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ABSTRACT 
Reaction processes require optimization to enhance key performance indicators (KPIs) such as 
yield, conversion, and selectivity. Techniques like Bayesian Optimization (BO), Model-Based De-
sign of Experiments (MBDoE), and Goal-Oriented Optimal Experimental Design (GOOED) play piv-
otal roles in achieving these objectives. BO efficiently explores the design space to identify optimal 
conditions, while MBDoE maximizes the information gain by reducing kinetic model uncertainty. In 
contrast, GOOED focuses solely on maximizing the KPIs without considering the system uncer-
tainty, identifying reactor conditions in the design space guaranteeing optimal performance. This 
study compares BO, MBDoE, and GOOED in optimizing methane oxidation in an automated flow 
reactor. Performance is assessed based on optimal methane conversion, reduced system uncer-
tainty and minimal experimental efforts to achieve maximum conversion. BO quickly identifies 
high-conversion conditions, MBDoE minimizes experimental runs while providing insights into pa-
rameter sensitivities, and GOOED prioritizes conversion efficiency. The findings highlight trade-
offs between convergence speed, robustness, and information gain, providing valuable insights 
for designing data-driven, physics-informed experiments.. 
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1 INTRODUCTION 
Reaction processes play a significant role in scien-

tific and industrial applications in the production of chem-
icals, energy, and materials [1]. These processes are 
driven by interconnected factors such as reaction kinet-
ics, thermodynamics, and transport phenomena [2], and 
their optimal performance in terms of key performance 
indicators (KPIs) such as yield, conversion, and selectiv-
ity depend on the precise control and fine-tuning of pro-
cess parameters. Addressing these challenges requires 
advanced optimization techniques capable of navigating 
this intricate landscape.  

Traditional methods like trial-and-error experimen-
tation and design of experiments (DoE) [3] have proven 
effective in several applications. These techniques have 
been instrumental in refining reaction conditions, balanc-
ing exploration and exploitation of the design space, and 
offering insights into reactor behaviour. However, their 

limitations, particularly in high-dimensional, dynamic, or 
noisy systems, have spurred the development of novel 
approaches.  

Emerging techniques such as Bayesian Optimization 
(BO) [4], Model-Based Design of Experiments (MBDOE) 
[5], and Goal-Oriented Optimal Experimental Design 
(GOOED) [6] provide more efficient strategies for opti-
mizing reaction processes.  

BO excels at identifying optimal conditions with a 
minimal number of experiments by balancing exploration 
and exploitation in black-box systems [7]. MBDOE em-
phasizes the maximization of information gain to improve 
parameter estimation and reduce uncertainty in physics-
based model predictions. The MBDoE approach can also 
be applied to design experimental design campaigns 
online [8].   

In contrast, GOOED focuses solely on achieving tar-
get KPIs, such as maximizing conversion, without priori-
tizing information gain or uncertainty reduction, making it 
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highly effective for applications where achieving maxi-
mum performance is the primary objective.  

The goal of the study is to evaluate the relative merit 
of the different experimental design approaches and es-
tablish which among the three techniques (BO, MBDoE, 
and GOOED) represents the optimal experimental design 
scenario by examining the reaction for methane total ox-
idation in an automated flow reactor as a case study.  

A comparative analysis of the three techniques as 
experimental design scenarios is carried out to quantify 
their relative performance in terms of (i) conversion of 
methane; (ii) uncertainty in the evaluation of the optimal 
conversion; (iii) confidence level of parameter estimates, 
and (iv) number of experiments required for the maximum 
KPI to be achieved. The analysis demonstrates how the 
three techniques can distinctly balance convergence 
speed and experimental robustness ultimately guiding 
the choice of more effective experimental design cam-
paigns.   

2 METHODOLOGY 

2.1 Generic Model and System Description 
The system under consideration is represented by a 

set of differential and algebraic equations (DAEs), where 
the measured variables 𝐲𝐲 can be sampled at discrete time 
points: 

𝐟𝐟 (𝐱̇𝐱, 𝐱𝐱 , 𝐮𝐮,𝛉𝛉, 𝑡𝑡 ) = 0                    𝐲𝐲 = 𝑔𝑔(𝐱𝐱,𝐮𝐮, 𝐯𝐯) (1,2) 

where f is a set of model equations, x, 𝐱̇𝐱 and are 𝑁𝑁𝑥𝑥 -di-
mensional vectors of state variables and their first deriv-
atives respectively, u is a 𝑁𝑁𝑢𝑢 -dimensional vector of con-
trol variables, t is time, θ is a  𝑁𝑁𝜃𝜃-dimensional vector of 
model parameters, y is a 𝑁𝑁𝑦𝑦-dimensional vector of re-
sponse variables that are measurable.   

Eq. (1), and (2) establish the fundamental structure 
upon which the specific methane oxidation reactor model 
is developed in Section 2.2  

2.2 Methane Oxidation: System & Reactor 
Model 

Building on the general modeling framework from 
Section 2.1, this section details a specific application to 
methane oxidation in flow reactor system as presented 
by Bawa et al. [12]. In their research, they presented a 
reactor model characterized by the following set of ordi-
nary differential algebraic equations: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

  = 𝑅𝑅.𝑢𝑢1
𝑢𝑢2𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

 . (−𝑟𝑟)  𝑥𝑥1(0) =  𝑢𝑢4 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

  = 𝑅𝑅.𝑢𝑢1
𝑢𝑢2𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

 . (−2𝑟𝑟)  𝑥𝑥2(0) =  𝑢𝑢3.𝑢𝑢4              (3) 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

  = 𝑅𝑅.𝑢𝑢1
𝑢𝑢2𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

 . (𝑟𝑟) 

𝑑𝑑𝑥𝑥4
𝑑𝑑𝑑𝑑

  = 𝑅𝑅.𝑢𝑢1
𝑢𝑢2𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

 . (2𝑟𝑟) . 

For the methane oxidation system, the control variables 
(u) is defined in Eq. 4, while y represents the response 
variables for 𝐶𝐶𝐶𝐶4, 𝐶𝐶𝐶𝐶2, 𝑂𝑂2 measured at the reactor outlet.  
The state variables x, control variables u and model pa-
rameters θ are defined for the reactor model as follows: 

x = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4]  

u = [𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 ,𝑢𝑢4]                 (4) 

           𝜽𝜽 = [𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3 ,𝜃𝜃4,  𝜃𝜃5 ,𝜃𝜃6]  

where 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 are mole fraction of methane, oxygen, 
carbon dioxide and water, respectively, and 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 ,𝑢𝑢4 
represent temperature [℃], flow rate of the feed  [𝑁𝑁𝑁𝑁𝑁𝑁 
𝑚𝑚𝑚𝑚𝑚𝑚−1], oxygen-to-methane mole fraction 𝑅𝑅𝑂𝑂2/𝐶𝐶𝐶𝐶4

 
[𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚−1], and inlet methane mole fraction   [𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚−1] 
respectively. These controls form the design vector 𝝋𝝋 
which is bounded within the experimental design domain 
as shown in Table 1. In the model R [ 𝐽𝐽 𝑚𝑚𝑚𝑚𝑚𝑚−1 𝐾𝐾−1] is the 
universal gas constant, r [ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔−1 𝑚𝑚𝑚𝑚𝑚𝑚−1] the reaction 
rate according to the kinetic model, and 𝑤𝑤 [𝑔𝑔] is the cat-
alyst mass along the reactor. The experimental design 
examined the effects of key control variables on methane 
oxidation by varying them within defined ranges (Table 
1). 

Table 1. Experiment control variables 

Control Variables Range Units  
Temperature - ℃ 
Mass flow rate  - 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚−1 
Oxygen to methane 
mole ratio 

- 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚−1 

Methane mole frac-
tion 

-
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚−1 

 
The Mars Van Krevelen (MVK) model reaction rate 

expression (Eq. 5) was adopted as the true model in this 
study as a representation of the system under consider-
ation:  

𝑟𝑟𝑐𝑐ℎ4 = 𝑘𝑘1𝑘𝑘2𝑃𝑃𝐶𝐶𝐶𝐶4𝑃𝑃𝑂𝑂2
𝑘𝑘1𝑃𝑃𝑂𝑂2+2 𝑘𝑘2𝑃𝑃𝐶𝐶𝐶𝐶4+ 𝑘𝑘1𝑘𝑘2𝑘𝑘3

(𝑃𝑃𝑂𝑂2𝑃𝑃𝐶𝐶𝐶𝐶4)
  (5) 

Eq. 5 was identified and validated in [11], where the 
authors calibrated the MVK model from flow reactor data. 
The authors also stressed that the oxidation of methane 
involved three steps: 1. Surface oxidation 2. Surface Re-
duction. 3. Desorption of product. Kinetic model parame-
ters of the MVK model (i.e. rate constants 𝑘𝑘, and activa-
tion energies 𝐸𝐸𝑎𝑎) were identified and formulated with re-
spect to these steps thus giving rise to six parameters, 𝑘𝑘1 
, 𝑘𝑘2 , 𝑘𝑘3,  𝐸𝐸𝑎𝑎1,  𝐸𝐸𝑎𝑎2,  𝐸𝐸𝑎𝑎3. Furthermore, these parameters 
were reparameterised to the vector form 𝛉𝛉 and estimated 
as 𝛉𝛉 = [5.77, 6.72, 5.87, 9.51, 10.17, 7.98]. These param-
eter values are used as the true parameter vector in this 
work. 
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2.3 Procedural Approach for GOOED, 
MBDOE, and BO 

The procedural approach for the three experimental 
design scenarios is tailored to their distinct objectives as 
shown in Figure 1. GOOED (a) and MBDoE (b) are both 
exploitative approaches. While they have distinct objec-
tives, they both focus on identifying the optimal point, al-
beit with different goals in mind. The objective of (a) is to 
maximise a specific KPI, whereas (b) focuses on the im-
provement of model predictions by minimising uncer-
tainty in parameter estimation and (c) BO balances ex-
ploration and exploitation through adaptive learning to 
optimize system performance without using mechanistic 

modelling insights on the system. The stopping criteria 
used to terminate the procedures for any of the scenarios 
can be one of the following: a. experimental budget ter-
mination b. satisfied 𝑡𝑡 −test on model parameters.  

The objective function that describes maximizing 
methane conversion and used by both GOOED and BO is 
shown in Eq. 6 below. 

𝐮𝐮∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐮𝐮∈𝑈𝑈 − ℎ (𝐮𝐮)   (6) 

where ℎ (𝐮𝐮) is the predicted conversion at any experi-
mental condition 𝐮𝐮, The algorithms mostly perform mini-
mization, so we minimize −ℎ (𝐮𝐮), which is the same as 
maximizing  ℎ (𝐮𝐮),  𝐮𝐮∗  is the optimal condition at maximum 
conversion. The design space, 𝑈𝑈, is the boundary 

 

a.

 
b. 

 
c. 

Figure 1. Procedural Framework showing workflow procedures for (a) GOOED (b) MBDoE and (c) BO scenarios.  
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conditions of the control variables shown in Table 1. 

2.3.1 GOOED 
In the GOOED approach the objective is to maximize 

the conversion of methane. The objective function Eq. 7 
which is a slight modification of Eq. 6 is shown below. 

𝐮𝐮∗𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐮𝐮∈𝑈𝑈 − ℎ (𝐮𝐮)    (7) 

The steps defining the GOOED procedure are illustrated 
in Figure 1a and summarised below. 

1. Initial Dataset: An initial dataset from 12 
preliminary experimental runs, created using 
statistical design of experiments (DoE) 
methodology as described in [11], serves as the 
starting point for the procedure. 

2. Parameter Estimation: Using computational 
methods and Eq. 6, the observations are 
utilized to estimate model parameters and 
estimates are evaluated for statistical 
significance.  

3. Maximize Methane Conversion. The 
optimization of methane conversion is guided 
by the experimental conditions defined in Table 
1; the objective function is represented in Eq. 7. 
The system undergoes an optimization routine 
to identify the maximum achievable conversion 
of methane.  

4. Optimal Reactor Conditions. During this 
process, the corresponding operating 
conditions that yield the maximum conversion 
are also determined. 

5. In Silico Experiment: Simulations are run to 
forecast how the reaction will behave under the 
determined optimal conditions. 

6. Iterate Until Stopping Criterion: The procedure 
continues, updating the dataset and improving 
predictions of the optimal conversion based on 
feedback from each experimental run.  

7. Procedure termination: The process stops when 
the stopping criterion is met, i.e. the maximum 
experimental budget is exhausted, or the t-test 
results are statistically significant – both of 
which are the stopping criteria. 

2.3.2 MBDoE 
In the MBDoE approach, the objective function is 

designed to maximize the determinant of the Fisher In-
formation Matrix (FIM), 𝐻𝐻𝜃𝜃�   this function is defined in Eq. 
8 which represents dynamic systems. 

𝐇𝐇𝛉𝛉�(𝛉𝛉�,𝛗𝛗) =[𝐕𝐕𝜃𝜃�
0]−1 +  ∑ (𝒅𝒅𝒚𝒚�

𝒅𝒅𝜽𝜽�
)𝑖𝑖
𝑇𝑇𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1 ∑ (𝒅𝒅𝒚𝒚�
𝒅𝒅𝜽𝜽�

)𝑖𝑖−1
𝑦𝑦   (8) 

where 𝐕𝐕𝜃𝜃�
0is the 𝑁𝑁𝜃𝜃 𝑥𝑥 𝑁𝑁𝜃𝜃 prior variance-covariance matrix 

of model parameters, while (𝑑𝑑𝐲𝐲�
𝑑𝑑𝜽𝜽�

)is the 𝑁𝑁𝑦𝑦 𝑥𝑥 𝑁𝑁𝜃𝜃 matrix with 
first-order derivatives of model responses with respect 
to the parameters at time point i. The parameter esti-
mates are obtained from Eq. 11, which provides the initial 
values for MBDoE based on the model and available data. 
To assess the quality of these estimates, Eq. 8 computes 
the Fisher Information Matrix (FIM) which allows to pre-
dict the expected precision of parameter estimates. The 
t-values are calculated as metric of parameter precision 
(see Section 2.4.1), and statistical conditions are checked 
to ensure the validity of the estimates.  

The procedural approach for MBDoE (Fig 1b) is the 
following 

1. Initial Dataset: Same as in GOOED 

2. Parameter Estimation: Same as in GOOED 

3. FIM Evaluation: The evaluation of the expected 
FIM was computed at the current value of the 
parameter estimates. 

4. Optimal Design of Experiment: Based on the es-
timated parameters and uncertainties, new ex-
perimental conditions are determined by max-
imizing the determinant of the expected FIM [8]. 

5. In Silico Experiment: The new experimental con-
ditions are applied, the experiment is simulated 
generating new data in silico, and the experi-
mental dataset is updated. 

6. Iterative Process: The process continues itera-
tively until the t-test results are statistically sig-
nificant, or the experimental budget is termi-
nated both of which are the stopping criteria. 

2.3.3 Bayesian Optimization (BO) 
In the third scenario, we adopted the BO technique 

due to its ability to effectively find the optimized value of 
the objective function. The objective function which is a 
modification of Eq. 6 is defined below in Eq. 9  

𝐮𝐮∗𝑩𝑩𝑩𝑩 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐮𝐮∈𝑈𝑈 − ℎ (𝐮𝐮)   (9) 

The choice of a composite kernel function Eq. 10 
combining constant kernel C, and RBF kernel to effec-
tively capture both global scaling and local variability in 
the relationship between experimental conditions 𝐮𝐮 and 
the conversion of methane (Eq. 14). This combination 
helps the GP to represent system behaviour and optimize 
control variables for maximum conversion efficiency. 

𝑘𝑘(𝐮𝐮,𝐮𝐮′) = 𝐶𝐶.𝑅𝑅𝑅𝑅𝑅𝑅 (𝐮𝐮,𝐮𝐮′)   (10) 

where 𝐮𝐮,𝐮𝐮′ are two different sets of experimental condi-
tions. 

The procedural approach for the BO (Fig 1c) is out-
lined below: 
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1. Initial Dataset: Same as in GOOED 

2. Define the Kernel and Gaussian Process (GP) 
Model: We defined the GP with a composite ker-
nel function Eq. 10 where C is a constant kernel 
with an initial value of 1.0 (bounded between 
10−3 and 103), and RBF (Radial Basis Function) 
has a length scale initialized at 1.0 with bounds 
between 10−2 and 102). The hyperparameters of 
the kernel are optimized during model training 
by maximizing the log marginal likelihood using 
gradient-based optimization technique [13]. 

3. Train the GP Model: The GP model is trained us-
ing an initial dataset to learn the relationship be-
tween the input conditions and the correspond-
ing system response variables [14]. To account 
for noise in the data, the GP model incorporates 
the noise and variance from the preliminary da-
taset.  

4. Cross-Validation: To ensure the GP model gen-
eralizes well, 5-fold cross-validation is per-
formed on the initial datasets. The data is split 
into 5 subsets, where the model is trained on 4 
subsets and tested on the remaining one [15], 
repeating the process 5 times. The average per-
formance metric (e.g., RMSE) is used to assess 
model robustness and prevent overfitting. 

5. Define the Acquisition Function (AF): An AF is 
chosen to guide the search for optimal experi-
mental conditions in our case we chose the Ex-
pected Improvement (EI). 

6. Optimize the AF: The chosen acquisition func-
tion is then optimized this leads to selection of 
the next experimental condition 𝐮𝐮new to test.  

7. In Silico Experiment: At this new experimental 
condition 𝐮𝐮new, the experiment is simulated 
generating new data in silico, and the experi-
mental dataset is updated.  

8. Procedure termination: The process stops when 
the stopping criterion – the experimental budget 
is exhausted. 

9. The next experiment is conducted at the se-
lected reactor conditions, 𝐮𝐮new  The process 
continues iteratively until the experimental 
budget of 20 runs is reached, at which point the 
process stops.  

2.4 Parameter Estimation 
Parameter estimates (indicated as 𝜃𝜃) from the ex-

perimental data were computed by minimizing the differ-
ence between measured responses (y) and predicted re-
sponses (y� ) through the negative log-likelihood function 

[6].  

𝐿𝐿�𝜽𝜽�� =  𝑁𝑁
2

log(2𝜋𝜋) +  𝑛𝑛𝑠𝑠𝑠𝑠
2

log  �𝑑𝑑𝑑𝑑𝑑𝑑�𝜮𝜮𝒚𝒚� + 1
2

 ∑ [𝒚𝒚𝒊𝒊 −
𝑛𝑛𝑠𝑠𝑠𝑠
𝑖𝑖=1

 𝒚𝒚�𝒊𝒊 (𝜽𝜽�)]𝑇𝑇  𝜮𝜮𝒚𝒚−1[𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊(𝜽𝜽�)]     (11) 

𝑛𝑛𝑠𝑠𝑠𝑠 is the number of sampling points considering all the 
Ne performed experiments, namely  𝑛𝑛𝑠𝑠𝑠𝑠 = ∑ 𝑁𝑁𝑠𝑠𝑠𝑠𝑖𝑖

𝑁𝑁𝑒𝑒
𝑖𝑖=1   is the 

number of sampling points in the 𝑖𝑖𝑡𝑡ℎ experiment), 𝑁𝑁 is the 
total number of experimental measurements calculated 
as 𝑁𝑁. In GOOED and MBDoE the 𝑦𝑦𝚤𝚤�  is computed from the 
mechanistic model. In BO 𝑦𝑦𝚤𝚤�   is computed from GP predic-
tions. 

2.4.1 Uncertainty in Parameter Estimates 
Parameter precision is quantified using the 𝑁𝑁𝜃𝜃 𝑥𝑥 𝑁𝑁𝜃𝜃-

dimensional covariance matrix (𝑉𝑉𝜃𝜃), approximated by the 
inverse of the observed Fisher Information Matrix (𝐻𝐻𝜃𝜃) 
(Eq. 8). From the covariance matrix, the 95% confidence 
interval for the 𝑖𝑖𝑖𝑖ℎ parameter is calculated using Eq. 12 as 
the square root of the variance element 𝑣𝑣𝜃𝜃,𝑖𝑖𝑖𝑖,  multiplied 
by the t-value at the 95% confidence level: 

95% CI = �𝒗𝒗𝜽𝜽,𝒊𝒊𝒊𝒊 × t (95%, DoF) for i = 1, ..., 𝑁𝑁𝜃𝜃  (12) 

𝑡𝑡𝑖𝑖 =  𝜽𝜽�𝒊𝒊
95% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

      (13) 

The t-value for each parameter was calculated by 
dividing the parameter estimate by the 95% confidence 
interval, as shown in Eq. 13. A high t-value indicates a re-
liable parameter estimate, while a low t-value suggests 
that the confidence interval may include zero, implying 
the parameter might not be statistically significant and 
could be excluded from the model, and the correspond-
ing uncertainty is then computed for each parameter es-
timates. 

2.5 Conversion of Methane 
The conversion of methane is the KPI used in this 

study, and it is defined in Eq. 14 as the ratio  

   𝛼𝛼 =  𝑌𝑌𝐶𝐶𝐶𝐶4− y
𝑌𝑌𝐶𝐶𝐶𝐶4

,    (14) 

where 𝑌𝑌𝐶𝐶𝐶𝐶4and 𝑦𝑦  are the inlet and outlet concentra-
tion of methane respectively [12]. To account for uncer-
tainties in methane conversion, error propagation of the 
uncertainties associated with the conversion was per-
formed using statistical methods [16]. 

2.6 Preliminary Dataset 
The preliminary dataset used in this study was de-

rived from a series of experiments designed using DoE as 
reported in [11], aimed at investigating the kinetics of 
complete methane oxidation over the 𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴2𝑂𝑂3⁄  catalyst. 

2.7 Performance Metrics for the Design 
Scenarios 

Results are compared in terms of (a) conversion and 
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associated uncertainty; (b) operating conditions in the 
design space; (c) parameter estimation significance after 
the stopping criteria are reached; (d) number of experi-
ments required to satisfy stopping criteria. Simulations 
for the three different scenarios were all implemented in 
Python including SciPy library functions, scalar and min-
imize functions while a custom class called Gaussian Re-
gressor was specifically developed to solve the BO sce-
nario. 

3 RESULTS & DISCUSSION 
This section compares the three (3) different sce-

narios using the performance metrics from 2.7. 

3.1 Methane Conversion and Associated 
Uncertainty 

Table 2 illustrates the conversion percentages and 
associated uncertainties for GOOED, MBDoE, and BO un-
der the evaluated scenarios. Key observations are the 
following: 

GOOED: Exhibited the highest conversion with val-
ues as high as 97 – 99%, but with high uncertainty, high-
lighting variability in the results. 

MBDoE: Delivered a moderate conversion values 
hovering at 45% with low uncertainty values ensuring re-
liability and consistency. 

BO: Achieved an optimal conversion (~87%) with 
moderate uncertainty, obtaining a balance between per-
formance and reliability. Table 2 compares the scenarios, 
showing how GOOED maximizes conversion, MBDOE 
minimizes uncertainty, and BO essentially balances both 
objectives. 

Table 2: Methane Conversion and Corresponding Uncer-
tainty for GOOED, MBDOE, and BO Scenarios 

Exp GOOED Sce-
nario 

MBDOE Scenario BO Scenario 

 ±  ±  ± 
 ±  ±  ± 
  ±   ±  ± 
  ±   ±  ± 
  ±   ±  ± 
  ±   ±  ± 
  ±   ±  ± 
  ±   ±  ± 

3.2 Operating Conditions in the Design Space  
Figures 2a, 2b, and 2c illustrates the distribution of 

the reactor conditions in the experimental design space 
for GOOED, MBDOE, and BO campaigns. Key observa-
tions include:  

GOOED: The reactor conditions identified reflects a 
strong exploitation of known high-performing conditions, 

with no emphasis on uncertainty reduction. 
MBDoE: The reactor conditions for this scenario 

show transition from exploration to exploitation ensures 
improved system understanding while maintaining relia-
bility in predictions. 

BO: The reactor conditions selected by BO demon-
strate a balance between exploration and exploitation by 
achieving average conversion rates while exploring un-
der-characterized areas for further improvement. The 
oxygen-to-methane ratio for the simulated reactor con-
dition for the three scenarios is reported in Table 3. 

Table 3. Simulated Oxygen to Methane Mole Ratio in 
(mol/mol) 

Exp GOOED MBDOE BO 
    
    
    
    
    
    
    
    

3.3 Parameter Estimation Statistics 
For the evaluation metrics based on significance of 

parameter estimates, we focused on only two of the sce-
narios: GOOED, and MBDOE. This is because BO is a 
data-driven process and has no kinetic model parameter 
representation. 

GOOED: At the end of the twenty (20) experiments, 
the t-test value for the 4th parameter failed the test as 
its value were less than the reference t-value as shown 
in Table 4.  

MBDoE: For this scenario, the parameter estimates 
all passed the t-test evaluation successfully as shown in 
Table 4, this occurred at the 17th experiment making it 
one of the most efficient scenarios based on minimum 
number of experiments, and uncertainty. Table 4 shows 
that t-values obtained from MBDoE were statistically sig-
nificant, including the critical parameter   
𝜽𝜽𝟒𝟒, at the end of the 17th experiment as their values were 
all greater than the reference. 
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Table 4. Parameter estimation results for GOOED & 
MBDoE after stopping criteria successfully terminated 
(the reference t-value is tref = 1.67, the parameter failing 
the t-test is indicated in boldface).  

  GOOED MBDoE 
S/N Parame-

ters 
Esti-
mates 

t-
value 

Esti-
mates 

t-value 

 𝜽𝜽𝟏𝟏   5.92 17.48 
 𝜽𝜽𝟐𝟐   6.86 2.24 
 𝜽𝜽𝟑𝟑   4.06 3.77 
 𝜽𝜽𝟒𝟒   9.84 1.74 
 𝜽𝜽𝟓𝟓   10.52 111.17 
 𝜽𝜽𝟔𝟔   6.96 6.23 

 

3.4 Number of Experiments  

The minimum number of experiments (see Table 5) re-
quired to achieve optimal conditions were based on the 
pre-defined stopping criteria. The MBDOE achieved the 
lowest number of experimental runs as the parameters 
were successfully estimated at the 17th experiment. 

Table 5. Minimum no. of experiments required 

Scenarios GOOED MBDOE BO 
No of Experiment    

3.5 Optimizing Conversion with Reduced 
uncertainty 

In this study, the MBDOE demonstrated reduced 

(a) (b) 

  
(c) 

 
Figure 2. Plot of reactor conditions within the design space for the three scenarios: (a) GOOED, (b) MBDOE, (c) 
BO, respectively. The subplot (c) shows no Fisher information as they are not computed for the BO scenario 
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uncertainty, and required the fewest experiments. At the 
17th experiment, it satisfied the stopping criteria. To val-
idate the strength and performance of this scenario 
(MBDOE), we optimized the system to achieve maximum 
conversion at the 17th experiment for this scenario and 
the method achieved a predicted conversion of 95% 
which is a good conversion value for the system.  

3.6 Best Scenario performance 
The best scenario included the scenario providing 

the highest conversion value of methane, lowest value of 
conversion uncertainty and minimum number of experi-
ments. Table 6 shows that MBDOE performed better than 
the other scenarios, as it had maximum predicted con-
version with reduced uncertainty and satisfactory t-val-
ues with only 17 runs. 

Table 6. Scenarios and Performance Metrics 

Scenar-
ios 

Conver-
sion 
(%) 

Uncer-
tainty 
(%) 
 

No of Ex-
periment 
 

t-value 
Results 

GOOED  ±  
 

 Failed 

MBDOE  ±   Passed 
BO  ±   N/A 

4 CONCLUSION 
In comparing GOOED, MBDoE, and BO, distinct dif-

ferences emerge across conversion, parametric uncer-
tainty, reactor conditions and experimental efficiency. 
GOOED achieves the highest conversions (98%) but the 
prediction of the KPI is affected by a significant uncer-
tainty. MBDoE balances exploration and exploitation, de-
livering a high conversion (~95%) with the lowest uncer-
tainty, requiring only 17 experiments to meet the param-
eter precision termination criterion. BO, while needing 20 
experiments like GOOED, provides a moderate conver-
sion (~87%) associated with a higher uncertainty, be-
cause of balancing exploration and exploitation in the de-
sign space. Overall, MBDoE proves to be the most effi-
cient method as it shows minimum variance, reduced un-
certainty across experiments, maximum conversion of 
methane and minimum number of experiments required 
to achieve maximum conversion. 
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