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Ying Li ,1,* Roger D. Johnson ,2 Yogesh Singh ,3 Radu Coldea ,4 and Roser Valentí 5,†

1Department of Applied Physics and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,
School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
3Indian Institute of Science Education and Research, Mohali, Sector 81, SAS Nagar, Manauli 140306, India

4Clarendon Laboratory, University of Oxford, Physics Department, Oxford OX1 3PU, United Kingdom
5Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

(Received 3 December 2024; revised 14 May 2025; accepted 19 May 2025; published 9 June 2025)

Through a combination of crystal symmetry analysis and density functional theory calculations we unveil a
possible microscopic origin of the unexpected insulating behavior reported in the honeycomb Kitaev material
Cu2IrO3. Our study suggests that this material hosts an instability towards charge ordering of the Ir ions,
with alternating magnetic Ir4+ and nonmagnetic Ir3+ ions arranged on the honeycomb lattice. In this case, the
next-nearest-neighbor interactions that couple magnetic Ir4+ ions form an enlarged triangular lattice, instead
of the expected honeycomb lattice. The magnetic Cu2+ ions located at the center of the iridium honeycomb
voids also form a triangular lattice, and additionally contribute to the magnetization of the system. Together, the
interpenetrated Ir4+ and Cu2+ triangular lattices present a novel type of honeycomb Kitaev lattice composed of
two types of magnetic ion.
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I. INTRODUCTION

The iridate family A2IrO3 (A = Na, Li) has been considered
as a prime candidate to realize the long-sought Kitaev Z2 spin
liquid in a honeycomb lattice with nearest-neighbor bond-
dependent Ising interactions [1–20]. However, the systems
show long-range magnetic order due to the presence of further
non-Kitaev interactions [21–25]. Attempts to modulate the
magnetic couplings have been pursued by intercalation of H
atoms [26–28] or Ag atoms [29] in α-Li2IrO3. In the former,
theoretical studies [30,31] indicated that H positions strongly
affect the magnetic interactions [30] resulting in magnetic
models with bond disorder. Such models in the presence of
vacancies have been shown to reproduce the experimentally
observed low-energy spectrum in H3LiIr2O6 [32,33]. The iri-
date Ag3LiIr2O6 was initially proposed to be closer to the
Kitaev limit compared to α-Li2IrO3, however, by improving
the sample quality, the system shows long-range incommen-
surate antiferromagnetic (AFM) order [34,35]. In theoretical
studies it was found that the Ir-O hybridization in Ag3LiIr2O6

is moderate and a localized relativistic jeff = 1/2 magnetic
model with Kitaev and non-Kitaev exchange contributions
is still valid for the description of the system [36], albeit
its properties [37] may be affected by the presence of Ag
vacancies [36,37]. A relatively new intercalated honeycomb
system Cu2IrO3 has also been synthesized [38] consisting of
Ir honeycomb layers, with Cu atoms situated both at the center
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of the honeycomb voids, and in between the Ir layers as shown
in Fig. 1(a).

A crystal structure with C2/c space group symmetry was
first proposed for this system, but it was later shown that three
structures with the same qualitative atomic connectivity but
different space group symmetries, C2/c, C2/m, and P21/c,
could not be uniquely distinguished using the published pow-
der x-ray diffraction data [39]. Susceptibility and specific heat
measurements show that the system remains magnetically dis-
ordered until 2.7 K, at which point short-range order develops
[38]. μSR measurements detect a two-component depolar-
ization with slow- and fast-relaxation rates, attributed to
coexistence of static and dynamic magnetism, with further ev-
idence that both Ir4+ and Cu2+ magnetic moments exist [40].
Taken together, these magnetic properties were suggested
to arise from significant levels of chemical disorder [41].
However, signatures characteristic of a Kitaev quantum spin
liquid have also been reported based on nuclear quadrupole
resonance and Raman scattering measurements [42,43]. Fur-
thermore, Cu2IrO3 has been reported to show a complex
set of structural phase transitions under hydrostatic pressure
[39,44] and an insulator-to-metal transition [45]. More re-
cently, Ref. [46] reported a C2/m crystal structure with less
antisite disorder between Cu and Ir ions in the honeycomb lay-
ers. In this publication magnetic susceptibility measurements
revealed a weak ferromagneticlike anomaly with hysteresis at
a magnetic transition temperature of 70 K [46]. The crystal
structures and bulk properties summarized above are con-
sistent with linearly bonded, nonmagnetic Cu+ (3d10) ions
located between honeycomb layers, and octahedrally coor-
dinated, magnetic Cu2+ (3d9) ions in the honeycomb voids.
Charge is then balanced by a fractional oxidation state of
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FIG. 1. Proposed charge-ordered crystal structure of Cu2IrO3 (C2

symmetry) projected into (a) the bc and (b) the ab planes. The two
nonequivalent Ir ions are labeled as Ir1 and Ir2. Cu1 and Cu2 indicate
the copper ions in the honeycomb layer and between the layers,
respectively. Ir1, Ir2 and Cu1 label single crystallographic sublat-
tices, while Cu2 labels ions located on three symmetry-independent
sublattices indicated as Cu2-1, Cu2-2, and Cu2-3 in Table IV in the
Appendix. The average distances Ir1-O and Ir2-O are 2.04 Å and
2.07 Å, respectively. x, y, z are Cartesian axes used to describe the
d orbitals of all Ir and Cu ions; x and y are defined with respect to
the Ir2 octahedra, with the x̂ + ŷ diagonal bisecting the Ox-Ir-Oy
bond angle and the x̂ − ŷ diagonal along the twofold b axis. z then
completes the right-handed orthonormal set, perpendicular to the
xy plane. (c) The zigzag antiferromagnetic configuration used in
the GGA + SO + U calculations. (d) Honeycomb lattice containing
magnetic Cu1 (blue) and Ir1 (purple) ions. The Cu1-Ir1 distances are
3.11 Å, and triangular lattices of magnetic Ir ions (Ir1) and Cu ions
(Cu1) are shown by dashed lines. The Ir-Ir and Cu-Cu distances are
5.4 Å.

Ir3.5+ (5d5.5), which would be expected to render the system
metallic. It is hence an unresolved challenge to reconcile
this expected metallic state with the experimentally observed
insulating behavior at ambient pressure [38].

In this paper, we use symmetry considerations and den-
sity functional theory (DFT) to investigate the structural and
electronic properties of Cu2IrO3. We take as a starting point a
C2/m crystal structure, which is consistent with several other
monoclinic layered honeycomb materials such as Na2IrO3

[11] and α-Li2IrO3 [26]. Our structural relaxation and energy
minimization results show that the insulating state in Cu2IrO3

may result from iridium charge ordering into magnetic Ir4+

(5d5) and nonmagnetic Ir3+ (5d6). The ideal magnetic ground
state is therefore based on a honeycomb Kitaev lattice, com-
posed not of nearest-neighbor Ir4+ ions, but of alternating Ir4+

and Cu2+ ions with nonmagnetic Ir3+ in the honeycomb voids.

II. CRYSTAL STRUCTURE

The crystal structure of Cu2IrO3 is composed of honey-
comb layers formed from edge sharing IrO6 octahedra, with
Cu atoms occupying both the honeycomb voids (Cu1) and

the space between the layers (Cu2); see Fig. 1. We use as
starting point a crystal structure with C2/m symmetry derived
from the C2/c structure proposed in Ref. [38]. This model
was further refined by performing a structural relaxation (see
details below) in which the atomic fractional coordinates were
allowed to vary, but the unit cell parameters were kept fixed to
the experimental values [38] [the C2/m unit cell (unprimed)
is related to the C2/c cell (primed) by the transformation
a = −a′, b = −b′, c = (c′ + a′)/2]. The resulting parameters
are given on the right side of Table IV in the Appendix, and
were found to be in good agreement with those of the C2/m
structure recently published in Ref. [46]. The octahedral coor-
dination of the Cu1 sites is usually compatible with a Cu2+

valence state, while the linear bonding of the Cu2 sites is
typical of a Cu+ valence. This Cu charge configuration was
confirmed by bond valence sum calculations performed on our
relaxed C2/m structure. We therefore discount the scenario
of Cu1+

2 Ir4+O2−
3 . Charge neutrality then implies an average

iridium oxidation state of +3.5, i.e., a nominal composition
Cu2+

0.5Cu+
1.5Ir3.5+O2−

3 .
In C2/m symmetry, the iridium ions are located on a sin-

gle sublattice of symmetry-equivalent sites, so a fractional
oxidation state of +3.5 for all iridium sites would be ex-
pected to lead to a metallic behavior. However, this fractional
oxidation state also introduces an instability towards charge
disproportionation, which would open an energy gap at the
Fermi level giving rise to an insulator. Long-range charge
order comprised of alternating nearest-neighbor Ir3+ and Ir4+

ions breaks both mirror and inversion symmetry. There is just
one maximal subgroup of C2/m compatible with this broken
symmetry; C2. While other, lower symmetry subgroups may
be realized, we limit our discussion to the highest symmetry
case as is typical in the study of symmetry-breaking order.
Any charge order will be accompanied by an ordered pattern
of atomic displacements allowed within C2 symmetry. In
particular, one would expect to find small oxygen displace-
ments that expand and contract the Ir3+ and Ir4+ octahedra,
respectively.

To test the hypothesis of a charge ordered ground state we
performed a structural relaxation within a model with C2 sym-
metry using the Vienna ab initio simulation package (VASP)
[47,48]. We considered relativistic effects as well as contribu-
tions of the Coulomb repulsion [49] Ueff = U − JH = 2.4 eV
for Ir (U Ir

eff ) following calculations for Na2IrO3 [50] and
8 eV for Cu (U Cu

eff ) following calculations for ZnCu3(OH)6Cl2

[51] within GGA + SO + U . We adopted a cutoff energy of
520 eV and a Monkhorst-pack 4 × 2 × 4 k-points mesh. The
structure was initialized with a nominal, symmetry-breaking
distortion where the Ir1-O bond lengths were shortened on
average (r̄s), and the Ir2-O bond lengths were lengthened
on average (r̄l ). The lattice parameters were fixed and the
fractional coordinates of all ions were allowed to vary. The
resultant structural parameters are given in the left side of
Table IV in the Appendix (see also Fig. 1). The differences
in relaxed Cu and Ir positions between the C2/m reference
structure and the C2 structure were negligible, while the
average Ir-O bond lengths were found to have a ratio of
r̄s/r̄l ∼ 0.98. The respective small shifts in oxygen posi-
tions are likely within the uncertainty of structural refinements
against x-ray diffraction data, especially given the presence
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FIG. 2. Insulating gap in Cu2IrO3 as a function of (a) U Ir
eff

(U Cu
eff = 8 eV) and (b) U Cu

eff (U Ir
eff = 2.4 eV) using GGA + SO + U

with an antiferromagnetic configuration as shown in Fig 1(c). U Ir
eff

and U Cu
eff are the on-site Coulomb repulsion in Ir and Cu, respectively.

of stacking faults typically found in monoclinic layered hon-
eycomb materials. However, our DFT calculations showed
that the respective electronic properties are strongly affected,
whereby the difference between the two iridium-oxygen coor-
dinations induces a full charge order with nearest neighbor
Ir4+ (Ir1) and Ir3+ (Ir2) ions. The total energy difference
between C2/m and C2 structural relaxations was only 4 meV
per formula unit. Despite being close to the accuracy limit
of our DFT calculations, this energy difference was found to
be significant. Remarkably, such a small change in energy
corresponded to complete charge order of the iridium ions,
suggesting that slight perturbations may ultimately prevent
long-range charge order in the real material. In this case the
ground state could resemble a disordered, glassy array of
Ir4+ and Ir3+ ions with their respective disordered oxygen
displacements. We note that the average symmetry of the
disordered ground state is C2/m, and therefore may be easily
hidden in any diffraction experiment. For completeness, we
also tested charge ordered structures based on the other two
experimentally suggested symmetries (P21/c and C2/c), and
found robust charge order and insulating behavior in these
symmetries.

III. ELECTRONIC PROPERTIES

The electronic properties were obtained from full-potential
linearized augmented plane-wave (LAPW) calculations [52].
We chose the basis-size controlling parameter RKmax = 7
and a mesh of 500 k points in the first Brillouin zone (FBZ)
of the primitive unit cell. The density of states (DOS) were
computed with 1000 k points in the full Brillouin zone. An
analysis of the insulating gap as a function of Ueff = U − JH

was performed, having established that a zigzag antiferromag-
netic configuration [see Fig. 1(c)] gave the lowest total energy
compared to three other commensurate magnetic configura-
tions (ferromagnetic, Néel, and stripy). As shown in Fig. 2,
increasing U Ir

eff from 2–4 eV, the charge gap increases sharply
from 0–0.44 eV. With increasing U Cu

eff from 7–9 eV, the gap
increases slightly from 0.058–0.083 eV. The Ueff values for
iridium atoms clearly affect the energy gap much more than
those of copper.
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FIG. 3. Density of states obtained from (a) nonmagnetic GGA,
(b) nonmagnetic GGA + SO, and (c) GGA + SO + U with the mag-
netic configuration displayed in Fig. 1(c). Note that the Cu2 DOS has
been scaled by a factor 1/3.

In Fig. 3 we show the partial density of states (DOS) for
the relxaed C2 structure obtained within nonmagnetic GGA
and GGA + SO approximations, as well as GGA + SO + U
assuming the zigzag antiferromagnetic configuration. In both
the nonrelativistic GGA [Fig. 3(a)] and relativistic GGA + SO
[Fig. 3(b)] partial DOS, Cu2 d states are almost fully occu-
pied below the Fermi level, while Cu1 d states are partially
occupied around the Fermi level. This result is consistent with
Cu+ at the Cu2 site and Cu2+ at the Cu1 site, as expected.
The partial DOS of Ir1 and Ir2 differ in magnitude around the
Fermi level, but have approximately the same form. As shown
in Fig 3(c), including a Coulomb repulsion for Ir and Cu
(GGA + SO + U ) induces a charge order of Ir1 and Ir2, and
opens a gap of about 70 meV (with Ueff = U − JH = 2.4 eV
[50]) for Ir and 8 eV for Cu. We note that GGA + U calcula-
tions without spin-orbit coupling, not shown here, converged
to a metallic ferrimagnetic state where Ir1 has bigger moment
than Ir2. Therefore, spin-orbit coupling, Coulomb repulsion,
and magnetic moments on Ir are all important factors to sta-
bilize the charge ordered state and the respective insulating
behavior.

To further clarify the microscopic nature of the insulating
state, we reevaluate the previously calculated GGA + SO +
U Ir1 density of states projected onto a relativistic jeff basis
[Fig. 4(a)]. The Cu1 density of states was also projected onto
a t2g and eg basis [Fig. 4(b)]. These data show that Ir1 has one
hole in the jeff = 1/2 state and Cu1 has one hole in the eg

orbital, both of which therefore contribute to the magnetism
of the compound.
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FIG. 4. The GGA + SO + U density of states projected onto
(a) the relativistic jeff basis of Ir1, and (b) the t2g and eg orbitals of
Cu1. (c) Nonrelativistic GGA density of states projected onto t2g and
eg orbitals for both Cu1 and Ir1.

IV. MAGNETIC PROPERTIES

We derived the magnetic exchange parameters using the
projED method [23,53], which consists of the following two
steps. First, ab initio hopping parameters between the Ir
and Cu ions are extracted with projective Wannier functions
[54] applied to nonrelativistic FPLO [55] calculations on a
10 × 10 × 10 k mesh. This allows us to construct an effective
electronic model, Htot = Hhop + HSO + HU, which includes
the above calculated kinetic hopping term Hhop, plus the
spin-orbit coupling HSO and Coulomb interaction HU con-
tributions. The spin-orbit coupling λ is set to 0.4 eV for
Ir, and the Coulomb interactions were set to U Ir = 1.7 eV,
J Ir

H = 0.3 eV, U Cu = 8 eV, and JCu
H = 1 eV. We note that

the Coulomb interaction value for Ir [23] considered in this
effective Hubbard model is smaller than the one used in the
GGA + U + SO calculations within the LAPW implementa-
tion, as we have explained in previous calculations [56]. In
a next step, the effective spin Hamiltonian Heff is extracted
from the electronic model via exact diagonalization (ED) of
finite clusters. The projection of the resulting energy spectrum

TABLE I. Matrix elements of the crystal field Hamiltonian for
Ir1 and Cu1 in units of meV, given in the t2g, eg basis defined with
respect to the Cartesian axes xyz defined in Fig. 1(b). Values in bold
indicate the dominant terms. The form of the Cu1 crystal field is
consistent with its twofold site symmetry along the x̂-ŷ direction.
The Ir1 site has the same symmetry, and the additional zeros in the
matrix Hamiltonian are likely due to the large energy gap between t2g

and eg states.

dxy dxz dyz dz2 dx2-y2

dxy −542.4 −7.8 −7.8 0 0
dxz −7.8 −548.7 −13.7 0 0

Ir1 dyz −7.8 −13.7 −548.7 0 0
dz2 0 0 0 2665.7 0

dx2-y2 0 0 0 0 2689.1
dxy −1884.1 −10.0 −10.0 71.0 0
dxz −10.0 −1885.6 7.2 −116.4 0.1

Cu1 dyz −10.0 7.2 −1885.6 −116.4 −0.1
dz2 71.0 −116.4 −116.4 −526.7 0

dx2-y2 0 0.1 −0.1 0 −543.3

onto the low-energy subspace is then obtained by adopting a
pseudospin operator representation in the jeff basis for Ir, and
an eg basis for Cu, with the projection operator defined as P :
Heff = PHtotP = ∑

i j Si Ji j S j .
Considering only the magnetic ions Ir1 and Cu1, the

nearest-neighbor interactions between Ir1 and Cu1 span bonds
labeled X, Y, and Z [see Fig. 1(d)]. In the C2 space group
symmetry, X and Y bonds are related by twofold rotation
about the crystallographic b axis, and the Z bonds are in-
dependent. Strong hybridization of Ir and Cu was found in
our calculations, which is consistent with the enhanced delo-
calization of 5d jeff = 1/2 orbitals observed experimentally
by resonant inelastic x-ray scattering [57]. The next-nearest-
neighbor interactions are Ir1-Ir1 and Cu1-Cu1, which form
two interpenetrating triangular lattices. The respective interac-
tion distances are around 5.4 Å, much larger than the Ir1-Cu1
nearest-neighbor distance. Hence, in the following minimal
model we only consider the hopping parameters between
nearest neighbors Ir1 and Cu1.

The obtained crystal fields for Ir1 and Cu1 ions are shown
in Table I. For the on-site orbital levels of Ir1 ions, eg are
empty above the Fermi level lying at 2.7 eV while t2g are
occupied at around –0.5 eV. For Cu1, the t2g orbitals are fully
occupied and located at around –1.9 eV while the eg orbitals
are found around –0.5 eV. These results are consistent with
the GGA density of states presented in Fig. 4(c). Therefore
the orbitals related to the electronic and magnetic properties
close to the Fermi level are t2g orbitals of Ir1 and eg orbitals of
Cu1.

The calculated, bond-dependent nearest-neighbor hopping
parameters of Ir1-Cu1 bonds are given in Table II, again in
the t2g, eg orbital basis. Different from Na2IrO3 and α-Li2IrO3

where the involved orbitals for the three bonds are threefold
symmetric, in the current system, due to Cu eg orbitals, the
hoppings are not threefold symmetric. For the Z-bond, hop-
ping between Ir1 dxy and Cu1 dz2 was found to dominate,
while for the X(Y) bond, the significant hopping contributions
were between Ir1 dyz (dxz) and Cu1 dz2 and dx2−y2 orbitals.
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TABLE II. Hopping parameters for Ir1-Cu1 nearest neighbor
bonds, in units of meV, calculated for the X, Y, and Z bonds. Values
in bold indicate the dominant terms. Note that the parameters found
for X and Y bonds are consistent with the 2-fold rotational symmetry
around x̂-ŷ that interrelates these two bonds.

Cu1

dxy dxz dyz dz2 dx2-y2

Ir1 (Z) dxy 13.1 −9.0 −9.0 231.1 0
dxz −0.6 −11.8 −1.7 0.1 −28.8
dyz −0.6 −1.7 −11.8 0.1 28.8
dz2 0 0 0 0 0

dx2-y2 0 0 0 0 0
Ir1 (Y) dxy −9.6 −5.6 −1.8 46.3 10.4

dxz −0.7 11.6 13.5 −109.1 −196.6
dyz −1.9 2.8 −9.8 −21.9 32.0
dz2 0 0 0 0 0

dx2-y2 0 0 0 0 0
Ir1 (X) dxy −9.6 −1.8 −5.6 46.3 −10.4

dxz −1.9 −9.8 2.8 −21.9 −32.0
dyz −0.7 13.5 11.6 −109.1 196.6
dz2 0 0 0 0 0

dx2-y2 0 0 0 0 0

The resulting effective Hamiltonian can be written as:

Hspin =
∑
〈i j〉

Si · Ji j · S j, (1)

where 〈i j〉 denotes a sum over all pairs of nearest-neighbor
sites. In Kitaev’s original honeycomb model, the exchange
parameters are bond dependent. For example, the Z-bond
interaction can be written as

JZ =
⎛
⎝

J + ξ � �′ + ζ

� J − ξ �′ − ζ

�′ + ζ �′ − ζ J + K

⎞
⎠. (2)

The calculated exchange parameters for all three bonds are
given in Table III. For the Z bond this magnetic model has a
large negative Heisenberg J and a positive Kitaev K term; both
of those terms change sign and reduce in magnitude for the X
and Y bonds. The magnetic model is not threefold symmetric
due to the anisotropy of the hoppings.

A mean-field calculation using SPINW [58] finds that this
Hamiltonian has a Néel-type magnetic order in the ground
state, which differs from the zigzag order found in our DFT
total energy calculations. We suggest that this discrepancy
may come from the presence of significant magnetic interac-
tions beyond the minimal nearest-neighbor model in (1), such
as antiferromagnetic next-nearest-neighbor couplings, which
would favor zigzag order. Further neighbor couplings in other

TABLE III. Calculated nearest-neighbor exchange parameters in
units of meV.

Bond J K � �′ ξ ζ

Z −16.1 34.1 1.6 −0.1 0.0 0.0
X, Y 9.4 −18.9 −0.7 2.2 1.1 −4.7

Kitaev candidate materials, for instance Na2IrO3, change in-
deed the nature of the magnetic state [23]. Similar to Ref. [23],
the exchange parameters could also be affected by the values
of U , JH , and λ in the calculations. Here we used the standard
parameters for Ir and Cu. Since Cu2IrO3 is more complex than
Na2IrO3 and α-Li2IrO3 due to the presence of the various
Cu and Ir oxidation states, this increase in parameter-space
possibilities results in very heavy calculations, both at the
ED and DFT level. ED calculations would require the con-
sideration of larger clusters, while DFT calculations would
require considering noncollinear configurations. Due to the
complexity of the present system with two different magnetic
ions, these calculations are left for future studies.

V. SUMMARY

In summary, we have shown through a combination
of symmetry analysis, structural relaxations, and electronic
structure calculations that the experimentally observed insu-
lating behavior in Cu2IrO3 can originate in the charge ordering
of iridium ions. In this scenario, nonmagnetic Ir3+ and mag-
netic Ir4+ ions alternate on the iridium honeycomb lattice.
In addition to the insulating behavior observed in resistivity
experiments, a possible experimental verification can be ob-
tained from x-ray absorption near edge structure (XANES),
resonant inelastic x-ray scattering (RIXS), x-ray photoemis-
sion spectroscopy (XPS), and core-level electron energy loss
spectroscopy (EELS). XANES for K edge Cu could verify two
distinct Cu ions, Cu2+ and Cu1+ in Ref. [40] and Ref. [57].
XANES of L3 edge Ir was explained as Ir4+ in Ref. [57].
However, the peaks positions of Ir4+ and Ir3+ are close [59],
therefore it is difficult to distinguish them. RIXS reported
in Ref. [57] at ambient pressure show clear j1/2 transitions.
However, both pure Ir4+ and charge order from (Ir4+, Ir3+)
could capture these transitions. The experiment shows a broad
peak around 0.6 eV, which is different from the features
observed in Na2IrO3 and α-Li2IrO3 [13] where Ir is in a
Ir4+ oxidation states. In these compounds exciton peaks were
observed at 0.42–0.45 eV, and 0.72–0.83 eV. The differences
in peak positions between Cu2IrO3 and the latter compounds
indicate deviations from a pure Ir4+ response in the former.
Further analysis both from RIXS experiments and theory are
left for future study. Similar charge order effects have been
observed in K0.5RuCl3 [60], with magnetic Ru3+ and nonmag-
netic Ru2+ populating the transition-metal honeycomb. XPS
and EELS experiments, having been used to measure a charge
order in K0.5RuCl6, could also be used to probe Cu2IrO3.
Distinct from the K0.5RuCl3 case, we show that in Cu2IrO3

magnetic Cu2+ ions are located in the iridium honeycomb
voids, contributing to a novel, composite Cu2+-Ir4+-Kitaev
honeycomb lattice that includes 3d s = 1/2 and 5d jeff =
1/2 magnetic moments. We note that the associated lattice
distortions are small, and may be easily missed in diffrac-
tion experiments. Both our DFT and model spin Hamiltonian
calculations support an antiferromagnetic ground state that
has not been observed. However, the total energy gained by
charge order is relatively small, suggesting that long-range
charge order, and the respective magnetic order, is vulnerable
to perturbation.
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APPENDIX: STRUCTURAL PARAMETERS OF Cu2IrO3

In this Appendix we provide full crystallographic details for the C2 charge ordered and C2/m reference crystal structures
discussed in the main text.

TABLE IV. Crystallographic details for the C2 charge ordered structure (left) derived from the C2/m reference structure (right) refined by
ab initio structural relaxation. The subgroup basis is {[1,0,0],[0,1,0],[0,0,1]}, origin = [0,0,0] with respect to the reference structure. Rows are
spaced to indicate the relationship between sites of both structures (e.g., site Cu2-2 of C2/m splits into sites Cu2-2 and Cu2-3 of C2, while site
Cu2-1 does not split). The lattice parameters are common to both structures.

Space group C2 (No. 5) Space group C2/m (No. 12)

a = 5.393 Å, b = 9.311 Å, c = 5.961 Å, β = 107.506◦

Atom Wyckoff x y z Atom Wyckoff x y z

Ir1 2a 0 0.33386 0 Ir 4g 0 0.33328 0
Ir2 2a 0 0.66615 0
Cu1 2a 0 0.00000 0 Cu1 2a 0 0 0
Cu2-1 2b 0 0.49718 0.5 Cu2-1 2d 0 0.5 0.5
Cu2-2 2b 0 0.18094 0.5 Cu2-2 4h 0 0.17707 0.5
Cu2-3 2b 0 0.82302 0.5
O1 4c 0.11950 0.49773 0.82439 O1 4i 0.10562 0.5 0.82306
O2 4c 0.10630 0.17343 0.81942 O2 8j 0.11005 0.16919 0.82254
O3 4c 0.38529 0.32896 0.18061
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