 < ε � 1 gives a natural class of steady states
where the constant is indeed small enough. In addition, the smallness assumption
allows us to rigorously verify many of the structural properties of the steady states,
most notably the monotonicity of the period function. From numerical simulations
such properties are known to be true also when no small parameter is present.

The proof further shows that, in general, embedded eigenvalues can only exist
at low frequencies. For steady states f k,1(r, w) = (E0 − E)k with k > 1 and
ε = 1, there exists an integer m0 depending only on the steady state such that

2 We note that the steady states f k,ε fall in the regularity class for which one can prove
local-in-time well-posedness.
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there are no embedded eigenvalues larger than
4π2m2

0
T 2
min

, cf. Corollary 4.7; here, Tmin

denotes the minimal period occurring in the steady state, see (3.11). For this result
no “smallness” of the steady state is imposed, and it also holds in the case without
a point mass, see Remark 4.8. In the setting of generic radial equilibria of the form
f0(r, w, L) = ϕ(E, L)we point the reader to the recent work by one of the authors
[64], where the methods of this work have been extended to show nonquantitative
damping.

The RAGE theorem was used to show nonquantitative damping around certain
steady states of the 2D Euler equations by Lin and Zeng, see, e.g., [46, Thm. 11.7].
Our set-up is manifestly based on the second order formulation (1.13). However we
can equivalently work in the first order formulation (1.9). Following the strategy of
[46] we can restrict the dynamics to the invariant subspace of so-called linearly dy-
namically accessible perturbations im(T ) and exhibit weak decay of ‖∇UF‖L2(R3)

for the data in the orthogonal complement of the kernel of L̃. The subject of quan-
titative inviscid damping and the nonlinear stability around (typically) shear flow
solutions of 2D Euler has been a very active area in the past decade, following the
nonlinear stability result of Bedrossian and Masmoudi [8]. Without attempting to
give an exhaustive overview, we refer the reader to the introductions of the recent
articles [35,51], the review article [7], and the lecture [33] for an exhaustive list of
references.

Theorem 1.2 is the first result which shows that Landau damping occurs around
compactly supported, inhomogeneous equilibria of the gravitationalVlasov–Poisson
system. The stated dichotomy between relaxation and oscillation, as well as the
sharp transition threshold k = 1 are, to our knowledge, new. This situation is
reminiscent of the well-known fact in the spectral theory of Schrödinger operators
−
+V where the smallness of the potential V (in the right sense) helps to exclude
bound states in dimension d = 3 and cannot exclude them when d = 1. In this
analogy, the polytropic index k, which measures the regularity of the steady state
at the vacuum boundary, plays the role of the dimension d. The mechanism that
leads to this regularity threshold is in particular very different from the result of
Lin and Zeng [45] which states that Landau damping in the plasma case around
smooth space-homogeneous equilibria does not occur if the perturbations are not
sufficiently smooth. The obstruction to damping in [45] comes from the existence
of arbitrarily close nontrivial BGK waves which can only exist in a function class
of sufficiently low regularity.

The possibility of oscillatory linear behaviour and the contrast to gravitational
damping have been discussed in the physics literature [12, Ch. 5], see also [3,4,
47,52,66]. The observation that the smoothness of the perturbed steady state is
relevant for the nonlinear damping is made in the numerical work of Ramming and
Rein [57], where radial steady states without a central point mass are considered.
We also point out the influential work of Kalnajs [36,37] where a formal approach
is developed to study the decay of macroscopic quantities for linear perturbations
using action-angle variables, see the discussion in [12, Sc. 5.3.2].

The question of gravitational relaxationwas investigated in the pioneeringwork
of Lynden-Bell [48,49], see also [12,50], who recognised that there exists a phase-
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mixing mechanism which could explain damping around stationary galaxies. By
definition, phase mixing refers to a process according to which macroscopic quan-
tities, like the spatial density or gravitational potential associated to the solutions
of the pure transport problem

∂2t f − T 2 f = 0, (1.19)

decay in time. This mechanism was informally described by Lynden-Bell [48] and
relies on the crucial monotonicity assumption T ′(E) �= 0 on Ī , where T (E) is the
particle period function and Ī is the action interval of the steady state, see (2.1)–
(2.2). Intuitively, this monotonicity condition allows the particles to explore the
phase space very efficiently and therefore creates a mixing effect. In practice one
can use arguments à la Riemann–Lebesgue lemma [13,62] or vector field com-
mutators [14,53] to obtain decay. However, equation (1.19) is not the linearised
dynamics around the steady state, and Theorem 1.2 shows that no mixing occurs
when 1

2 < k ≤ 1 despite the fact that the pure transport part does mix irrespective
of how small the gravitational response termR is. More precisely, we show that the
collective response of the gravitational system as measured by the operator-valued
potential R can create nontrivial pure point spectrum. Furthermore, the fact that
there is some form of mixing in the regime k > 1 as implied by Theorem 1.2
is highly nontrivial and involves a careful analysis of the response operator R.
More recently, decay results for the pure transport dynamics in the 3-D case and
in the presence of a large point mass potential were shown in [15,28]. The former
work deals with data nontrivially supported near the elliptic points. The latter work
deals only with data supported away from such elliptic trapping, but contains some
nonlinear applications to the VP-flow near the vacuum. We also mention a recent
result [65], wherein the author shows pointwise nonquantitative decay-in-time of
the gravitational force field for data in the absolutely continuous subspace, around
plane-symmetric equilibria of the gravitational VP-system.

In the plasma case, nonlinear Landau damping around spatially homogeneous
steady states was rigorously shown in the celebrated work of Mouhot and Villani
[54], see also [9,23]. The results of [54] also apply to gravitational interactions
(applying the Jeans swindle, see [12,39]), but such steady states do not represent
isolated solutions of the Vlasov–Poisson system, see also the related work [6]. For
plasma dynamics, linear damping around homogeneous equilibria in the whole
space was recently analysed in [11,29], see also [22]. For a recent nonlinear result
see [34], for the so-called screened case see [10,30,32], and for the case of massless
electrons see [21]. Far less is known about damping around spatially inhomoge-
neous steady states. The Guo and Lin [25] constructed examples of stable BGK
waves (that do not contain trapped particles) with a non-empty and with an empty
point spectrum. The first Landau damping result for a class of BGK waves with a
trapping region was shown by Després [18]. For a recent overview of known results
about Landau damping, see [5].

The plan for this paper is as follows: the basic properties of the steady states and
the linearised operator are explained in Sect. 3. In Sect. 4 we prove that there are no
embedded eigenvalues when k > 1 and ε is sufficiently small, see Theorem 4.5. In
Sect. 5 we derive the criterion for the existence of eigenvalues outside the essential
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spectrum, see Proposition 5.3. We then use it to show that such eigenvalues exist
when 1

2 < k ≤ 1 and do not when k > 1, see Theorems 5.5 and 5.4 respectively.
Theorem 1.2 is finally proved in Sect. 6. In Appendix A we provide many key
results about the underlying family of steady states, most notably various uniform-
in-ε bounds for the period function T (E) and its derivatives, as they play a crucial
role in our analysis. Before we enter into the detailed proofs, in Sect. 2 we give a
short overview of the general strategy which we employ.

2. An Overview of the Proof

The starting point for our analysis is a reformulation of (1.13) in action-angle
variables [12,50]. We denote the minimal particle energy of the steady state by
Emin. Letting

I :=]Emin, E0[ (2.1)

be the “action” interval, we associate to any E ∈ I two unique radii r−(E) < r+(E)

such that �(r±(E)) = E . Particles are trapped inside the potential well defined
by the effective potential �, and at any fixed energy level E ∈ I , they oscillate
periodically between their turning points r−(E) and r+(E). The period T (E) of
this motion is given by the formula

T (E):=2
∫ r+(E)

r−(E)

dr√
2E − 2�(r)

, E ∈ I. (2.2)

The angle θ parametrises this radial motion, suitably normalised by the period
function. More precisely, for (r, w) ∈ 	 with w ≥ 0 and E = E(r, w) given
by (1.5), the angle is defined as

θ(r, w) = 1

T (E)

∫ r

r−(E)

ds√
2E − 2�(s)

∈ [0, 1
2
]. (2.3)

Letting θ(r, w) = 1 − θ(r,−w) for w < 0 leads to the one-to-one change of
variables (r, w) �→ (θ, E), where 	, i.e. the interior of the support of the steady
state in phase space, is mapped onto the cylinder

S
1 × I.

Here S
1 is the 1-dimensional torus, i.e. S1:=[0, 1], where 0 and 1 are identified. In

action-angle variables (θ, E), the transport operator T is now given by the simple
formula

T = 1

T (E)
∂θ .

This allows us to explicitly determine the essential spectrum of −T 2 in terms
of the period function (2.2). Moreover, the gravitational response operatorR does
not affect the essential spectrum and we obtain that the operator L has essential
spectrum of the form [ 4π2

T 2
max

,∞[ for 0 < ε � 1, where Tmax < ∞ is the maximum
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of the period function T over Ī , cf. Corollary 3.11. Proving these statements mainly
relies on a frequency analysis in the angle variable θ . For f ∈ L2(S1) we let

f̂ (�):=
∫
S1

f (θ) e−2π i�θ dθ, � ∈ Z; (2.4)

Fourier transformations always refer to the variable θ , also for functions of several
variables.

Absence of embedded eigenvalues (Sect. 4). The hardest part of the proof of
Theorem 1.2 is to show that there are no eigenvalues ofL embedded in the essential
spectrum when k > 1, see Theorem 4.5. If we assume, by contradiction, that there
exists an eigenvalue of L of the form 4π2m2

T (Em)2
for some (m, Em) ∈ N × Ī , then

± 2π im
T (Em)

is an eigenvalue of L̃, i.e. there exists an f such that L̃ f = 2π im
T (Em )

f . We
move to action-angle variables and pass to the Fourier representation

f (θ, E) =
∑
�∈Z

f̂ (�, E)e2π i�θ , U f (θ, E) =
∑
�∈Z

Û f (�, E)e2π i�θ

of the unknowns, where a simple calculation then shows that for almost every
E ∈ I ,

f̂ (�, E) = −Tm
|ϕ′(E)|Û f (�, E)

Tm − m
�

T (E)
, E ∈ I, � ∈ Z

∗:=Z \ {0}, (2.5)

where Tm := T (Em), see Lemma 4.1.
Gravitational field via the Plancherel identity.The key idea is to use the Poisson

equation (1.12) to express ‖∇U f ‖2L2(R3)
as −16π3

∫
f U f T (E) d(θ, E). By the

Plancherel identity and (2.5) we then conclude that

1

16π3

∫
R3
|∇U f |2 dx = Tm

∑
� �=0

∫
I

T (E)|ϕ′(E)|
Tm − m

�
T (E)

∣∣Û f (�, E)
∣∣2 dE . (2.6)

Recall that by (1.4), |ϕ′(E)| = O(ε), so the way to reach a contradiction is to show
that the right-hand side of (2.6) is bounded by Cε

∫ |∇U f |2 dx and then use the
smallness of ε to absorb ‖∇U f ‖L2(R3) into the left-hand side. The fundamental
difficulty in doing so is the small denominators appearing inside the integral on
the right-hand side of (2.6). Clearly there can exist frequency-energy pairs (�, E�)

such that Tm − m
�

T (E�) = 0.
Log-singularity. The idea is to rewrite such a possible singularity 1

Tm−m
�

T (E)
as

− �
mT ′(E)

∂E
(
log(Tm − m

�
T (E))

)
in the region where the argument of the logarithm

is positive. Note that we are using the property T ′ �= 0 on Ī in a fundamental way.
Our idea is simple; for any frequency � we integrate by parts in E to offload the E-
derivative onto the gravitational potential Û f (�, E) so that we schematically deal
with terms of the form

ε
∑
�∈Z∗

∫
I

g(E)

∣∣∣log (Tm − m

�
T (E)

)∣∣∣ |Û f (�, E)| |∂EÛ f (�, E)| dE, (2.7)
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where g is some “well-behaved” weight. The log-singularity is very mild and the
hope is that the integration in E will control it. The small factor of ε is there
due to the assumption |ϕ′(E)| � ε.3 The first big issue is that the integration-
by-parts produces boundary terms, and they must either vanish or have to show
up with the correct sign. This is a serious issue, and we must carefully analyse
the frequency-energy pairs (�, E) that produce small and vanishing denominators,
see Lemma 4.3. The introduction of the above log-singularity is necessary only
at frequencies for which the contributions from the right-hand side of (2.5) are
positive. It is a structural feature of the problem that precisely in this range all the
boundary terms are either of good sign or vanish due to the regularity and require no
further estimates. For the vanishing boundary terms, we crucially use the regularity
assumption k > 1 which implies ϕ′(E0) = 0.

The second key issue is that the minimal point of the effective potential �,
corresponding to the radius r∗ and energy Emin, is a critical point with a strictly
positive second derivative. This property, as shown in Lemma 3.5, implies that for

any θ ∈ S
1 the map E �→ r(θ, E) is merely C0, 12 at E = Emin and, in particular,

|∂Er(θ, E)| � (E − Emin)
− 1

2 , (θ, E) ∈ S
1 × I,

which creates singular powers of E−Emin whenwe try to compare |∂EÛ f (�, E)| to
∂r U f . This is intimately related to the particle trapping at the space-time cylinder
{r = r∗}. We get around this by introducing positive powers of E − Emin as
weights to “de-singularise” ∂EÛ f (�, E) and compensate with negative powers of
E − Emin hitting the mild log-singularity, so that we can close the estimates via
Cauchy–Schwarz, see Step 2 of the proof of Theorem 4.5. The proof shows that
the elliptic character of the Poisson equation as manifested through the energy-like
identity (2.6) gives the winning strategy, as it permits us to estimate the function
Û f (�, E) by the derivatives of U f .

Existence vs. absence of eigenvalues in the principal gap (Sect. 5). Existence
of positive eigenvalues ofL below the bottom of the essential spectrum parallels the
classical quantum-mechanical problemof finding bound states below the absolutely
continuous part of the spectrum of a Schrödinger operator. A classical strategy to
study bound states is the Briman-Schwinger principle [44, Sc. 4.3.1], a version of
which was pioneered by Mathur [52] for the Vlasov–Poisson system in a different
context. In [27,40] the authors independently derived a criterion for the existence
of eigenvalues in the principal gap

G:= ]0,min σess(L)[ =]0, 4π2

T 2
max

[. (2.8)

The work [27] additionally gave examples of steady states where such a criterion
can be verified. We apply a slightly different version of the principle developed in

3 It turns out that the factor ε in (2.7) can be refined by an additional factor of 1√
m
,

independent of ε, so that at high frequencies m � 1, smallness can be enforced without any
smallness assumption on the microscopic equation of state ϕ, see Corollary 4.7.
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[27] to obtain a necessary and sufficient condition for the existence of eigenvalues
in the principal gap ]0,min σess(L)[; see Proposition 5.3. If k > 1 this criterion is
used in Theorem 5.4 to show that there are no eigenvalues in the principal gap and
if 1

2 < k ≤ 1, we use it to prove the opposite, namely that there are oscillatory
eigenvalues in the gap and therefore no damping occurs. Both of these proofs are
again performed in the 0 < ε � 1 regime in order to control steady state quantities
like the period function T .

The RAGE theorem and the proof of the main result (Sect. 6). To complete
the proof of Theorem 1.2 we observe that, by the above, the operator L has empty
point spectrum on H when k > 1 and ε > 0 is sufficiently small. We rephrase the
linear dynamics ∂2t f + L f = 0 as a first order system and then apply the RAGE
theorem [60] to show the nonquantitative decay statement (1.18). To make this
work, we only need to show that the operator f �→ ∣∣ϕ′(E)

∣∣UT f is compact on a
suitable function space, which again works by virtue of the smoothing properties
of the solution operator to the Poisson equation (1.2), see Sect. 6.

Properties of the steady states and the period function T (E) (AppendixA).
One of the key analytical tools in our analysis are good uniform-in-ε estimates for
steady states f k,ε with fixed k > 1

2 and 0 < ε � 1. Most notably, we show that,
as ε → 0, the period function T converges in C2 to the explicitly known period
function T 0 generated by the single point mass:

T 0(E) = π√
2

M

(−E)
3
2

.

In this way we deduce that T = T (E) is strictly increasing in E for 0 < ε � 1,
which is a key ingredient in our analysis. In general, (monotonicity) properties
of period functions are important in the analysis of the linearised Vlasov–Poisson
system, cf. [27,40], as well as in the general context of Hamiltonian systems, cf.
[16,17]. Further uniform-in-ε bounds on T up to its second derivative ensure that
various constants appearing in the proof of Theorem 4.5 are ε-independent.

3. Steady States and Linearisation

3.1. Existence of Steady States

Lemma 3.1. Fix the parameter κ < 0 so that the single-gap condition (1.8) holds.
Then for any k > 1

2 and ε > 0 there exists a steady state f k,ε of the system (1.1)–
(1.3) defined by (1.4). The steady state is compactly supported in phase space, more
precisely,

supp ( f k,ε) ⊂ [R0
min, R0

max] ×
⎡
⎣−

√
2M√
R0
min

,

√
2M√
R0
min

⎤
⎦ , (3.1)

where 0 < R0
min < R0

max < ∞ are given by

R0
min:=

−M +√
M2 + 2κL

2κ
, R0

max:=
−M −√M2 + 2κL

2κ
. (3.2)
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The total mass of the steady state is positive and finite, i.e.,

0 < Ms:=4π
∫ ∞

0
r2ρ(r) dr < ∞, (3.3)

where ρ is the spatial density associated to f k,ε.

The proof follows the strategy of [24,56]; we give the details in Appendix A.1.
An important quantity associated to the steady state is the effective potential �

defined in (1.6) whose properties we analyse next.

Lemma 3.2. (a) There exists a unique radius r∗ > 0 such that

min]0,∞[� = �(r∗)=:Emin < 0. (3.4)

This radius is given as the unique zero of � ′ on ]0,∞[ and it holds that � ′ < 0
on ]0, r∗[ and � ′ > 0 on ]r∗,∞[.

(b) Let
A:=]Emin, 0[ (3.5)

denote the set of all admissible particle energies. Then, for any E ∈ A there
exist two unique radii r±(E) satisfying

0 < r−(E) < r∗ < r+(E) < ∞
and

� (r±(E)) = E . (3.6)

Proof. The assertions follow from the asymptotic behavior of � and � ′ at r =
0,∞, and the fact that r3� ′ is strictly increasing. ��

In particular, since (A.5) implies that ρ(r) > 0 is equivalent to �(r) < E0 for
r > 0, we conclude that

supp (ρ) = [r−(E0), r+(E0)]=:[Rmin, Rmax] ⊂ [R0
min, R0

max]. (3.7)

The steady state has the following regularity properties:

Lemma 3.3. It holds that U ∈ C3([0,∞[) and ρ ∈ C1([0,∞[). In addition,
U, ρ ∈ C∞([0,∞[\{Rmin, Rmax}).
Proof. The continuous differentiability of ρ on [0,∞[ follows by (A.5) since E0−
U = y ∈ C1([0,∞[) and g ∈ C1(R). Twice differentiating (A.1) then yields
U ∈ C3([0,∞[). Moreover, observe that g ∈ C∞(R\{0}) and that E0−�(r) = 0
is equivalent to r ∈ {Rmin, Rmax} by Lemma 3.2. Thus, we conclude that U and ρ

are indeed infinitely differentiable on [0,∞[\{Rmin, Rmax} by iterating the above
argument. ��

We note that a larger polytropic exponent k leads to higher regularity of U
and ρ.
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3.2. Particle Motions and the Period Function

Let f k,ε be a steady state as given by Lemma 3.1 with associated effective
potential � defined in (1.6). Because the particle energy is of the form E(r, w) =
1
2w

2 +�(r), the characteristic flow of the steady state is governed by the system

ṙ = w, ẇ = −� ′(r). (3.8)

Due to the structure of the effective potential established in Lemma 3.2, the be-
haviour of solutions of this system is similar to the three-dimensional case [27,
p. 624f.]: The particle energy E is conserved along solutions of (3.8) and every
solution with negative energy E < 0 is trapped, global in time, and either constant
(with energy E = Emin) or time-periodic with the period function T (E) given
by (2.2).

For E ∈ A let (R, W )(·, E) : R →]0,∞[×R denote the global solution of (3.8)
satisfying the initial condition

R(0, E) = r−(E), W (0, E) = 0.

We further define that

r(θ, E):=R(θ T (E), E), w(θ, E):=W (θ T (E), E), E ∈ A, θ ∈ S
1,

(3.9)
and note that (r, w)(·, E) is periodic with period 1 for E ∈ A. The period function
and the characteristics enjoy the following regularity properties:

Lemma 3.4. It holds that (R, W ) ∈ C2(R× A) and T ∈ C2(A).

Proof. Since� ∈ C3(]0,∞[) byLemma3.3, the implicit function theorem implies
that r± ∈ C3(A). We thus conclude the claimed regularity of (R, W ) by basic ODE
theory.

Lebesgue’s dominated convergence theorem yields that T is continuous on A,
cf. [27, Lemma B.7]. Because the period function is given as the solution of
W (T (E), E) = 0 with Ẇ (T (E), E) > 0 for E ∈ A, applying the implicit function
theorem similarly to [40, Theorem 3.6 et seq.] then implies that T ∈ C2(A). ��

A fundamental ingredient in our analysis is the use of action-angle variables
introduced in (2.1)–(2.3). For functions f : 	 \ {(r∗, 0)} → R, we write that

f (θ, E) = f ((r, w)(θ, E))

for (θ, E) ∈ S
1 × I . Note that integrals change via

dw dr = T (E) dθ dE . (3.10)

Action-angle coordinates are not defined at (r, w) = (r∗, 0) ∈ 	 since the char-
acteristic system (3.8) possesses a stationary solution associated to the minimal
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energy Emin there (this corresponds to the so-called elliptic point of the Hamilto-
nian). The next result controls the behaviour of the action-angle coordinates at this
singularity. Before we proceed, we introduce the abbreviations

Tmin:= inf
I

T, Tmax:= sup
I

T, (3.11)

and also let T ′
min:= inf I T ′, T ′

max:= supI T ′, T ′′
min:= inf I T ′′, and T ′′

max:= supI T ′′.
We later verify that each of these values is finite, cf. Remark A.18.

Lemma 3.5. Let r : S
1 ×A →]0,∞[ be defined as in (3.9). Then r ∈ C2(S1 ×A)

and there exists a constant C > 0 such that

|r(θ, E)− r∗| + |∂θr(θ, E)| ≤ C
√

E − Emin (3.12)

as well as

|∂Er(θ, E)| ≤ C√
E − Emin

, (θ, E) ∈ S
1 × I.

The constant C is bounded in terms of Tmax, T ′
max, |I |, ‖� ′′‖L∞([Rmin,Rmax]),

‖� ′′′‖L∞([Rmin,Rmax]), and � ′′(r∗)−1.

Proof. The claimed regularity of r follows by Lemma 3.4. For Emin ≤ E < 0 let
z = z(·, E) : R → R be the unique global solution of

z̈ = −� ′′(R(·, E)) z, z(0) = 1, ż(0) = 0, (3.13)

where we set R(·, Emin) ≡ r∗. Grönwall’s inequality implies that there exists a
constant C > 0 as described in the statement of the lemma such that |z(s, E)| ≤ C
for s ∈ [0, Tmax], E ∈ I .

Furthermore, basic ODE theory yields

∂E R(s, E) = ∂Er−(E) z(s, E), s ∈ R, E ∈ I.

Because ∂Er(θ, E) = Ṙ(θ T (E), E) θ T ′(E) + ∂E R(θ T (E), E) for (θ, E) ∈
S
1 × I and

|Ṙ(s, E)| = √2E − 2�(R(s, E)) ≤ √
2
√

E − Emin ≤
√
2 |I |√

E − Emin
(3.14)

for (s, E) ∈ R× I , it remains to show that

|∂Er−(E)| ≤ C√
E − Emin

, E ∈ I, (3.15)

for some constant C > 0 as specified in the statement of the lemma. In particu-
lar, (3.12) follows by (3.14). In order to establish (3.15), first observe that

∂Er−(E) = 1

� ′(r−(E))
(3.16)
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for E ∈ I by the implicit function theorem. Moreover, the radial Poisson equa-
tion (A.1) yields

� ′′(r) = −2� ′(r)

r
+ L

r4
+ 4πρ(r), r > 0. (3.17)

In particular,

α:=� ′′(r∗) > 0 = � ′(r∗) (3.18)

by Lemma 3.2. This implies that in a small neighbourhood of E = Emin the
denominator in (3.17) behaves to the leading order like r−(E)−r∗, which then easily
yields (3.15) using standard continuity arguments and the mean value theorem. ��

3.3. Limiting Behaviour of Small Steady States

For fixed k > 1
2 and κ satisfying (1.8) we study the behaviour of the steady

state family f k,ε = ϕ(E) = ε ϕ̃(E) given by Lemma 3.1 as ε → 0. In this section,
we always add a superscript ε to steady state quantities to make the ε-dependencies
more visible.

The limiting case ε = 0 corresponds toU 0 ≡ 0. Hence, the associated effective
potential is of the form

�0(r):= − M

r
+ L

2r2
, r > 0. (3.19)

The structure of this function is similar as in the case ε > 0 described in Lemma 3.2,
with

min]0,∞[�
0 = �0(r0∗ ) = E0

min = −M2

2L
, r0∗ =

L

M
, (3.20)

and

r0±(E) = −M ∓√M2 + 2E L

2E

for E ∈ A
0, where

A
0:=]E0

min, 0[. (3.21)

Accordingly, the period function takes on the form

T 0(E):=2
∫ r0+(E)

r0−(E)

dr√
2E − 2�0(r)

= π√
2

M

(−E)
3
2

(3.22)

for E ∈ A
0; the latter identity is due to a straight-forward calculation.

Lemma 3.6. The following assertions hold.

(a) Eε
min → E0

min and Eε
0 → κ as ε → 0; recall (3.4) and (3.20).
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(b) T ε
min → T 0

min and T ε
max → T 0

max as ε → 0, where the limiting action interval
(compare (2.1)) is

I 0:=]E0
min, κ[ (3.23)

and T 0
min, T 0

max are defined similar to (3.11); recall (2.2), and (3.22). Moreover,
there exist c, C > 0 and ε0 > 0 such that for all 0 ≤ ε < ε0 and j ∈ {0, 1, 2}
there holds

c ≤ (T ε)( j)(E) ≤ C, E ∈ I ε. (3.24)

In particular, T ε is strictly increasing on I ε for 0 ≤ ε < ε0.

Proof. The proof of these convergences is rather technical and postponed to Ap-
pendix A.2. Part (a) is shown in Lemmas A.1 and A.2, part (b) is proven in Lem-
mas A.9, A.14 and A.17. ��

3.4. Linearisation

In order to analyse the linearised operatorL given by (1.14) with methods from
functional analysis, we first define the transport operator T in a weak sense, based
on [61, Def. 2.1]:

For a function f ∈ H the transport term T f exists weakly if there exists some
μ ∈ H such that for every test function g ∈ C1

c (	),

〈 f, T g〉H = −〈μ, g〉H ,

where T g is given by (1.11). In this case, T f :=μ weakly. The domain D(T ) of T
is the subspace of H where T exists weakly, while the domain of the squared
transport operator is defined as

D(T 2):={ f ∈ H | f ∈ D(T ), T f ∈ D(T )}.
We collect the following properties of the transport operator and its square as

in [27], see also [24, Prop. 5.1] and [61] (further properties of T can be derived as
in these papers):

Lemma 3.7. (Properties of T and T 2)

(a) T : D(T ) → H is skew-adjoint as a densely defined operator on H, i.e.,
T ∗ = −T , and T 2 : D(T 2) → H is self-adjoint.

(b) The domains of T and T 2 can be characterised in action-angle coordinates
as follows:

D(T m) =
{

f ∈ H | f (·, E) ∈ Hm
θ for a.e. E ∈ I

and
m∑

j=1

∫
I

T (E)1−2 j

|ϕ′(E)|
∫
S1
|∂ j

θ f (θ, E)|2 dθ dE < ∞
}

for m ∈ {1, 2}, where

H1
θ :={y ∈ H1(]0, 1[) | y(0) = y(1)}, H2

θ :={y ∈ H1
θ | ẏ ∈ H1

θ }. (3.25)



45 Page 18 of 49 Arch. Rational Mech. Anal. (2025) 249:45

In addition, for f ∈ D(T m) with m ∈ {1, 2} and a.e. (θ, E) ∈ S
1 × I ,

(T m f )(θ, E) =
(

1

T (E)

)m

(∂m
θ f )(θ, E). (3.26)

(c) The kernel of T consists of functions only depending on E, i.e.,

ker(T ) = { f ∈ H | ∃g : R → R s.t. f (r, w) = g(E(r, w)) a.e. on 	} .
(3.27)

(d) T reverses w-parity and the restricted operator T 2
∣∣
H : D(T 2) ∩H → H is

self-adjoint.
(e) The spectrum and the essential spectrum of −T 2 are of the form

σ(−T 2) = σess(−T 2) =
(
2πN0

T (I )

)2

,

σ (−T 2
∣∣
H) = σess(−T 2

∣∣
H) =

(
2πN

T (I )

)2

.

Proof. The skew-adjointness of T can be shown as in [61, Thm. 2.2], which then
yields (a) using vonNeumann’s theorem [59, Thm. X.25]. Part (b) follows similarly
to [27, Lemma 5.2 and Cor. 5.4]. The identity (3.26) then implies (c), while (d) is
evident from parity considerations. Part (e) is due the observation that S

1 × I 

(θ, E) �→ sin(2π jθ) δE∗(E) defines an eigendistribution for −T 2 or −T 2

∣∣
H;

j ∈ N0 or j ∈ N, respectively. The claimed structures of the spectra follow by
applying Weyl’s criterion [31, Thm. 7.2] similarly to [27, Thm. 5.7]. ��

We next analyse the response operator R defined in (1.15).

Lemma 3.8. (Properties of R) The linear operator R : H → H is bounded, sym-
metric, and non-negative (in the sense of quadratic forms, i.e., 〈R f, f 〉H ≥ 0 for
f ∈ H). The operator

√
R : H → H,

√
R f (r, w):=2π 3

2
∣∣ϕ′(E)

∣∣ w

r2
√

ρ(r)

∫
R

w̃ f (r, w̃) dw̃ (3.28)

is bounded, symmetric, non-negative, and
√
R
√
R = R on H. Moreover,

√
R f ∈

H and R f ∈ H for f ∈ H.

Proof. The claimed statements regarding R follow as in [27, Lemma 4.3]. The
properties of

√
R can be derived similarly using the important identity

∫
R

w2
∣∣ϕ′(E)

∣∣ dw = r2

π
ρ(r), r > 0. (3.29)

��
The response operator has a natural connection to the gravitational potential of

the linear perturbation. Similarly to [27, Sc. A.1], we thus analyse the properties of
such potentials defined by (1.12).
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Lemma 3.9. Let g ∈ D(T ) and f :=T g ∈ im(T ). Then U f ∈ H2 ∩ C1([0,∞[)
with

‖U f ‖H2 + ‖U f ‖L∞ + ‖U ′
f ‖L∞ ≤ C‖ f ‖H (3.30)

for some constant C > 0 which can be estimated by ε and k. Furthermore,

U ′
f (r) = 4π2

r2

∫
R

w g(r, w) dw, r > 0, (3.31)

supp (U ′
f ) ⊂ [Rmin, Rmax], and U f (| · |) ∈ H2 ∩ C1(R3). In action-angle coordi-

nates, U f ∈ C1(S1 × A) with

|∂EU f | ≤ C√
E − Emin

|∂rU f | (3.32)

on S
1 × I for C > 0 as in Lemma 3.5. Moreover, there exists a constant C > 0

such that for any � ∈ Z
∗,∫

I

∣∣Û f (�, E)
∣∣2 dE ≤ C

�2

∫
|∇U f |2 dx . (3.33)

Here U f (θ, E) = U f (r(θ, E)) for (θ, E) ∈ S
1 × A. For j ∈ Z it holds that

Û f ( j, ·) ∈ C1(A) with ∂EÛ f ( j, ·) = ∂̂EU f ( j, ·) on A.

Proof. First observe that

‖ρ f ‖2L2(]0,∞[) = π2
∫ ∞
0

1

r4

(∫
R

f (r, w) dw

)2
dr

≤ C
∫ ∞
0

(∫
R

|ϕ′(E)| dw
) (∫

R

1

|ϕ′(E)| f (r, w)2 dw

)
dr ≤ C‖ f ‖2H

since supp (ρ f ) ⊂ [R0
min, R0

max]. In the last step we used the estimate
∫
R

|ϕ′(E)| dw = C (E0 −�(r))
k− 1

2+ ≤ C,

which follows by a calculation similar to (A.3). Hence the compact support of ρ f

implies that ρ f ∈ L1 ∩ L2(]0,∞[). By Lemma 3.7,

1

π

∫ ∞

0
r2ρ f (r) dr = 〈|ϕ′(E)|, T g〉H = −〈T |ϕ′(E)|, g〉H = 0.

In particular, U ′
f (r) = 0 for r ∈ [0,∞[\[R0

min, R0
max], and U f (r) = 0 for

r ≥ R0
max. Thus, U f ∈ C1([0,∞[) and U f , U ′

f ∈ L1 ∩ L∞([0,∞[) with
‖U f ‖∞ + ‖U ′

f ‖∞ ≤ C‖ρ f ‖2 by (1.12). Together with the radial Poisson equa-

tion we conclude U f ∈ H2([0,∞[) and the estimate (3.30). The identity (3.31)
follows via integration by parts together with a suitable approximation argument
similar to [27, Eqn. (A.2)]. This regularity and Lemma 3.4 further imply that
U f ∈ C1(S1 × A). The estimate (3.32) hence follows by Lemma 3.5.
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To show (3.33) we use the assumption � �= 0 to rewrite Û f (�, E) = 1
2π i�

∂̂θU f (�, E). Therefore, using ∂θU f = ∂r U f ∂θr ,
∫ ∣∣Û f (�, E)

∣∣2 dE ≤ C

�2

∫
S1×I

|∂θr |2|∂rU f |2 d(θ, E) ≤ C

�2

∫
|∇U f |2 dx,

(3.34)

where we have used (3.12) in the last line. ��
The identity (3.31) implies that for f ∈ D(T ) and a.e. (r, w) ∈ 	,

R f (r, w) = ∣∣ϕ′(E)
∣∣ w U ′

T f (r),
√
R f (r, w) = ∣∣ϕ′(E)

∣∣ w
U ′
T f (r)

√
2πρ(r)

.

(3.35)
The natural domain of definition for the linearised operator L = −T 2 −R is

D(L):=D(T 2) ∩H;
recall that L governs the dynamics of the odd-in-w part of the linearised perturba-
tion. We obtain the following properties of this operator:

Lemma 3.10. (Properties of L)
(a) The operator L : D(L) → H is self-adjoint as a densely defined operator on

H.
(b) The operators

√
R and R are relatively (−T 2)-compact [31, Def. 14.1] and

σess(L) = σess(−T 2
∣∣
H) =

(
2πN

T (I )

)2

. (3.36)

(c) There exists c > 0 such that for all f ∈ D(L),

〈L f, f 〉H ≥ c
(
‖ f ‖2H + ‖T f ‖2H

)
. (3.37)

In particular, the kernel of L is trivial and σ(L) ⊂]0,∞[.
An estimate of the form (3.37) is typically called an Antonov coercivity bound.

Proof. The self-adjointness ofL is due to theKato-Rellich theorem [59, Thm.X.12]
and Lemmas 3.7 and 3.8. For part (b) it suffices to show that

√
R :

(
D(L), ‖T 2 · ‖H + ‖ · ‖H

)
→ H

is compact, cf. [20, III Ex. 2.18.(1)]. This can be achieved similarly to [27, Thm. 5.9]
using Lemma 3.7 (e), the identity (3.35), the bounds from Lemma 3.9, the compact
embedding H2([0, Rmax]) � H1([0, Rmax]), and (3.29).

For the last part we first recall the classical [2] Antonov coercivity bound

〈L f, f 〉H ≥
∫

	

1

|ϕ′(E)|
m(r)

r3
| f (r, w)|2 d(r, w) (3.38)
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for f ∈ C2
c (	) odd inw, which can be derived as in [26, Lemma 1.1] or [42, (4.6)].

Extending the estimate (3.38) to f ∈ D(L) via a standard approximation argument
[61, Prop. 2] implies σ(L) ⊂ [0,∞[ and ker(L) = {0}, cf. [27, Cor. 7.2 & 7.3]. In
order to establish the coercivity bound (3.37), we then proceed as in [27, Prop. 7.4]
and deduce that

λ̃:= inf
f ∈D(T )

f /∈ker(T )

〈L f, f 〉H

‖T f ‖2H
= inf

f ∈D(T )
f /∈ker(T )

(
1−

∫∞
0 r2U ′

T f (r)2 dr

4π2 ‖T f ‖2H

)
> 0

using Lemmas 3.9 and 3.7. Combining the latter estimate with Lemma 3.7 (e)
similar to [27, Thm. 7.5] then concludes the proof of part (c). ��
Corollary 3.11. (Single gap structure) There exists an ε0 = ε0(k) > 0 such that
for any 0 < ε < ε0, the linearised operator associated to f k,ε satisfies

σess(L) = [ 4π2

(Tmax)2
,∞[.

Proof. The single gap condition (1.8) is equivalent to T 0
max

T 0
min

> 2 by (A.15), which

by Lemma 3.6 and (3.36) implies the claim. ��

4. Absence of Embedded Eigenvalues

For fixed k > 1
2 we consider the steady states f k,ε constructed in Lemma 3.1

with 0 < ε < ε0, where ε0 > 0 be such that the statement of Corollary 3.11 and
the uniform estimates from Lemma 3.6 (b) hold. Further ε-independent bounds on,
e.g., Rmin, Rmax, E0, and Emin for 0 < ε < ε0 follow by Lemmas 3.1 and 3.6 after
suitably shrinking ε0 > 0.

The central statement of this section is Theorem 4.5, which states that under
the (regularity) assumption k > 1 there are no embedded eigenvalues of L, i.e. no
eigenvalues inside σess(L) given by Lemma 3.10. We shall prove this by contra-
diction. To that end, we first make a simple observation relating the eigenvalues
of L to those of L̃; the latter operator is obviously well-defined on the domain
D(L̃):=D(T ), recall (1.10).

Lemma 4.1. Assume that the operatorL : D(L) → H has an embedded eigenvalue
4π2m2

T (Em )2
for some m ∈ N and Em ∈ Ī with an eigenfunction h ∈ D(L). Then the

function f = h + T (Em )
2π im T h enjoys the regularity f ∈ D(T ) and satisfies the

identity

f̂ (�, E) = −Tm
|ϕ′(E)|Û f (�, E)

Tm − m
�

T (E)
, for a.e. E ∈ I, � ∈ Z

∗, (4.1)

where we have introduced the shorthand

Tm :=T (Em). (4.2)

In addition, the statements of Lemma 3.9 apply to U f , and ∇U f �≡ 0.
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Here we employ the convention that a complex-valued function lies in some by
definition real-valued function space like D(T ), if its real and imaginary parts do.

Proof. Assume that λ2 with λ ∈ R is an eigenvalue of L with an associated eigen-
function h ∈ D(L) = D(T 2) ∩H. By Lemma 3.10 we have λ �= 0. Using (3.35)
and Uh = 0 (as h is odd in w), it is then easy to check that the pair of functions
f = h ± 1

iλT h are eigenfunctions of the operator L̃ associated to eigenvalues

±iλ. Observe here that h ∈ D(L) implies h ± 1
iλT h ∈ D(T ) = D(L̃). Therefore,

2π im
Tm

is an eigenvalue of L̃, and using action-angle coordinates and (3.26) yields
the identity

1

T (E)
∂θ

(
f + |ϕ′(E)|U f

) = 2π im

Tm
f, a.e. on S

1 × I, (4.3)

where we recall (4.2). Since U f = Tm
2π im UT h ∈ C1(S1 × A) by Lemma 3.9, we

may apply the Fourier transform w.r.t. θ ∈ S
1 to (4.3) to obtain the relation

�

T (E)

(
f̂ (�, E)+ |ϕ′(E)|Û f (�, E)

)
= m

Tm
f̂ (�, E), for a.e. E ∈ I, � ∈ Z,

(4.4)
where we recall (2.4). It is convenient to rewrite (4.4) in the following form

(
Tm − m

�
T (E)

)
f̂ (�, E) = −Tm |ϕ′(E)|Û f (�, E), for a.e. E ∈ I, � ∈ Z

∗.
(4.5)

The strict monotonicity of I 
 E �→ T (E) implies that for any given � ∈ Z
∗,

there exists at most one energy E� ∈ Ī such that Tm − m
�

T (E�) = 0. We hence
conclude (4.1). Lastly, assume that ∇U f ≡ 0. Then U f ≡ 0 since it decays to
0 as r → ∞ and thus f ≡ 0 a.e. by (4.5). By definition of f it follows that
T h = − 2π im

Tm
h which is impossible since h �= 0 is odd in w and T reverses

w-parity. ��

Remark 4.2. If Tm − m
�

T (E�) = 0 for E� = Emin ∈ Ī , it follows by (4.5) that
Û f (�, Emin) = 0;we always extend T smoothly on Ī usingRemarkA.18.However,

by Lemma 3.9, Û f (�, ·) is only C0, 12 at E = Emin, and therefore

Û f (�, E)

Tm − m
�

T (E)
≈ (E − Emin)

− 1
2 as E → Emin.

In particular, the relation (4.1) does not make sense pointwise at E = Emin, but it
does weakly, or more precisely in L2−ν(I ) for any 0 < ν ≤ 1.

The previous lemma suggests that the frequency-energy pairs where the denom-
inator on the right-hand side of (4.1) vanishes play a distinguished role in the study
of embedded eigenvalues. The next lemma provides simple quantitative bounds on
the range of frequencies that are nearly resonant.
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Lemma 4.3. (δ-resonant set) Let (m, Em) ∈ N× Ī be such that 4π2m2

T 2
m

is an eigen-

value of L. Let 0 < δ < 1
2Tmin be given. Consider the δ-resonant set

Lm
δ :=

{
� ∈ Z

∗ ∣∣ ∃E ∈ Ī such that |Tm − m

�
T (E)| < δ

}
.

Then Lm
δ ⊂ N and there exists a constant Cres = C(Tmax, Tmin) > 0 such that

∣∣∣ �
m

∣∣∣+
∣∣∣m
�

∣∣∣ ≤ Cres, � ∈ Lm
δ . (4.6)

Proof. If there exists an E ∈ Ī such that −δ < Tm − m
�

T (E) < δ then clearly
m
�

> 0 (since δ < 1
2Tmin) and

1

2

Tmin

Tmax
<

Tmin − δ

Tmax
≤ Tm − δ

T (E)
<

m

�
<

Tm + δ

T (E)
≤ Tmax + δ

Tmin
<

3

2

Tmax

Tmin
,

which implies the claim. ��
Decomposition of the δ-resonant set. For (m, Em) ∈ N × Ī and δ < 1

2Tmin
fixed, we decompose Lm

δ into three disjoint sets

Lm
δ = Rm ∪ Pm ∪Nm,

where

Rm :=
{
� ∈ Lm

δ

∣∣ ∃E ∈ Ī such that Tm − m

�
T (E) = 0

}
,

Pm :=
{
� ∈ Lm

δ

∣∣ Tm − m

�
T (E) > 0 for all E ∈ Ī

}
,

Nm :=
{
� ∈ Lm

δ

∣∣ Tm − m

�
T (E) < 0 for all E ∈ Ī

}
; (4.7)

recall that T is continuous on Ī . We call the frequencies � ∈ Rm , � �= m, resonant
frequencies. For any such frequency there exists an energy value E� ∈ Ī at which
the equation (4.5) degenerates, and by the monotonicity of I 
 E �→ T (E) this
energy value is unique. In particular,

Tm − m

�
T (E)

{
< 0, E ∈]E�, E0],
≥ 0, E ∈ [Emin, E�]. (4.8)

An important piece of notation for the proof of Theorem 4.5 is given in the
following definition:

Definition 4.4. (The function pm,�)Let δ < 1
2Tmin. For any pair (m, �)withm ∈ N

and � ∈ Lm
δ let

pm,�(t):= − �

m
log
(

Tm − m

�
t
)
+ C p, for t ∈ [Tmin, Tmax] with t <

�

m
Tm .

(4.9)
Here C p > 0 is chosen independent of m, �, and ε so that pm,� ≥ 0 on its domain
of definition; this is possible by Lemma 4.3. Obviously, pm,� is an antiderivative
of the map t �→ 1

Tm−m
�

t , and pm,�(t) →∞ as Tm − m
�

t ↘ 0.
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Theorem 4.5. Let k > 1. Then there exists an ε0 > 0 such that for any 0 < ε < ε0
the operator L has no embedded eigenvalues.

Proof. By way of contradiction, we assume that there is an eigenvalue in the es-
sential spectrum of L, which by Lemma 3.10 means that it is of the form 4π2m2

T (Em )2

for some m ∈ N and Em ∈ Ī . Let f ∈ D(T ) be a function as in Lemma 4.1, i.e.,
the relation (4.1) holds, the statements of Lemma 3.9 apply to U f , and ∇U f �≡ 0.
Throughout the proof, we keep track of the dependence of constants on the steady
state, and hence on ε, and on the frequency m.

Step 1. An energy-type identity. We multiply (4.1) by the complex conjugate
of −Û f (�, E), sum over � ∈ Z

∗, and integrate against T (E) dE . By Parseval’s
theorem, the left-hand side equals

−
∫

I

∫
S1

f U f T (E) dθ dE = −
∫∫

	

f U f d(r, w) = 1

16π3

∫
R3
|∇U f |2 dx;

observe that f̂ (0, ·) = 0 by (4.4). As a result, we obtain the identity

1

16π3

∫
|∇U f |2 dx = Tm

∑
� �=0

∫
I

T (E)|ϕ′(E)|
Tm − m

�
T (E)

∣∣Û f (�, E)
∣∣2 dE . (4.10)

Now we let δ = 1
4Tmin so that the conclusions of Lemma 4.3 apply. It is clear that

there exists a constant C = C(Tmin, Tmax) > 0 such that

1∣∣Tm − m
�

T (E)
∣∣ ≤ C

∣∣∣∣ �m
∣∣∣∣ , m ∈ Z

∗, E ∈ I, � ∈ Z
∗ \ Lm

δ . (4.11)

By (4.10),

1

16π3

∫
|∇U f |2 dx = Tm

∑
� �=0

�∈(Lm
δ

)c

∫
I

T (E)|ϕ′(E)|
Tm − m

�
T (E)

∣∣Û f (�, E)
∣∣2 dE

+Tm

⎛
⎝ ∑

�∈Rm

+
∑

�∈Pm

+
∑

�∈Nm

⎞
⎠∫

I

T (E)|ϕ′(E)|
Tm − m

�
T (E)

∣∣Û f (�, E)
∣∣2 dE .

We bound the first term on the right-hand side using (3.33), (4.11), and the bound

|Tm − m
�

T (E)| 12 ≥ δ
1
2 for � ∈ (Lm

δ )c to get

Tm

∑
� �=0

�∈(Lm
δ

)c

∫
I

T (E)|ϕ′(E)|
Tm − m

�
T (E)

∣∣Û f (�, E)
∣∣2 dE

≤ C‖ϕ′‖L∞(I )

δ
1
2

∑
� �=0

�∈(Lm
δ

)c

|�| 12
|m| 12

∫
I

∣∣Û f (�, E)
∣∣2 dE

≤ C‖ϕ′‖L∞(I )

δ
1
2 m

1
2

‖∇U f ‖2L2

∑
� �=0

�∈(Lm
δ

)c

|�|− 3
2 ≤ C‖ϕ′‖L∞(I )

δ
1
2 m

1
2

‖∇U f ‖2L2 .
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We thus rearrange the above identity and use (4.8) to obtain

1

16π3

∫
|∇U f |2 dx ≤ C‖ϕ′‖L∞(I )

δ
1
2 m

1
2

‖∇U f ‖2L2

+ Tm

∑
�∈Pm

∫
I

T (E)|ϕ′(E)|
|Tm − m

�
T (E)|

∣∣Û f (�, E)
∣∣2 dE

+ Tm

∑
�∈Rm

∫ E�

Emin

T (E)|ϕ′(E)|
|Tm − m

�
T (E)|

∣∣Û f (�, E)
∣∣2 dE . (4.12)

By Definition 4.4, 1
T ′(E)

∂E
(

pm,�(T (E))
) = 1

|Tm−m
�

T (E)| for � ∈ Pm and E ∈ I or

� ∈ Rm and E < E�. We use this to rewrite the integrals above and then integrate
by parts in E . For � ∈ Pm this results in∫

I

T (E)|ϕ′(E)|
T ′(E)

∂E
(

pm,�(T (E))
) ∣∣Û f (�, E)

∣∣2 dE

= A� + B� − T (E)|ϕ′(E)|
T ′(E)

pm,�(T (E))|Û f (�, E)|2
∣∣∣
E=Emin

≤ A� + B�,

(4.13)

where for � ∈ Pm ,

A�:= − 2
∫

I

T (E)|ϕ′(E)|
T ′(E)

pm,�(T (E))Re
(
∂EÛ f (�, E) Û f (�, E)

)
dE, (4.14)

B�:= −
∫

I
∂E

(
T (E)|ϕ′(E)|

T ′(E)

)
pm,�(T (E))

∣∣Û f (�, E)
∣∣2 dE . (4.15)

In (4.13), we used k > 1 to conclude that ϕ′(E0) = 0 and the regularity of Û f (�, ·)
from Lemma 3.9 to infer that the boundary term at E = E0 vanishes. Analogously,
for � ∈ Rm we have

∫ E�

Emin

T (E)|ϕ′(E)|
T ′(E)

∂E
(

pm,�(T (E))
) ∣∣Û f (�, E)

∣∣2 dE

= A� + B� − T (E)|ϕ′(E)|
T ′(E)

pm,�(T (E))|Û f (�, E)|2
∣∣∣
E=Emin

≤ A� + B�,

(4.16)

where for � ∈ Rm

A�:= − 2
∫ E�

Emin

T (E)|ϕ′(E)|
T ′(E)

pm,�(T (E))Re
(
∂EÛ f (�, E) Û f (�, E)

)
dE,

(4.17)

B�:= −
∫ E�

Emin

∂E

(
T (E)|ϕ′(E)|

T ′(E)

)
pm,�(T (E))

∣∣Û f (�, E)
∣∣2 dE . (4.18)

In order to see that the boundary term at E = E� in (4.16) vanishes, first note that we
may assume E� > Emin. If, in addition, E� < E0, we have Û f (�, E�) = 0 by (4.5)
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and thus obtain |Û f (�, E)|2 pm,�(T (E)) → 0 as E ↗ E� using the regularities of
Û f and T . Otherwise, E� = E0 and the boundary term vanishes because k > 1.

Step 2. Estimates for A�, � ∈ Pm ∪Rm . The main challenge in our estimates is

that the term ∂EÛ f (�, E) at E = Emin inherits the singular behaviour (E−Emin)
− 1

2

and for any given � ∈ Z the function E �→ ∂EÛ f (�, ·) just fails to be in L2(I ). To
go around this we shall introduce powers of

δE := E − Emin

as weights in our estimates. For any � ∈ Pm we first rewrite Û f (�, E) as 1
2π i� ∂̂θU f .

Using (4.14) and Cauchy–Schwarz

|A�|2 ≤ 1

π2�2

∣∣∣∣
∫

I

T (E)|ϕ′(E)|
T ′(E)

pm,�(T (E))∂E Û f (�, E)(δE)
1
2 ∂̂θU f (�, E)(δE)

− 1
2 dE

∣∣∣∣
2

≤ C

m2

∫
I

∣∣∂E Û f (�, E)
∣∣2 T (E) δE |ϕ′(E)| dE

∫
I

p2m,�
(T (E))

T ′(E)2

∣∣∣∂̂θU f (�, E)

∣∣∣2 T (E)

δE
|ϕ′(E)| dE,

wherewe have used (4.6). ApplyingCauchy’s inequality and summing over � ∈ Pm

yields

∑
�∈Pm

|A�| ≤ Cm− 1
2
∑

�∈Pm

∫
I

∣∣∂EÛ f (�, E)
∣∣2 T (E) δE |ϕ′(E)| dE

+Cm− 3
2
∑

�∈Pm

∫
I

p2m,�(T (E))

T ′(E)2

∣∣∣∂̂θU f (�, E)

∣∣∣2 T (E)

δE
|ϕ′(E)| dE . (4.19)

By the same arguments as above we conclude that

∑
�∈Rm

|A�| ≤ Cm− 1
2
∑

�∈Rm

∫ E�

Emin

∣∣∂EÛ f (�, E)
∣∣2 T (E) δE |ϕ′(E)| dE

+Cm− 3
2
∑

�∈Rm

∫ E�

Emin

p2m,�(T (E))

T ′(E)2

∣∣∣∂̂θU f (�, E)

∣∣∣2 T (E)

δE
|ϕ′(E)| dE .

(4.20)

The first sums on the right-hand sides of (4.19)–(4.20) respectively combine to give

C

m
1
2

∑
�∈Pm

∫
I

∣∣∂EÛ f (�, E)
∣∣2 T (E) δE |ϕ′| dE

+ C

m
1
2

∑
�∈Rm

∫ E�

Emin

∣∣∂EÛ f (�, E)
∣∣2 T (E) δE |ϕ′| dE

≤ C

m
1
2

∑
�∈Z

∫
I

∣∣∂EÛ f (�, E)
∣∣2 T (E) δE |ϕ′| dE



Arch. Rational Mech. Anal. (2025) 249:45 Page 27 of 49 45

= C

m
1
2

∫
S1×I

∣∣∂EU f
∣∣2 T (E) δE |ϕ′| d(θ, E), (4.21)

where we have used the Plancherel identity in the last line. We use (3.32) and
change variables θ �→ r , keeping in mind that ∂r

∂θ
= T (E)

√
2E − 2�(r), to obtain

C

m
1
2

∫
S1×I

∣∣∂EU f (θ, E)
∣∣2 T (E) δE |ϕ′| d(θ, E)

≤ C

m
1
2

∫
S1×I

∣∣∂r U f (θ, E)
∣∣2 T (E) |ϕ′| d(θ, E)

= C

m
1
2

‖ϕ′‖L∞(I )

∫ Rmax

Rmin

∣∣∂r U f (r)
∣∣2 ∫ E0

�(r)

dE√
E −�(r)

dr

= C

m
1
2

‖ϕ′‖L∞(I )

∫ Rmax

Rmin

∣∣∂r U f (r)
∣∣2 (E0 −�(r))

1
2 dr ≤ c1

m
1
2

‖ϕ′‖L∞(I )‖∇U f ‖22.
(4.22)

In this estimate only the general assumption k > 1 and the uniform-in-ε bounds on
Rmin, Rmax, E0, and Emin have been used; constants denoted by C never depend
on ε, m, or �.

It remains to estimate the second sumson the right-hand sides of (4.19) and (4.20)
respectively. We start with the resonant contribution from (4.20). We recall that
∂θU f = ∂rU f

∂r
∂θ
, change variables θ �→ r , and apply the estimates fromLemma3.6

to find that

∑
�∈Rm

∫ E�

Emin

p2m,�(T (E))

T ′(E)2

∣∣∣∂̂θU f (�, E)

∣∣∣2 T (E)

δE
|ϕ′(E)| dE

≤
∑

�∈Rm

∫ E�

Emin

∫
S1

∣∣∂θU f (θ, E)
∣∣2 p2m,�(T (E))

T ′(E)2

T (E)

δE
|ϕ′(E)| dθ dE

≤
∑

�∈Rm

∫ r+(E�)

r−(E�)

∣∣∂r U f
∣∣2 ∫ E�

�(r)

p2m,�(T (E))

T ′(E)2

T 2(E)

δE

√
2E − 2�(r) |ϕ′(E)| dE dr

≤ C
∑

�∈Rm

∫ Rmax

Rmin

∣∣∂r U f
∣∣2 dr

∫ E�

Emin

p2m,�(T (E))(δE)−
1
2 |ϕ′(E)| dE

≤ C‖∇U f ‖22
∑

�∈Rm

I�m, (4.23)

where

I�m :=
∫ E�

Emin

p2m,�(T (E))(δE)−
1
2 |ϕ′(E)| dE .

In order to estimate the energy integrals I�m accordingly, we first note that for
� ∈ Rm and E ∈ [Emin, E�[,

Tm − m

�
T (E) = m

�
(T (E�)− T (E)) ≥ C(E� − E), (4.24)
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where we used Lemmas 3.6 and 4.3. For some α > 0 sufficiently small we estimate
pm,�(T (E)) against C(Tm − m

�
T (E))−α and apply the standard integral identity

∫ b

a
(s − a)α (b − s)β ds = �(α + 1) �(β + 1)

�(α + β + 2)
(b − a)α+β+1 ,

α, β > −1, a ≤ b,

to find that

I�m ≤ C‖ ϕ′

(E0 − ·)k−1 ‖L∞(I )

∫ E�

Emin

(E0 − E)k−1 (E� − E)−2α√
E − Emin

dE

≤ C‖ ϕ′

(E0 − ·)k−1 ‖L∞(I )(E0 − Emin)
k− 1

2−2α ≤ C‖ ϕ′

(E0 − ·)k−1 ‖L∞(I ),

where the constant C > 0 is independent of ε and m; recall that k > 1. It then
follows from (4.23) that there exists a constant c2 > 0 such that

∑
�∈Rm

∫ E�

Emin

p2m,�(T (E))

T ′(E)2

∣∣∣∂̂θU f (�, E)

∣∣∣2 T (E)

δE
|ϕ′| dE

≤ c2m‖ ϕ′

(E0 − ·)k−1 ‖L∞(I )‖∇U f ‖22, (4.25)

where we recall that |Rm | ≤ Cm by Lemma 4.3. By a completely analogous
argument

∑
�∈Pm

∫
I

p2m,�(T (E))

T ′(E)2

∣∣∣∂̂θU f (�, E)

∣∣∣2 T (E)

δE
|ϕ′(E)| dE

≤ C
∑

�∈Pm

∫ Rmax

Rmin

∣∣∂r U f
∣∣2 dr I�m ≤ c3m‖ ϕ′

(E0 − ·)k−1 ‖L∞(I )‖∇U f ‖2L2(R3)

(4.26)

for some ε, m, �-independent constant c3 > 0. The difference to the estimate (4.23)
is that for � ∈ Pm the energy integrals I�m extend over the whole energy interval
I , and (4.24) is replaced by

Tm − m

�
T (E) >

m

�
(T (E0)− T (E)) ≥ C(E0 − E).

Hence

I�m ≤ C‖ ϕ′

(E0 − ·)k−1 ‖L∞(I )(E0 − Emin)
k− 1

2−2α
∫ 1

0
(1− s)k−1−2αs−

1
2 ds,

which is again uniformly bounded in the same way. In conclusion, from (4.19)–
(4.22) and (4.25)–(4.26) we conclude

∑
�∈Pm∪Rm

|A�| ≤ c4m− 1
2 ‖ ϕ′

(E0 − ·)k−1 ‖L∞(I ) ‖∇U f ‖2L2(R3)
(4.27)
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for some ε, m, �-independent constant c4 > 0; notice that ‖ϕ′‖L∞(I ) ≤ C

‖ ϕ′
(E0−·)k−1 ‖L∞(I ).

Step 3. Estimates for B�, � ∈ Pm ∪Rm , see (4.15) and (4.18). These estimates
are analogous to the bounds (4.25) and (4.26), and we obtain
∑

�∈Pm∪Rm

|B�| ≤ c5 m−1
(
‖ ϕ′
(E0 − ·)k−1 ‖L∞(I ) + ‖ ϕ′′

(E0 − ·)k−2 ‖L∞(I )

)
‖∇U f ‖2L2(R3)

(4.28)
for some ε, m, �-independent constant c5 > 0. Here, we again rely on the assump-
tion k > 1 to guarantee the integrability of ϕ′′ near E = E0 and use the uniform
bounds on T , T ′, and T ′′.

Step 4. Conclusion. We use (4.27), (4.28), and (4.12) to get

1

16π3 ‖∇U f ‖22 ≤ Cm− 1
2

(
‖ ϕ′

(E0 − ·)k−1 ‖L∞(I ) + ‖ ϕ′′

(E0 − ·)k−2 ‖L∞(I )

)
‖∇U f ‖22
(4.29)

≤ Cfinal m− 1
2 ε ‖∇U f ‖22, (4.30)

where the ε in (4.30) appears due to the polytropic choice of the steady state (1.4).
With ε0 > 0 small enough this gives the contradiction for 0 < ε < ε0, recall
∇U f �≡ 0 by Lemma 4.1. ��
Remark 4.6. The final constant Cfinal > 0 on the right-hand side of (4.30) de-
pends on M , L , k, κ , Rmin, Rmax, Tmin, Tmax, T ′

min, T ′
max, and T ′′

max in an explicitly
computable way. The proof shows that as long as Cfinal ε is smaller than 1

16π3 , no
embedded eigenvalues occur.

We have carefully tracked the occurrence of the small factor 0 < ε � 1 in the
proof of Theorem 4.5, which appears only in (4.30). Due to the presence of the

factor m− 1
2 in (4.29), it follows trivially that at high frequencies m there cannot be

any embedded eigenvalues, even if we do not impose any smallness.

Corollary 4.7. (No embedded eigenvalues at large frequencies for large steady
states) Consider the family of steady states (1.4) with ε = 1, i.e.,

f k,1(r, w) = ϕ(E) = (E0 − E)k+, k > 1. (4.31)

Assume further that T ′
min > 0. Then there exists an integer m0 = m0(k) > 0 such

that the operator L has no embedded eigenvalues larger than
4π2m2

0
T 2
min

.

Proof. By (4.31) it is clear that

Mϕ :=‖ ϕ′

(E0 − ·)k−1 ‖L∞(I ) + ‖ ϕ′′

(E0 − ·)k−2 ‖L∞(I ) < ∞.

Thus, the claim follows directly from (4.29) upon choosing m sufficiently large. ��
Remark 4.8. Under the strict monotonicity assumption on the period function E �→
T (E) (which is expected to hold generically), the above corollary applies to a broad
class of steady states satisfying the assumption Mϕ < ∞. This clearly also includes
isotropic steady states without the central point mass at the origin.
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5. Principal Gap Analysis

Throughout this section let f k,ε be a steady state given by Lemma 3.1 with
fixed k > 1

2 and ε > 0.

5.1. A Birman–Schwinger Principle

In order to characterise the presence of eigenvalues of the linearised operator
L = −T 2 −R : D(L) → H in the principal gap G defined in (2.8), we provide a
criterion similar to [27, Sc. 8], see also [40] and [24, Sc. 6].

Lemma 5.1. (ABirman–Schwinger principle, cf. [27, Lemmas 8.1–8.3])For λ ∈ G
let

Qλ:=
√
R
(
−T 2 − λ

)−1√
R : H→ H. (5.1)

We refer to Qλ as the Birman–Schwinger operator associated to L. This operator
is linear, bounded, symmetric, non-negative, and compact. Furthermore, the lin-
earised operator L possessing an eigenvalue in the principal gap G is equivalent
to the existence of λ ∈ G such that Qλ has an eigenvalue greater or equal than 1.

Proof. The properties of Qλ for λ ∈ G follow by the properties of −T 2 and
√
R

derived in Lemmas 3.7 and 3.8. In particular, Qλ being compact is due to
√
R being

relatively (−T 2)-compact, cf. Lemma 3.10 (b).
In order to relate the spectra of Qλ andL to each other, we consider the operators

Lμ:= − T 2 − 1

μ
R : D(L) → H, μ > 0.

Similar toLemma3.10, the operatorsLμ are self-adjointwithσess(Lμ) = σess(L) =
σ(−T 2

∣∣
H). Furthermore, for λ ∈ G and μ ≥ 1 there holds

λ is an eigenvalue of Lμ ⇔ μ is an eigenvalue of Qλ. (5.2)

This equivalency is due to the following two observations: If f ∈ D(L) \ {0}
solves Lμ f = λ f , then g:=√R f ∈ H \ {0} satisfies Qλg = μg. Conversely, if
g ∈ H \ {0} solves Qλg = μg, then f :=(−T 2 − λ)−1

√
Rg ∈ D(L) \ {0} defines

a solution of Lμ f = λ f . Next, we deduce that

L = L1 has an eigenvalue in G ⇔ ∃μ ≥ 1 : Lμ has an eigenvalue in G (5.3)

by the non-negativity ofR (cf. Lemma 3.8) and the positivity of L with σess(L) ∩
G = ∅ (cf. Lemma 3.10) together with the min-max principle for operators [31,
Prop. 5.12].

Combining (5.2) and (5.3) then concludes the proof. ��
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We note that Qλ slightly differs from the respective operator defined in [27,
Eq. (8.1)]. The benefit of the definition (5.1) is that Qλ is symmetric, which is not
the case in [27].

When searching for eigenfunctions of Qλ for λ ∈ G associated to non-zero
eigenvalues, we may restrict ourselves to the space

im(Qλ) ⊂ im(
√
R) ⊂ { f ∈ H | ∃F = F(r) : f (r, w) = ∣∣ϕ′(E)

∣∣ w F(r)}
= {	 
 (r, w) �→ ∣∣ϕ′(E)

∣∣ w

r
√

ρ(r)
F(r) | F ∈ L2([Rmin, Rmax])

}
. (5.4)

This leads to the following operator which was first introduced by Mathur [52].

Lemma 5.2. (The Mathur operator, cf. [27, Def. 8.5, Prop. 8.6, and Lemma 8.8])
For F ∈ L2([Rmin, Rmax]) let f ∈ H be defined via

f (r, w) = ∣∣ϕ′(E)
∣∣ w

r
√

ρ(r)
F(r) for a.e. (r, w) ∈ 	.

Due to (5.4), for any λ ∈ G there exists a unique G ∈ L2([Rmin, Rmax]) such that

Qλ f (r, w) = ∣∣ϕ′(E)
∣∣ w

r
√

ρ(r)
G(r) for a.e. (r, w) ∈ 	.

The resulting mapping

Mλ : L2([Rmin, Rmax]) → L2([Rmin, Rmax]), MλF :=G

is the Mathur operator. This operator is linear, bounded, symmetric, non-negative,
and a compact Hilbert-Schmidt operator [58, Thm. VI.22 et seq.]. We have the
representation

(MλF)(r) =
∫ Rmax

Rmin

Kλ(r, s) F(s) ds, F ∈ L2([Rmin, Rmax]), r ∈ [Rmin, Rmax],
(5.5)

with integral kernel Kλ ∈ C([Rmin, Rmax]2) given by

Kλ(r, s):=16π
3
2

rs

∞∑
j=1

∫
I (r)∩I (s)

∣∣ϕ′(E)
∣∣

T (E)

sin(2π j θ(r, E)) sin(2π j θ(s, E))

4π2

T (E)2
j2 − λ

dE

(5.6)
for r, s ∈ [Rmin, Rmax], where θ is defined in (2.3) and

I (r):={E ∈ I | r−(E) < r < r+(E)}, r > 0.

Proof. The operator Mλ being bounded, symmetric, non-negative, and compact
follows by the respective properties of the Birman–Schwinger operator Qλ together
with the identity (3.29).
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In order to verify that theMathur operator is a Hilbert-Schmidt operator, the key
observation is that using action-angle variables (cf. Sect. 3.2 and Lemma 3.7 (b))
yields

(−T 2 − λ)−1g(θ, E)

= 4

T (E)

∞∑
j=1

∫ r+(E)

r−(E)

g(θ(r, E), E) sin(2π j θ(r, E))√
2E − 2�(r)

dr
sin(2π jθ)

4π2

T (E)2
j2 − λ

for λ ∈ G and g ∈ H. Inserting the definition of
√
R from Lemma 3.8, it is

then straight-forward to verify that the identity (5.5) holds. The continuity of the
kernel Kλ follows by the dominated convergence theorem. ��

Due to (5.4), the Mathur operator still contains all the relevant information of
the spectrum of the Birman–Schwinger operator. More precisely, for λ ∈ G, any
μ > 0 is an eigenvalue of Qλ : H → H if and only if it is an eigenvalue of
Mλ : L2([Rmin, Rmax]) → L2([Rmin, Rmax]); this is similar to [27, Lemma 8.10].
In addition, the properties of the Mathur operator derived above together with [31,
Prop. 5.12] and [58, Thm. VI.6] imply

sup(σ (Mλ)) = max(σ (Mλ)) = ‖Mλ‖

for λ ∈ G, where ‖ · ‖ denotes the operator norm on L2([Rmin, Rmax]) given by

Mλ:=‖Mλ‖ = sup{‖MλF‖2 | F ∈ L2([Rmin, Rmax]), ‖F‖2 = 1}
= sup{〈MλF, F〉2 | F ∈ L2([Rmin, Rmax]), ‖F‖2 = 1}, λ ∈ G.

(5.7)

Overall, we arrive at the following criterion for the presence of eigenvalues of L in
the principal gap G defined in (2.8).

Proposition 5.3. (cf. [27, Thm. 8.11]) The linearised operator L possesses an
eigenvalue in the principal gap G if and only if there exists a λ ∈ G such that
Mλ ≥ 1.

5.2. Absence of Eigenvalues in the Principal Gap for k > 1

We now prove the absence of eigenvalues in the principal gap G defined (2.8)
using the Birman–Schwinger principle derived above.

Theorem 5.4. Assume that the polytropic exponent satisfies k > 1. Then there
exists ε0 > 0 such that the linearised operator L associated to the equilibrium f k,ε

has no eigenvalues in the principal gap G for any 0 < ε < ε0.
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Proof. In order to apply Proposition 5.3, let λ ∈ G and F ∈ L2([Rmin, Rmax])with
‖F‖2 = 1. Using the representation (5.5) of the Mathur operator Mλ yields

〈MλF, F〉2 = 16π
3
2

∞∑
j=1

∫
I

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
j2 − λ

×
(∫ r+(E)

r−(E)

sin(2π jθ(r, E))
F(r)

r
dr

)2

dE .

(5.8)

We next apply the Cauchy–Schwarz inequality together with the bounds on Rmin
and Rmax from (3.7) to estimate the radial integral; the constant C > 0 changes
from line to line but is always uniform in ε ∈]0, ε0[. In addition, we use the bound
λ < 4π2

T 2
max

and thus arrive at

Mλ ≤ C
∞∑
j=1

∫
I

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
j2 − 4π2

T 2
max

dE . (5.9)

For the first summand, recall that there exists ε0 > 0 such that T = T ε is
increasing on I = I ε for 0 < ε < ε0 by Lemma 3.6 (b). Together with the uniform
bounds from the latter lemma and the mean value theorem (cf. Lemma 3.4 for the
regularity of T ) we deduce

4π2

T (E)2
− 4π2

T 2
max

= 4π2

T (E)2
− 4π2

T (E0)2
≥ 1

C
(E0 − E)

for E ∈ I . Therefore,

∫
I

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
− 4π2

T 2
max

dE ≤ C
∫

I

∣∣ϕ′(E)
∣∣

E0 − E
dE = Ckε

∫
I
(E0−E)k−2 dE ≤ Cε

(5.10)
because k > 1; recall that I = I ε is uniformly bounded as ε → 0 byLemma 3.6 (a).

In order to bound the remaining summands on the right hand side of (5.9),

observe that 4π2

T (E)2
j2 − 4π2

T 2
max

≥ j2

C for j ≥ 2 and E ∈ I . Thus,

∞∑
j=2

∫
I

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
j2 − 4π2

T 2
max

dE ≤ C
∫

I

∣∣ϕ′(E)
∣∣ dE ≤ Cε. (5.11)

Inserting (5.10) and (5.11) into (5.9) implies Mλ ≤ Cε. Applying the Birman–
Schwinger–Mathur criterion from Proposition 5.3 then concludes the proof. ��
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5.3. Existence of Pure Oscillations for 1
2 < k ≤ 1

We now apply Proposition 5.3 to prove the existence of pure oscillations à la
[27, Thm. 8.13].

Theorem 5.5. Assume that the polytropic exponent satisfies 1
2 < k ≤ 1. Then there

exists ε0 > 0 such that the linearised operator L associated to the equilibrium f k,ε

possesses an eigenvalue in the principal gap G for any 0 < ε < ε0.

Proof. For λ ∈ G and F ∈ L2([Rmin, Rmax]) we rewrite 〈MλF, F〉2 as in (5.8) to
deduce

〈MλF, F〉2 ≥ 16π
3
2

∫
I

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
− λ

(∫ r+(E)

r−(E)
sin(2πθ(r, E))

F(r)

r
dr

)2
dE .

Now choose η > 0 and a non-empty set S ⊂]Rmin, Rmax[ such that for all E ∈
]E0 − η, E0[ it holds that S ⊂]r−(E), r+(E)[ and sin(2πθ(r, E)) ≥ 1

2 for r ∈ S;
this is possible since r± are smooth and θ(·, E) : ]r−(E), r+(E)[→]0, 1

2 [ is one-
to-one for E ∈ I . Setting F :=1S leads to

lim sup
λ→ 4π2

T 2
max

Mλ ≥ lim sup
λ→ 4π2

T 2
max

〈MλF, F〉2
‖F‖22

≥ 4π
3
2 |S|

R2
min

lim sup
λ→ 4π2

T 2
max

∫ E0

E0−η

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
− λ

dE

= C |S|
∫ E0

E0−η

∣∣ϕ′(E)
∣∣

T (E)

1
4π2

T (E)2
− 4π2

T 2
max

dE

for some constant C = Cε > 0. Using the bounds from Lemma 3.6 (b) implies

4π2

T (E)2
− 4π2

T 2
max

= 4π2

T (E)2
− 4π2

T (E0)2
≤ C (T (E0)− T (E)) ≤ C(E0 − E)

for E ∈ I . Hence,

lim sup
λ→ 4π2

T 2
max

Mλ ≥ C |S|
∫ E0

E0−η

∣∣ϕ′(E)
∣∣

E0 − E
dE = C |S| εk

∫ E0

E0−η

(E0 − E)k−2 dE .

Because k ≤ 1, the integral in the latter expression is infinite. Applying Proposi-
tion 5.3 then concludes the proof. ��

6. Proof of the Main Theorem

We can now complete the proof of Theorem 1.2. Part (a) is the content of
Theorem 5.5. To prove part (b) we first observe that since σ(L) ⊂]0,∞[= G ∪
σess(L) byCorollary 3.11, Theorems 4.5 and 5.4 imply that there are no eigenvalues
in the spectrum and therefore the pure point spectrum is empty. It remains to show
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the damping formula (1.18). To that end we view the linear evolution (1.13) as a
first order system of the form

∂tψ = Aψ, ψ =
(

f
∂t f

)
, A =

(
0 1
−L 0

)
. (6.1)

Following [20, Sc. VI.3], we consider this system on theHilbert spaceX :=(D(T )∩
H)×H with

〈( f, g), (F, G)〉X :=〈T f, T F〉H − 1

4π2

∫ ∞

0
r2 U ′

T f (r) U ′
T F (r) dr + 〈g, G〉H

(6.2)
for ( f, g), (F, G) ∈ X . Here we recall (1.16). If additionally f ∈ D(L), the above
expression can be rewritten as

〈( f, g), (F, G)〉X = 〈L f, F〉H + 〈g, G〉H

using (3.35). Hence, extending Antonov’s coercivity bound from Lemma 3.10 (c)
ontoD(T )∩H via a standard approximation argument [61, Prop. 2] shows that (6.2)
indeed defines an inner product on X .

Thenatural domainof definition for the operator A isD(A):=D(L)×(D(T ) ∩H),
which is a dense subset of X . Moreover, since L : D(L) → H is self-adjoint and
invertible by Lemma 3.10, it is straight-forward to verify that A : D(A) → X
is skew-adjoint, i.e., A∗ = −A. By Stone’s theorem [20, Thm. II.3.24], A thus
generates a unitary C0-group and the system (6.1) is well-posed, i.e., any initial
datum ( f0, g0) ∈ D(A) launches a unique, global solution of the form R 
 t �→
et A( f0, g0) ∈ D(A), cf. [20, Thm. II.6.7]. The analogous statement clearly carries
over to the second order equation (1.13).

Consider the operator

K : X → X , K

(
f
g

)
:=
(

0∣∣ϕ′(E)
∣∣UT f

)
,

which is bounded by Lemma 3.9. Moreover, for any bounded sequence ( fn, gn) ⊂
X we obtain that (T fn) ⊂ H is bounded by Lemma 3.10 (c). Similar to Lemma
3.10 (b), we thus conclude that K is compact by applying Lemma 3.9. Thus, since
the point spectrum of A is empty by the above discussion, the RAGE theorem [60,
Thm. XI.115] implies

0 = lim
T→∞

1

T

∫ T

0
‖K et A( f0, g0)‖2X dt = lim

T→∞
1

T

∫ T

0
‖|ϕ′(E)|UT f (t)‖2H dt.

(6.3)
Furthermore,

1

16π3 ‖∇UT f (t)‖2L2 = −
∫

	

UT f (t)(r) T f (t, r, w) d(r, w)

≤ ‖|ϕ′(E)|UT f (t)‖H ‖T f (t)‖H

by Cauchy–Schwarz and

‖T f (t)‖2H ≤ C〈L f (t), f (t)〉H ≤ C‖( f (t), ∂t f (t))‖2X = C‖( f0, g0)‖2X (6.4)
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due to Lemma 3.10 (c) and (et A)t∈R being unitary. Therefore,

1

T

∫ T

0
‖∇UT f (t)‖2L2 dt ≤ C

T

∫ T

0
‖|ϕ′(E)|UT f (t)‖H ‖T f (t)‖H dt

≤ C

(
1

T

∫ T

0
‖|ϕ′(E)|UT f (t)‖2H dt

) 1
2
(
1

T

∫ T

0
‖T f (t)‖2H dt

) 1
2

for T > 0 and (1.18) follows by (6.3) and (6.4).
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A. Steady state theory

A.1. Proof of Lemma 3.1

The ansatz (1.4) indeed yields a stationary solution of the system (1.1)–(1.3) provided thatU
is the potential associated to f k,ε , i.e.

U ′(r) = 4π

r2

∫ r

0
s2ρ(s) ds, r > 0, lim

r→∞U (r) = 0, (A.1)

where ρ is induced by f k,ε via (1.3), i.e,

ρ(r) = π

r2

∫
R

f k,ε(r, w) dw. (A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In order to get a closed system for U , we insert the ansatz (1.4) into (A.2) and obtain

ρ(r) =
√
2π

r2
ε

∫ E0

�(r)
(E0 − E)k+ (E −�(r))− 1

2 dE

= √
2π

3
2

�(k + 1)

�(k + 3
2 )

1

r2
ε (E0 −�(r))

k+ 1
2+ =: ck

r2
ε (E0 −�(r))

k+ 1
2+ (A.3)

for r > 0, where the effective potential � is given by (1.6). Hence, defining

g(z):=ck z
k+ 1

2+ , z ∈ R, (A.4)

yields that

ρ(r) = ε

r2
g(E0 −�(r)) = ε

r2
g

(
E0 −U (r)+ M

r
− L

2r2

)
. (A.5)

Observe that g ∈ C1(R)∩C∞(R \ {0}) since k > 1
2 . Inspired by [56], we now consider the

quantity
y:=E0 −U

instead of U . Then y solves

y′(r) = −4πck

r2
ε

∫ r

0
g

(
y(s)+ M

s
− L

2s2

)
ds, r > 0. (A.6)

We equip this equation with the initial condition

y(0) = κ (A.7)

for prescribed κ satisfying the single gap condition (1.8). It is straight-forward to verify
that there exists a unique solution y ∈ C1([0,∞[) of (A.6)–(A.7), cf. [56]. This solution
possesses a vacuum region at the centre, more precisely, ρ(r) = 0 and y(r) = κ for
0 ≤ r ≤ Rmin with Rmin = R0

min given by (3.2) and Rmin > 0 is the maximal radius with

this property. Furthermore, inserting y ≤ κ < 0 into (A.5) yields ρ(r) = 0 for r ≥ R0
max

where R0
max is given by (3.2). Hence, the limit y∞:= limr→∞ y(r) ∈]−∞, 0[ exists. Then,

setting E0:=y∞ < 0 and U :=E0− y yields a solution of (A.1). The estimate for the w-part
of the support in (3.1) follows by

1

2
w2 ≤ E0 − E(r, w) = y(r)+ M

r
− L

2r2
≤ M

Rmin
, (r, w) ∈ supp ( f k,ε),

where we have used the bounds y ≤ 0, r ≥ Rmin, and − L
2r2

< 0 on the galaxy support. ��

A.2. Convergence of the steady state family

The aim of this section is to prove Lemma 3.6. For fixed k > 1
2 and κ as above, this requires

a detailed understanding of the behaviour of the steady states f k,ε given by Lemma 3.1 as
ε → 0.We hence add a superscript ε to all steady state quantities tomake the ε-dependencies
more visible, i.e., ρε is the stationary mass density, Uε is the stationary potential, and the
associated local mass function is given by

mε(r):=4π
∫ r

0
s2ρε(s) ds, r ≥ 0. (A.8)

The first result is similar to [24, Lemma 3.3] and forms the basis for all further convergence
results. Recall Lemma 3.3 for the regularity properties of ρε and Uε .
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Lemma A.1. As ε → 0 it holds that ρε, (ρε)′ → 0 uniformly on [0,∞[, Mε
s → 0, Eε

0 → κ ,
and

(Uε)( j) → 0 uniformly on [0,∞[, j ∈ {0, 1, 2, 3}. (A.9)

Proof. Inserting the uniform bound of the radial support given by (3.7) and the estimate yε ≤
yε(0) = κ into (A.5) yields the uniform convergence ρε → 0, which immediately implies
that Mε

s → 0; recall (3.3). Together with (yε)′(r) = −mε(r)

r2
for r > 0 by (A.6) this also

leads to (yε)′ → 0 uniformly. After integration, we then deduce that yε → κ uniformly
on [0,∞[ and Eε

0 = yε∞ → κ . In addition, after differentiating (A.5) we obtain the uniform
convergence (ρε)′ → 0. Combining all these limits then also yields the uniform convergence
of the second and third derivative of Uε after further differentiating (A.1). ��
Wenext prove that rε∗ and rε± converge to r0∗ and r0±, respectively, as ε → 0; recall Lemma3.2
and Section 3.3 for the definitions of these radii. We start with the minimising radius rε∗ and
the associated minimal energy value Eε

min.

Lemma A.2. It holds that rε∗ → r0∗ and Eε
min → E0

min as ε → 0.

Proof. The radius rε∗ is given as the unique zero of the increasing function

ξε : ]0,∞[→ R, ξε(r):=M + mε(r)− L

r

for ε ≥ 0; in the case ε = 0 we have m0 ≡ 0. Because mε → 0 uniformly on [0,∞[
as ε → 0 by Lemma A.1, we obtain that rε∗ indeed tends to r0∗ as ε → 0.
Together with the uniform convergence Uε → 0 from Lemma A.1 we then deduce that
Eε
min = �ε(rε∗) → �0(r0∗ ) = E0

min as ε → 0. ��
The next step is to show analogous properties for the radii rε±(E) as well. In addition, we

also analyse the behaviour of these radii for (ε, E) → (0, E0
min), i.e. in the near circular

regime. For this sake, let
A:={(ε, E) | ε ≥ 0, E ∈ A

ε} (A.10)
denote the set of all admissible (ε, E)-pairs; recall that A

ε =]Eε
min, 0[ by (3.5) and (3.21).

Lemma A.3. (a) The mappings A 
 (ε, E) �→ rε±(E) are continuous at ε = 0 locally
uniformly in E. More precisely, for any δ > 0 and E1 < 0 there exists some ε0 > 0 such
that for all 0 ≤ ε < ε0, Eε

min < E < E1, and E0
min < E∗ < E1 with |E − E∗| < ε0

it holds that |rε±(E)− r0±(E∗)| < δ.

(b) The radii rε±(E) converge to r0∗ as E → Eε
min and ε → 0. More precisely, for any

δ > 0 there exist ε0 > 0 and η > 0 such that for all 0 ≤ ε < ε0 and Eε
min < E <

Eε
min + η < 0 it holds that |rε±(E)− r0∗ | < δ.

Proof. The radius rε−(E) is the unique zero of the decreasing function

ξε
E : ]0, rε∗[→ R, ξε

E (r):=�ε(r)− E

for ε ≥ 0 and E ∈ A
ε . We continuously extend r0− by setting r0−(E0

min):=r0∗ and let δ > 0

and E1 ∈]E0
min, 0[ be arbitrary. By taking δ > 0 sufficiently small, we ensure that there

exist E ∈]E0
min, E1[ with r0−(E) + δ ≤ r0∗ . We then observe that, as δ > 0, for such E ,

ξ0E (r0−(E)+ δ) is uniformly negative, that is,

ζ−:= sup{ξ0E (r0−(E)+ δ) | E0
min < E ≤ E1, r0−(E)+ δ ≤ r0∗ } < 0.
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Now let ε, E∗, and E be as specified in the statement of part (a) of the lemma for some ε0 > 0
which we define below. If r0−(E∗)+2δ ≥ rε∗ , then rε−(E) ≤ rε∗ ≤ r0−(E∗)+2δ. Otherwise,

i.e., r0−(E∗) + 2δ < rε∗ , we also have r0−(E∗)+ δ < r0∗ after choosing ε0 > 0 sufficiently

small by Lemma A.2. Due to ζ− < 0 and the uniform bound r0−(E∗) + δ ≥ r0−(E1), we

then obtain that ξε
E (r0−(E∗)+ δ) < 0 after potentially shrinking ε0 > 0 again according to

Lemma A.1. This implies that rε−(E) ≤ r0−(E∗) + δ. Showing that rε−(E) ≥ r0−(E∗) − δ
works similarly. An analogous proof yields the respective estimates for r+ as well, which
concludes the proof of part (a).
Part (b) then follows by combining part (a) with the convergence of Eε

min from Lemma A.2.
��
In particular, Lemmas A.1 and A.3 imply the convergence of the radial support of the steady
state, i.e.

Rε
min = R0

min, Rε
max → R0

max as ε → 0, (A.11)

recall (3.2) and (3.7).
We now consider the period function T ε : A

ε →]0,∞[ for ε ≥ 0 defined in (2.2) and (3.22).
The aim is to establish the uniform convergence of T ε on the energy support I

ε
of the steady

state as ε → 0; recall (2.1) and (3.23). The main difficulty in this task is that the set I ε

changes in ε, in particular, the minimal energy value Eε
min depends on ε. We thus first

consider the case of this “near circular regime”, i.e., the region where E gets close to the
minimal energy value Eε

min. It turns out that T ε is essentially determined by (�ε)′′(rε∗)
in this regime, which is why we start by establishing the following auxiliary result; recall
Lemma 3.3 for the regularity of the effective potential �ε for ε > 0.

Lemma A.4. Let j ∈ N0. Then (�ε)( j)(s) converges to (�0)( j)(r0∗ ) as E → Eε
min and

ε → 0 uniformly in s ∈ [rε−(E), rε+(E)]. More precisely, for any δ > 0 there exist ε0 > 0
and η > 0 such that for all 0 ≤ ε < ε0 and Eε

min < E < Eε
min + η < 0 it holds that

|(�ε)( j)(s)− (�0)( j)(r0∗ )| < δ for s ∈ [rε−(E), rε+(E)].

Proof. Applying Lemmas A.1–A.3 and (A.11) implies that there exist δ̃, ε0, η > 0 such that

[rε−(E), rε+(E)] ⊂ [Rε
min + 2δ̃, Rε

max − 2δ̃] ⊂ [R0
min + δ̃, R0

max − δ̃]

for Eε
min < E < Eε

min+η and 0 ≤ ε < ε0. In particular, (�ε)( j) exists on [rε−(E), rε+(E)]
byLemma3.3; observe that�0 ∈ C∞(]0,∞[)by (3.19). If j ≤ 3, the statement then follows
by Lemma A.1. In the case of a larger j one has to iterate the arguments of Lemma A.1,
i.e., further differentiate (A.1) and (A.5), to deduce that (Uε)( j) → 0 uniformly on [R0

min+
δ̃, R0

max − δ̃] as ε → 0. ��
We then obtain the following behaviour of T ε(E) as ε → 0 for E in the near circular regime:

Lemma A.5. The period function T ε(E) converges to T 0(E0
min) as E → Eε

min and ε → 0.
More precisely, for any δ > 0 there exist ε0 > 0 and η > 0 such that for all 0 ≤ ε < ε0 and
Eε
min < E < Eε

min + η < 0 it holds that |T ε(E)− T 0(E0
min)| < δ.

Here, T 0(E0
min) denotes the continuous extension of T 0 onto E0

min. Due to (3.19), (3.20),
and (3.22), this value is given by

T 0(E0
min) = 2π

L
3
2

M2 =
2π√

(�0)′′(r0∗ )

. (A.12)
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Proof. For any ε ≥ 0 and E ∈ A
ε we obtain that

T ε(E) = 2
∫ rε∗

rε−(E)

dr√
2E − 2�ε(r)

+ 2
∫ rε+(E)

rε∗

dr√
2E − 2�ε(r)

=
∫ E

Eε
min

√
2√

(E − η̃) (�ε)′(rε−(η̃))2
dη̃ +

∫ E

Eε
min

√
2√

(E − η̃) (�ε)′(rε+(η̃))2
dη̃

by changing variables via η̃ = �ε(r), r = rε±(η̃) in both integrals. We focus on the first
integral in the last line of the above calculation; the arguments for the second integral are
similar.
Due to the extended mean value theorem, for every η̃ ∈]Eε

min, E[ there exists some s ∈
]rε−(η̃), rε∗[⊂]rε−(E), rε∗[ such that

(�ε)′(rε−(η̃))2

η̃ − Eε
min

= (�ε)′(rε−(η̃))2

�ε(rε−(η̃))−�ε(rε∗)
= 2 (�ε)′′(s);

recall that (�ε)′(rε∗) = 0. Hence, the integrand of the integral under consideration can be
rewritten as

√
2√

(E − η̃) (�ε)′(rε−(η̃))2
= 1√

(E − η̃) (η̃ − Eε
min) (�ε)′′(s)

. (A.13)

Now Lemma A.4 implies that for any δ > 0 there exist ε0 > 0 and η > 0 such that for all

0 ≤ ε < ε0 and Eε
min < E < Eε

min + η it holds that |(�ε)′′(s)− 1
2 − (�0)′′(r0∗ )− 1

2 | < δ
2π

for s ∈ [rε−(E), rε+(E)]; note that (�0)′′(r0∗ ) = M4

L3 > 0. Together with (A.12) we thus
conclude the following estimate for the integral under consideration for 0 ≤ ε < ε0 and
Eε
min < E < Eε

min + η:

∣∣ ∫ E

Eε
min

√
2√

(E − η̃) (�ε)′(rε−(η̃))2
dη̃ − 1

2
T 0(E0

min)
∣∣

= ∣∣
∫ E

Eε
min

√
2√

(E − η̃) (�ε)′(rε−(η̃))2
dη̃ − 1√

(�0)′′(r0∗ )

∫ E

Eε
min

dη̃√
(E − η̃) (η̃ − Eε

min)

∣∣

≤ δ

2π

∫ E

Eε
min

dη̃√
(E − η̃)(η̃ − Eε

min)
= δ

2
.

��
In order to establish the desired uniform convergence of T ε on the energy support as ε →
0, we next verify the pointwise convergence of T ε(E). This is based on the following
concavity estimate which originates from [42, Lemma 2.1 (iii)] (the proof only uses the
elliptic equation (A.1)):

Lemma A.6. For any ε ≥ 0, E ∈ A
ε , and r ∈ [rε−(E), rε+(E)] the following concavity

estimate holds:

E −�ε(r) ≥ L
(rε+(E)− r) (r − rε−(E))

2r2 rε−(E) rε+(E)
. (A.14)

The continuity of T ε at ε = 0 now follows similar to [27, Lemma B.7].
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Lemma A.7. The mapping A 
 (ε, E) �→ T ε(E) is continuous at ε = 0; recall (A.10).
More precisely, for any δ > 0 and E∗ ∈ A

0 there exists ε0 > 0 such that for all 0 ≤ ε < ε0
and E ∈ A

ε with |E∗ − E | < ε0 it holds that |T ε(E)− T 0(E∗)| < δ.

Proof. For any ε ≥ 0 and E ∈ A
ε the affine change of variables r = rε−(E) + (rε+(E) −

rε−(E)) s leads to

T ε(E) = √
2
∫ 1

0

rε+(E)− rε−(E)√
E −�ε

(
rε−(E)+ (rε+(E)− rε−(E)) s

) ds.

Lemmas A.1 and A.3 imply the pointwise convergence of the integrand in the integral above
as (ε, E) → (0, E∗), the concavity estimate from Lemma A.6 shows that the integrand is
bounded by an integrable, E-independent function. Hence, Lebesgue’s dominated conver-
gence theorem implies the desired continuity statement. ��
Combining Lemmas A.5 and A.7 with standard continuity arguments yields the main result
of the present section.

Lemma A.8. The period function T ε(E) converges to T 0(E∗) as ε → 0 and E → E∗
locally uniformly. More precisely, for any δ > 0 and E1 < 0 there exists ε0 > 0 such that
for all 0 ≤ ε < ε0 as well as E0

min < E∗ < E1 and Eε
min < E < E1 with |E∗ − E | < ε0

it holds that |T ε(E)− T 0(E∗)| < δ.

We now conclude the convergence of the minimal and maximal value of the period function
on the steady state support. Recall that I ε =]Eε

min, Eε
0[ for ε ≥ 0 by (2.1) and (3.23) as

well as the definitions of T ε
min and T ε

max in (3.11).

Lemma A.9. It holds that limε→0 T ε
min = T 0

min and limε→0 T ε
max = T 0

max, with

0 < T 0
min = T 0(E0

min) = 2π
L

3
2

M2 <
π√
2

M

(−κ)
3
2

= T 0(κ) = T 0
max < ∞ (A.15)

due to (1.8), (3.22), and (A.12).

Proof. Combine Lemma A.8 with the limit results Eε
min → E0

min and Eε
0 → κ as ε → 0

established in Lemmas A.1 and A.2. ��
We later show that T ε is increasing on I ε for 0 ≤ ε � 1, which implies that T ε

min and T ε
max

are attained on the boundary of I ε .
We now establish results similar to Lemmas A.8 and A.9 for the first and second order
derivatives of the period function; recall the regularity of T ε shown in Lemma 3.3. We first
derive suitable representations of these derivatives. Proceeding as in Lemma 3.3 leads to
a relation between ∂E T ε(E) and (∂E W ε)(T ε(E), E), cf. [40, Lemma A.12]. However, as
∂E W ε is only implicitly known as the solution of a suitable ODE, this quantity is rather hard
to control; in particular in the vicinity of the minimum of the potential well Emin.
Instead, we proceed as suggested in [27, Sc. B.3] and derive a suitable integral expression
for ∂E T ε .

Lemma A.10. For ε ≥ 0 and E ∈ A
ε it holds that

(T ε)′(E) = 1

E − Eε
min

∫ rε+(E)

rε−(E)

Gε
0(r)√

2E − 2�ε(r)
dr, (A.16)

where the continuous function Gε
0 : ]0,∞[→ R is defined by

Gε
0(r):=

⎧⎨
⎩

(�ε)′(r)2−2(�ε(r)−Eε
min) (�ε)′′(r)

(�ε)′(r)2
, r �= rε∗ ,

0, r = rε∗ .
(A.17)
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Proof. Taylor expanding (A.17) in the limit r → rε∗ yields

Gε
0(r) = − 1

3 (r − rε∗)3 (�ε)′′(rε∗) (�ε)′′′(rε∗)+ o((r − rε∗)3)
(r − rε∗)2 (�ε)′′(rε∗)2 + o((r − rε∗)2)

→ 0 as r → rε∗ (A.18)

by (3.18). Thus, Gε
0 is indeed continuous and, in particular, the integral on the right-hand

side of (A.16) is well-defined. A calculation similar to [17, Thm. 2.1] then yields the iden-
tity (A.16). ��

It is again crucial to understand the behaviour of (T ε)′(E) in the near circular regime, i.e.
when E gets close to the minimal energy value Eε

min. One difficulty in this task is the factor
in front of the integral on the right-hand side of (A.16). It is thus convenient to rewrite the
integral expression (A.16) as

(T ε)′(E) = − 1

E − Eε
min

∫ rε+(E)

rε−(E)

Gε
0(r)

(�ε)′(r)
∂r

[√
2E − 2�ε(r)

]
dr (A.19)

for ε ≥ 0 and E ∈ A
ε , with the intention to integrate by parts in (A.19). For this sake we

introduce the function

Gε
1 : ]0,∞[→ R, Gε

1(r):=
⎧⎨
⎩

Gε
0(r)

(�ε)′(r)
, if r �= rε∗ ,

− 1
3

(�ε)′′′(rε∗ )
(�ε)′′(rε∗ )2

, if r = rε∗ ,
(A.20)

with Gε
0 defined in Lemma A.10; recall that (�ε)′′(rε∗) > 0 by (3.18). A Taylor expansion

similar to (A.18) yields that Gε
1 is continuous on ]0,∞[. In fact, recalling from (A.18) that

Gε
0 and (�ε)′ are both smooth and O(r − rε∗) as r → rε∗ , and that (�ε)′ vanishes only

at rε∗ , we deduce that Gε
1 is smooth on ]Rε

min, Rε
max[ (recall the regularities established in

Lemma 3.3) and that its derivatives admit explicit representation in terms of derivatives of
�ε .
For ε ≥ 0 and E ∈ A

ε we now continue the calculation (A.19) and integrate by parts:

(T ε)′(E) = 1

E − Eε
min

∫ rε+(E)

rε−(E)
(Gε

1)
′(r)

√
2E − 2�ε(r) dr. (A.21)

Let us hence analyse the behaviour of integrals of the latter form in the near circular regime:

Lemma A.11. Let ]0,∞[
 r �→ F(r) be continuous. For fixed ε ≥ 0 it holds that

lim
E↘Eε

min

∫ rε+(E)

rε−(E)
F(r)

√
2E − 2�ε(r) dr = 0. (A.22)

Moreover, it holds that

∂E

[∫ rε+(E)

rε−(E)
F(r)

√
2E − 2�ε(r) dr

]
=
∫ rε+(E)

rε−(E)

F(r)√
2E − 2�ε(r)

dr, E ∈ A
ε.

(A.23)

Proof. First observe that Lemma 3.2 implies that rε±(E) → rε∗ as E ↘ Eε
min; the proof is

similar to the one of Lemma A.3. Then (A.22) is obvious. The derivative relation (A.23) is
straight-forward to verify using Lebesgue’s dominated convergence theorem. ��
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Due to the mean value theorem together with (A.21), (A.22), and (A.23), we conclude that
for any E ∈ A

ε there exists some Ẽ ∈]Eε
min, E[ such that

(T ε)′(E) =
∫ rε+(Ẽ)

rε−(Ẽ)

(Gε
1)
′(r)√

2Ẽ − 2�ε(r)

dr. (A.24)

We hence arrive at the following limiting behaviour of (T ε)′ in the near circular regime:

Lemma A.12. The derivative of the period function (T ε)′(E) converges to (T 0)′
(E0

min) as E → Eε
min and ε → 0. More precisely, for any δ > 0 there exist ε0 > 0

and η > 0 such that for all 0 ≤ ε < ε0 and Eε
min < E < Eε

min + η < 0 it holds that

|(T ε)′(E)− (T 0)′(E0
min)| < δ.

Here, (T 0)′(E0
min) denotes the continuous extension of (T 0)′ onto E0

min. Due to (3.19),
(3.20), and (3.22), this value is given by

(T 0)′(E0
min) = 6π

L
5
2

M4 = π
(G0

1)
′(r0∗ )√

(�0)′′(r0∗ )

. (A.25)

Proof. We proceed as in the proof of Lemma A.5 and change variables via η̃ = �ε(r)

in (A.24) to deduce that for any ε ≥ 0 and E ∈ A
ε there exists some Ẽ ∈]Eε

min, E[ such
that

(T ε)′(E) =
∫ Ẽ

Eε
min

(Gε
1)
′(rε−(η̃))√

2(Ẽ − η̃) (�ε)′(rε−(η̃))2
dη̃ +

∫ Ẽ

Eε
min

(Gε
1)
′(rε+(η̃))√

2(Ẽ − η̃) (�ε)′(rε+(η̃))2
dη̃.

(A.26)
Lemma A.4 implies that for any δ > 0 there exist ε0 > 0 and η > 0 such that for

all 0 ≤ ε < ε0 and Eε
min < E < Eε

min + η it holds that |(Gε
1)
′(s̃) (�ε)′′(s)− 1

2 −
(G0

1)
′(s̃) (�0)′′(r0∗ )− 1

2 | < δ
2π for s, s̃ ∈ [rε−(E), rε+(E)]; recall that (Gε

1)
′ admits explicit

representation in terms only of derivatives of �ε derived from (A.20). For 0 ≤ ε < ε0 and
Eε
min < E < Eε

min+ηwe thus conclude the following estimate for the first integral in (A.26)
after rewriting the integrand with the extended mean value theorem similar to (A.13):

∣∣ ∫ Ẽ

Eε
min

(Gε
1)
′(rε−(η̃))√

2(Ẽ − η̃) (�ε)′(rε−(η̃))2
dη̃ − 1

2
(T 0)′(E0

min)
∣∣

= ∣∣
∫ Ẽ

Eε
min

(Gε
1)
′(rε−(η̃))√

2(Ẽ − η̃) (�ε)′(rε−(η̃))2
dη̃

− (G0
1)
′(r0∗ )

2
√

(�0)′′(r0∗ )

∫ Ẽ

Eε
min

dη̃√
(Ẽ − η̃) (η̃ − Eε

min)

∣∣

≤ δ

2π

∫ Ẽ

Eε
min

dη̃√
(Ẽ − η̃)(η̃ − Eε

min)
= δ

2
.

Similar arguments also apply to the second integral in (A.26). ��
The next step is again to verify a suitable pointwise convergence of (T ε)′ as ε → 0.
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Lemma A.13. The mapping A 
 (ε, E) �→ (T ε)′(E) is continuous at ε = 0; recall (A.10).
More precisely, for any δ > 0 and E∗ ∈ A

0 there exists ε0 > 0 such that for all 0 ≤ ε < ε0
and E ∈ A

ε with |E∗ − E | < ε0 it holds that |(T ε)′(E)− (T 0)′(E∗)| < δ.

Proof. First observe that Gε
0 → G0

0 as ε → 0 locally uniformly by Lemmas A.1 and A.2;
recall the definition of Gε

0 in (A.17). Then the claimed continuity follows similarly to
Lemma A.7 using the concavity estimate (A.14) and Lebesgue’s dominated convergence
theorem applied to the representation (A.16) of (T ε)′(E); also note that Eε

min → E0
min by

Lemma A.2. ��

We then arrive at the desired convergence results for the derivative of the period function.

Lemma A.14. It holds that limε→0 T ′εmin = T ′0min and limε→0 T ′εmax = T ′0max, with

0 < T ′0min = (T 0)′(E0
min) = 6π

L
5
2

M4 <
3π

2
√
2

M

(−κ)
5
2

= (T 0)′(κ) = T ′0max < ∞. (A.27)

Proof. Combining Lemmas A.12 and A.13 yields that (T ε)′(E) converges to (T 0)′(E∗)
as ε → 0 and E → E∗ locally uniformly in E∗; see Lemma A.8 for similar arguments.
Because Eε

min → E0
min and Eε

0 → κ as ε → 0 by Lemmas A.1 and A.2 we conclude the
desired convergence results. ��

The next step is to establish a similar result for the second derivative of the period function;
recall that T ε ∈ C2(Aε) by Lemma 3.4. Again differentiating (A.21) using (A.23) and
rearranging the integrand yields

(T ε)′′(E) = 1

(E − Eε
min)

2

∫ rε+(E)

rε−(E)
(Gε

1)
′(r)

(
�ε(r)− Eε

min√
2E − 2�ε(r)

− 1

2

√
2E − 2�ε(r)

)
dr

(A.28)
for E ∈ A

ε . We integrate by parts to rewrite the first summand and arrive at

(T ε)′′(E)

= 1

(E − Eε
min)

2

∫ rε+(E)

rε−(E)
∂r

[
(Gε

1)
′(r)

�ε(r)− Eε
min

(�ε)′(r)
− 1

2
Gε
1(r)

]√
2E − 2�ε(r)dr

(A.29)

for E ∈ I ε . This is possible because the function

Gε
2 : ]Rε

min, Rε
max[→ R, Gε

2(r):=
⎧⎨
⎩

∂r

[
(Gε

1)
′(r)

�ε(r)−Eε
min

(�ε)′(r)
− 1

2Gε
1(r)

]
, if r �= rε∗ ,

0, if r = rε∗ ,

is continuous by Taylor’s theorem; recall Lemma 3.3 and that Gε
1 defined in (A.20) is

continuously differentiable.
Applying the extended mean value theorem to (A.29) and using (A.23) yields that for any
E ∈ I ε there exists Ẽ ∈]Eε

min, E[ such that

(T ε)′′(E) = 1

2(Ẽ − Eε
min)

∫ rε+(Ẽ)

rε−(Ẽ)

Gε
2(r)√

2Ẽ − 2�ε(r)

dr. (A.30)
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In order to eliminate the factor (Ẽ − Eε
min)

−1 we integrate by parts again. Observing that
Gε
2 is againO(r − rε∗) as r → rε∗ and smooth on ]Rε

min, Rε
max[, we deduce that the function

Gε
3 : ]Rε

min, Rε
max[→ R defined by

Gε
3(r):=

⎧⎨
⎩

Gε
2(r)

(�ε)′(r)
, if r �= rε∗ ,

− 1
10

(�ε)(5)(rε∗ )
(�ε)′′(rε∗ )3

+ 1
2

(�ε)′′′(rε∗ ) (�ε)(4)(rε∗ )
(�ε)′′(rε∗ )4

− 4
9

(�ε)′′′(rε∗ )3
(�ε)′′(rε∗ )5

, if r = rε∗ ,

is continuously differentiable with derivative that is explicitly computable in terms of deriva-
tives of �ε . Here the value of Gε

3(r
ε∗) follows from Taylor expansion in Gε

2. Hence,

(T ε)′′(E) = 1

2(Ẽ − Eε
min)

∫ rε+(Ẽ)

rε−(Ẽ)
(Gε

3)
′(r)

√
2Ẽ − 2�ε(r) dr (A.31)

for E ∈ I ε and Ẽ ∈]Eε
min, E[ as in (A.30). The mean value theorem and (A.23) imply the

existence of Ē ∈]Eε
min, Ẽ[⊂]Eε

min, E[ such that

(T ε)′′(E) = 1

2

∫ rε+(Ē)

rε−(Ē)

(Gε
3)
′(r)√

2Ē − 2�ε(r)
dr. (A.32)

Because this identity is similar to (A.24), we deduce the following behaviour of (T ε)′′(E)
in the near circular regime.

Lemma A.15. The second order derivative of the period function (T ε)′′(E) converges to
(T 0)′′(E0

min) as E → Eε
min and ε → 0. More precisely, for any δ > 0 there exist ε0 > 0

and η > 0 such that for all 0 ≤ ε < ε0 and Eε
min < E < Eε

min + η < 0 it holds that

|(T ε)′′(E)− (T 0)′′(E0
min)| < δ.

Here, (T 0)′′(E0
min) denotes the continuous extension of (T 0)′′ onto E0

min given by

(T 0)′′(E0
min) = 30π

L
7
2

M6 =
π

2

(G0
3)
′(r0∗ )√

(�0)′′(r0∗ )

. (A.33)

Proof. The statement can be proven similarly to Lemma A.12 by using (A.32) and the
properties of Gε

3 derived above. ��

The next step is again to verify a suitable pointwise convergence of (T ε)′′ as ε → 0.

Lemma A.16. The mapping A 
 (ε, E) �→ (T ε)′′(E) is continuous at ε = 0.
More precisely, for any δ > 0 and E∗ ∈ A

0 there exists ε0 > 0 such that for all 0 ≤ ε < ε0
and E ∈ A

ε with |E∗ − E | < ε0 it holds that |(T ε)′′(E)− (T 0)′′(E∗)| < δ.

Proof. First observe that (Gε
1)
′ → (G0

1)
′ as ε → 0 locally uniformly by Lemmas A.1

and A.2; recall that (Gε
1)
′ admits explicit representation in terms of derivatives of �ε .

Then the claimed continuity follows similarly to Lemmas A.7 and A.13 using the concavity
estimate (A.14) and Lebesgue’s dominated convergence theorem applied to the representa-
tion (A.28) of (T ε)′′(E). ��
We then arrive at the desired convergence results for the second order derivative of the period
function.
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Lemma A.17. It holds that limε→0 T ′′εmin = T ′′0min and limε→0 T ′′εmax = T ′′0max, with

0 < T ′′0min = (T 0)′′(E0
min) = 30π

L
7
2

M6 <
15π

4
√
2

M

(−κ)
5
2

= (T 0)′′(κ) = T ′′0max < ∞.

(A.34)

Proof. The proof is based on Lemmas A.15 and A.16 and proceeds similarly as the proof
of Lemma A.14. ��
Remark A.18. Similar arguments as to those in the proofs of Lemmas A.5, A.12, and A.15
imply that

T ε(E) → 2π√
(�ε)′′(rε∗)

, (T ε)′(E) → π
(Gε

1)
′(rε∗)√

(�ε)′′(rε∗)
,

(T ε)′′(E) → π

2

(Gε
3)
′(rε∗)√

(�ε)′′(rε∗)

as E ↘ Eε
min for fixed ε ≥ 0, where (Gε

1)
′(rε∗) and (Gε

3)
′(rε∗) are explicitly computable in

terms of derivatives of �ε at rε∗ . Together with Lemma 3.4 and (3.18) we hence conclude
that T ε

max, T ′εmax, T ′′εmax < ∞ as well as T ε
min > 0 for any ε ≥ 0.
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