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ABSTRACT This study proposes an unsupervised deep learning-based (DL-based) approach to precoding
design for integrated sensing and communication (ISAC) systems. Designing a dynamic precoder
that can adjust the trade-off between the sensing performance and communication capacity for ISAC
systems is typically highly compute-intensive owing to requiring solving non-convex problems. Such
complex precoders cannot be efficiently implemented on hardware to operate in highly dynamic wireless
environments where channel conditions rapidly vary. Accordingly, we propose an unsupervised DL-based
precoder design strategy that does not require a data set of the optimum precoders for training. The
proposed DL-based precoder can also adapt the trade-off between the communication sum rate and sensing
accuracy depending on the required communication and/or sensing performance. It offers a low-complexity
precoder design compared to conventional precoder design approaches that require iterative algorithms
and computationally intensive matrix operations. To further reduce the memory usage and computational
complexity of the proposed precoding solution, we have also explored weight quantization and pruning
techniques. The results have shown that a quantized and pruned deep neural network (DNN) can achieve
96% of the sum rate achieved by the full DNN while its memory and computational requirements are
less than 17% of the full DNN.

INDEX TERMS 6G wireless networks, beamforming design, integrated sensing and communication,
unsupervised deep learning.

I. INTRODUCTION

INTEGRATED sensing and communication (ISAC) is
seen as one of the game-changer technologies for

the sixth generation (6G) and beyond communication
networks [1], [2], [3]. Future communication networks are
expected to support a wide range of applications, such
as smart vehicles or robotics that, in addition to reliable
communication links, also need accurate sensing information
of the environment to seamlessly perform their functions [4].
Moreover, sensing information can also assist the com-
munication systems in enabling highly accurate channel
estimation, rapid initial connectivity, fast beamforming,
and more secure links in communication networks [5].

Accordingly, ISAC is expected to be an essential part of
future wireless networks.
One of the major challenges in ISAC systems is to

generate the optimum dual-function waveform that provides
the desired trade-off between communication capacity and
sensing accuracy. This is because the computation of the
optimum waveforms typically requires solving non-convex
and NP-hard optimization problems, which may not be
feasible within the limited computational, memory, and time
resources of the base station (BS) and user devices (UEs).
Therefore, some algorithms have been recently proposed
for designing sub-optimal ISAC waveforms [6], [7], [8],
[9], [10], [11], [12], [13], [14]. For instance, [6] proposes
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low-complexity algorithms to generate waveforms for max-
imizing the sum rate and energy efficiency by utilizing the
interference in massive multiple-input and multiple-output
(MIMO) ISAC systems. The semidefinite relaxation (SDR)
technique is widely utilized to solve non-convex optimization
problems at the expense of sub-optimal transmit beamform-
ers [7], [8]. Moreover, various algorithms for joint transmit
and receive beamformer design under self-interference were
proposed in [9], [10]. Another study [12] proposes a hybrid
beamforming design based on iteratively optimizing the
transmit beam and the phase vector for millimeter-wave
MIMO ISAC. Joint communication and sensing with full-
duplex operation are also considered in [15], [16], and joint
beamforming and power optimization for full-duplex are also
studied in [16]. Liu et al. proposed an approach to design
ISAC waveforms by optimizing the CRLB of sensing under
certain communication sum rate constraints [14]. The studies
mentioned above primarily propose iterative algorithms to
design sub-optimal ISAC waveforms to avoid solving non-
convex optimization problems.
However, even sub-optimum solutions of ISAC waveform

design require high computational complexity and memory
usage due to employing iterative methods and involving
multiple compute-intensive matrix operations such as matrix
inversion and multiplication [17]. These operations may need
to be concurrently executed in orthogonal frequency division
multiplexing (OFDM) systems that employ distinct sub-
band precoders in a single communication-sensing waveform
frame. Moreover, practical ISAC systems will need to con-
sider the trade-off between communication and sensing since
sensing accuracy and communication data rate performance
requirements can vary depending on the scenario and channel
conditions. Introducing a trade-off parameter between the
sensing and communication performances will increase
computational complexity such that the optimum waveform
needs to be computed dynamically as the trade-off parameter
is changed.
Deep neural networks (DNNs) have been shown to

satisfactorily approximate linear or nonlinear continuous
functions [18], [19]. Thus, DNNs have been recently con-
sidered to solve computationally expensive optimization
problems encountered in many fields, including wireless
communication systems [17], [20], [21], [22]. Deep learning
solutions are especially appealing since efficient neural
network accelerators are already included in recent central
processing units (CPUs), even in the CPUs of resource-
constrained edge devices and mobile phones [23]. Deep
learning techniques are generally organized under two main
categories: Supervised and unsupervised learning techniques.
While both can be used for solving physical-layer problems
in wireless systems, unsupervised deep learning is desirable
for waveform and precoder design problems as it does
not require the optimum solution data set (labeled data)
for training [24], [25]. On the other hand, supervised deep
learning methods require a large training data set containing
the optimum solutions. Acquiring such a large data set

containing optimum ISAC precoders may not always be
possible due to the need to collect and classify measurement
or simulation data in a wide variety of ISAC setups.
Unsupervised learning has the potential to achieve higher

sum rate performance compared to supervised learning for
beamformer design tasks. This has been shown in [26],
where a deep neural network (DNN) was first trained
via supervised learning, and then the same DNN was
retrained via unsupervised learning. Another study in [27]
proposed an unsupervised DL-based beamformer design
for an analog-digital hybrid massive MIMO transmitter
architecture. Their proposed beamformers achieved a near-
optimum performance with low complexity without having
access to full CSI. Unsupervised deep learning has also been
utilized to design decentralized beamformers for cell-free
massive MIMO networks [28], delivering a near-optimum
capacity (i.e., slightly lower than that of centralized ZF).
Unsupervised machine learning has also employed for
CSI feedback in massive MIMO systems [29], for joint
antenna selection and beamforming [30], for power control
in cell-free massive MIMO systems [31], or for efficient
and low-complexity symbol level precoding in MIMO
systems [32], among others.

DL-based techniques have also been considered for inte-
grated sensing and communications. A recent study proposed
a distributed unsupervised learning method for power alloca-
tion and interference management in integrated sensing and
communication networks [33]. Another study utilized unsu-
pervised deep learning and long short-term memory (LSTM)
networks for predictive beamforming for vehicular integrated
sensing and communication networks [34]. Researchers
in [35] propose an end-to-end DL-based design that jointly
optimizes the transmitter and receiver with semi-supervised
learning. Moreover, Sankar et al. propose an unsupervised
learning-based precoder design that aims to maximize the
worst-case target illumination while guaranteeing a desired
SNR for the users [36].
Unlike the previous ISAC precoder design studies, where

non-convex optimization libraries or iterative numerical
methods were used, we propose a lightweight ISAC wave-
form design method based on unsupervised deep learning in
this study. Moreover, depending on the system requirements,
the proposed solution enables a swift adjustment of the trade-
off between sensing accuracy and communication capacity.
The proposed method can be efficiently implemented on
a neural network hardware accelerator. Hardware imple-
mentation of ISAC techniques and performing experimental
measurements are essential to demonstrate the real-time
performance of ISAC techniques and trade-offs between
communication sum rate and sensing accuracy [37], [38],
[39], [40].
Against the above background, the contributions of this

paper are:

• We propose an unsupervised DL-based ISAC precoder
design for multi-user, multi-target ISAC networks where

3544 VOLUME 6, 2025



the BS communicates with multiple UEs while per-
forming sensing of targets with multiple beams. The
proposed unsupervised DL-based model can swiftly
adjust the ISAC precoders depending on the desired
sensing and communication requirements.

• We introduce a tunable trade-off parameter to adjust
the trade-off between the communication sum rate
and sensing accuracy. A set of DNNs, each of them
corresponding to a specific trade-off weight, are trained
to achieve the near optimum precoders for different
scenarios. Our results show that the proposed precoder
can outperform the weighted minimum mean square
error (WMMSE) precoder in terms of communication
sum rate when the communication sum rate is aimed
to be maximized.

• We investigate the trade-off between the complexity of
the DNNs and the performance of communication and
sensing. By utilizing weight quantization and pruning,
the DNN size is substantially reduced while still pro-
viding the desired trade-off between the communication
and sensing performances.

Notation: Throughout the manuscript, the following math-
ematical notations are used. Bold uppercase letters (e.g.,
H) indicate matrices, while bold lowercase letters (e.g., h)
indicate vectors. Superscripts ∗ and H indicate the conjugate
and Hermitian transpose, respectively. The expectation,
absolute value, and Euclidean norm operators are denoted
by E[·], | · |, and ‖ · ‖, respectively.
II. SYSTEM MODEL
A single sub-6 GHz time division duplex (TDD) cell is
considered, where the ISAC BS is equipped with a uniform
linear array (ULA) consisting of M antennas to transmit
ISAC signals and receive communication signals in addition
to R radar receive antennas. ULA antennas are placed with
λ/2 separation, with λ being the wavelength of the carrier
frequency. M transmit antennas alternately transmit the ISAC
signal and receive communication data in TDD mode while
R receive antennas are always in the receiving mode to
receive the target echo signals. As shown in Fig. 1, the BS
communicates with K downlink user equipment (UEs) while
performing beamforming on T possible targets in the area
of interest.
OFDM is considered in this study such that the precoder

matrix is constructed for each subcarrier or a block of
subcarriers [41], [42]. The proposed DL-based approach
significantly reduces the computational complexity of the
precoder design, hence, a large number of beamformer
matrices, each of them corresponding to a subcarrier or a
block of subcarriers, can be swiftly constructed by the trained
DNNs. Accordingly, in the rest of this article, we consider
a single subcarrier and explain the system model and the
proposed method accordingly, without the loss of generality.
Since TDD is considered, the M antennas transmit ISAC

waveform and receive communication data in turns within
the coherence time, utilizing the estimated channel for

FIGURE 1. A typical ISAC cell where the BS performs beamforming on several LOS
targets while communicating with multiple downlink users (LOS or NLOS). (Blue
circles: ISAC transmit antennas, red circles: radar receive antennas).

downlink and uplink. However, the signals reflected from
the targets or environment must be received and processed
continuously for sensing. Accordingly, the BS has R separate
receive antennas that are used to receive echoes for sensing.
The BS simultaneously intends to transmit the multi-user
MIMO communication data Y ∈ C

K×L consisting of
L symbols for K UEs. Each symbol is modulated via
quadrature amplitude modulation (QAM), i.e., 256-QAM.1

The same transmitted signals are used to form beams on the
targets.

A. COMMUNICATION CHANNEL MODEL
The channel matrix between the BS and UEs, H ∈ C

K×M ,
is modeled as a Rician fading channel model, while radar
channels are considered to be line-of-sight (LOS) two-way
channels. The Rician fading channel model considered for
communication channels is given by [43],

H =
√ K

1 + KHL +
√

1

1 + KHF, (1)

where HL denotes the segment of the channel consisting
of LOS or strong reflection links while HF denotes the
non-line-of-sight (NLOS) component of the channel, whose
entries follow a complex-valued Gaussian distribution with
zero means and σ 2

h variance, i.e., hF ∼ CN (0, σ 2
h ). In the

above, K denotes the Rician K factor. We further assume
that the channels of subsequent time instances are temporally
correlated since a small number of the scatters move in most
environments [44]. Hence, the channel matrix, given by (1),
slowly changes over time, leading to a high correlation
between sequential channel instances, i.e., H(t) and H(t+1).
The complex-valued entries of the LOS channel segment,

HL, is given by

hL(k,m) = βk exp
(
j2
π

λ
dk,m

)
, (2)

1Note that phase-shift keying (PSK) or QAM can be used to modulate
each symbol since the proposed ISAC precoder is independent of the
modulation scheme.
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where λ and dk,m denote the wavelength of the carrier
and the distance between the kth UE and mth antenna.
Moreover, the linear large-scale fading of the kth UE is a
function of the path loss given by

βk = 10−PLk/10. (3)

The path-loss of the kth UE in dB is modeled as [6],

PLk = 10 log10

(
4π fcd0

c0

)2

+ 10 log10

(
dk
d0

)ϕ
+ ζsh, (4)

where fc, d0, c0 and ϕ denote the frequency of the carrier
signal, the reference distance, the speed of light, and the
path-loss exponent, respectively. Moreover, dk denotes the
distance of the kth UE to the BS, (i.e., 30 ≤ dk ≤ 400 m), and
ζsh denotes the log-normal shadow fading, which is a zero-
mean Gaussian random variable with standard deviation σsh.

Based on the non-line-of-sight (NLOS) urban macrocell
measurements in [45], we use fc = 5 GHz, d0 = 1 m, ϕ =
2.9, and σsh = 5.7 dB. Each UE is randomly located in the
cell and may experience significantly different channel gains
in relation to the path loss [46]. Moreover, the complex-
valued entries of the NLOS channel, HF , between the kth UE
and the mth BS antenna is modeled as hF,k,m ∼ CN (0, 1)
which pertains to a Rayleigh channel model. The UEs are
randomly located in the x- and y-coordinates in the cell, and
their path loss and channel matrix are calculated based on
their locations and using the channel model explained above
in each network instance.

B. RADAR CHANNEL MODEL
For radar sensing, as typically considered in most radar
scenarios, the targets are assumed to be in line-of-sight
(LOS) with the BS. The BS can perform beam-scanning to
search the possible targets in the area of interest by scanning
various beamforming angles or can focus on specific angles
for beamforming. In this study, we have considered that the
BS can form two beams for two independent target angles
at the same time while communicating with UEs.
The power of the received echo signal from a single target,

without considering the transmit and receive beamforming
gains, is given by [47],

Pr = Ptλ2G2
AσT

(4π)3R4
T

, (6)

where λ, GA, σT , RT denote the wavelength of the signal,
antenna gain, radar-cross section (RCS) of the target, and
distance of the target from the radar, respectively.
The Cramér-Rao lower bound (CRLB) ψ(θt) for the

estimation of target angle θt for the tth target is given by (5),
shown at bottom of the page [14], where ηt = Pr/Pn with Pn

being the noise power denotes the signal-to-noise ratio (SNR)
of the signals reflected from the tth target and received at the
radar receive antennas. Moreover, RX denotes the covariance
matrix of the transmitted waveform X, i.e.,

RX = 1

L
XXH, (7)

Moreover, A(θt) and Ȧ(θt) in (5) are respectively defined as

A(θt) = b(θt)aH(θt), (8)

Ȧ(θt) = ∂A(θt)
∂θt

, (9)

where a(θt) ∈ C
M×1 and b(θt) ∈ C

R×1 denote the
steering vectors for the transmit and receive antenna arrays,
respectively. By choosing the center of the ULA array as
the reference, the steering vector for the transmit array a(θt)
is given by [14]

a(θt) =
[
e−j

M−1
2 π sin θt , e−j

M−3
2 π sin θt , . . . , ej

M−1
2 π sin θt

]T
,(10)

and the steering vector b(θt) for the receive array consisting
of R antennas can be written in the same way.

C. CHANNEL ESTIMATION AND TRANSMISSION
During channel estimation, the UEs transmit pilot symbols,
and the ISAC BS estimates the channel state information
(CSI) by processing these pilot symbols. CSI estimation
can be performed by linear methods such as the least-
squares (LS) estimator, linear minimum mean-square error
(LMMSE) estimator, or iterative methods [48]. The CSI
estimated by the ISAC BS may contain estimation errors due
to noise, hardware impairments, frequency, or phase offsets.
Since the focus of this study is precoder design rather than
channel estimation, an imperfect CSI estimation model is
utilized [49], [50]. Accordingly, the estimated CSI matrix
consists of estimation errors; Ĥ is modeled as [51],

Ĥ = μE + (1 − μ)H, (11)

where E denotes the complex-valued CSI error matrix, whose
entries follow a complex-valued Gaussian distribution with
zero mean and variance σ 2

h as ek ∼ CN (0, σ 2
h ), where

σ 2
h = 1 assuming that the channel matrix is normalized.

Moreover, μ denotes the ratio of the mean amplitude of
CSI estimation errors to the mean amplitude of the ground-
truth channels. For instance, μ = 0 represents perfect CSI
estimation, and μ = 0.1 represents the case with 10%
average channel estimation amplitude errors.
The transmitted signal matrix X ∈ C

M×L used for both
sensing and communications is given by

X = WY, (12)

ψ(θt) = tr
(
AH(θt)A(θt)RX

)
2ηtL

(
tr
(
ȦH(θt)Ȧ(θt)RX

)
tr
(
AH(θt)A(θt)RX

) − ∣∣tr(ȦH(θt)A(θt)RX
)∣∣2

) (5)
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where Y ∈ C
K×L denotes the symbols transmitted to K

UEs in each transmission frame. Moreover, W ∈ C
M×K

denotes the precoder, which is a function of the estimated
channel matrix Ĥ, the trade-off parameter between the
communication and sensing ρ, and corresponding angles of
the T targets and the BS, 
 = [θ1, θ2, . . . , θT ], i.e.,

W = f
(
Ĥ, ρ,


)
. (13)

In the following, we illustrate how the optimum design of
W requires solving a non-convex optimization problem.

D. COMMUNICATION SUM RATE
The signal received by the kth UE for the lth transmitted
symbol is given by

ŷk,l = hkwkyk,l +
K∑

i=1,i �=k
hkwiyi,l + σ 2

k , (14)

where hk denotes the kth row vector of H, wk denotes the
kth column vector of W, and yk,l denotes intended data of
the kth UE, and σ 2

k denotes the average power (variance) of
the additive white Gaussian noise (AWGN) at the kth UE.
Considering that the communication data symbols of UEs
are uncorrelated and have a mean unit power, the capacity
of the kth UE is given by

Ck = log2

⎛
⎝1 + E

[|hkwk|2
]

E

[∑K
i=1,i �=k|hkwi|2

]
+ σ 2

k

⎞
⎠, (15)

where E[.] denotes the expectation operator. The communi-
cation sum rate of the network is then calculated by

Csum =
K∑
k=1

Ck. (16)

Because BS is beamforming on the targets for sensing, there
will be some degree of radar interference on the UEs when
ρ < 1.

E. ISAC WAVEFORM DESIGN
The trade-off between the radar sensing and communication
performance is considered to be determined by a weighting
parameter, 0 ≤ ρ ≤ 1. Concretely, ρ = 0 indicates that the
ISAC system aims to deliver the maximum radar sensing
performance, while ρ = 1 targets a maximization of the
communication sum rate. Other values of ρ correspond to a
proportional trade-off between communication and sensing.
The BS may derive the ISAC precoder based on the com-

munication channel, target locations, and trade-off parameter
ρ to maximize both communication sum capacity and radar
sensing performance by minimizing the sum CRLB, i.e.,

max
W

ρβ

K∑
k=1

Ck + (1 − ρ)γ∑T
t=1 ψ(θt)

s.t. ||W||2F ≤ Pt, (17)

where Pt is the maximum BS transmit power, and the
parameters β and γ normalize the sum rate and sum CRLBs,
hence balancing the weights of the sum rate and sum CRLB
in the objective function (17). Accordingly, β and γ are
given by

β = 1∣∣∣∑K
k=1 Ck

∣∣∣
ρ=1

, (18)

and γ is the minimum sum CRLB for the network achieved
when ρ = 0, i.e.,

γ =
∣∣∣∣∣
T∑
t=1

ψ(θt)

∣∣∣∣∣
ρ=0

. (19)

The optimization problem given by (17) is non-convex
and NP-hard due to the fractional structure of the sum rate
and CRLB equations. Indeed, computing the precoder that
only maximizes the sum capacity for MIMO systems is also
a non-convex and NP-hard problem for which iterative and
DL-based solutions have been recently proposed [52], [53].
Thus, in the following section, we explore an approach based
on unsupervised deep learning to approximate the optimum
ISAC precoders.

III. DEEP LEARNING MODEL
In the case of supervised learning, one needs to solve (17)
in advance many times to create a data set for the input and
output of the DNN. Then, the DNN can be trained through
this dataset, and the aim is to minimize the loss between the
labeled data and the output of the learning. Unsupervised
learning eliminates the need to solve (17) since it does not
require a labeled dataset. Accordingly, we have employed
an unsupervised learning approach to compute the ISAC
precoders for a desired trade-off. Moreover, unsupervised
learning also facilitates quick adaptation, fine-tuning, online
learning, and developing site-specific models.

A. UNSUPERVISED LEARNING LOSS FUNCTION
The optimization problem (17) aims to maximize the sum
capacity while minimizing the sum CRLB for the desired
trade-off ρ. This optimization problem can be written as a
loss function of unsupervised learning, where constraints are
enforced by a penalty term. Accordingly, the loss function of
the unsupervised learning for the optimization problem (17)
to design a precoder Ŵ can be written as,

L1 = −ρβ̂
K∑
k=1

Ck − (1 − ρ)γ̂∑T
t=1 ψ̃(θt)

+
∣∣∣(Pt − ||Ŵ||2F

)∣∣∣, (20)
where the penalty term |(Pt − ||Ŵ||2F)| is introduced so that
not satisfying the power constraint ||Ŵ||2F ≤ Pt is penalized.
Moreover, the parameters β̂ = β/α, γ̂ = γ /α, with α

being the scaling factor with regard to the power constraint,
weigh the objectives and constraints to achieve a suitable
balance between them as described in Section V. Note that
the value of α can be loosely chosen within a reasonable
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FIGURE 2. The unsupervised deep learning model employed during training, where ground truth channels are used.

range, e.g., 5 < α < 10, since the final power output will
be adjusted such that the power constraint ||Ŵ||2F ≤ Pt is
strictly satisfied, as given by

W = √
Pt

Ŵ√
||Ŵ||2F

, (21)

hence, the final precoder W is obtained.
The CRLB defined by (5) is not a continuous function

since the denominator includes a subtraction, which can also
cause the function to be undefined when the subtraction
result is zero. Thus, (20) uses an approximation of the CRLB,
ψ̃(θt), given by

ψ̃(θt) = 1

2ηtL
∣∣aH(θt)RXa(θt)

∣∣ (22)

= 1

2ηtL
∣∣aH(θt)ŴŴHa(θt)

∣∣ . (23)

This approximation primarily aims to design the covariance
matrix of the transmit signals to maximize the signal power
on the target, hence does not consider receive beamforming
and receiver array steering vector b(θt). Because the radar
receiver beamforming can be formed independently for
sensing and does not need to take communication signaling
into account.
Notably, the loss function in (20) does not consider the

CRLBs of individual targets, which might cause unbal-
anced beamforming on the targets. Hence, this requires the
introduction of a penalty in the loss function to enforce
fairness between the targets’ CRLBs. There exist various
candidate fairness index (FI) metrics available for wireless
communication and sensing systems [54]. For this problem,
we utilized the Jain’s FI metric given by [55],2

2Note that it is also possible to use any other continuous fairness metric
instead of the Jain’s FI metric.

FT =
(∑T

t=1 ψ̃(θt)
)2

T
∑T

t=1 ψ̃(θt)
2
, (24)

where 0 < FT ≤ 1. The FI index is equal to 1 when
all targets have the same CRLBs whereas it approaches 0
when there are significant differences between the CRLBs of
the targets. The loss function accounting for the introduced
fairness-related penalty function, (1 − FT), can be therefore
expressed as

L2 = − ρβ̂

K∑
k=1

Ck − (1 − ρ)γ̂∑T
t=1 ψ̃(θt)

+ |
(
Pt − ||Ŵ||2F

)
|

+ δ(1 − ρ)(1 − FT), (25)

where δ adjusts the weight of the FI in the loss function.
Not that the fairness-related loss function is also adjusted
by the trade-off factor, as (1 − ρ), since it needs to only
enforce fairness between the targets’ CRLBs.

B. DEEP NEURAL NETWORK ARCHITECTURE
The employed deep learning architecture is given in Fig. 2,
where the input and output of the DNN are real-valued
vectors. The loss function of the DNN is (25), hence, its
training aims to minimize the loss function, resulting in the
maximization of the sum rate and minimization of the CRLB
for a given trade-off ρ while enforcing the constraints as
penalty terms. The real-valued input and output vectors of
the DNN are obtained as follows:

• The input vector of the DNN u ∈ R
(2MK+T)×1 is

obtained by concatenating i) the real and imaginary
parts of the flattened channel matrix H, and ii) the
vector of target angles.

• The output vector z ∈ R
2MK×1 consists of the flattened

real-valued precoder vector, which is then converted
into the complex-valued precoder matrix, W ∈ C

M×K
as shown in Fig. 2.
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Instead of training the same DNN for all ρ values,
distinct DNNs are separately trained for each step of
ρ ∈ [0, 0.1, . . . , 1]. This simplifies the training since each
training can be performed for a specific ρ and maximizes the
accuracy of the precoding for a given ρ.3 Accordingly, 11
different DNN weight sets are obtained for the same DNN
architecture, and the trade-off parameter ρ will determine the
specific DNN weight set that will be loaded into the inference
hardware. The training of the proposed DL-based precoder
design approach is summarized in Fig. 2. After training is
completed, the trained DNN can generate the near-optimum
precoder matrix for a given input channel matrix and target
angles.

IV. LIGHTWEIGHT DEEP LEARNING ARCHITECTURE
The practical implementation of DNNs will be required
to operate with the constrained memory and computa-
tional resources available on the BS hardware. Moreover,
lightweight architectures also reduce the energy consumption
of computational hardware. In this section, we systematically
investigate the impact of weight quantization and pruning
to reduce the complexity, power consumption, and memory
usage of the considered deep learning model [56].

A. WEIGHT QUANTIZATION
Widely used deep learning libraries such as Pytorch and
TensorFlow support 32-bit floating point precision during
training, and they also support 32-bit, 16-bit, or 8-bit
quantized weights for inference [57], [58]. However, these
libraries do not support a lower number of bits quantization,
i.e., 1-bit, 2-bit, hence we have developed a dynamic
quantization function explained below. Depending on the
application, deep learning models can be run with lower
precision while providing a similar performance. Thus, we
have investigated training the model at full precision (32-bit)
and then quantizing it via the dynamic quantization function.
Let us denote the vector consisting of all weights in the
ith layer as si = {si,1, si,2, . . . , si,U}, where U denotes the
number weights in the ith layer. The Q-bit quantized weights
vector of the ith layer are then given by

sQi =
⌊

si
f (Q, si)

⌉
f (Q, si), (26)

where

f (Q, si) = max(si)− min(si)
2Q

. (27)

Here, 	.
, max(.), min(.) express the element-wise rounding
function to the nearest integer, the maximum value, and the
minimum value in the vector, respectively. This post-training
quantization function dynamically adjusts the range of the

3This choice does not introduce additional inference complexity or
inference memory requirements since pre-trained DNNs can be loaded for
inference for a selected ρ. The training duration is also reduced as several
DNNs can be concurrently and independently trained. However, this may
increase storage requirements since a larger number of neural network
weights need to be stored.

quantization to the range of the weights, therefore striving
to maximize the utilization of available quantization bits.
Furthermore, values that are close to 0 will be automatically
pruned after quantization since they will be set to 0 while
rounding.

B. PRUNING
Pruning is performed by removing the weights or nodes
expected to have the smallest impact on the DNN outcome.
Thus, we perform a global pruning by removing the
weakest weights (i.e., the weights are closest to 0) after
quantization [59]. Additionally, neurons with all input or
output weights pruned are also removed. The pruning ratio
is denoted by J, e.g., J = 0.1 indicates that the weakest 10%
of all weights across the entire DNN model are pruned.

V. NUMERICAL RESULTS
In this section, we have examined the proposed ISAC
precoder design method via simulations. The trade-off
between the communication sum rate, sensing accuracy, and
computational complexity is demonstrated. Moreover, the
trade-offs between the DNN complexity and communication
and sensing performances are also investigated.

A. DATA GENERATION AND TRAINING
The ISAC system described in Section II is modeled in
Python, and PyTorch is used as the deep learning library [57].
The channel dataset is generated for 106 network instances,
where each network consists of randomly located K = 10
UEs. The channel of each network is generated according
to (1), where the path-loss of each UE in each instance
is calculated by (4). Two different channel datasets are
generated for M = 10 and M = 20 antennas. Moreover, 106

random target angles between −90 and 90 degrees with 1◦
resolution are generated and added to the training data set
as described in Section III-B. An additional and independent
test dataset consisting of 105 network instances is generated
in the same way to test the proposed precoder performance.
The training of the model is concurrently performed for

all ρ = {0, 0.1, . . . , 1} values on Nvidia Tesla V100 graphics
processing units (GPUs). The training data set consists of 106

channel instances and target angles, as explained above. The
DNN is trained via an unsupervised learning approach using
95% of the training dataset to minimize the loss function
given by (25) that aims to maximize the sum rate and
minimize the CRLB for a given trade-off ρ. The training is
performed until the loss function converges to its minimum
value in both training and validation that is performed via
the remaining 5% of the training data. During training,
Adam optimizer with 0.001 learning rate and 10% dropout
is employed to avoid overfitting. Table 2 summarizes the
training parameters used in this study.
While the DNNs are trained using perfect channel

information, the performance of the proposed method is also
evaluated with imperfect CSI that are obtained via (11) to
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TABLE 1. Sum rate of the DL-based precoder with various numbers of hidden layers
and nodes in each layer (ρ = 0.5 M = 20, K = 10, T = 2).

TABLE 2. DNN training parameters.

reveal its performance under imperfect CSI. After training
is completed, the performance of the proposed approach is
tested using the test dataset (105 instances), and the results
presented below in this section are the average of many
network instances.
First, the impact of the DNN size on the learning of

communication and sensing performances is examined to
determine a reasonable DNN size. For this, we consider that
the BS incorporates M = 20 transmit and R = 10 receive
antennas, two targets located at the angles θ1 = −10◦ and
θ2 = 25◦, and K = 10 UEs. Moreover, UEs are randomly
located, the BS transmit power is Pt = 1 W, and the noise
variance at UE receivers is σ 2

k = 10−3 W. The trade-off
parameter is chosen as ρ = 0.5 to have a balance between
communication sum rate and sensing accuracy. The number
of neural network (NN) layers, including input and output
layers, is chosen as 1, 2, 3, 4, 5, and 6 hidden layers, and
the number of nodes in each layer is chosen as 16, 32, 64,
128, 256, 512, and 1024 nodes. Hence, a total of 42 different
DNN configurations were trained. The average results of 105

inference instances of the trained DNN above configurations
were examined as shown in Table 1, and we observed that

• a minimal DNN configuration (e.g., 2 hidden layers
with 32 nodes in each layer) could not learn the ISAC
precoding to achieve a satisfactory sum rate, and

• an overly complex DNN configuration was not neces-
sary (e.g., 5 or more hidden layers with 256 nodes or
more in each layer).

Accordingly, the DNN configuration consisting of 4 hidden
layers and 128 nodes in each layer was chosen as the

FIGURE 3. Sensing and communication performance M = 10 and K = 10.

configuration providing the maximum learning performance
with the lowest computational complexity for the ISAC
precoder design.

B. SENSING ACCURACY AND COMMUNICATION
PERFORMANCE
Sensing and communication performances are examined for
two different transmit array configurations, namely M = 10
and M = 20 antennas, while the number of radar receive
antennas, the number of UEs, the number of targets, and SNR
are R = 10, K = 10, T = 2, and SNR = 20dB, respectively.
The targets are located at θ1 = −10◦ and θ1 = 25◦. The
MMSE precoder and the iterative WMMSE precoder are
utilized as the communication sum rate benchmarks [60]
since it is highly complicated to derive an iterative ISAC
precoder for the given problem. Note that the sum rate
performance of the iterative WMMSE algorithm depends on
the initial parameters, and it cannot, therefore, reach the
optimum communication performance.
Note that the UEs can encounter significantly different

path losses due to their random location in the network.
This introduces an additional challenge to linear precoders,
e.g., zero-forcing (ZF) or minimum-mean-squared-error
(MMSE), especially when M is only slightly larger
than K.

Fig. 3 and Fig. 4 illustrate the communication sum
rate and sensing sum CRLB in terms of dB, i.e.,
10 log10(

∑T
t=1 ψ(θt)), during the inference for M = 10

and M = 20, respectively. In the fully-loaded MIMO
case of Fig. 3, where M = 10, K = 10, and T = 2,
the proposed technique outperforms the WMMSE precoder
when ρ ≥ 0.5, and in this configuration, the MMSE precoder
cannot perform precoding due to fully-loaded antennas.
For M = 20, Fig. 4 shows that the proposed DNN-based
precoder can still outperform the sum rate of the WMMSE
when ρ ≥ 0.6. These figures also demonstrate that varying
ρ provides a desired trade-off between the communication
sum rate and sensing sum CRLB.
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TABLE 3. Sum rate and complexity of the DNN after quantization and pruning (ρ = 0.5, M = 10, K = 10).

FIGURE 4. Sensing and communication performance M = 20 and K = 10.

FIGURE 5. Sum rate of the network with weight quantization and pruning, M=10.

C. QUANTIZATION AND PRUNING
Fig. 5 shows the sum rate of the ISAC system with ρ = 0.5
when the DNN weights are systematically quantized with Q
bits and pruned with various ratios J. It can be seen that
the DNN with 8-bit and 7-bit weights can approximately
achieve the sum rate of the DNN with 32-bit weights. Some
significant points with more details on this figure are given
in Table 3, where it is shown that a DNN quantized with
Q = 7 bits and 10% pruning achieves 97.8% of the sum
rate attained by full DNN. The number of bits that need to
be stored and computed is only 19.68% of the full model,

FIGURE 6. Sum CRLB of the network with weight quantization and pruning.

resulting in substantially reduced computational complexity
and memory usage by quantization and pruning.
A more compact DNN model with Q = 4 bits and J =

20% achieves 76.6% of the sum rate of the full model with
only 10% of its computational complexity. Fig. 6 presents the
sum CRLB of the two targets as a function of Q and J when
ρ = 0.2. This figure demonstrates that beamforming on the
targets can be handled with a less sophisticated DNN since
beamforming on the targets considers only LOS links. In
contrast, precoding for communication considers both LOS
and NLOS links, thus making it a more challenging problem.
The trade-off between the communication sum rate and

sensing performance is presented in Fig. 7. Having a larger
number of antennas enables the ISAC BS to achieve a
higher sum rate and lower CRLB due to increasing degrees
of freedom. It is also seen that the impact of the DNN
weight pruning and quantization on the sensing performance
is limited, as also seen in Fig. 6.
Both the communication sum rate and target angle

estimation are affected by noise. Fig. 8 illustrates the sum
rate and CRLB as functions of SNR with different weight
quantization and pruning ratios, where the trade-off factor
between communication and sensing is ρ = 0.5 and M = 10,
K = 10, T = 2. It is observed that when the SNR is low, even
the significantly quantized and pruned DNN can perform
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FIGURE 7. Communication (sum rate) and sensing (sum CRLB) trade-off with
regard to weight quantization (Q) and pruning ratio (J). M = 20 is indicated by solid
lines with ∗ while M = 10 is indicated by dashed lines with ◦.

FIGURE 8. Communication sum rate and sum CRLB on target angle estimation
obtained by DL-based precoders with various quantization bits and pruning ratios as
functions of SNR. Lines with star markers indicate the sum rate, while lines with
square markers indicate sum CRLB. M = 10, K = 10, T = 2, ρ = 0.5.

as well as the full DNN model in terms of communication
performance since the sum rate is more restricted by noise
rather than interference in low SNR regions. Moreover,
6-bit quantized and 10% pruned DNN can still perform
satisfactorily and nearly reach the performance of full DNN
even in high SNR regions, as also shown in Table 3.
Target angle estimation is also affected by the noisy

received echoes from the target, as seen in this figure. For
instance, when the SNR is low, the received echoes from
the target are noise-dominated, hence, the CRLB is higher,
leading to significant angle estimation errors. Therefore,
increasing SNR improves angle estimation accuracy. Fig. 8
shows that the theoretical error bound on the target angle
estimation can be as low as −14 dB when the SNR is
sufficiently high. This figure also shows that target angle
estimation is less affected than communication sum rate by
quantization and pruning, as is also seen in the beam pattern
figures presented in the next section.

FIGURE 9. Impact of channel estimation errors on the sum rate, ρ = 1.

FIGURE 10. Beampattern of the ISAC BS when M = 10 K = 10 with quantization and
pruning.

Fig. 9 depicts the sum rate for M = 20 and M = 10
when channel estimation errors are considered as (11). Here,
the sum rate is maximized, i.e., ρ = 1. This figure shows
that the proposed DL-based precoder is robust to channel
estimation errors. It can also be observed that the precoder
is more robust to errors in systems with a larger number
of antennas since the sum rate loss is minimal even with
μ = 20% when M = 20.

D. BEAMPATTERNS
Fig. 11 and Fig. 10 illustrate the beam patterns of the ISAC
system with M = 20 and M = 10 antennas. Although the
proposed technique relies on an unsupervised learning frame-
work, these figures show excellent beamforming patterns
for target sensing when ρ = 0. The minimum beamwidth
of the beams is limited by the number of antennas, such
that when the number of transmit antennas is M = 20, the
ISAC system produces narrower beams compared to the case
that has M = 10 antennas, as seen in the comparison of
Fig. 10 and Fig. 11. This, in turn, improves the target angle
estimation and communication sum rate as the number of
antennas increases, as previously shown in Fig. 7.

It can be seen that the beam patterns vary depending
on the ρ to adjust the trade-off between the sensing
and communication performances in Fig. 11 and Fig. 10.
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FIGURE 11. Beampattern of the ISAC BS when M = 20 K = 10 with quantization and
pruning.

Furthermore, these figures also depict the impact of the
selected weight quantization, Q = 5 − bit, and pruning,
J = 20% on the beam patterns. Quantization and pruning
especially affect the beam patterns when the ISAC system
aims to maximize the communication performance, i.e., ρ =
0.9, following the trend seen in Fig. 7. Because beamforming
for targets considers mainly LOS signals, while beamforming
for communication considers both LOS and NLOS signals,
it requires more sophisticated DNN architecture.
The proposed unsupervised learning framework can be

applied to different problems in ISAC precoder design;
for instance, by introducing a minimum capacity penalty
term in the loss function for each UE, the sum capacity
maximization problem under the quality of service (QoS)
constraint can be solved. Moreover, hybrid beamforming
techniques for ISAC can also be developed by following
a similar approach, where the loss function would aim to
design a suitable beamforming strategy based on designing
both digital beamforming and analog beamforming matrices
to maximize both communication sum rate and sensing
accuracy for a given trade-off. It can also be applied to energy
efficiency maximization problems or multicell networks.
The proposed DL-based ISAC waveform design will be
implemented in a future study on a hardware platform, such
as on the UCL ARESTOR, which has a flexible modular
architecture and supports multiple RF chain and antenna
experiments and measurements and ARM cores that can run
deep learning models [39], [40].

VI. CONCLUSION
This work has proposed an unsupervised learning DL-based
lightweight precoding method for ISAC systems that allows
adjusting the trade-off between communication and sensing
depending on the instantaneous sensing and communication
requirements. The proposed DL-based method eliminates
the need to solve non-convex optimization problems for
the precoder design. Moreover, its computational complexity
and memory requirements are further reduced by weight
quantization and pruning. It is shown that a quantized and

pruned model that has only 17% complexity of the full
DNN model can achieve 96% of the performance of the full
DNN model in terms of sum rate. Moreover, the proposed
method has been shown to be robust under operating CSI
estimation errors. In future work, we will work on distributed
deep learning architectures to reduce the computational
complexity of precoder design in multicell ISAC systems.
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