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Abstract

Carbon Capture and Storage (CCS) is a key technology for reducing anthropogenic green-
house gas emissions, in which pipelines play a vital role in transporting CO, captured from
industrial emitters to geological storage sites. To aid the efficient and safe operation of
the CO; transport infrastructure, robust, accurate, and reliable solutions for monitoring
pipelines transporting industrial CO, streams are urgently needed. This literature review
study summarizes the monitoring objectives and identifies the problems and relevant
mathematical algorithms developed for optimization of monitoring systems for pipeline
transportation of water, oil, and natural gas, which can be relevant to the future CO,
pipelines and pipeline networks for CCS. The impacts of the physical properties of CO,
and complex designs and operation scenarios of CO, transport on the pipeline monitoring
systems design are discussed. It is shown that the most relevant to liquid- and dense-phase
CO, transport are the sensor placement optimization methods developed in the context of
detecting leaks and flow anomalies for water distribution systems and pipelines transport-
ing oil and petroleum liquids. The monitoring solutions relevant to flow assurance and
monitoring impurities in CO, pipelines are also identified. Optimizing the CO, pipeline
monitoring systems against several objectives, including the accuracy of measurements,
the number and type of sensors, and the safety and environmental risks, is discussed.

Keywords: pipeline transport network; monitoring systems; optimization; sensor
placement; algorithms

1. Introduction

Global warming and climate change caused by increasing anthropogenic emissions of
greenhouse gases, especially carbon dioxide (CO,), into the atmosphere, represent urgent
challenges to humanity [1,2]. In 2022, the annual emissions of CO, have reached a new
record, while global energy-related CO, emissions grew by 0.9% or 321 Mt, reaching a new
high at ca. 36.8 Gt [3]. To urgently address global warming, Carbon Capture and Storage
(CCS) has been proposed as an effective way of mitigating carbon emissions and heading
towards clean energy sources [4]. While recently, large momentum has been gained in
demonstration of CO, capture and storage in a number of pilot CCS projects (e.g., [5]), the
large-scale CCS deployment is currently significantly hampered by the lack of CO, transport
infrastructure connecting industrial CO, emitters with the geological sequestration sites
(e.g., [6,7]). These transport solutions, given the large quantities of CO; and long distances
involved, are expected to largely rely on pipelines [8]. However, despite the accumulated
experience in design and operation of pipeline systems in general and over 40 years of
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history of CO, pipeline transport for Enhanced Oil Recovery (EOR) [9], implementing the
COg, transport infrastructure for CCS at scale still faces a number of technical challenges
apart from financial and business barriers [10]. Figure 1 shows schematically the special
features of CO, transport for CCS and the various design and operation challenges for
the CO; pipeline systems. An important distinctive feature of CO, is that it can cause
asphyxiation when present in the air in concentrations above ca. 7% [11,12]. A recent
accidental rupture of a CO, pipeline in Mississippi, USA, demonstrated significant risks
posed by CO, pipelines to the nearby population [13]. For this reason, similar to pipelines
transporting other hazardous fluids (e.g., flammable fluids, natural gas, and crude oil), the
Quantitative Risk Assessment (QRA) of CO; transport facilities is an important requirement.
In addition, as indicated in Figure 1, CO, pipeline systems involve collecting impure CO,
streams from various emission sources. These streams may contain certain impurity
components, which may have their own safety hazards (e.g., due to their toxic nature) or
pose risks to the integrity and operation of transport and storage facilities (e.g., due to their
corrosive nature), and hence their concentrations should be limited [14]. Impurities in CO,
streams can also increase the risks of running ductile or brittle pipeline fractures [14].
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Figure 1. CO; pipeline system design and operation challenges.

Compared to water, crude oil, and other liquid petroleum products, CO; has a rel-
atively low boiling point, which means that decompression of liquid CO, (which is the
most economical phase for pipeline transportation) to pressures below its saturation condi-
tions can lead to two-phase flow, which is undesirable from the flow assurance perspective.
Given relatively low critical pressure and temperature of CO; (ca. 73.8 bar and 31.1 °C), CO,
can also be transported as a supercritical fluid, which is also attractive given its relatively
high density and low viscosity. However, compared to other pipeline transport liquids
(e.g., water, crude oil, and petroleum products), the supercritical CO; has relatively high
compressibility and thermal expansion coefficient, which may promote flow oscillations in
long pipelines in scenarios of emergency valve closure or pump shutdown [15].

Similar to many other pipeline systems (e.g., consumer gas distribution networks,
water supply networks, and sewage and drainage systems), where inlet or outlet flow
conditions (particularly pressure and flow rate) vary over time, CO, pipeline systems
should also be designed to accommodate transient operations, resulting, e.g., from short-
term fluctuations in the flow rates of CO, captured from industrial sources.

Another distinct feature of CO, pipeline systems is the collection type of CO, net-
works, where many sources are connected to a site (or possibly several sites) for geological
storage of CO; via a tree-type structure (similar to urban drainage systems) and long high-
pressure trunk lines (similar to oil and gas transmission lines). While domestic potable
water and natural gas networks may also have a tree-type structure, unlike CO; transport
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systems, they are distribution networks and commonly include loops where some nodes
are connected to each other via two or more paths.

Figure 1 also shows a number of challenges associated with the economic, safe, and
efficient design and operation of CO, transport systems for CCS. Importantly, given large
quantities envisaged for CO; transport in CCS, significant operation costs of CO; infrastruc-
ture and safety hazards associated with CO,, the next generation CO, pipeline transport
systems will require implementing monitoring and control strategies [16,17]. Given the
complexity of CO; transport networks, optimizing their monitoring and control will aid
accurate flow measurements, enhance early detection of potential issues, e.g., due to upset
operation, phase transition, corrosion, and leaks, and reduce the operational costs of CO,
transport. In this context, there is considerable interest in adopting the expertise and
methods developed for the monitoring of pipelines transporting non-CO, fluids to the
emerging field of CO, pipeline transportation.

To this end, this paper conducts a structured review of practical challenges and recent
research on the optimal design of monitoring systems and the strategic placement of sensors
for onshore pipelines and pipeline networks. In particular:

e  Section 2 describes the scope and methodology for the literature review;

e  Section 3 outlines the monitoring objectives and techniques for pipelines transporting
various gases and liquids, including CO»;

e  Section 4 reviews optimization problems and solution algorithms for sensor placement
in such systems;

e  Section 5 explores how the optimization methods reviewed in Section 4 can be adapted
to CO; pipeline monitoring, considering specific physical and operational features;

e  Section 6 summarizes the key findings and suggests directions for future work.

2. The Review Scope and Methodology

This review focuses on optimization-based approaches for designing monitoring sys-
tems in onshore pipelines, with particular attention to the sensor placement. The motivation
comes from the monitoring needs highlighted in CCS/CCUS reports, handbooks, and in-
dustrial guidance. The goal is to summarize relevant methods and evaluate their potential
for application to the monitoring systems of CO, pipeline transport networks.

Literature was searched mainly by using Google Scholar, covering peer-reviewed
publications in English from 2010 to 2024. The search focused on works relevant to pipeline
monitoring, sensor network design, and optimization algorithms. Both primary sources
(e.g., original research articles and case studies) and secondary sources (e.g., review papers,
industrial reports, and CCS handbooks) were included to ensure a comprehensive overview.
The keywords were grouped according to the structure of this review:

1. COj, pipeline monitoring objectives:
e “CCS” OR “CCUS” AND “pipeline” AND “monitoring”;
e “CO; pipeline” AND “monitoring” OR “instrumentation”;
e “CO, transport” AND “sensor network” or “sensor grid”;

2. Optimization of pipeline monitoring;:
e “Sensor placement” AND “pipeline monitoring” AND “optimization”;

e “Leak detection” AND “pipeline” AND “optimization”;
e “Pipeline monitoring” AND “machine learning” OR “fault detection”.

The identified literature sources were further shortlisted to focus on those publications
that undertook the following:

e  Proposed optimization methods related to pipeline monitoring;
e  Addressed sensor placement for various monitoring objectives;
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e  Offered insights applicable to the pipeline networks.

Publications focusing purely on sensor hardware or capture/storage stages without
pipeline transport relevance were not analyzed further.

As a result of the selection process, a total of 103 sources were identified and incor-
porated into this review. These sources were collected from a wide range of materials,
including 61 peer-reviewed journal articles, 13 conference proceedings, and 10 technical
reports, as well as handbooks, policy briefs, and monographs. The selection aimed to
ensure a comprehensive coverage of both academic developments and industrial practices
relevant to CO, pipeline monitoring and optimization.

The collected sources were analyzed based on their relevance to CO; pipeline monitor-
ing, presence of modeling or optimization content, and potential applicability to real-world
transport systems. Evaluation considered both technical depth and domain relevance,
including analogous studies from non-CO, networks. The studies were grouped according
to the key monitoring objectives (Section 3); classified by specific functions such as leak
detection, flow measurement, and impurity monitoring (Section 4); and further assessed
to inform optimization strategies (Section 5). Comparisons were made based on system
type, monitoring goal, and method characteristics to identify transferable approaches and
research gaps. However, almost no direct optimization studies on CO, pipeline monitoring
were found. Section 5, therefore, incorporates relevant studies from other domains, selected
as part of the initial screening process, to assess their relevance and adaptability to CO,
pipeline conditions by considering the types of pipeline network topologies, monitoring
needs, and operational conditions.

3. CO; Pipeline Monitoring Objectives

Monitoring of CO, pipelines is based on the principles and guidelines developed
for pipelines transporting other fluids, where monitoring is a key part of the pipeline
management that includes three main elements [16]:

e  The pipeline integrity management, which is aimed at detecting damage and failures
of the pipeline infrastructure, potentially posing threats to the pipeline operation, the
public, or the environment;

e  Contamination control to ensure the quality of fluid delivered to a customer;

e  Fiscal metering for commercial purposes (custody transfer).

The pipeline monitoring objectives address the detection and location of pipeline
failure (including leaks and ruptures) and identify any flow anomalies that can be detri-
mental either to the pipeline efficient and safe operation (i.e., scenarios that may lead to the
pipeline system failure) or the quality of service or properties of the delivered fluid (e.g.,
the fluid flow rate, pressure and temperature, composition, and the amount of impurities
and contaminants).

To identify and locate the pipeline failures, periodic inspections (e.g., visual external
inspections (patrolling) and using smart pipeline inspection gauges to assess the pipeline
internal conditions) and pipeline exterior and interior monitoring techniques are applied
(see, e.g., [18-23]).

Pipeline failures, including the pipeline leaks and ruptures, happen due to the pipeline
material degradation (e.g., erosion and internal or external corrosion), impacts of natural
forces (such as landslides, earthquakes, e.g., [13,24]), or third-party damage (e.g., upon
excavation, vandalism, or theft activity) (see, e.g., [25,26]). Undetected pipeline leaks may
evolve into larger ruptures and bursts, leading to catastrophic consequences and fatalities
(e.g., [27,28]). In the context of natural gas pipelines, hydrate formation is also recognized
as a significant contributor to flow restriction and blockage, which in turn can induce
abnormal pressure build-up and increase the risk of pipeline failure and leakage. As
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discussed by Qu et al. [29], hydrates may form and accumulate under high-pressure and
low-temperature conditions, leading to operational incidents if not detected in time. This
highlights the importance of integrating hydrate detection capabilities into leak detection
and monitoring frameworks, particularly for multi-phase gas pipelines.

The existing experience in operation and the records of accidents for CO, pipelines
show that failure rates of CO, pipelines are similar to those for hydrocarbon pipelines [30],
although this has been noted as a statistical outcome rather than a reflection of intrinsic
risk similarity, and no failure models were developed or used in deriving these estimates,
which should be interpreted with caution due to different risk characteristics. Approxi-
mately 7% of accidents reported in the PHMSA database during the period from 2010 to
2017 were identified using computerized monitoring systems [31]. While CO; pipeline
ruptures can happen (as in the recent accident near Satartia, Mississippi, USA [24]) and may
have catastrophic consequences in case of pipelines passing through populated areas, they
are comparatively less statistically frequent than ruptures in hydrocarbon pipelines [30].
At the same time, CO; pipelines are more prone to smaller size leaks than the hydro-
carbon pipelines [32,33], highlighting the need for the leak detection and monitoring of
CO; pipelines.

For pipeline systems in general, detecting and localizing pipeline leaks has attracted
much attention, with a number of effective techniques and methods proposed in the past
few decades [34-38], including Computational Pipeline Monitoring (CPM), which detects
leaks by examining anomalies in the flow by comparing the real-time measurements of
the flow with predictions made by a digital model [39]. Furthermore, leak detection and
localization can be an integral part of the pipeline control and emergency shutdown system
(see, e.g., [40-43]) aimed at mitigating the consequences of pipeline failure—minimizing
the damage to the environment or escalation of safety hazards [44]. Supervisory Control
And Data Acquisition (SCADA) system provides a platform for collecting in real-time the
measurements of pressure, temperature, and flow rate of the transported fluid (typically
taken at locations of compressors, pumps, valves, and metering stations) and passing this
information to the pipeline operator (see, e.g., [16,39,45,46]).

Previously, CPM systems were not required for leak detection in CO, pipelines, mainly
because of their technical complexity, and instead, the pressure point measurements and reg-
ular pipeline visual inspections were recommended as simple monitoring techniques [47].
However, more recently, integrating CPM systems with SCADA and Digital Twin (DT) tech-
nology, predicting the system’s future states using the real-time measurements [48-51], has
been proposed as a solution that can potentially improve the monitoring and operational
integrity of CO, pipelines and networks [52-54].

Apart from leak detection and localization, control of potential operational threats in
CO; pipelines requires careful monitoring of the flow conditions [16]:

e  The free water content and concentration of other impurity components, which may
pose a risk of pipeline internal corrosion, hydrate formation (especially for offshore
pipelines), transition to two-phase flow upon changes in the pipeline pressure, or
additional safety hazards (e.g., when toxic components such as H,S or SO, are present);

e  The pressure variation during start-up, shutdown, depressurization, and normal
operation conditions may pose risks of pipeline overpressure and impact the water
solubility in dense-phase CO,;

e  The temperature variations during start-up, shutdown, and normal operations may
alter the CO, thermodynamic state, the density of CO, fluid, and the pipeline trans-
portation capacity;
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e  Measurement of the flow rate and composition of CO, streams against the product
specifications is important for custody transfer to ensure the quantity and quality of
the CO; delivered by the pipeline operator.

The principles and methods of measuring flow rates in pipelines transporting gases
and liquids are well established (see, e.g., [55]). However, adapting these methods to CO,
pipelines faces a number of challenges, which are associated with the following:

(a) Unique physical properties of CO,, e.g., the acoustic attenuation posing a challenge
for using ultrasonic flow meters and the presence of impurities that can affect the
thermodynamic properties and phase equilibria;

(b) Measurement uncertainties due to pressure or temperature variations in
a pipeline system;

(c) The lack of standards and calibration facilities available for industrial use [53,56,57].
Although sampling is typically used for offline composition analysis in batch trans-

portation, CO, pipeline transport calls for online, near-real-time measurements of the

concentration of CO, and major impurities. The technologies for monitoring and detecting
the flow contaminants, including the offline, online, and real-time methods, have been

developed with application to water supply and distribution systems (see, e.g., [58,59]).

Also, measuring impurity components has recently attracted attention in the context of the

transportation of hydrogen via pipelines that were previously used for transporting natural

gas [60]. As pointed out by Chinello et al. [56], the adaptation of the existing methods
to CO; transport is technically challenging due to factors such as the transient nature
of the flow, which requires frequent sampling, and also small amounts of the impurity
components that require high precision of measurements. While impurities like water,

50,, or H;S are typically removed to meet transport specifications and reduce corrosion

or safety risks, small amounts of inert gases such as nitrogen can actually help lower the

risk of hydrate formation by shifting the phase boundaries (see, e.g., [61]). The location
and design of purification facilities can also affect monitoring needs, but these aspects are
beyond the scope of this review.

In summary, monitoring CO, pipelines involves several unique challenges not typi-
cally encountered in conventional pipeline systems. These include the following:

e  Phase transition risks—due to the proximity of CO2 pipeline operation conditions
to the CO, saturation line, two-phase flow can occur during start-up, shutdown,
or depressurization;

e Impurities and corrosion hazards—trace components such as H,O, SO,, or H,S may
cause corrosion or safety risks, requiring continuous composition monitoring;

e  High measurement uncertainty—arising from compressibility effects, temperature
sensitivity, and lack of standardized instrumentation;

e  Dense-gas safety risks—as released CO, can accumulate in low-lying areas and pose
asphyxiation hazards to humans;

e Transient flow conditions—driven by fluctuating capture and injection rates from
industrial sources;

e Lack of standardized monitoring protocols—creating ambiguity in design require-
ments and performance expectations.

These features must be considered when adapting existing monitoring optimization
methods to CO, transport. While this review does not address all the above challenges,
Section 5 focuses on those most directly linked to leak detection, flow measurement, and
composition monitoring.
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4. Optimization of Pipeline Monitoring

As explained in Section 3, the pipeline monitoring systems serve various objectives.
Moreover, the pipeline monitoring and control system should be efficient, reliable, and
robust, to ensure, e.g., rapid leak detection and emergency response, accurate measurement
and regulation of flow parameters, low energy consumption, and cost-effectiveness of
the pipeline operation. To meet these criteria and any additional constraints associated
with, e.g., cost limitations or specific types of solutions to be implemented in a project,
the pipeline monitoring system can be designed by solving a mathematical optimization
problem where the above criteria represent the optimization objectives, system constraints,
and decision variables (i.e., the design parameters that can be changed to achieve the
optimal solution meeting the optimization objective(s), e.g., the number, position or type of
sensors), as schematically illustrated in Figure 2.

Pipeline Monitoring Hardware
design objectives constraints

Pipeline monitoring system input data

1
Decision System Optimization E
variables constraints objectives !
i
i
i
1

Monitoring system design optimization problem

[ Solution methods/ algorithms ]

L

[ Optimal monitoring system design ]

Figure 2. Methodology for pipeline monitoring systems design optimization.

While currently, optimizing monitoring systems for CO, transport has received
very little attention in the literature (with the exception of the study by Kim et al. [62]),
a significant amount of research has accumulated on developing optimization models and
methods for the design of monitoring systems for pipelines and pipe networks transporting
water, natural gas, oil, and petroleum liquid products. The rest of this section provides
a targeted literature review of the pipeline monitoring design optimization problems
studied in the past in the context of the following:

(1) Leak detection and localization;

(2) Flow measurements;

(8) Fluid quality control;

(4) Improving energy efficiency and cost-effectiveness of the monitoring solutions.

4.1. Leak Detection and Localization

Leak detection and localization are two of the most common objectives in pipeline
integrity management. Meeting these objectives requires instrumenting the pipeline to
detect changes in pressure, temperature, or flow rate and using flow simulation techniques
(e.g., CPM) to trace back these changes to the leak location [37,38]. The accuracy of the
adopted technique depends on the spacing between the transducers, the uncertainty of
pressure and flow rate measurements, and the level of noise/noise filtering algorithms
adopted. As such, optimization of leak detection/localization systems typically concerns
the sensor placement, aimed at strategically positioning several sensors to maximize leak
detection sensitivity and accurately locate the leak.
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Leak detection and localization methods have been largely developed with application
to water distribution systems (WDS). For example, Casillas et al. [63] applied an integer
programming approach to describe the problem of sensor placement for leak localization,
which involved minimizing the number of non-isolable leaks to meet the isolability criteria
introduced to distinguish between two possible leaks. The non-linear optimization problem
was solved using Genetic Algorithms (GA) [64]. Similarly, Shiddiqi et al. [65] developed
a GA-Sense method for sensor placement strategy by considering flow patterns to maximize
leak detection and localization capabilities. They utilized time-series data to find strategic
sensor locations to identify abnormal flow patterns indicative of leaks. The GA and its
variations have become popular for solving non-linear sensor placement optimization
problems [66]. Another sensor placement method, developed by Ribeiro et al. [67], involves
optimizing the number of pipes to inspect and applying the TrustRank algorithm (see [68])
to refine the solution as part of a sensitivity analysis. Additionally, the Mixed-Integer
Linear Programming (MILP) algorithm is frequently used for optimally placing sensors in
pipeline systems. For instance, Xing et al. [69] studied the problem of sensor placement for
robust burst (refers to sudden pipe rupture and break) event identification under sensor
data uncertainties; the MILP method was applied to maximize the detection of the burst
events under both limited and unlimited budgets. Recently, with the development of
computational science and big data technology, the data-driven and Artificial Intelligence
(AI) methods, including statistical inference methods, have become more frequently applied
to save computational costs for flow simulations when optimizing the leak detection
system performance [70-73].

For hydrocarbon pipeline transport systems, there are also various studies focus-
ing on sensor placement for leak detection. For example, Zan et al. [74] introduced
a multi-objective sensor placement optimization method for low-pressure residential gas
distribution networks. The objectives included minimizing the time-to-detection, maximiz-
ing the sensitivity to the anomalies, and minimizing the impact propagation of the leaks.
The multi-objective problem was formulated for a vector of decision variables and then
solved using five different algorithms: (1) greedy, (2) greedy randomized adaptive search
procedure, (3) Non-dominated Sorting Genetic Algorithm II (NSGA-II), (4) FrameSense,
and (5) Particle Swarm Optimization (PSO), among which PSO yields the sensor configu-
ration with the lowest design cost and the computational time. Kim et al. [75] employed
the Adam-Mutated Genetic Algorithm (AMGA) to optimize sensor placement to detect
ruptures subject to uncertainties of the simulation models. Sun et al. [76] accounted for the
probability of leak scenarios and detector reliability in the gas detector placement problem,
which was solved using a stochastic programming (SP) optimization method.

In the transportation of crude oil and petroleum liquids, leak detection is one of the
most practically relevant monitoring objectives. In mathematical terms, the problem is
commonly described as the optimal sensor node placement, which can be solved using,
e.g., the cluster-based heuristic algorithms [77,78].

The specific choice of the algorithms for solving the above-mentioned optimization
problems largely depends on the optimization variables and constraints, as well as the
required accuracy of the solution, and the computational runtime. For example, MILP
and MINLP techniques are used for optimal sensor placement for leak detection when
specific system constraints and operational requirements are explicitly modeled and in-
corporated into the optimization process [69,74,75,79]. On the other hand, Genetic Al-
gorithms are designed to tackle large-scale, highly complex problems, especially those
involving non-linear objectives, and are widely used to solve sensor placement optimiza-
tion problems for water distribution networks [62,65,80] and long-distance oil transmission
pipelines [81,82]. Additionally, advanced techniques, such as data-driven approaches, Arti-
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ficial Intelligence (AlI), and Machine Learning (ML) methods, are attractive to save licensing
and computational cost when flow simulations are needed and were recently applied to
optimize sensor placement for leak detection and localization in water and natural gas
pipeline systems [50,71,72].

4.2. Flow Rate Measurement

Accurate measurement of flow rate is essential for pipeline transport systems, and
optimization methods are being developed to achieve the best flow rate measurement
performance. Particularly challenging is the accurate real-time measurement of flow rates
over a wide range of operating conditions, including possible multi-phase flow regimes,
in pipelines transporting petroleum-derived liquids [83]. Specific challenges with flow
rate measurements in single-phase pipeline transport can be related to distinct operational
features of the gas and liquid transport systems. In particular, gas pipelines commonly
operate in transient mode, with line packing utilized to compensate for imbalances in the
inlet and outlet flow rates. Control of the gas line operation requires careful measurement
of the operating pressure—to ensure it stays within the limit between the maximum and
minimum allowable limits and the flow rate—to meet the natural gas demand. In pipelines
transporting liquids, e.g., crude oil transmission lines, monitoring and control of the fluid
temperature is an important part of flow assurance to ensure the low viscosity of the
liquid for smooth operation and minimization of pipeline hydraulic losses. As such, in
general, flow rate monitoring is part of a complex monitoring and control system that
involves measurement of flow parameters (the flow rate, pressure, and temperature) at
various locations along the pipeline. Some recent studies have focused on improving
the accuracy and reliability of the flow rate measurements in pipelines. For example,
Ferrari and Pizzo [84] developed a virtual flow meter for highly transient flows in pipelines
transporting liquids. In another study, van Westering and Hellendoorn [85] constructed
a constrained non-linear integer programming optimization model to determine locations
where flow meters should be placed in a large natural gas distribution network to aid
accurate estimation of gas consumption under uncertain demand.

4.3. Fluid Quality and Impurities Monitoring

Given that water quality and the amount of contaminants and residual disinfectants
present in water supply pipelines are critical for public health, extensive research has
focused on optimizing the measurement of composition and detection of contaminants in
WDS. Preis et al. [86] applied the Non-dominated Sorted Genetic Algorithm (NSGA II) to
solve a multi-objective optimization problem of collocating the pressure and water quality
measurement points in WDS, showing that using sensors with dual capabilities could
significantly reduce the monitoring system expenses. Similarly, He et al. [87] proposed using
a Multi-Objective Evolutionary Algorithm (MOEA) to solve a bi-objective optimization
problem of sensor placement, aiming to minimize the contamination detection time while
maximizing the detection probability. Cardoso et al. [88] further extended the list of
optimization criteria for sensor placement to include the minimum detection time, the
minimum exposed population, the minimum consumption of contaminated water before
detection, and the maximum detection probability. This multi-objective problem was solved
using the NSGA-II algorithm [89] and applying the K-means clustering unsupervised ML
algorithm [90] for Pareto front post-processing.

Composition tracking in gas pipeline transportation is equally important. For exam-
ple, coupling the Gas Chromatography (GC) and the Optical Feedback Cavity-Enhanced
Absorption Spectroscopy (OFCEAS) has been recommended as the optimal solution, bal-
ancing low costs and high accuracy, to meet the high purity requirements for hydrogen
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transport [91]. In the natural gas pipeline systems, computational transient flow models
are used to resolve the state of flow and compositional variations across the network,
e.g., [92-94]. However, there are no studies on optimizing impurity tracking at the monitor-
ing system level.

4.4. Energy Efficiency and Cost-Effectiveness of Monitoring System

Energy saving and cost-effectiveness of sensor operations are two key criteria applied
in optimizing sensor placement in pipeline systems to ensure their long-term monitoring
efficiency. Strategically placing sensors reduces the energy consumption of devices, pro-
longing a network’s operational lifetime and minimizing maintenance needs, especially in
remote areas, and can also reduce the total monitoring costs.

Using wireless sensors becomes attractive for pipeline monitoring systems. The
problem of optimal design of a Wireless Sensor Network (WSN) in long oil transmission
pipelines was recently studied by Elnaggar et al. [82]. The optimization sought to maximize
pipe coverage (i.e., the length of pipelines being monitored) and minimize the overall
costs of the monitoring system. Varshney et al. [95] also proposed an efficient sensor
placement strategy for managing various pipelines (air-conditioner, water, gas, oil) inside
a large smart building using the Lion Optimization Algorithm (LOA). Recently, advanced
Machine Learning methods, incorporating reinforcement learning [96] and Q-learning
algorithms [97], were used by Rahmani et al. [98] to solve the sensor placement problems
maximizing the coverage of oil pipelines while also taking into account other optimization
criteria, including the energy consumption and the network lifetime.

5. Discussion: Recommendations on Optimizing the CO; Pipeline
Monitoring Systems

As discussed at the end of Section 3, CO, pipeline monitoring presents several unique
challenges that may require adapted or specialized optimization strategies. Table 1 sum-
marizes the optimization problems and the corresponding solution methods developed
in the context of monitoring pipelines transporting fluids other than CO,, as reviewed in
Section 4. The pipeline monitoring objectives that appear in the table can be grouped
into three categories: (1) leak detection and localization; (2) measurement of the flow rate,
pressure, and temperature; and (3) fluid quality and composition monitoring. The decision
variables represent the monitoring system design parameters that can be changed to achieve
the solution meeting the optimization objective(s). Among the listed decision variables, the
sensors’ positions are most used in the sensor placement problems, optimizing the number
of sensors, pipeline coverage, accuracy, time, and probability of detection of leaks and flow
anomalies, power consumption by wireless sensors, etc. The table also lists mathemati-
cal methods and algorithms applied for solving the optimization problems, the specific
choice of which is generally governed by the type of decision variables and constraints
(discrete/continuous, convex/nonconvex, linear/non-linear, deterministic/stochastic), the
number of optimization objectives (single-/multi-criteria), and the search for local or global
optimum. In the following, the relevance of optimization problems and methods listed in
Table 1 to the CO, transport system is discussed for the different monitoring objectives. For
ease of reference, Table 1 maps the optimization approaches across different fluid systems.
In this section, we draw from the map to explore which methods could be applicable or
adaptable to CO, pipeline monitoring.
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Table 1. Monitoring systems, optimization problems, and algorithms relevant to various pipeline

transport systems.

Transported s . PN Type of . .
Fluid and Mo.mt(.)rmg De.c1swn Opt}ml?atlon Optimization Slng!e/Multl- Method(s)/Algorithm(s) Refs.
Network Type Objective(s) Variable(s) Objective(s) Problem Objective
Loss Maximum Non-linear
fication: Hydraulic model  accuracy of water A Single 9
quantification; . optimization .o, GA Wu and Sage [99]
A parameters loss detection objective
leak localization and localization problem
Sensor positions, Maximum Non-linear Data-driven,
leak/burst i Multi- Multi-Objective .
L accuracy of leak optimization P . Boatwright [100]
localization localization problem objective Evolutionary
parameters Algorithm
Leak localization Minimum
Water number of . -
distribution Positions of sensors; Non-linear Single ML classification .
networks . optimization biecti and feature Madbhavi et al. [72]
sensors maximum roblem objective selection
accuracy of leak P
localization
Minimum
number of
Water quality Sensors,
and detection time, Non-linear .
contamination Sensors positions and population optimization S/I ““." NSGA Ie I—(Iie etal. [?7]’88
detection and affected; problem objective ardoso et al. [88]
localization maximum
probability of
detection
Minimum
number of SCIP algorithm
Utandranage Wt uaiy poers | MIPMNIY Gl
collection and the presence  Sensors positions P & ne . Simone et al. [101]
networks of pathogens network the problem objective algorithm);
pathog reliability and formulation) Complex
sensor node Network Theory
centrality
Temperature and Minimum power Sinele Greed
pressure Sensor positions consumption by MILP ng, v Guo et al. [78]
monitoring sensors objective algorithm
Oil t issi
! ;ia}ljr;slﬁzssswn Minémum ) Reinforcgment
Activity time of sensor’s power Non-linear Sinele Learning
Leak localization ser?lsors consumption; optimization ob'eég"[ive Algorithm (AL Rahmani et al. [98]
maximum problem ) Machine
pipeline coverage Learning)
Natural gas Leak detection Maximize the .
. 2 i detected number Single . .
transmission and fault Sensor positions P . MILP biecti Deep learning Liang et al. [50]
lines diagnostics o contgmmant objective
points
Maximum
Natural gas Estimating ﬂOW - accuracy of the Constrained Single Greedy van Westering and
distribution under uncertain Sensors positions measurement .o .
) MINLP objective algorithm (GA) Hellendoorn [85]
network demand across entire
network
Minimum time to
Low-pressure gas Detecting flow rij\i(eicnt:s; Multi- Grelil(‘ls}éiI;IASR
distribution gl Sensors positions e d MINLP biecti E S ! d Zan et al. [74]
networks anomalies sensA1t1v1ty, an objective rame ensg, an
impact PSO algorithms
propagation

5.1. Leak Detection and Localization

The experience in optimizing sensors for leak detection and localization in water
distribution systems (WDS) and oil pipelines can generally be applied to leak detection
in CO; pipelines, especially considering the expected large demand for transporting CO,
in liquid/dense phase. As can be seen in Table 1, the optimization can target single or
multiple objectives, e.g., to determine a trade-off between the number of sensors and the
detection accuracy of sensors placed at different locations, with a wide choice of potential
algorithms for solving these problems, as discussed earlier in Section 4.1. To be noted, WDS-
inspired approaches offer useful structural insights, but applying them to CO; pipeline
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systems requires adjustment for differences in pressure regimes, compressibility, and
monitoring objectives.

While there are no examples of optimizing monitoring systems for leak detection
in CO; pipelines, recently, Kim et al. [62] applied Deep Learning methods to detect flow
anomalies due to leaks and hydrate accumulation in CO, pipelines.

Given the potential hazard of a heavy gas CO; cloud that may form upon accidental
puncture or rupture of CO, pipelines [11], accounting for nearby population density
should be considered as a key factor when optimizing CO, pipeline monitoring and
control systems.

5.2. Flow Measurement

As can be seen from Table 1, in the context of flow measurements, the problem of
optimal sensor placement has been studied for natural gas networks [85], where a con-
strained non-linear integer programming optimization model was constructed to determine
locations of flow meters for accurate estimation of the overall gas consumption under
fluctuations in demand. This approach can potentially be relevant to placing flow rate
measurement instruments in networks collecting fluctuating CO; sources.

Also, some studies focus on optimizing the accuracy of the flow rate measurements in
pipelines. For example, as mentioned earlier in Section 4.2, Ferrari and Pizzo [84] developed
a virtual flow meter to aid accurate estimation of mass flow rate based on the pressure
measurements in highly transient flows in pipelines transporting liquids.

Monitoring and improving the accuracy of flow measurement has recently attracted
attention in the context of CO; pipeline transportation. In particular, Kim et al. [62] applied
Deep Learning to detect anomalies in the flow of dense-phase/supercritical CO; in a long
pipeline caused by fluctuations in the inlet flow conditions.

Also, given the low boiling point of CO,, two-phase flow may emerge in some scenar-
ios, e.g., during the start-up, shutdown, or partial venting of a pipeline. To provide accurate
flow measurements for the flow assurance in these scenarios, Jeong et al. [96] have recently
applied the ML Artificial Neural Network (ANN) algorithm that resolves the two-phase
flow patterns.

5.3. Impurities Monitoring

As can be seen in Table 1, sensor placement for the detection of contaminants has
received significant attention in the context of monitoring of WDS (see, e.g., Cardoso
et al. [88]). However, the optimization problems studied for WDS have little relevance
to CO, pipeline transport because the two systems are rather different in their design
and operation, and the impurities monitoring serves different objectives. In particular, in
CO, transport networks, which have a tree-type layout, the impurities originate at the
network sources. To ensure the CO, streams are compatible with the specifications for
transport and storage, the CO, impurities need to be measured at the network sources,
and possibly at some locations in the network, e.g., collection hubs, where several streams
are merged, or points of transfer to offshore transport/injection systems. In contrast to
CO; transport networks, the WDS networks can include loops and grid elements, and flow
contamination may happen at various places across the network (e.g., consumer connection
points, hydrants, and pipeline cracks). As such, contaminant monitoring is conceptually
much more complex for WDS than for CO; collection networks.

Nevertheless, adapting the flow models for component tracking used in sensor opti-
mization studies for WDS [88] can be useful for facilitating the composition monitoring in
CO; pipeline networks. Furthermore, as mentioned earlier, there are very few optimization
studies specifically addressing composition tracking in gas pipelines. Although recently
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the composition tracking was discussed in the context of CO; pipelines [102], the proposed
approach relies on using computational flow models to simulate the composition changes
over time in the pipeline network, rather than on optimizing the monitoring system. How-
ever, this study opens a door to future research, making it possible to integrate these models
into a comprehensive optimization framework for monitoring systems, as suggested in [92].

6. Summary and Directions for Future Studies

The large-scale deployment of Carbon Capture and Sequestration (CCS) will require
using pipelines to transport large quantities of CO, from industrial emitters to geological
storage locations. Accurate and reliable monitoring and control of CO, transport systems
will be crucial for their reliable, safe, and economic operation. Given new challenges
brought by CO, transport for CCS and the significant experience accumulated in the
operation of pipelines transporting water, oil, and natural gas, there is a strong interest in
adapting the existing monitoring solutions, design practices, and methods to CO, pipeline
transport. This paper provided a structured literature review of the cutting-edge research on
optimization of monitoring systems for leak detection and localization, flow metering, and
fluid quality and component tracking in pipelines transporting various fluids, which can
potentially be useful for CO, pipeline monitoring. The key findings and recommendations
from this study can be summarized as follows:

e Sensor placement is the most studied pipeline monitoring optimization problem.
Other optimization decision variables may include the types and combinations of
sensors, as well as the optimal number of sensors or monitoring points;

e  Methods of computer-based leak detection and localization, as well as optimal place-
ment of monitoring sensors developed for pipelines transporting liquids (including
water distribution systems and pipelines transporting crude oil and petroleum liquids),
can be most relevant to liquid and dense-phase CO, transport;

e  Artificial Intelligence (Al) and Machine Learning (ML) methods developed for de-
tecting flow anomalies and leak detection in natural gas and oil pipelines can be
adapted to improve flow monitoring in CO, pipelines. In particular, using ML-based
anomaly detection and virtual flow metering can enhance flow measurement accuracy
in scenarios of transient and two-phase flow to aid the flow assurance in the start-up,
shutdown, or emergency operations of CO; pipelines;

e  Adapting the flow models for component tracking, such as those developed for water
distribution systems, can be useful for enhancing the composition monitoring in CO,
pipeline networks and potentially optimizing the composition monitoring systems.
In addition, finding optimal combinations of measurement techniques, e.g., GC and
OFCEAS instruments, as recently recommended for hydrogen transport, may further
improve impurity measurement accuracy;

e  CO; pipeline monitoring optimization can be described as a multi-objective optimiza-
tion problem. While the accuracy of measurements, the number of sensors, and the
cost of monitoring are the most commonly employed objective functions, the risks
to the nearby population and environmental impacts in the event of accidental CO,
release must also be considered as part of the optimization criteria;

e  Various mathematical methods and algorithms for solving the pipeline monitoring
optimization problems are available. The specific choice of methods/algorithms
depends on the types of the optimization model decision variables and constraints,
the number of optimization objectives, the presence of a stochastic component of the
objective function, and the multiple potential solutions, amongst other factors;

e  Currently, emerging model-based data-driven approaches and non-model-based tech-
niques, such as deep learning, are gaining traction in optimizing the monitoring and
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control of various pipeline systems. These methods offer significant potential for
CO; transport systems, particularly when integrated with pipeline flow simulators
and Digital Twin platforms, to process large datasets covering the various pipeline
operation scenarios. For example, graph-based models or physics-informed neural
networks (PINN) (see, e.g., [103]) may be promising for capturing both spatial corre-
lations and underlying flow physics in CO, anomaly detection. This is particularly
relevant for CO, pipelines, where flow dynamics are governed by known physical
laws but data are often sparse and unevenly distributed. By embedding governing
equations into the learning process, PINNs can leverage limited sensor data while
ensuring consistency with the underlying physics.
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