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Abstract

Aim: To investigate oscillatory networks in bipolar depression, effects of a home-based tDCS

treatment protocol, and potential predictors of clinical response.

Methods: 20 participants (14 women) with bipolar disorder, mean age 50.75 + 10.46 years, in a
depressive episode of severe severity (mean Montgomery-Asberg Rating Scale (MADRS) score
24.60 £ 2.87) received home-based transcranial direct current stimulation (tDCS) treatment for 6
weeks. Clinical remission defined as MADRS score < 10. Resting-state EEG data were
acquired at baseline, prior to the start of treatment, and at the end of treatment, using a portable
4-channel EEG device (electrode positions: AF7, AF8, TP9, TP10). EEG band power was
extracted for each electrode and phase locking value (PLV) was computed as a functional
connectivity measure of phase synchronization. Deep learning was applied to pre-treatment

PLV features to examine potential predictors of clinical remission.

Results: Following treatment, 11 participants (9 women) attained clinical remission. A significant
positive correlation was observed with improvements in depressive symptoms and delta band
PLV in frontal and temporoparietal regional channel pairs. An interaction effect in network
synchronisation was observed in beta band PLV in temporoparietal regions, in which
participants who attained clinical remission showed increased synchronisation following tDCS
treatment, which was decreased in participants who did not achieve clinical remission. Main
effects of clinical remission status were observed in several PLV bands: clinical remission
following tDCS treatment was associated with increased PLV in frontal and temporal regions
and in several frequency bands, including delta, theta, alpha and beta, as compared to
participants who did not achieve clinical remission. The highest deep learning prediction
accuracy 69.45% (sensitivity 71.68%, specificity 66.72%) was obtained from PLV features

combined from theta, beta, and gamma bands.

Conclusions: tDCS treatment enhances network synchronisation, potentially increasing
inhibitory control, which underscores improvement in depressive symptoms. Baseline EEG-

based measures might aid predicting clinical response.
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Highlight

Investigated EEG-based functional connectivity in bipolar depression and effects of
home-based tDCS treatment on clinical response predictors.

Improved depressive symptoms correlated with delta band phase locking value (PLV),
indicating enhanced EEG synchronization.

Increased beta band PLV in temporoparietal regions for participants achieving clinical
remission, contrasting with decreased PLV in non-remissions from baseline to post-
treatment.

Heightened synchronization in delta, theta, alpha and beta band PLV observed in
participants achieving clinical remission post-treatment.

Deep learning predicted treatment response with 69.45% accuracy using baseline PLV
features from theta, beta, and gamma bands.



1. Introduction

Bipolar disorder (BP) is characterized by episodes of elevated mood states as well as
depressive and mixed mood states that are associated with changes in sleep and appetite,
energy levels, and psychomotor activity (American Psychiatric Association, 2013). Treatment for
bipolar depression usually involves medications, such as mood stabilisers and antipsychotic
medication, which may be combined with psychotherapy. However, these treatments have
limited effectiveness, in part related to individual differences in treatment response and high
rates of discontinuation due to intolerability and adverse effects (Chakrabarti, 2014; Mcintyre et
al., 2022).

The non-invasive brain stimulation, transcranial direct current stimulation (tDCS), is a potential
treatment option for bipolar depression (Mutz et al., 2018, 2019, Woodham et al., 2021). tDCS
generates a weak direct current (0.5 - 2.0 mA) which is applied to the scalp through electrodes.
In bipolar depression, the anode electrode is usually placed over the left dorsolateral prefrontal
cortex (DLFPC) and cathode electrode over the right DLPFC, frontotemporal or suborbital
region (Tortella et al., 2015; Mutz et al., 2018, 2019). The current modulates resting membrane
potential, in which anode stimulation increases neuronal excitability with a reduction in
GABAergic activity while cathode stimulation decreases neuronal excitability by reducing
glutamate levels (Stagg et al., 2018). tDCS does not lead to neuronal depolarisation, in contrast
to repetitive transcranial magnetic stimulation (rTMS), and it does not lead to a generalised
seizure, in contrast to electroconvulsive therapy (ECT). tDCS stimulation has been found to
modulate functional interactions in brain networks extending beyond the regions directly
targeted by stimulation, impacting on the wider neural network underlying mood regulation
(Polania et al., 2011; Kunze et al., 2016; Woodham et al., 2021).

Meta-analyses have reported clinical efficacy for a course of active tDCS treatment as
compared to sham tDCS treatment in bipolar depression and unipolar depression (major
depressive disorder) in randomised controlled trials (Mutz et al., 2019; Hsu et al., 2024) and that
longer treatment durations show greater clinical efficacy (Nikolin et al., 2023). tDCS treatment
involves daily sessions over several weeks, and initial studies had been conducted in clinical
research settings, requiring participants to commit to daily commutes (Mutz et al., 2019). As
tDCS is portable and safe, it can be provided at home (Woodham et al., 2021). Self-
administered, home-based tDCS affords greater flexibility to patients and is more cost effective

than clinic-administered tDCS. We developed a remotely supervised, home-based tDCS



protocol, which has demonstrated strong clinical outcomes, high acceptability and feasibility in
open-label trials in bipolar depression (Ghazi-Noori et al., 2024) and unipolar depression
(Woodham et al., 2022), as well as clinical efficacy and safety in a multisite randomized

controlled trial in unipolar depression (Woodham et al., 2023).

The DLPFC is a key region in emotion processing and executive functioning, which are impaired
in bipolar depression (Hassel et al., 2008; Townsend et al., 2010). Imbalances in activity in the
left and right DLPFC, namely hypoactivity in the left DLPFC and hyperactivity in the right
DLPFC, has been found in depression (Grimm et al., 2008; Maeda et al., 2000). The prefrontal
cortex has a crucial role in regulating responses to threat by directly inhibiting the amygdala
complex, in which electrical stimulation over the prefrontal cortex inhibits amygdala response
(Quirk et al., 2003).

Oscillations in electrical activity between brain regions range from slow to fast frequencies,
which reflect coupling between regions during different states and in mental health disorders.
Synchronization in oscillatory networks underlies the variable affective states in bipolar disorder
(Chen et al., 2008, Kam et al., 2013). Electroencephalography (EEG) provides a measure of
electrical activity in brain regions, generating assessments of the strength and connections

between regions.

In bipolar disorder, increased power in high frequency bands, namely beta and gamma, has
been observed as compared to healthy participants (Kam et al., 2013). In bipolar depression
though, reductions in the high frequency beta/gamma bands have been reported (Canali et al.,
2015), and increasing depressive severity was associated with decreased gamma band
synchronization (Kim et al., 2013). Following rTMS treatment, clinical response was associated
with increased strength in EEG functional connectivity, as measured by beta and gamma phase
locking value (PLV) in frontal region and temporal-parietal regions in bipolar depression
(Zuchowicz et al., 2019). Moreover, increased power in low frequency delta and theta bands at
baseline was associated with a subsequent clinical response to rTMS in unipolar and bipolar
depression (Wozniak-Kwasniewska et al., 2015). However, oscillatory network synchronization
following tDCS treatment has not been examined in bipolar depression. Furthermore, by
applying data-driven artificial intelligence algorithms, we may be able to develop predictors of

clinical response (Fu and Costafreda, 2013).



In the present study, we sought to investigate the oscillatory networks in bipolar depression,
effects of a home-based tDCS treatment protocol, and potential predictors of clinical response.
We utilized a portable wireless EEG device with 4-dry electrodes which has demonstrated
robust signal properties (Cannard et al., 2021; Krigolson et al., 2021), participants underwent
EEG acquisition in their own homes with real-time supervision by video conference. We
investigated EEG metrics, namely power and PLV, associated with changes in depressive
severity as well as the categorial effects of clinical remission. To explore preliminary EEG-based
predictors, we applied deep learning to examine whether baseline EEG measures could predict
clinical remission, expecting that oscillations in low-frequency bands might be predictive of
treatment outcomes, as suggested by previous rTMS studies (Wozniak-Kwasniewska et al.,
2015).

2. Methods

2.1. Participants

Ethical approval was provided by London Fulham Research Ethics Committee. All participants
provided written informed consent electronically. The study was an open-label, single arm
acceptability and feasibility trial of home-based tDCS treatment for bipolar depression (Ghazi-
Noori et al.,, 2024). Participants were aged 18 years or above, with a diagnosis of bipolar
disorder and in a current major depressive episode without psychotic features, based on
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (American
Psychiatric Association, 2013), determined by a structured assessment using the Mini-
International Neuropsychiatric Interview (MINI; Version 7.2) (Sheehan et al., 1998). All
participants had at least a moderate severity of depressive symptoms, as measured by a
minimum score of 18 on the Montgomery-Asberg Depression Rating Scale (MADRS)
(Montgomery and Asberg 1979). Participants were either medication-free or taking a stable
regime of mood-stabilizing medication or in psychotherapy for a minimum of two weeks.
Exclusion criteria included significant suicide risk, comorbid psychiatric disorder, and

contraindications to tDCS. Ghazi-Noori et al. (2024) provides a full description of the study.

2.2. tDCS treatment protocol



The protocol consisted of a 6-week course of active tDCS, which was self-administered by
participants in their homes 5 times a week for 3 weeks and then twice a week for 3 weeks, for a
total of 21 sessions. A member of the research team was present at each session by Microsoft
Teams video call to monitor adherence to the protocol and to ensure safe use of the device as
this was a feasibility trial. The tDCS headset devices were sent to participants and training was

provided via the associated app and by research team members.

A bifrontal montage was applied with the anode positioned over left DLPFC (F3 position
according to international 10/20 EEG system) and cathode over right DLPFC (F4 position).
Each electrode was a 23cm? conductive rubber electrode covered by saline soaked sponges.
Simulation was 2 mA for a duration of 30 minutes with a gradual ramp up over 120 seconds at
the start and ramp down over 15 seconds at the end of each session. The Flow Neuroscience

tDCS device was used for all participants.

Clinical assessments included clinician-rated measures of depressive symptoms, MADRS and
Hamilton Depression Rating Scale (HDRS-17) (Hamilton, 1960), anxiety symptoms: Hamilton
Anxiety Rating Scale (HAMA) (Hamilton, 1959) and manic symptoms: YMRS (Young et al.,
1978); self-report measure of depressive symptoms: Patient Health Questionnaire-9 (PHQ-9)
(Kroenke et al., 2001), disability and impairment: Sheehan Disability Scale (SDS) (Sheehan,
1893) and Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q) (Endicott et al.,
1993). Clinical remission was defined as the MADRS score of less than 10 at the end of the

treatment.

2.3. Remote EEG acquisition and preprocessing

EEG data were acquired at two time points: at baseline, prior to the start of treatment (pre-
treatment), and at the end of treatment (post-treatment). EEG data had been acquired in a sub-
sample of 22 participants (15 women; mean age 51.59 years) at baseline, however, data were
not available for one participant post-treatment and data from another participant was of poor
quality and was not included. Thus, data were available in 20 participants (14 women; mean age

50.75 years, SD 10.46 years), at pre-treatment and post-treatment (Table 1).

At each EEG acquisition session, a trained research team member provided real-time guidance

via videoconference. At each EEG session, four 5-minute EEG recordings were acquired. Each



recording measured at resting state in which participants were asked to maintain a relaxed
posture without any body movements. The resting state recordings were conducted in the
following order: eyes closed, eyes open, eyes closed, and eyes open. The two five-minutes

resting state eyes-closed recording at pre- and post-treatment were used the present analysis.

EEG recordings were acquired using a Muse device, a wireless EEG device equipped with 4 dry
electrodes (Figure 1). Sampling frequency was 256 Hz. Frontal electrode positions were AF7
and AF8, and the temporoparietal positions were TP9 and TP10. EEG signals were referenced

to the FPz electrode.

Each recording was segmented into 60 separate EEG windows, each lasting 10 seconds
without overlap. The recorded EEG signals, saved in CSV format, included timestamps for each
EEG sample, raw EEG signals from each electrode, Horse Shoe Indicator (HSI) values for each
electrode. HSI values served as indicators of electrode connectivity quality: HSI value 1
indicates excellent connectivity between electrode and the participant’s scalp, 2 indicates
average connectivity, and 4 poor connectivity. Values were averaged across the samples in

each window, and all windows with an average HSI of 2 or less were selected.

Each EEG signal was segmented into 10-second windows. EEG signals from each electrode
undergo filtering across six distinct frequency bands: the full band (1-60 Hz), delta & (1-4 Hz),
theta 6 (4-8 Hz), alpha a (8-12 Hz), beta 8 (12-30 Hz), and gamma y (30-60 Hz). Employing

Butterworth Infinite Impulse Response (IIR) filters of 5th order, the signals are effectively filtered.

2.4. EEG analysis

EEG band power and phase locking value (PLV) were extracted as resting state EEG metrics.
EEG band power was calculated for all four electrodes (AF7, AF8, TP9, TP10). PLV was
computed for all possible electrode pairs (AF7-AF8, AF7-TP9, AF7-TP10, AF8-TP9, AF8-TP10,
TP9-TP10). PLV assesses the phase synchrony between two time series signals (Hoke et al.,
1989; Lachaux et al.,, 1999). It is a common measure employed to determine functional
connectivity between EEG signals recorded from two electrodes, offering insight into the
temporal relationships of neural signals independent of their amplitude. PLV is a metric
constrained within the range of 0 to 1. PLV value approaching 1 indicates high phase

synchronization with minimum variation in phase difference across the EEG signals, while a



value close to 0 suggests no phase synchronization. The phase difference is obtained from the
instantaneous phase of the signal, which is determined using the signal and its Hilbert
transform. Since the instantaneous phase cannot be directly associated with a specific
frequency band or single frequency, we first applied band-pass filtering to the EEG signal to
isolate the respective EEG frequency bands. Subsequently, we calculated the PLV values within
these specific frequency bands. A total of 24 band power values and 36 PLVs were computed
with two sets of 60 EEG measurements at pre- and post- treatment, were available for statistical

analysis. Full description is presented in Supplementary Materials.

2.5. Statistical analyses

Statistical analyses of band power and PLV were performed to investigate potential associations
between changes in EEG measures and depression severity and to assess effects of remission

and non-remission status following tDCS treatment.

Non-parametric tests were utilized due to concerns about distributional assumptions.
Specifically, the Mann-Whitney U test was used for between-group comparisons (remission vs.
non-remission), and Spearman's rank correlation analysis was conducted to examine the
relationship between changes in EEG measures and the proportional change in MADRS scores
from baseline to the end of the 6-week treatment period, across all participants. The
proportional change in MADRS is calculated by subtracting the baseline MADRS score from the
MADRS score after 6 weeks of treatment, then dividing this absolute difference by the baseline
MADRS score.

Factorial analyses with and without proportional change in MADRS as covariate were used for
between-group comparisons. A two-way ANOVA, supplemented with non-parametric tests, was
performed for each EEG variable to test whether EEG measures change in response to
treatment. The factors were: remission group (remission, non-remission) and Time (baseline

pre-treatment, post-treatment). A total of 60 statistical tests were performed.

The coefficients were estimated in the R statistical environment (R core team, 2021) using linear
regression (/m built-in function). Post hoc tests (Tukey honestly significant difference (HSD))

were performed to assess significant effects. The statistical threshold was set at p<0.05, with



correction for multiple comparisons by controlling False Discovery Rate (FDR). A full description

is in the supplementary materials.

2.6. Deep learning analysis

Participants were categorized into two groups based on their remission status following tDCS
treatment. In the classification analysis, remission was defined as the positive class and non-
remission as the negative class, with sensitivity representing remission and specificity
representing non-remission. Values were extracted from each EEG frequency band at pre-

treatment.

From each EEG band, PLV feature vectors with a dimensionality of 6 are generated,
representing each of the six electrode pairs. These six-dimensional feature vectors, both
individually and through the concatenation of PLV features from multiple EEG bands, were
employed as inputs for deep learning models with varying parameters. This concatenation
process at the feature level led to a linear increase in the feature dimension. To assess the
effectiveness of different combinations of PLV features from individual bands and combinations
of multiple bands, two distinct deep learning architectures were investigated. The first
architecture utilized a fully connected perceptron deep learning structure, and the second
employed a one-dimensional convolutional neural network (1DCNN) architecture. Considering
combination of features from multiple EEG bands, the dimensionality varied as follows: 6 (single
band), 12 (two-band combination), 18 (three-band combination), 24 (four-band combination),

and 30 (combination of all bands).

For the fully connected perceptron deep learning network, a four-layer architecture was
implemented, comprising layers with 32, 32, 16, and 1 perceptrons (output layer) for all input
combinations, except in the case of the all-band combination where the feature size was 3. In
this scenario, 64 perceptrons were employed in the first layer. The all-band combination
encompassed all PLV features extracted from the delta to gamma bands. In the 1DCNN-based
architecture, the initial fully connected layer of the perceptron network was replaced with a
convolutional layer. This convolutional layer employed a kernel size of 3. To ensure kernel
overlap, the number of filters used was determined by multiplying the input dimension by a
multiplication factor 2/3. Following the convolutional layer, a MaxPooling1D layer with a pool

size of 2 was integrated to downsample the feature maps, aiming to extract the most relevant



features while reducing computational complexity. For single-band PLV features with an input
dimension of 6, 4 filters with a kernel size of 3 were used. Similarly, for dimensions 12, 18, 24,
and 30, 8, 12, 16, and 20 filters were employed respectively. The activation function 'relu’ was
applied to all layers except the output layer, where 'sigmoid’' was utilized. To minimize the 'binary

cross-entropy' loss function, the 'adam' optimizer was employed.

Due to the constrained size of the dataset and our emphasis on accurately evaluating model
performance over computational efficiency, we opted for the Leave-One-Subject-Out (LOSO)
methodology to assess the deep learning model's accuracy. Employing this approach, we
conducted 20 iterations of training and testing for each input combination. During each iteration,
one participant out of the 20 was reserved for testing, while the PLV features from the remaining
19 participants were utilized for model training. Following 50 epochs of model training, we
identified the most effective model based on its classification accuracy on a validation set. This
validation set, comprising 240 randomly selected vectors, equally distributed between remission
and non-remission groups, was drawn from the training data. The model exhibiting the highest

classification accuracy on the validation set underwent further testing.

3. Results

3.1. Clinical outcome

Following tDCS treatment, 11 participants attained clinical remission (mean MADRS score post-
treatment 5.18, SD 1.72) and 9 participants were in non-remission (mean MADRS score post-
treatment 14.40, SD 4.88), which was a significant difference (t = -5.429, p < 0.001). In the
remission group, significant improvements were observed across all clinical assessments; post-
treatment scores were as follows: HDRS-17 (mean 3.55, SD 1.44), HAMA (mean 3.82, SD
1.66), YMRS (mean 0.64, SD 1.03), PHQ-9 (mean 5.27, SD 3.04), and SDS (mean 8.64, SD
6.28). In contrast, in the non-remission group, the post-treatment scores were higher: HDRS-17
(mean 10.56, SD 5.00), HAMA (mean 10.33, SD 4.06), YMRS (mean 1.33, SD 1.22), PHQ-9
(mean 10.56, SD 5.22), and SDS (mean 17.11, SD 6.47). Clinical outcomes for the full sample
of participants in the study are reported in Ghazi-Noori et al. (2024). All participants remained on
the same course of mood stabilizer and/or antidepressant medication for the duration of the trial

and no participants started a new antidepressant treatment during the trial.



3.2. Relationship between changes in depression severity and EEG power

No significant correlation was found between change in EEG power and proportional change in
MADRS scores from pre- to post-treatment (non-parametric analysis: Spearman's rank

correlation).

3.3. Relationship between changes in depression severity and EEG PLV connectivity

Positive correlations with an improvement in depressive symptoms following tDCS treatment
were found in full band PLV in several electrode pairs: AF8-TP9 (o = 0.52, FDR-adjusted p =
0.02), and TP9-TP10 (p = 0.57, FDR-adjusted p = 0.01), as well as in beta PLV in pair: AF7-AF8
(p = 0.48, FDR-adjusted p = 0.03) (non-parametric analysis: Spearman's rank correlation)
(Figures 3, Supplementary Table 5). No regions showed a negative correlation with an

improvement in depressive symptoms.

3.4. Effects of remission status in EEG power

A significant main effect of the group was observed in several EEG power regions and
frequency bands. Specifically, in full power, significant effects were found in the TP10 region (F
= 4.77, FDR-adjusted p = 0.04). In delta power, a significant effect was observed in the AF8
region (F = 7.44, FDR-adjusted p = 0.01). For beta power, significant effects were noted in the
AF7 (F = 7.28, FDR-adjusted p = 0.01) and TP9 (F = 5.84, FDR-adjusted p = 0.02) regions. In
gamma power, significant effects were present in the AF7 (F = 5.72, FDR-adjusted p = 0.02)
and TP10 (F = 8.93, FDR-adjusted p = 0.01) regions (Supplementary Table 1).

Post-hoc tests revealed that only the TP9 region in the beta power band showed a significant
post-treatment difference between the remission and non-remission groups (non-parametric
analysis: Mann-Whitney U test, U = 78.00, FDR-adjusted p = 0.03). Other regions did not show
significant post-treatment differences (Supplementary Table 2).

3.5. Effects of remission status in EEG PLV connectivity

A significant main effect of group was observed in full band PLV in AF7-TP10 (F = 6.52, FDR-
adjusted p = 0.02), AF8-TP10 (F = 11.86, FDR-adjusted p = 0.00) and TP9-TP10 (F = 8.43,



FDR-adjusted p = 0.01). When examining the indices for the five frequency bands separately,
significant main effects of group were observed in PLV in the following channel pairs: in delta
band: AF7-AF8 (F = 5.39, FDR-adjusted p = 0.03), AF7-TP10 (F = 5.95, FDR-adjusted p = 0.02)
and TP9-TP10 (F = 4.47, FDR-adjusted p = 0.04); in theta band: AF7-AF8 (F = 4.96, FDR-
adjusted p = 0.03), AF8-TP9 (F = 4.71, FDR-adjusted p = 0.04) TP9-TP10 (F = 4.61, FDR-
adjusted p = 0.04); in alpha band: AF7-AF8 (F = 6.48, FDR-adjusted p = 0.02), AF7-TP10 (F =
7.39, FDR-adjusted p = 0.01) and AF8-TP9 (F = 5.68, FDR-adjusted p = 0.02); in gamma band:
AF8-TP10 (F = 5.10, FDR-adjusted p = 0.03), TP9-TP10 (F = 5.43, FDR-adjusted p = 0.03)
(Supplementary Table 1). Post-hoc tests demonstrated that for each electrode pair, remission
group showed a significantly higher PLV as compared to non-remission group (non-parametric

analysis: Mann-Whitney U test) (Figure 4, Supplementary Table 2).

A significant main effect of time was found in the gamma band: PLV AF8-TP9 (F = 8.64, FDR-
adjusted p = 0.01), in which there was decreased PLV post-treatment as compared to pre-

treatment (Supplementary Table 1)

A significant interaction effect of remission group by time was found in the beta band PLV TP9-
TP10 (F = 4.46, FDR-adjusted p = 0.04), in which there were no differences between the
remission and non-remission groups at baseline, however remission group showed an increase
in PLV from baseline to post-treatment while the non-remission group showed a significant

decrease from baseline to post-treatment (Figure 5, Supplementary Table 1).

Post-hoc analyses were conducted for each significant variable identified, and the outcomes are
presented in Supplementary Table 2. Importantly, we focus on the variables that show significant
group differences at post-treatment, but not at baseline. Specifically, BP remission group have a
generally greater PLV value compared to the BP non-remission group at the post-treatment,
including PLV of AF7-AF8 in delta, theta and alpha bands (Useta = 80, FDR-adjusted p = .02;
Usneta = 81, FDR-adjusted p = .02; Uapra 87, FDR-adjusted p = .00); PLV of AF7-TP10 in delta
and alpha bands (Ugeta = 77, FDR-adjusted p = .04; Upeta = 76, FDR-adjusted p = .02); PLV of
TP9-TP10 in delta and theta(Ugera = 79, FDR-adjusted p = .03; Umeta = 81, FDR-adjusted p =
.02) (non-parametric analysis: Mann-Whitney U test) (Figure 4, Supplementary Table 2).

3.6. Within group effects over time in remission and non-remission groups



In the remission group, a significant decrease in gamma band PLV AF8-TP9 was observed from
baseline to post-treatment (U = 54, FDR-adjusted p = 0.04). Conversely, in the non-remission
group, a significant decrease in beta band PLV TP9-TP10 was found from baseline to post-
treatment (U = 40, FDR-adjusted p = 0.04) (Figure 2, Supplementary Table 3).

3.7. Deep learning-based prediction

The fully connected perceptron deep learning architecture, characterized by its fully connected
layers, demonstrated superior performance metrics relative to the architecture predicated on a
1D-CNN. The fully connected perceptron architecture framework results are presented. Among
the single EEG band PLV features, the highest classification accuracy of 62.2% was achieved
for the alpha band (sensitivity 59.24%, specificity of 65.82%), and the beta band yielded the
second highest classification accuracy of 59.93% (sensitivity of 68.94%, specificity 48.91%). In
combinations of two band PLV, the theta-beta combination yielded the highest classification
accuracy of 68.66% (sensitivity 73.85%, specificity 62.33%), and in the second highest accuracy
was generated in the alpha-beta band feature combination accuracy 66.43% (sensitivity
74.52%, specificity 57.16%). Three band PLV combinations also exhibited high performance,
particularly the combination of theta, beta, and gamma bands: accuracy 69.45% (sensitivity
71.68%, specificity 66.72%) and delta, alpha, and beta bands: accuracy 67.93% (sensitivity
74.49%, specificity 59.91%). In four band PLV combination, theta, alpha, beta, gamma
combination yielded the highest classification accuracy 67.29% (sensitivity 72.78%, specificity
60.58%) and the second highest classification accuracy 66.02% (sensitivity 73.37%, specificity
57.02%) for delta, alpha, beta, gamma. While combining PLV features from all the five classical
EEG bands delta, theta, alpha, beta, and gamma, we obtained an accuracy 66.57 (sensitivity
68.24%, specificity 64.53%) (Supplementary Table 4).

4. Discussion

We investigated the relationship between EEG measures of brain activity and clinical outcomes
to a home-based tDCS protocol in bipolar depression and whether baseline EEG measures
could predictors of clinical remission to tDCS treatment. We examined EEG power and
functional connectivity, as measured by PLV which quantifies phase interdependencies between

brain regions.



We found a significant positive correlation with improvements in depressive symptoms and the
delta band PLV in frontal and temporoparietal regional channel pairs. The delta band is a low
frequency EEG oscillation which is associated with cognitive control and enhanced internal
concentration (Harmony et al., 2013). An interaction effect in network synchronisation was
observed in beta band PLV in temporoparietal regions, in which participants who attained
clinical remission showed increased synchronisation following tDCS treatment, which was
decreased in participants who did not achieve clinical remission. Additionally, remission status
significantly impacted beta power in the temporoparietal region, with differences observed post-
treatment. Beta band activity, a higher frequency oscillation, is associated with response
preparation and inhibitory control, whereby increased inhibitory controls leads to increased beta
band activity (Zhang et al., 2008; Tzagarakis et al., 2010). These findings suggest that that
tDCS treatment enhances network synchronisation, potentially increasing inhibitory control,

which underscores the improvement in depressive symptoms (Pellegrino et al., 2018).

Additional main effects of group were observed in several PLV frequency bands. In particular,
participants who attained clinical remission following tDCS treatment showed increased PLV in
channel pairs in frontal and temporal regions and in several frequency bands, including delta,
theta, alpha and beta as compared to participants who did not achieve clinical remission
following tDCS treatment. The present findings are consistent with reports of rTMS treatment in
bipolar depression, in which PLV is increased across multiple channel pairs and in several
frequency bands, namely theta, alpha, and beta bands, in participants who show a clinical
remission as compared to participants with who did not attain a clinical remission (Zuchowicz et
al., 2019). Increased theta and delta band activity in prefrontal and temporparietal regions has
also been reported following rTMS treatment in bipolar depression in participants who showed a
clinical remission (Wozniak-Kwasniewska et al., 2015). In contrast, participants who did not
attain clinical remission following tDCS treatment showed a significant decrease in beta PLV,
indicative of impaired neural phase synchronization, as compared to the participants who had
attained clinical remission. Decreased synchronization in beta band was reported in bipolar
disorder associated with cognitive impairments (Chen et al., 2008). The present findings
indicate that there are underlying neural synchronizations in bipolar depression that can

distinguish clinical response to tDCS.

Applying deep learning, we sought to explore whether we could predict clinical remission based

on baseline PLV features. Deep learning is a form of artificial intelligence that uses neural



networks, which consists of a series of layers, to learn a representation of the data. The
prediction accuracy ranged from 60-69%, while sensitivity values were generally higher, up to
76%. The highest prediction accuracy 69.45% was obtained for the combination of PLV features
from the EEG bands theta, beta, and gamma with a balanced of sensitivity 71.68% and
specificity of 66.72%. This finding aligns with another resting state EEG PLV analysis, in which
the best classification performance for bipolar disorder was the beta band phase-synchronized
feature (Duan et al., 2021). At the present time, we do not have any biomarkers that can help to
identify and predict clinical responses. In unipolar depression, deep learning approaches have
generated aggregate accuracies in the range of 70-80% for prediction of response to
antidepressant medications, as measured by area under the curve (Squarcina et al., 2021). The
findings suggest that adding a simple EEG measure at baseline can aid in identifying patients
who will subsequently attain clinical remission following tDCS treatment, and in turn, this could
identify patients who may not benefit from tDCS or who may require a combination of

treatments.

The present study has several limitations. As the sample size was small and all participants had
received active tDCS treatment, the power to detect a significant effect was limited and we
cannot establish whether the findings are related to active or to placebo, sham effects. EEG
data were acquired from four channels in a portable device which limited spatial resolution. We
sought to include an easy-to-use device which participants could use at home that has strong
reliability, research grade EEG data, and generates robust frequency measures comparable to a
64-channel device (Cannard et al., 2021; Krigolson et al., 2021). The EEG data were acquired
in a resting state, while a cognitive task might have provided additional sensitivity in identifying

predictors of clinical response (Mitoma et al., 2022).

In summary, tDCS treatment enhances network synchronisation, in particular in delta and beta
bands, potentially increasing inhibitory control, which underscores improvement in depressive
symptoms. Deep learning prediction models showed a range in which sensitivity values were

generally higher, indicating that EEG-based measures might aid predicting clinical response.
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Figure Legends

Figure 1.
Image of (a) EEG device (Muse), which consisted of four electrode (AF7, AF8, TP9 and TP10),

and (b) EEG distribution of electrodes based on international 10/20 positioning.

Figure 2.

Image representing averaged PLV values across different group (remission and non-remission
group) and time (pre- and post-treatment). Rows depict EEG bands: full band, delta, theta,
alpha, beta and gamma, and columns represent participant categories: pre-treatment remission,
pre-treatment non-remission, post-treatment remission, and post-treatment non-remission

groups.

Figure 3.

Scatter plots of phase locking value (PLV) (y-axis: Difference in EEG) of variables showing
significant positive correlation with proportional change in MADRS (x-axis: Difference in
MADRS) across participants. Positive correlations were observed for each PLV synchronization

EEG channel pair.

Figure 4.

Boxplots comparing phase locking values (PLV) between remission and non-remission groups
within specific frequency bands. The remission group exhibited increased PLV as compared to
the non-remission group post-treatment across electrode pairs within delta, theta, alpha and
gamma frequency ranges. Significant differences are denoted by *, indicating adjusted p-values
corrected for false discovery rate (FDR) below 0.05. Purple colour signifies the remission group,
and green indicates the non-remission group. Significant main effects for groups in the PLV of
AF7-TP9 were found across the full, alpha, and beta bands, in which post-hoc tests showed
significant differences between groups at post-treatment. Remission group showed increased
PLV value as compared to the non-remission group at post-treatment, including PLV of AF7 and
AF8 in delta, theta and alpha bands (Udeita = 80.00, FDR-adjusted p = 0.02; Ugneta = 81.00, FDR-
adjusted p = = 0.02; Uapna = 87.00, FDR-adjusted p = .000); PLV of AF7 and TP10 in delta and
alphaband (Ugeita = 77.00, FDR-adjusted p = 0.04; Uapna = 76.00, FDR-adjusted p = 0.04); PLV



of TP9 and TP10 in delta and theta bands (Udera = 79.00, FDR-adjusted p = 0.03; Utneta = 81.00,
FDR-adjusted p = 0.02) .

Figure 5.

Comparative boxplot of phase locking value (PLV) of TP9 and TP10 at beta band between

remission and non-remission groups.



Table 1.
Demographic characteristics of participants

Characteristic Remission Non-Remission
Total number (women) 11 (9) 9 (5)
Age 4719+ 12.15 55.11 £ 6.05
Years of education 17.82 £ 1.94 15.67 £ 2.18
1Q 102.55 + 9.17 102.89 + 7.62
Duration current depressive episode (weeks) 54.45 (3-260) 92.56 (8-64)
Clinical assessments scores at baseline
MADRS 24.00 £ 3.13 26.89 £ 2.15
HDRS-17 19.45 + 2.11 19.78 £+ 2.54
HAMA 15.00 £ 4.98 16.56 £ 3.71
YMRS 273+1.27 3.22+1.72
PHQ-9 15.73 £ 4.36 18.67 £ 3.16
SDS 19.55 + 8.03 21.89+6.11
Clinical assessments scores at end of treatment
MADRS 518 £ 1.72 14.40 + 4.88
HDRS-17 3.55+1.44 10.56 £ 5.00
HAMA 3.82+1.66 10.33 £ 4.06
YMRS 0.64 +£1.03 1.33+1.22
PHQ-9 5.27 £ 3.04 10.56 + 5.22
SDS 8.64 £ 6.28 17.11 £ 6.47
Treatments during trial
Taking mood stabilizer and other medications 10 6
Taking antidepressant medication only 0 1
Taking no medication 1 2
Engaged in psychotherapy 4 1

Categorical variables are presented as number of participants with percentage in parentheses
for treatments during trial. Duration current depressive episode is presented as mean with range
in parentheses. Mean values are presented with 't' standard deviation values. MADRS,
Montgomery-Asberg Depression Rating Scale; HDRS-17, 17-item Hamilton Depression Rating
Scale; HAMA, Hamilton Anxiety Rating Scale; YMRS, Young Mania Rating Scale; PHQ-9,
Patient Health Questionnaire-9; SDS, Sheehan Disability Scale. There is no significant
difference between remission and non-remission group at age (t = -1.896, p = 0.077) or gender
(x2=0.616, p = 0.433). However, there is a significant difference at the baseline MADRS score

(t=-2.365, p = 0.030), and at week 6 post-treatment (t = -5.429, p < 0.001).
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Figure 4.
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Figure 5.
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