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ABSTRACT 
Developing ultra- or high-performance liquid chromatography (HPLC) methods for analysis or pu-
rification requires significant amounts of material and manpower, and typically involves time-con-
suming iterative lab-based workflows. This work demonstrates in two case studies that an auton-
omous HPLC platform coupled with a mechanistic model that self-corrects itself by performing 
parameter estimation can efficiently develop an optimized HPLC method with minimal experiments 
(i.e., reduced experimental costs and burden) and manual intervention (i.e., reduced manpower). 
At the same time, this HPLC platform, referred to as Smart HPLC Robot, can deliver a calibrated 
mechanistic model that provides valuable insights into method robustness. 
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INTRODUCTION 
One of the most important analysis and purification 

methods in the fine chemical and pharmaceutical indus-
try is liquid chromatography [1]. The degree of separation 
necessary for success is dictated by the affinity of the 
solutes (i.e., the dissolved molecules) towards the solid 
phase (i.e., the adsorbent). The greater the affinity of the 
solute for the solid phase, the slower its movement 
through the chromatography column, resulting in a later 
elution. Considering a column with a fixed solid phase, 
one of the most significant factors affecting the affinity 
of the solute is solvent composition, where the solvent in 
HPLC processes is typically a mixture of organic and in-
organic solvents. The simplest way to operate an HPLC 
process is through isocratic elution, where the solvent 
composition remains constant throughout the operation. 
However, isocratic elution often has limitations, such as 
long process time (the time taken for the last component 
to elute) or the inability to satisfactorily resolve a complex 
mixture. An alternative mode of operation is gradient elu-
tion, where the solvent composition varies over time. This 
approach introduces additional degrees of freedom, such 
as the initial and final solvent composition, the duration 
of the composition change, and the number of gradient 

steps, adding complexity to the process. Even so, gradi-
ent elution is generally preferred for complex mixtures 
due to its enhanced ability to resolve components more 
efficiently and quickly [2]. 

Developing gradient based HPLC methods usually 
requires significant material and manpower, and typically 
involves time-consuming and iterative laboratory-based 
workflows. Recent technological advancements now en-
able fully computer-controlled workflows; these allow not 
only automated but also streamlined autonomous (that is, 
self-driven) HPLC method development, with minimal to 
no human intervention (employing robotic solutions for it-
erative workflows [3]). In this article, we summarize two 
recent applications of autonomous processes; readers 
are referred to Tom et al. [3] for a comprehensive review 
of the concepts of autonomous processes in laboratories 
(coined as self-driving laboratories in the review article). 
Boelrijk et al. [2] and Dixon et al. [4] demonstrated the 
potential of autonomy for developing HPLC methods. 
Both authors achieved autonomy of gradient method de-
velopment via the following steps: 

 

1. Initial Small Experimental Campaign, e.g. as in Boel-
rijk et al. via random input parameter selection [2] or 
Dixon et al. via Latin Hypercube Sampling (LHS)[4]. 

2. Fit the data-based surrogate model using experi-
ments performed in step 1. 
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3. Optimize the HPLC process using the surrogate 
model, where the optimizer suggests the next ex-
periment(s) to perform. Both authors used Bayesian 
optimization aimed to optimize gradient methods re-
garding time, and number of resolved peaks.  

4. Run model-guided additional real experiments and 
analyze key indicators in-silico (=computationally), 
e.g., peak height, peak width, retention time. The key 
indicators are analyzed by a surrogate model and are 
automatically sent to the optimizer (used in the next 
step); no manual interpretation is required. 

5. Repeat steps 2 and 3 until reaching stopping criteria. 
 

Both groups demonstrated that satisfactory optimal 
results could be achieved autonomously with the help of 
in-silico surrogate models. However, surrogate models 
rely on data to be informative and effective, making them 
less efficient in the early stages. Due to their data-driven 
nature, they may not accurately reflect known physical 
phenomena, limiting their ability to provide reliable guid-
ance, especially when only a few experiments are availa-
ble for model training and development.  

To address the above-mentioned issue, this work 
proposes an autonomous process guided by a mecha-
nistic model for knowledge-driven (instead of purely 
data-driven) decision-making. One of the challenges 
when using a mechanistic model is to find a set of good 
parameters (e.g., isotherm parameters) that can repre-
sent the real experimental results (e.g., chromatogram) 
sufficiently well. Therefore, a parameter estimation step 
is added to the previously mentioned automation step 
(see discussion for Figure 2 in the methodology section). 
This framework, here called “Smart HPLC Robot”, is an 
intelligent platform enabling the development of an opti-
mized HPLC method with minimal experiments while sim-
ultaneously delivering a calibrated mechanistic model 
that provides valuable insights into method robustness. 
Importantly, since mechanistic models are physics-
based and not tied to a specific objective function, they 
can be applied to optimization tasks with different objec-
tives and provide reliable predictions beyond the range 
of experimental settings used for training (i.e., extrapola-
tion). Once model parameters are properly determined 
and experimental conditions remain consistent (e.g., us- 

Figure 1. Communication protocol of Smart HPLC Robot. 

ing the same mixture), mechanistic models offer better 
adaptability, require fewer calibration experiments, and 
do not need retraining, unlike the data based surrogate 
models used in previous works. 

METHODOLOGY 
The Smart HPLC Robot features mechanistic simu-

lations and an autonomous process; thus, it requires effi-
cient communication between laboratory equipment and 
chromatography simulators. The developed autonomous 
workflow, including the communication between model 
and HPLC system, is illustrated in Figure 1 and discussed 
in this section. In addition, the working principles (shown 
in Figure 2) will also be discussed. 

Communication Protocol 
The user interface is developed in Python, which 

also bridges the communication between equipment and 
simulators. As shown in Figure 1, the current project is 
developed with Agilent equipment and simulators such as 
gPROMS and CADET (https://cadet-web.de/), but it is not 
limited to those and can be integrated with other sys-
tems, provided that users adhere to a standard commu-
nication framework. To integrate equipment from differ-
ent manufacturers, users can leverage, for example, Ap-
plication Programming Interfaces (APIs) to efficiently es-
tablish communication and exchange key values.  

In this project, the communication protocol for Ag-
ilent OpenLab is written in C# (left part in Figure 1). 
Therefore the equipment control sequences (e.g., modi-
fying experimental input sequence and executing se-
quence) are all implemented in C# for better compatibility 
and operation efficiency. A C# web API facilitates seam-
less data exchange by providing a standardized commu-
nication interface while isolating equipment control se-
quences. The right part of Figure 1 illustrates the commu-
nication between the Python framework and simulators. 
Currently, gPROMS and CADET are supported, and the 
communications with Python are via gO:Python and CA-
DET-Python, respectively.  

Working Principle 
The working principle of the Smart HPLC Robot can 

be divided into two main steps as shown in Figure 2:  
(1) the preparation step (a one-time execution) and  
(2) the mechanistic loop (i.e., mechanistic model-guided 
autonomous method development). The former requires  
configuring the Smart HPLC Robot and performing initial 
experiments, and the latter involves parameter estima-
tion for model calibration and optimization for the gener-
ation of new experiments. This section will detail each 
step together with associated challenges and solutions.  
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Figure 2. Smart HPLC Robot working principle. All steps 
are performed autonomously after the initial manual 
configuration of the robot (e.g., input column dimension, 
model selection, optimization settings). 

Preparation 
In contrast to using machine learning [2,4], the 

mechanistic model framework used in this work requires 
prior knowledge of the number of components in the sys-
tem for model development. This step is more straight-
forward with a mass spectrometer than an ultraviolet 
(UV) detector, as a UV detector cannot distinguish over-
lapping components, leading to inaccurate method de-
velopment. When using a UV detector (as done here), it 
is recommended to perform preliminary experiments at 
low flow rates and a low initial organic solvent fraction 
and low gradients. This approach can, theoretically, max-
imize the separation of components with the current sys-
tem, providing an initial understanding of the number of 
components that can be resolved from the (potentially) 
unknown mixture. 

Besides the number of components, other infor-
mation, e.g., column dimensions, selection of isotherms 

and mass transport model, and parameter estimation/op-
timization settings, including boundaries of parameter 
estimation/optimization variables and objective func-
tions, is also required for configuring the mechanistic 
model of the Smart HPLC Robot. Most information can be 
obtained from equipment manufacturers or is based on 
the aim of the task. The boundaries of variables are cru-
cial to the success of the HPLC method development, but 
they are often tricky to determine. For design variables, 
such as flow rates, percentage of organic solvent, and 
column temperature, the boundaries are often defined as 
the equipment physical limitations. Isotherm parameters, 
on the other hand, lack clear boundaries. The Smart 
HPLC Robot conducts a basic boundary analysis using 
Sobol sampling across an initial input search space 
(HPLC settings), typically with broad boundaries. This 
process helps identify regions with a higher likelihood of 
yielding optimal results, as indicated by the objective 
function's quantification of the HPLC method quality. 
Hence, shrinking the search space for the subsequent 
parameter estimation step, leading to an improved effi-
ciency. 

Once all necessary information is provided, users 
can execute the program and the robot will do all other 
steps without further human interference. The first auto-
mated step is to generate and perform a user-defined 
number of initial experiments generated from sampling 
methods (e.g., LHS or factorial design). The number of 
initial experiments is a trade-off between accuracy of 
prediction and experimental burden. For the low-param-
eter mechanistic models used thus far, four experiments 
provided a good foundation  

Model Calibration and Validation Loop 
The mechanistic model's initial training (parameter 

estimation) will begin once the Smart HPLC Robot com-
pletes the initial experiments and sends the results to Py-
thon. The first step in the loop is to estimate the param-
eters for the selected isotherm(s) (e.g., linear isotherm or 
Langmuir isotherm) based on the user-defined objective 
functions (e.g., maximum likelihood method or least 
square method). In this step, all experiments, including 
initial experiments and those generated in the mechanis-
tic loop, will be taken into account.  

Once calibrated with the best available parameter 
estimates, the mechanistic model computationally opti-
mizes the HPLC method settings (i.e., the inputs such as 
flow rate, initial and final mobile phase composition, and 
gradient time) based on the selected method objectives 
(such as achieving sufficient resolution for all or selected 
components in the shortest possible time). Therefore, se-
lecting an appropriate objective function is crucial to yield 
the desired HPLC method. 

Once computational optimization is complete, the 
HPLC system will automatically execute the updated 
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method (using the optimum inputs) and return key data 
(including UV absorbance, retention time, and peak 
width, i.e., the method results) to Python. The latter aims 
to validate whether the computed optimum has been 
achieved and to determine if a sufficiently robust HPLC 
method now meets the stopping criteria. If not, it serves 
as a new experiment to refine the mechanistic model pa-
rameters and rerun the computational optimization. The 
stopping criteria may include factors like reaching the 
maximum iterations or no further method improvement. 
Once met, the Smart HPLC Robot reports the validated 
model and optimal HPLC method settings. In most cases, 
the mechanistic loop requires multiple iterations. During 
the parameter estimation step, both stochastic and de-
terministic optimizers carry the risk of yielding worse iso-
therm parameters than the previous iteration (stochastic 
optimizers due to inherent randomness and deterministic 
ones due to sensitivity to initial values).Therefore, the 
newly estimated model parameters will be compared with 
the previous best values, and only those yielding an im-
proved estimation of parameters (reduced error between 
experiment and model calculation) will be used to update 
the model. 

RESULTS AND DISCUSSIONS 
Two case studies were performed in this work:  

(1) an in-silico system case study to quantify the perfor-
mance of the Smart HPLC Robot, and (2) a real world 
case study for initial showcase. The simulations for both 
case studies were performed using the CADET-Core sim-
ulator. The mass transfer model used is the native Equi-
librium Dispersive Model, and the isotherm model is a 
non-native linear isotherm coupled with the Linear Sol-
vent Strength (LSS) theory: 

 Linear isotherm: 𝑞𝑞𝑖𝑖 = 𝑎𝑎𝑖𝑖  𝐶𝐶𝑖𝑖                  ∀𝑖𝑖 = 1, … ,𝑛𝑛              (1) 

 LSS theory: 𝑎𝑎𝑖𝑖 = 𝑎𝑎0.𝑖𝑖 exp�−𝑆𝑆𝑠𝑠,𝑖𝑖  𝜙𝜙�    ∀𝑖𝑖 = 1, … ,𝑛𝑛               (2) 

where 𝑛𝑛 is the number of components in the mixture, 𝑞𝑞 is 
the equilibrium concentration in the stationary phase, 𝐶𝐶 is 
the concentration in the liquid phase, 𝑎𝑎 is the Henry co-
efficient, 𝑎𝑎0 and 𝑆𝑆𝑠𝑠 are the numerical constants in LSS 
theory, and 𝜙𝜙 is the organic solvent composition (i.e., vol-
umetric fraction of the organic modifier in the solvent). 

In both case studies, initial experimental conditions 
are generated via LHS, which are then performed either 
in-silico using the aforementioned model or sent to the 
instruments (see setup in later section) to perform real 
experiments. A virtual column is used in the in-silico sys-
tem case study, while the Agilent Poroshell 120 EC-C18 
column (G7104C096) is used in the real world case study. 
The column information is summarized in Table 1. 

Parameter estimation is then performed in-silico by 
minimizing the mean of the relative errors (𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃) [5] via 

genetic algorithm (using Python package “geneticalgo-
rithm2”): 
 

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 =
1
𝑛𝑛��

�𝑡𝑡𝑅𝑅,𝑖𝑖
sim − 𝑡𝑡𝑅𝑅,𝑖𝑖

exp�
𝑡𝑡𝑅𝑅,𝑖𝑖
sim × 100�     ∀𝑖𝑖 = 1, … ,𝑛𝑛

𝑛𝑛

𝑖𝑖=1

         (3) 

where 𝑡𝑡𝑅𝑅
sim/exp are the simulation (using the mechanistic 

model)/experimental retention times. The parameters 
that are varied to minimize the model error 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 are 𝑎𝑎0,𝑖𝑖 
and 𝑆𝑆𝑠𝑠,𝑖𝑖. 

Next, the isotherm parameters in the simulation 
model are updated with those obtained from the param-
eter estimation step before performing optimization. The 
optimizer used is also a genetic algorithm. During optimi-
zation, the objective function (note that this is not the 
same as the objective function in parameter estimation) 
is to minimize the method time (i.e., the retention time of 
the last eluting component) subject to a critical resolution 
constraint (i.e., the smallest resolution of all component 
pairs) of at least 1.5. The critical resolution is calculated 
considering the peak asymmetry and peak width at 0.135 
peak height as suggested by Boelrijk et al. [2]. The opti-
mization variables (and model inputs) are the flow rate, 
gradient start time, and gradient change duration. The 
gradient starting and ending volume fractions are fixed at 
0.3 and 0.7 for the in-silico system case study, and 0.5 
and 1.0 for the real world case study (but could also be 
optimized). The “optimal” experimental conditions are 
then performed in the HPLC platform considered, and the 
model parameter estimation and HPLC method optimiza-
tion steps are repeated until the stopping criteria are sat-
isfied. Here, a simple stopping criterion of a maximum of 
four mechanistic loops was used in both case studies. 

(1) In-silico▶System Case Study 
An in-silico system is used as a case study so that 

the performance of the Smart HPLC Robot can be ana-
lyzed quantitatively as the true values of the parameters 
involved are all known. A four-component mixture is con-
sidered. In this case study, simulations and in-silico (i.e., 
virtual) experiments are carried out using the simulation 
model described above without considering any uncer-
tainties in the model parameters. Note that for the in-sil-
ico experiments, the isotherm parameters are pre-de-
fined and fixed. Therefore, theoretically, the parameter 

Table 1. Information of the columns in the case studies. 
Parameters In-silico Real 
Col length (mm)   
Col radius (mm)   
Total porosity (-)   
Internal porosity (-)   
Particle radius (µm)   
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estimation should be capable of yielding the true iso-
therm values, but the optimizer cannot guarantee global 
optimality, so there is still a small deviation of about 4% 
absolute average difference in this case study. The pa-
rameter estimation (see Equation 3 for the objective 
function) is performed on all previously executed experi-
ments, and Figures 3a and 3b show the bad and good 
cases, respectively. It is clearly seen that the simulation 
and in-silico experiment chromatograms for “fast” (i.e., 
short method time) cases have greater similarities (i.e., 
indicating better predictions of the isotherm parameters), 
which benefits the objective function as this is to mini-
mize the method time.  

Figure 3c shows the optimized chromatogram for 
the in-silico experiment and the associated simulation. 
The results deliver two main takeaways: (1) the chroma-
tograms nearly overlapped, indicating a fairly accurate 
prediction of isotherm values; (2) all components are 
completely resolved with a short/minimum gap between 
adjacent components, illustrating a good quality of the 
optimized experiment condition. 

(2) Real World Case Study 
Having validated the performance of the Smart 

HPLC Robot, a real world case study is carried out to 
demonstrate its applicability to laboratory-based experi-
ments. The simulations are performed using the same 
mechanistic model as for the in-silico system case study, 
and the real experiments are carried out with an Agilent 
1260 Infinity II system. The system is equipped with a 
quaternary pump (G7104C), an online sample manager 
set (G3167AA) that consists of an auto-sampler and an 
online valve configured for off-line sampling, a multicol-
umn compartment with thermostat (G7116A), and a vari-
able wavelength detector (G7114A). The UV absorbance 
is recorded at a wavelength of 254 nm and a frequency 
of 5 Hz. The needle is set to draw the sample at 100 µL 
min−1, eject at 400 µL min−1, and an equilibration time of 
1.2 s. A four-component sample is used as model sample, 

with an injection volume of 1 µL. 
Compared to the in-silico case study, two new chal-

lenges arise for real system. Firstly, the raw experimental 
data from Agilent provides UV absorbance, and calibra-
tion is required to convert absorbance to concentration, 
but this requires prior knowledge of each component 
which is sometimes unavailable. Therefore, as done in 
Case Study 1, component retention times are used as the 
sole performance indicator for parameter estimation (see 
Equation 3). The second challenge is that numerical dif-
fusion may contribute significantly to the band broaden-
ing in the simulation if the discretization grid of the col-
umn is not fine enough. Conversely, a fine discretization 
may increase the computational burden, leading to a long 
simulation time. To obtain accurate retention times and 
peak widths within a short time, this work uses a loose 
discretization grid to estimate only the retention time, 
and the peak widths are extracted directly from the ex-
periments. In the first iteration, the peak width of each 
component is based on the average from initial experi-
ments, and the chromatogram is approximated by a 
Gaussian curve centered on the retention time. In subse-
quent iterations, the previous iteration's peak width is 
used, enabling progressive self-correction and refine-
ment of the method. 

As the simulation and experiment generate different 
profiles (concentration vs absorbance), only the final op-
timal experimental results are shown in Figure 4a. It is 
noted that the first small peak is the solvent front, which 
is not considered a component during parameter estima-
tion and optimization. After four iterations of the mecha-
nistic loop, the method time is minimized to about 1.49 
min while achieving complete separation (critical resolu-
tion ≥ 1.5) of all components, which is 49% to 78% faster 
compared to the initial experiments. In Figure 4b, the dis-
tribution of all experiments performed is plotted together. 
It shows that the initial experiments are spread across the 
search space and are away from the final optimal exper-
iment, showing how simulations helped eliminate the real 

 
  (a) Worst parameter estimation case    (b) Best parameter estimation case            (c) Final optimized condition 
Figure 3. Chromatograms of simulation and in-silico experiments obtained from (a,b) parameter estimation and (c) 
optimization. All chromatograms are obtained at the last mechanistic loop (loop 4).  
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experiments that are otherwise needed to finally arrive at 
the optimal point. Also, note that the optimized experi-
ments are close to each other, indicating that they have 
similar performances. Therefore, the goal is not neces-
sarily to develop a perfect model, but rather a robust 
method that achieves reliable results. Ideally, this would 
be complemented by a well-calibrated mechanistic 
model, which can provide added value, such as enabling 
sensitivity studies and further refining the process. 

CONCLUSIONS 
This work has presented an autonomous HPLC 

method development program coupled with a mechanis-
tic model, here termed the Smart HPLC Robot. Unlike lit-
erature methods, which rely solely on a data-driven ap-
proach, incorporating a mechanistic model retains the  
physics of the system, providing valuable insights and 
enabling easy model reuse. Throughout the process, the 
model automatically calibrates itself using real-time data 
feedback, making it a digital HPLC twin.  

The Smart HPLC Robot's performance was validated 
through an in-silico case study, demonstrating its ability 
to accurately predict isotherm model parameters and op-
timize HPLC methods. In a real-world case study, it effi-
ciently explored the search space, improving the HPLC 
method (e.g., minimizing method time). Notably, the goal 
of the Smart HPLC Robot is to deliver an optimal method, 
not a perfect model. 

To conclude, the Smart HPLC Robot has two main 
benefits: (1) reduction in experimental costs and burden 
through efficient search space exploration, and (2) re-
duced manpower by enabling self-driven method devel-
opment until “satisfaction” compared to traditional itera-
tive experimental workflow through automation. 
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     (a) Optimal chromatogram      (b) Experiment propagation 
Figure 4. Key indicators of the real system case study: (a) The optimal chromatogram obtained from real 
experiment; (b)The propagation of the experiments throughout the whole automation process.  


