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SUMMARY

Systemic lupus erythematosus (SLE) is a serious autoimmune disorder predominantly affecting women. How-
ever, screening for SLE and related complications poses significant challenges globally, due to complex diag-
nostic criteria and public unawareness. Since SLE-related retinal involvement could provide insights into dis-
ease activity and severity, we develop a deep learning system (DeepSLE) to detect SLE and its retinal and
kidney complications from retinal images. In multi-ethnic validation datasets comprising 247,718 images
from China and UK, DeepSLE achieves areas under the receiver operating characteristic curve of 0.822-
0.969 for SLE. Additionally, DeepSLE demonstrates robust performance across subgroups stratified by
gender, age, ethnicity, and socioeconomic status. To ensure DeepSLE’s explainability, we conduct both qual-
itative and quantitative analyses. Furthermore, in a prospective reader study, DeepSLE demonstrates higher
sensitivities compared with primary care physicians. Altogether, DeepSLE offers digital solutions for detecting
SLE and related complications from retinal images, holding potential for future clinical deployment.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a severe autoimmune
disorder that affects many organs, including the skin, joints,
the central nervous system, eyes, and the kidney.'™ It affects
approximately 3.4 million people worldwide. Of these individ-
uals, an estimated 3 million are female.® Previous studies®®
have shown that women are several times more likely to develop
SLE compared to men, with the peak onset typically occurring
between the ages of 15 and 45. This gender disparity in SLE
prevalence underscores the importance of understanding the
unique challenges faced by female patients in both disease diag-
nosis and treatment. Additionally, the delayed diagnosis of SLE
is highly prevalent due to its complex diagnostic criteria and pub-
lic unawareness. Early detection of SLE and further therapeutic
measures are critical to increase the probability of SLE remission
and improve patient prognosis. However, the screening of SLE
remains a global public health challenge due to the lack of widely
accepted, standardized, non-invasive, and cost-effective
screening tools for early detection, particularly among asymp-
tomatic individuals or those with mild symptoms.

In people with SLE, it is indispensable to screen for SLE-
related complications, including lupus retinopathy (LR) and lupus
nephritis (LN).® Early identification and management of these
complications can enhance personalized care and improve
long-term outcomes for individuals with SLE. However, chal-
lenges remain. Retinal changes associated with LR can be subtle
and may require advanced imaging techniques, '’ such as opti-
cal coherence tomography (OCT) or fundus fluorescein angiog-
raphy. Current LN screening relies on urinalysis and serum creat-
inine measurement, while kidney biopsy remains the gold
standard for diagnosing LN. Consequently, significant gaps
persist in the screening of LR and LN, as these procedures are
not routinely implemented in primary care and low-resource
settings.

Retinal changes are common among patients with SLE,
including cotton-wool spots, retinal hemorrhages, vascular tor-
tuosity, hard exudates, arteriolar narrowing, and arteriovenous
crossing changes."' Additionally, retinal changes tend to coin-
cide predominantly with the active phase of SLE'® and can
also provide valuable insights into the disease activity and
severity.">"* Thus, the retina could potentially serve as a non-
invasive, point-of-care, and cost-effective biomarker for detect-
ing SLE and related complications. Furthermore, digital retinal
photography is now widely available at a low cost in primary
care optometry and community settings.

Deep learning (DL) has been widely applied to retinal photo-
graphs for detecting various retinal diseases (such as diabetic
retinopathy and age-related macular degeneration) and sys-
temic diseases (such as diabetes, chronic kidney disease, and
cardiovascular diseases). However, applying DL to detect SLE
and related complications from fundus images is relatively rare
in previous studies. Liu et al.’s work'® focused on the detection
of LR from ultra-wide-field fundus photography (UWF-FP) im-
ages. Lin et al.’® explored the feasibility of automatic SLE
screening and LR diagnosis using OCT images. However,
several challenges remain in this domain. First, the retinal imag-
ing modalities (UWF-FP or OCT) used by previous studies to
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detect SLE and LR were not widely available outside specialized
eye clinics due to their expensive cost, but color fundus photog-
raphy (CFP) is one of the most commonly available eye examina-
tions in community settings. Second, they did not explore the
detection of LN from retinal images. Third, as a disease that pri-
marily affects women of childbearing age, women with African
background are disproportionately affected by SLE with more
rapid progression and worse outcomes.'” Previous studies did
not investigate the performance and fairness of their models in
detecting SLE across different gender, age, ethnicity, and socio-
economic subgroups, to democratize health access to under-
served groups.

In this multi-center study, we developed, validated, and exter-
nally tested a vision transformer (ViT)-based DL system, termed
DeepSLE, to detect SLE from retinal fundus images solely and
further explore the feasibility and potential for detecting related
retinal and kidney complications as a proof of concept. First,
666,383 fundus images from 173,346 participants were used
to pre-train the DeepSLE system. Subsequently, we trained
and validated our DeepSLE system using retinal fundus images
from diverse multi-ethnic datasets, which comprise more than
254,246 images collected from 91,598 participants, from China
and the UK. We further evaluated the model performance of de-
tecting SLE in different subgroups stratified by gender, age,
ethnicity, and socioeconomic status. To ensure the relevance
and interpretability of DeepSLE, we also conducted saliency
analysis and analysis of retinal vascular variables to gain insights
into its diagnostic mechanisms of SLE detection. Furthermore, a
prospective reader study was conducted to compare the perfor-
mance of DeepSLE with primary care physicians and specialists.

RESULTS

The overall study design is shown in Figure 1. The DeepSLE
system was first pre-trained using 666,383 fundus images of
173,346 participants from the Shanghai Integration Model
(SIM) cohort through self-supervised learning. Subsequently,
it was developed and validated using a total of 254,246 retinal
fundus images from 91,598 participants from China and the
UK on three disease detection tasks including SLE, LR, and
LN. We included retinal images from the Peking Union Medical
College Hospital (PUMCH) dataset for development and inter-
nal validation. Four independent multi-ethnic datasets were
included for external validation: the Shanghai Six People’s Hos-
pital (SSPH) dataset, the Shanghai Diabetes Prevention Pro-
gram (SDPP) dataset, the United Kingdom Biobank (UKB) data-
set, and the Moorfields Eye Hospital (MEH) dataset. The
detailed demographics information and retinal images of the
included datasets are summarized in Tables 1 and S1 and
STAR Methods section.

Performance of DeepSLE for detecting SLE and SLE-
related retinal and kidney complications

For detecting SLE (Figure 2A; Table 2), the DeepSLE achieved an
area under the receiver operating characteristic curve (AUROC)
of 0.969 (95% confidence interval [Cl], 0.950-0.984), with a high
sensitivity of 92.1% (95% CI, 88.0%-95.8%) and a high speci-
ficity of 93.3% (95% Cl, 90.8%-95.6%) in the internal validation
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Figure 1. Overview study design of the DeepSLE system

(A) Graphical illustration of the DeepSLE system. The DeepSLE system could conduct three clinical tasks using retinal fundus images as inputs, including the
detection of systemic lupus erythematosus (SLE), lupus retinopathy (LR), and lupus nephritis (LN). The DeepSLE system was first pre-trained in a self-supervised
learning way to extract transferable visual representations from retinal fundus images and then adapted to these three clinical tasks.

(B) Retrospective multi-ethnic evaluations of the DeepSLE system in the internal and external validation datasets. Four external validation datasets from China
and the UK were included.

(C) Subgroup analyses of the DeepSLE system for SLE detection. To ensure the fairness of the DeepSLE system, we conducted analyses on a wide range of
patient subgroups, with respect to gender and age in the internal validation set and ethnicity and socioeconomic status in external test sets.

(D) Explainability analysis. To better understand how the DeepSLE system could detect SLE, LR, and LN, we conducted both qualitative and quantitative analyses
to ensure the relevance and interpretability of the resulting features.

(E) Prospective reader study. We conducted a prospective reader study to compare the performance of the DeepSLE system with that of physicians for detecting
SLE, LR, and LN in primary care settings. Five primary care physicians and five immunology specialists were recruited.

Figure 1 was created with https://BioRender.com.
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SIM, Shanghai Integration Model; PUMCH, Peking Union Medical College Hospital; SSPH, Shanghai Six People’s Hospital; SDPP, Shanghai Diabetes Prevention Program dataset; UKB, the

United Kingdom Biobank; MEH, Moorfields Eye Hospital dataset; SLE, systemic lupus erythematosus; LR, lupus retinopathy; LN, lupus nephritis; NA, not available.
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set. On the external validation datasets, our system achieved
AUROCs of 0.850 (95% Cl, 0.756-0.927) on external validation
set 1, 0.836 (95% CI, 0.695-0.957) on external validation set 2,
0.861 (95% CI, 0.796-0.919) on external validation set 3, and
0.822 (95% CI, 0.766-0.869) on the external validation set 4.
These results demonstrated that the DeepSLE system can accu-
rately detect the presence of SLE using retinal fundus images
only, across multi-ethnic datasets.

For detecting SLE-related retinal and kidney complications
(Figure S1; Table S2), the DeepSLE system achieved an
AUROC of 0.872 (95% Cl, 0.825-0.911) for detecting LR in the
internal set. Further validation on external datasets demon-
strated its generalizability by achieving AUROCs of 0.962,
0.989, and 0.847 respectively, with superior sensitivities of
100% in external sets 1 and 2 and 95.0% in external set 3. For
detecting LN, the system achieved an AUROC of 0.851 (95%
Cl, 0.759-0.926) in the internal dataset. On the external set 1,
where all the patients with SLE had LN, DeepSLE achieved a
sensitivity of 75.9% (95% ClI, 62.0%-89.7%).

Subgroup analyses stratified by gender, age, ethnicity,
and socioeconomic status

To ensure the fairness of the DeepSLE system, we conducted
analyses on a wide range of patient subgroups, with respect
to gender and age in the internal validation set and ethnicity
and socioeconomic status in external validation sets. As illus-
trated in Figure 2B and Table 3, we evaluated performance for
detecting SLE across different subgroups stratified by gender
and age in the internal validation set. The AUROCs between
the female group (0.970, 95% CI, 0.952-0.985) and the
male group (0.962, 95% CI, 0.901-0.999) showed no signifi-
cant differences. Additionally, there were no significant
differences in sensitivities and specificities between these
two subgroups. We also categorized the participants into
three age subgroups: under 18 years (subgroup 1), 18-45
years (subgroup 2), and over 45 years (subgroup 3).
DeepSLE achieved AUROCs of 0.979 (95% ClI, 0.941-1.000),
0.977 (95% CI, 0.959-0.990), and 0.879 (95% CI, 0.787-
0.957) in the three age subgroups.

We also compared DeepSLE’s performance across different
subgroups stratified by ethnicity and socioeconomic status in
the UKB dataset (Figure 2C; Table 3) and the MEH dataset
(Figure 2D; Table 3). The prevalence of SLE was the highest for
the Black ethnicity subgroup (0.649% in the UKB dataset and
81.3% in the MEH dataset), while the White ethnicity subgroup
had the lowest prevalence (0.073% in the UKB dataset and
33.6% in the MEH dataset). There were no significant differences
in AUROCs among the Black, White, and Asian ethnicity sub-
groups. We used two different measurements of socioeconomic
status for subgroup analyses: Townsend Deprivation Index (TDI)
for the UKB dataset and Index of Multiple Deprivation (IMD) for
the MEH dataset. Participants were categorized into three sub-
groups based on the deciles of these two measurements: decile
1 to 3, decile 4 to 7, and decile 8 to 10. A higher TDI indicated
greater deprivation, whereas a lower IMD reflects greater depri-
vation. There were no noticeable differences in DeepSLE’s per-
formance across people with varying socioeconomic status
levels.
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Figure 2. Performance of the DeepSLE system on validation sets and among different subgroups

Each subgroup was evaluated using three metrics: AUROC, sensitivity, and specificity. Green (SLE cases) and purple (non-SLE cases) bars represent the number
of patients in each subgroup. Metrics are for all subgroups and are reported with 95% Cls calculated by bootstrapping with 1,000 replicates. PUMCH, Peking
Union Medical College Hospital; SSPH, Shanghai Six People’s Hospital dataset; SDPP, Shanghai Diabetes Prevention Program dataset; UKB, the United
Kingdom Biobank; MEH, the Moorfields Eye Hospital dataset; SLE, systemic lupus erythematosus.

(A) Performance of the DeepSLE system on validation sets. Receiver operating characteristic (ROC) curves with area under the receiver operating characteristic
curve (AUROC) of the DeepSLE system were shown for detecting SLE in the internal validation set and external validation sets.

(B) System performance for detecting SLE across demographic subgroups stratified by gender and age on the internal test set. Participants were categorized as
under 18 years (subgroup 1), 18-45 years (subgroup 2), or over 45 years (subgroup 3).

(legend continued on next page)
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Table 2. Performance of the DeepSLE system on detecting SLE across internal and external validation sets

AUROC (95% Cl)

Sensitivity, % (95% Cl) Specificity, % (95% Cl)

Internal set (PUMCH)
External set 1 (SSPH)
External set 2 (SDPP)
External set 3 (UKB)
External set 4 (MEH)

0.969 (0.950-0.984)
0.850 (0.756-0.927)
0.836 (0.695-0.957)
0.861 (0.796-0.919)
0.822 (0.766-0.869)

92.1 (88.0-95.9)
69.0 (50.0-85.2)
80.0 (50.0-100)
79.6 (68.3-89.7)
77.4 (72.6-82.3)

93.3 (90.8-95.6)
90.1 (86.0-94.1
76.0 (75.5-76.3
79.5 (79.2-79.9

)
)
)
81.2 (75.2-87.6)

AUROC, area under the receiver operating characteristic curve. The performance was reported with 95% confidence interval using bootstrapping with
1,000 replicates. For analysis of sensitivity and specificity, we selected operating thresholds using the Youden index.
PUMCH, Peking Union Medical College Hospital; SSPH, Shanghai Six People’s Hospital dataset; SDPP, Shanghai Diabetes Prevention Program data-
set; UKB, the United Kingdom Biobank; MEH, Moorfields Eye Hospital dataset; SLE, systemic lupus erythematosus.

Explainability analyses of the DeepSLE system

The interpretability of the DeepSLE could shed insight into its
diagnostic mechanism, which could enhance the trust of physi-
cians in DeepSLE and thus enable broad adoption in real-world
clinical practice. To better understand how the DeepSLE system
could detect SLE, LR, and LN, we conducted both qualitative
and quantitative analyses to ensure the relevance and interpret-
ability of the resulting features.

We first conducted qualitative analyses by generating saliency
maps to find out specific regions of retinal fundus images that
were most important for DeepSLE’s prediction. Representative
examples of original images of SLE, LR, and LN, along with their
corresponding saliency maps, were shown in Figure 3A. The
average retinal images and corresponding average heatmaps for
SLE were shown in Figure S2. These results showed that our
DeepSLE system focused on the retinal vessels, the macula, and
retinal lesions for disease detection. These patterns align with
the retinal changes of people with SLE and related complications.

Considering SLE as a systemic disease may impact the clini-
cally relevant morphological variables, and inspired by the find-
ings from saliency maps, we further conducted a detailed quan-
titative analysis of widely accepted retinal vascular variables to
evaluate their association with SLE, using an open-source auto-
mated retinal vascular morphology quantification tool.'® First, we
performed vessel segmentation on CFPs in various regions to get
vascular contours (Figure 3B). Using the segmented images, we
quantified a range of retinal vascular variables, including fractal
dimension related to vessel complexity, distance tortuosity and
squared curvature tortuosity related to vessel tortuosity, and cen-
tral retinal arteriolar equivalent (CRAE) and central retinal venular
equivalent (CRVE) related to vessel caliber.’® As shown in
Figure 3B and Table S3, for CFPs with SLE and without SLE,
fractal dimension values showed significant differences between
these two groups. Vessel tortuosity in Zone C also demonstrated
significant differences between groups. Additionally, both CRAE
and CRVE in Zone B and Zone C exhibited significant differences.
These results showed that retinal vascular geometry might be
predictive patterns for SLE detection.

Comparison of DeepSLE with physicians in a
prospective reader study

To simulate the scenario of screening SLE and related complica-
tions in primary care settings, where specialists in rheumatology
are not readily available, we conducted a prospective reader
study to compare the performance of the DeepSLE system
with that of physicians for detecting SLE, LR, and LN in primary
care settings. Five primary care physicians (PCPs) and five rheu-
matology specialists were recruited and invited to make diag-
nosis of SLE, LR, and LN, based on age, gender, medical history,
findings from physical examinations, and retinal fundus images
(Figures 4A and S4), while the DeepSLE system made the diag-
nosis using retinal fundus images only as inputs. We included 60
cases with SLE (15 cases with LR and 15 cases with LN) and 40
non-SLE cases. As shown in Figure 4B and Table S4, PCPs
achieved sensitivities from 50.00% to 55.00%, while rheuma-
tology specialists showed higher sensitivities ranging from
65.00% to 73.33%. The DeepSLE system demonstrated a signif-
icantly higher sensitivity (98.33%, all p < 0.001) for detecting SLE
from retinal fundus images only, compared with PCPs and rheu-
matology specialists. For LR detection (Figure S3A; Table S4),
the DeepSLE system also showed a better sensitivity (93.33%)
than PCPs (40.00%-66.67%) and rheumatology specialists
(53.33%-80.00%). For LN detection (Figure S3B; Table S4),
PCPs achieved sensitivities from 33.33% to 53.33%, while rheu-
matology specialists showed variations in sensitivities from
13.33% to 86.67%. The sensitivity of the DeepSLE system out-
performed all PCPs and four rheumatology specialists.

DISCUSSION

SLE and related complications, such as LR and LN, are severe
autoimmune diseases, affecting women of childbearing age
disproportionally. Early detection and timely interventions of
SLE and related complications are critical to increase the prob-
ability of SLE remission and improve patient prognosis. To
address the gaps, we developed and validated a retinal im-
age-based DL system (termed DeepSLE), to discriminate

(C) System performance for detecting SLE across demographic subgroups stratified by ethnicity and socioeconomic status on the UKB dataset. The socio-
economic status was measured by Townsend deprivation index deciles. Participants were categorized as least deprived (decile 1 to decile 3), moderately

deprived (decile 4 to decile 7), or most deprived (decile 8 to decile 10).

(D) System performance for detecting SLE across demographic subgroups stratified by ethnicity and socioeconomic status on the MEH dataset. The socio-
economic status was measured by the Index of Multiple Deprivation deciles. Participants were categorized as most deprived (decile 1 to decile 3), moderately

deprived (decile 4 to decile 7), and least deprived (decile 8 to decile 10).
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Table 3. Subgroup analyses stratified by gender, age, ethnicity, and socioeconomic status for detecting SLE
Number of SLE (%) AUROC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI)

Subgroup analyses
Gender (n = 626, PUMCH)

Male (n = 134)
Female (n = 492)

24 (17.8%)
167 (33.9%)

0.962 (0.901-0.999)
0.970 (0.952-0.985)

91.7 (78.9-100)
91.6 (87.3-95.5)

92.7 (87.4-97.2)
93.5 (90.7-96.0)

Age (n = 626, PUMCH)

Age < 18 (n = 56)
Age 18-45 (n = 295)
Age > 45 (n = 275)

48 (85.7%)
116 (39.3%)
27 (9.8%)

0.979 (0.941-1.000)
0.977 (0.959-0.990)
0.879 (0.787-0.957)

100.0 (100.0-100.0)
94.8 (90.9-98.4)
63.0 (43.7-80.0)

37.5 (0-75.0)
91.1 (86.7-94.8)
96.8 (94.3-98.8)

Ethnicity (7 = 54,319, UKB)

White (n = 50,336) 37 (0.073%) 0.827 (0.739-0.902) 70.3 (55.0-84.8) 82.9 (82.6-83.3)
Asian (n = 1,361) 5 (0.367%) 0.674 (0.436-0.986) 100 (100.0-100.0) 43.7 (40.8-46.4)
Black (n = 1,233) 8 (0.649%) 0.820 (0.660-0.956) 62.5 (25.0-100) 87.7 (85.6-89.5)
Other (n = 1,389) 4 (0.288%) 0.962 (0.854-1.000) 100 (100.0-100.0) 84.8 (83.0-86.6)
Ethnicity (n=288, MEH)

White (n = 113) 38 (33.6%) 0.706 (0.593-0.817) 55.3 (38.7-70.7) 89.3 (82.0-95.9)
Asian (n = 54) 24 (44.4%) 0.789 (0.650-0.910) 75.0 (57.7-90.9) 70.0 (53.1-85.2
Black (n = 32) 26 (81.3%) 0.917 (0.791-1.000) 80.0 (64.3-95.7) 83.3 (50.0-100)
Other (n = 89) 56 (62.9%) 0.845 (0.757-0.917) 80.4 (69.6-90.0) 72.7 (57.1-87.1)

Socioeconomic status (n = 54,253, UKB)®

TDI 1-3 (n = 14,908)
TDI 4-7 (n = 22,269)
TDI 8-10 (0 = 17,076)

8 (0.053%)
19 (0.085%)
27 (0.158%)

0.948 (0.841-1.000)
0.808 (0.672-0.919)
0.864 (0.767-0.940)

87.5 (58.3-100)
68.4 (46.7-88.3)
85.2 (69.0-96.4)

82.2 (81.6-82.9)
80.6 (80.0-81.1)
75.8 (75.2-76.4)

Socioeconomic status (1=288, MEH)

IMD 1-3 (n = 92)
IMD 4-7 (n = 141)
IMD 8-10 (n = 65)

50 (54.3%)
66 (50.4%)
28 (43.1%)

0.760 (0.653-0.850)
0.843 (0.772-0.910)
0.846 (0.720-0.955)

68.0 (54.8-80.0)
77.3 (66.7-86.5)
71.4 (52.0-87.5)

66.7 (52.0-82.1)
81.5 (71.8-91.0)
97.3 (91.2-100)

The performance was reported with 95% confidence interval using bootstrapping with 1,000 replicates. For analysis of sensitivity and specificity, we

selected operating thresholds using the Youden index.

PUMCH, Peking Union Medical College Hospital; UKB, the United Kingdom Biobank; MEH, Moorfields Eye Hospital dataset; SLE, systemic lupus er-
ythematosus; TDI, Townsend deprivation index; IMD, Index of Multiple Deprivation.
2There were 66 participants among the included 54,319 participants in the UKB dataset without the Townsend deprivation index at recruitment.

people with SLE from people without SLE and further explore
feasibility and potential for the detection of LR and LN among
patients with SLE as a proof of concept, using retinal fundus im-
ages only. We demonstrated that the DeepSLE system could
accurately detect SLE across datasets from China and the
UK. Furthermore, we conducted a prospective reader study to
demonstrate the potential of integrating DeepSLE into primary
care workflows to assist PCPs in the screening of SLE and its
complications.

Our proposed retinal image-based DL system provides a
proof-of-concept digital solution to address the current gap in
the detection of SLE and related complications, in which de-
layed diagnosis is highly prevalent.?® Our proposed DeepSLE
system could provide a non-invasive, low-cost, low-labor-
dependent approach to detect SLE and related complications
with good accuracy and sensitivity, serving as an auxiliary
opportunistic screening tool that assists early detection of
SLE, particularly in primary care settings where access to rheu-
matologic expertise or extensive laboratory testing is limited.
The identified patients can then be referred to and followed
up at tertiary medical centers with comprehensive diagnostic

evaluations and subsequent multidisciplinary management.
The detection of SLE and related complications based on retinal
images could also leverage existing community eye care infra-
structure that enables opportunistic SLE screening during
routine screening for common eye diseases. Furthermore,
with the growing popularity and adoption of digital retinal cam-
eras and smartphone-based cameras in primary care world-
wide, access to retinal photography is anticipated to increase, "
which lays a solid foundation for the application of our DeepSLE
system.

Several DL algorithms have been proposed for detecting SLE
and related retinal complications using advanced imaging mo-
dalities, such as UWF-FP for LR and OCT for SLE. Our study im-
proves upon previous work in several ways. First, we developed
the DL algorithm to detect SLE using CFPs alone. Previous algo-
rithms require expensive and specialized imaging modalities,
which might not be feasible in community settings. By contrast,
our algorithm could detect SLE based on retinal photographs
only, thus improving the efficiency and potential cost-effective-
ness of the algorithm. Second, we first explored the feasibility
of using retinal fundus images alone to detect LN with promising
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Figure 3. Explainability analyses of the DeepSLE system
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(A) Qualitative analysis using saliency maps. The results showed that our DeepSLE system focused on the retinal vessels, the macula, and retinal lesions for

disease detections.

(B) Quantitative analysis of retinal vascular variables for color fundus photographs with SLE and without SLE. First, we performed vessel segmentation on CFPs in
various regions to get vascular contours. Using the segmented images, we quantified a range of retinal vascular variables, including fractal dimension related to
vessel complexity, distance tortuosity and squared curvature tortuosity related to vessel tortuosity, and central retinal arteriolar equivalent (CRAE) and central
retinal venular equivalent (CRVE) related to vessel caliber. p values for comparing the retinal vascular variables between CFPs with and without SLE were shown.

p values were calculated using the Mann-Whitney U test.

performance. Third, we conducted comprehensive subgroup
and explainability analyses to ensure the fairness and interpret-
ability of our DeepSLE system, paving the way for future deploy-
ment in real-world clinical settings.

To warrant the model fairness of the DeepSLE system, we
conducted analyses on a wide range of participant sub-
groups, dividing them with respect to gender, age, ethnicity,
and socioeconomic status. As DL models are increasingly de-
ployed in real-world clinical settings, it is indispensable to
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assess not only model performance but also potential biases
toward specific demographic subgroups.?” These subgroup
analyses were designed to establish whether the DeepSLE
system was underperforming in any of the evaluated cate-
gories and further investigate whether the system performed
well for subgroups of participants who are underserved or
at higher risk of SLE and related complications. The results
of subgroup analyses indicated the DeepSLE system re-
mained predictive within different subgroups stratified by
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Figure 4. Comparison of DeepSLE with physicians in a prospective reader study
(A) Reader study design. Five primary care physicians and five immunology specialists were recruited to make diagnosis of SLE, LR, and LN, based on age,
gender, medical history, findings from physical examinations, and retinal fundus images. The Al model (DeepSLE) was provided with only the retinal fundus

photographs (created with https://BioRender.com).

(B) Comparison of DeepSLE'’s performance with that of PCPs and specialists for detecting SLE. The sensitivity of DeepSLE outperformed all the PCPs for
detecting SLE, while no significant differences in specificity were observed between DeepSLE and the PCPs.

gender, age, ethnicity, or socioeconomic status. These find-
ings demonstrate the reliability and equitable performance of
the DeepSLE system, supporting its potential for broad clin-
ical application globally.

The interpretability of the DeepSLE system offers valuable in-
sights into its diagnostic mechanisms, which could facilitate its
broader adoption in real-world clinical settings. Our qualitative
analyses revealed that the DeepSLE system predominantly fo-
cuses on retinal vessels, the macula, and retinal lesions to
make predictions. These retinal changes could be observed in
people with SLE and related complications, demonstrating that
the system aligns well with the established clinical knowl-
edge.'%?3?° Quantitative analyses further supported these find-

ings, showing significant differences in retinal vascular variables
such as fractal dimension, vessel tortuosity, CRAE, and CRVE
between SLE and non-SLE groups. These results collectively
suggest that the DeepSLE system is capable of detecting subtle
retinal changes associated with SLE. The combination of qualita-
tive and quantitative insights underscores the system’s potential
for accurate and explainable disease detection.

Furthermore, the prospective reader study underscores the
potential of integrating the DeepSLE system into clinical work-
flows to assist PCPs in the screening of SLE and its related com-
plications, in primary care and low-resource settings. Due to the
variations in clinical presentations and lack of well-trained PCPs
for autoimmune diseases, the delayed diagnosis of SLE and its
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complications is highly prevalent worldwide. We demonstrated
that, using retinal image only, the sensitivities of our DeepSLE
system outperformed all the PCPs for detecting SLE, LR, and
LN. Thus, the integration of DeepSLE into primary care work-
flows could potentially lead to fewer missed diagnoses of SLE
and related complications. These findings suggest that our
DeepSLE system could be utilized as a valuable, non-invasive,
point-of-care, and cost-effective screening tool for physicians
to screen SLE and related complications, particularly in chal-
lenging cases involving subtle retinal and systemic manifesta-
tions of SLE.

Limitations of the study

Our study had several limitations. First, our DeepSLE system
was trained in the Chinese population and tested using datasets
from China and the UK. Further validations in more diverse multi-
ethnic populations will demonstrate its generalization and
robustness. Second, the relatively limited sample size of LR
and LN cases highlights the need for further evaluation to estab-
lish the model’s generalizability and robustness. Third, some
intrinsic biases cannot be eliminated in the present study design,
such as data distribution and selection bias. Future large multi-
center prospective studies®® are needed to evaluate the patient
outcomes after the integration of DeepSLE into real-world clin-
ical settings.

In conclusion, we developed a single, non-invasive retinal
image-based DL system (DeepSLE), to detect SLE and related
complications that primarily affect women’s health. DeepSLE
could provide a rapid, non-invasive, and cost-effective
screening tool for SLE and related complications, using retinal
images solely.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

DeepSLE This paper https://github.com/DeepSLE/deepsle

Python 3.7.12 Python http://www.python.org/

Torch 1.8.1+cul11 PyTorch https://pytorch.org/

Torchvision 0.9.1+cu111 PyTorch https://pytorch.org/vision/stable

Opencv-python 4.5.3.56 OpenCV https://pypi.org/project/opencv-python/4.5.3.56/
Matplotlib 3.5.3 Matplotlib https://matplotlib.org

Pillow 8.3.1 Pillow https://pillow.readthedocs.io

Numpy 1.21.6 Numpy https://numpy.org

Pandas 0.25.0 Pandas https://pandas.pydata.org/

RETFound-MAE Github https://github.com/rmaphoh/RETFound_MAE
Automorph Github https://github.com/rmaphoh/AutoMorph
RELPROP Github https://github.com/hila-chefer/Transformer-Explainability

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design

The purpose of this study was to develop and evaluate a DL system for predicting SLE and its complications LR and LN from retinal
image solely. We first pre-trained the DL system using 666,383 retinal fundus images from 173,346 participants from the Shanghai
Integrated Diabetes Prevention and Care System (Shanghai Integration Model, SIM). Then, we used retinal images from the Peking
Union Medical College Hospital to develop and internally validate the DeepSLE system. We also included four independent multi-
ethnic datasets (246,078 images in total) for external validation, two from China and two from the UK. We further assessed
DeepSLE’s performance in different subgroups stratified by gender, age, ethnicity and socioeconomic status. To ensure the inter-
pretability and explainability of DeepSLE, we also conducted saliency analysis and analysis of retinal vascular variables to gain in-
sights into its diagnostic mechanisms. Furthermore, a prospective reader study was conducted to compare the performance of
DeepSLE with primary care physicians and specialists.

Study datasets and diagnostic criteria

To develop and internally validate the DeepSLE system for detecting SLE, we collected retinal fundus images and corresponding
clinical data from the electronic records of Peking Union Medical College Hospital (PUMCH). We also included four independent
external datasets to demonstrate the generalizability of the DeepSLE system. The Shanghai Six People’s Hospital (SSPH) dataset
was extracted from the Hospital Information System of Shanghai Sixth People’s Hospital. All participants in the SSPH dataset un-
derwent kidney biopsy and retinal imaging. The Shanghai Diabetes Prevention Program (SDPP) dataset is a community-based data-
set comprising 33,611 participants who underwent comprehensive examinations in Shanghai Health and Medical Center. Data on
demographic information, anthropometric indices, biochemical measurements and retinal images were recorded. The United
Kingdom Biobank (UKB) was a large-scale biomedical database and research resource, from half a million UK participants. We
included 54,319 participants from UKB for external validation. The Moorfields Eye Hospital (MEH) dataset was derived from a large
retrospective cohort dataset AlyEye.?” Among them, 144 participants with SLE and 144 participants without SLE were included. The
label of SLE was extracted from ICD codes for these datasets.

To develop and validate the DeepSLE system for detecting lupus retinopathy (LR), two ophthalmologists labeled retinal fundus
images of patients with SLE from PUMCH, SSPH, SDPP, and UKB datasets. Inconsistent annotations were checked by a senior
ophthalmologist to give final labels. LR was diagnosed if cotton-wool spots, hemorrhages, vasculitis, retinal detachment or optic
disc changes as papilledema, optic atrophy were present.?® Images with DR?° were excluded in the development and validation da-
tasets for LR detection.

To develop the DeepSLE system for detecting lupus nephritis (LN), 947 patients with SLE were enrolled for development and in-
ternal validation. Among them, 112 patients were diagnosed with LN after kidney biopsies and confirmation by pathologists from
PUMCH. We included 29 participants with SLE from SSPH dataset for external validation, who were all with LN diagnosed by kidney
biopsy.
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All retinal fundus photographs of SLE patients were acquired after a confirmed diagnosis of SLE. Acquiring images prior to diag-
nosis would introduce ambiguity regarding the disease status at the time of image capture, potentially resulting in incorrect labeling
and underlying bias for the development of DeepSLE. The retinal images were acquired from multiple sources and camera devices,
including DRI OCT Triton (Topcon), Topcon TRC-NW300 (Topcon), Topcon TRC-NW400 (Topcon), Topcon 3D OCT1000 Mark Il
(Topcon), and Topcon 3DOCT-2000SA (Topcon). Additional details regarding the characteristics of participants with SLE included
in this study (duration of SLE, the places of retinal imaging, disease stage, reasons for retinal imaging, and Hydroxychloroquine treat-
ment) were provided in Table S1.

Ethics statement

The study was approved by the Institutional Review Board of Peking Union Medical College Hospital of the Chinese Academy of
Medical Sciences (Approval No. K22C2366), and the Ethics Committee of Shanghai Sixth People’s Hospital (Approval No. 2019-
087). Allimages were retrospectively collected and de-identified prior to the analysis. All procedures followed the tenets of the Decla-
ration of Helsinki.

METHOD DETAILS

Development and implementation of DeepSLE system

Pre-training the DeepSLE system using generative self-supervised learning

Inspired by the success of generative self-supervised learning (SSL) approach in both natural imaging®® and retinal imaging,®' we
also employed an encoder-decoder architecture to reconstruct retinal images from the highly masked versions to pre-train the
DeepSLE system. Same as the figurations of masked autoencoder and RETFound, the large vision Transformer (ViT-large)®” encoder
has 24 Transformer blocks, each of which comprises alternating layers of multi-head self-attention and multilayer perceptron (MLP)
blocks. The lightweight decoder is a small vision Transformer (ViT-small) with eight Transformer blocks. An unmasked input image is
patched with size of 16x16 and subsequently projected through linear embeddings as the embedding vector of size 1024. These
vectors are fed into the encoder to generate high-level features. The decoder then inserts masked dummy tokens into the extracted
high-level encoded patches to perform image reconstruction.

The mask ratio is of 0.75. The total training epoch is 800. We selected the checkpoint after the final epoch to form a well-trained SSL
model, which could be utilized for further training of the DeepSLE system. We used four NVIDIA A800 (80G) for pretraining, with the
batch size as 1,792 (4 GPUsx448 per GPU).

Training of DeepSLE system for detecting SLE, LR and LN

For detecting SLE, LR and LN respectively, the development dataset was divided into training set and tuning set (8: 2) independently,
where the training set was used for model optimization and the tuning set for model selection. We only utilized the encoder (ViT-large)
of the SSL model to extract high-level features from retinal fundus images. The decoder was replaced with a multilayer perceptron
(MLP) as the classifier to output the predicted probability of disease categories. The encoder’s initial weights were set using the
above pre-trained checkpoint, while the weights of MLP was initialized using a truncated normal distribution with a standard deviation
of 2x107°.

Taking both imbalanced data and imbalanced diagnosis difficulty into consideration, we used a curriculum three-stage training
schedule and utilized a balanced-weighted cross-entropy loss with asymmetric label smoothing. In the first stage, a general/standard
classifier was trained. In the second stage, we assign larger weight to minority classes for “imbalanced data”. In the last stage, we
utilized the per-class performance on the tuning set as the indicator for diagnosis difficulty, and updated the weights accordingly.
Hence, the training loss was given by:

1 e<E;
1 B 5 (%) o Ei<e<E;
L= — B 2ui-i wiCE(y;,yi),w; = >eec/Ne .
e—Ep
e EE,
(%) E,<e<E
Zcec1/fce

where B denotes the batch size, C is the total number of classes, w; is the weight that adjusts the contribution of each sample to the
loss. y; is the ground truth label, y; is the model prediction. Nc denotes the number of training samples in class C. The diagnosis dif-
ficulty indicator is denoted by £, which means the F1-score of class ¢ on the tuning set after epoch e. The network is trained for total E
epochs, where E;1 and E, are hyperparameters for stages.

We employed a combination of geometric transformations (e.g., random rotations, flipping, and scaling (resizing cropped patches
to 224 x224)), color augmentations (e.g., brightness and contrast adjustments), Gaussian noise injection, and image normalization to
enhance model generalizability. The training objective is to generate the same categorical output as the label. The batch size is 16.
The total training epoch is 50 and the first 10 epochs are for learning rate warming up (from 0 to learning rate 5e-4), followed by a

Cell Reports Medicine 6, 102203, July 15,2025 e2




Please cite this article in press as: Li et al., A deep learning system for detecting systemic lupus erythematosus from retinal images, Cell Reports Med-
icine (2025), https://doi.org/10.1016/j.xcrm.2025.102203

¢? CellPress Cell Reports Medicine

OPEN ACCESS

cosine annealing schedule (from learning rate 5e-4 to 1e-6 in the rest 40 epochs). E; and E, are set as 10 and 25 respectively. After
each epoch training, the model will be evaluated on the tuning set. The model weights with the highest AUROC on the tuning set will
be saved as the final model for internal and external validations. We use NVIDIA RTX 3090 (24 GB) for training and testing.

Explainability analyses

RELPROP*® algorithm specifically designed for explaining Transformer-based networks, was employed to visualize the saliency re-
gions of images. This technique employs layer-wise relevance propagation to compute relevancy scores for each attention head
within each layer, which are then integrated across the attention graph by combining relevancy and gradient information. Conse-
quently, this process visualizes the regions of input images contributing to specific classifications.

For retinal vascular variables analysis, we first performed vessel segmentation on CFPs in various regions to get vascular contours.
As shown in Figure 3B, we carried out binary vessel segmentation, artery/vein segmentation and optic/disc segmentation on the
entire CFP image. Subsequently, binary and artery/vein segmentation were also performed in Zone B (the annulus 0.5-1 optic
disc diameter from the disc margin) and in Zone C (the annulus 0.5-2 optic disc diameter from the disc margin), the two standard
observation areas.** Using the segmented images, we quantified vascular variables associated with the tortuosity and complexity
of the entire image, Zone B, and Zone C. Additionally, we measured the caliber of arteries and veins in Zone B and Zone C. We
then compared the vascular variables of participants with SLE to those without SLE in the internal test set. The variables included
fractal dimension related to vessel complexity, distance tortuosity and squared curvature tortuosity related to vessel tortuosity,
and central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE)'® related to vessel caliber.

A prospective reader study to compare the performance of DeepSLE and physicians

We conducted a prospective reader study to compare the performance of DeepSLE with physicians, for detecting SLE, LR and LN.
The goal of this reader study was to simulate the scenario of screening SLE and related complications in primary care settings, where
rheumatology specialists are not readily available. Five PCPs and five rheumatology specialists were recruited. We curated a dataset
for this reader study from PUMCH, comprising 40 non-SLE cases, 15 SLE cases with LR, 15 SLE cases with LN, and 30 SLE cases
without LR or LN. The DeepSLE system made the diagnosis of SLE, LR and LN, using retinal fundus images only as inputs. To ensure
a reasonable comparison, physicians were asked to make the diagnosis based on age, gender, medical history, findings from phys-
ical examinations, and retinal fundus images, which are routinely used in clinical practice. For medical history, we ensured that the
physicians were provided with symptoms related to SLE and its complications, including fatigue, joint pain, skin rashes, oral ulcers,
photosensitivity, edema, changes in urine output, ocular symptoms, and neuropsychiatric symptoms. This historical context was
made available to the primary care physicians to support their clinical decision-making during the comparison. For clinical examina-
tions, we included physical assessment of the patient’s vital signs, mucocutaneous changes, joint involvement, edema, vision, and
signs of other SLE-related manifestations (Figures 4 and S4). Additionally, we clarify that the primary care physicians and specialists
were not expected to perform specialized diagnostic tests (such as advanced imaging or laboratory biomarkers) during this compar-
ison. For outcome analysis, we primarily compared the detection sensitivities of DeepSLE and physicians, since higher sensitivities
could minimize the number of false negatives.

QUANTIFICATION AND STATISTICAL ANALYSIS

All task performances were evaluated using AUROCS, sensitivities and specificities. Sensitivity and specificity for SLE detection were
reported using the Youden index, while those for LR and LN detection were reported at high-sensitivity operating points (85% for LR
and LN) selected from the internal validation set. We also conducted subgroup analyses stratified by gender, age, ethnicity and so-
cioeconomic status. The 95% confidence intervals were estimated with the non-parametric bootstrap method using 1,000 random
resampling with replacement. For quantitative analysis of retinal vascular variables, P values were calculated using the Mann-
Whitney U tests. For the prospective reader study, McNemar’s tests were used to calculate p-values comparing the DeepSLE sys-
tem’s sensitivities and specificities with those of the physicians.
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