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Summary
Background Paediatric intensive care medicine uses fine granular clinical data that describe substantial patient
instability to make high-consequence decisions. However, these decisions are also hindered by clinical experts’ ability
to interpret longitudinal data along with recent and gradual changes in the vital sign data. Machine learning aided
decisions can improve the identification of patient deterioration. Important prior work has predicted outcomes in
paediatric intensive care units (PICUs), but has often used non-time series data without age normalisation. Most
current work also aims to predict mortality, not potentially treatable clinical inflection points such as
cardiovascular deterioration.

Methods We extracted telemetry data, alongside laboratory and demographic data, from the Electronic Health Record
(EHR) of patients admitted to the general PICU at Great Ormond Street Hospital, London (UK), between 1st April
2019 and 31st April 2021. We engineered deterioration monitoring variables into a smaller feature set using a
generalisable pipeline. We calculated trend and variability, and used validated age-normalisation for input variables
where appropriate. We compared neural network models, gradient-boosted decision trees (XGBoost), and a logistic
regression model to predict cardiovascular deterioration within 12 h (defined as a rise in the paediatric Sequential
Organ Failure Assessment (pSOFA) cardiovascular sub-score, rising plasma lactate if lactate ≥2 mmol/l, new
extra-corporeal membrane oxygenation (ECMO) requirement, or death). We trained the models on a 70-15-15
percent train-test-validation split. We compared model compositions, including without trend, variability, and
frequency of input to smaller models. We investigated feature importance using internal feature importance and
Shapley Additive Explanation values. We compared the resulting paediatric intensive care early warning score
(PicEWS) with the paediatric Sequential Organ Failure Assessment (pSOFA) score as the gold-standard.

Findings 1167 patients were included out of a possible 1195. The best performing predictive model for PicEWS was
XGBoost. PicEWS was able to predict cardiovascular deterioration 90% of the time, with fewer than two false alarms
for every true alarm. For this model, the area under the precision-recall curve (AUPRC) was 0.552, and area under the
receiver operator curve (AUROC) was 0.949. This outperformed pSOFA, which yielded over 10 false alarms per true
alarm, with an AUPRC of 0.150 and AUROC of 0.715. The most important features for PicEWS included blood
pressure, physiological markers such as bilirubin, and COMFORT score (a sedation and behavioural score used in
paediatric intensive care). Feature variability was key to model performance. We demonstrated predictions on an
individual patient to show model utility. The study showed that machine learning models can outperform current
clinical best practice approaches. We use our model to provide insights into future improvements in clinical practice.

Interpretation PicEWS outperforms current clinical modelling approaches to predict cardiovascular deterioration. The
proposed data processing pipeline and machine learning method offer a clinically applicable decision-support model
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using age-stratified normal ranges and feature variability over time for the early detection of clinical deterioration in
critically ill children.
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Children’s Charity peer-reviewed grant award.

Copyright © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
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Research in context

Evidence before this study
Whilst there have been many studies predicting clinical
deterioration in adult intensive care units, there are only a
small number predicting outcomes in Paediatric Intensive
Care Units (PICUs). Of these, most focus on late severe
outcomes such as cardiovascular collapse or cardiac arrest or
rare irreversible outcomes such as death. None use validated
age-stratified normal ranges for vital signs. We performed a
search on the PubMed database with the terms (((clinical
prediction rule [MeSH Terms]) OR (machine learning [MeSH
Terms]) OR (ai artificial intelligence [MeSH Terms]) OR
(artificial intelligence [MeSH Terms]) OR (artificial intelligence)
OR (predictive model) OR (machine learning)) AND (((children
[MeSH Terms]) OR (hospital, paediatric [MeSH Terms]) OR
(pediatrics [MeSH Terms]) OR (paediatric) OR (paediatric))
AND ((care, intensive [MeSH Terms]) OR (intensive care unit
[MeSH Terms]) OR (critical care [MeSH Terms])) OR
((paediatric intensive care units [MeSH Terms]) OR (PICU) OR
(paediatric intensive care)) AND (deterioration) from 2016 to
2024, along with Google Search, and checked references from
reviews and other relevant articles.

Added value of this study
Using a form of machine learning, XGBoost (a type of
gradient boosted decision tree), and age-normalised and
feature-engineered data, we derived the paediatric intensive
care early warning score (PicEWS) model. Unlike previous
studies, we compared performance to an existing gold-
standard clinical tool (the paediatric Sequential Organ Failure
Assessment score, pSOFA). We show that machine learning
models can outperform current clinical best practice
approaches, and we provide insights into future
improvements in clinical practice. We also show how to
enhance existing models by incorporating more relevant
features, such as temporal variability.

Implications of all the available evidence
The predictions from our model could be used as an
adjunctive clinical decision support tool or “safety net” in
patients with a high probability of cardiovascular
deterioration. Identification of early and potentially treatable
inflection points on an individual patient’s illness trajectory
can improve outcomes.
Introduction
Accurate and timely prediction of clinical deterioration
can enable implementation of interventions to improve
patient outcome. This is likely to be most relevant in
emergency, peri-operative and intensive care environ-
ments where clinical physiology is frequently unstable.
Clinical physiological observations were first incorpo-
rated into Early Warning Scores (EWS) three decades
ago1 and subsequently incorporated into the National
Early Warning Score (NEWS2), specifically in adults.2

NEWS2 is a simple score that takes clinical observa-
tions, assigns a score for each, and then summates these
to grade severity of physiological abnormalities at the
time of observation. Multiple paediatric equivalents
exist,3 but are more complex in children, in part due to
varying normal physiology by age.4,5 More detailed data
are typically available in intensive care unit (ICU) envi-
ronments including biomarkers of organ dysfunction,
such as serum bilirubin and coagulation markers.
Clinical observations and biomarkers have been incor-
porated into several organ dysfunction scores, including
the paediatric logistic organ dysfunction score
(PELOD),6 a paediatric version of the sequential organ
failure assessment (pSOFA) score,7 and the Phoenix
Sepsis Score.8 These scores are descriptors of organ
dysfunction developed to standardise cohorts of patients
for epidemiological and clinical studies but have been
informally interpreted as predictors of deterioration.

The Acute Physiology and Chronic Health Evaluation
(APACHE-II) score in adult intensive care,9 and the
Paediatric Index of Mortality (PIM-3) score10 (among
others) are predictive of the incidence of mortality in
cohorts of patients requiring intensive care. However,
these contain several non-modifiable variables, such as
elective admission status, and do not integrate temporal
trends or variability in data. They should, therefore, not
be used to predict individual patient deterioration.
These scoring systems are also unable to “learn” from
www.thelancet.com Vol 85 July, 2025
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the accrual of additional data or from changes in the
observed associations of model variables with poor
outcomes due to changing clinical practice.

More recently, there has been a focus on using
machine learning11 to predict clinical deterioration over
clinically relevant time frames. Much of this work has
been done using large data repositories, with a focus on
adult ICU data, due to the availability of continuous
monitoring in electronic health records (EHR). Several
publicly available benchmark adult datasets have encour-
aged research in this area, including Medical Information
Mart for Intensive Care (MIMIC),12 eICU,13 CCHIC,14 and
the (non-publicly available) TIPnet dataset from Italian
paediatric (P)ICUs.15 A Chinese paediatric equivalent,
PIC,16 is publicly available. However they report sub-
stantially higher in-hospital mortality of 9.2% than
equivalent UK or US values of 2–4%,17,18 meaning models
built on this data would likely not be useful when applied
in UK, US, or other similar settings. Modelling
approaches to EHR data include classical statistical
models,19 hierarchical and tree-based models20,21 and arti-
ficial neural networks.22,23 However, the clinical applica-
bility of these models to predict deterioration in children
is underexplored due to the lack of applicable published
paediatric datasets. Previous work in children has also not
used validated age-stratification or normalisation for key
variables, such as heart rate, that are known to vary
significantly according to age.4 Patients from ethnic mi-
norities and those with lower socio-economic status are
likely to have higher illness severity, are more likely to be
admitted to PICU and have worse outcomes.24

Using data from a general PICU, we aimed to develop
a predictive model for clinical deterioration in children in
PICU using machine learning methods. We used feature
engineering (converting noisy and duplicate variables
into ‘engineered’ cleaned features) and compared several
state-of-the-art machine learning methods against the
primary outcome.20,22,23 We hypothesised that the multi-
parameter data gleaned from EHR data would improve
model performance. Given the rarity of mortality in
PICUs (<4% of admitted patients in the UK17), we used a
composite of cardiovascular deterioration, need for extra-
corporeal membrane oxygenation (ECMO) and death as
our primary outcome for the development of predictive
models. We focused on interpretability to allow this
approach to inform the development of future predictive
scoring systems for use in clinical practice. We used the
Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis Artificial
Intelligence update (TRIPOD + AI) checklist to ensure we
followed reporting best practice.
Methods
Data extraction
This was a single-centre retrospective observational
study of routinely collected EHR data from a large
www.thelancet.com Vol 85 July, 2025
general PICU at Great Ormond Street Hospital
(GOSH), London (UK), with accompanying cardiac
PICU. The general PICU provides treatment to all
children (including externally transferred newborn
infants) without a primary cardiac problem. All data
from both the general and cardiac PICUs were included
for all patients who were admitted at least once to the
general PICU. Patients only admitted to the cardiac
PICU were excluded. Patients were excluded if their
PICU admission was too short for predictions to be
made on the data available (3-h to 12-h look-back
periods). Non-identifiable data were extracted from the
hospital’s EHR, via the GOSH Digital Research Envi-
ronment. Data for all patients admitted between 1st
April 2019 and 31st April 2021 were used. This period
covered the first 14 months of the COVID-19 pandemic
in the UK, including many children admitted with
multisystem inflammatory syndrome in children
(MIS-C) associated with SARS-CoV-2 infection. Time-
series telemetry data along with demographic, labora-
tory, medication administration, ward stay, and episode
data were extracted. Data from the whole PICU admis-
sion were used, but any data from before or after the
admission were removed following interpolation. This
included all data available to us. This patient cohort has
a higher ethnic minority representation than the UK as
a whole, reflecting the higher ethnic minority repre-
sentation in London than the rest of the UK.17 The PICU
has a risk-adjusted standardised mortality rate matching
that which would be expected given the case mix.17

Ethics
This study was performed with UK Health Research
Authority (HRA) approval (reference number: 17/LO/008).
It used non-identifiable data from the GOSH digital
research environment. As this study used only anony-
mised, routinely collected machine data from NHS re-
cords, individual patient consent was not required under
the terms of the ethical approval and in accordance with
NHS research governance frameworks for anonymised
data.

Processing and feature engineering
All analysis was performed in Python (version 3.8.1) and
R (version 4.0.3), using Python packages pandas version
1.2.4, NumPy 1.19.5, Keras 2.4.3 with TensorFlow 2.5.2,
XGBoost 1.4.2, scikit-learn 0.24.2, and R packages
rriskDistributions 2.1.2 and childsds 0.8.0. The code for
the processing pipeline and machine learning model is
available on GitHub (github.com/dfs28/PicEWS).

Data were split into time-series (time varying) and
non-time-series (time invariant) data types. Infrequently
sampled data types, such as laboratory and blood gas
results, were treated as non-time-series data. Time-
series data included organ support data, including
ventilation status and level of vasopressor and inotrope
use, and invasive and non-invasive monitoring data
3
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Level of ventilatory sup

No ventilatory support

Supplemental oxygen on

Positive pressure airway s

Invasive mechanical venti

Table 1: Feature engineer
variables into a clinically
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such as heart rate, blood pressure, and capillary refill
time. Non-time-series data included demographic and
laboratory test data.

865 input variables were engineered using clinical
insights and clinically applicable variables into 77 fea-
tures for use in the input data, with examples below
(further details in Supplementary Material). A stand-
ardised feature processing and engineering pipeline was
used for all patients. Feature processing allowed over-
lapping features and different measurement devices to
be consolidated. For some ordinal variables, significant
feature processing was performed. For example, for
ventilation status, a 4-part ordered variable was gener-
ated with different levels of support (Table 1), using 31
input variables. For vasopressor and inotrope use, the
vasoactive inotrope score (VIS), a weighted sum, was
calculated,25,26 normalised by bodyweight. Where
appropriate, for example oxygen flow, values were
bodyweight normalised. Age normalisation for heart
and respiratory rate was performed using centiles from
Fleming and colleagues.4 For blood pressure, normal-
isation to age and sex was done using data from the
National High Blood Pressure working group.5,27 Where
reference values for the lower limit of normal for dia-
stolic blood pressure were missing, these were calcu-
lated from systolic and mean arterial pressures using
the relationship MAP = 1

3 (SBP − DBP)+DBP. As a
sensitivity analysis, models with age-normalised scores
were compared to models where no normalisation was
performed.

Time-series data were coerced to a minute-by-minute
time-frame. Most time-series features appear only
slightly more frequently than once per hour following
feature engineering (e.g., systolic blood pressure ap-
pears 1.48 times per hour on average). However as in-
puts appear in the data asynchronously, preserving a
higher frequency maximises the information encoded
in this data. Following this, they were linearly interpo-
lated up to 90 min. The maximum time gap between
frequently reported observations is 60 min, thus 90 min
gives time for observations to be input slightly late.
Imputation was performed where values were missing
despite interpolation, and different imputation
strategies were taken for different data types. For age-
dependent variables such as heart rate and blood pres-
sure, stratified median values were imputed according
port Example Value
assigned

Breathing room air unassisted 0

ly Oxygen delivered by a facemask 1

upport High flow nasal oxygen or non-invasive ventilation 2

lation Ventilation delivered by endo-tracheal tube
or tracheostomy tube

3

ing of ventilatory support through the stratification of constituent
relevant ordinal score.
to age. For missing ventilation status, when values such
as the fraction of inspired oxygen (FiO2) were also
missing, patients were assumed not to require any res-
piratory support. Similar assumptions were made for
other features where presence of recorded values was
informative. For features where missingness was un-
informative but did not require stratification, for
example, oxygenated haemoglobin saturation, median
imputation was performed. Supplementary Table S1
shows all time-series features used as model inputs.
For the non-age normalised models the relevant non-age
normalised feature was substituted.

Low-frequency data, including laboratory tests, and
demographic data (e.g., weight, height and age) were
included for analysis. For weight and height, age and sex
(at birth), adjusted z-scores were calculated using the
childsds package in R,28 and by using the UK 1990
growth standard.29 Ethnicity was not used to reduce the
risk of biased prediction. This was due to the fact that
many patients did not have ethnicity information
recorded, and variability was not high in the specified
ethnicity data. However, we conducted a post-prediction
validation based on the known ethnicity data to ensure
that the model did not provide unfair predictions for a
sub-group. Whilst there are known healthcare in-
equalities in likelihood of PICU admission and out-
comes in PICU, these appear to reflect baseline disease
severity and not disease trajectory.24 294 lab test vari-
ables were engineered to 53 input features to consoli-
date multiple data sources. For lab tests, values were
carried forward a maximum of 4 days. Median impu-
tation was performed where values were missing
despite this. Supplementary Table S2 shows all non-
time-series features used as model inputs.

Data were scaled between 0 and 1, and ranked by
percentile. Models with 0–1 scaling were compared to
those where no scaling was performed. Data were then
split into time windows of 3 h, 6 h and 12 h. Predictions
were made from the end of the time window. For
example, for a patient admitted to PICU at t = 0 h, for
the 6 h lookback window, the first predictions could be
made at t = 6 h, and for the 12 h model, these would be
predicting deterioration between t = 6 h and t = 18 h.

To enable the use of the XGBoost and logistic
regression models, which take tabular input data,
summary features were generated for the time-series
data. Mean and standard deviation, trend and strength
of trend for each time-series were produced. Trend was
calculated by fitting a straight line over the data, and the
slope and goodness of fit were used as model inputs.
Fig. 1 shows a summary of the overall processing
pipeline.

During data processing, data quality was checked
using histograms of data distribution, data frequency
and feature correlation. These distributions and fre-
quencies were compared to internal audit data from the
department and checked with clinicians working in the
www.thelancet.com Vol 85 July, 2025
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Fig. 1: Summary of processing pipeline to make data ready for modelling. Data were extracted and consolidated to reduce input variable number
(top panel). Feature engineering was performed, including age normalisation, and summary features produced. Finally, several different models
were compared (bottom panel). NIBP: Non-invasive blood pressure, ABP: Arterial blood pressure, EHR: electronic health record,
ECG: electrocardiogram, SpO2: oxygenated haemoglobin percentage saturation, HR: heart rate.
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PICU to ensure that data used were a reliable reflection
of the true underlying data.

Outcomes
The primary outcome was prediction of cardiovascular
deterioration. This was defined as a rise in the cardio-
vascular component of the pSOFA score30 (see
Supplementary Table S3), plasma lactate ≥2 mmol/l and
increasing relative to the previous time-window
maximum, new requirement for ECMO, or death.
Separate models were built to predict deterioration
within 3 h, 6 h, 9 h, 12 h, 18 h and 24 h. The pSOFA
cardiovascular component was modified to include
milrinone as equivalent to dobutamine. Separate out-
comes of death within 48 h and discharge from PICU
within 7 days were generated to test multi-outcome
neural networks. The primary outcome was chosen by
modifying similar criteria used in the literature, for
example by Hyland and colleagues20 for PICU, as sug-
gested by clinical experts. The cardiovascular compo-
nent of pSOFA replaced blood pressure and vasopressor
and inotrope use in their model; following initiation of
vasopressors or inotropes blood pressure is less rele-
vant, and the cardiovascular component of pSOFA gives
a stepped score which ensures only clinically relevant
changes are captured.

Models
Three different model types were implemented and
compared. These were neural network models, logistic
regression and a gradient boosted decision tree (imple-
mented with XGBoost). The neural network models were
implemented in Keras with TensorFlow.31 Long short-
term memory (LSTM) networks, 1- and 2-dimensional
convolutional networks, temporal convolutional32 and
temporal pointwise convolutional networks (TPCN) were
built23 (further details in Supplementary Materials). The
model choice reflected the current state-of-the-art in
healthcare time-series models.21,23,32,33 Logistic regressions
used an L2 weight-penalty, implemented in scikit-learn.
The objective function used for XGBoost was area under
the precision-recall curve (AUPRC). Model outputs were
the probability of deterioration within the specified time-
window.

For the neural networks, a 70-15-15 percent train-
validation-test split was used, whilst for XGBoost and
the logistic regression, an 85-15 percent train-test split
was used. Patients were randomised to the different sets
with no patient appearing in more than one set. For
XGBoost, a 4-fold cross-validation hyperparameter
search (with a Bayesian search strategy) was used on the
training set, optimized against the AUPRC to ensure
maximal performance when the sensitivity threshold
was adjusted. This included tuning on the parameter
‘scale positive weight’, which penalises the loss function
to improve performance on the minority class, similar to
a focal loss function.
Model testing
All final models were trained on the whole training set
(combined training and validation sets: 85%) following
hyperparameter search set before being tested on the
test set. The same holdout test set was used for all
models to ensure comparability. This process was
repeated 10 times for every model, and the mean and
standard deviations for the different outcome measures
were then reported. Precision (positive predictive
values), recall (sensitivity), F1 (a composite of precision
and recall), AUPRC (area under the precision recall
curve) and AUROC (area under the receiver operator
curve) were reported for all models. For a recall
threshold of 0.9, precision and adjusted F1 were also
calculated. This recall set-point was chosen as, at this
threshold, only 1 in 10 deterioration events would be
missed; a false negative rate of 0.1. pSOFA, as a sum-
mary measure, and with individual components sepa-
rately provided to the model, was used as a comparator
measure. pSOFA models were generated using both
logistic regression and XGBoost to link to outcome.
pSOFA was not implemented during the period of data
collection and therefore does not function as a post-
treatment variable to bias the results.

To further test model performance, models with
limited feature inputs were tested. We ranked the in-
ternal feature importances from the XGBoost model to
test using smaller numbers of feature inputs. We also
tested models where the frequency of input was not
included as a feature, models where only mean and
variability (not trend) were provided to the model, and
models where variables were sampled at a lower fre-
quency (every 15 min and every hour). Hyperparameter
search optimisation for these additional experiments was
not performed due to computational cost constraints.

To consider interpretability, XGBoost internal
feature importance and Shapley Additive Explanation
(SHAP) values34 were calculated. These describe the
contribution of each individual variable to the prediction
of the outcome. To visualise these, SHAP importance
and waterfall plots were produced.

A study protocol was not prepared prior to publica-
tion, and the study was not registered. No patient and
public involvement work was performed prior to the
study, however clinician end-users were consulted dur-
ing the design and result producing phases.

Role of the funding source
The funder had no role in study design, data collection,
data analysis, interpretation or writing of this manuscript.
Results
A total of 1195 patients were eligible for inclusion across
1550 individual admissions. There were 28 patients
across 53 admissions in the final 6 h lookback dataset
excluded due to having admissions too short for any
www.thelancet.com Vol 85 July, 2025
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Training set Test set

Total patients 1001 166

Male sex 569 (56.8%) 88 (53.0%)

Age 2.28 (IQR 0.43–8.88) 2.56 (0.41–8.79)

Ethnicity

White 375 (37.5%) 59 (35.5%)

Black 79 (7.9%) 32 (19.3%)

Asian 174 (17.4%) 23 (13.9%)

Other 150 (15.0%) 19 (11.4%)

Prefer not to say 59 (5.9%) 8 (4.8%)

Not recorded 169 (16.9%) 37 (22.2%)

Deteriorated during admission 238 (23.8%) 40 (24.1%)

Required ECMO during admission 2 0

Total 6 h samples 28,942 5137

Median samples per encounter 9.0 (IQR 5.0–28.0) 12.0 (5.0–28.0)

Deteriorated within 12 h 1988 (6.9%) 315 (6.9%)

Rise in lactate within 12 h (>2 mmol/L) 573 (2.0%) 110 (2.1%)

Rise in pSOFA (Cardiac) within 12 h 1411 (4.9%) 203 (4.0%)

Died within 12 h 8 2

New ECMO within 12 h 0 0

Median 6 h average pSOFA (Cardiac) 0 (IQR 0–0.05) 0 (0–0.25)

Serum sodium (mmol/L) 141.8 (95% CI 134–153) 141.2 (134–152.5)

Serum bilirubin (micromol/L) 19.0 (95% CI 2.0–91.0) 18.9 (2.0–74.8)

Serum chloride (mmol/L) 106.5 (95% CI 95.0–119.0) 105.5 (94.3–119.8)

Strong ion gap (MEq/L) −1.89 (95% CI -2.61 to −1.22) −1.94 (−2.56 to −1.38)

Mean pSOFA score 5.2 (95% CI 3.0–9.8) 5.4 (3.0–9.9)

Mean comfort score 18.4 (95% CI 13.5–20.0) 18.5 (13.2–20.3)

Mean MAP (mmHg) 65.4 (95% CI 44.8–85.0) 65.6 (44.1–83.0)

IQR: Interquartile range, CI: confidence interval, ECMO: extra-corporeal membrane oxygenation, pSOFA:
paediatric Sequential Organ Failure Assessment score, MAP: mean arterial pressure.

Table 2: Patient characteristics, including age, sex, ethnicity, and presence of different outcomes
across the test and training sets for the 6 h lookback dataset.

Articles
predictions to be made. There were more male than
female patients (657, 56%, vs. 509, 44%) with one
patient marked as intersex. The median age of the
cohort was 2.29 years, interquartile range 0.43–8.87
years. Demographic data of the patient cohort are
detailed in Table 2.

All models were compared for prediction of deteri-
oration from the immediate end of the look-back period
until 12 h following the look-back period, as this was
considered to be the most clinically useful timepoint for
prediction. Of the models tested, XGBoost out-
performed the neural networks, with the logistic
regression second best. At this timepoint, the area un-
der the precision-recall curve (AUPRC) of the XGBoost
based model with a 6 h lookback was 0.552 (AUROC
0.949), with the logistic regression AUPRC 0.457
(AUROC 0.923). The best performing neural network
used the 3 h lookback, with the best model, the TPCN,
having an AUPRC of 0.411 (AUROC 0.923). The neural
networks performed better with a shorter look-back
period (3 h), and those predicting a single outcome
performed better than the multi-outcome networks in
most look-back period to output configurations.
XGBoost outperformed the neural networks on all other
metrics. Supplementary Table S5 shows the final
hyperparameters for the XGBoost model with 6 h
lookback predicting until 12 h following the look-back
period.

We compared the performance of pSOFA as a single
compound variable against the components of the
pSOFA score separately in a logistic regression (Fig. 2).
The logistic regression link model for pSOFA per-
formed similarly to the XGBoost link model. The
AUPRC of the logistic regression model using pSOFA
was 0.150 (AUROC 0.715). This improved to 0.199
(AUROC 0.814) if the individual components were
provided separately to the model. This further improved
to 0.234 (AUROC 0.842) when trend and variability for
the components of pSOFA were provided. Full results
for these models are shown in Table 3.

The best performing XGBoost model incorporated
features including variability and trend. Model perfor-
mance for different predictive windows is shown in
Table 4 and Fig. 2. In general, models with a 6 h look-
back period performed better than those with a 12 h
look-back period (Table 4). For the models with 6 h
lookback windows, the results are as follows. The
model for predicting deterioration in the following 6 h
had an AUPRC of 0.348, an AUROC of 0.932, a preci-
sion of 0.232 and F1 of 0.368 at recall 0.9. The model for
predicting deterioration in the following 12 h had an
AUPRC of 0.552, an AUROC of 0.949, a precision of
0.375 and F1 of 0.530 at recall 0.9. The best performing
model was the model for prediction deterioration in
18 h, with an AUPRC of 0.623, an AUROC of 0.956, a
precision of 0.401 and F1 of 0.555 at recall 0.9. The
models for predicting deterioration in the following 12 h
www.thelancet.com Vol 85 July, 2025
and longer would mean fewer than two false alarms for
every true alarm at this high level of recall (sensitivity),
missing only 1 in 10 deterioration events.

We tested different models using XGBoost com-
bined with more limited feature inputs (Table 3). The
model without frequency of input performed slightly
worse than the overall model (AUPRC 0.488, AUROC
0.940). While frequency of input can be a useful proxy
for clinician concern, as patients who have greater
monitoring may be already considered more likely to
deteriorate, the models still perform well without it. The
model where trend and strength of trend were not
provided also performed well (AUPRC 0.517, AUROC
0.945), suggesting trend has some limited utility.
However, the model where latest value was used alone,
performed poorly without variability (AUPRC 0.199,
AUROC 0.827).

Models without age normalisation were also tested.
These performed similarly to the models with
age-normalised inputs. Specifically, the non-age nor-
malised model a 6 h look-back and prediction of dete-
rioration in the following 12 h had an AUPRC 0.552
(AUROC 0.947) (Fig. 2a, Table 4).
7
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Fig. 2: (a) Performance metrics for the XGBoost models using different prediction windows. (b) Comparison of the PRC for the XGBoost model
(top) and pSOFA with logistic regression model (bottom). These were produced by performing 10-fold cross-validation on the full dataset
(including repeating the hyperparameter search each time) and the out of sample PRCs were then plotted. Across the full range of recall values
the precision is substantially greater for the XGBoost model compared to pSOFA (with logistic regression link). AUPRC: Area under the pre-
cision-recall curve, AUROC: Area under the receiver-operator curve, F1: a weighted metric including precision and recall, PPV: Positive predictive
value, PRC: Precision-recall curve, XGBoost: a type of gradient boosted decision tree, pSOFA: paediatric Sequential Organ Failure Assessment
Score.
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We investigated whether frequency of inputs would
affect variability and therefore patients with more
intensive monitoring because of clinician concern
would have artificially higher variability. We sampled
the time-series data at lower frequencies (15 min and
once per hour) and calculated mean and standard de-
viation across these time-periods (Table 3). The model
still performed well with lower frequency input data,
with the 15-min model AUPRC 0.442 (AUROC 0.935)
and hourly model AUPRC 0.397 (AUROC 0.921).
AUPRC A

XGBoost with age normalisation 0.552 (0.552–0.552) 0.

XGBoost no age normalisation 0.552 (0.552–0.552) 0.

TPCN (3 h input) 0.411 (0.395–0.427) 0.

Logistic regression 0.457 (0.457–0.457) 0

pSOFA (LR) 0.150 (0.150–0.150) 0

pSOFA with individual components (LR) 0.199 (0.199–0.199) 0.

pSOFA with mean + variability (LR) 0.234 (0.234–0.234) 0.

XGBoost latest value only 0.199 (0.199–0.199) 0

XGBoost without frequency of observation 0.488 (0.488–0.488) 0.

XGBoost without trend 0.518 (0.518–0.518) 0.

XGBoost sampled 15 min 0.442 (0.442–0.442) 0

XGBoost only sampled hourly 0.397 (0.397–0.397) 0

XGBoost 20 input features 0.326 (0.326–0.326) 0.

XGBoost 70 input features 0.490 (0.490–0.490) 0.

In brackets we report the 95% confidence intervals. LR: Logistic regression, AUPRC: are
adjusted F1: a composite of precision and recall, and precision when recall set to 90%

Table 3: Results for different models and those with more limited feature in
deterioration within 12 h.
Models with fewer input features were also tested
(Table 3). The model with the top 70 features performed
close to the full model (AUPRC 0.490, AUROC 0.934).
The model with only 20 features had degraded perfor-
mance, however (AUPRC 0.326, AUROC 0.890), with
more false positives at the high set point of sensitivity
(precision 0.268 vs. 0.342 for the 70-feature model).

We used the internal feature importance and SHAP
values to interrogate the XGBoost model. We compared
models with and without age-normalised values to
UROC Adjusted F1 Adjusted precision

949 (0.949–0.949) 0.530 (0.530–0.530) 0.375 (0.375–0.375)

947 (0.947–0.947) 0.500 (0.500–0.500) 0.346 (0.346–0.346)

926 (0.923–0.928) 0.363 (0.305–0.421) 0.270 (0.258–0.283)

.923 (0.923–0.923) 0.366 (0.366–0.366) 0.230 (0.230–0.230)

.715 (0.715–0.715) 0.157 (0.157–0.157) 0.085 (0.085–0.085)

814 (0.814–0.814) 0.224 (0.224–0.224) 0.128 (0.128–0.128)

842 (0.842–0.842) 0.244 (0.244–0.244) 0.141 (0.141–0.141)

.827 (0.827–0.827) 0.238 (0.238–0.238) 0.137 (0.137–0.137)

940 (0.940–0.940) 0.471 (0.471–0.471) 0.319 (0.319–0.319)

945 (0.945–0.945) 0.495 (0.495–0.495) 0.341 (0.341–0.341)

.935 (0.935–0.935) 0.419 (0.419–0.419) 0.273 (0.273–0.273)

.921 (0.921–0.921) 0.401 (0.401–0.401) 0.258 (0.258–0.258)

890 (0.890–0.890) 0.319 (0.319–0.319) 0.194 (0.194–0.194)

934 (0.934–0.934) 0.492 (0.492–0.492) 0.338 (0.338–0.338)

a under the precision-recall curve, AUROC: area under the receiver operator curve,
.

puts, using a 6 h lookback unless otherwise specified, and predicting
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Predictive Window 3 h 6 h 9 h 12 h 18 h 24 h

3-h Input

With age normalised cutoffs

AUROC 0.905 0.924 0.937 0.938 0.949 0.909

AUPRC 0.267 0.368 0.446 0.491 0.539 0.516

Positive predictive value 0.111 0.232 0.292 0.338 0.407 0.202

Adjusted F1 0.197 0.342 0.441 0.492 0.560 0.330

Without age normalised cutoffs

AUROC 0.903 0.923 0.929 0.937 0.945 0.915

AUPRC 0.251 0.364 0.391 0.445 0.503 0.532

Positive Predictive Value 0.155 0.238 0.287 0.346 0.424 0.235

Adjusted F1 0.264 0.377 0.435 0.500 0.567 0.373

6-h Input

With age normalised cutoffs

AUROC 0.901 0.932 0.939 0.949 0.956 0.929

AUPRC 0.232 0.349 0.473 0.552 0.623 0.634

Positive predictive value 0.128 0.232 0.295 0.375 0.401 0.362

Adjusted F1 0.224 0.368 0.445 0.530 0.555 0.517

Without age normalised cutoffs

AUROC 0.911 0.932 0.943 0.947 0.956 0.921

AUPRC 0.225 0.396 0.486 0.552 0.630 0.643

Positive predictive value 0.140 0.250 0.328 0.346 0.419 0.356

Adjusted F1 0.242 0.391 0.481 0.500 0.572 0.510

12-h input

With age normalised cutoffs

AUROC 0.816 0.874 0.887 0.902 0.914 0.911

AUPRC 0.152 0.326 0.387 0.479 0.550 0.614

Positive predictive value 0.094 0.182 0.254 0.329 0.413 0.455

Adjusted F1 0.170 0.304 0.396 0.482 0.567 0.605

Without age normalised cutoffs

AUROC 0.813 0.881 0.886 0.899 0.914 0.906

AUPRC 0.141 0.334 0.398 0.455 0.591 0.654

Positive predictive value 0.070 0.170 0.267 0.337 0.398 0.454

Adjusted F1 0.129 0.286 0.412 0.491 0.552 0.604

AUPRC: area under the precision-recall curve, AUROC: area under the receiver-operator curve. Confidence
intervals were not reported as XGBoost was highly numerically stable when run multiple times.

Table 4: Results for XGBoost models with different predictive windows, using different lookback
periods, for precision (positive predictive value) and F1 (composite value of precision and recall)
when recall (sensitivity) set to 90%.

Articles
investigate the differences in model predictions (Fig. 3).
The most important features relate to blood pressure
(BP, including the cardiovascular component of
pSOFA), including variability and frequency of input,
for models with and without age-normalisation. For the
internal feature importances, both models use similar
inputs to make predictions, including those related to
BP, VIS and individual BP support metrics, capillary
refill time, COMFORT score (a sedation and behavioural
score, Supplementary Table S4) and pSOFA. Both age-
normalised and non-age-normalised models use a mix
of summary measures over the 6 h input window,
including mean, variability, and frequency of input. The
model with age-normalised inputs also identified labo-
ratory values previously associated with illness severity,
including strong ion gap, serum bilirubin, and creati-
nine, the latter two of which are included within the
total pSOFA (Fig. 3). Of note, frequency of input in
several features, including capillary refill time and BP
was inversely associated with the probability of predic-
tion of deterioration. SHAP values plotted against the
input values (Fig. 3a–h) demonstrated the ability of
XGBoost to account for non-linear relationships (Fig. 3c,
g, h), and complex interactions between features (3 d-f).
Fig. 3c shows how individual features, in this case
platelet count, were used differently by the XGBoost
models in comparison with their use in pSOFA, where a
low platelet count results in a high pSOFA score.

We illustrated the model in individual patients to
demonstrate the value in clinical practice of PicEWS
being used. We plotted the raw predictions against their
clinical data over time (Fig. 4a) and took the SHAP
values for this prediction (Fig. 4b). In this individual
patient, the probability of deterioration in three features
increased from <10% to >75% over a 24 h period
immediately prior to a cardiovascular deterioration
(mean arterial pressure, MAP; COMFORT score; and
the fraction of inhaled oxygen required to maintain a
level of oxygen saturation, S:F ratio).
Discussion
We developed and validated a paediatric intensive care
early warning score (PicEWS) model to predict cardio-
vascular deterioration accurately in 1167 patients over
1497 individual admissions, agnostic to patient diag-
nosis, using real-world data. The cohort consisted of
children with a median age of 2.29 with diverse critical
illnesses in a large general PICU in the UK. We used
cardiovascular deterioration as the primary outcome.
We assessed neural networks, XGBoost and logistic
regression models using features engineered from
several hundred variables, and compared these models
to those derived from total pSOFA (and its component
variables) alone.

Several disease severity scores have been imple-
mented to describe organ dysfunction, such as pSOFA30
www.thelancet.com Vol 85 July, 2025
and the Phoenix Sepsis Score.35 Although these scores
are calibrated by an association with increased mortal-
ity,8 they are not designed as predictive scores, although
they may informally be (mis)interpreted as such in
clinical practice. Predictive scoring systems, such as
PIM-3 are suitable for predicting the incidence of
mortality in cohorts of children requiring PICU
admission but are not optimised for individual patient
predictions and contain several non-modifiable, non-
physiological, variables such as elective admission sta-
tus. (The only demographic variables implemented in
PicEWS were age, weight and sex at birth.) These
scoring systems use a single input variable per category,
with no account of variability or trend. In contrast, the
PicEWS model described here used a 6 h look-back and
12 h prediction periods to accurately predict deteriora-
tion in children in intensive care, taking account of
9
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Fig. 3: SHAP values for mean arterial pressure (MAP), mean COMFORT score (sedation level), platelet count, serum sodium, serum chloride,
serum strong ion gap (SIG, a measure of metabolic acidosis), serum bilirubin and serum creatinine (a–h). SHAP values plotted against input
feature values for the top 20 values (i) and XGBoost internal feature importance for the top 20 features (j). SHAP: SHapley Additive exPlanation
values, COMFORT: a behaviour and sedation score used in paediatric intensive care, XGBoost: a type of gradient boosted decision tree.
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trends in the data. We set the recall (sensitivity) of the
model to 0.9 (90%) as a pragmatic approach to balance
the clinical need avoid “missing” deteriorating patients
against the risk of “alarm fatigue” in a non-specific
Fig. 4: Predicted probability of deterioration. (a) PicEWS model output plo
Ratio, plotted against hour of admission. The red vertical line indicates th
prediction interval. (b) SHAP values alongside the raw input values for th
MAP: Mean arterial Pressure, COMFORT score: a behaviour and sedat
Haemoglobin Saturation (SpO2) to fraction inhaled oxygen (FiO2) ratio,
score. Our use of cardiovascular deterioration, rather
than death or length of stay,21,23 allowed us to focus on a
clinically useful outcome that could be potentially
modifiable with interventions. To aid clinical utility, the
tted alongside mean arterial pressure (MAP), COMFORT Score and S:F
e highest probability of deterioration and the grey box indicates the
is prediction. PicEWS: Paediatric Intensive Care Early Warning Score,
ion score used in paediatric intensive care, S:F Ratio: Oxygenated
SHAP: SHapley Additive exPlanation values.
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model reports the prediction of deterioration (with
associated data on precision) and has an interpretability
feature that describes the feature-specific contribution to
the prediction (the SHAP values). We found that model
performance remained good using a smaller feature set,
without using trend or frequency of inputs, but deteri-
orated significantly when variability was not included.
This shows the need for future scoring systems to
integrate both a greater number of input features and
variability within a time window, made possible by the
increasing ability of EHR systems to automate these
scoring systems. Data relating to frequency of reported
observation is important to model performance; models
where this was not included had a degree of perfor-
mance degradation. The importance of these types of
meta-data has been previously noted, as their presence
allows models to ‘look over the shoulders’ of the clini-
cians looking after patients. This allows the models to
predict outcomes from the actions of doctors and other
healthcare professionals,36 and in some cases the meta-
data can be better than the data themselves for pre-
dicting outcomes.37 For example, where invasive blood
pressure monitoring is present, although inputs from
this automatically pull through to our dataset, fre-
quency of blood pressure reporting may be higher
than non-invasive blood pressure monitoring, showing
clinician concern about a patient. This again empha-
sises the importance of meta-data in model perfor-
mance. Although the timing of data import is
automated, local policies, for example around inotrope
and vasopressor use, will determine whether invasive
blood pressure monitoring will be present, high-
lighting again how the data reflects clinician practice
and concern.

There has been a large amount of work using ma-
chine learning models to predict deterioration in
adults,38 but limited work in children. Using a literature
search we were only able to find a handful of previous
studies investigating deterioration in general PICU pa-
tients (although there was some further work in cardiac
PICU patients39). Of the relevant studies, Aczon and
colleagues,40 Kim and colleagues,41 Lee and colleagues21

and Potes and colleagues,42 had larger datasets (9070,
1445, 2496, and 7052 patients respectively), using a va-
riety of methodologies. However, only Potes and col-
leagues used deterioration (need for haemodynamic
intervention), and had worse results (AUROC 0.81). The
other studies used mortality as the outcome for predic-
tion. However, 2–4% of patients admitted to PICU in
high income settings die during their admission.17,18,43

The use of mortality as an outcome may miss patients
who have imminent reversible deterioration. Comoretto
and colleagues15 used an XGBoost model to predict
haemodynamic failure, in almost 30,000 patients.
However, haemodynamic failure was a rare outcome
(∼1% in the dataset) and may not predict earlier and
possibly more reversible deterioration. A few smaller
www.thelancet.com Vol 85 July, 2025
studies predicted reversible deterioration: Matam and
colleagues44 predicted cardiac arrest and Izquierdo and
colleagues45 predicted deterioration. However, both had
worse performance than our model, and Izquierdo and
colleagues do not define deterioration. We found that
model performance remained good on the validation
cohort when smaller training sets were used
(Supplementary Figures), suggesting that in a single
centre context with good quality data, dataset size may
be less relevant.

With PicEWS, we used as many variables as were
consistently available. XGBoost gave more precise pre-
dictions of outcome in comparison with neural net-
works, despite being unable to take time series data as
input. It also has low computational requirements
relative to the neural network models. We showed that
higher frequency data input improved model perfor-
mance. Although the data were available on average only
slightly more frequently than once per hour, maintain-
ing the exact temporal ordering seemed to provide more
information and therefore better performance than
summary statistics provided on less frequently sampled
data. Unlike other attempts at using machine learning
models of paediatric intensive care data, we used age-
normalised values, although this had only limited
impact on model accuracy, suggesting that XGBoost in
the PicEWS model was able to appropriately adjust
features for age. This was supported by other testing
data (not shown). Although we used static train-
validation-test sets, the ability of the model to “learn”
means that PicEWS could be iteratively improved when
implemented in the same context, and could also adapt
to new contexts, through a retraining and re-validation
process. A “learning” PicEWS model would also itera-
tively automate the need for regular manual review as
the association between features and outcome changes
(for example with improved therapies). We propose that
the data would be presented as part of an interactive
dashboard containing relevant input features and
patient data, and that predictions are presented as a
percentage, requiring minimal training of end users.

This study contains several acknowledged limita-
tions. The model needs to be tested on an external
validation set, with a larger number of patients.
Following this, validation of the model in different set-
tings – or more accurately, implementation of the model
and assessment of any change in the relationship be-
tween features and outcome – is required. External
validation is especially important to ensure general-
isability where population sizes are small, as in the
PICU. The model was tested in patients admitted to a
general PICU, and implementation in a cardiac surgical
PICU and other specialist centres may reveal additional
physiological measurements or inputs that are useful
for the prediction of deterioration. In addition, the fre-
quency of inputs was one of the strongest predictors of
cardiovascular deterioration, requiring more
11

http://www.thelancet.com


Articles

12
investigation of the cause of the variable recording fre-
quency of these data, although previous research has
suggested this represents a reflection of clinical concern
about patients.36,37 This was a relatively small dataset,
limiting our ability to perform subgroup analysis. It has
been previously noted that paediatric patients can have a
wide range of clinical phenotypes even when the phys-
iological trigger is the same,46 and understanding the
heterogeneity of organ dysfunction across different
subgroups will be required for future trials. We aimed to
address this in Fig. 3, but future external validation sets
will be required to allow further investigation. Finally,
we used cardiovascular deterioration as primary
outcome: 23.8 percent of children had this outcome
during their PICU admission. We chose cardiovascular
deterioration since it is on a pathway towards physio-
logical deterioration and, ultimately, death in critically ill
children, but it may be reversible given sufficient pre-
diction. However, in some cases, this deterioration may
not be reversible, or the treatment itself, for example,
vasoactive medications, is contained within the outcome
score, such as pSOFA. We propose to extend the pri-
mary outcome to other organ system dysfunctions, such
as respiratory failure, in future iterations of PicEWS.
Finally, all machine learning models rely on the quality
and quantity of their input data. Our approach is,
therefore, only suitable for the minority of high-resource
settings that have implemented high-frequency EHR
data collection in critically ill children.47 It should also be
used with caution where only a small number of the
input features are available.

In conclusion, we were able to predict cardiovascular
deterioration in critically ill children in PICU using a
gradient-boosted decision tree-based (XGBoost) ma-
chine learning model (PicEWS). The model was precise:
when set at a recall (sensitivity) of 0.9 led to fewer than
two false alarms per real deterioration. It outperformed
existing scores, and we were able to show that a larger
number of relevant inputs, higher frequency sampling,
feature variability and frequency of input all improve
model performance. To aid interpretability and, there-
fore, intervention to prevent imminent deterioration,
PicEWS presents a rolling prediction of deterioration
over time, with precision estimates, and details the
features contributing most to the prediction of deterio-
ration. This may be suitable for integration within EHR
interfaces within a single-centre, and ultimately multi-
centre, trial of the model as a decision-support tool for
clinicians caring for critically ill children.

Contributors
DFS, MCB, MJC and PB conceptualised the project. DFS, NS and JB
curated the data. DFS and MJC analysed the data. DFS, MCB, PB, MJC,
SR and MJP worked on the methodology. MCB, PB and MJC provided
supervision. DFS and MJC wrote the manuscript. MCB, MJP, PB, SR
and NS reviewed the manuscript. All authors read and approved the
final version of the manuscript. DFS and JB have directly accessed and
verified the underlying data.
Data sharing statement
Due to privacy and information governance the data for this study
cannot be made publicly available due to information governance con-
straints. Source code for the analysis is available at github.com/dfs28/
PicEWS. Model hyperparameters are included in the Supplementary
materials.

Declaration of interests
DFS would like to acknowledge a UK National Institute for Health and
Care Research (NIHR) Academic Clinical Fellowship, and a grant from
the Centre for Ageing and Resilience in a Changing Environment at
King’s College London.

SR would like to declare NIHR Health Technology Assessment
(HTA) funding as part of the Oxy-PICU and PRESSURE trials, UKRI
Engineering and Physical Sciences Research Council (EPSRC) funding
as part of the University College London CHIMERA hub, EU Horizon
and UK Research and Innovation (UKRI) funding as part of the Phems
project, and from La Roche Ltd for consulting fees for educational
materials.

PB would like to acknowledge funding via the Royal Academy of
Engineering and Great Ormond Street Hospital, the UK Dementia
Research Institute (award number UK DRI-7002) through UK DRI Ltd,
principally funded by the Medical Research Council, and the UKRI
Engineering and Physical Sciences Research Council (EPSRC) and the
National Institute of Health and Care Research (NIHR) (grant number:
EP/W031892/1).

MJP would like to declare grant funding from NIHR HTA for
clinical trials in critically ill children, payment for expert testimony in
criminal and medical negligence cases. He is also Deputy Chair of the
NIHR HTA General Funding committee.

MJC would like to declare funding from the NIHR for an Academic
Clinical Lectureship.

Acknowledgements
All authors acknowledge support from the NIHR Great Ormond Street
Biomedical Research Centre at UCL and the Great Ormond Street
Hospital Children’s Charity peer-reviewed grant award. D Stein ac-
knowledges support from the Department of Applied Maths and
Theoretical Physics, University of Cambridge Computational Biology
MPhil programme, for which an earlier form of this work formed part of
his research thesis.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.eclinm.2025.103255.
References
1 Veldhuis LI, Woittiez NJC, Nanayakkara PWB, Ludikhuize J.

Artificial intelligence for the prediction of in-hospital clinical dete-
rioration: a systematic review. Crit Care Explor. 2022;4(9):e0744.

2 NHS England. National early warning score (NEWS) [cited 2024
Sep 11]. Available from: https://www.england.nhs.uk/ourwork/
clinical-policy/sepsis/nationalearlywarningscore/.

3 Chapman SM, Wray J, Oulton K, Pagel C, Ray S, Peters MJ. ‘The
Score Matters’: wide variations in predictive performance of 18
paediatric track and trigger systems. Arch Dis Child.
2017;102(6):487–495.

4 Fleming S, Thompson M, Stevens R, et al. Normal ranges of heart
rate and respiratory rate in children from birth to 18 years of age: a
systematic review of observational studies. Lancet Lond Engl.
2011;377(9770):1011–1018.

5 Haque IU, Zaritsky AL. Analysis of the evidence for the lower limit
of systolic and mean arterial pressure in children. Pediatr Crit Care
Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc.
2007;8(2):138–144.

6 Leteurtre S, Duhamel A, Salleron J, et al. PELOD-2: an update of
the PEdiatric logistic organ dysfunction score. Crit Care Med.
2013;41(7):1761.

7 Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related
organ failure assessment) score to describe organ dysfunction/
failure. On behalf of the working group on sepsis-related problems
www.thelancet.com Vol 85 July, 2025

https://doi.org/10.1016/j.eclinm.2025.103255
https://doi.org/10.1016/j.eclinm.2025.103255
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref1
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref1
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref1
https://www.england.nhs.uk/ourwork/clinical-policy/sepsis/nationalearlywarningscore/
https://www.england.nhs.uk/ourwork/clinical-policy/sepsis/nationalearlywarningscore/
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref3
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref3
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref3
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref3
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref4
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref4
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref4
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref4
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref5
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref5
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref5
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref5
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref6
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref6
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref6
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref7
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref7
http://refhub.elsevier.com/S2589-5370(25)00187-7/sref7
http://www.thelancet.com


Articles
of the European society of intensive care medicine. Intensive Care
Med. 1996;22(7):707–710.

8 Schlapbach LJ, Watson RS, Sorce LR, et al. International consensus
criteria for pediatric sepsis and septic shock. JAMA.
2024;331(8):665–674.

9 Knaus WA, Draper EA, Wagner DP, Zimmerman JE. Apache II: a
severity of disease classification system. Crit Care Med.
1985;13(10):818–829.

10 Schlapbach LJ, Weiss SL, Bembea MM, et al. Scoring systems for
organ dysfunction and multiple organ dysfunction: the PODIUM
consensus conference. Pediatrics. 2022;149(1 Suppl 1):S23–S31.

11 James G, Witten D, Hastie T, Tibshirani R, Taylor J. Introduction to
statistical learning, Python edition. Springer Texts in Statistics; 2023
[cited 2024 Sep 24]. 613 pp. (An Introduction to Statistical
Learning). Available from: https://www.statlearning.com/.

12 Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely
accessible critical care database. Sci Data. 2016;3:160035.

13 Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O.
The eICU Collaborative Research Database, a freely available
multi-center database for critical care research. Sci Data. 2018;5(1):
180178.

14 Harris S, Shi S, Brealey D, et al. Critical Care Health Informatics
Collaborative (CCHIC): data, tools and methods for reproducible
research: a multi-centre UK intensive care database. Int J Med Inf.
2018;112:82–89.

15 Comoretto RI, Azzolina D, Amigoni A, et al. Predicting hemody-
namic failure development in PICU using machine learning tech-
niques. Diagn Basel Switz. 2021;11(7):1299.

16 PIC, a paediatric-specific intensive care database - PubMed [cited
2024 Oct 15]. Available from: https://pubmed.ncbi.nlm.nih.gov/
31932583/.

17 Peace G. PICANet State of the nation report 2023 2023.
18 Killien EY, Keller MR, Watson RS, Hartman ME. Epidemiology of

intensive care admissions for children in the US from 2001 to 2019.
JAMA Pediatr. 2023;177(5):506–515.

19 Wilk M, Marsh DWR, De Freitas S, Prowle J. Predicting length of
stay in hospital using electronic records available at the time of
admission. Stud Health Technol Inform. 2020;270:377–381.

20 Hyland SL, Faltys M, Hüser M, et al. Early prediction of circulatory
failure in the intensive care unit using machine learning. Nat Med.
2020;26(3):364–373.

21 Lee B, Kim K, Hwang H, et al. Development of a machine learning
model for predicting pediatric mortality in the early stages of
intensive care unit admission. Sci Rep. 2021;11(1):1263.
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