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SUMMARY

Systemic lupus erythematosus (SLE) is a serious autoimmune disorder predominantly affecting women. How

ever, screening for SLE and related complications poses significant challenges globally, due to complex diag

nostic criteria and public unawareness. Since SLE-related retinal involvement could provide insights into dis

ease activity and severity, we develop a deep learning system (DeepSLE) to detect SLE and its retinal and 

kidney complications from retinal images. In multi-ethnic validation datasets comprising 247,718 images 

from China and UK, DeepSLE achieves areas under the receiver operating characteristic curve of 0.822– 

0.969 for SLE. Additionally, DeepSLE demonstrates robust performance across subgroups stratified by 

gender, age, ethnicity, and socioeconomic status. To ensure DeepSLE’s explainability, we conduct both qual

itative and quantitative analyses. Furthermore, in a prospective reader study, DeepSLE demonstrates higher 

sensitivities compared with primary care physicians. Altogether, DeepSLE offers digital solutions for detecting 

SLE and related complications from retinal images, holding potential for future clinical deployment.

Cell Reports Medicine 6, 102203, July 15, 2025 © 2025 The Authors. Published by Elsevier Inc. 1 
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a severe autoimmune 

disorder that affects many organs, including the skin, joints, 

the central nervous system, eyes, and the kidney.1–4 It affects 

approximately 3.4 million people worldwide. Of these individ

uals, an estimated 3 million are female.5 Previous studies6–8

have shown that women are several times more likely to develop 

SLE compared to men, with the peak onset typically occurring 

between the ages of 15 and 45. This gender disparity in SLE 

prevalence underscores the importance of understanding the 

unique challenges faced by female patients in both disease diag

nosis and treatment. Additionally, the delayed diagnosis of SLE 

is highly prevalent due to its complex diagnostic criteria and pub

lic unawareness. Early detection of SLE and further therapeutic 

measures are critical to increase the probability of SLE remission 

and improve patient prognosis. However, the screening of SLE 

remains a global public health challenge due to the lack of widely 

accepted, standardized, non-invasive, and cost-effective 

screening tools for early detection, particularly among asymp

tomatic individuals or those with mild symptoms.

In people with SLE, it is indispensable to screen for SLE- 

related complications, including lupus retinopathy (LR) and lupus 

nephritis (LN).9 Early identification and management of these 

complications can enhance personalized care and improve 

long-term outcomes for individuals with SLE. However, chal

lenges remain. Retinal changes associated with LR can be subtle 

and may require advanced imaging techniques,10 such as opti

cal coherence tomography (OCT) or fundus fluorescein angiog

raphy. Current LN screening relies on urinalysis and serum creat

inine measurement, while kidney biopsy remains the gold 

standard for diagnosing LN. Consequently, significant gaps 

persist in the screening of LR and LN, as these procedures are 

not routinely implemented in primary care and low-resource 

settings.

Retinal changes are common among patients with SLE, 

including cotton-wool spots, retinal hemorrhages, vascular tor

tuosity, hard exudates, arteriolar narrowing, and arteriovenous 

crossing changes.11 Additionally, retinal changes tend to coin

cide predominantly with the active phase of SLE12 and can 

also provide valuable insights into the disease activity and 

severity.13,14 Thus, the retina could potentially serve as a non- 

invasive, point-of-care, and cost-effective biomarker for detect

ing SLE and related complications. Furthermore, digital retinal 

photography is now widely available at a low cost in primary 

care optometry and community settings.

Deep learning (DL) has been widely applied to retinal photo

graphs for detecting various retinal diseases (such as diabetic 

retinopathy and age-related macular degeneration) and sys

temic diseases (such as diabetes, chronic kidney disease, and 

cardiovascular diseases). However, applying DL to detect SLE 

and related complications from fundus images is relatively rare 

in previous studies. Liu et al.’s work15 focused on the detection 

of LR from ultra-wide-field fundus photography (UWF-FP) im

ages. Lin et al.16 explored the feasibility of automatic SLE 

screening and LR diagnosis using OCT images. However, 

several challenges remain in this domain. First, the retinal imag

ing modalities (UWF-FP or OCT) used by previous studies to 

detect SLE and LR were not widely available outside specialized 

eye clinics due to their expensive cost, but color fundus photog

raphy (CFP) is one of the most commonly available eye examina

tions in community settings. Second, they did not explore the 

detection of LN from retinal images. Third, as a disease that pri

marily affects women of childbearing age, women with African 

background are disproportionately affected by SLE with more 

rapid progression and worse outcomes.17 Previous studies did 

not investigate the performance and fairness of their models in 

detecting SLE across different gender, age, ethnicity, and socio

economic subgroups, to democratize health access to under

served groups.

In this multi-center study, we developed, validated, and exter

nally tested a vision transformer (ViT)-based DL system, termed 

DeepSLE, to detect SLE from retinal fundus images solely and 

further explore the feasibility and potential for detecting related 

retinal and kidney complications as a proof of concept. First, 

666,383 fundus images from 173,346 participants were used 

to pre-train the DeepSLE system. Subsequently, we trained 

and validated our DeepSLE system using retinal fundus images 

from diverse multi-ethnic datasets, which comprise more than 

254,246 images collected from 91,598 participants, from China 

and the UK. We further evaluated the model performance of de

tecting SLE in different subgroups stratified by gender, age, 

ethnicity, and socioeconomic status. To ensure the relevance 

and interpretability of DeepSLE, we also conducted saliency 

analysis and analysis of retinal vascular variables to gain insights 

into its diagnostic mechanisms of SLE detection. Furthermore, a 

prospective reader study was conducted to compare the perfor

mance of DeepSLE with primary care physicians and specialists.

RESULTS

The overall study design is shown in Figure 1. The DeepSLE 

system was first pre-trained using 666,383 fundus images of 

173,346 participants from the Shanghai Integration Model 

(SIM) cohort through self-supervised learning. Subsequently, 

it was developed and validated using a total of 254,246 retinal 

fundus images from 91,598 participants from China and the 

UK on three disease detection tasks including SLE, LR, and 

LN. We included retinal images from the Peking Union Medical 

College Hospital (PUMCH) dataset for development and inter

nal validation. Four independent multi-ethnic datasets were 

included for external validation: the Shanghai Six People’s Hos

pital (SSPH) dataset, the Shanghai Diabetes Prevention Pro

gram (SDPP) dataset, the United Kingdom Biobank (UKB) data

set, and the Moorfields Eye Hospital (MEH) dataset. The 

detailed demographics information and retinal images of the 

included datasets are summarized in Tables 1 and S1 and 

STAR Methods section.

Performance of DeepSLE for detecting SLE and SLE- 

related retinal and kidney complications

For detecting SLE (Figure 2A; Table 2), the DeepSLE achieved an 

area under the receiver operating characteristic curve (AUROC) 

of 0.969 (95% confidence interval [CI], 0.950–0.984), with a high 

sensitivity of 92.1% (95% CI, 88.0%–95.8%) and a high speci

ficity of 93.3% (95% CI, 90.8%–95.6%) in the internal validation 
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Figure 1. Overview study design of the DeepSLE system 

(A) Graphical illustration of the DeepSLE system. The DeepSLE system could conduct three clinical tasks using retinal fundus images as inputs, including the 

detection of systemic lupus erythematosus (SLE), lupus retinopathy (LR), and lupus nephritis (LN). The DeepSLE system was first pre-trained in a self-supervised 

learning way to extract transferable visual representations from retinal fundus images and then adapted to these three clinical tasks. 

(B) Retrospective multi-ethnic evaluations of the DeepSLE system in the internal and external validation datasets. Four external validation datasets from China 

and the UK were included. 

(C) Subgroup analyses of the DeepSLE system for SLE detection. To ensure the fairness of the DeepSLE system, we conducted analyses on a wide range of 

patient subgroups, with respect to gender and age in the internal validation set and ethnicity and socioeconomic status in external test sets. 

(D) Explainability analysis. To better understand how the DeepSLE system could detect SLE, LR, and LN, we conducted both qualitative and quantitative analyses 

to ensure the relevance and interpretability of the resulting features. 

(E) Prospective reader study. We conducted a prospective reader study to compare the performance of the DeepSLE system with that of physicians for detecting 

SLE, LR, and LN in primary care settings. Five primary care physicians and five immunology specialists were recruited. 

Figure 1 was created with https://BioRender.com.
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set. On the external validation datasets, our system achieved 

AUROCs of 0.850 (95% CI, 0.756–0.927) on external validation 

set 1, 0.836 (95% CI, 0.695–0.957) on external validation set 2, 

0.861 (95% CI, 0.796–0.919) on external validation set 3, and 

0.822 (95% CI, 0.766–0.869) on the external validation set 4. 

These results demonstrated that the DeepSLE system can accu

rately detect the presence of SLE using retinal fundus images 

only, across multi-ethnic datasets.

For detecting SLE-related retinal and kidney complications 

(Figure S1; Table S2), the DeepSLE system achieved an 

AUROC of 0.872 (95% CI, 0.825–0.911) for detecting LR in the 

internal set. Further validation on external datasets demon

strated its generalizability by achieving AUROCs of 0.962, 

0.989, and 0.847 respectively, with superior sensitivities of 

100% in external sets 1 and 2 and 95.0% in external set 3. For 

detecting LN, the system achieved an AUROC of 0.851 (95% 

CI, 0.759–0.926) in the internal dataset. On the external set 1, 

where all the patients with SLE had LN, DeepSLE achieved a 

sensitivity of 75.9% (95% CI, 62.0%–89.7%).

Subgroup analyses stratified by gender, age, ethnicity, 

and socioeconomic status

To ensure the fairness of the DeepSLE system, we conducted 

analyses on a wide range of patient subgroups, with respect 

to gender and age in the internal validation set and ethnicity 

and socioeconomic status in external validation sets. As illus

trated in Figure 2B and Table 3, we evaluated performance for 

detecting SLE across different subgroups stratified by gender 

and age in the internal validation set. The AUROCs between 

the female group (0.970, 95% CI, 0.952–0.985) and the 

male group (0.962, 95% CI, 0.901–0.999) showed no signifi

cant differences. Additionally, there were no significant 

differences in sensitivities and specificities between these 

two subgroups. We also categorized the participants into 

three age subgroups: under 18 years (subgroup 1), 18–45 

years (subgroup 2), and over 45 years (subgroup 3). 

DeepSLE achieved AUROCs of 0.979 (95% CI, 0.941–1.000), 

0.977 (95% CI, 0.959–0.990), and 0.879 (95% CI, 0.787– 

0.957) in the three age subgroups.

We also compared DeepSLE’s performance across different 

subgroups stratified by ethnicity and socioeconomic status in 

the UKB dataset (Figure 2C; Table 3) and the MEH dataset 

(Figure 2D; Table 3). The prevalence of SLE was the highest for 

the Black ethnicity subgroup (0.649% in the UKB dataset and 

81.3% in the MEH dataset), while the White ethnicity subgroup 

had the lowest prevalence (0.073% in the UKB dataset and 

33.6% in the MEH dataset). There were no significant differences 

in AUROCs among the Black, White, and Asian ethnicity sub

groups. We used two different measurements of socioeconomic 

status for subgroup analyses: Townsend Deprivation Index (TDI) 

for the UKB dataset and Index of Multiple Deprivation (IMD) for 

the MEH dataset. Participants were categorized into three sub

groups based on the deciles of these two measurements: decile 

1 to 3, decile 4 to 7, and decile 8 to 10. A higher TDI indicated 

greater deprivation, whereas a lower IMD reflects greater depri

vation. There were no noticeable differences in DeepSLE’s per

formance across people with varying socioeconomic status 

levels.T
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Figure 2. Performance of the DeepSLE system on validation sets and among different subgroups 

Each subgroup was evaluated using three metrics: AUROC, sensitivity, and specificity. Green (SLE cases) and purple (non-SLE cases) bars represent the number 

of patients in each subgroup. Metrics are for all subgroups and are reported with 95% CIs calculated by bootstrapping with 1,000 replicates. PUMCH, Peking 

Union Medical College Hospital; SSPH, Shanghai Six People’s Hospital dataset; SDPP, Shanghai Diabetes Prevention Program dataset; UKB, the United 

Kingdom Biobank; MEH, the Moorfields Eye Hospital dataset; SLE, systemic lupus erythematosus. 

(A) Performance of the DeepSLE system on validation sets. Receiver operating characteristic (ROC) curves with area under the receiver operating characteristic 

curve (AUROC) of the DeepSLE system were shown for detecting SLE in the internal validation set and external validation sets. 

(B) System performance for detecting SLE across demographic subgroups stratified by gender and age on the internal test set. Participants were categorized as 

under 18 years (subgroup 1), 18–45 years (subgroup 2), or over 45 years (subgroup 3). 

(legend continued on next page) 
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Explainability analyses of the DeepSLE system

The interpretability of the DeepSLE could shed insight into its 

diagnostic mechanism, which could enhance the trust of physi

cians in DeepSLE and thus enable broad adoption in real-world 

clinical practice. To better understand how the DeepSLE system 

could detect SLE, LR, and LN, we conducted both qualitative 

and quantitative analyses to ensure the relevance and interpret

ability of the resulting features.

We first conducted qualitative analyses by generating saliency 

maps to find out specific regions of retinal fundus images that 

were most important for DeepSLE’s prediction. Representative 

examples of original images of SLE, LR, and LN, along with their 

corresponding saliency maps, were shown in Figure 3A. The 

average retinal images and corresponding average heatmaps for 

SLE were shown in Figure S2. These results showed that our 

DeepSLE system focused on the retinal vessels, the macula, and 

retinal lesions for disease detection. These patterns align with 

the retinal changes of people with SLE and related complications.

Considering SLE as a systemic disease may impact the clini

cally relevant morphological variables, and inspired by the find

ings from saliency maps, we further conducted a detailed quan

titative analysis of widely accepted retinal vascular variables to 

evaluate their association with SLE, using an open-source auto

mated retinal vascular morphology quantification tool.18 First, we 

performed vessel segmentation on CFPs in various regions to get 

vascular contours (Figure 3B). Using the segmented images, we 

quantified a range of retinal vascular variables, including fractal 

dimension related to vessel complexity, distance tortuosity and 

squared curvature tortuosity related to vessel tortuosity, and cen

tral retinal arteriolar equivalent (CRAE) and central retinal venular 

equivalent (CRVE) related to vessel caliber.19 As shown in 

Figure 3B and Table S3, for CFPs with SLE and without SLE, 

fractal dimension values showed significant differences between 

these two groups. Vessel tortuosity in Zone C also demonstrated 

significant differences between groups. Additionally, both CRAE 

and CRVE in Zone B and Zone C exhibited significant differences. 

These results showed that retinal vascular geometry might be 

predictive patterns for SLE detection.

Comparison of DeepSLE with physicians in a 

prospective reader study

To simulate the scenario of screening SLE and related complica

tions in primary care settings, where specialists in rheumatology 

are not readily available, we conducted a prospective reader 

study to compare the performance of the DeepSLE system 

with that of physicians for detecting SLE, LR, and LN in primary 

care settings. Five primary care physicians (PCPs) and five rheu

matology specialists were recruited and invited to make diag

nosis of SLE, LR, and LN, based on age, gender, medical history, 

findings from physical examinations, and retinal fundus images 

(Figures 4A and S4), while the DeepSLE system made the diag

nosis using retinal fundus images only as inputs. We included 60 

cases with SLE (15 cases with LR and 15 cases with LN) and 40 

non-SLE cases. As shown in Figure 4B and Table S4, PCPs 

achieved sensitivities from 50.00% to 55.00%, while rheuma

tology specialists showed higher sensitivities ranging from 

65.00% to 73.33%. The DeepSLE system demonstrated a signif

icantly higher sensitivity (98.33%, all p < 0.001) for detecting SLE 

from retinal fundus images only, compared with PCPs and rheu

matology specialists. For LR detection (Figure S3A; Table S4), 

the DeepSLE system also showed a better sensitivity (93.33%) 

than PCPs (40.00%–66.67%) and rheumatology specialists 

(53.33%–80.00%). For LN detection (Figure S3B; Table S4), 

PCPs achieved sensitivities from 33.33% to 53.33%, while rheu

matology specialists showed variations in sensitivities from 

13.33% to 86.67%. The sensitivity of the DeepSLE system out

performed all PCPs and four rheumatology specialists.

DISCUSSION

SLE and related complications, such as LR and LN, are severe 

autoimmune diseases, affecting women of childbearing age 

disproportionally. Early detection and timely interventions of 

SLE and related complications are critical to increase the prob

ability of SLE remission and improve patient prognosis. To 

address the gaps, we developed and validated a retinal im

age-based DL system (termed DeepSLE), to discriminate 

(C) System performance for detecting SLE across demographic subgroups stratified by ethnicity and socioeconomic status on the UKB dataset. The socio

economic status was measured by Townsend deprivation index deciles. Participants were categorized as least deprived (decile 1 to decile 3), moderately 

deprived (decile 4 to decile 7), or most deprived (decile 8 to decile 10). 

(D) System performance for detecting SLE across demographic subgroups stratified by ethnicity and socioeconomic status on the MEH dataset. The socio

economic status was measured by the Index of Multiple Deprivation deciles. Participants were categorized as most deprived (decile 1 to decile 3), moderately 

deprived (decile 4 to decile 7), and least deprived (decile 8 to decile 10).

Table 2. Performance of the DeepSLE system on detecting SLE across internal and external validation sets

AUROC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI)

Internal set (PUMCH) 0.969 (0.950–0.984) 92.1 (88.0–95.8) 93.3 (90.8–95.6)

External set 1 (SSPH) 0.850 (0.756–0.927) 69.0 (50.0–85.2) 90.1 (86.0–94.1)

External set 2 (SDPP) 0.836 (0.695–0.957) 80.0 (50.0–100) 76.0 (75.5–76.3)

External set 3 (UKB) 0.861 (0.796–0.919) 79.6 (68.3–89.7) 79.5 (79.2–79.9)

External set 4 (MEH) 0.822 (0.766–0.869) 77.4 (72.6–82.3) 81.2 (75.2–87.6)

AUROC, area under the receiver operating characteristic curve. The performance was reported with 95% confidence interval using bootstrapping with 

1,000 replicates. For analysis of sensitivity and specificity, we selected operating thresholds using the Youden index. 

PUMCH, Peking Union Medical College Hospital; SSPH, Shanghai Six People’s Hospital dataset; SDPP, Shanghai Diabetes Prevention Program data

set; UKB, the United Kingdom Biobank; MEH, Moorfields Eye Hospital dataset; SLE, systemic lupus erythematosus.
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people with SLE from people without SLE and further explore 

feasibility and potential for the detection of LR and LN among 

patients with SLE as a proof of concept, using retinal fundus im

ages only. We demonstrated that the DeepSLE system could 

accurately detect SLE across datasets from China and the 

UK. Furthermore, we conducted a prospective reader study to 

demonstrate the potential of integrating DeepSLE into primary 

care workflows to assist PCPs in the screening of SLE and its 

complications.

Our proposed retinal image-based DL system provides a 

proof-of-concept digital solution to address the current gap in 

the detection of SLE and related complications, in which de

layed diagnosis is highly prevalent.20 Our proposed DeepSLE 

system could provide a non-invasive, low-cost, low-labor- 

dependent approach to detect SLE and related complications 

with good accuracy and sensitivity, serving as an auxiliary 

opportunistic screening tool that assists early detection of 

SLE, particularly in primary care settings where access to rheu

matologic expertise or extensive laboratory testing is limited. 

The identified patients can then be referred to and followed 

up at tertiary medical centers with comprehensive diagnostic 

evaluations and subsequent multidisciplinary management. 

The detection of SLE and related complications based on retinal 

images could also leverage existing community eye care infra

structure that enables opportunistic SLE screening during 

routine screening for common eye diseases. Furthermore, 

with the growing popularity and adoption of digital retinal cam

eras and smartphone-based cameras in primary care world

wide, access to retinal photography is anticipated to increase,21

which lays a solid foundation for the application of our DeepSLE 

system.

Several DL algorithms have been proposed for detecting SLE 

and related retinal complications using advanced imaging mo

dalities, such as UWF-FP for LR and OCT for SLE. Our study im

proves upon previous work in several ways. First, we developed 

the DL algorithm to detect SLE using CFPs alone. Previous algo

rithms require expensive and specialized imaging modalities, 

which might not be feasible in community settings. By contrast, 

our algorithm could detect SLE based on retinal photographs 

only, thus improving the efficiency and potential cost-effective

ness of the algorithm. Second, we first explored the feasibility 

of using retinal fundus images alone to detect LN with promising 

Table 3. Subgroup analyses stratified by gender, age, ethnicity, and socioeconomic status for detecting SLE

Subgroup analyses Number of SLE (%) AUROC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI)

Gender (n = 626, PUMCH)

Male (n = 134) 24 (17.8%) 0.962 (0.901–0.999) 91.7 (78.9–100) 92.7 (87.4–97.2)

Female (n = 492) 167 (33.9%) 0.970 (0.952–0.985) 91.6 (87.3–95.5) 93.5 (90.7–96.0)

Age (n = 626, PUMCH)

Age ≤ 18 (n = 56) 48 (85.7%) 0.979 (0.941–1.000) 100.0 (100.0–100.0) 37.5 (0–75.0)

Age 18–45 (n = 295) 116 (39.3%) 0.977 (0.959–0.990) 94.8 (90.9–98.4) 91.1 (86.7–94.8)

Age > 45 (n = 275) 27 (9.8%) 0.879 (0.787–0.957) 63.0 (43.7–80.0) 96.8 (94.3–98.8)

Ethnicity (n = 54,319, UKB)

White (n = 50,336) 37 (0.073%) 0.827 (0.739–0.902) 70.3 (55.0–84.8) 82.9 (82.6–83.3)

Asian (n = 1,361) 5 (0.367%) 0.674 (0.436–0.986) 100 (100.0–100.0) 43.7 (40.8–46.4)

Black (n = 1,233) 8 (0.649%) 0.820 (0.660–0.956) 62.5 (25.0–100) 87.7 (85.6–89.5)

Other (n = 1,389) 4 (0.288%) 0.962 (0.854–1.000) 100 (100.0–100.0) 84.8 (83.0–86.6)

Ethnicity (n=288, MEH)

White (n = 113) 38 (33.6%) 0.706 (0.593–0.817) 55.3 (38.7–70.7) 89.3 (82.0–95.9)

Asian (n = 54) 24 (44.4%) 0.789 (0.650–0.910) 75.0 (57.7–90.9) 70.0 (53.1–85.2

Black (n = 32) 26 (81.3%) 0.917 (0.791–1.000) 80.0 (64.3–95.7) 83.3 (50.0–100)

Other (n = 89) 56 (62.9%) 0.845 (0.757–0.917) 80.4 (69.6–90.0) 72.7 (57.1–87.1)

Socioeconomic status (n = 54,253, UKB)a

TDI 1–3 (n = 14,908) 8 (0.053%) 0.948 (0.841–1.000) 87.5 (58.3–100) 82.2 (81.6–82.9)

TDI 4–7 (n = 22,269) 19 (0.085%) 0.808 (0.672–0.919) 68.4 (46.7–88.3) 80.6 (80.0–81.1)

TDI 8–10 (n = 17,076) 27 (0.158%) 0.864 (0.767–0.940) 85.2 (69.0–96.4) 75.8 (75.2–76.4)

Socioeconomic status (n=288, MEH)

IMD 1–3 (n = 92) 50 (54.3%) 0.760 (0.653–0.850) 68.0 (54.8–80.0) 66.7 (52.0–82.1)

IMD 4–7 (n = 141) 66 (50.4%) 0.843 (0.772–0.910) 77.3 (66.7–86.5) 81.5 (71.8–91.0)

IMD 8–10 (n = 65) 28 (43.1%) 0.846 (0.720–0.955) 71.4 (52.0–87.5) 97.3 (91.2–100)

The performance was reported with 95% confidence interval using bootstrapping with 1,000 replicates. For analysis of sensitivity and specificity, we 

selected operating thresholds using the Youden index. 

PUMCH, Peking Union Medical College Hospital; UKB, the United Kingdom Biobank; MEH, Moorfields Eye Hospital dataset; SLE, systemic lupus er

ythematosus; TDI, Townsend deprivation index; IMD, Index of Multiple Deprivation.
aThere were 66 participants among the included 54,319 participants in the UKB dataset without the Townsend deprivation index at recruitment.
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performance. Third, we conducted comprehensive subgroup 

and explainability analyses to ensure the fairness and interpret

ability of our DeepSLE system, paving the way for future deploy

ment in real-world clinical settings.

To warrant the model fairness of the DeepSLE system, we 

conducted analyses on a wide range of participant sub

groups, dividing them with respect to gender, age, ethnicity, 

and socioeconomic status. As DL models are increasingly de

ployed in real-world clinical settings, it is indispensable to 

assess not only model performance but also potential biases 

toward specific demographic subgroups.22 These subgroup 

analyses were designed to establish whether the DeepSLE 

system was underperforming in any of the evaluated cate

gories and further investigate whether the system performed 

well for subgroups of participants who are underserved or 

at higher risk of SLE and related complications. The results 

of subgroup analyses indicated the DeepSLE system re

mained predictive within different subgroups stratified by 

A

B

Figure 3. Explainability analyses of the DeepSLE system 

(A) Qualitative analysis using saliency maps. The results showed that our DeepSLE system focused on the retinal vessels, the macula, and retinal lesions for 

disease detections. 

(B) Quantitative analysis of retinal vascular variables for color fundus photographs with SLE and without SLE. First, we performed vessel segmentation on CFPs in 

various regions to get vascular contours. Using the segmented images, we quantified a range of retinal vascular variables, including fractal dimension related to 

vessel complexity, distance tortuosity and squared curvature tortuosity related to vessel tortuosity, and central retinal arteriolar equivalent (CRAE) and central 

retinal venular equivalent (CRVE) related to vessel caliber. p values for comparing the retinal vascular variables between CFPs with and without SLE were shown. 

p values were calculated using the Mann-Whitney U test.
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gender, age, ethnicity, or socioeconomic status. These find

ings demonstrate the reliability and equitable performance of 

the DeepSLE system, supporting its potential for broad clin

ical application globally.

The interpretability of the DeepSLE system offers valuable in

sights into its diagnostic mechanisms, which could facilitate its 

broader adoption in real-world clinical settings. Our qualitative 

analyses revealed that the DeepSLE system predominantly fo

cuses on retinal vessels, the macula, and retinal lesions to 

make predictions. These retinal changes could be observed in 

people with SLE and related complications, demonstrating that 

the system aligns well with the established clinical knowl

edge.10,23–25 Quantitative analyses further supported these find

ings, showing significant differences in retinal vascular variables 

such as fractal dimension, vessel tortuosity, CRAE, and CRVE 

between SLE and non-SLE groups. These results collectively 

suggest that the DeepSLE system is capable of detecting subtle 

retinal changes associated with SLE. The combination of qualita

tive and quantitative insights underscores the system’s potential 

for accurate and explainable disease detection.

Furthermore, the prospective reader study underscores the 

potential of integrating the DeepSLE system into clinical work

flows to assist PCPs in the screening of SLE and its related com

plications, in primary care and low-resource settings. Due to the 

variations in clinical presentations and lack of well-trained PCPs 

for autoimmune diseases, the delayed diagnosis of SLE and its 

A

B

Figure 4. Comparison of DeepSLE with physicians in a prospective reader study 

(A) Reader study design. Five primary care physicians and five immunology specialists were recruited to make diagnosis of SLE, LR, and LN, based on age, 

gender, medical history, findings from physical examinations, and retinal fundus images. The AI model (DeepSLE) was provided with only the retinal fundus 

photographs (created with https://BioRender.com). 

(B) Comparison of DeepSLE’s performance with that of PCPs and specialists for detecting SLE. The sensitivity of DeepSLE outperformed all the PCPs for 

detecting SLE, while no significant differences in specificity were observed between DeepSLE and the PCPs.
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complications is highly prevalent worldwide. We demonstrated 

that, using retinal image only, the sensitivities of our DeepSLE 

system outperformed all the PCPs for detecting SLE, LR, and 

LN. Thus, the integration of DeepSLE into primary care work

flows could potentially lead to fewer missed diagnoses of SLE 

and related complications. These findings suggest that our 

DeepSLE system could be utilized as a valuable, non-invasive, 

point-of-care, and cost-effective screening tool for physicians 

to screen SLE and related complications, particularly in chal

lenging cases involving subtle retinal and systemic manifesta

tions of SLE.

Limitations of the study

Our study had several limitations. First, our DeepSLE system 

was trained in the Chinese population and tested using datasets 

from China and the UK. Further validations in more diverse multi- 

ethnic populations will demonstrate its generalization and 

robustness. Second, the relatively limited sample size of LR 

and LN cases highlights the need for further evaluation to estab

lish the model’s generalizability and robustness. Third, some 

intrinsic biases cannot be eliminated in the present study design, 

such as data distribution and selection bias. Future large multi- 

center prospective studies26 are needed to evaluate the patient 

outcomes after the integration of DeepSLE into real-world clin

ical settings.

In conclusion, we developed a single, non-invasive retinal 

image-based DL system (DeepSLE), to detect SLE and related 

complications that primarily affect women’s health. DeepSLE 

could provide a rapid, non-invasive, and cost-effective 

screening tool for SLE and related complications, using retinal 

images solely.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design

The purpose of this study was to develop and evaluate a DL system for predicting SLE and its complications LR and LN from retinal 

image solely. We first pre-trained the DL system using 666,383 retinal fundus images from 173,346 participants from the Shanghai 

Integrated Diabetes Prevention and Care System (Shanghai Integration Model, SIM). Then, we used retinal images from the Peking 

Union Medical College Hospital to develop and internally validate the DeepSLE system. We also included four independent multi- 

ethnic datasets (246,078 images in total) for external validation, two from China and two from the UK. We further assessed 

DeepSLE’s performance in different subgroups stratified by gender, age, ethnicity and socioeconomic status. To ensure the inter

pretability and explainability of DeepSLE, we also conducted saliency analysis and analysis of retinal vascular variables to gain in

sights into its diagnostic mechanisms. Furthermore, a prospective reader study was conducted to compare the performance of 

DeepSLE with primary care physicians and specialists.

Study datasets and diagnostic criteria

To develop and internally validate the DeepSLE system for detecting SLE, we collected retinal fundus images and corresponding 

clinical data from the electronic records of Peking Union Medical College Hospital (PUMCH). We also included four independent 

external datasets to demonstrate the generalizability of the DeepSLE system. The Shanghai Six People’s Hospital (SSPH) dataset 

was extracted from the Hospital Information System of Shanghai Sixth People’s Hospital. All participants in the SSPH dataset un

derwent kidney biopsy and retinal imaging. The Shanghai Diabetes Prevention Program (SDPP) dataset is a community-based data

set comprising 33,611 participants who underwent comprehensive examinations in Shanghai Health and Medical Center. Data on 

demographic information, anthropometric indices, biochemical measurements and retinal images were recorded. The United 

Kingdom Biobank (UKB) was a large-scale biomedical database and research resource, from half a million UK participants. We 

included 54,319 participants from UKB for external validation. The Moorfields Eye Hospital (MEH) dataset was derived from a large 

retrospective cohort dataset AlyEye.27 Among them, 144 participants with SLE and 144 participants without SLE were included. The 

label of SLE was extracted from ICD codes for these datasets.

To develop and validate the DeepSLE system for detecting lupus retinopathy (LR), two ophthalmologists labeled retinal fundus 

images of patients with SLE from PUMCH, SSPH, SDPP, and UKB datasets. Inconsistent annotations were checked by a senior 

ophthalmologist to give final labels. LR was diagnosed if cotton-wool spots, hemorrhages, vasculitis, retinal detachment or optic 

disc changes as papilledema, optic atrophy were present.28 Images with DR29 were excluded in the development and validation da

tasets for LR detection.

To develop the DeepSLE system for detecting lupus nephritis (LN), 947 patients with SLE were enrolled for development and in

ternal validation. Among them, 112 patients were diagnosed with LN after kidney biopsies and confirmation by pathologists from 

PUMCH. We included 29 participants with SLE from SSPH dataset for external validation, who were all with LN diagnosed by kidney 

biopsy.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

DeepSLE This paper https://github.com/DeepSLE/deepsle

Python 3.7.12 Python http://www.python.org/

Torch 1.8.1+cu111 PyTorch https://pytorch.org/

Torchvision 0.9.1+cu111 PyTorch https://pytorch.org/vision/stable

Opencv-python 4.5.3.56 OpenCV https://pypi.org/project/opencv-python/4.5.3.56/

Matplotlib 3.5.3 Matplotlib https://matplotlib.org

Pillow 8.3.1 Pillow https://pillow.readthedocs.io

Numpy 1.21.6 Numpy https://numpy.org

Pandas 0.25.0 Pandas https://pandas.pydata.org/

RETFound-MAE Github https://github.com/rmaphoh/RETFound_MAE

Automorph Github https://github.com/rmaphoh/AutoMorph

RELPROP Github https://github.com/hila-chefer/Transformer-Explainability
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All retinal fundus photographs of SLE patients were acquired after a confirmed diagnosis of SLE. Acquiring images prior to diag

nosis would introduce ambiguity regarding the disease status at the time of image capture, potentially resulting in incorrect labeling 

and underlying bias for the development of DeepSLE. The retinal images were acquired from multiple sources and camera devices, 

including DRI OCT Triton (Topcon), Topcon TRC-NW300 (Topcon), Topcon TRC-NW400 (Topcon), Topcon 3D OCT1000 Mark II 

(Topcon), and Topcon 3DOCT-2000SA (Topcon). Additional details regarding the characteristics of participants with SLE included 

in this study (duration of SLE, the places of retinal imaging, disease stage, reasons for retinal imaging, and Hydroxychloroquine treat

ment) were provided in Table S1.

Ethics statement

The study was approved by the Institutional Review Board of Peking Union Medical College Hospital of the Chinese Academy of 

Medical Sciences (Approval No. K22C2366), and the Ethics Committee of Shanghai Sixth People’s Hospital (Approval No. 2019- 

087). All images were retrospectively collected and de-identified prior to the analysis. All procedures followed the tenets of the Decla

ration of Helsinki.

METHOD DETAILS

Development and implementation of DeepSLE system

Pre-training the DeepSLE system using generative self-supervised learning

Inspired by the success of generative self-supervised learning (SSL) approach in both natural imaging30 and retinal imaging,31 we 

also employed an encoder-decoder architecture to reconstruct retinal images from the highly masked versions to pre-train the 

DeepSLE system. Same as the figurations of masked autoencoder and RETFound, the large vision Transformer (ViT-large)32 encoder 

has 24 Transformer blocks, each of which comprises alternating layers of multi-head self-attention and multilayer perceptron (MLP) 

blocks. The lightweight decoder is a small vision Transformer (ViT-small) with eight Transformer blocks. An unmasked input image is 

patched with size of 16×16 and subsequently projected through linear embeddings as the embedding vector of size 1024. These 

vectors are fed into the encoder to generate high-level features. The decoder then inserts masked dummy tokens into the extracted 

high-level encoded patches to perform image reconstruction.

The mask ratio is of 0.75. The total training epoch is 800. We selected the checkpoint after the final epoch to form a well-trained SSL 

model, which could be utilized for further training of the DeepSLE system. We used four NVIDIA A800 (80G) for pretraining, with the 

batch size as 1,792 (4 GPUs×448 per GPU).

Training of DeepSLE system for detecting SLE, LR and LN

For detecting SLE, LR and LN respectively, the development dataset was divided into training set and tuning set (8: 2) independently, 

where the training set was used for model optimization and the tuning set for model selection. We only utilized the encoder (ViT-large) 

of the SSL model to extract high-level features from retinal fundus images. The decoder was replaced with a multilayer perceptron 

(MLP) as the classifier to output the predicted probability of disease categories. The encoder’s initial weights were set using the 

above pre-trained checkpoint, while the weights of MLP was initialized using a truncated normal distribution with a standard deviation 

of 2×10-5.

Taking both imbalanced data and imbalanced diagnosis difficulty into consideration, we used a curriculum three-stage training 

schedule and utilized a balanced-weighted cross-entropy loss with asymmetric label smoothing. In the first stage, a general/standard 

classifier was trained. In the second stage, we assign larger weight to minority classes for ‘‘imbalanced data’’. In the last stage, we 

utilized the per-class performance on the tuning set as the indicator for diagnosis difficulty, and updated the weights accordingly. 

Hence, the training loss was given by:

L = −
1

B

∑B

i = 1
wiCE(~yi; yi);wi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 e < E1

(
C=Nc

∑
c∈C1

/
Nc

) e − E1
E2 − E1

E1 < e < E2

(
C
/

fe
c∑

c∈C1
/

fe
c
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E2 < e < E

:

where B denotes the batch size, C is the total number of classes, wi is the weight that adjusts the contribution of each sample to the 

loss. yi is the ground truth label, ~yi is the model prediction. Nc denotes the number of training samples in class C. The diagnosis dif

ficulty indicator is denoted by fe
c , which means the F1-score of class c on the tuning set after epoch e. The network is trained for total E 

epochs, where E1 and E2 are hyperparameters for stages.

We employed a combination of geometric transformations (e.g., random rotations, flipping, and scaling (resizing cropped patches 

to 224×224)), color augmentations (e.g., brightness and contrast adjustments), Gaussian noise injection, and image normalization to 

enhance model generalizability. The training objective is to generate the same categorical output as the label. The batch size is 16. 

The total training epoch is 50 and the first 10 epochs are for learning rate warming up (from 0 to learning rate 5e-4), followed by a 
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cosine annealing schedule (from learning rate 5e-4 to 1e-6 in the rest 40 epochs). E1 and E2 are set as 10 and 25 respectively. After 

each epoch training, the model will be evaluated on the tuning set. The model weights with the highest AUROC on the tuning set will 

be saved as the final model for internal and external validations. We use NVIDIA RTX 3090 (24 GB) for training and testing.

Explainability analyses

RELPROP33 algorithm specifically designed for explaining Transformer-based networks, was employed to visualize the saliency re

gions of images. This technique employs layer-wise relevance propagation to compute relevancy scores for each attention head 

within each layer, which are then integrated across the attention graph by combining relevancy and gradient information. Conse

quently, this process visualizes the regions of input images contributing to specific classifications.

For retinal vascular variables analysis, we first performed vessel segmentation on CFPs in various regions to get vascular contours. 

As shown in Figure 3B, we carried out binary vessel segmentation, artery/vein segmentation and optic/disc segmentation on the 

entire CFP image. Subsequently, binary and artery/vein segmentation were also performed in Zone B (the annulus 0.5–1 optic 

disc diameter from the disc margin) and in Zone C (the annulus 0.5–2 optic disc diameter from the disc margin), the two standard 

observation areas.34 Using the segmented images, we quantified vascular variables associated with the tortuosity and complexity 

of the entire image, Zone B, and Zone C. Additionally, we measured the caliber of arteries and veins in Zone B and Zone C. We 

then compared the vascular variables of participants with SLE to those without SLE in the internal test set. The variables included 

fractal dimension related to vessel complexity, distance tortuosity and squared curvature tortuosity related to vessel tortuosity, 

and central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE)19 related to vessel caliber.

A prospective reader study to compare the performance of DeepSLE and physicians

We conducted a prospective reader study to compare the performance of DeepSLE with physicians, for detecting SLE, LR and LN. 

The goal of this reader study was to simulate the scenario of screening SLE and related complications in primary care settings, where 

rheumatology specialists are not readily available. Five PCPs and five rheumatology specialists were recruited. We curated a dataset 

for this reader study from PUMCH, comprising 40 non-SLE cases, 15 SLE cases with LR, 15 SLE cases with LN, and 30 SLE cases 

without LR or LN. The DeepSLE system made the diagnosis of SLE, LR and LN, using retinal fundus images only as inputs. To ensure 

a reasonable comparison, physicians were asked to make the diagnosis based on age, gender, medical history, findings from phys

ical examinations, and retinal fundus images, which are routinely used in clinical practice. For medical history, we ensured that the 

physicians were provided with symptoms related to SLE and its complications, including fatigue, joint pain, skin rashes, oral ulcers, 

photosensitivity, edema, changes in urine output, ocular symptoms, and neuropsychiatric symptoms. This historical context was 

made available to the primary care physicians to support their clinical decision-making during the comparison. For clinical examina

tions, we included physical assessment of the patient’s vital signs, mucocutaneous changes, joint involvement, edema, vision, and 

signs of other SLE-related manifestations (Figures 4 and S4). Additionally, we clarify that the primary care physicians and specialists 

were not expected to perform specialized diagnostic tests (such as advanced imaging or laboratory biomarkers) during this compar

ison. For outcome analysis, we primarily compared the detection sensitivities of DeepSLE and physicians, since higher sensitivities 

could minimize the number of false negatives.

QUANTIFICATION AND STATISTICAL ANALYSIS

All task performances were evaluated using AUROCs, sensitivities and specificities. Sensitivity and specificity for SLE detection were 

reported using the Youden index, while those for LR and LN detection were reported at high-sensitivity operating points (85% for LR 

and LN) selected from the internal validation set. We also conducted subgroup analyses stratified by gender, age, ethnicity and so

cioeconomic status. The 95% confidence intervals were estimated with the non-parametric bootstrap method using 1,000 random 

resampling with replacement. For quantitative analysis of retinal vascular variables, P values were calculated using the Mann- 

Whitney U tests. For the prospective reader study, McNemar’s tests were used to calculate p-values comparing the DeepSLE sys

tem’s sensitivities and specificities with those of the physicians.
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