Title: A survey and analysis of radiotherapy linear accelerator quality control (QC) in the UK, for c-arm and ring gantry systems and associated patient specific quality control (PSQC)

Type of Manuscript: Research Article

Authors: Elisha Tassano-Smith^{1,2} MSc, Antony L. Palmer^{1,2} PhD, Wojciech Polak¹ PhD, Andrew Nisbet² PhD

¹Medical Physics Department, Portsmouth Hospitals University NHS Trust, Queen Alexandra Hospital, Portsmouth, Hampshire, PO63LY, United Kingdom

²Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E6BT, United Kingdom

Corresponding author: Elisha Tassano-Smith, rmapel0@ucl.ac.uk

No authors have any conflicts of interest.

No funding to declare.

Acknowledgements: The authors wish the thank all centres who took part in the survey.

Abstract

Objectives. To conduct a survey of radiotherapy linear accelerator quality control (QC) across the United Kingdom (UK) on behalf of the Institute of Physics and Engineering in Medicine (IPEM) Radiotherapy Special Interest Group and Interdepartmental Dosimetry Audit Sub-committee. To update results from a similar survey published in 2012 and compare to the latest guidance from IPEM Report 81 (2018). There have been significant developments of equipment and clinical practice since the previous survey and IPEM publication, requiring an updated review and benchmark of QC practice.

Methods. All UK radiotherapy centres were invited to complete a comprehensive survey of their local QC practice, with questions on c-arm gantry, ring-gantry, linac ancillary equipment, and patient-specific quality control.

Results. 63% (n=43/68) of the UK radiotherapy centres responded. IPEM Report 81 was used to inform QC practice in 91% of centres. For the majority of tests studied centres were meeting or exceeding the recommendations of this report. Standard output was still performed weekly in 26% of centres compared to monthly recommendation in Report 81. Comprehensive tables of frequency and tolerances of QC tests were collated for c-arm and ring gantry linacs and ancillary equipment.

Conclusions. A comprehensive review of consensus practice for linac quality control radiotherapy across the UK is presented. Findings include the main stated reasons QC is undertaken is to "demonstrate safe use". On efficiency, it was found that about half of centres state they undertake "the right amount of QC". Half also state review of their QC process is "required".

Advances in Knowledge. Updated data are presented on current practice for linac quality control in the UK.

Keywords:

UK; quality control; radiotherapy; radiotherapy physics; survey;

A survey and analysis of radiotherapy linear accelerator quality control (QC) in the UK, for c-arm and ring gantry systems and associated patient specific quality control (PSQC)

Abstract

Objectives. To conduct a survey of radiotherapy linear accelerator quality control (QC) across the United Kingdom (UK) on behalf of the Institute of Physics and Engineering in Medicine (IPEM) Radiotherapy Special Interest Group and Interdepartmental Dosimetry Audit Sub-committee. To update results from a similar survey published in 2012 and compare to the latest guidance from IPEM Report 81 (2018). There have been significant developments of equipment and clinical practice since the previous survey and IPEM publication, requiring an updated review and benchmark of QC practice.

Methods. All UK radiotherapy centres were invited to complete a comprehensive survey of their local QC practice, with questions on c-arm gantry, ring-gantry, linac ancillary equipment, and patient-specific quality control.

Results. 63% (n=43/68) of the UK radiotherapy centres responded. IPEM Report 81 was used to inform QC practice in 91% of centres. For the majority of tests studied centres were meeting or exceeding the recommendations of this report. Standard output was still performed weekly in 26% of centres compared to monthly recommendation in Report 81. Comprehensive tables of frequency and tolerances of QC tests were collated for c-arm and ring gantry linacs and ancillary equipment.

Conclusions. A comprehensive review of consensus practice for linac quality control radiotherapy across the UK is presented. Findings include the main stated reasons QC is undertaken is to "demonstrate safe use". On efficiency, it was found that about half of centres state they undertake "the right amount of QC". Half also state review of their QC process is "required".

Advances in Knowledge. Updated data are presented on current practice for linac quality control in the UK.

Keywords:

UK; quality control; radiotherapy; radiotherapy physics; survey;

Introduction

Quality control (QC) testing is an essential component of the system for assurance of accuracy and safety in radiotherapy. As the complexity of equipment and clinical techniques continue to evolve, it is essential that QC testing is optimised for maximum value and efficiency, whilst meeting safety requirements and assuring best achievable accuracy. Since it falls to the responsibility of the local Medical Physics Expert (MPE) [1] to decide the scope of QC testing in radiotherapy departments, it is particularly useful to have recommendations, guidance, comparative data, and surveys of peer practice when producing QC testing schedules.

Previous surveys of QC practice in the UK have been valuable, with positive responses from physicists, conducted between 1999 and 2012 [2-4] helping to shape and standardise practice and give confidence in approach to QC. In the United Kingdom (UK), the professional body for medical physicists, the Institute of Physics and Engineering in Medicine (IPEM), published guidance on physics aspects of quality control in radiotherapy, Report 81, second edition, in 2018 [5], which also provided a valuable resource for design of QC schedules. However, the previous surveys and published professional guidance in the UK are now several years old and reference data may be in need of update, particularly to reflect changes in treatment technology and clinical practice; specifically, expansion of image guidance and online/offline plan adaptation, adoption of higher-precision techniques, ring-

gantry linacs, and evolution of patient specific QC practice, initially for volumetric techniques (VMAT) and later for more complex stereotactic approaches (SABR).

The IPEM Interdepartmental Dosimetry Audit Group (IDA) on behalf of the IPEM Radiotherapy Special Interest Group (RTSIG), commissioned a survey of UK radiotherapy centres to establish current consensus practice for QC of radiotherapy linacs and associated equipment.

Methods

A survey questionnaire on quality control (QC) practice of radiotherapy linacs, was sent to all UK radiotherapy centres in August 2024. Responses were collected up until approximately 70% of centres had responded, which was through to November 2024.

The survey requested local measurement frequency and performance tolerance values against a comprehensive list of QC tests, taken from IPEM Report 81 (2018) [5], the most recent UK QC survey [4] AAPM TG142 [6], and other relevant references [7,8] with unpublished QC schedules from individual radiotherapy centres. Responses were categorised into conventional c-arm gantry linacs and ring-gantry systems, and for QC of ancillary equipment. The local methodology and approach to patient specific quality control (PSQC) was also investigated. A review of various aspects of the management of QC functions was collated.

The questionnaire was piloted at six UK radiotherapy centres, to determine whether questions were explicit and interpreted correctly. Responses from the pilot survey were used to refine the final set of questions and pilot centres updated their responses to align with this official version.

A comprehensive list of all QC tests undertaken across all the responding centres in the UK was collated. To manage the amount of data and improve readability, only those tests conducted in at least five centres for c-arm gantry linacs, and three centres for ring-gantry linacs (due to a smaller sample size) were analysed and presented in this report. This empirical approach to data presentation maintained a true reflection of the full data. QC tolerances can be expressed in different units, such as % or mm, therefore the data was separately analysed and presented for each unit reported.

Results

The results of the QC survey are presented in four sections: QC management, frequency, tolerances, and patient specific QC (PSQC) considerations. The results for c-arm linacs are presented in this paper with the results for ring gantry and ancillary equipment presented in the supplementary material.

Forty-three UK centres responded to the survey providing comprehensive data on their QC schedules, procedures, and practice. Satellite centres were not separately invited but were asked to be included separately if QC processes differed to the lead centre.

The results are presented as a percentage of the total number of centres responding to the survey (n=43 out of a possible 68) not as a percentage of centres responding to specific questions. Also, centres may have responded to more than one option in a question. Therefore, totals may be greater or less than 100%. Data from the previous survey [4] is also presented in this format (which differs from the original publication [4]) for ease of comparison. Survey responses that were unclear and could not be validated were not presented in the data tables.

Linacs manufactured by Varian Medical Systems (Palo Alto, CA) were installed in 58% of responding centres, with Elekta (Stockholm, Sweden) linacs installed in 37%, and linacs from both vendors in 5% of centres. The responses for Varian and Elekta linacs have been combined for this publication as there were no significant differences and to manage the size of data tables presented.

QC Management

The stated main purpose of a QC schedule was to 'demonstrate safe use of the machine' for 91% of centres. Other common themes were to 'monitor performance' (21%), 'prioritise measuring components that are known to drift' (21%), a 'statutory requirement' (14%), and to 'predict failing components' (12%). Only 5% of centres stated to test potential failure modes.

The periods within which linac QC is performed in UK centres is shown in Table 1 (ordered by frequency). There is a wide variety in how QC is scheduled, with almost twice as many (26%) centres using a combination of early morning and normal working day for their QC, compared to centres using evenings and weekends (14%). Table 2 presents a wide variation in the time required for performing linac QC at centres across the UK, with the total time, including offline analysis, ranging from 6 to 37 per linac per month.

A service efficiency machine (SEM) was available in 16% of centres. 37% of centres stated they have a managed equipment service. When asked who provides the preventative maintenance inspection (PMIs) 42% of centres stated they had a partnership with the vendor, 28% stated in house and 26% stated vendor only. 19% of centres performed PMIs monthly, 21% quarterly and 21% three times/year with an overall range of monthly to six monthly. The time taken for PMIs is not included in the QC time data (Table 2).

IPEM Report 81 (2018) [5] was stated as being used in 91% of centres to derive their QC schedule with 67% of centres stating experience is also used. Only 5% of centres mentioned near misses inform QC schedules. 26% of centres review QC schedules annually, 26% stated with the introduction of new treatment techniques or equipment and 23% stated when new guidance is published. 19% of centres stated they have no formal review schedule and 14% of centres stated they continually review. 12% of centres stated they had not completed a review since the publication of IPEM Report 81 (2018) [5]. Only one centre stated a complete change of process moving from IPEM Report 81 (2018) [5] approach to a failure mode and effects analysis (FMEA) approach. 51% of centres stated their QC schedule is in need of update.

86% of centres stated they have improved the efficiency of their QC approach: 16% by reducing frequency, 16% by moving to online analysis, 16% by reordering tests. Half of centres stated they undertake the right amount of QC, 16% stated too much, 5% felt too much but uncomfortable reducing below IPEM Report 81 (2018) [5] recommendations and 5% stated too little.

Software was used in two thirds of centres for recording QC results: most commonly QATrack+ (RADformation) (26%). Local spreadsheets and databases were used in 53% of centres and only 7% of centres reported they still use paper records for some or all their QC. Stated benefits of electronic recording included improved trending (47%), identification of out of tolerance results (28%), remote access (19%), and reduced human error (19%). One centre stated that trending of the results in this way helped to identify degradation of the target before breakdown.

Full completion of planned monthly QC was reported in 47% of centres, 35% stated above 95% completion, and 9% reported less than 75%. 37% of centres stated they routinely record compliance data as a key performance indicator (KPI), 49% of centres stated they do not and 5% stated not currently but soon.

A linac would be removed from clinical use to complete monthly QC in only 19% of centres, and of these, half had a service efficiency machine. 44% stated they may remove functionality from a machine

to return to use if QC had not been completed, in particular this related to electron energies being taken out of service.

QC Frequency

IPEM Report 81 (2018) [5] was used to determine the frequency of performing QC in 86% of centres, 84% stated local experience/past trends/reviewing trends, 26% stated AAPM 142 Report [6] and 26% risk assessments. Most centres reported using published guidance as a starting point and making centre specific modifications from local experience and trending. 7% stated frequency is based upon what is practically achievable, only one centre stated using FMEA.

The frequency at which linac QC measurements were made at UK centres responding to the survey is presented in table 3 for conventional c-arm gantry linacs. The data shows the current survey results compared to IPEM Report 81 (2018) recommendations [5] and the previous UK survey results [4]. Data for ring-gantry linacs and ancillary equipment are presented in the supplementary material.

QC Tolerances

The survey used a definition of 'notification' level, being the ideal operating performance above which investigations and rectification would be planned, and 'suspension' level at which equipment is likely to be removed from clinical use. Terminology varied between centres with over 15 variations.

Published guidance was used in 95% of centres to determine the notification and suspension levels for the QC tests. 74% of centres also stated that tolerances were locally derived based on experience of expected machine performance. 49% of centres stated these tolerances are regularly reviewed and updated.

The variation of tolerance levels for QC tests is given in Table 4 for c-arm linacs. Ring-gantry linacs and linac ancillary equipment is presented in the supplementary material. The modal (most frequent) tolerance values are given, with multi-modal result if appropriate, in the format n = x/y where x is the numbers of centres reporting modal value and y the total number of centres responding to each question in the stated units. No consensus' is stated where no mode in the data and 'functional' includes similar wording e.g. working, pass, on, yes/no.

Downloaded from https://academic.oup.com/bjr/advance-article/doi/10.1093/bjr/tqaf140/8173800 by Catherine Sharp user on 07 July 2025

Patient Specific Quality Control (PSQC)

Independent monitor unit (MU) checks or point dose calculations were used in 41% of responding centres. The most commonly used software was RadCalc (Lifeline Software Inc., Tyler, USA) (35%), DoseCHECK (SNC, Mirion Medical, Florida, USA) (16%), and in-house solution (23%). 49% stated that a Medical Physics Expert (MPE) would review failing plans to decide the course of action, 23% stated this may include sending the plan for measured PSQC and 16% stated it may include using a different measurement point.

Independent 3D dose calculations were completed for all (treatment planning system) TPS plans in 28% of centres, 23% stated all VMAT/IMRT plans, other centres restricting to specific categories e.g. stereotactic ablative body radiotherapy (SABR) or flattening filter free (FFF). The most commonly used software was SNC Patient (30%) and RadCalc (26%). 49% stated an MPE would be involved in the decision of how to proceed with a failing calculation with 42% stating their decision likely includes sending the plan for measurement.

The proportion of patient plans undergoing measured PSQC varied considerably between centres, but in the majority, it was a relatively small percentage of the total number of plans. 14% of centres stated 10% of all plans have measured PSQC, 9% stated 5% of plans, the remaining centres estimated values in the range 1% to 100% of plans. 49% of centres reported that plans undergo measured PSQC when

new sites/techniques/prescriptions/class solutions have been implemented, fail software PQSC and/or are for SABR/SRS. Other common responses stated randomly sampled plans (30%), particularly complex plans (21%) and plans falling outside MU or MU/Gy limits (19%).

The most common equipment used for measurement was Delta4 (ScandiDos, Sweden) (40%), EPID panel (mixed vendors) (30%), point dose (26%), and ArcCHECK (Mirion Medical, Melbourne, USA) (23%). 91% stated gamma criteria is used for measured PSQC 60% of which stated 3%/3mm >95% is used as the passing tolerance, it was not always specified whether this was using local or global normalisation. SABR/SRS tolerances were typically tighter and more variable between centres, but modal response was 3%/2mm with no specified pass percentage, and again was unclear whether this was using local or global normalisation. For point dose measurements the most common pass criteria was 3% plan dose and 5% per beam. 60% stated that they deliver a set of reference plans for PSQC with centres most commonly stating they perform these checks monthly or 6 weekly. 23% stated they do not perform these plans and 2% stated they were planning on introducing it.

Failing measured PSQC results would have a review by an MPE in 91% of centres, with 35% stating they would consider a replan and 28% would remeasure often stating by an independent operator and on a different linac. Other common responses included, involving a clinician (19%) and relaxing tolerances (9%). However, 23% of centres reported zero plans are replanned per year due to failing measured PSQC results and a further 44% stated ≤5 plans per year. Other centres stated qualitatively very low or <1%. Three centres reported higher frequencies of replanning as a result of failed measurements:<5% (of 300-400 plans), 12 plans/year and 18 plans/year. Clinical scientists were the most common staff group to perform PSQC (63% of responding centres). 7% stated radiographers perform the portal dosimetry measurements.

In-vivo measurements were performed in 58% of centres. EPID panel was used in 37% of centres, entrance diodes in 30% and TLDs in 12%. Common reasons given by centres who do not perform invivo measurements included; diodes being phased out, false negative/positive rate too high, rely on imaging instead, diodes not appropriate for VMAT techniques, risk assessments indicated able to reduce, rely on PSQC and routine QC instead. 14% stated that whilst they do not currently perform invivo measurements they are in the process of commissioning EPID dosimetry.

End to end tests were performed in 49% of centres with 21% clarifying these are performed as part of commissioning new techniques/equipment/class solutions, after upgrades or during external audits. Only 5% stated they are routinely performed annually and 2% stated monthly.

Discussion

QC Management

Table 1 indicates a shift towards more QC being performed outside of normal working hours (09:00-17:30) compared to the 2012 survey. Previously, 30% of centres performed all QC during the normal day [4], which is now only undertaken in 12% of centres. Table 2 highlights a large range in the time required for performing linac QC which potentially indicates large variations in the quantity, complexity, or efficiency of QC tasks between centres but could also be a result of some centres including daily run up tasks in this number. Table 2 shows a large difference between the time required to perform QC of c-arm gantry linacs compared to ring gantry linacs, with the former reported to take twice as long (median values).

Nearly all QC schedules, 91%, were found to be derived from IPEM Report 81 (2018) [5] with changes based upon a centres own experience in 67% of cases. 100% of centres cited IPEM Report 81 (1999) [2] in the previous survey and 54% stated machine reliability and historic data, suggesting an increased

variation between centres. Interestingly, both surveys had only 7% of centres stating they use FMEA, indicating minimal uptake of the previous survey's recommendation to move to more considered design of QC schedules. However, IPEM Report 81 (2018) [5] was published after the publication of the previous survey and therefore would imply that these IPEM Report 81 (2018) [5] recommendations take into account the risks of not performing QC at the specified frequency and take precedence over the previous survey recommendations. This is a likely case why few centres have adopted the FMEA approach. If a full FMEA study on linac QC became available and was supported in the same way as IPEM publications, it is possible we would see more of a shift to that approach of QC. Previously, 37% of centres mentioned near misses informed schedules compared to only 5% in this survey. 20% of centres previously said the plan-do-study-act cycle, no centres reported that in this survey.

There was consistency in when centres last performed a review of their QC schedule, with 56% stating within the last year for this survey compared to 54% in the previous survey. Five centres reported they had not completed a review since the publication of IPEM Report 81 (2018) [5], the most recent UK guidance. The most reported changes made as a result of reviewing QC schedules were found to be changes in QC frequency and tolerance, not a complete redesign. This is reflected in minimal deviation from an IPEM Report 81 (2018) [5] approach. This could explain why despite high rates of recent review, 51% of centres still responded 'Yes' when asked if they believe their QC schedule is in need of a review and update, compared to only 33% of centres in the previous survey [3]. This is supported with 9% of centres reporting they wish to introduce more automated QC, 7% reporting they wish to introduce uncertainty models and 5% wishing to move to paperless QC. The desire to overhaul the QC approach has existed since the previous survey but this has not yet been achieved by most centres.

Just over a quarter of centres reported using QATrack+ for QC record keeping (ceased maintenance from January 2025, after data collection completed). Only a few centres reported using paper methods, citing funding as an issue in making the transition to electronic recording.

Downloaded from https://academic.oup.com/bjr/advance-article/doi/10.1093/bjr/tqaf140/8173800 by Catherine Sharp user on 07 July 2025

Compared to the previous survey results [4] there has been an improvement in the number of centres achieving 100% of monthly QC completion, previously <30% but now 47%. However more centres reported less than 80% of monthly QC achieved, previously 4% but now 9%.

QC Frequency

A similar number of centres reported the use of risk assessments to determine QC in this survey (26%) compared to the previous survey (30%). 7% of centres also specified that the frequency of QC performed was based upon what was practicably achievable, this highlights the conflicting demands radiotherapy departments face. 16% of centres stated that they were unable to review the frequency of QC due to such demands. This highlights a circular problem; radiotherapy departments may be too busy to improve efficiency which in turn results in inefficiency. Some centres mentioned an apprehension of reducing tolerances below IPEM Report 81 (2018) [5] or haven't seen a need to. This is reflected in Table 3 where typically centres are performing tests at least as frequently as IPEM Report 81 (2018) [5] recommends. Outliers are largely electron tests, for example, electron energy ratio at different gantry angles, linearity of dose with MU, and constancy of dose output QC are no longer being performed in 44%, 28% and 26% of centres respectively, a reduction in frequency from IPEM Report 81(2018) [5] recommendations.

The frequency at which centres reported performing TPR20:10 has also decreased below previous survey results, 74% of responding centres [4], to a bimodal split between monthly (30%) and annually (30%). Standard output was recommended to be performed monthly in IPEM Report 81 (2018) [5] and found to be performed monthly in 52% of centres in the previous survey and monthly in 58% in the current survey. Weekly output was still performed in 26% of centres in the current survey. However,

all centres perform daily output constancy checks, 40% with a linac-integrated device and 67% with an external device.

There was good consistency across the UK for many QC tests, such as for c-arm gantry quick checks of beam flatness and symmetry performed daily and more comprehensive tests performed monthly, for

recommended as a monthly test in IPEM Report 81 (2018) [5].

There was a lower level of consistency for QC tests of imaging systems, such as for 3D kV imaging where equal proportion of centres measured at monthly, quarterly and six monthly, as well as

almost all responding centres. The prevalence of devices for quick checks and integration with linac

automated QC tools may explain the ability to move to daily checks even though this was

QC Tolerances

intermediate periods.

It was common in the survey results for the IPEM Report 81 (2018) [5] published 'action levels' to be used to set local suspension levels, with lower notification levels derived from centre experience. 'Action levels' are defined to be equivalent to what this survey refers to as notification levels. Centres are therefore commonly implementing tighter tolerances than the IPEM Report 81 (2018) guidance [5] may suggest. For example, there has been tightening of some tolerances of fundamental QC results, such as standard output measurement. The modal notification tolerance was 1.5% (at 16 of 37 centres responding in %) compared to 2% guideline in IPEM Report 81 (2018) [5]. This reflects a drive for improved accuracy in treatment and the technical equipment to maintain performance at this level. The suspension level for standard output remains at 2% in the majority of centres. There has been little published linking tolerances to clinical outcomes, although Bolt et al [9] in a study of output measurements in all UK radiotherapy centres over a 6-month period suggested a tightening of tolerance levels may lead to improvements in tumour control probabilities [9].

No consensus of the naming convention of notification and suspension level tests was found with action being the most common term for both levels, there is a risk this could result in confusion between centres. Therefore, a suggestion of this survey is for centres to adopt 'notification' and 'suspension' definitions, this is in line with recommendations from the UK kV Survey conducted in 2024 [10].

Downloaded from https://academic.oup.com/bjr/advance-article/doi/10.1093/bjr/tqaf140/8173800 by Catherine Sharp user on 07 July 2025

The least consensus for c-arm linac QC was reported for tolerance levels of imaging QC tests, due in part to different measurement methods and measurement units, and likely a lack of guidance in publications. A quarter of centres have separate radiation protection or diagnostic departments perform the annual imaging QC tests which could also be contributing to the difference in types of imaging tests performed and their tolerances.

Ancillary Equipment

Ancillary equipment has potential to directly affect patient treatment, and as such has comparable status to linac performance. Little consensus was found for gating implementation, although monthly or less frequent QC was reported.

The frequency at which diode calibration check is performed has not changed since the previous survey with 17% of centres stating it is performed monthly previously compared to 19% in this survey (Table 7, supplementary material). This is interesting as it appeared that the use of diode measurements were being reduced from centres responses to PSQC questions yet the percentage of centres performing this check monthly has remained constant.

Downloaded from https://academic.oup.com/bjr/advance-article/doi/10.1093/bjr/tqaf140/8173800 by Catherine Sharp user on 07 July 2025

Tolerances for linac ancillary equipment, in particular gating and surface guided equipment, showed ranges with a 10-fold difference (supplementary material, Table 8). In room respiratory monitoring system 0.2 to 2 mm notification, 0.3 to 3 mm suspension, temporal accuracy 0.1 to 1 second notification, and stability 0.2 to 2 mm suspension. This could be because these are relative new technologies and consensus methodologies have not yet been established.

PSQC

There was a lack of consistency in the type and quantity of patient-specific quality control (PSQC) performed at centres across the UK. PSQC testing may be interpreted as calculations independent of the treatment planning system used for the plan creation or physical dosimetric measurements made prior to treatment commencement.

Most centres said they would consider a replan if failing PSQC measurements occurred, yet this translated to very few actual replans; almost 70% of centres replanned between zero and five plans per year. It is unclear whether the this is a result of very few plans failing measurement or from MPE decision to proceed to treatment with the original plan. The survey did not ask the percentage of plans that fail PSQC per year. Two of the three centres that stated a much higher percentage of replans in comparison to the rest of the cohort also reported a much higher percentage of the number that are measured. This indicates an inconsistent approach to PSQC which may have significant impact on the clinical workload.

Conclusions

The linac QC survey was sent to all UK radiotherapy centres with 63% responding (n=43/68). This has provided an update to the UK consensus practice of linear accelerator QC. Topics covered were c-arm linacs, ring gantry linacs as well as linac ancillary equipment and PSQC, which have not previously been surveyed in the UK on this scale. Findings include that among the main stated reasons QC is undertaken is to "demonstrate safe use". Almost all centres stated IPEM Report 81 (2018) [5] as a main source or starting point to structure their QC schedules including tolerances and frequency with adjustments based upon local experience and evolution of clinical techniques and available QC equipment.

This work is not intended to be used as professional advice but to offer an update to the previous review of consensus practice in the UK.

Conflicts of interest

None.

Acknowledgements

Thank you to all UK radiotherapy centres who took part in this survey, especially the five centres who took part in the pilot survey.

References

- 1. Ionising Radiation (Medical Exposure) (Amendment) Regulations 2024. London: Health and Safety Executive; 2024.
- 2. Mayles WPM, Lake R, McKenzie A, Macaulay EM, Morgan HM, Jordan TJ, et al. *Physics aspects of quality control in radiotherapy. IPEM Report 81.* 1st ed. York: Institute of Physics and Engineering in Medicine; 1999.
- 3. Venables K, Winefield E, Deighton A, Aird E, Hoskin P. A survey of radiotherapy quality control practice in the United Kingdom for the START trial. Radiother Oncol 2001;60:311–18.

- 4. Palmer AL, Kearton J, Hayman O. A survey of the practice and management of radiotherapy linear accelerator quality control in the UK. Br J Radiol. 2012 Nov;85(1019):e1067–e1073. doi:10.1259/bjr/46195110.
- 5. Patel I, Weston S, Palmer AL, Mayles WPM, Whittard P, Clements R, et al. *Physics Aspects of Quality Control in Radiotherapy, IPEM Report 81.* 2nd ed. York: Institute of Physics and Engineering in Medicine; 2018.
- 6. Klein E, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. AAPM Task Group Report 142. Quality assurance of medical accelerators. *Med Phys.* 2009;36(3):1125–1148. doi:10.1118/1.3082195.
- 7. Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith AR, Higgins SA, Kugele M, et al. AAPM Task Group Report 302: Surface-guided radiotherapy. *Med Phys*. 2022;49(4):e82-e112. doi:10.1002/mp.15532
- 8. Court L, Balter P, Gao S, Netherton T, Li Y, Mihailidis D, et al. Experience and Suggestions on "Commissioning and QA Procedures" for Halcyon [online]. MD Anderson Cancer Centre and University of Pennsylvania. [Accessed 31 March 2025] Available from: mediaroom.com.
- 9. Bolt M, Clark CH, Nisbet A, Chen T. Quantification of the uncertainties within the radiotherapy dosimetry chain and their impact on tumour control. *Phys Imaging Radiat Oncol*. 2021 Jun 28;19:33–38. doi:10.1016/j.phro.2021.06.004.
- 10.Palmer AL, Brimelow J, Downes P, Munshi M, Nash D, Rai B, et al. A review of kilovoltage radiotherapy treatment in the United Kingdom: quality control, radiation dosimetry, treatment equipment, and workload. *Br J Radiol*. 2025;98(1167):392-403. doi:10.1093/bjr/tqaf001.

Tables

Table 1: Periods in which linac QC is performed in UK radiotherapy centres.

Routine QC is				Perc	entage	e of cen	tres us	ing the	combi	nation	of sess	ions			
performed	26%	14%	12%	9%	7%	5%	5%	2%	2%	2%	2%	2%	2%	2%	2%
Early Morning	✓			✓		✓		✓	✓	✓	✓	✓			
Normal Day	✓		✓		✓			✓	✓	✓			✓	✓	
Evening		✓			✓	✓		✓	✓		✓		✓		✓
Weekend		✓			✓	✓	✓	✓		✓		✓		✓	
Previous															
Survey Results (2012) [4]	5%	0%	30%	0%	7%	0%	0%	7%	12%	2%	0%	0%	30%	2%	5%

Table 2: Duration of linac QC performed per linac per month in UK radiotherapy centres (it is unclear if all centres included daily QC in their total).

Linac Type	Time Category (h per linac per month)	Minimum Value	First Quartile	Median	Third Quartile	Maximum Value
	Total Machine Time	5	10	15	20	34
C-Arm	Total Offline Analysis	0	1	2	2	15
	Total Time	6	11	18	24	37
	Total Machine Time	4	6	7	8	12
Ring	Total Offline Analysis	0	0	2	2	8
	Total Time	5	6	9	10	20

Table 3: Frequency at which QC is performed at UK centres, for c-arm gantry linacs.

1	lable 3: Freq	иепсу	at Willeri	QC IS	perio	iiiieu	at OK	Centi	C3, 10	i C-aii	ii gaiii	.ı y 1111	acs.					
2 ⁻ 3 4 5 6 7 8 9 10 11	QC Test	IPEM Report 81 (2018) [5]	Most common frequency in the previous Survey Results (2012) [4]	Daily	At least weekly	Between weekly and monthly	Monthly	Between Monthly and Quarterly	Quarterly	Between quarterly and 6 Months	6 Months	Between 6 months and annually	Annually	Scheduled less frequent than annually	Commissioning Only	Performance drift/post breakdown	Not Performed	Not Applicable papeojuwog
13-	Beam Quality - Photons Energy check (TPR 20:10)	M	M (74%)				30%	5%	7%		5%		30%		14%	5%	2%	from https://academic.oup.com/bjr/advance-article/doi/10.1093/bjr/tqaf140/8173800 by 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%
14	Energy constancy G=0°	M	M (74%)	14%	2%		47%	3/0	7%		3/0		30/0		14/0	2%	23%	n h
15	Energy constancy G≠0°	Α	(,				5%	2%	19%	2%	7%		19%		5%	5%	35%	ttps
	PDD measurement	Α	A (48%)										<u>65%</u>		19%	12%	7%	
17	Beam Quality - Electrons																	Ca
	Energy Ratios G=0° Energy ratios at G≠0°	Q A			2%	2%	<u>40%</u> 2%	9%	23% 9%		5%		2% 21%		2% 7%	2% 5%	7% 44%	2% ©
19 20	PDD Measurement	A	A (48%)				2%		970		3%		51%		21%	12%	9%	2% ਨ 2% o
21	Dosimetry - Photons		(,														-,-	- 0
22	Definitive calibration	C R					2%						33%		21%	<u>47%</u>		 on
23	Output recalibration					2%										<u>95%</u>		n/bji
24	Standard output	M	M (52%)	2%	26%	5%	<u>58%</u>	7%								2%		r/ad
25	Output constancy: linac integrated device	D	D (44%)	<u>40%</u>	2%												2%	lvar
26	Output constancy: external	_	- ()															ıce-
27	constancy device	D	D (44%)	<u>67%</u>	14%											2%	2%	art
28	Calibration check: linac	6	M	2%			21%	4%	7%							7%	2%	2% [©]
29	integrated device Calibration check: external		(35%)															doi:
30	constancy device	6	M (35%)	2%	2%		44%	4%	7%	2%						7%		7% 🖯
31	Output in clinical mode cf.		(3370)	F0/	20/		00/		F0/				5 0/		00/	240/	250/	. 100
32	service mode			5%	2%		9%		5%				5%		9%	21%	<u>35%</u>	2% 93/k
33	Output factors	Α								2%			47%		40%		7%	ojr/t
34	Effect of gantry rotation on	Q	Q or 6 (52%)	2%			16%	2%	<u>37%</u>	2%	5%		23%		5%	2%	2%	qaf
35	output Linearity of dose with MU		(32%) Q or 6															140
36	zarearrey or asse than mo	Α	(48%)				5%	2%	16%	2%	12%		<u>51%</u>		2%	2%	2%	/81
37	Linearity of dose with dose	Α	Q or 6	2%			2%	2%	14%	5%	16%		23%		5%	2%	21%	738
38	rate	^	(48%)						14/0	3/0	10/0				370			00
39	MU1 and MU2 readout Consistency of dose output	Α		12% 19%	5%		33% 14%	9%	5%		5%		7% <u>28%</u>		9%	12% 2%	19% 9%	201
40	Backup timer	A	M (12%)	5%	2%		12%		3/0		2%		12%		14%	2%	28%	2% C 16% ≅
41 -	Dosimetry - Electrons																	eri
43	Definitive calibration						2%						28%		23%	42%		2% 🗟
44	Output recalibration		NA (5004)	201	2201	2%	F36/	001					2%			<u>88%</u>		2% Sharp
45	Standard output Output constancy: linac	М	M (52%) D	2%	23%	5%	<u>53%</u>	9%										2% =
46	integrated device	D	(44%)	30%	2%												5%	Jse
47	Output constancy: external	D	` D ´	<u>58%</u>	14%												2%	user on 07 2%
48	constancy device	D	(44%)	3670	14/0												2/0	2/0 07
49	Calibration check: linac	6	(3E%)	2%	4%		16%	2%	5%		2%					5%	5%	July
50	integrated device Calibration check: external		(35%) M															ly 2
51	constancy device	6	(35%)		2%		<u>35%</u>	7%	5%	2%						5%	5%	5% 2025
52	Output in clinical mode cf.		•	2%	5%		5%			2%			2%		12%	19%	37%	9%
-	service mode		<u> -</u>	∠/0	J/0		J/0			∠/0			∠/0		12/0	13/0	31/0	370
54	Effect of gantry rotation on	Α	Q or 6 (52%)				2%		9%		5%		33%		9%		30%	2%
55	output		(52%) Q or 6										_					
56	Linearity of dose with MU	Α	(48%)					2%	7%	2%	7%		21%		21%	2%	28%	2%
57	MU1 and MU2 readout		•	5%	5%		30%	7%					5%			16%	21%	5%
	Consistency of dose output	A	NA (4551)	16%			19%	201					12%		12%	5%	26%	2%
59	Backup timer Applicator factors	A A	M (12%)	2%			5% 2%	2%	5%	2%	2%		7% 33%	2%	9% <u>37%</u>	5%	<u>47%</u> 7%	14% 2%
60	Applicator factors	~					∠/0		J/0	∠/0	∠/0		JJ/0	∠/0	31/0		1/0	2/0
61																		

	Applicator/insert interlocks			7%			23%		16%		5%	5%	16%	7%	7%	2%
_	Flatness and Symmetry - Pho	ntons		7 70			23%		10%		5%	5%	16%	770	770	270
1.	F&S quick check – linac	7.0113														
2	integrated device			<u>35%</u>	2%		2%								7%	
3	F&S quick check – external			40%	14%		2%								12%	
4	constancy device			4070											12/0	
5	F&S G=0°	M	M (57%)	20/	2%	2%	<u>76%</u>	7%	5%	2%	70/	5%		2%	70/	
6	F&S G≠0° Linac integrated cf.	Α	M (26%)	2%	2%		7%		<u>37%</u>	2%	7%	30%		2%	7%	
7	external constancy device						2%		2%	2%	2%	2%	7%	12%	26%	<u>33%</u>
8	Profiles with water tank	Α	A (48%)							2%		53%	35%	7%	2%	
9.	Flatness and Symmetry - Elec	ctrons	<u> </u>									_				WO
10	F&S quick check – linac			40%	14%		2%								5%	ownloaded
11	integrated device			4070	1470		2/0								3/0	ade
12	F&S quick check – external			33%	12%		2%								21%	d f
13	constancy device F&S G=0°	М	M (57%)			2%	49%	9%	19%	5%		5%	2%		5%	2% Trom
14 15	F&S G≠0°	A	M (26%)			2/0	2%	370	12%	2%	5%	30%	5%		37%	
	Linac integrated cf.		(20/0)						22/0			3070		00/	· ·	bs
16	external constancy device						2%			2%	2%		7%	9%	<u>37%</u>	33% <u>::</u>
17	Profiles with water tank	Α	A (48%)							2%		37%	<u>47%</u>	7%	2%	2% မြ
18	VMAT & MLC															emic.
19	Arc cf. static output			2%			14%		7%		5%	2%	9%		<u>56%</u>	ic.o
20	DMLC sweeping gap output at diff θ			2%	2%		23%	7%	16%		2%	2%	9%		30%	.oup.com/bjr/advance 2%
21 22	VMAT DRGS	6			2%		40%		9%	2%	2%	2%	2%	2%	33%	cor
23	VMAT MLC speed	Ü			2%		42%	2%	7%	2%	270	270	7%	2%	30%	n/bj
23 24	MLC Picket Fence - G0°	M		5%	7%		63%	5%	5%	7%					7%	ir/a
	MLC Picket Fence –	М			5%		40%	2%	12%	7%	5%		9%	2%	14%	dva
25	Cardinal Gθ				3/0			270								ince
26	Leakage through MLCs	Q	Q6 (26%)				12%		5%	2%	2%	21%	<u>42%</u>	12%	5%	
27	MLC dosimetric leaf gap						12%		7%			14%	<u>28%</u>	9%	19%	5% and be
28	Wedges Wedge ratio Wθ=60°		M (34%)	5%	5%		28%	2%	7%			2%	5%		9%	33% 0
29 30	Wedge ratio Wθ≠60°		IVI (3470)	3%	3%		12%	2%	7 70		5%	2% 9%	5% 9%		9% 14%	42% O
	Wedge ratio G≠0°		Q6 (47%)		2%		7%	2/0	7%		2%	9%	14%		16%	33% :_
31	Wedge beam profile															
20	wedge beam prome		Q6 (18%)	2%	2%		2%	2%	2%			5%	28%	2%	14%	<u>33%</u> 🙈
32	Radiation Alignment		Q6 (18%)	2%	2%		2%	2%	2%			5%	28%	2%	14%	33% %
33	Radiation Alignment Quick check of radiation		Q6 (18%)			2%			2%			5%	28%	2%		3/bjr/
33 34	Radiation Alignment Quick check of radiation field size		Q6 (18%)	51%	5%	2%	30%	5%	2%			5%	28%	2%	2%	3/bjr/
33 34 35	Radiation Alignment Quick check of radiation field size Measurement of radiation		Q6 (18%)			2%			2%	2%	7%	2%	28%	2%		3/bjr/
33 ⁻ 34 35 36	Radiation Alignment Quick check of radiation field size Measurement of radiation field size		Q6 (18%)			2%	30%	5%		2%	7%				2%	3/bjr/
33 ⁻ 34 35 36 37	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and	0		51%	5%	2%	30% 28%	5% 9%	23%	2%		2%		14%	2%	3/bjr/
33 ⁻ 34 35 36 37 38	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and	Q	Q6 (18%) M (61%)			2%	30%	5%		2%	7% 7%				2%	2% 2%
33 ³ 34 35 36 37 38 39	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and	Q		51%	5%	2%	30% 28%	5% 9%	23%	2%		2%		14%	2%	2% 2%
33 ³ 34 35 36 37 38 39 40	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different	Q Q		51%	5%	2%	30% 28%	5% 9%	23%	2%		2%		14%	2%	2% 2%
33 ³ 34 35 36 37 38 39 40 41	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles			51%	5%	2%	30% 28% 49%	5% 9%	23%	2%	7%	2%	12%	14%	2% 2% 7%	2% 2%
33 ³ 34 35 36 37 38 39 40 41 42	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and			51%	5%	2%	30% 28% 49%	5% 9%	23%	2%	7%	2%	12%	14%	2% 2% 7%	%bjr/tqaf140/8173800 by Catherine 2%
33- 34 35 36 37 38 39 40 41 42 43	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD	Q A		51%	5%	2%	30% 28% 49% 12%	5% 9% 5%	23% 14% 12% 7%		7% 2% 2%	2% 2% 2%	12% 5% 5%	14% 7% 5%	2% 2% 7% <u>58%</u>	%bjr/tqaf140/8173800 by Catherine 2%
33 ⁻ 34 35 36 37 38 39 40 41 42 43 44	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity	Q	M (61%)	<u>51%</u> 7%	5%	2%	30% 28% 49% 12% 7% 28%	5% 9%	23% 14% 12% 7% 14%	2% 7% 2%	7% 2%	2% 2% 2% 14%	12% 5% 5% 12%	14%	2% 2% 7% 58%	%bjr/tqaf140/8173800 by Catherine 2%
33 ⁻ 34 35 36 37 38 39 40 41 42 43 44 45	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD	Q A Q		51%	5%	2%	30% 28% 49% 12%	5% 9% 5%	23% 14% 12% 7%	7%	7% 2% 2% 2%	2% 2% 2%	12% 5% 5%	14% 7% 5% 2%	2% 2% 7% <u>58%</u>	2% 2%
333 344 353 3637 3839 4041 4243 444 4546	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication	Q A Q	M (61%)	51% 7%	5%	2%	30% 28% 49% 12% 7% 28% 40%	5% 9% 5%	23% 14% 12% 7% 14% 9%	7%	7% 2% 2% 2%	2% 2% 2% 14%	12% 5% 5% 12% 2%	14% 7% 5% 2%	2% 2% 7% 58% 56% 23%	%bjr/tqaf140/8173800 by Catherine Sharp 2%
333 344 35 36 37 38 39 40 41 42 43 44 45 46 47	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with	Q A Q	M (61%)	51% 7% 2% 2%	5% 2% 2%		30% 28% 49% 12% 7% 28% 40% 21%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2%	7%	7% 2% 2% 2%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7%	14% 7% 5% 2%	2% 2% 7% 58% 56% 23% 47%	%/bjr/tqaf140/8173800 by Catherine Sharp user on 2%
333 344 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation	Q A Q 6	M (61%) Q6 (31%)	51% 7% 2% 2% 23%	5% 2% 2%	2%	30% 28% 49% 12% 7% 28% 40% 21%	5% 9% 5%	23% 14% 12% 7% 14% 9%	7%	7% 2% 2% 2%	2% 2% 2% 14%	12% 5% 5% 12% 2%	14% 7% 5% 2% 2%	2% 2% 7% 58% 56% 23% 47%	3/bjr/tqaf140/8173800 by Catherine Sharp user on 07
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63%	5% 2% 2%	2% 2%	30% 28% 49% 12% 7% 28% 40% 21%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2%	7% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7%	14% 7% 5% 2% 2%	2% 2% 7% 58% 56% 23% 47% 7%	3/bjr/tqaf140/8173800 by Catherine Sharp user on 07
33'34'355'36'37'38'39'40'41'42'43'44'45'46'47'48'49'50	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size	Q A Q 6	M (61%) Q6 (31%)	51% 7% 2% 2% 23% 63% 9%	5% 2% 2% 9% 5%	2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2% 5%	7%	7% 2% 2% 2%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5%	14% 7% 5% 2% 2% 5%	2% 2% 7% 58% 56% 23% 47% 7% 5%	3/bjr/tqaf140/8173800 by Catherine Sharp user on 07
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63%	5% 2% 2%	2% 2%	30% 28% 49% 12% 7% 28% 40% 21%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2%	7% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7%	14% 7% 5% 2% 2%	2% 2% 7% 58% 56% 23% 47% 7%	%/bjr/tqaf140/8173800 by Catherine Sharp user on 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63% 9%	5% 2% 2% 9% 5%	2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2% 5%	7% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5%	14% 7% 5% 2% 2% 5%	2% 2% 7% 58% 56% 23% 47% 7% 5%	3/bjr/tqaf140/8173800 by Catherine Sharp user on 07
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63% 9% 16%	5% 2% 2% 9% 5% 9% 2%	2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5%	7% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49%	%/bjr/tqaf140/8173800 by Catherine Sharp user on 07 July 2025 2% 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63% 9% 16%	5% 2% 2% 9% 5% 9%	2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2% 5% 7%	7% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12%	3/bjr/tqaf140/8173800 by Catherine Sharp user on 07
33' 34' 35' 36' 37' 38' 39' 40' 41' 42' 43' 44' 45' 46' 47' 48' 49' 50' 51' 52' 53' 54' 55'	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63% 9% 16%	5% 2% 2% 9% 5% 9% 2%	2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14%	5% 9% 5% 2% 9%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5%	7% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49%	%/bjr/tqaf140/8173800 by Catherine Sharp user on 07 July 2025 2% 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable)	Q A Q 6	M (61%) Q6 (31%) D (43%)	51% 7% 2% 2% 23% 63% 9% 16% 14%	5% 2% 2% 9% 5% 9% 2% 2%	2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 9%	7% 2% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23%	2% 2% 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable) Couch Movements	Q A Q 6	M (61%) Q6 (31%) D (43%) M (22%)	51% 7% 2% 2% 23% 63% 9% 16% 14%	5% 2% 2% 9% 5% 9% 2% 2% 2%	2% 2% 2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37% 16%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 7% 5% 9%	7% 2% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23%	2% 2% 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable) Couch Movements Couch lat. and long.	Q A Q 6 D M	M (61%) Q6 (31%) D (43%) M (22%)	51% 7% 2% 2% 23% 63% 9% 16% 14% 5%	5% 2% 2% 9% 5% 9% 2% 2% 5%	2% 2% 2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37% 16%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 7% 5% 9%	7% 2% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23%	2% 2% 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable) Couch Movements	Q A Q 6	M (61%) Q6 (31%) D (43%) M (22%)	51% 7% 2% 2% 23% 63% 9% 16% 14%	5% 2% 2% 9% 5% 9% 2% 2% 2%	2% 2% 2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37% 16%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 7% 5% 9%	7% 2% 2%	7% 2% 2% 2% 16%	2% 2% 2% 14% 14% 5%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23%	2% 2% 2%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 60 60 60 60 60 60 60 60 60 60 60 60	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable) Couch Movements Couch lat. and long. Couch vertical	Q A Q 6 D M	M (61%) Q6 (31%) D (43%) M (22%)	51% 7% 2% 2% 23% 63% 9% 16% 14% 5%	5% 2% 2% 9% 5% 2% 2% 2% 5% 5%	2% 2% 2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37% 16%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 7% 5% 9% 9%	7% 2% 2%	7% 2% 2% 16%	2% 2% 2% 14% 14% 5% 2%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23% 16%	2% 21%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable) Couch Movements Couch lat. and long. Couch vertical Couch pitch and roll	Q A Q 6 D M	M (61%) Q6 (31%) D (43%) M (22%) M (44%) M (35%)	51% 7% 2% 2% 23% 63% 9% 16% 14% 5% 26% 26% 9%	5% 2% 2% 9% 5% 2% 2% 2% 5% 5% 5%	2% 2% 2% 2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37% 16% 53% 35%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 7% 5% 9% 12%	7% 2% 2%	7% 2% 2% 16%	2% 2% 2% 14% 14% 5% 2%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23% 16%	2% 21% 23%
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 60 60 60 60 60 60 60 60 60 60 60 60	Radiation Alignment Quick check of radiation field size Measurement of radiation field size Alignment of radiation and field light at gantry zero, isocentre Alignment of radiation and field light at different gantry angles Alignment of radiation and field light at extended FSD Junction homogeneity Radiation isocentre FFF field size Optical Field Indication Alignment of graticule with rotation Quick check of light size Variation with field size Variation with collimator rotation Light field geometry Rotation of floor about light field graticule Test of each lightbulb (if applicable) Couch Movements Couch lat. and long. Couch vertical Couch pitch and roll	Q A Q 6 D M	M (61%) Q6 (31%) D (43%) M (22%) M (44%) M (35%)	51% 7% 2% 2% 23% 63% 9% 16% 14% 5% 26% 26% 9%	5% 2% 2% 9% 5% 2% 2% 2% 5% 5% 5%	2% 2% 2% 2% 2% 2% 2%	30% 28% 49% 12% 7% 28% 40% 21% 40% 19% 53% 42% 14% 37% 16% 53% 35%	5% 9% 5% 2% 9% 2% 7%	23% 14% 12% 7% 14% 9% 2% 5% 7% 5% 7% 5% 9% 12%	7% 2% 2%	7% 2% 2% 16%	2% 2% 2% 14% 14% 5% 2%	12% 5% 5% 12% 2% 7% 5% 5% 5% 5%	14% 7% 5% 2% 2% 5% 5% 5% 5% 9%	2% 2% 7% 58% 56% 23% 47% 7% 5% 12% 49% 23% 16%	2% 21% 23%

	Couch deflection under load	А	A (30%)						7%				30%		23%	5%	30%	
1	Mechanical Alignment																	
2•	Isocentre – Definitive		Α		F0/		1.40/	F0/	70/	20/	20/		200/		1.00/	70/	00/	
3	Checks	Α	(31%)		5%		14%	5%	7%	2%	2%		<u>30%</u>		16%	7%	9%	
4 5	Isocentre - Quick checks	DM	WM (26%)	26%	5%		<u>35%</u>	5%	2%		2%						16%	
6 7	Isocentre - Manufacturer solution	MQ		5%	7%	2%	<u>30%</u>	2%	5%		5%		5%		7%	5%	5%	16%
, 8	Distance indicator	М	D (39%)	30%	9%	2%	42%	28%	9%	2%								
9	Gantry rotation	M	M (47%)	12%	7%		53%	7%	9%				2%			7%		D
	Collimator rotation	M	M (47%)	12%	7%		<u>53%</u>	7%	9%				2%			7%		WO
10 11	Electron applicator jaw readouts	Q	M (22%)				5%		23%		5%		19%		23%	5%	5%	Download 2%
12			(22%)															aged
13		М				2%	16%	2%	19%		5%		12%		2%	12%	9%	
14		Α		2%		_,-	7%		5%		2%		16%		12%	9%	37%	20∕ ∺
15	Contrast	Q	M (20%)		2%		33%	2%	21%	5%	5%		5%		2%	5%	9%	n https://academic.
16	Spatial Resolution	Q	M (20%)		2%		37%	2%	21%	5%	5%		2%		2%	7%	5%):sc
17	Uniformity Contrast to Noise Ratio	Q Q	M (20%) M (20%)				35% 26%	2% 2%	16% 14%	5% 5%	2% 5%		2%		9% 5%	7% 5%	12% 30%	'aca
18	Image Scaling	M	IVI (20%)				40%	2% 7%	14%	5%	2%		2%		5%	5%	5%	2% e
19	Image centre alignment	ΜQ		16%	7%		26%	2%	9%	2%	2%		2%		5%	7%	5%	12%
20		Α			2%		14%		7%				5%		7%	5%	<u>37%</u>	9% ≥
21.	Detector position				2%		<u>16%</u>	2%	14%		5%	2%	5%		5%	9%	12%	9% P
22	MV Dosimetry						2.50/	F0/	201		20/		20/			5 0/	20/	/mo
23	Reference Plans Dosimetry mode						<u>26%</u>	5%	2%		2%		2%			5%	2%	bjr/a
24	calibration check						<u>16%</u>	2%	2%						2%	7%	5%	adv
25	kV Imaging																	/bjr/advanc
26	Blade calibration and	MQ					12%	5%	14%	2%	7%				2%	12%	12%	(1)
27	geometry	Α					1270	370	1470	270	7 70				270	1270	1270	23%
28	Flood field and pixel map						9%	5%	26%	2%	7%		14%			28%		2% ፟
29	recalibration Ghosting	Α		2%			7%	2%	2%		2%		16%		9%	9%	30%	7%
30	High and low contrast	Q	M (20%)	2/0			18%	5%	26%	9%	9%		7%		370	2%	8%	5% -
31	Image distortion	A	(/				9%	5%	9%	2%	2%		2%		7%	2%	33%	7% &
32	Image scaling	MQ					<u>42%</u>	12%	16%	5%	2%				2%		5%	23% 2% 2% 7% 1.093/bjr 7% 7% 5%
33	Image centre alignment	M		16%	9%		<u>28%</u>	7%	9%	2%	2%		2%		2%	5%	9%	5% ≽
34 35	Detector rotation Source and detector	Α					19%		7%		2%		7%		9%	2%	<u>35%</u>	5% <u>a</u>
36	position	MQ			4%		12%	5%	<u>21%</u>		5%	2%	12%			9%	12%	5% &
37 <u>.</u>	Dose measurement						5%	2%	5%		5%		<u>65%</u>			2%	2%	5% ^{/8}
38	Registration and couch																	380
39	Clinically representative	Α		26%	5%		14%	5%		2%			7%		16%		7%	2% by
40	Daily check	D		79%	4%												5%	y C
_	CBCT			7373	1,0												3,0	a th
	High and low contrast	M Q		2%	2%	2%	25%	8%	29%	5%	2%		5%				8%	Catherine Sharp user
43		ΜQ			2%	2%	23%	7%	23%	2%	2%		2%		5%	2%	14%	Φ ()
44	calibration	🔾			2,0	2,0	2070	,,,	2070	270	270		2,0		370	270	2.,0	har
45	Image scaling and orientation	MQ		2%	2%	2%	28%	12%	28%	5%	5%		2%				5%	n d
46	HU uniformity	MQ		2%	2%	2%	21%	12%	28%	5%	2%		2%		2%		5%	2%
47	Room lasers																	9
48	Alignment of wall and			520/	7%	7%	19%	5%	2%							2%	2%	07 July 2025 42%
49				<u>53%</u>	170	/ /0	1370	J/0	∠ /0							Z70	Z 70	Jul
50	=																	/ 20
51	wall lasers with additional lower lasers (e.g. lasers			9%			12%		2%								21%	42% ² 5
52	20cm below isocentre)																	
53	Interlocks																	
54·	Radiation protection		Α	7%									30%	9%	42%	2%		
55 56	survey		(9%)	7 70									3070	370	42/0	270		
56 57	Maze entrance interlock	D	D (39%)	91%	5%			2%					2%					
58	Audio-visual monitors	D	(33%)	91%				2%									7%	2%
59	Beam on indicator	D		95%			2%	2%									, , 0	_,,
60	Beam termination	M		93%	5%			2%										
61	Backup MU counter	М	М	<u>72%</u>	5%		7%	5%					2%			2%	5%	
62																		
63																		
64																		
65																		

(9%) Couch collision W 35% 5% 12% 2% 7% 12% 19% Gantry collision W <u>51%</u> 9% 2% 7% 14% 2% 2% 2%

D, daily; W, weekly; M, monthly; Q, quarterly; 6, six monthly; A, annually; C, commissioning; R, repair.

TPR, tissue phantom ratio; PDD, percentage depth dose; MU, monitor unit; F&S, flatness and symmetry; VMAT, volumetric modulated arc therapy, MLC, multileaf collimator; DMLC, dynamic multi leaf collimator; DRGS, dose rate gantry speed; FSD, focus to skin distance; FFF, flattening filter free; MV, megavoltage; kV kilovoltage; CBCT, cone beam computed tomography; HU, Hounsfield unit.

As close to as possible previous survey results included in table.

7 8

9

63 64 65
 Table 4: Notification and Suspension tolerance levels for QC results at UK centres, for c-arm linacs.

10 L1	IPEM		Notification			Suspension	
Test	Report 81 (2018)	Most Frequent A	nswer (Mode)	Range	Most Frequent An	swer (Mode)	Range
3	Action [5]	Wiose Frequency	isirci (iliouc)	nunge	Wost Frequency	one: (mode)	nunge
8 <u>4</u> am Quality - Photons							
gergy check (TPR20/10)	1%	1%	n=9/26	0.1% - 1.5%	1%	n=16/30	0.2% – 3%
Efergy constancy G=0°	1%	1%	n=11/19	0.5% – 5%	1% (n=9/24), 2% (r	n=8/24)	0.5% – 5%
7 Energy constancy G≠0°	40/	1 mm	n=1/1	0.50/ 20/	40/ /- 7/40\ 20/ /-	C (4.0)	0.50/ 20/
Energy constancy G≠0°	1%	1%	n=14/19 n=6/12	0.5% – 3% 0.5 – 2.5 mm	1% (n=7/19), 2% (r	n=6/19) n=6/11	0.5% – 3% 1 – 2.5 mm
.9	2%	1 mm 2%	n=6/12 n=5/12	0.1% – 2%	1 mm 1%	n=6/11 n=7/13	0.2% – 3%
PBD measurement	270	(0.5mm/2%) >		0.170 270	170	11-7/13	0.270 370
1		99%	n=1/1				
gam Quality - Electrons							
3		1 mm (n=5/13), 2	mm (n=5/13)	0.7 – 2 mm	1 mm	n=14/18	1 – 3 mm
4		No consensus %	n=0/5	1% – 6%	No consensus %	n= 0/6	1% – 6%
	Dz correct						
5 nergy ratios G=0° 6	to within 2	1 mm change of			2 mm change of		
7	mm (z	PDI	n=3/3		PDI	n=1/1	
8	range 30%						
9	to 80%)	1 mm	n=2/4	1 – 2 mm	2 mm (n=4/8), 1 m	m /n-2 /0\	1 – 3 mm
		No consensus %	n=2/4 n=0/2	1 – 2 mm 1% – 2%	3% (n=2/4), 2% (n=		1 – 3 mm 2% – 3%
0		140 (0113611303 /0	11-0/2	1/0 2/0	Consistent with	•	2/0 J/0
1					G=0°	n=1/1	
.2 nergy ratios G≠0° 3	Dz correct						
	to within 2	1 mm change of			2 mm change of		
4	mm (z	PDI	n=3/3		PDI	n=1/1	
5	range 30%				101		
6	to 80%)		0/47	0.5.0	_	10/10	4 2
DD Measurement	2%	1 mm 1%	n=8/17 n=1/1	0.5 – 2 mm	2 mm 1%	n=10/19 n=2/3	1 – 3 mm 1% – 2%
<u>8</u> Opsimetry - Photons	270	170	11-1/1		170	11-2/3	1/0 - 2/0
Definitive calibration	0.5/1%*	1% (n=9/19), 0.5%	6 (n=7/19)	0.5% – 2%	2% (n=10/28), 1%	(n=10/28)	0.5% – 3%
Output recalibration	0.5/170	1.5% (n=9/22), 1%		0.5% – 2%	2%	n=18/27	0.5% - 3%
tandard output	2%	1.5%	n=17/40	1% – 2%	2%	n=26/38	2% – 4%
Sutput constancy: linac integrated	3%	2%	n=4/12	1% – 2.5%	2%	n=10/14	2% – 5%
Patput constancy: external constancy	3%	2%	n=16/31	1% – 3%	3% (n=12/28), 2%	(n=10/28)	2% – 5%
Hibration check: linac integrated		1% (n=4/11), 0.5%	•	0.5% - 1.5%	1%	n=6/11	0.5% - 2%
Solibration check: external constancy		1%	n=12/23	0.5% – 2%	1% (n=8/24), 2% (r	•	0.3% - 3%
6 Output in clinical mode cf. service mode		1% (n=3/6), 2% (n		0.3% – 2%	1% (n=2/6), 2% (n=		0.3% - 3%
Dutput in clinical mode cf. service mode			<u> </u>		Consistent	n=1/1	
Bytput factors	2%	1%	n=7/18	0.25% – 2%	2%	n=14/26	0.5% – 4%
gect of gantry rotation on output	2%	1%	n=9/23	0.5% – 2%	2%	n=23/34	1% – 4%
Dearity of dose with MU	1%	1%	n=18/23	0.5% – 2%	1%	n=20/33	1% – 5%
•		Varies with MU	n=1/1		Varies with MU	n=2/2	
hearity of dose with dose rate	1%	1%	n=12/18	0.4% – 3%	1%	n=14/23	0.5% – 5%
AU1 and MU2 readout	Functional	1 1 1 1	n-7/12	0.5.2.411	2 1411	n_7/12	1 [841]
#U1 and MU2 readout 4		1 MU	n= 7/12 n=0/2	0.5 – 2 MU 2% – 5%	2 MU	n=7/12 n=6/9	1 – 5 MU
4 5		No consensus % 0.5% (n=7/20), 1%	n=0/2	2% – 5%	2%	n=6/9	1% – 2%
5 Ansistency of dose output	0.5%	0.5% (n=7/20), 19 2% (n=5/20)	o (11–0/2U),	0.4% - 2%	0.5%	n=10/25	0.25% – 3%
•		0.005 Gy	n=1/1		0.01 Gy	n=1/1	J.2J/0 - 3/0
7	Functional	3.003 dy	11-1/1		Functional	n=3/3	
8	. anctional	10%	n=2/3	2% – 10%	5%	n=2/3	2% – 5%
			•		No consensus s	-	0.5 – 10 s
· ·		No consensus s	n=0/3	0.58 - 108	No consensus s	n=0/2	0.5 103
0		No consensus s 0.01 mins	n=0/3 n=1	0.5s – 10s	No consensus s	n=0/2	0.5 103
89ckup timer 50 51 52				0.5s – 10s	NO consensus s	11=0/2	0.5 103

		0.5 MU	n=1/1		No consensus MU	n=0/2	0.1 – 1 MU
1 Dosimetry - Electrons					Baseline	n=1/1	
Definitive calibration	0.5/1%*	1% (n=9/20), 0.5%	(n=8/20)	0.5% – 2%	1%	n=12/27	0.5% – 3%
Output recalibration	0.07 =	1.5% (n=8/20), 1%		0.5% – 2%	2%	n=16/25	0.5% – 3%
tandard output	2%	1.5% (n=16/37)	. , ,	1% – 2%	2%	n=22/38	2% – 4%
Patput constancy: linac integrated	3%	2% (n=4/9), 1.8% ((n=3/9)	1.5% – 2%	2%	n=9/11	2% – 5%
Atput constancy: external constancy	3%	2%	n=12/25	1% – 3%	3%	n=15/28	2% – 5%
alibration check: linac integrated		1% (n=3/8), 0.5% ((n=2/8)	0.5% - 1.5%	1% (n=4/9), 2% (n=3	3/9)	0.5% – 2%
Blibration check: external constancy		1%	n=11/17	0.5% - 2.0%	2% (n=8/21), 1% (n=		0.3% - 2%
9		1% (n=3/5), 2% (n=	=2/5)	1% – 2%	3%	n=2/3	2% – 3%
9 Output in clinical mode cf. service mode ()		(-/-//	, - ,		Consistent	n=1/1	
1	201	2% (n=5/16), 1.5%	(n=4/16),	0.50/ 00/	201	10/10	10/ 20/
ffect of gantry rotation on output	2%	1% (n=4/16)	, , ,	0.5% – 3%	2%	n=10/19	1% – 3%
2					Consistent	n=1/1	
3	2%	1%	n=6/11	0.5% – 2%	1%	n=10/18	1% – 3%
ம்pearity of dose with MU					Various	n=1/1	
5 All1 and MII2 readout		1 MU	n=6/12	0.5 – 2 MU	2 MU	n=5/10	1 – 5 MU
JU1 and MU2 readout	1%	No consensus %	n=0/2	1% – 2%	2%	n=3/5	1% – 2%
7	1%	1%	n=8/16	0.5% – 2%	0.5%	n=5/16	0.5% – 3%
gnsistency of dose output	170	170	11-0/10	0.5% - 2%	1%	n=4/16	0.5% - 5%
9		0.007 Gy	n=1/1		0.01 Gy	n=1/1	
0	Functional				Functional	n=3/3	
		No consensus s	n=0/2	1 – 10 s	10 s	n=1/1	
ackup timer		No consensus %	n=0/2	0.5% - 10%	No consensus %	n=0/3	0.3% – 5%
2		0.01 mins	n=1/1				
3					Baseline	n=1/1	
⊉ plicator factors	2%	2%	n=8/13	1% – 2%	2%	n=12/17	1% – 4%
pplicator/insert interlocks	Functional	Functional	n=5/5		Functional	n=10/10	
6		2%	n=1/1		3%	n=1/1	
atness and Symmetry - Photons							
&S quick check – linac integrated		1.8% (n=5/12), 2%	5 (n=4/12)	1% – 2%	2%	n=8/10	2% – 5%
S quick check – external constancy		2%	n=10/20	1% – 3%	3%	n=12/23	1.5% – 5%
0	2%	2%	n=11/29	0.5% – 2.5%	2%	n=19/35	1% – 3%
atness scans G=0°	270	1/1.5%	n=1/1	0.570 2.570	270	11-15/55	1/0 3/0
1		Baseline	n=1/1				
mmetry scans G=0°	2%	2%	n=18/36	0.5% – 2.5%	2%	n=23/38	1.5% – 4%
& S G≠0°	2%	2%	n=13/32	0.5% – 3%	2% (n=11/29), 3% (r	1=10/29)	0.5% – 3%
4ac integrated cf. external constancy		No consensus %	n=0/6	0.5% – 3%	No consensus %	n=0/7	1% – 3%
Fofiles with water tank	2%	2% (n=6/15), 1% (ı	n=5/15)	0.5% - 3%	2%	n=12/23	1% – 4%
6		No consensus	n=0/2	1 – 2%/mm			
latness and Symmetry - Electrons							
&S quick check – linac integrated		1.8% (n=4/9), 2% ((n=3/9)	1 – 2%	2%	n=5/9	2% – 5%
S quick check – external constancy		2% (n=6/16), 3% (i	n=5/16)	1% – 3%	3%	n=11/19	1.5% – 5%
atness G=0°	2%	2% (n=8/26), 1.5%	(n=7/26)	0.5% – 5%	2%	n=11/30	1% – 6.5%
0 ymmetry G=0°	2%	2%	n=15/32	0.7% - 2%	3% (n=15/36), 2% (r	n=15/36)	1.5% - 4%
&S G≠0°	2%	2%	n=8/18	1% – 2%	2%	n=9/19	1% – 3%
ac integrated cf. external constancy		No consensus	n=0/6	0.5% – 3%	No consensus	n=0/4	1% – 3%
3	2%	2% (n=5/13), 1% (ı	n=4/13)	0.5% – 3%	2% (n=7/19), 1% (n=	=6/19)	1% – 4%
f ofiles with water tank		1.5 mm	n=1/1		2 mm	n=1/1	
5		1%/1 mm	n=1/1				
AMAT & MLC							
r c vs. static output	2%	2% (n=5/12), 1% (ı	n=4/12)	0.5% – 2%	No consensus	n=0/11	1% – 4%
9		2%	n=9/11	1.5% – 2%	2%	n=7/14	1.2% – 4%
8 MLC sweeping gap output at diff. θ		0.2 mm	n=1/1		0.5 mm	n=1/1	
		0.015 ratio	n=1/1				
0	2%	2%	n=7/14	0.5% – 3%	2%	n=9/16	1% – 3%
MAT DRGS		0.02 ratio	n=1/1				
2					0.3 °/s	n=1/1	
3		2% (n=5/13), 1.5%	s (n=4/13)	0.5% – 5%	3% (n=6/13), 2% (n=	=5/13)	1% – 3%
MAT MLC speed		0.02 ratio	n=1/1				
5					0.3 cm/s	n=1/1	
LC Picket Fence - G0°	1 mm	0.5 mm	n=9/24	0.15 – 1 mm	1 mm	n=13/26	0.25 – 2 mm
5 7		Visual check	n=2/2		Visual check	n=1/1	
,		Any	,			•	
		leaf/junctions	n=1 /1				
8		leai/junctions					
8 9		>1.5 but ≤	n=1/1				
8 9			N=1/1				
8 9 0		>1.5 but ≤	11=1/1				
8 9 0 1		>1.5 but ≤	N=1/1				
8 9 0 1 2		>1.5 but ≤	11=1/1				
8 9 0 1 2 3		>1.5 but ≤	11=1/1				
8 9 0 1 2 3 4 5		>1.5 but ≤	N=1/1				

					5%	n=1/1	
MLC Picket Fence – Cardinal Gθ		0.5 mm	n=6/18	0.2 – 10 mm	1 mm	n=10/19	0.25 – 5 mm
2		Visual check	n=2/2		Visual	n=1/1	
3		Any leaf/junctions					
4		>1.5 but ≤	n=1/1				
5		2.0mm					
. € akage through MLCs**		0.5%	n=7/17	0.1% – 2.5%	No consensus	n=0/17	0.09% - 5%
7		No consensus	n=0/9	0.025 –	0.2 mm	n=4/10	0.05 –
8			, .	0.2 mm		, ==	0.3 mm
VILC dosimetric leaf gap		0.1 mm and 0.2 mm	n=1/1				
10		2%	n=1/1		2%	n=1/1	
Wedges			,_			,_	
Wedge ratio Wθ=60°	1%	1% (n=6/13), 2% (n=	=5/13)	1% – 3%	2%	n=6/15	1% – 4%
vedge ratio Wθ≠60°	1%	1%	n=5/11	0.5% – 2%	2% (n=4/10), 1% (n=	=3/10)	1% – 3%
Wedge ratio G≠0°	1%	2% (n=5/12), 1% (n=	=4/12)	1% – 3%	3% (n=5/12), 2% (n=	=4/12)	1% – 4%
5 Wedge beam profile	2%	2%	n=5/6	1% – 2%	3% (n=3/9), 2% (n=	3/9)	1% – 4%
. 0		1°	n=1/1				
Radiation Alignment							
Raick check of radiation field size		1 mm	n=15/31	0.8 – 3 mm	2 mm	n=18/32	1 – 4 mm
.9		0.8X 1.8Y mm 1 mm	n=1/31 n=18/33	0.7 – 2 mm	1X 2Y mm 2 mm	n=1/32 n=20/36	1 – 3 mm
10			11-10/33	0.7 - 2 111111	1 mm on individual	· ·	T - 2 IIIIII
1		1 mm on	n=3/3		(n=2/3), 2 mm on ir	•	
22		individual jaw	•		jaw (n=1/3)		
3		1 mm					
Measurement of radiation field size		stereotactic	n=1/1				
5		2 mm other			2 :		
6					2 mm on jaw and 3 overall	n=1/1	
7					Field size	- 1-	
8					dependent	n=2/2	
19		1 mm and 1 $^{\circ}$	n=1/1		2 mm and 2°	n=1/1	
0		1 mm	n=11/31	1 – 3 mm	2 mm	n=19/32	1 – 5 mm
1		1 mm on	2 /2		1 mm on individual	•	
Algnment of radiation and field light at	2 mm	individual jaw	n=2/2		(n=1/2), 2 mm on ir	ndividual	
antry zero, isocentre	(1 mm precision)				jaw (n=1/2) Field size		
34	precision				dependent	n=2/2	
35		1 mm and 1 $^{\circ}$	n=1/1		2 mm and 2°	n=1/1	
36		1 mm	n=6/14	0.5 – 2 mm	2 mm	n=8/13	1 – 4 mm
37		1 mm on	n=1/1				
Afgnment of radiation and field light at		individual jaw	/_		_		
क्षे मिल्ला gantry angles					1 mm on	n=1/1	
10					individual jaw 2 mm overall	11=1/1	
<u> 1</u>		1mm and 1°	n=1/1		2 mm and 2°	n=1/1	
:2		1 mm	n=6/15	1 – 4 mm	2 mm	n=11/17	1 – 6 mm
13		1 mm on	n=1/1			•	
A4gnment of radiation and field light at		individual jaw	11=1/1				
extended FSD					1 mm on	/ .	
16					individual jaw, 2	n=1/1	
:7	2 mm	1 mm	n=8/10	1 – 2 mm	overall 2 mm	n=8/10	2 – 4 mm
18	£ 111111	No consensus	n=0/10	7% – 20%	No consensus	n=0/10	10 – 50%
19		8 of expected	n=1/1	2070		0,0	55/0
Munction homogeneity	20%	2 mm 70/120%	n=1/1				
51	20%	Normal range %	n=1/1				
52					50% < dose at	n=1/1	
3	3	1	- 11/20	0.22	junction < 140%		0.5. 3
54	2 mm	1 mm	n=14/26	0.3 – 2 mm	2 mm(n=10/28), 1 r	nm(n=9/28)	0.5 – 3 mm
Radiation isocentre		2 mm 70/120% 0.7 mm SABR	n=1/1				
66		1 mm other	n=1/1				
		1 mm (n=3/8), 2 mr	n (n=2/8)	0.5 – 3 mm	2 mm	n=5/12	0.7 – 5 mm
57 FEF field size 8		1.5%	n=1/1		No consensus	n=0/3	1% – 20%
Optical Field Indication							
Mignment of graticule with rotation	2 mm	1 mm	n=17/25	0.5 – 2 mm	2 mm	n=16/31	0.5 – 4 mm
			-	<u> </u>			
51							
2							

Quick check of light size	2 mm	2 mm	n=12/23	1 – 2 mm	2 mm	n=23/31	1 – 5 mm
1	2 mm	1 mm X1 Y1 X2 Y2:	n=14/24	1 – 2mm	2 mm X1 Y1 X2 Y2:	n=18/33	1 – 4 mm
2 /griation with field size		1 mm			2 mm		
3		Total X and Y:	n=1/1		Total X and Y:	n=1/1	
4		2 mm			3 mm		
⁄ariation with collimator rotation ি		1mm 1° (n=3/5), 2° (n=2	n=13/22	0.5 – 2 mm 1° – 2°	2 mm 2°	n=13/28 n=3/4	1 – 3 mm 2° – 3°
ight field geometry		2 mm	n=2/2	1 – 2	2 mm (n=2/5), 3 mm 1%		2 – 3 mm
Retation of floor about light field		1 mm (n=7/15), 2	mm (n=7/15)	1 – 2 mm	2 mm	n=11/21	1 – 3 mm
raticule		0.5°	n=1/1		No consensus	n=0/3	0.5° – 2°
est if each lightbulb (if applicable)		0.5 mm	n=5/9	0.5 – 2 mm	1 mm 2%	n=5/13 n=1/1	0.5 – 3 mm
Guch Movements							
3 Quch - lat, long	2 mm	2 mm	n=12/26	0.63 – 2 mm	2 mm 2%	n=20/35	0.7 – 4 mm
	2 mm	2mm	n=12/25	0.63 – 2 mm	2 mm	n=1/1 n=19/35	0.7 – 4 mm
Souch - vert 6	2		•	0.03 2 11111	2%	n=1/1	0.7
Guch - pitch, roll	2 mm / 1°	0.2° (n=3/18), 0.3° (n=3/18),	(n=3/18), 1°	0.09° – 1°	0.5°	n=7/21	0.1° – 2°
9		1.0°	n=7/21	0.09° – 2°	0.5° (n=8/27), 1° (n=7		0.1° – 3°
0		No consensus	n=0/2	1 – 2 mm	2 mm	n=2/4	2 – 4 mm
Couch rotation axis		1 (standard couch)/0.5					
2		(HexaPod)	n=1/1				
23 24 Sauch deflection under load		Degree 5 mm (n=4/11), 2	mm (n=4/11)	0.3 – 7 mm	5 mm(n=6/17), 2 mr	n(n=5/17)	0.5 – 10 mm
	5 mm/0.5°				5 mm / 0.5°	n=1/1	
Mechanical Alignment Checks		1 mm	n=10/18	0.5 – 2 mm	2 mm	n=12/24	0.3 – 4 mm
7	•	1 mm	11-10/10	0.5 – 2 111111	2 111111	11-12/24	0.5 – 4 111111
‰ centre – Definitive Checks 9	2 mm	(stereotactic) or 2 mm (other)	n=1/1				
0	2 mm	2 mm (other)					
secentre - Quick checks 2	(1 mm precision)	1 mm	n=10/16	0.45 – 2 mm	2 mm	n=12/24	0.5 – 4 mm
3		0.5 mm(n=5/12),		0.3 – 1 mm	0.5 mm	n=7/14	0.4 – 2 mm
socentre - Manufacturer	Manufac.	1 mm(n=4/12)		0.0 1		n=1/1	011 2
5		Various	n=1/1		Pass Various	n=1/1 n=1/1	
-6	2 mm	2 mm	n=12/26	0.5 – 3 mm	2 mm	n=17/31	0.5 – 3 mm
57 Distance indicator		2 mm at iso	n=1/1		2 mm at iso 5 mm	n=1/1	
9		3 mm at FSD≠0	/_		at FSD≠0		
	0.5°	0.3° (n=8/25), 0.5°	(n=8/25)	0.2°-1°	1° 0.5°	n=1/1 n=14/29	0.2° – 1°
.0 Santry rotation :1	0.5	1 mm	n=1/1	0.2 1	2 mm	n=14/23 n=1/1	0.2 1
Edlimator rotation	0.5°	0.5° 1 mm	n=9/25 n=1/1	0.2° – 1°	0.5° 2 mm	n=16/30 n=2/2	0.2° – 1°
.3	Readouts						
Electron applicator jaw readouts	correct	0 mm (n=6/14), 1	mm (n=5/14)	0 – 2 mm	0 mm	n=11/21	0 – 3 mm
√V Imaging 6		No consorting	n=0/4	0.50/ 50/	10/	n=2/4	10/ 100/
. · · · · · · · · · · · · · · · · · · ·		No consensus	n=0/4	0.5% – 5%	1% Function	n=2/4 n=1/1	1% – 10%
Panel Calibration Check	***				Baseline	n=1/1 n=1/1	
19					Automated	n=1/1	
0		100/	- 2/0	0.50/ 400/	Calibration		10/ 450/
51		10% Machine/ mode	n=2/8	0.5% – 10%	45% Machine/ mode	n=2/6	1% – 45%
52		specific	n=2/2		specific	n=1/1	
3		No consensus	n=0/2	0.61 – 0.77	No consensus	n=0/2	0.6 – 0.68
4 Contrast	****	No consensus	n=0/2	4 – 20 discs	No consensus	n=0/3	4 – 20 discs
15 16		Right hand 3 columns visible	n=1/1				
57		Various	n=1/1		Various	n=1/1	
58					Baseline	n=1/1	
i 9				0.1	2mm, 4mm	n=1/1	0.15
patial Resolution	***	0.1 lp/mm	n=3/10	0.1 – 0.3 lp/mm	0.2 lp/mm 0.19 lp/mm	n=3/12 n=2/12	0.15 – 15 lp/mm
51				0.0 ip/iiiiii	3.13 ip/iiiii	2/12	20 ιρ/ iiiiii
52							
4							
33 54							

		N 4 = ala i = a / = al a			N 4 = ala : a a / = al a		
No consensus n=0/3 5% - 30% n=2/4 7.5% - 45%			n=2/2		· · · · · · · · · · · · · · · · · · ·	n=2/2	
3		•	n=0/3	5% – 30%	•	n=2/4	7.5% – 45%
Machine finde Machine find		0.4	n=2/2				
Machiner mode m-1/1 mode m-1/1 mode m-1/1 mode mo		2 mm	n=1/1			-	
Specific 17-12 Specific		Machine/ mode					
Ushor Usho		· · · · · · · · · · · · · · · · · · ·	n=1/1			n=1/1	
Section Sect	****	Visual Check	n=1/1		Visual Check	n=2/2	
10			-	0.450/ 0.00/		0/40	10/ 00 00/
Machinery mode specific is specific spe		No consensus	n=0/11	0.15% – 99%			1% – 99.8%
Specific		Machine/ mode					
1		·	n=2/2		·	n=3/3	
1	***	10%	n=2/3	0.5% - 10%	15%	n=2/4	1% – 4%
1 mm		No consensus	n=0/6	2.14 – 750	No consensus	n=0/4	3.5 – 675
Affigue Scaling							
100 mm	4		-	0.8 – 2 mm		-	
Baseline			•			-	0.2% – 2%
The property of the property o	100 111111	0.1 (111	11-1/1			· ·	
### 1	2 mm	1 mm	n=5/15	0.45 – 2 mm	2 mm	n=6/19	0.05 – 4 mm
1	۲ ۱۱۱۱۱۱	± 111111	11-3/13	J. 7 J Z IIIII			0.05 411111
Description Manufact Common Com		1°	n=2/4	0.2° 1.5°			0.2° 2°
1	Manufac.	1	11-2/4	0.2 - 1.5		-	0.2 – 2
1 mm (n=7/14), 2 mm (n=7/14) 0.5 - 3 mm							
Lat/Ling: 1.mm			mm (n=7/14)	0.5 – 3 mm		n=5/11	0.5 – 4 mm
No consensus n=0/3 95%-99% No consensus n=0/4 3%-98.5% Pass Gamma n=1/1 Punctional Punctional n=1/1 Punctional n=1/1 Punctional n=1/1 Punctional n=1/1 Punctional Punctional n=1/1 Punctional Punctional n=1/1 Punctional n=1/1 Punctional n=1/1 Punctional n=1/1 Punctional Punctional P	2 mm	_	n=1/1		_	n=1/1	
No consensus n=0/3 95% - 99% No consensus n=0/4 3% - 98.5%		vrt: 2mm				n=1/1	
28 No consensus n=0/3 95% - 99% No consensus n=0/4 3% - 98.5% 29 29 38 63 mm n=1/1 1 38 698.5% 29 20 20 20 20 20 20 20					Buschine	11 1/1	
Section Sect		No consensus	n=0/3	95% – 99%	No consensus	n=0/4	3% – 98.5%
Second S						-	
38/3mm 95% n=1/1 1 1 1 1 1 1 1 1 1						· ·	
Manuface Second Manuface Second Manuface Second Manuface Second Manuface Second						-	
### Manufac. S mm (n=3/14), 2.5 mm (n=		0.5% (n=2/7), 1.5%	6 (n=2/7)	0.5% – 5%			0.5% - 10%
8 Bade calibration and geometry 36 Manual (n=3/14), 2 mm							
1							
10 p	Manufac.			1 – 10 mm	5 mm	n=4/12	2 – 20 mm
38 39 4 1.4 lp/mm n=3/5 1.4 lp/mm n=3/5 1.4 lp/mm n=2/4 0.2 - 6 lp/mm 40 40 40 40 40 40 40 40 40 40 40 40 40 4		(n=3/14), 2 mm (n	=3/14)	1 – 10 mm		· ·	2 – 20 mm
1.4 lp/mm		(n=3/14), 2 mm (n 0.5 cm	=3/14) n=1/1		1 cm	1/1	
No consensus		(n=3/14), 2 mm (n 0.5 cm 10 lp	=3/14) n=1/1 n=4/11	0.1 – 12 lp	1 cm No consensus	1/1 n=0/6	0.2 – 12 lp
#igh contrast 42		(n=3/14), 2 mm (n 0.5 cm 10 lp	=3/14) n=1/1 n=4/11	0.1 – 12 lp 0.1 –	1 cm No consensus	1/1 n=0/6	0.2 – 12 lp
Machine Specific n=1/1		(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm	=3/14) n=1/1 n=4/11 n=3/5	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 -	1 cm No consensus	1/1 n=0/6	0.2 – 12 lp
44	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm	=3/14) n=1/1 n=4/11 n=3/5	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 -	1 cm No consensus 1.4lp/mm	1/1 n=0/6	0.2 – 12 lp
45	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus	=3/14) n=1/1 n=4/11 n=3/5 n=0/2	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 -	1 cm No consensus 1.4lp/mm	1/1 n=0/6 n=2/4	0.2 – 12 lp
12 discs	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 -	1 cm No consensus 1.4lp/mm Machine Specific	1/1 n=0/6 n=2/4 n=1/1	0.2 – 12 lp
Baseline - 2	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1%	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 -	1 cm No consensus 1.4lp/mm Machine Specific 1.5%	1/1 n=0/6 n=2/4 n=1/1 n=1/1	0.2 – 12 lp
Baseline-1 n=2/3 Baseline Baseline-2 n=1/1 1	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups
Tow contrast Tow consensus Tow	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups
51	••••	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=1/1 n=6/12	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups
51		(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=1/1 n=6/12 n=2/3	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups
Machine/mode specific Septimize Sept		(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs
53 specific n=1/1 54 2 mm over whole detector 1 mm n=3/5 0.4 - 2 mm 2 mm n=2/4 1 - 4 mm 56/6age distortion 2% n=1/1 0.5% n=2/3 0.5% - 2% 57 1.5 mm V/H 2.5 mm Dia n=1/1 59/mage scaling 1 mm over 100 mm 1 mm over 100 mm n=13/20 0.8 - 2 mm 1 mm (n=7/18), 2 mm (n=6/18) 1 - 3 mm 61 62 63 64		(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs
54 2 mm over 55 whole detector \$\fotage \text{distortion}\$ 2% n=1/1 0.5% n=2/3 0.5% - 2% 57 1.5 mm V/H 2.5 mm Dia n=1/1 n=1/1 n=1/1 n=1/1 59 age scaling 60 1 mm over 100 mm 1 mm in=13/20 0.8 - 2 mm 1 mm (n=7/18), 2 mm (n=6/18) 1 - 3 mm 61 62 63 64		(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs
55 whole detector 1 mm n=3/5 0.4 - 2 mm 2 mm n=2/4 1 - 4 mm 57 2% n=1/1 0.5% n=2/3 0.5% - 2% 58 1.5 mm V/H 2.5 mm Dia n=1/1 59/60e scaling 60 1 mm over 100 mm 1 mm over 100 mm 1 mm over 100 mm 1 mm (n=7/18), 2 mm (n=6/18) 1 - 3 mm 61 62 63 64		(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs
2% n=1/1 0.5% n=2/3 0.5% - 2% 57 1.5 mm V/H 2.5 mm Dia 1 mm over 100 mm 1 mm over	2 mm over	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5%
1.5 mm V/H 2.5 mm Dia 1 mm over 100 mm 1 mm	2 mm over whole	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5%
58 2.5 mm Dia 1 mm over 1 mm n=13/20 0.8 – 2 mm 1 mm (n=7/18), 2 mm (n=6/18) 1 – 3 mm 61 62 63 64	2 mm over whole	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1 n=1/1 n=3/5	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5%
61 62 63 64	2 mm over whole	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2%	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1 n=1/1 n=3/5 n=3/5 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5%
61 62 63 64	2 mm over whole	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2% 1.5 mm V/H	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=2/3 n=0/2 n=1/1 n=1/1 n=3/5 n=3/5 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=1/1	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5%
62 63 64	2 mm over whole detector	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2% 1.5 mm V/H 2.5 mm Dia	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=6/12 n=0/2 n=1/1 n=1/1 n=1/1 n=3/5 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm 0.5%	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=2/4 n=2/3	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5% 1 – 4 mm 0.5% – 2%
63 64	2 mm over whole detector	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2% 1.5 mm V/H 2.5 mm Dia	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=6/12 n=0/2 n=1/1 n=1/1 n=1/1 n=3/5 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm 0.5%	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=2/4 n=2/3	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5% 1 – 4 mm 0.5% – 2%
64	2 mm over whole detector	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2% 1.5 mm V/H 2.5 mm Dia	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=6/12 n=0/2 n=1/1 n=1/1 n=1/1 n=3/5 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm 0.5%	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=2/4 n=2/3	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5% 1 – 4 mm 0.5% – 2%
	2 mm over whole detector	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2% 1.5 mm V/H 2.5 mm Dia	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=6/12 n=0/2 n=1/1 n=1/1 n=1/1 n=3/5 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm 0.5%	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=2/4 n=2/3	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5% 1 – 4 mm 0.5% – 2%
	2 mm over whole detector	(n=3/14), 2 mm (n 0.5 cm 10 lp 1.4 lp/mm No consensus Machine Specific 1% 0.5 12 discs Baseline-1 No consensus 0.44 0.1 lp/mm 1 mm 2% 1.5 mm V/H 2.5 mm Dia	=3/14) n=1/1 n=4/11 n=3/5 n=0/2 n=1/1 n=1/1 n=6/12 n=6/12 n=0/2 n=1/1 n=1/1 n=1/1 n=3/5 n=1/1 n=1/1	0.1 – 12 lp 0.1 – 1.4 lp/mm Baseline -2 - Baseline -1 10 – 15 discs Baseline -2 – Baseline -1 1% – 10%	1 cm No consensus 1.4lp/mm Machine Specific 1.5% 0.53 No consensus 12 discs Baseline -2 No consensus 0.39 Machine/mode specific 2 mm 0.5%	1/1 n=0/6 n=2/4 n=1/1 n=1/1 n=1/1 n=0/2 n=4/8 n=1/1 n=0/2 n=1/1 n=1/1 n=2/4 n=2/3	0.2 – 12 lp 0.2 – 6 lp/mm 9 – 10 groups 8 – 18 discs 1.5% – 11.5% 1 – 4 mm 0.5% – 2%
Brade calibration and geometry 36 37 38 39 40 4		1 mm over 100 mm 2 mm Manufac.	Mo consensus 0.4 2 mm Machine/ mode specific Visual Check CoV > 3.5 No consensus Machine/ mode specific 10% No consensus 1 mm 1 mm over 100 mm 0.1% 0.1 cm 2 mm 1 mm Manufac. 1 mm 1 mm Vrt: 2mm No consensus	specific No consensus 0.4 n=2/2 2 mm n=1/1 Machine/ mode specific Visual Check n=1/1 CoV > 3.5 n=1/1 No consensus n=0/11 Machine/ mode specific n=2/2 mm n=1/1 Machine/ mode specific n=2/2 n=2/3 No consensus n=0/6 1 mm n=13/19 1 mm over 0.1% n=1/1 100 mm n=1/1 2 mm 1 mm n=5/15 Manufac. 1 mm (n=7/14), 2 mm (n=7/14) Lat/Lng: 1mm Vrt: 2mm n=1/1 No consensus n=0/3	specific No consensus 0.4 1	Specific No consensus n=0/3 5% - 30% 30% 30% 0.4 n=2/2 2 mm n=1/1 3 mm 20 discs Machine/ mode specific Visual Check n=1/1 Visual Check CoV > 3.5 n=1/1 No consensus n=0/11 0.15% - 99% No consensus Baseline Machine/ mode specific 10% n=2/3 0.5% - 10% 15% Specific 10% n=2/3 0.5% - 10% 15% No consensus Baseline 1 mm n=13/19 0.8 - 2 mm 2 mm No consensus Saseline 2 mm 1 mm n=1/1 n=1/1 0.15 cm Saseline 2 mm 1 mm n=5/15 0.45 - 2 mm 2 mm Saseline 2 mm 0.5 mm Saseline 2 mm Lat/Lng: 1 mm n=1/1 0.5 - 3 mm Lat/Lng: 2 mm Vrt: 2 mm No consensus Pass Gamma 99% F0, 95% FN Functional 3%/3mm 95% 3%/3mm 95%	Specific No consensus n=0/3 5% - 30% 30% n=2/2 No consensus n=0/3 5% - 30% 30% n=2/4 0.4 n=2/2 2 mm n=1/1 3 mm n=1/1 20 discs n=1/1 3 mm n=1/1 Machine/ mode specific n=1/1 Visual Check n=1/1 No consensus n=0/11 0.15% - 99% No consensus n=0/12 Machine/ mode specific n=1/1 No consensus n=0/11 0.15% - 99% No consensus n=0/12 Baseline n=1/1 Machine/ mode specific n=3/3 Machine/ mode specific n=2/2 Machine/ mode specific n=3/3 Machine/ mode n=2/2 Machine/ mode specific n=3/3 No consensus n=0/6 2.14 - 750 No consensus n=0/4 Baseline n=1/1 No consensus n=0/4 1 mm n=13/19 0.8 - 2 mm 2 mm n=9/19 1 mm n=1/1 No consensus n=0/3 100 mm 0.1 cm n=1/1 No consensus n=0/3 1 mm n=5/15 0.45 - 2 mm 2 mm n=6/19 0.5 mm n=5/19 No consensus n=0/1 2 mm 1 mm n=1/1 2 mm n=1/1 2 mm 1 mm n=1/1 0.5 - 3 mm 2 mm n=5/19 2 mm 1 mm n=1/1 No consensus n=0/1 2 mm 1 mm n=1/1 No consensus n=0/1 2 mm 1 mm n=1/1 No consensus n=1/1 2 mm No consensus n=0/3 95% - 99% No consensus n=0/4 Pass Gamma n=1/1 n=1/1 No consensus n=0/3 95% - 99% No consensus n=0/4 Pass Gamma n=1/1 n=1/1 No consensus n=0/3 95% - 99% No consensus n=0/4 Pass Gamma n=1/1 n=1/1 No consensus n=0/1 n=1/1 No consensus n=0/3 95% - 99% No consensus n=0/4 Pass Gamma n=1/1 n=1/1 No consensus n=0/1 n=1/

1		0.8% 1.5 mm V/H 2.5 mm Dia	n=1/1 n=1/1		No consensus	n=0/2	1.5% - 2%
2 mage centre alignment	2 mm	0.5 mm (n=4/15),		0.05 -	1 mm	n=6/15	0.05 – 4 mm
etector rotation		(n=4/15), 1mm (n= 0.2°	=3/15) n=2/5	2.5 mm 0.2° – 1.0°	15 – 60 mm 2°	n=1/1 n=2/3	0.5° – 2°
5	Manufac.	0.2	, 5	0.2 2.0	_	•	0.5 _
6 7	a.ia.a.a.	No consensus	n=0/2	1 – 2.5 mm	2 mm	n=2/3	1.5 – 2 mm
8	2 mm	1 mm (n=5/13), 2	mm (n=4/13)	0.5 – 10 mm	2 mm	n=7/11	0.5 – 10 mm
9 ource and detector position					Baseline	n=1/1	
		Lat/Lng: 1mm			10 pixels Lat/Lng: 2mm	n=1/1	
1 2		Vrt: 2mm	n=1/1		Vrt: 4mm	n=1/1	
3		10%	n=3/6	-20% – 10%	10% Various	n=6/9 n=1/1	10% – 30%
ase measurement	*****	Baseline	n=2/2		Baseline	n=1/1 n=1/1	
5		0.5 mm	n=1/1		1.5 mm	n=1/1	
ggistration and couch	2 mm	1 mm(n=5/14), 1.5	5 mm(n=5/14)	0.5 – 2 mm	2 mm	n=7/16	0.95 – 4 mm
linically representative	(1mm	No consensus	n=0/2	1% – 2%	No consensus	n=0/2	2% – 3%
9	SRS/SABR)			1/0 - 2/0	INO COLISELISUS	11-0/2	2/0 - 3/0
0 gily check	2 mm (1mm	2 mm	n=7/21	0.2 – 2 mm	2 mm	n=14/25	0.2 – 4 mm
1	SRS/SABR)	1 mm	n=6/21			,	
<mark>Вст</mark> 3				100 5 5			
5 4		FOV Dependent	n=0/2	4 or 5 – 5 or 6			
5		Mode/Machine	n=6/6		Mode/Machine	n=4/4	
5		specific Baseline	n=2/2		specific Baseline	n=1/1	
7	***	No consensus	n=2/2 n=0/8	0.1 – 11 lp	0.2 lp	n=1/1 n=2/13	0.2 – 13 lp
% h contrast 9		No consensus	n=0/2	(3.3-4.9) –	No consensus	n=0/2	(2.8-4.4) - 9
0			0,2	10 lp/cm 0.07 –		0, =	lp/cm
1		No consensus	n=0/2	0.07 = 0.255467 lp/	0.1 lp/mm	n=1/1	
2				mm			
3		Mode specific	n=6/6		Various Mode specific	n=1/1 n=1/1	
4 5		No consensus	n=0/0	1 – 2 discs	No consensus	n=0/2	4 – 9 discs
6		Commissioning	n=1/1	0.50/ 1100/	Commissioning	n=2/2	10/ 00/
ow contrast	****	No consensus 0.19 –	n=0/6	0.5% – 110%	3%	n=2/7	1% – 9%
8		0.25 cm/HU	n=1/1		2.8 – 4.4 cm/HU	n=1/1	
9					Various 0.91	n=2/2 n=1/1	
0 1					7 lp groups	n=1/1	
2	50 HU	40 HU	n=7/14	18 – 50 HU	50 HU	n=9/14	20 – 100 HU
3		1% 0.19 -	n=1/1		1.25%	n=1/1	
4 ixel signal value/HU calibration 5		0.25 cm/HU	n=1/1				
		Baseline	n=1/1		Various	n=1/1	
6 7					3% contrast for	•	
8					SFOV HU	n=1/1	
9	1 mm over 100 mm	0.5 mm (n=6/15), (n=5/15)	1 mm	0.05 – 2 mm	1 mm	n=14/22	0.1 – 2 mm
0	Correct	(N=3/13) 10 HU	n=1/1				
hage scaling and orientation	orientation	1.5%	n=2/2		No consensus	n=0/2	2% – 3%
2		1.5% 1(3 for long)	n=2/2 n=1/1		NO CONSCIISUS	11-0/2	2/0 - 3/0
4		20.111.7 6.750 5	0.111./ 4/:5:	4 (5.11)	Various	n=1/1	4.5
5		30 HU (n=3/13), 40 No consensus	0 HU (n=4/13) n=0/4	1 – 65 HU 1.5% – 98%	30HU (n=4/16), 40 No consensus	HU (n=4/16) n=0/6	1.5 – 100 HU 1.5% – 97%
6			·	Centre ±	35113611343	0,0	2.570 3170
ฟี uniformity o	****	Centre ± 40 HU	n=2/3	20HU –			
8 9		Compared to	n-1 /1	40HU			
0		baseline	n=1/1				
1							
2							
3							
4							

Room lasers							
Alignment of wall and overhead lasers		1 mm	n=15/29	0.5 – 3 mm	2 mm	n=22/34	1 – 5 mm
Alignment of isocentre wall lasers with additional lower lasers (e.g. lasers 20cm		1 mm	n=6/9	1 – 2 mm	2 mm	n=7/11	0.5 – 3 mm
below isocentre)							
Interlocks							
5		Unacceptable	n=1/1				
6		0.15μSv/hr	n=1/1		7.5 μSv/hr	n=2/2	
7 Radiation protection survey 8		Difference from reference	n=1/1				
9		Significant change 10%	n=1/1				
Maze entrance	Functional	Functional	n=11/11		Functional	n=21/21	
1.0	Functional	Functional	n=10/10		Functional	n=21/21	
Audio-visual monitors 13		Poor but usable quality	n=1/1				
1 4 Beam on indicator L 5	Functional	Functional	n=12/12		Functional	n=19/19	
Beam termination	Functional	Functional	n=11/11		Functional	n=20/20	
1 7		Functional	n=7/7		Functional	n=12/12	
Backup MU counter	Functional	1 MU	n =3/3		1 MU	n=2/6	0 – 3 MU
1.0		1%	n=1/1		2%	n=3/3	
Couch collision	Functional	Functional	n=6/6		Functional	n=11/11	
Gantry collision	Functional	Functional	n=9/9		Functional	n=15/15	

1 = x/y where x is the number of centres reporting modal value and y is the number of centres who responded to the question in the stated units.
2 6.5% variation between independent measurements and 1% from reference value. "The survey question was ambiguous as to whether "through leaves" and ant 'between leaves' or 'below leaves' and centres may have answered differently. "No unexpected image artefacts/no uncorrected defective pixels. ""
Manufacturer spec. consistent with commissioning. "" 2 mm over 100m should be achievable. "" Within specification.

TBR, tissue phantom ratio; PDD, percentage depth dose; MU, monitor unit; F&S, flatness and symmetry; VMAT, volumetric modulated arc therapy; MLC, multileaf collimator; DMLC, dynamic multi leaf collimator; DRGS, dose rate gantry speed; FSD, focus to skin distance; FFF, flattening filter free; MV, megavoltage, kV, kilovoltage; SRS, stereotactic radiosurgery; SABR, stereotactic body radiation therapy; CBCT, cone beam computed tomography; HU, Hounsfield unit.

Effective, evidence-based^{1,2} treatment for radiation-induced cystitis

Clinically proven^{1,2} Evidence- based^{1,2} Catheter- free option

The UK's number one GAG therapy³

Click here for Product Information

References:

1. Gacci M et al. Bladder Instillation Therapy with Hyaluronic Acid and Chondroitin Sulphate Improves Symptoms of Postradiation Cystitis: Prospective Pilot Study. Clin Genitourin Cancer 2016; Oct;14(5):444-449. 2. Giannessi C et al. Nocturia Related to Post Radiation Bladder Pain can be Improved by Hyaluronic Acid Chondroitin Sulfate (iAluRil). Euro Urol Suppl 2014; 13: e592. 3. UK IQVIA data (accessed August 2024)

www.ialuril.co.uk

