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The design of on-board ammonia decomposition units (ADUs) and its integration with ammonia-hydrogen hybrid
powertrains present a critical challenge in the development of carbon-free heavy-duty vehicles. This study ad-
dresses this challenge through a novel surrogate-enhanced optimization framework for ADU design, introducing
a dual-phase hybrid optimization framework combining non-dominated sorting genetic algorithm for partitioned
exploration and Bayesian optimization for local refinement. The framework employs sequential domain
decomposition using genetic algorithm-driven Pareto sampling integrated with surrogate training data accu-
mulation, followed by Gaussian process-guided refinement that fuses adjacent optimal regions through

covariance-based surrogate merging. Experimental validation demonstrates the effectiveness of the framework in
achieving balanced system performance in key metrics. The results show that the powertrain equipped with the
optimized ADU achieves a system efficiency of 31.24 % and an ADU efficiency of 76 % at minimal system costs,

with dynamic validation more than 3.5 %.
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1. Introduction

Excessive greenhouse gas emissions have led to an annual increase in
global surface temperatures, exhibiting an exponential growth trend [1].
To achieve environmental sustainability goals, zero-carbon emissions
have become the core focus of global long-term policies [2,3]. Since the
signing of the Paris Agreement in 2015, over 100 countries have
committed to achieving carbon neutrality in the coming decades [4]. In
the composition of carbon emissions, road transport fossil fuel com-
bustion contributes 23 % of CO, emissions, with this proportion
continuing to rise [5]. Moreover, heavy-duty trucks account for 76.1 %
of nitrogen oxide emissions and 51.5 % of particulate matter emissions
in the automotive sector [6], highlighting the urgency of commercial
vehicle energy transition. However, current electric heavy-duty trucks
are limited to short-distance transport due to range constraints [7],
while liquid ammonia, with its volumetric energy density of 13.6 MJ/L,
equivalent to 4.5 times that of 35 MPa high-pressure hydrogen [8],
positions ammonia-hydrogen hybrid powertrains as the most promising
zero-carbon solution for long-haul heavy-duty transport [9,10]. How-
ever, the complexity of system configuration and matching remains the
primary bottleneck for commercialization.

Despite the significant potential of ammonia-hydrogen hybrid pow-
ertrains, the complexity of system configuration and matching has
become the foremost obstacle to their commercialization. The multi-
energy source characteristics of such systems introduce technical inte-
gration challenges far exceeding those of single-power systems [11]. The
dynamic matching of powertrain architectures becomes particularly
intricate in ammonia-hydrogen powertrains. For example, Antonio et al.
compared parallel, series, and power-split hybrid configurations,
revealing that zero-carbon engines require real-time mode switching
based on load conditions but exhibit vulnerable torque characteristics
and significant emission increases under transient conditions, with
improper system matching potentially causing substantial performance
degradation [12]. Zhang et al. quantitatively studied the operation of
ammonia-hydrogen hybrid powertrains under various working condi-
tions through system modeling [13]. Their results demonstrated that
while the system achieves significant carbon emission reductions
compared to diesel hybrid heavy trucks and conventional diesel vehi-
cles, the energy flow and parameter configuration exhibit limited
adaptability to diverse operating conditions, leaving substantial opti-
mization potential [14]. Therefore, it is obvious that the core challenge
in ammonia-hydrogen system configuration lies in achieving synergistic
optimization across conflicting objectives including enhancing system
efficiency, minimizing powertrain weight, optimizing catalytic
hydrogen production capacity, and reducing system cost.

Existing literature predominantly focuses on multi-objective sizing
optimization schemes for conventional hybrid electric vehicles, pro-
posing numerous valuable design methodologies from perspectives of
optimization algorithms and system dynamics [15-18]. Zhang et al.
developed a data-driven framework for online identification of fuel cell
aging states, proposing a component matching and sizing architecture
that considers system degradation [16]. Li et al. incorporated full
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lifecycle carbon emission costs into powertrain component sizing opti-
mization, creating decision-support models with enhanced industrial
relevance for OEMs, though parameter accuracy remains a critical lim-
itation [6]. Furthermore, recent advances in powertrain sizing leverage
multi-objective optimization frameworks to address the interplay be-
tween component configuration, energy efficiency, and dynamic per-
formance [19]. Evolutionary algorithms, such as non-dominated sorting
genetic algorithm-III (NSGA-III) and reference-point-based methods,
have demonstrated efficacy in resolving high-dimensional tradeoffs
among cost, emissions, and energy density [20]. Hybrid approaches
integrating surrogate models, such as polynomial chaos expansion, with
metaheuristics enable efficient exploration of nonlinear design spaces
while mitigating computational burdens [21]. For transient-aware
sizing, physics-informed neural networks and digital twin frameworks
are emerging to reconcile static parameter selection with real-world
dynamic constraints [22]. Current challenges persist in balancing
model fidelity with optimization scalability, particularly for
multi-energy systems requiring concurrent sizing of electrochemical,
thermal, and mechanical subsystems. Lei et al. adopted a hierarchical
co-optimization architecture that simulates powertrain operating con-
ditions to obtain dynamic feedback, effectively reducing temporal data
errors across components [23]. Their system employed high-fidelity
model integration techniques for multi-scale modeling, utilizing phys-
ical models like the Arrhenius combustion equation for cross-scale data
fusion. Adaptive relaxation methods dynamically adjusted parameter
conflicts, while surrogate models assisted in co-optimizing component
sizing and energy management, achieving improvements in fuel econ-
omy and computational efficiency.

Despite over more than a decade of extensive research on hybrid
powertrain matching, effective solutions remain lacking since the
emergence of the novel complex coupling characteristics of ammonia-
hydrogen hybrid powertrains. To this end, Ezzat et al. investigated the
co-optimization of system component sizing and energy management in
ammonia-hydrogen vehicles, simultaneously determining component
dimensions and optimizing the power distribution ratio between fuel
cells and internal combustion engines (ICEs) [24]. Beyond computa-
tional simulations, some studies have developed design methodologies
for small-scale ammonia-hydrogen systems, validated through golf cart
prototypes [25], though their relevance to heavy-duty trucks with vastly
different system scales remains limited. Notably, these studies neglect
optimization of a critical component, the on-board hydrogen production
unit namely ADU, and fail to address the co-optimization between ADU
and other system components. Ammonia decomposition can generally
be classified into thermal and non-thermal processes, with thermal
decomposition further divided into three different methods: combustion
heating, electric heating, and solar heating. This paper focuses on
combustion heating for ammonia decomposition. Combustion heating
can be flame combustion or catalytic combustion, with catalytic com-
bustion being the process used in the ADU for ammonia hydrogenation.
The rate of catalytic decomposition in the ADU, as well as key param-
eters, such as hydrogen conversion rates, are highly dependent on the
properties of the catalyst. Active components of the catalyst can be
combined with multiple metals or converted into carbides, nitrides, or
amides to achieve more ideal properties. Additionally, the active com-
ponents can be supported on different materials or encapsulated within
various substances. For example, ruthenium (Ru) is often used as a
carbon-supported catalyst, where the carbon support improves the
dispersion of the precious metal Ru, thereby controlling the overall
preparation cost. The structure of the catalyst, through controlling the
number and distribution of active sites, also enhances the stability of the
catalyst. Research demonstrates that Ru-based catalysts achieve 99.5 %
ammonia decomposition at 500 °C [26,27], but at 20 times the cost of
Fe/Co/Ni catalysts [28]. While non-precious metal catalysts offer cost
advantages, they require high temperatures (>700 °C) for optimal
performance (e.g., Ni-Ru/CeO achieves near-complete conversion at
700 °C [27]), leading to severe efficiency degradation below 400 °C.
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Fig. 2. Powertrain architectures of hybrid electric vehicle fueled with ammonia-hydrogen.

Moreover, the use of co-catalysts can further enhance the catalytic effect
on certain catalysts. The design of active components, along with com-
binations of different supports and co-catalysts, gives rise to catalysts
with distinct advantages. Existing ADU studies predominantly focus on
catalyst selection while ignoring system-level integration. Furthermore,
Zhang et al. analyzed the critical matching factor—ammonia decom-
position rate—and proposed an ADU design framework incorporating
waste heat recovery [13]. However, their approach prioritized catalytic
efficiency over cost, creating efficiency-economic conflicts that neces-
sitate further multi-objective optimization of catalysts and decomposers
[29,30]. While these studies provide comprehensive multi-objective
optimization frameworks, they fail to address the unique challenges of
ammonia-hydrogen powertrains—a system whose component coupling
relationships and complexity far exceed conventional hybrid vehicles.
The catalytic system design requires tight coordination with other
vehicle components, significantly impacting overall energy efficiency
and stability. To the authors’ knowledge, no existing studies address the

co-optimization of hydrogen conversion rate, cost, and temperature
through synergistic design of ammonia catalysts and other system
components at the ammonia-hydrogen powertrain level, making this
research critically significant.

Based on the aforementioned review and discussions, current
research lacks a multi-objective optimization framework that balances
system efficiency, catalytic performance, and cost under dynamic con-
ditions, while neglecting the synergy between catalytic system design
and powertrain component sizing. Through joint optimization with
powertrain matching, catalytic systems can employ strategic catalyst
combinations to achieve synergistic effects between macroscopic vehicle
parameters and microscopic component characteristics. This paper
proposes a surrogate-enhanced partitioned Pareto search for hydrogen
production device optimization, which is shown in Fig. 1, which pro-
vides an effective methodology and demonstrates practical application
of collaborative optimization of both the component sizing and the
subsystem design for novel carbon-free heavy-duty vehicles. This study
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Table 1
Catalyst specifications with values of main parameters.
No. Catalyst (A-E/F/G-X/Y) Temp GHSV x (%) Lwr
© (mL/ (w/w
&ear' D) %)
A Cs Ru_ II\\/IJgI? (32] 400-500 15,000 84-100 5
B HEA — CozsMoy4s — CNFs 400-500 36,000 40-84 7.8
[33]
C CeO, — CoCeAlO, [34] 400-500 30,000 10-65 100
Al O3
D LiNH; [35] 400-500 7200 17-100 100
E CeO, — Ni [36] 400-500 30,000 18-72.4 60
F Ni — CeO, [37] 400-500 13800 14-95 10
(Ar:NH3
=1.3:1)
G Ru — CeO, [37] 400-500 13800 77-100 2
(Ar:NH3
=1.3:1)
H Fe — BTC [38] 400-500 6000 9-73.8 34.7
I Ru — Al,05 [39] 400-500 18000 32-65 4.8
Ni . .7-99. .
J Ell _ CeO, [27] 400-500 15000 49.7-99.2 2.74

is featured with the following contributions: 1) A dual-phase optimiza-
tion architecture combining genetic algorithm-based partitioned search
with surrogate-guided refinement, co-designing component sizing and
catalyst configurations for dynamic operating conditions to achieve
efficient design of ammonia decomposition units in zero-carbon pow-
ertrains; 2) A surrogate-assisted convergence mechanism integrating
adaptive domain partitioning and Bayesian optimization (BO) to pre-
vent premature convergence in non-convex high-dimensional Pareto
optimization, successfully coordinating powertrain parameters and
catalyst composition variables through sequential domain decomposi-
tion and model-assisted merging; 3) A gradient-aware cooperative
optimization protocol that systematically balances decomposition effi-
ciency, material cost, and thermal adaptability through multi-catalyst
synergy.

The remaining sections of this paper are structured as follows. Sec-
tion 2 outlines data preparation and model establishment. Section 3
shows the optimization procedure of the ammonia-hydrogen hybrid
system model. Section 4 presents and discusses the results of the model.
Section 5 summarizes the key findings.

2. System modeling

This section outlines the key process descriptions and fundamental
modeling assumptions that underpin the mathematical model developed
for the on-board hydrogen production device and its integration within
the heavy-duty vehicle powertrain, as shown in Fig. 2. This system in-
tegrates a detailed ADU model, the dynamics model, powertrain com-
ponents model, alongside energy control systems. The powertrain,
utilizing ammonia-hydrogen fuel, operates in pure electric, hybrid, and
regenerative brake modes. The core assumptions made are as follows:

e It is assumed that hydrogen production from the ADU has no inertia,
meaning the production rate instantaneously responds to changes in
operating conditions. Consequently, fuel transport delays and asso-
ciated losses are neglected for simplification of the system’s dynamic
response. Besides, the ADU conversion efficiency is primarily
modeled as a function of two key parameters: operating temperature
and catalyst activity. This captures the most significant factors
influencing the decomposition process.

The energy consumption of the ADU is quantified specifically as the
total thermal energy required for both the endothermic ammonia
decomposition reaction and the necessary preheating of the
ammonia feed. Moreover, the ADU efficiency is precisely defined as
the ratio of the energy content of the produced hydrogen to the
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energy content of the input ammonia, with careful consideration
given to the energy consumed during the decomposition reaction.

e Overall system efficiency is calculated by considering the total en-
ergy input to the powertrain against the mechanical power output
delivered for vehicle propulsion. Further, it is assumed that the
thermal management system effectively utilizes and recovers waste
heat from the engine exhaust to preheat the incoming ammonia feed
before it enters the ADU, maximizing energy integration within the
powertrain.

2.1. Catalyst selection and catalyst cost characterization

The ammonia-hydrogen hybrid system, primarily driven by the ADU,
exhibits a high dependency on the judicious selection of catalysts within
the ADU. In the ammonia decomposition reaction, the existing nitrogen-
hydrogen bonds are broken, enabling the liberated hydrogen atoms to
combine and form hydrogen gas. The process of breaking these nitrogen-
hydrogen bonds necessitates either high temperatures or the presence of
a catalyst to lower the activation energy. Catalysts facilitate this reaction
by utilizing their active sites to attract hydrogen atoms, promoting their
dissociation from nitrogen atoms and subsequent desorption, thereby
allowing free hydrogen atoms to combine and form hydrogen gas. This
decomposition mechanism can be expressed as follows [31]:

NH3(g)—NHs(aq)
NH;(aq)—NH>(aq) + H(aq)
NH»(aq)—~NH(aq) + H(aq) 1
NH(aq)—N(aq) + H(aq)
2N(aq)—N2(aq)

where (g) refers to the gas phase and (aq) refers to the adsorption of
substances on the surface of the catalyst, rather than their original
dissolution in water. At temperatures above 479 °C, the rate-limiting
step for ammonia conversion is the cleavage of the N-H bond, which
occurs in steps 1st~4th. Below this temperature, the limiting step shifts
to nitrogen desorption, as seen in the 5th step.

The performance of these catalysts is reflected in various aspects,
including catalyst stability, economic factors, catalytic efficiency, reac-
tion rates, gas hourly space velocity (GHSV) and energy consumption.
Table 1 lists the catalysts used in the catalytic model for this study.

Table 1 summarizes the ammonia conversion rates and catalyst
preparation costs of various catalysts at low temperatures (400 °C,
450 °C, and 500 °C). The selected catalysts outperform others in terms of
efficiency, cost, or a combination of both. Ru-A1203,Ru-Ce0O2,Fe-BTC,K-
Ru-MgO/CNTs,Cs-Ru-MgO/MIL,Ni-CeO2 exhibit different catalytic ef-
fects depending on the support and co-catalysts used with the primary
metal. Among these, Ru-Al1203,Ru-Ce02,K-Ru-MgO/CNTs,Cs-Ru-MgO/
MIL are based on the most active precious metal, Ru. On the other hand,
Fe-BTC and Ni- CeO2 use Fe and Ni, which are non-precious metals, with
cost-effective supports such as BTC and CeO2 to maintain a strong cat-
alytic activity at a lower cost. For example, Ni/Ru on CeO2 is a good
representative of a low-temperature dual-metal catalyst, showing su-
perior performance at a Ni:Ru molar ratio of 2.5:0.5, where ammonia
conversion is approximately 10 % higher than at other ratios at 400 °C.
In the case of multi-metal catalysts, CoMoFeNiCu high-entropy alloys
(HEA) supported on celluouse nanofibers (CNFs) exhibit the best cata-
lytic performance with a molar ratio of 25:45:10:10:10, as shown in the
data from Joshua et al. Similarly, LINH2 has been identified as a superior
metal amide catalyst for ammonia decomposition, with LINH2 showing
higher conversion rates compared to NaNH2, as reported by Joshua W.
This research includes LiNH2 and its data as a representative of metal
amides, which have the advantage of higher structural controllability
and simpler preparation processes due to the lack of a support or co-
catalyst. The catalyst CeO2-Ni, based on a metal oxide catalyst where
Ni serves as the support and CeO2 as the active component, showcases



H. Zhang et al.

T=400C

T=450C
B T=500C
B Conv=100%

A Cs-Ru-MgO/MIL
B HEA-Co025Mo45-CNFs
C Ce02/A1203-CoCeAlOx

- 80

» L
/
%

588 3
Onia conversion (%)

D LiNH2 Ve - 20
E CeO2-Ni ‘7 X | E
F Ni-CeO2 >4 / ! 3 7 508 £
G Ru-Ce02 o ol K O
H Fe-BTC Ca © 450 \0&
| Ru-Al203 talysy 2
J Ni/Ru-CeO2 Cies 4oo®@<e

i\

Fig. 3. Ammonia conversion rates of various catalysts at 400 °C, 450 °C, and
500 °C. The blue bars indicated the conversion of 100 percent.

the potential of metal oxide catalysts and suggests the possibility of
reconsidering the relationship between the support and the active
component. Graphic introductions for the relationship between
ammonia conversion and temperature in the outlined catalysts are
shown in Fig. 3.

The gas hourly space velocity GHSV defined in Eq. (2) is critical for
understanding the relationship between ammonia flow rate and the
catalyst volume:

GHSV = Vs )

cat

where VNH3 is the ammonia volumetric flow rate (L-min’l), and V4 is
the volume of the catalyst (L). In a catalytic system that uses the same
ADU model, the GHSV is proportional to the ammonia flow rate. Naki-
sa’s research on methane and ethylene shows that GHSV affects both
conversion rates and selectivity, and that well-chosen GHSV results in
the highest conversion rate under fixed other conditions [40]. In Table 1,
the GHSV for each catalyst is set based on the conditions that maintain a
balance between the hydrogen conversion rate and the hydrogen pro-
duction rate. When multiple catalysts are used in combination, the
GHSV must be optimized to maximize the ammonia conversion rate
while maintaining the hydrogen production rate. This is predicted by the
following formula:

SR M XV
— izl TR 3
K7 ©

where vy is the predicted GHSV for the combination of catalysts that
maximizes ammonia conversion, m; is the mass fraction of the i th
catalyst in the mixture, v; is the highest GHSV of the i th catalyst for
ammonia conversion, and W; is the weight fraction of the i th catalyst.
The ammonia conversion rate is defined differently in various
studies. For instance, Xie et al. defined the ammonia conversion rate as
[33]:
:PM % 100% 4
Finne,

where Fipng, and Founm, are the molar flow rates of ammonia entering
and exiting the reactor, in mol NHs/s.
On the other hand, Ilaria et al. used the following formula for the
ammonia conversion rate [38]:
[NH3]in - [NH3]

x= out___ » 100% 5
(1 + NHal ) x [N, < 100% ®

where [NHs];,, and [NH3],, are the concentrations of ammonia at the
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Fig. 4. Visualization of tabular data: (a) Comparison of catalyst conversion rate
under different temperatures with ammonia conversion >80 % at 450C and
500C emphasized; (b) Total cost in RMB per gram of catalyst across various
kinds of catalysts, where the yellow regions represent costs of
active components.

reactor inlet and outlet, respectively.

There are slight differences in measurement methods between these
definitions, such as the use of a Poropak Q column and gas
chromatography-barrier ionization detector (GC-BID) for measuring
hydrogen input and output concentrations in Xie et al.’s study, which is
not detailed in Ilaria et al.’s study. However, as observed in the study by
Yin et al., in the 400-450 °C range, temperature is the primary factor
influencing ammonia conversion, while reaction time has little effect.
Therefore, the differences due to measurement intervals can be
considered negligible. Fig. 4 shows the specific influence of each catalyst
on ammonia conversion at different temperatures and the cost factors.



H. Zhang et al.

Table 2
Costs of catalyst with components.
No. Catalysts (A- Waer Py Wayp Cost Pyt Cost Py
E/F/G-X/Y) (w/w (CNY/ (w/w (CNY/g) (CNY/
%) 2 %) 8eat)
A Cs— Ru— 1.38 9.07 95 1134.83 66.63
Mgo Wpro = (Poro =
MIL 3.62) 1137.8)
B HEA — 7.8 55.54 92.2 33.92 53.85
Coz5Moys —
CNFs
C CeO- _ 100 - 0 13.36 13.36
Al O3
CoCeAlO,
D LiNH, 100 - 0 5.44 5.44
E CeO, — Ni 60 45.13 40 2.39 19.49
F Ni— CeOy 10 2.39 90 45.13 6.66
G Ru— CeO, 2 2.39 98 1134.83 25.04
H Fe— BTC 34.7 10.55 65.3 0.57 7.09
I Ru— AlLO3 4.8 5.78 95.2 1134.83 59.97
J Ni 2.8 2.39 97.2 180.6 7.38
— — CeOy
Ru
Reactor
)|
Electrical
Electrical Heater
housing (x5) Exhaust Heater
i X .
g gas hosing wall
Catalyst
housing
(x3)
Electrical Exhaust
t Heater housing ! gas

NH,
inlet

Catalyst

Fig. 5. Schematic diagram of the internal structure of the ADU

The determinants of the cost metric encompass the unit raw material
cost of individual catalysts, the total cost of composite catalysts derived
from the calculated amounts of each catalyst component, and the
manufacturing costs of other powertrain components. Since the reactor
setup for composite catalysts remains consistent irrespective of the
selected catalyst type, its cost indicator does not influence the compar-
ative evaluation among different catalysts. The total cost of a composite
catalyst is calculated based on the quantity and cost indicator of each
constituent catalyst. Regarding the unit cost of individual catalysts,
direct data is not always available for some, necessitating their calcu-
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lation. The calculation of the catalyst cost per gram is as follows

Ptat:Ppru X Wpra + Pace X Woee +Psup X Vvsup (6)

where Py, Pyct, Psyp represent the cost per gram of the promoter, active
component, and support material, respectively, and Wyro, Wact, Wiyp
represent the mass fractions of the promoter, active component, and
support material in the catalyst. The reference cost indicator of LINH2 is
obtained from Thomas Scientific, and the cost indicator of other mate-
rials are sourced from Sigma Aldrich. Data are retrieved using reagent-
grade materials at the maximum purchase specification cost per gram.
The cost calculations are summarized in Table 2.

For the catalysts K-Ru-MgO/CNTs, Cs-Ru-MgO/MIL, and HEA-
Co25Mo045-CNFs, which are synthesized by the researchers, the cost
calculation is based on the materials used in their preparation, with the
component costs calculated according to their proportions. The material
costs are referenced from Sigma Aldrich. For the MgO/CNT support of K-
Ru-MgO/CNTs, the MgO/MIL support of Cs-Ru-MgO/MIL, the HEA
support, and the CeO02/A1203-CoCeAlOx support and promoter, since
the specific components cannot be directly purchased, the catalyst
preparation cost is calculated using the raw materials specified in the
synthesis methods, considering the molar ratios of each component.

For promoters, active components, or supports composed of more
than one material, the cost per gram is calculated based on the materials
used and their respective mass fractions in the preparation. The mass
fractions are converted from the given molar ratios. The conversion of
mass fractions and the calculation of the cost for the active component
are described as follows:

M; xn;

Wi=
Z?LIMI' X N

@
N
P = PixW

where M; is the molar mass of the i-th element in the active component,
n; is the number of moles of the i-th element in 1 mol of the active
component, P; is the cost per gram of the material corresponding to the
i-th element, and W; is the mass fraction of the i-th element in the active
component.

2.2. Application of ammonia decomposition catalysts in hybrid power
systems

2.2.1. Structure of ADU

The ADU consists of the engine exhaust outlet pipe, a catalytic unit
where ammonia passes through the catalyst, and an external heating
layer. In the ammonia-hydrogen hybrid system, the exhaust gas tem-
perature of the engine is approximately 400 °C, while the temperature
required for low-temperature catalysis may reach up to 500 °C. There-
fore, in addition to heating the exhaust gases, a supplementary heating
layer is necessary to achieve the appropriate catalytic temperature. The
structure of the ADU plays a crucial role in heating efficiency. It must
ensure that the catalyst tube, exhaust pipe and heater are in sufficient
contact to minimize heat loss during the heat transfer process, as illus-
trated in Fig. 5.

The heating layer utilizes electric heating, and working in conjunc-
tion with the exhaust gases, it helps conserve the energy consumption of
the electric heating layer. The catalyst pipeline is divided into five in-
dividual pipes from the main exhaust pipe, with the catalyst evenly
distributed throughout each catalytic tube. These catalytic tubes alter-
nately wrap by electric heaters along the exhaust pipe. Ammonia,
introduced from the ammonia storage tank, is catalytically decomposed
into hydrogen in the ADU, and then mixes with the ammonia that flows
directly out of the ammonia storage tank before being injected into the
injector. After combustion, the exhaust gases flow into the exhaust pipe,
where they again undergo energy conversion to provide the necessary
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Fig. 6. Schematic diagram of the carbon-free hybrid electric powertrain fueled with ammonia and hydrogen, first proposed in the Chinese Patent NO.

71.202111460076.9 by Wang and Zhang et al. [6].

heat for the subsequent ammonia decomposition process.

The division of the catalytic pipes within the ADU not only increases
the heat efficiency of catalytic tubes but also allows various types of
catalysts with different properties to be physically combined, granting
the ADU new characteristics. By independently controlling the flow rate,
temperature, and pressure of each pipe, the ADU can precisely adjust the
reaction environment for each catalyst, ensuring that the catalytic
environment in each tube closely matches the conditions under which
the catalysts exhibit their optimal catalytic efficiency in the laboratory.
The types of catalysts and their respective proportions within each pipe
have a significant impact on the ammonia conversion rate and overall
system cost. These effects are governed by the following formulas:

XADU i X?DU' W/{\DU

tot
i=1

(8)

mADy. 2": (PriCe,?DUVW;&DU)

i=1

Price’PV =

tot

where xPU is the ammonia conversion rate of the catalyst in the i-th
catalytic tube, WAPU is the mass ratio of the catalyst in the i-th catalytic
tube, mAPU is the total mass of the catalysts across all catalytic tubes in
the ADU, and Price/’™” is the cost per gram of the catalyst in the i-th
catalytic tube.

2.2.2. Thermal energy management system

In the heating process of the ADU, the engine coolant preheats the
catalyst within the ADU, whereas the engine exhaust waste heat and
electric heaters further heat the ammonia flow within the catalytic pipes
to the required catalytic temperature. The model simulates the effi-
ciency, cost, and operating conditions of different catalyst combinations.
The efficiency of the system is determined by the energy required for
physical and chemical heating, the hydrogen consumption rate, and the
ammonia conversion rate. The energy required for physical and chem-
ical heating is calculated by the following formulas:

QPhysical = Csteel >< 1000 >< AT ©)

Qchemical = AH x my,

where Qpnysicat Tepresents the energy required for physical heating of the
ADU, AT is the temperature change required for physical heating, and
Cseer is the specific heat capacity of the steel used in the catalytic pipe.
Qchemical Tepresents the energy required for the chemical reaction to
convert ammonia into hydrogen, where AH is the enthalpy change and
my, is the mass of hydrogen produced. Thus, the total energy required to
heat the ADU can be expressed as

19 ADU = Qphysical + Qchemical (10)

The efficiency of the ADU system, based on energy consumption, is
calculated as follows:
my, X LHVy,
Myy, X LHVNg, + Papy

Effapu = a1

where LHVy, is the lower heating value (LHV) of hydrogen, representing
the heat released during hydrogen combustion, and LHVyy, is the LHV
of ammonia.

In the energy conversion process of the ammonia-hydrogen engine,
combustion of ammonia and hydrogen converts chemical energy into
mechanical energy to drive the crankshaft, which is further converted by
the generator into electrical energy for battery charging, vehicle pro-
pulsion, and heating the ADU. The combustion reactions for ammonia
and hydrogen in the engine are:

NH; + 0.75(05 + 3.76N,)—1.5H,0 + 3.32N, 12)
Hy + 0.5(0; + 3.76N,)~H,0 + 1.88N,
The LHV of the mixed fuel is calculated as:
LHY, . — LHVans + e LHVs,
1+an,
P 13)
T = Gy
PNH;

The engine waste heat, engine power, heat generated during com-
bustion, and heat removed by exhaust are governed by the energy
conservation equation:

unl

rea
MyceCice dt E g —

Picg — Qfég a4

Thus, the heat that still needs to be supplied by the electric heater,
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Table 3
Vehicle technical specifications.

Vehicle parameters Value and unit

Gross weight my, 49,000 kg

Wheel radius r 0.512m

Rolling resistance f 0.012

Air resistance coefiicient Cp 0.65

Frontal area Ay 9.45m?

Gravitational acceleration g 9.80 m-s2

Transmission mechanical 0.94
efficiency 7,

Fianl drive ratio iy 4.3

AMT gear ratio ig 15.53/12.8/9.39/7.33/5.73/4.46/3.48/2.71/

2.1/1.64/1.28/1

considering the waste heat from the engine, is expressed by:

m
Qglec = Papy — Q?ég = (Csteel X % x AT + AH x mH2>
chool
- (E;EH — Picg — MyceCrce dIEE ) (15)

2.2.3. Ammonia-hydrogen hybrid powertrain system model

The catalyst optimization model developed in this paper focuses on
its application in the driving environment of electric heavy-duty com-
mercial trucks. The ammonia-hydrogen fuel, in cooperation with the
electric motor, develops operation modes for the power system,
including: pure electric mode, engine hybrid mode, and braking recov-
ery. In pure electric mode, the power required for vehicle operation is
entirely supplied by the generator, while the generator also provides
electric heating for the ADU to supply the heat necessary for ammonia
decomposition, allowing the vehicle to switch to the engine hybrid mode
that combines ammonia-hydrogen fuel with the battery at any time. The
schematic of the zero-carbon hybrid powertrain of the electric vehicle is
shown in Fig. 6. Moreover, vehicle technical parameters are shown in
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Table 3,where myg, refers to the gross weight of vehicle, g refers to the
local gravitational acceleration, f refers to the rolling resistance, Cp re-
fers to the air resistance coefficient and Ay refers to the vehicle frontal
area. r and i denote the wheel radius and the main reducer speed ratio,
respectively. a is road slope, p is air density, and v is velocity. & refers to
the conversion coefficient of the rotating mass.

Table 4
Mass of vehicle components.

Parameters Value and units
Engine mass JXE 1.18P7%x kg
Generator mass J$EV 1.32P7% kg
Motor mass JoM 1.32P0a kg
Battery mass J5% 13.6Qpqe kg

Table 5

Definition of the multi-objective optimization problem.
Parameter Definition
Objective functions min[fy, f>]

Driving cycle
Variables to be optimized

Standard driving cycle

150 kKW < Pex < 300 kW
350 kKW < P12 < 550 kW

10 kWh < Epy, < 40 kWh

Pt e [A~J],i = LILILIV,V
0<pi<1,i=LILILIV,V
PE P+ P+ PR+ P =1
Pgin = Preg

Pt < Preg < PR

PRI < Popy < PRE

PR < Ppm < PR

Pt < Ppar < P

SOCpin < SOC < SOCpax

Constraints

W Hydrogen production unit
Liquid NH,
) Exhaust
Main Model
l Training Data
b 4 Powertrain optimizer

Evaluation
of Carbon-
free vehicle

Powertrain optimizer

Distributed genetic Bayesian optimization

algorithm forms the >
starting dataset

for global pareto
optimal solution

Design Parameter I

ICE
design

Control l

ADU l
design design

E-drive

Predicted Output (Approximate Performance)

Surrogate
Model with
Gaussian
Process

GP Model

Training &
Refinement

Fig. 7. Schematic diagram of surrogate-enhanced partitioned optimization for carbon-free heavy-duty vehicles: (a) Partitioned NSGA-III optimization with surrogate
co-training: Global exploration phase, including a crossover pool; (b) Cross-region surrogate transfer and Bayesian refinement: Local exploitation phase; (c)
Methodology flowchart: Overall framework for ADU design and powertrain optimization.. (Full definitions of abbreviations can be found in the main text.)
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Table 6
Trade-off solutions of the best stretegy in the 60th generation.

Parameters Trade-off (60th)
Pix (kW) 307.26

Ppax (kW) 432.48

Epee (KWh) 63.49

pi® type vector () [D,E,E,E,G]

pgat proportion vector (%) [20.34,19.70,19.71,19.71,20.54]

In the model, the power demand Py, for the vehicle under full load
and the power supplied by the generator Ppy are calculated using the
following equations:

Paem = (Prceflgen + Poat — Pawe)pmtly

t 16
Py =K (Vg — V) + K2 / (Vreg — v)dt (16)
0

where Py and Py, refer to the power of battery and auxiliary devices,
respectively. #1py, and 7, denote the efficiency of drive motor and final

Combinations (-)
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drive respectively.
The power from the generator that is used to drive the electric heater

to heat the ADU is denoted by d%fk, with the remainder used for vehicle

propulsion power, P‘j{;. Therefore, the power supplied by the generator

to drive the vehicle P4

ele?

the power provided by the combustion of mixed
fuel in the engine to propel the vehicle Pz and the total power P

to

provided by the ammonia-hydrogen hybrid system are calculated by the
following formulas:

dQg
Pee =Pow = =4
_ wiceTice 17
&~ "9550
Pt = P + Prex

In pure electric mode, the vehicle’s power is entirely supplied by the
generator. Part of the generator’s power is used to heat the ADU, while
most of the power is used to propel the vehicle. In hybrid engine mode,
vehicle power is supplied jointly by the engine and the generator, and
some of the generator power is used to maintain the temperature of the
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Fig. 9. Gradients of the 10 selected combinations.
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ADU.

3. Surrogate-enhanced multi-objective optimization of
powertrain

This paper proposes a dual-phase optimization framework that
combines partitioned NSGA-III exploration with BO refinement. The
feasible region is first divided into subregions, each optimized inde-
pendently using NSGA-III to generate local Pareto fronts and training
data for surrogate models. Adjacent subregions with boundary solution
clustering are then merged, and BO refines the combined Pareto front
using Gaussian process (GP) surrogates. The process iterates until
convergence, achieving a globally optimal Pareto set while balancing
exploration and exploitation. This approach effectively addresses high-
dimensional, nonconvex optimization challenges in ammonia-
hydrogen hybrid powertrain design.

The use of surrogate model is essential in the optimization process.
While the mathematical model simplifies key interactions, it remains too
computationally intensive for full multi-objective optimization. GP, as
the core of BO, offers theoretical strengths for continuously validating its
role as an surrogate model for costly physical models. GP defines a

11
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function distribution via mean and covariance, and is updated using
Bayesian inference when new high-fidelity data is available. This yields
both predictive means and variances, quantifying uncertainty. Through
hyperparameter tuning, the covariance captures system patterns, while
BO’s acquisition function leverages both predictions to strategically
sample regions with high uncertainty or potential gain. This focused
data acquisition reduces uncertainty where optimal solutions are likely,
allowing GP to self-validate dynamically. As predictive uncertainty
drops and GP predictions converge with physical model outputs, the
surrogate model’s fidelity and optimization guidance are con-
firmed—ensuring the Pareto front achieves both theoretical optimality
and engineering feasibility.

3.1. Problem formation

In this work, the objective functions for component sizing optimi-
zation are defined as system energy efficiency (f;) and system cost (f2).
Let x € RN denotes the decision variables of the system under optimi-
zation, and let F(x) = [f1(x),....fx(x)] represents the vector of K = 2
conflicting objective functions to be minimized. The optimization
problem is formalized as follows, where SCRN represents the feasible
region.

minF(x) = [f1(x), ..., fx(x)], subject to x € S, (18)
X
The goal is to identify the Pareto-optimal set X', such that no
objective function can be improved without worsening at least one other
objective. A solution x” € S is Pareto-optimal if:

AxeS: F(x) < F(x"), 19
where F(x) < F(x") implies F(x) dominates F(x") in all objectives. For
two solutions x; and x,, x; dominates x5 if:

fiba) <filar)

Given the high-dimensional nature of the decision space and the
nonconvexity of the objectives, direct global search can be computa-
tionally expensive. To overcome this, we propose a dual-phase optimi-
zation approach for the design of the ADU for ammonia-hydrogen
hybrid vehicle, which is depicted as shown in Fig. 7. In this figure, the
main model detailed in Section 2 functions as a high-fidelity physical
representation of the powertrain. This model serves as the external
evaluation environment, interacting iteratively with the optimizer. The
surrogate-enhanced optimizer proposes a set of design and control pa-
rameters for the physical model’s components in each iteration. The
main model then executes a comprehensive simulation run under these
assigned parameters, typically across various driving cycles, and outputs
the resulting vehicle performance metrics to the optimizer. Initially, the
global exploration phase, depicted in Fig. 7 (a), employs a partitioned
NSGA-III to systematically explore the design space. Within this phase,
population diversity and exploration are enhanced through a crossover
pool that utilizes four distinct operators: simulation binary crossover
(SBQ), shuffle crossover (SC), multi-point crossover (MC), and uniform
crossover (UC). Promising solutions identified during this exploration,
forming local Pareto Optimal (LPO) frontiers, are then transferred to the
subsequent refinement stage. Fig. 7 (b) outlines the local exploitation
phase, where Bayesian optimization refines these solutions. Gaussian
Process surrogate models are trained using the collected data, and an
acquisition function intelligently guides the search for new, highly
beneficial design points. This iterative process drives the optimization
towards global Pareto optimal (GPO) from the local Pareto optimal
(LPO). Finally, Fig. 7 (c) presents the overarching methodology flow-
chart, integrating the ADU design and component sizing within the
powertrain configuration. This holistic view demonstrates how the ge-
netic exploration and Bayesian refinement work in synergy to enable a
dynamic evaluation of the ammonia-hydrogen heavy-duty vehicle.

Vi=1,2,...,K and 3Fj:fi(x1) < fi(x1). (20)
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(f) Acceleration against velocity of practical driving cycle.

3.2. Partitioned NSGA-III optimization with surrogate preparation

The optimization framework shown in Fig. 7 establishes a synergistic
relationship between a high-fidelity physical model, a hybrid NSGA-III/
BO optimizer, and a Gaussian process surrogate model. The core process
is as follows: the optimizer generates candidate solutions, which are
then accurately evaluated by the computationally expensive physical
model. These evaluation results are used to train the surrogate model.

The surrogate model’s key role is to provide rapid performance es-
timates, which guide the optimization search efficiently while signifi-
cantly reducing computational costs. This closed-loop interaction
ensures that while the search is guided by the fast surrogate, all critical
solutions are validated by the accurate physical model, guaranteeing the
final results are implementable. This creates a self-reinforcing cycle:
evaluation data from the physical model continuously improves the
surrogate’s accuracy, and a more accurate surrogate, in turn, enables a
more effective search by the optimizer.

The partitioned optimization process integrates data generation for
surrogate modeling as an intrinsic component of the NSGA-III evolution.
To enable efficient search, we partition the feasible region SC R into i
non-overlapping subregions S7,Ss, ..., S; such that:

{s = Usj,sjﬂsk = oV, £k,
j=1

Sj={xeR¥|q < x < b;}.

(21)

where each subregion S; is defined by lower and upper bounds for the
decision variables, and a;, b; € RN are the bounds for the j-th subregion.
The optimization process begins by dividing the high-dimensional
design space into a set of predefined subregions S; through uniform
grid partitioning. This involves segmenting each design variable’s range
into a specified number of equal intervals, thereby creating a grid of
subregions that systematically covers the entire search space. Within
each of these defined subregions, the NSGA-III algorithm is then applied

12

to generate and evolve populations, identifying Pareto-optimal solutions
specific to that segment of the design space. Following this initial seg-
mentation and exploration, an adaptive merging strategy, as detailed in
Fig. 7, dynamically adjusts and combines these subregions. This merging
mechanism, driven by the covariance of the Gaussian process surrogate
models, allows for flexible redefinition of subregion boundaries based on
the need for improved model accuracy and a more comprehensive rep-
resentation of the overall solution landscape, particularly in promising
areas. In each subregion S;, a population P; is first initialized with in-
dividuals x € P; uniformly sampled from the subregion. The objective
vector F(x) = [fi(x),...,fx(x)] for each individual is then evaluated.
Subsequently, the individuals are ranked based on Pareto dominance
using non-dominated sorting, where a solution x; dominates another x;
if f1(x) < fx(x) forall4; =1,2,...,K,and 3J; : fj(x1) < fj(x2). This process
forms successive Pareto fronts, with the first front containing the non-
dominated solutions, followed by subsequent fronts.

To maintain diversity, NSGA-III assigns each solution to a predefined
reference point Z, € RK in the objective space. For each individual, the
perpendicular distance to the nearest reference point is calculated as
follows

F(x)-Z,
minl (%)-Z:|

Lakar e d 22
Z |Z] (22)

ensuring that solutions are distributed uniformly along the Pareto
front. Standard genetic operators, including simulated binary crossover
(SBX) and polynomial mutation, are employed to produce offspring,
promoting the exploration of new regions within the decision space.
Over multiple generations, the population evolves towards a well-
distributed Pareto front. Finally, after the termination criteria are met,
the non-dominated set P; is extracted as the Pareto-optimal solutions for
the subregion S;.

In the meantime, the optimization process in each subregion S;

generates a dataset Dj = {(x(i)7F (x("))‘x(") € P;)} of non-dominated
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Fig. 14. Powertrain operation characteristics of the system under CHTC driving conditions.

solutions, which will be used to train surrogate models in the refinement
phase. The accumulation continues until the solution density in S; sat-
isfies:

7
vol(S;)

(23)

> Prmin (pmm :(de)

where vol(S;) is the hypervolume of Sj, and ¢ is a coefficient adjusting
the stop threshold, also, Ny refers to the dimension count.
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3.3. Cross-region surrogate transfer and Bayesian refinement

The transition from global exploration to local refinement is gov-
erned by an adaptive data-driven mechanism. The refinement phase
initiates by constructing GP surrogate models using the datasets D;
accumulated during NSGA-III optimization. A pivotal advantage is its
ability to quantify prediction uncertainty, which is fundamental for
efficiently guiding BO through balancing exploration and exploitation in
high-dimensional spaces. Furthermore, GPs offer inherent flexibility for
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Fig. 15. Comparison of energy consumption and WTW CO2 emissions of different algorithms in the same driving cycle, (a) the standard cycle combined of CHTC and

CWTVC, (b) the practice cycle of RD.

Table 7
Analysis of corrected energy consumption and WTW CO2 emission for different
propulsion systems.

Driving cycle Optimization Energy consumption =~ WTW CO2 emission
) (MJ/km) (kg CO2-eq/km)
Standard Hybrid 604.08 25.49
driving cycle NSGA-III 622.79 26.28
BO 625.52 26.39
Real Driving Hybrid 1184.21 49.97
Test Cycle NSGA-III 1209.31 51.03
BO 1228.54 51.84
Effici Best
iciency
of ADU (%) = po
NSGA
Cost Efficiency

of ADU (CNY) of System (%)

Fig. 16. Comparison of algorithms in system performance and cost.

capturing complex non-linear relationships and are data-efficient. This
surrogate-assisted strategy enables the identification of promising
adjacent subregions through solution space connectivity analysis. Spe-
cifically, neighboring subregions that exhibit solution clustering near
their mutual boundaries are merged to form extended search spaces.
Within these unified regions, BO initiates local refinement by strategi-
cally sampling points that simultaneously maximize the expected
improvement (EI) acquisition function across all merged objectives,
effectively bridging the gap between discrete Pareto fronts from separate
subregions while preventing premature convergence. For each pair of
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adjacent subregions S; and Sj,, their respective Pareto-optimal sets P;

and P}, ; are merged:
i1

Funs= U (7LF1).

j=1

(24)

The merged Pareto set represents the combined non-dominated so-
lutions near the boundaries of adjacent subregions. By merging adjacent
Pareto fronts, we ensure that global interactions between neighboring
regions are captured, leading to a more comprehensive search of the
global Pareto front.

To enhance the quality of the merged Pareto fronts, BO is employed
for global refinement. BO is particularly suited for expensive black-box
optimization problems, leveraging a probabilistic surrogate model to
balance exploration of the search space and exploitation of promising
regions. The refinement process begins with constructing a GP surrogate
model for each objective function using the dataset of solutions from the
merged Pareto set, D = {(x1, F(x1)), ..., (Xn, F(xn))}. The GP model is
defined as

fix) ~ Z2(uy(x), kilx, %)), (25)
where y;(x) represents the mean function, and k;(x,x’) is the covariance
function. A commonly used kernel for the covariance function is the
squared exponential kernel:

/ 1 ,
ki(x7x):0i2 exp<_ﬁ|x_x|2)v (26)

where [; denotes the characteristic length scale, and 62 represents the
signal variance of the objective f;(x).

The next evaluation point is determined by optimizing an acquisition
function a,, which guides the selection by balancing exploration and
exploitation. The expected improvement is a widely used acquisition
function, defined as:

EI(x) = Emax(0, fyes — £())] (27)

where fi.s is the best objective value observed so far, and f(x) is the
predicted mean from the GP model. The next evaluation point Xpey iS
obtained by maximizing the acquisition function:

Xnext = ArGMaAX Ay, (28)
xeS

The BO process iteratively updates the GP model with the new

evaluations, refining the solutions at each step. This iterative process

continues until convergence, which is defined when the maximum
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acquisition value satisfies the following

mflxa(x) < e(max(F) — min(F)) (29)
where ¢ is the relative convergence threshold, which ranges from 0 to 1.
In addition, max(F) and min(F) are the maximum and minimum
observed values of the objective functions, respectively.

During BO iterations, the GP models are continuously refined by
incorporating newly evaluated points (Xpew,F(Xnew)) into the training
dataset:

Dj « D;j U { (Xnew, F(Xnew)) }, (30
which ensures that the surrogates progressively improve their accuracy
in promising regions.

3.4. Settings of optimization variables

In this work, since PZiy needs to match the engine requirement,
which can be determined as a function of Pi§. Therefore, the decision
variables x include eight parameters related to the powertrain compo-
nents that to be optimized, including p{*, pff", pfi', P’ P5"s PicE> Pror
and Epg,.

Here, p{®, p, piit, psot and p* refer to the proportion of the selected
catalysts for the five catalyst pipes. It should be noted that the selection
of catalyst type for each pipe could be the same. E,, is the battery ca-
pacity in kWh. In the collaborative optimization process, it should be
noted that the engine operates along the optimal operating line for
simplicity.

The objective associated with system cost (f2) is calculated based on
ICE| fGEN (DM ghat

the summation of the components cost denoted by f;

and ffPY. The detailed parameters for calculating component cost of the
engine, generator, motor, and battery are summarized in Table 4, and
the calculation of the ADU cost with different catalyst design has been
explained in Section II.

Table 5 outlines the multi-objective optimization framework,
including specifics on the objective functions, variable ranges, and
constraints. For powertrain optimization, this study employs a stan-
dardized driving cycle that integrates the China heavy-duty commercial
vehicle test cycle (CHTC) with the Chinese-world transient vehicle cycle
(CWTVOQ).

4. Results and discussions
4.1. Catalyst combination and Pareto surface optimization

The Pareto analysis-based optimization selects the combinations of
catalysts for multi-objective optimization. The results of the modulation
will be illustrated as follows: generations of distributions of the Pareto-
based optimization, components of the selected catalyst combinations,
performances of the selected catalyst combinations, and converging
quality of Pareto throughout the generations. The analysis was
employed to evaluate over 100 catalyst species and proportion combi-
nations, which were initially selected from a larger set. These combi-
nations underwent iterative optimization over successive generations
with the goal of improving efficiency and reducing costs. The repre-
sentative outcomes of this evolutionary optimization process are
depicted in Fig. 8.

Table 6 demonstrates the most preferred combinations selected by
the 60th generation of the best algorithm. In the 60th generation, the 10
coordinates closest to the Pareto surface were selected. The selected
combination in Table 6 is the second among the 10 coordinates. The
proportions of the five constituent species were analyzed and the two
species with the lowest proportions were removed. The remaining per-
centage was then evenly redistributed among the three retained species.
The proportion of eliminated species is illustrated in Fig. 9.
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Fig. 10 displays the selected combinations under the optimal algo-
rithm. The three graphs highlight different factors that influence these
combinations. The higher the bars, the better the combinations. The left
graph emphasizes cost, the center graph focuses on temperature, and the
right graph highlights system efficiency. Convergence was assessed
using the inverted generational distance (IGD) metric, as shown in
Fig. 11 (a). The IGD value decreased rapidly from 0.0461 in the first
generation to approximately 0.001 in the 60th generation, with the rate
of decline slowing progressively over time. The best-performing algo-
rithm achieved a minimum IGD of 0.000746. Beyond the 60th genera-
tion, no significant reduction in IGD was observed across any algorithm,
indicating that further iterations would yield negligible improvement.
Prior to the 17th generation, NSGA-BO required significantly more
iteration time. However, upon conclusion of the NSGA exploration
phase at the 17th generation, the computational time per generation for
NSGA-BO exhibited a marked inflection point. The total computational
time of NSGA-BO also fell below that of pure NSGA by approximately the
20th generation. Consequently, in achieving the best-performing algo-
rithm of the 60th generation, NSGA-BO demonstrates clear advantages
in time efficiency.

Furthermore, Fig. 11 (b) and Fig. 11 (c) illustrate the performance of
the surrogate model. The scatter plot shows the relationship between the
surrogate model outputs and the corresponding high-fidelity model
outputs. The 45-degree line indicates perfect agreement between the
two models, while the two red dashed lines represent a +10 % error
margin. It can be observed that the surrogate model outputs closely
follow those of the high-fidelity model, with most data points falling
within the £10 % error range. The overall accuracy of the surrogate
model is quantified by the R? value, which is 0.9774. The histogram
depicts the distribution of errors between the surrogate and high-fidelity
model outputs. The errors are centered around zero and show a rela-
tively narrow spread in both directions, indicating that the surrogate
model meets the required accuracy for the task. This work strategically
terminated the optimization at the 60th generation as shown in Fig. 8
though the three algorithms may not have fully converged. By this point,
the models’ convergence rate have slowed significantly, and perfor-
mance metrics IGD shown in Fig. 11 (a) confirmed our proposed NSGA-
BO framework had already achieved a high-quality Pareto front. The
primary objective was to demonstrate that our integrated NSGA-BO
approach achieves superior solutions more rapidly than standalone
methods. Continuing the optimization would have diminished the
observable performance differences between algorithms, obscuring our
method’s core contribution. Thus, the results at 60 generations effec-
tively showcase the framework’s enhanced efficiency in achieving sub-
stantial progress in fewer generations.

To validate the robustness of our molecular dynamics model, sensi-
tivity analysis is performed on the key parameters of system efficiency
and ADU cost. Analysis for ADU efficiency is omitted as it should have
similar sensitivity with system efficiency. 8 variables are considered in
the examination for system efficiency: p§*, p&, p&, p&, p, Picg, Ppu,
and Ejq. The results are shown in Fig. 12 (a). When each variable serves
as the independent variable, it varies by + 15 %. When acting as control
variables, Picg, Ppy and Ep, maintained within a fluctuation range of

+2 %, +£3 % and +5 % respectively. Catalysts ratio are considered in

ADU cost sensitivity analysis as shown in Fig. 12 (b). Notably, p¢*
contributes the highest effection on both system efficiency and ADU
cost, suggesting the need for strict control in simulations. The significant
influence of p§ on the key parameters may stem from its consistently
high prevalence across various catalyst combinations. These results
confirm that our conclusions on grain boundary strengthening are
insensitive to reasonable parameter variations.

The selected optimal catalyst combinations were applied to the ADU
and powertrain model under various driving cycles, shown in Fig. 13.
Three optimization algorithms were employed to refine vehicle pa-
rameters for multi-objective system optimization: BO, NSGA-III, and a
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hybrid BO-NSGA-III approach. The hybrid method leveraged BO for
local refinement and NSGA-III for global exploration, outperforming
standalone algorithms in multi-aspect evaluations. Finally, Pareto-based
multi-objective optimization was integrated with the hybrid strategy to
identify catalyst combinations and proportions that best aligned with
the target objectives.

Simulations were conducted using detailed engine, generator, motor,
and battery parameters from Table 6, across three driving cycles: CHTC,
CWTVC, and real driving (RD) test cycle. These cycles, along with
acceleration-time profiles and acceleration-velocity gradients, are
plotted in Fig. 13. The CHTC and CWTVC cycles are standardized for
heavy-duty commercial vehicles and exclude real-world variables such
as environmental conditions and driver behavior, which are incorpo-
rated into the RD cycle.

4.2. Comparison of Bayesian optimization and performance of NSGA-IIT

The dynamic performance analysis was performed on three optimi-
zation strategies, as shown in Fig. 14. BO demonstrated lower battery
power consumption during driving cycles and achieved performance
comparable to NSGA-III in engine power, SOC, ADU temperature, and
energy cost. However, the hybrid BO-NSGA-III strategy outperformed
both standalone methods, showing significant improvements in the ADU
efficiency. Furthermore, the numerical information of accumulated en-
ergy consumption corresponding to Fig. 14, and the well-to-wheel
(WTW) CO2 emission amount corresponding to Fig. 15 are summa-
rized in Table 7.

To evaluate and compare algorithm performance, four metrics were
analyzed: accumulated energy consumption (MJ), normalized energy
consumption (%), ammonia consumption (kg), and well-to-wheel
(WTW) CO2 emissions (kg). The total energy consumption values for
the Best, NSGA-IIL, and BO algorithms were 604.08 MJ, 622.80 MJ, and
625.52 MJ, respectively. The normalized percentages of energy con-
sumption were calculated by dividing the energy consumption of each
algorithm by the total. Although BO and NSGA-III exhibited similar
trends, the hybrid algorithm consistently demonstrated lower energy
consumption throughout the timeframe, as shown in Fig. 15(a). This
advantage becomes more pronounced in Fig. 15(b), where the finer y-
axis scale reveals subtle yet significant differences in trends.

A comprehensive comparison of efficiency and cost for the ADU and
powertrain system is summarized in Fig. 16. The hybrid optimization
algorithm achieved the highest efficiency: 31.24 % for the powertrain
system and 76 % for the ADU, along with the lowest cost of 1810 CNY for
the ADU. In terms of the standalone methods, NSGA-III marginally
outperformed BO in both efficiency and cost metrics.

5. Conclusions

This study addresses the critical challenge of optimizing ammonia
decomposition catalysts for hydrogen production in carbon-free heavy-
duty vehicles with the goal of balancing energy efficiency and system
cost. The research focuses on identifying the optimal catalyst combi-
nations and compositions to maximize ammonia conversion rates under
lower temperature conditions, while minimizing preparation costs,
thereby advancing the feasibility of ammonia-hydrogen hybrid power-
trains. The key contributions of this study include:

e A dual-phase framework is proposed that combines genetic
algorithm-based partitioned search with surrogate-guided refine-
ment. This approach jointly explores component sizing and catalyst
configurations, enabling efficient design of ammonia decomposition
device for carbon-free powertrains under real-world dynamic
operations.

e The proposed surrogate-assisted optimization integrates adaptive
domain partitioning with Bayesian refinement, which eliminates
premature convergence in nonconvex high-dimensional Pareto
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optimization and successfully coordinates powertrain parameters
with catalyst composition variables through sequential domain
decomposition and model-assisted merging.

e A dynamic simulation model is proposed that links catalyst proper-
ties with hybrid powertrains in real-world operation scenarios. The
results validate the adaptability of the optimized catalyst combina-
tions across driving cycles, with the proposed surrogate-enhanced
dual-phase optimization strategy reducing energy consumption by
3.5 % compared with conventional NGSA-III and BO methods, and
achieving 31.24 % powertrain efficiency and 76 % ADU efficiency
with minimized system costs.
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