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A B S T R A C T

The design of on-board ammonia decomposition units (ADUs) and its integration with ammonia-hydrogen hybrid 
powertrains present a critical challenge in the development of carbon-free heavy-duty vehicles. This study ad
dresses this challenge through a novel surrogate-enhanced optimization framework for ADU design, introducing 
a dual-phase hybrid optimization framework combining non-dominated sorting genetic algorithm for partitioned 
exploration and Bayesian optimization for local refinement. The framework employs sequential domain 
decomposition using genetic algorithm-driven Pareto sampling integrated with surrogate training data accu
mulation, followed by Gaussian process-guided refinement that fuses adjacent optimal regions through 
covariance-based surrogate merging. Experimental validation demonstrates the effectiveness of the framework in 
achieving balanced system performance in key metrics. The results show that the powertrain equipped with the 
optimized ADU achieves a system efficiency of 31.24 % and an ADU efficiency of 76 % at minimal system costs, 
with dynamic validation more than 3.5 %.

Nomenclature

ICE Internal combustion engine Pdem Power required under full 
loading

ADU Ammonia Decomposition unit PDM Power provided by Ele
EMS Energy management system PICE Internal combustion engine 

power
TMS Thermal management system Pbat Battery power
LHV Lower heating value Paux Auxiliary devices power
SOC State of charge TADU Temperature of ADU
GHSV Gaseous hourly space velocity Tcat Temperature of catalysts
DRL Deep Reinforcement Learning ηGEN Efficiency of electrical 

generator
RCCI Reactivity Controlled 

Compression Ignition
ηDM Efficiency of drive motor

PEMFC Proton exchange membrane 
fuel cells

ηf Efficiency of final drive

FLC Fuzzy logic control vref Integral factor

(continued on next column)

(continued )

NSGA- 
III

Non-dominated Sorting 
Genetic Algorithm III

kα
p Differential factor

BO Bayesian Optimization Pdri
ele Power provided by 

electrical generator
SBX Simulated Binary Crossover QEle Heat transfer to electrical 

generator
GP Gaussian Process Qexh

ICE Heat transfer to the engine 
exhaust gas

EI Expected Improvement ωICE Engine speed
Pdri

tot Final drive power TICE Tenmperature of ICE
Qphysical Energy required for physical 

heating K
FC
ICE
d

Differential factor

Tcool
ICE Fuel cell/engine coolant 

temperature
Qchemical Energy required for 

chemical heating
EffADU Efficiency of ammonia 

decomposition unit
Csteel Steel heat capacity

ρH2
Density of hydrogen mH2 Mass of hydrogen

ρNH3
Density of ammonia mNH3 Mass of ammonia
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(continued )

a
v
m
mix

Volume/mass ratio of the 
mixed gas

mADU
ICE

Mass of ADU/ICE

Erea
ICE Decomposition reaction 

energy in ICE
cICE Engine specific heat 

capacity
Si The ith non-overlapping 

subregion
Pmerged The merged Pareto set

Sj The jth subregion μi(x) the mean function
Pj The population for the jth 

subregion
xnext The next evaluation point

F(x) The objective vector Pmax
GEN The max power of electrical 

generator
Zr Predefined reference point fi The objective associated 

with system cost

1. Introduction

Excessive greenhouse gas emissions have led to an annual increase in 
global surface temperatures, exhibiting an exponential growth trend [1]. 
To achieve environmental sustainability goals, zero-carbon emissions 
have become the core focus of global long-term policies [2,3]. Since the 
signing of the Paris Agreement in 2015, over 100 countries have 
committed to achieving carbon neutrality in the coming decades [4]. In 
the composition of carbon emissions, road transport fossil fuel com
bustion contributes 23 % of CO2 emissions, with this proportion 
continuing to rise [5]. Moreover, heavy-duty trucks account for 76.1 % 
of nitrogen oxide emissions and 51.5 % of particulate matter emissions 
in the automotive sector [6], highlighting the urgency of commercial 
vehicle energy transition. However, current electric heavy-duty trucks 
are limited to short-distance transport due to range constraints [7], 
while liquid ammonia, with its volumetric energy density of 13.6 MJ/L, 
equivalent to 4.5 times that of 35 MPa high-pressure hydrogen [8], 
positions ammonia-hydrogen hybrid powertrains as the most promising 
zero-carbon solution for long-haul heavy-duty transport [9,10]. How
ever, the complexity of system configuration and matching remains the 
primary bottleneck for commercialization.

Despite the significant potential of ammonia-hydrogen hybrid pow
ertrains, the complexity of system configuration and matching has 
become the foremost obstacle to their commercialization. The multi- 
energy source characteristics of such systems introduce technical inte
gration challenges far exceeding those of single-power systems [11]. The 
dynamic matching of powertrain architectures becomes particularly 
intricate in ammonia-hydrogen powertrains. For example, Antonio et al. 
compared parallel, series, and power-split hybrid configurations, 
revealing that zero-carbon engines require real-time mode switching 
based on load conditions but exhibit vulnerable torque characteristics 
and significant emission increases under transient conditions, with 
improper system matching potentially causing substantial performance 
degradation [12]. Zhang et al. quantitatively studied the operation of 
ammonia-hydrogen hybrid powertrains under various working condi
tions through system modeling [13]. Their results demonstrated that 
while the system achieves significant carbon emission reductions 
compared to diesel hybrid heavy trucks and conventional diesel vehi
cles, the energy flow and parameter configuration exhibit limited 
adaptability to diverse operating conditions, leaving substantial opti
mization potential [14]. Therefore, it is obvious that the core challenge 
in ammonia-hydrogen system configuration lies in achieving synergistic 
optimization across conflicting objectives including enhancing system 
efficiency, minimizing powertrain weight, optimizing catalytic 
hydrogen production capacity, and reducing system cost.

Existing literature predominantly focuses on multi-objective sizing 
optimization schemes for conventional hybrid electric vehicles, pro
posing numerous valuable design methodologies from perspectives of 
optimization algorithms and system dynamics [15–18]. Zhang et al. 
developed a data-driven framework for online identification of fuel cell 
aging states, proposing a component matching and sizing architecture 
that considers system degradation [16]. Li et al. incorporated full 

lifecycle carbon emission costs into powertrain component sizing opti
mization, creating decision-support models with enhanced industrial 
relevance for OEMs, though parameter accuracy remains a critical lim
itation [6]. Furthermore, recent advances in powertrain sizing leverage 
multi-objective optimization frameworks to address the interplay be
tween component configuration, energy efficiency, and dynamic per
formance [19]. Evolutionary algorithms, such as non-dominated sorting 
genetic algorithm-III (NSGA-III) and reference-point-based methods, 
have demonstrated efficacy in resolving high-dimensional tradeoffs 
among cost, emissions, and energy density [20]. Hybrid approaches 
integrating surrogate models, such as polynomial chaos expansion, with 
metaheuristics enable efficient exploration of nonlinear design spaces 
while mitigating computational burdens [21]. For transient-aware 
sizing, physics-informed neural networks and digital twin frameworks 
are emerging to reconcile static parameter selection with real-world 
dynamic constraints [22]. Current challenges persist in balancing 
model fidelity with optimization scalability, particularly for 
multi-energy systems requiring concurrent sizing of electrochemical, 
thermal, and mechanical subsystems. Lei et al. adopted a hierarchical 
co-optimization architecture that simulates powertrain operating con
ditions to obtain dynamic feedback, effectively reducing temporal data 
errors across components [23]. Their system employed high-fidelity 
model integration techniques for multi-scale modeling, utilizing phys
ical models like the Arrhenius combustion equation for cross-scale data 
fusion. Adaptive relaxation methods dynamically adjusted parameter 
conflicts, while surrogate models assisted in co-optimizing component 
sizing and energy management, achieving improvements in fuel econ
omy and computational efficiency.

Despite over more than a decade of extensive research on hybrid 
powertrain matching, effective solutions remain lacking since the 
emergence of the novel complex coupling characteristics of ammonia- 
hydrogen hybrid powertrains. To this end, Ezzat et al. investigated the 
co-optimization of system component sizing and energy management in 
ammonia-hydrogen vehicles, simultaneously determining component 
dimensions and optimizing the power distribution ratio between fuel 
cells and internal combustion engines (ICEs) [24]. Beyond computa
tional simulations, some studies have developed design methodologies 
for small-scale ammonia-hydrogen systems, validated through golf cart 
prototypes [25], though their relevance to heavy-duty trucks with vastly 
different system scales remains limited. Notably, these studies neglect 
optimization of a critical component, the on-board hydrogen production 
unit namely ADU, and fail to address the co-optimization between ADU 
and other system components. Ammonia decomposition can generally 
be classified into thermal and non-thermal processes, with thermal 
decomposition further divided into three different methods: combustion 
heating, electric heating, and solar heating. This paper focuses on 
combustion heating for ammonia decomposition. Combustion heating 
can be flame combustion or catalytic combustion, with catalytic com
bustion being the process used in the ADU for ammonia hydrogenation. 
The rate of catalytic decomposition in the ADU, as well as key param
eters, such as hydrogen conversion rates, are highly dependent on the 
properties of the catalyst. Active components of the catalyst can be 
combined with multiple metals or converted into carbides, nitrides, or 
amides to achieve more ideal properties. Additionally, the active com
ponents can be supported on different materials or encapsulated within 
various substances. For example, ruthenium (Ru) is often used as a 
carbon-supported catalyst, where the carbon support improves the 
dispersion of the precious metal Ru, thereby controlling the overall 
preparation cost. The structure of the catalyst, through controlling the 
number and distribution of active sites, also enhances the stability of the 
catalyst. Research demonstrates that Ru-based catalysts achieve 99.5 % 
ammonia decomposition at 500 ◦C [26,27], but at 20 times the cost of 
Fe/Co/Ni catalysts [28]. While non-precious metal catalysts offer cost 
advantages, they require high temperatures (>700 ◦C) for optimal 
performance (e.g., Ni-Ru/CeO2 achieves near-complete conversion at 
700 ◦C [27]), leading to severe efficiency degradation below 400 ◦C. 
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Moreover, the use of co-catalysts can further enhance the catalytic effect 
on certain catalysts. The design of active components, along with com
binations of different supports and co-catalysts, gives rise to catalysts 
with distinct advantages. Existing ADU studies predominantly focus on 
catalyst selection while ignoring system-level integration. Furthermore, 
Zhang et al. analyzed the critical matching factor—ammonia decom
position rate—and proposed an ADU design framework incorporating 
waste heat recovery [13]. However, their approach prioritized catalytic 
efficiency over cost, creating efficiency-economic conflicts that neces
sitate further multi-objective optimization of catalysts and decomposers 
[29,30]. While these studies provide comprehensive multi-objective 
optimization frameworks, they fail to address the unique challenges of 
ammonia-hydrogen powertrains—a system whose component coupling 
relationships and complexity far exceed conventional hybrid vehicles. 
The catalytic system design requires tight coordination with other 
vehicle components, significantly impacting overall energy efficiency 
and stability. To the authors’ knowledge, no existing studies address the 

co-optimization of hydrogen conversion rate, cost, and temperature 
through synergistic design of ammonia catalysts and other system 
components at the ammonia-hydrogen powertrain level, making this 
research critically significant.

Based on the aforementioned review and discussions, current 
research lacks a multi-objective optimization framework that balances 
system efficiency, catalytic performance, and cost under dynamic con
ditions, while neglecting the synergy between catalytic system design 
and powertrain component sizing. Through joint optimization with 
powertrain matching, catalytic systems can employ strategic catalyst 
combinations to achieve synergistic effects between macroscopic vehicle 
parameters and microscopic component characteristics. This paper 
proposes a surrogate-enhanced partitioned Pareto search for hydrogen 
production device optimization, which is shown in Fig. 1, which pro
vides an effective methodology and demonstrates practical application 
of collaborative optimization of both the component sizing and the 
subsystem design for novel carbon-free heavy-duty vehicles. This study 

Fig. 1. Overall design of the research on surrogate-enhanced partitioned Pareto search for hydrogen production device optimization in carbon-free heavy- 
duty vehicles.

Fig. 2. Powertrain architectures of hybrid electric vehicle fueled with ammonia-hydrogen.

H. Zhang et al.                                                                                                                                                                                                                                  Energy 333 (2025) 137369 

3 



is featured with the following contributions: 1) A dual-phase optimiza
tion architecture combining genetic algorithm-based partitioned search 
with surrogate-guided refinement, co-designing component sizing and 
catalyst configurations for dynamic operating conditions to achieve 
efficient design of ammonia decomposition units in zero-carbon pow
ertrains; 2) A surrogate-assisted convergence mechanism integrating 
adaptive domain partitioning and Bayesian optimization (BO) to pre
vent premature convergence in non-convex high-dimensional Pareto 
optimization, successfully coordinating powertrain parameters and 
catalyst composition variables through sequential domain decomposi
tion and model-assisted merging; 3) A gradient-aware cooperative 
optimization protocol that systematically balances decomposition effi
ciency, material cost, and thermal adaptability through multi-catalyst 
synergy.

The remaining sections of this paper are structured as follows. Sec
tion 2 outlines data preparation and model establishment. Section 3
shows the optimization procedure of the ammonia-hydrogen hybrid 
system model. Section 4 presents and discusses the results of the model. 
Section 5 summarizes the key findings.

2. System modeling

This section outlines the key process descriptions and fundamental 
modeling assumptions that underpin the mathematical model developed 
for the on-board hydrogen production device and its integration within 
the heavy-duty vehicle powertrain, as shown in Fig. 2. This system in
tegrates a detailed ADU model, the dynamics model, powertrain com
ponents model, alongside energy control systems. The powertrain, 
utilizing ammonia-hydrogen fuel, operates in pure electric, hybrid, and 
regenerative brake modes. The core assumptions made are as follows: 

• It is assumed that hydrogen production from the ADU has no inertia, 
meaning the production rate instantaneously responds to changes in 
operating conditions. Consequently, fuel transport delays and asso
ciated losses are neglected for simplification of the system’s dynamic 
response. Besides, the ADU conversion efficiency is primarily 
modeled as a function of two key parameters: operating temperature 
and catalyst activity. This captures the most significant factors 
influencing the decomposition process.

• The energy consumption of the ADU is quantified specifically as the 
total thermal energy required for both the endothermic ammonia 
decomposition reaction and the necessary preheating of the 
ammonia feed. Moreover, the ADU efficiency is precisely defined as 
the ratio of the energy content of the produced hydrogen to the 

energy content of the input ammonia, with careful consideration 
given to the energy consumed during the decomposition reaction.

• Overall system efficiency is calculated by considering the total en
ergy input to the powertrain against the mechanical power output 
delivered for vehicle propulsion. Further, it is assumed that the 
thermal management system effectively utilizes and recovers waste 
heat from the engine exhaust to preheat the incoming ammonia feed 
before it enters the ADU, maximizing energy integration within the 
powertrain.

2.1. Catalyst selection and catalyst cost characterization

The ammonia-hydrogen hybrid system, primarily driven by the ADU, 
exhibits a high dependency on the judicious selection of catalysts within 
the ADU. In the ammonia decomposition reaction, the existing nitrogen- 
hydrogen bonds are broken, enabling the liberated hydrogen atoms to 
combine and form hydrogen gas. The process of breaking these nitrogen- 
hydrogen bonds necessitates either high temperatures or the presence of 
a catalyst to lower the activation energy. Catalysts facilitate this reaction 
by utilizing their active sites to attract hydrogen atoms, promoting their 
dissociation from nitrogen atoms and subsequent desorption, thereby 
allowing free hydrogen atoms to combine and form hydrogen gas. This 
decomposition mechanism can be expressed as follows [31]: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

NH3(g)→NH3(aq)
NH3(aq)→NH2(aq) + H(aq)
NH2(aq)→NH(aq) + H(aq)
NH(aq)→N(aq) + H(aq)

2N(aq)→N2(aq)

(1) 

where (g) refers to the gas phase and (aq) refers to the adsorption of 
substances on the surface of the catalyst, rather than their original 
dissolution in water. At temperatures above 479 ◦C, the rate-limiting 
step for ammonia conversion is the cleavage of the N-H bond, which 
occurs in steps 1st~4th. Below this temperature, the limiting step shifts 
to nitrogen desorption, as seen in the 5th step.

The performance of these catalysts is reflected in various aspects, 
including catalyst stability, economic factors, catalytic efficiency, reac
tion rates, gas hourly space velocity (GHSV) and energy consumption. 
Table 1 lists the catalysts used in the catalytic model for this study.

Table 1 summarizes the ammonia conversion rates and catalyst 
preparation costs of various catalysts at low temperatures (400 ◦C, 
450 ◦C, and 500 ◦C). The selected catalysts outperform others in terms of 
efficiency, cost, or a combination of both. Ru-Al2O3,Ru-CeO2,Fe-BTC,K- 
Ru-MgO/CNTs,Cs-Ru-MgO/MIL,Ni-CeO2 exhibit different catalytic ef
fects depending on the support and co-catalysts used with the primary 
metal. Among these, Ru-Al2O3,Ru-CeO2,K-Ru-MgO/CNTs,Cs-Ru-MgO/ 
MIL are based on the most active precious metal, Ru. On the other hand, 
Fe-BTC and Ni- CeO2 use Fe and Ni, which are non-precious metals, with 
cost-effective supports such as BTC and CeO2 to maintain a strong cat
alytic activity at a lower cost. For example, Ni/Ru on CeO2 is a good 
representative of a low-temperature dual-metal catalyst, showing su
perior performance at a Ni:Ru molar ratio of 2.5:0.5, where ammonia 
conversion is approximately 10 % higher than at other ratios at 400 ◦C. 
In the case of multi-metal catalysts, CoMoFeNiCu high-entropy alloys 
(HEA) supported on celluouse nanofibers (CNFs) exhibit the best cata
lytic performance with a molar ratio of 25:45:10:10:10, as shown in the 
data from Joshua et al. Similarly, LiNH2 has been identified as a superior 
metal amide catalyst for ammonia decomposition, with LiNH2 showing 
higher conversion rates compared to NaNH2, as reported by Joshua W. 
This research includes LiNH2 and its data as a representative of metal 
amides, which have the advantage of higher structural controllability 
and simpler preparation processes due to the lack of a support or co- 
catalyst. The catalyst CeO2-Ni, based on a metal oxide catalyst where 
Ni serves as the support and CeO2 as the active component, showcases 

Table 1 
Catalyst specifications with values of main parameters.

No. Catalyst (A-E/F/G-X/Y) Temp 
(C)

GHSV 
(mL/ 
gcat ⋅ h)

x (%) LWR 

(w/w 
%)

A Cs − Ru −
MgO
MIL 

[32] 400–500 15,000 84–100 5

B HEA − Co25Mo45 − CNFs 
[33]

400–500 36,000 40–84 7.8

C CeO2

Al2O3
− CoCeAlOx [34] 400–500 30,000 10–65 100

D LiNH2 [35] 400–500 7200 17–100 100
E CeO2 − Ni [36] 400–500 30,000 18–72.4 60
F Ni − CeO2 [37] 400–500 13800 

(Ar:NH3 
= 1.3:1)

14–95 10

G Ru − CeO2 [37] 400–500 13800 
(Ar:NH3 
= 1.3:1)

77–100 2

H Fe − BTC [38] 400–500 6000 9–73.8 34.7
I Ru − Al2O3 [39] 400–500 18000 32–65 4.8
J Ni

Ru
− CeO2 [27] 400–500 15000 49.7–99.2 2.74
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the potential of metal oxide catalysts and suggests the possibility of 
reconsidering the relationship between the support and the active 
component. Graphic introductions for the relationship between 
ammonia conversion and temperature in the outlined catalysts are 
shown in Fig. 3.

The gas hourly space velocity GHSV defined in Eq. (2) is critical for 
understanding the relationship between ammonia flow rate and the 
catalyst volume: 

GHSV =
V̇NH3

Vcat
(2) 

where V̇NH3 is the ammonia volumetric flow rate (L⋅min− 1), and Vcat is 
the volume of the catalyst (L). In a catalytic system that uses the same 
ADU model, the GHSV is proportional to the ammonia flow rate. Naki
sa’s research on methane and ethylene shows that GHSV affects both 
conversion rates and selectivity, and that well-chosen GHSV results in 
the highest conversion rate under fixed other conditions [40]. In Table 1, 
the GHSV for each catalyst is set based on the conditions that maintain a 
balance between the hydrogen conversion rate and the hydrogen pro
duction rate. When multiple catalysts are used in combination, the 
GHSV must be optimized to maximize the ammonia conversion rate 
while maintaining the hydrogen production rate. This is predicted by the 
following formula: 

vf =

∑n
i=1mi × vi
∑n

i=1Wi
(3) 

where vf is the predicted GHSV for the combination of catalysts that 
maximizes ammonia conversion, mi is the mass fraction of the i th 
catalyst in the mixture, vi is the highest GHSV of the i th catalyst for 
ammonia conversion, and Wi is the weight fraction of the i th catalyst.

The ammonia conversion rate is defined differently in various 
studies. For instance, Xie et al. defined the ammonia conversion rate as 
[33]: 

x=
FinNH3 − FoutNH3

FinNH3

× 100% (4) 

where FinNH3 and FoutNH3 are the molar flow rates of ammonia entering 
and exiting the reactor, in mol NH3/s.

On the other hand, Ilaria et al. used the following formula for the 
ammonia conversion rate [38]: 

x=
[NH3]in − [NH3]out

(1 + [NH3]out) × [NH3]in
× 100% (5) 

where [NH3]in and [NH3]out are the concentrations of ammonia at the 

reactor inlet and outlet, respectively.
There are slight differences in measurement methods between these 

definitions, such as the use of a Poropak Q column and gas 
chromatography-barrier ionization detector (GC-BID) for measuring 
hydrogen input and output concentrations in Xie et al.’s study, which is 
not detailed in Ilaria et al.’s study. However, as observed in the study by 
Yin et al., in the 400–450 ◦C range, temperature is the primary factor 
influencing ammonia conversion, while reaction time has little effect. 
Therefore, the differences due to measurement intervals can be 
considered negligible. Fig. 4 shows the specific influence of each catalyst 
on ammonia conversion at different temperatures and the cost factors.

Fig. 3. Ammonia conversion rates of various catalysts at 400 ◦C, 450 ◦C, and 
500 ◦C. The blue bars indicated the conversion of 100 percent.

Fig. 4. Visualization of tabular data: (a) Comparison of catalyst conversion rate 
under different temperatures with ammonia conversion >80 % at 450C and 
500C emphasized; (b) Total cost in RMB per gram of catalyst across various 
kinds of catalysts, where the yellow regions represent costs of 
active components.
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The determinants of the cost metric encompass the unit raw material 
cost of individual catalysts, the total cost of composite catalysts derived 
from the calculated amounts of each catalyst component, and the 
manufacturing costs of other powertrain components. Since the reactor 
setup for composite catalysts remains consistent irrespective of the 
selected catalyst type, its cost indicator does not influence the compar
ative evaluation among different catalysts. The total cost of a composite 
catalyst is calculated based on the quantity and cost indicator of each 
constituent catalyst. Regarding the unit cost of individual catalysts, 
direct data is not always available for some, necessitating their calcu

lation. The calculation of the catalyst cost per gram is as follows 

Ptot =Ppro × Wpro + Pact × Wact + Psup × Wsup (6) 

where Ppro, Pact , Psup represent the cost per gram of the promoter, active 
component, and support material, respectively, and Wpro, Wact, Wsup 

represent the mass fractions of the promoter, active component, and 
support material in the catalyst. The reference cost indicator of LiNH2 is 
obtained from Thomas Scientific, and the cost indicator of other mate
rials are sourced from Sigma Aldrich. Data are retrieved using reagent- 
grade materials at the maximum purchase specification cost per gram. 
The cost calculations are summarized in Table 2.

For the catalysts K-Ru-MgO/CNTs, Cs-Ru-MgO/MIL, and HEA- 
Co25Mo45-CNFs, which are synthesized by the researchers, the cost 
calculation is based on the materials used in their preparation, with the 
component costs calculated according to their proportions. The material 
costs are referenced from Sigma Aldrich. For the MgO/CNT support of K- 
Ru-MgO/CNTs, the MgO/MIL support of Cs-Ru-MgO/MIL, the HEA 
support, and the CeO2/Al2O3-CoCeAlOx support and promoter, since 
the specific components cannot be directly purchased, the catalyst 
preparation cost is calculated using the raw materials specified in the 
synthesis methods, considering the molar ratios of each component.

For promoters, active components, or supports composed of more 
than one material, the cost per gram is calculated based on the materials 
used and their respective mass fractions in the preparation. The mass 
fractions are converted from the given molar ratios. The conversion of 
mass fractions and the calculation of the cost for the active component 
are described as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wi =
Mi × ni

∑N
i=1Mi × ni

Pact =
∑N

i=1
Pi × Wi

(7) 

where Mi is the molar mass of the i-th element in the active component, 
ni is the number of moles of the i-th element in 1 mol of the active 
component, Pi is the cost per gram of the material corresponding to the 
i-th element, and Wi is the mass fraction of the i-th element in the active 
component.

2.2. Application of ammonia decomposition catalysts in hybrid power 
systems

2.2.1. Structure of ADU
The ADU consists of the engine exhaust outlet pipe, a catalytic unit 

where ammonia passes through the catalyst, and an external heating 
layer. In the ammonia-hydrogen hybrid system, the exhaust gas tem
perature of the engine is approximately 400 ◦C, while the temperature 
required for low-temperature catalysis may reach up to 500 ◦C. There
fore, in addition to heating the exhaust gases, a supplementary heating 
layer is necessary to achieve the appropriate catalytic temperature. The 
structure of the ADU plays a crucial role in heating efficiency. It must 
ensure that the catalyst tube, exhaust pipe and heater are in sufficient 
contact to minimize heat loss during the heat transfer process, as illus
trated in Fig. 5.

The heating layer utilizes electric heating, and working in conjunc
tion with the exhaust gases, it helps conserve the energy consumption of 
the electric heating layer. The catalyst pipeline is divided into five in
dividual pipes from the main exhaust pipe, with the catalyst evenly 
distributed throughout each catalytic tube. These catalytic tubes alter
nately wrap by electric heaters along the exhaust pipe. Ammonia, 
introduced from the ammonia storage tank, is catalytically decomposed 
into hydrogen in the ADU, and then mixes with the ammonia that flows 
directly out of the ammonia storage tank before being injected into the 
injector. After combustion, the exhaust gases flow into the exhaust pipe, 
where they again undergo energy conversion to provide the necessary 

Table 2 
Costs of catalyst with components.

No. Catalysts (A- 
E/F/G-X/Y)

Wact 

(w/w 
%)

Psup 

(CNY/ 
g)

Wsup 

(w/w 
%)

Cost Pact 

(CNY/g)
Cost Ptot 

(CNY/ 
gcat)

A Cs − Ru −
MgO
MIL

1.38 
(Wpro =

3.62)

9.07 95 1134.83 
(Ppro =

1137.8)

66.63

B HEA −

Co25Mo45 −

CNFs

7.8 55.54 92.2 33.92 53.85

C CeO2

Al2O3
−

CoCeAlOx

100 – 0 13.36 13.36

D LiNH2 100 – 0 5.44 5.44
E CeO2 − Ni 60 45.13 40 2.39 19.49
F Ni − CeO2 10 2.39 90 45.13 6.66
G Ru − CeO2 2 2.39 98 1134.83 25.04
H Fe − BTC 34.7 10.55 65.3 0.57 7.09
I Ru − Al2O3 4.8 5.78 95.2 1134.83 59.97
J Ni

Ru
− CeO2

2.8 2.39 97.2 180.6 7.38

Fig. 5. Schematic diagram of the internal structure of the ADU
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heat for the subsequent ammonia decomposition process.
The division of the catalytic pipes within the ADU not only increases 

the heat efficiency of catalytic tubes but also allows various types of 
catalysts with different properties to be physically combined, granting 
the ADU new characteristics. By independently controlling the flow rate, 
temperature, and pressure of each pipe, the ADU can precisely adjust the 
reaction environment for each catalyst, ensuring that the catalytic 
environment in each tube closely matches the conditions under which 
the catalysts exhibit their optimal catalytic efficiency in the laboratory. 
The types of catalysts and their respective proportions within each pipe 
have a significant impact on the ammonia conversion rate and overall 
system cost. These effects are governed by the following formulas: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xADU
tot =

∑n

i=1
xADU

i ⋅WADU
i

PriceADU
tot = mADU

tot ⋅
∑n

i=1

(
PriceADU

i ⋅WADU
i
)

(8) 

where xADU
i is the ammonia conversion rate of the catalyst in the i-th 

catalytic tube, WADU
i is the mass ratio of the catalyst in the i-th catalytic 

tube, mADU
tot is the total mass of the catalysts across all catalytic tubes in 

the ADU, and PriceADU
i is the cost per gram of the catalyst in the i-th 

catalytic tube.

2.2.2. Thermal energy management system
In the heating process of the ADU, the engine coolant preheats the 

catalyst within the ADU, whereas the engine exhaust waste heat and 
electric heaters further heat the ammonia flow within the catalytic pipes 
to the required catalytic temperature. The model simulates the effi
ciency, cost, and operating conditions of different catalyst combinations. 
The efficiency of the system is determined by the energy required for 
physical and chemical heating, the hydrogen consumption rate, and the 
ammonia conversion rate. The energy required for physical and chem
ical heating is calculated by the following formulas: 
⎧
⎨

⎩

Qphysical = Csteel ×
mADU

1000
× ΔT

Qchemical = ΔH × mH2

(9) 

where Qphysical represents the energy required for physical heating of the 
ADU, ΔT is the temperature change required for physical heating, and 
Csteel is the specific heat capacity of the steel used in the catalytic pipe. 
Qchemical represents the energy required for the chemical reaction to 
convert ammonia into hydrogen, where ΔH is the enthalpy change and 
mH2 is the mass of hydrogen produced. Thus, the total energy required to 
heat the ADU can be expressed as 

PADU =Qphysical + Qchemical (10) 

The efficiency of the ADU system, based on energy consumption, is 
calculated as follows: 

EffADU =
mH2 × LHVH2

mNH3 × LHVNH3 + PADU
(11) 

where LHVH2 is the lower heating value (LHV) of hydrogen, representing 
the heat released during hydrogen combustion, and LHVNH3 is the LHV 
of ammonia.

In the energy conversion process of the ammonia-hydrogen engine, 
combustion of ammonia and hydrogen converts chemical energy into 
mechanical energy to drive the crankshaft, which is further converted by 
the generator into electrical energy for battery charging, vehicle pro
pulsion, and heating the ADU. The combustion reactions for ammonia 
and hydrogen in the engine are: 
{

NH3 + 0.75(O2 + 3.76N2)→1.5H2O + 3.32N2
H2 + 0.5(O2 + 3.76N2)→H2O + 1.88N2

(12) 

The LHV of the mixed fuel is calculated as: 
⎧
⎪⎪⎨

⎪⎪⎩

LHVmix =
LHVNH3 + am

mix⋅LHVH2

1 + am
mix

am
mix = av

mix⋅
ρH2

ρNH3

(13) 

The engine waste heat, engine power, heat generated during com
bustion, and heat removed by exhaust are governed by the energy 
conservation equation: 

mICEcICE
dTcool

ICE
dt

= Erea
ICE − PICE − Qexh

ICE (14) 

Thus, the heat that still needs to be supplied by the electric heater, 

Fig. 6. Schematic diagram of the carbon-free hybrid electric powertrain fueled with ammonia and hydrogen, first proposed in the Chinese Patent NO. 
ZL202111460076.9 by Wang and Zhang et al. [6].
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considering the waste heat from the engine, is expressed by: 

QElec =PADU − Qexh
ICE =

(
Csteel ×

mADU

1000
×ΔT+ΔH×mH2

)

−

(

Erea
ICE − PICE − mICEcICE

dTcool
ICE

dt

)

(15) 

2.2.3. Ammonia-hydrogen hybrid powertrain system model
The catalyst optimization model developed in this paper focuses on 

its application in the driving environment of electric heavy-duty com
mercial trucks. The ammonia-hydrogen fuel, in cooperation with the 
electric motor, develops operation modes for the power system, 
including: pure electric mode, engine hybrid mode, and braking recov
ery. In pure electric mode, the power required for vehicle operation is 
entirely supplied by the generator, while the generator also provides 
electric heating for the ADU to supply the heat necessary for ammonia 
decomposition, allowing the vehicle to switch to the engine hybrid mode 
that combines ammonia-hydrogen fuel with the battery at any time. The 
schematic of the zero-carbon hybrid powertrain of the electric vehicle is 
shown in Fig. 6. Moreover, vehicle technical parameters are shown in 

Table 3,where mgw refers to the gross weight of vehicle, g refers to the 
local gravitational acceleration, f refers to the rolling resistance, CD re
fers to the air resistance coefficient and Af refers to the vehicle frontal 
area. r and i denote the wheel radius and the main reducer speed ratio, 
respectively. α is road slope, ρ is air density, and v is velocity. δ refers to 
the conversion coefficient of the rotating mass.

Table 3 
Vehicle technical specifications.

Vehicle parameters Value and unit

Gross weight mgw 49,000 kg
Wheel radius r 0.512m
Rolling resistance f 0.012
Air resistance coefiicient CD 0.65
Frontal area Af 9.45m2

Gravitational acceleration g 9.80 m⋅s− 2

Transmission mechanical 
efficiency ηt

0.94

Fianl drive ratio i0 4.3
AMT gear ratio ig 15.53/12.8/9.39/7.33/5.73/4.46/3.48/2.71/ 

2.1/1.64/1.28/1

Fig. 7. Schematic diagram of surrogate-enhanced partitioned optimization for carbon-free heavy-duty vehicles: (a) Partitioned NSGA-III optimization with surrogate 
co-training: Global exploration phase, including a crossover pool; (b) Cross-region surrogate transfer and Bayesian refinement: Local exploitation phase; (c) 
Methodology flowchart: Overall framework for ADU design and powertrain optimization.. (Full definitions of abbreviations can be found in the main text.)

Table 4 
Mass of vehicle components.

Parameters Value and units

Engine mass JICE
2 1.18Pmax

ICE kg
Generator mass JGEN

2 1.32Pmax
GEN kg

Motor mass JDM
2 1.32Pmax

DM kg
Battery mass Jbat

2 13.6Qbat kg

Table 5 
Definition of the multi-objective optimization problem.

Parameter Definition

Objective functions min[f1, f2 ]
Driving cycle Standard driving cycle
Variables to be optimized 150 kW ≤ Pmax

ICE ≤ 300 kW
350 kW ≤ Pmax

DM ≤ 550 kW
10 kWh ≤ Ebat ≤ 40 kWh
ρcat

i ∈ [A ∼ J], i = I, II, III, IV,V
0 ≤ ρcat

i ≤ 1, i = I, II, III, IV,V
Constraints ρcat

I + ρcat
II + ρcat

III + ρcat
IV + ρcat

V = 1
Pmax

GEN = Pmax
ICE

Pmin
ICE ≤ PICE ≤ Pmax

ICE

Pmin
GEN ≤ PGEN ≤ Pmax

GEN

Pmin
DM ≤ PDM ≤ Pmax

DM

Pmin
bat ≤ Pbat ≤ Pmax

bat
SOCmin ≤ SOC ≤ SOCmax
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In the model, the power demand Pdem for the vehicle under full load 
and the power supplied by the generator PDM are calculated using the 
following equations: 
⎧
⎪⎨

⎪⎩

Pdem = (PICEηGEN + Pbat − Paux)ηDMηf

PDM = kα
p
(
vref − v

)
+ kα

p

∫ t

0

(
vref − v

)
dt

(16) 

where Pbat and Paux refer to the power of battery and auxiliary devices, 
respectively. ηDM and ηf denote the efficiency of drive motor and final 

drive respectively.
The power from the generator that is used to drive the electric heater 

to heat the ADU is denoted by dQEle
dt , with the remainder used for vehicle 

propulsion power, Pdri
ele. Therefore, the power supplied by the generator 

to drive the vehicle Pdri
ele , the power provided by the combustion of mixed 

fuel in the engine to propel the vehicle PICE and the total power Pdri
tot 

provided by the ammonia-hydrogen hybrid system are calculated by the 
following formulas: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pdri
ele = PDM −

dQEle

dt

PICE =
ωICETICE

9550
Pdri

tot = Pdri
ele + PICE

(17) 

In pure electric mode, the vehicle’s power is entirely supplied by the 
generator. Part of the generator’s power is used to heat the ADU, while 
most of the power is used to propel the vehicle. In hybrid engine mode, 
vehicle power is supplied jointly by the engine and the generator, and 
some of the generator power is used to maintain the temperature of the 

Fig. 8. Pareto fronts of different generations. (a) The distribution variation of cost-efficiency optimization of 10th, 20th, 30th,40th, 50th, 60th generation and the 
magnified display for the best combinations at upper right corner, where the black triangle icons refer to the selected Pareto optimal solutions. (b) and (c) are the 
comparison between two sets of generation variations, where (b) is for 10th, 20th,30th, 40th, 50th, 60th generation and (c) is for 6th, 14th, 24th, 36th, 48th, 
60th generation.

Table 6 
Trade-off solutions of the best stretegy in the 60th generation.

Parameters Trade-off (60th)

Pmax
ICE (kW) 307.26

Pmax
DM (kW) 432.48

Ebat (kWh) 63.49
ρcat

i type vector (− ) [D,E,E,E,G]
ρcat

i proportion vector (%) [20.34,19.70,19.71,19.71,20.54]

Fig. 9. Gradients of the 10 selected combinations.
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Fig. 10. Performance of the selected 10 combinations which are the closest to the Pareto surface is demonstrated with different focus as which (a) focus on the effect 
of the costs, (b) focus on the effect of the temperatures, and (c) focus on the effect of the system efficiency.

Fig. 11. Comparison of algorithms in merging efficiency and computation load.
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ADU.

3. Surrogate-enhanced multi-objective optimization of 
powertrain

This paper proposes a dual-phase optimization framework that 
combines partitioned NSGA-III exploration with BO refinement. The 
feasible region is first divided into subregions, each optimized inde
pendently using NSGA-III to generate local Pareto fronts and training 
data for surrogate models. Adjacent subregions with boundary solution 
clustering are then merged, and BO refines the combined Pareto front 
using Gaussian process (GP) surrogates. The process iterates until 
convergence, achieving a globally optimal Pareto set while balancing 
exploration and exploitation. This approach effectively addresses high- 
dimensional, nonconvex optimization challenges in ammonia- 
hydrogen hybrid powertrain design.

The use of surrogate model is essential in the optimization process. 
While the mathematical model simplifies key interactions, it remains too 
computationally intensive for full multi-objective optimization. GP, as 
the core of BO, offers theoretical strengths for continuously validating its 
role as an surrogate model for costly physical models. GP defines a 

function distribution via mean and covariance, and is updated using 
Bayesian inference when new high-fidelity data is available. This yields 
both predictive means and variances, quantifying uncertainty. Through 
hyperparameter tuning, the covariance captures system patterns, while 
BO’s acquisition function leverages both predictions to strategically 
sample regions with high uncertainty or potential gain. This focused 
data acquisition reduces uncertainty where optimal solutions are likely, 
allowing GP to self-validate dynamically. As predictive uncertainty 
drops and GP predictions converge with physical model outputs, the 
surrogate model’s fidelity and optimization guidance are con
firmed—ensuring the Pareto front achieves both theoretical optimality 
and engineering feasibility.

3.1. Problem formation

In this work, the objective functions for component sizing optimi
zation are defined as system energy efficiency (f1) and system cost (f2). 
Let x ∈ RN denotes the decision variables of the system under optimi
zation, and let F(x) =

[
f1(x),…, fK(x)

]
represents the vector of K = 2 

conflicting objective functions to be minimized. The optimization 
problem is formalized as follows, where S⊂RN represents the feasible 
region. 

min
x

F(x)=
[
f1(x),…, fK(x)

]
, subject to x ∈ S, (18) 

The goal is to identify the Pareto-optimal set X*, such that no 
objective function can be improved without worsening at least one other 
objective. A solution x* ∈ S is Pareto-optimal if: 

∄x∈ S : F(x) ≺ F(x*), (19) 

where F(x) ≺ F(x*) implies F(x) dominates F(x*) in all objectives. For 
two solutions x1 and x2, x1 dominates x2 if: 

fi(x1)≤ fi(x1) ∀i=1, 2,…,K and ∃j : fi(x1) < fi(x1). (20) 

Given the high-dimensional nature of the decision space and the 
nonconvexity of the objectives, direct global search can be computa
tionally expensive. To overcome this, we propose a dual-phase optimi
zation approach for the design of the ADU for ammonia-hydrogen 
hybrid vehicle, which is depicted as shown in Fig. 7. In this figure, the 
main model detailed in Section 2 functions as a high-fidelity physical 
representation of the powertrain. This model serves as the external 
evaluation environment, interacting iteratively with the optimizer. The 
surrogate-enhanced optimizer proposes a set of design and control pa
rameters for the physical model’s components in each iteration. The 
main model then executes a comprehensive simulation run under these 
assigned parameters, typically across various driving cycles, and outputs 
the resulting vehicle performance metrics to the optimizer. Initially, the 
global exploration phase, depicted in Fig. 7 (a), employs a partitioned 
NSGA-III to systematically explore the design space. Within this phase, 
population diversity and exploration are enhanced through a crossover 
pool that utilizes four distinct operators: simulation binary crossover 
(SBC), shuffle crossover (SC), multi-point crossover (MC), and uniform 
crossover (UC). Promising solutions identified during this exploration, 
forming local Pareto Optimal (LPO) frontiers, are then transferred to the 
subsequent refinement stage. Fig. 7 (b) outlines the local exploitation 
phase, where Bayesian optimization refines these solutions. Gaussian 
Process surrogate models are trained using the collected data, and an 
acquisition function intelligently guides the search for new, highly 
beneficial design points. This iterative process drives the optimization 
towards global Pareto optimal (GPO) from the local Pareto optimal 
(LPO). Finally, Fig. 7 (c) presents the overarching methodology flow
chart, integrating the ADU design and component sizing within the 
powertrain configuration. This holistic view demonstrates how the ge
netic exploration and Bayesian refinement work in synergy to enable a 
dynamic evaluation of the ammonia-hydrogen heavy-duty vehicle.

Fig. 12. Sensitivity analysis for system efficiency (a) and ADU cost (b).
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3.2. Partitioned NSGA-III optimization with surrogate preparation

The optimization framework shown in Fig. 7 establishes a synergistic 
relationship between a high-fidelity physical model, a hybrid NSGA-III/ 
BO optimizer, and a Gaussian process surrogate model. The core process 
is as follows: the optimizer generates candidate solutions, which are 
then accurately evaluated by the computationally expensive physical 
model. These evaluation results are used to train the surrogate model.

The surrogate model’s key role is to provide rapid performance es
timates, which guide the optimization search efficiently while signifi
cantly reducing computational costs. This closed-loop interaction 
ensures that while the search is guided by the fast surrogate, all critical 
solutions are validated by the accurate physical model, guaranteeing the 
final results are implementable. This creates a self-reinforcing cycle: 
evaluation data from the physical model continuously improves the 
surrogate’s accuracy, and a more accurate surrogate, in turn, enables a 
more effective search by the optimizer.

The partitioned optimization process integrates data generation for 
surrogate modeling as an intrinsic component of the NSGA-III evolution. 
To enable efficient search, we partition the feasible region S⊂ RN into i 
non-overlapping subregions S1, S2,…, Si such that: 

{
S =

⋃i

j=1
Sj, Sj

⋂
Sk = ∅∀j ∕= k,

Sj =
{
x ∈ RN⃒⃒aj ≤ x ≤ bj

}
.

(21) 

where each subregion Sj is defined by lower and upper bounds for the 
decision variables, and aj, bj ∈ RN are the bounds for the j-th subregion. 
The optimization process begins by dividing the high-dimensional 
design space into a set of predefined subregions Sj through uniform 
grid partitioning. This involves segmenting each design variable’s range 
into a specified number of equal intervals, thereby creating a grid of 
subregions that systematically covers the entire search space. Within 
each of these defined subregions, the NSGA-III algorithm is then applied 

to generate and evolve populations, identifying Pareto-optimal solutions 
specific to that segment of the design space. Following this initial seg
mentation and exploration, an adaptive merging strategy, as detailed in 
Fig. 7, dynamically adjusts and combines these subregions. This merging 
mechanism, driven by the covariance of the Gaussian process surrogate 
models, allows for flexible redefinition of subregion boundaries based on 
the need for improved model accuracy and a more comprehensive rep
resentation of the overall solution landscape, particularly in promising 
areas. In each subregion Sj, a population Pj is first initialized with in
dividuals x ∈ Pj uniformly sampled from the subregion. The objective 
vector F(x) =

[
f1(x),…, fK(x)

]
for each individual is then evaluated. 

Subsequently, the individuals are ranked based on Pareto dominance 
using non-dominated sorting, where a solution x1 dominates another x2 
if f1(x) ≤ fK(x) for all Аi = 1,2,…,K, and ∃j : fj(x1) < fj(x2). This process 
forms successive Pareto fronts, with the first front containing the non- 
dominated solutions, followed by subsequent fronts.

To maintain diversity, NSGA-III assigns each solution to a predefined 
reference point Zr ∈ RK in the objective space. For each individual, the 
perpendicular distance to the nearest reference point is calculated as 
follows 

min
Zr

|F(x)⋅Zr|

|Zr|
, (22) 

ensuring that solutions are distributed uniformly along the Pareto 
front. Standard genetic operators, including simulated binary crossover 
(SBX) and polynomial mutation, are employed to produce offspring, 
promoting the exploration of new regions within the decision space. 
Over multiple generations, the population evolves towards a well- 
distributed Pareto front. Finally, after the termination criteria are met, 
the non-dominated set P*

j is extracted as the Pareto-optimal solutions for 
the subregion Sj.

In the meantime, the optimization process in each subregion Sj 

generates a dataset Dj =
{(

x(i), F
(
x(i))

⃒
⃒
⃒x(i) ∈ P*

j

)}
of non-dominated 

Fig. 13. (a) The standard driving cycle combining CHTC and CWTVC driving cycle. (b) Acceleration variation of standard driving cycle. (c) Acceleration against 
velocity of standard driving cycle. (d) The practical driving cycle combining three situations of RD driving cycles. (e) Acceleration variation of practical driving cycle. 
(f) Acceleration against velocity of practical driving cycle.
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solutions, which will be used to train surrogate models in the refinement 
phase. The accumulation continues until the solution density in Sj sat
isfies: 
⃒
⃒
⃒P*

j

⃒
⃒
⃒

vol
(
Sj
) > ρmin (ρmin =φNd) (23) 

where vol
(
Sj
)

is the hypervolume of Sj, and φ is a coefficient adjusting 
the stop threshold, also, Nd refers to the dimension count.

3.3. Cross-region surrogate transfer and Bayesian refinement

The transition from global exploration to local refinement is gov
erned by an adaptive data-driven mechanism. The refinement phase 
initiates by constructing GP surrogate models using the datasets Dj 

accumulated during NSGA-III optimization. A pivotal advantage is its 
ability to quantify prediction uncertainty, which is fundamental for 
efficiently guiding BO through balancing exploration and exploitation in 
high-dimensional spaces. Furthermore, GPs offer inherent flexibility for 

Fig. 14. Powertrain operation characteristics of the system under CHTC driving conditions.
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capturing complex non-linear relationships and are data-efficient. This 
surrogate-assisted strategy enables the identification of promising 
adjacent subregions through solution space connectivity analysis. Spe
cifically, neighboring subregions that exhibit solution clustering near 
their mutual boundaries are merged to form extended search spaces. 
Within these unified regions, BO initiates local refinement by strategi
cally sampling points that simultaneously maximize the expected 
improvement (EI) acquisition function across all merged objectives, 
effectively bridging the gap between discrete Pareto fronts from separate 
subregions while preventing premature convergence. For each pair of 

adjacent subregions Sj and Sj+1, their respective Pareto-optimal sets P*
j 

and P*
j+1 are merged: 

Pmerged =
⋃i− 1

j=1

(
P*

j

⋃
P*

j+1

)
, (24) 

The merged Pareto set represents the combined non-dominated so
lutions near the boundaries of adjacent subregions. By merging adjacent 
Pareto fronts, we ensure that global interactions between neighboring 
regions are captured, leading to a more comprehensive search of the 
global Pareto front.

To enhance the quality of the merged Pareto fronts, BO is employed 
for global refinement. BO is particularly suited for expensive black-box 
optimization problems, leveraging a probabilistic surrogate model to 
balance exploration of the search space and exploitation of promising 
regions. The refinement process begins with constructing a GP surrogate 
model for each objective function using the dataset of solutions from the 
merged Pareto set, D = {(x1, F(x1)), …, (xn, F(xn))}. The GP model is 
defined as 

fi(x) ∼ G P (μi(x), ki(x, xʹ)), (25) 

where μi(x) represents the mean function, and ki(x, xʹ) is the covariance 
function. A commonly used kernel for the covariance function is the 
squared exponential kernel: 

ki(x, xʹ)= σ2
i exp

(

−
1

2l2i
‖x − xʹ‖2

)

, (26) 

where li denotes the characteristic length scale, and σ2
i represents the 

signal variance of the objective fi(x).
The next evaluation point is determined by optimizing an acquisition 

function αx, which guides the selection by balancing exploration and 
exploitation. The expected improvement is a widely used acquisition 
function, defined as: 

EI(x)=E[max(0, fbest − f(x))] (27) 

where fbest is the best objective value observed so far, and f(x) is the 
predicted mean from the GP model. The next evaluation point xnext is 
obtained by maximizing the acquisition function: 

xnext = argmax
x∈S

αx, (28) 

The BO process iteratively updates the GP model with the new 
evaluations, refining the solutions at each step. This iterative process 
continues until convergence, which is defined when the maximum 

Fig. 15. Comparison of energy consumption and WTW CO2 emissions of different algorithms in the same driving cycle, (a) the standard cycle combined of CHTC and 
CWTVC, (b) the practice cycle of RD.

Table 7 
Analysis of corrected energy consumption and WTW CO2 emission for different 
propulsion systems.

Driving cycle Optimization 
(− )

Energy consumption 
(MJ/km)

WTW CO2 emission 
(kg CO2-eq/km)

Standard 
driving cycle

Hybrid 604.08 25.49
NSGA-III 622.79 26.28
BO 625.52 26.39

Real Driving 
Test Cycle

Hybrid 1184.21 49.97
NSGA-III 1209.31 51.03
BO 1228.54 51.84

Fig. 16. Comparison of algorithms in system performance and cost.
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acquisition value satisfies the following 

max
x

a(x) < ϵ(max(F) − min(F)) (29) 

where ϵ is the relative convergence threshold, which ranges from 0 to 1. 
In addition, max(F) and min(F) are the maximum and minimum 
observed values of the objective functions, respectively.

During BO iterations, the GP models are continuously refined by 
incorporating newly evaluated points (xnew, F(xnew)) into the training 
dataset: 

Dj ← Dj ∪ {(xnew, F(xnew))}, (30) 

which ensures that the surrogates progressively improve their accuracy 
in promising regions.

3.4. Settings of optimization variables

In this work, since Pmax
GEN needs to match the engine requirement, 

which can be determined as a function of Pmax
ICE . Therefore, the decision 

variables x include eight parameters related to the powertrain compo
nents that to be optimized, including ρcat

I , ρcat
II , ρcat

III , ρcat
IV , ρcat

V , Pmax
ICE , Pmax

mot 
and Ebat.

Here, ρcat
I , ρcat

II , ρcat
III , ρcat

IV and ρcat
V refer to the proportion of the selected 

catalysts for the five catalyst pipes. It should be noted that the selection 
of catalyst type for each pipe could be the same. Ebat is the battery ca
pacity in kWh. In the collaborative optimization process, it should be 
noted that the engine operates along the optimal operating line for 
simplicity.

The objective associated with system cost (f2) is calculated based on 
the summation of the components cost denoted by f ICE

2 , fGEN
2 , fDM

2 , fbat
2 

and fHPU
2 . The detailed parameters for calculating component cost of the 

engine, generator, motor, and battery are summarized in Table 4, and 
the calculation of the ADU cost with different catalyst design has been 
explained in Section II.

Table 5 outlines the multi-objective optimization framework, 
including specifics on the objective functions, variable ranges, and 
constraints. For powertrain optimization, this study employs a stan
dardized driving cycle that integrates the China heavy-duty commercial 
vehicle test cycle (CHTC) with the Chinese-world transient vehicle cycle 
(CWTVC).

4. Results and discussions

4.1. Catalyst combination and Pareto surface optimization

The Pareto analysis-based optimization selects the combinations of 
catalysts for multi-objective optimization. The results of the modulation 
will be illustrated as follows: generations of distributions of the Pareto- 
based optimization, components of the selected catalyst combinations, 
performances of the selected catalyst combinations, and converging 
quality of Pareto throughout the generations. The analysis was 
employed to evaluate over 100 catalyst species and proportion combi
nations, which were initially selected from a larger set. These combi
nations underwent iterative optimization over successive generations 
with the goal of improving efficiency and reducing costs. The repre
sentative outcomes of this evolutionary optimization process are 
depicted in Fig. 8.

Table 6 demonstrates the most preferred combinations selected by 
the 60th generation of the best algorithm. In the 60th generation, the 10 
coordinates closest to the Pareto surface were selected. The selected 
combination in Table 6 is the second among the 10 coordinates. The 
proportions of the five constituent species were analyzed and the two 
species with the lowest proportions were removed. The remaining per
centage was then evenly redistributed among the three retained species. 
The proportion of eliminated species is illustrated in Fig. 9.

Fig. 10 displays the selected combinations under the optimal algo
rithm. The three graphs highlight different factors that influence these 
combinations. The higher the bars, the better the combinations. The left 
graph emphasizes cost, the center graph focuses on temperature, and the 
right graph highlights system efficiency. Convergence was assessed 
using the inverted generational distance (IGD) metric, as shown in 
Fig. 11 (a). The IGD value decreased rapidly from 0.0461 in the first 
generation to approximately 0.001 in the 60th generation, with the rate 
of decline slowing progressively over time. The best-performing algo
rithm achieved a minimum IGD of 0.000746. Beyond the 60th genera
tion, no significant reduction in IGD was observed across any algorithm, 
indicating that further iterations would yield negligible improvement. 
Prior to the 17th generation, NSGA-BO required significantly more 
iteration time. However, upon conclusion of the NSGA exploration 
phase at the 17th generation, the computational time per generation for 
NSGA-BO exhibited a marked inflection point. The total computational 
time of NSGA-BO also fell below that of pure NSGA by approximately the 
20th generation. Consequently, in achieving the best-performing algo
rithm of the 60th generation, NSGA-BO demonstrates clear advantages 
in time efficiency.

Furthermore, Fig. 11 (b) and Fig. 11 (c) illustrate the performance of 
the surrogate model. The scatter plot shows the relationship between the 
surrogate model outputs and the corresponding high-fidelity model 
outputs. The 45-degree line indicates perfect agreement between the 
two models, while the two red dashed lines represent a ±10 % error 
margin. It can be observed that the surrogate model outputs closely 
follow those of the high-fidelity model, with most data points falling 
within the ±10 % error range. The overall accuracy of the surrogate 
model is quantified by the R2 value, which is 0.9774. The histogram 
depicts the distribution of errors between the surrogate and high-fidelity 
model outputs. The errors are centered around zero and show a rela
tively narrow spread in both directions, indicating that the surrogate 
model meets the required accuracy for the task. This work strategically 
terminated the optimization at the 60th generation as shown in Fig. 8
though the three algorithms may not have fully converged. By this point, 
the models’ convergence rate have slowed significantly, and perfor
mance metrics IGD shown in Fig. 11 (a) confirmed our proposed NSGA- 
BO framework had already achieved a high-quality Pareto front. The 
primary objective was to demonstrate that our integrated NSGA-BO 
approach achieves superior solutions more rapidly than standalone 
methods. Continuing the optimization would have diminished the 
observable performance differences between algorithms, obscuring our 
method’s core contribution. Thus, the results at 60 generations effec
tively showcase the framework’s enhanced efficiency in achieving sub
stantial progress in fewer generations.

To validate the robustness of our molecular dynamics model, sensi
tivity analysis is performed on the key parameters of system efficiency 
and ADU cost. Analysis for ADU efficiency is omitted as it should have 
similar sensitivity with system efficiency. 8 variables are considered in 
the examination for system efficiency: ρcat

B , ρcat
D , ρcat

E , ρcat
G , ρcat

I , PICE, PDM, 
and Ebat. The results are shown in Fig. 12 (a). When each variable serves 
as the independent variable, it varies by ± 15 %. When acting as control 
variables, PICE, PDM and Ebat maintained within a fluctuation range of 

±2 %, ±3 % and ±5 % respectively. Catalysts ratio are considered in 
ADU cost sensitivity analysis as shown in Fig. 12 (b). Notably, ρcat

E 
contributes the highest effection on both system efficiency and ADU 
cost, suggesting the need for strict control in simulations. The significant 
influence of ρcat

E on the key parameters may stem from its consistently 
high prevalence across various catalyst combinations. These results 
confirm that our conclusions on grain boundary strengthening are 
insensitive to reasonable parameter variations.

The selected optimal catalyst combinations were applied to the ADU 
and powertrain model under various driving cycles, shown in Fig. 13. 
Three optimization algorithms were employed to refine vehicle pa
rameters for multi-objective system optimization: BO, NSGA-III, and a 
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hybrid BO-NSGA-III approach. The hybrid method leveraged BO for 
local refinement and NSGA-III for global exploration, outperforming 
standalone algorithms in multi-aspect evaluations. Finally, Pareto-based 
multi-objective optimization was integrated with the hybrid strategy to 
identify catalyst combinations and proportions that best aligned with 
the target objectives.

Simulations were conducted using detailed engine, generator, motor, 
and battery parameters from Table 6, across three driving cycles: CHTC, 
CWTVC, and real driving (RD) test cycle. These cycles, along with 
acceleration-time profiles and acceleration-velocity gradients, are 
plotted in Fig. 13. The CHTC and CWTVC cycles are standardized for 
heavy-duty commercial vehicles and exclude real-world variables such 
as environmental conditions and driver behavior, which are incorpo
rated into the RD cycle.

4.2. Comparison of Bayesian optimization and performance of NSGA-III

The dynamic performance analysis was performed on three optimi
zation strategies, as shown in Fig. 14. BO demonstrated lower battery 
power consumption during driving cycles and achieved performance 
comparable to NSGA-III in engine power, SOC, ADU temperature, and 
energy cost. However, the hybrid BO-NSGA-III strategy outperformed 
both standalone methods, showing significant improvements in the ADU 
efficiency. Furthermore, the numerical information of accumulated en
ergy consumption corresponding to Fig. 14, and the well-to-wheel 
(WTW) CO2 emission amount corresponding to Fig. 15 are summa
rized in Table 7.

To evaluate and compare algorithm performance, four metrics were 
analyzed: accumulated energy consumption (MJ), normalized energy 
consumption (%), ammonia consumption (kg), and well-to-wheel 
(WTW) CO2 emissions (kg). The total energy consumption values for 
the Best, NSGA-III, and BO algorithms were 604.08 MJ, 622.80 MJ, and 
625.52 MJ, respectively. The normalized percentages of energy con
sumption were calculated by dividing the energy consumption of each 
algorithm by the total. Although BO and NSGA-III exhibited similar 
trends, the hybrid algorithm consistently demonstrated lower energy 
consumption throughout the timeframe, as shown in Fig. 15(a). This 
advantage becomes more pronounced in Fig. 15(b), where the finer y- 
axis scale reveals subtle yet significant differences in trends.

A comprehensive comparison of efficiency and cost for the ADU and 
powertrain system is summarized in Fig. 16. The hybrid optimization 
algorithm achieved the highest efficiency: 31.24 % for the powertrain 
system and 76 % for the ADU, along with the lowest cost of 1810 CNY for 
the ADU. In terms of the standalone methods, NSGA-III marginally 
outperformed BO in both efficiency and cost metrics.

5. Conclusions

This study addresses the critical challenge of optimizing ammonia 
decomposition catalysts for hydrogen production in carbon-free heavy- 
duty vehicles with the goal of balancing energy efficiency and system 
cost. The research focuses on identifying the optimal catalyst combi
nations and compositions to maximize ammonia conversion rates under 
lower temperature conditions, while minimizing preparation costs, 
thereby advancing the feasibility of ammonia-hydrogen hybrid power
trains. The key contributions of this study include: 

• A dual-phase framework is proposed that combines genetic 
algorithm-based partitioned search with surrogate-guided refine
ment. This approach jointly explores component sizing and catalyst 
configurations, enabling efficient design of ammonia decomposition 
device for carbon-free powertrains under real-world dynamic 
operations.

• The proposed surrogate-assisted optimization integrates adaptive 
domain partitioning with Bayesian refinement, which eliminates 
premature convergence in nonconvex high-dimensional Pareto 

optimization and successfully coordinates powertrain parameters 
with catalyst composition variables through sequential domain 
decomposition and model-assisted merging.

• A dynamic simulation model is proposed that links catalyst proper
ties with hybrid powertrains in real-world operation scenarios. The 
results validate the adaptability of the optimized catalyst combina
tions across driving cycles, with the proposed surrogate-enhanced 
dual-phase optimization strategy reducing energy consumption by 
3.5 % compared with conventional NGSA-III and BO methods, and 
achieving 31.24 % powertrain efficiency and 76 % ADU efficiency 
with minimized system costs.
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