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Abstract: The identification of vital signs is becoming increasingly important in various ap-
plications, including healthcare monitoring, security, smart homes, and locating entrapped
persons after disastrous events, most of which are achieved using continuous-wave radars
and ultra-wideband systems. Operating frequency and transmission power are important
factors to consider when conducting earthquake search and rescue (SAR) operations in
urban regions. Poor communication infrastructure can also impede SAR operations. This
study proposes a method for vital sign detection using an integrated sensing and com-
munication (ISAC) system where a unified orthogonal frequency division multiplexing
(OFDM) signal was adopted, and it is capable of sensing life signs and carrying out com-
munication simultaneously. An ISAC demonstration system based on software-defined
radios (SDRs) was initiated to detect respiratory and heartbeat rates while maintaining
communication capability in a typical office environment. The specially designed OFDM
signals were transmitted, reflected from a human subject, received, and processed to es-
timate the micro-Doppler effect induced by the breathing and heartbeat of the human in
the environment. According to the results, vital signs, including respiration and heartbeat
rates, have been accurately detected by post-processing the reflected OFDM signals with
a 1 MHz bandwidth, confirmed with conventional contact-based detection approaches.
The potential of dual-function capability of OFDM signals for sensing purposes has been
verified. The principle and method developed can be applied in wider ISAC systems for
search and rescue purposes while maintaining communication links.

Keywords: integrated sensing and communications; micro-doppler; orthogonal frequency
division multiplexing; software-defined radio; vital signs

1. Introduction
Radio frequency (RF) sensing has become increasingly important in various applica-

tions such as defense applications, healthcare monitoring, security, smart homes, and search
and rescue operations. Many approaches have been developed, such as ultra wide band
(UWB), stepped frequency (SF), continuous wave (CW), and frequency-modulated continu-
ous wave (FMCW) radars for various sensing purposes. Orthogonal frequency division
multiplexing (OFDM) signals have also been considered as one of the promising waveforms
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for RF sensing due to their improved spectral efficiency and dual-function capabilities.
Among them, vital sign detection has attracted the interest of many researchers since it
plays a pivotal role in various fields, such as healthcare, security, and especially search and
rescue operations [1,2].

Various microwave life detection systems and signal processing algorithms have been
developed. Due to their superior range resolution, UWB radars are used to make indoor
sensing in [3–8], and vital signs, including respiratory and heartbeat rates, have been
detected. However, its short range, high path loss, and complex signal processing pose
significant challenges. CW radars are more widely used as they are easy to implement but
need a long data acquisition time, and no range information is available [9–11]. FMCW
radars have been widely used in multiple applications for their characteristics, including
localization, resilience to the noise generated by the surrounding environment, and capa-
bility of rejecting clutter and multipath [12–14]. On the other hand, OFDM, in addition
to supporting communication, is potentially suited for sensing operations [15–18]. It is
capable of dealing with multipath-caused interference, rejecting false targets, exhibiting
better sensing capabilities, and having wider applicability in dynamic scenarios.

Micro-Doppler effects caused by respiratory chest movements (0.1–0.5 Hz, 0.1–1.2 cm
displacement) and cardiac contractions (0.8–3 Hz, 0.01–0.1 cm displacement) are embedded
in the propagation channel responses of communication systems [19]. Conventional sensing
methods adopting OFDM technology carry out detection tasks with the channel state infor-
mation (CSI) of the communication system. They are acquired by using least squares (LS)
and linear minimum mean square error (LMMSE) estimators with pilot signals [20]. Both
LS and LMMSE estimators involve discrete channel responses and statistics [21,22]. Hence,
the frequency responses for sensing are effectively narrowband, as they are interleaved by
the subcarriers for data transmission [23,24]. Zhou et al. employed the CSI of WiFi sys-
tems for indoor sensing, carrying out linear phase calibration (LPC) with robust principal
component analysis (RPCA), and successfully demonstrated indoor sensing capability in a
noisy environment [25].

This sensing requirement falls into the growing capability scope of integrated sensing
and communication (ISAC) systems, where OFDM waveforms are commonly adopted to
balance spectral and energy efficiency for communication and sensing purposes [26–28].
Experimental measurements of ISAC systems are necessary to validate their performance
under various scenarios [29–31]. Human activity has been detected with an OFDM system
implemented with GNU Radio [30]. Another study investigated vital sign detection using
OFDM signals at 26 GHz [31]; however, such high carrier frequencies, e.g., 26 GHz, are
not suitable for search and rescue operations since their penetration loss and path loss are
significantly high. This study proposes a method to utilize OFDM signals for respiratory
and heart rate detection in a typical indoor environment, and it is verified through experi-
mental measurements via software-defined radio (SDR) platforms operating at 1.15 GHz
carrier frequency. Our contributions include

• The proposal of a method for vital sign detection using OFDM signals that can be
utilized for communication simultaneously. It can be used to develop specific ISAC
systems for healthcare applications or search and rescue systems, serving as a valid
use case for ISAC systems.

• A three-tier data processing process for vital sign detection has been proposed to miti-
gate the noise effect and improve the precision of vital sign detection. Utilizing OFDM
signals with 1 MHz bandwidth at 1.15 GHz RF carrier frequency for sensing makes
the approach potentially deployable in various applications from smart healthcare to
search and rescue operations.
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• The experimental validation of the sensing function has been performed to verify the
proposed method using SDRs; the merits of the OFDM-based ISAC system for the
sensing function were highlighted in contrast to conventional radars.

The remainder of this paper is organized as follows: Section 2 details OFDM signal
modeling and channel model. Section 3 describes the proposed method for vital sign detec-
tion. Section 4 presents experimental results on respiratory and cardiac signal detection,
followed by discussion—Sections 5 and conclusions—Section 6.

2. System Model
2.1. OFDM Signals

OFDM waveforms demonstrate superior flexibility for both sensing and communi-
cations compared to alternative dual-functional modulated signals [32], making them
particularly suitable for ISAC applications. The complex baseband time-domain OFDM
signal is formulated as [33]

s(t) =
M−1

∑
m=0

Nc−1

∑
k=0

Xm,kej2πk∆ f (t−mTsym) · rect
(

t−mTsym

Ts

)
, (1)

where M represents the total number of OFDM symbols in a time frame, Nc denotes the
total number of subcarriers, and Xm,k ∈ C corresponds to the complex modulation symbol
allocated to the k-th subcarrier of the m-th OFDM symbol. The subcarrier spacing and
symbol duration are denoted by ∆ f and Ts, respectively, and ∆ f = 1/Ts. Each symbol
extends to Tsym = Ts + Tcp through cyclic prefix insertion, where Tcp denotes the guard
interval duration. The rectangular window function rect(τ) satisfies rect(τ) = 1 for
0 ≤ τ < 1 and rect(τ) = 0 otherwise, ensuring strict temporal confinement of individual
OFDM symbols.

2.2. Sensing Channel Modeling

Figure 1 illustrates the measurement setup for heartbeat and respiration measurement
using OFDM signals via SDRs, which are equipped with a single transmit antenna and a
single receive antenna. The channel model of this setup can be modeled as a multi-path
channel, where the propagation path is influenced by respiration and heartbeat, such that
Doppler shifts are introduced to the reflected signal due to the respiration and heartbeat of
the target. The multipath channel impulse response is given by [34]

H(t, τ) =
L

∑
l=1

blδ(t− τl)e
−j(2π fD,l t+ϕl), (2)

where L is the total number of multi-path components, with each path l having complex
amplitude bl and propagation delay τl , and δ(·) is the Dirac function. The Doppler shift
fD,l = 2vl fc/c results from target radial velocity vl , where fc is the carrier frequency, c is
the speed of light, and φl is the phase variation of the lth path.

The chest movement-induced phase due to the heartbeat and respiration is modeled
as [35]

ϕ(t) =
4πd0

λ
+

4πx(t)
λ

− φ1

(
t− 2d0

c

)
, (3)

where d0 represents the nominal distance to the thorax and λ is wavelength.
x(t) = Ar cos(ωrt) + Ah cos(ωht) models the time-varying chest displacement, where
Ar and Ah represent amplitudes of respiratory and cardiac displacement, with the angu-
lar frequencies ωr = 2π fr and ωh = 2π fh corresponding to the rates of breathing and
heartbeat. The term φ1(·) accounts for phase perturbations during signal propagation,
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incorporating the effects of tissue heterogeneity and environmental factors. Assuming that
the line-of-sight (LOS) path carries the heartbeat and respiration information due to the
LOS measurement setup, including the micro-Doppler effects induced by the heartbeat and
respiration, the modified channel model becomes

H(t, τ) = b1δ(t− τ1)·

exp
(
−j2π fD,1t− j

4π

λ
(d0 + x(t))− jφ1

(
t− 2d0

c

))
+

L

∑
l=2

blδ(t− τl) exp(−j(2π fD,lt− ϕl)),

(4)

where τ1 = 2d0/c represents the round-trip delay and ϕl(t) captures both static phase
offset and time-varying perturbations of the lth path. The time-varying phase distur-
bance ϕ1(t) introduces nonlinear distortions from environmental perturbations and tissue
dielectric variations.

X310
Rx

 B210
Tx 

Figure 1. The conceptual setup of the vital sign detection system based on an ISAC system; B210 and
X310 are collocated for Tx and Rx, respectively.

2.3. Time-Domain Received Signal

The baseband received signal incorporating both vital sign modulation and environ-
mental multipath effects is formulated as

r(t) =
∫ ∞

−∞
H(t, τ)s(t− τ)dτ + n(t), (5)

where H(t, τ) represents the time-varying channel impulse response defined in (4), s(t)
denotes the transmitted OFDM waveform from Section 2.2, and n(t) ∼ CN (0, σ2

n) denotes
the complex additive white Gaussian noise (AWGN) with noise variance σ2

n . Due to the
first term of the channel model, corresponding to the LOS path, given by (4), the received
signal r(t) contains the vital sign information through chest displacement modeled by
x(t) = Ar cos(ωrt) + Ah cos(ωht).
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2.4. Filtering Operation

The micro-Doppler shifts caused by displacement on the human body are nonsta-
tionary. The received signal from reflections is composed of broadband energy, and the
instantaneous frequencies are widely distributed. The spectral analysis on the received
signal is essential—isolating specific frequency harmonics associated with the subtle micro-
Doppler effect requires filters with a high frequency definition. Low bandpass filters and
very narrow frequency passbands are pivotal. Among the filter types designed to meet the
demanding requirements of passband flatness, phase linearity, and stopband attenuation,
Butterworth and Bessel filters were considered and proved to be valid for applications
as such. A combination of them ensures frequency components can be separated with a
high resolution.

Butterworth Filter: The Butterworth filter is characterized by its maximally flat
magnitude response in the passband. Its mathematical formulation contains two key
components. First, the squared magnitude response is defined as

|H(ω)|2 =
1

1 +
(

ω
ωc

)2n (6)

where ωc represents the cutoff frequency in radians per second and n denotes the filter
order. Second, the normalized low-pass transfer function can be expressed as

H(z) =
1

∏n
k=1(z− zk)

, with poles zk = ωcej (2k+n−1)π
2n (7)

This filter is fundamentally characterized by three distinctive attributes: a maximally
flat passband magnitude response ensuring minimal amplitude distortion, a stopband
attenuation rate proportional to filter order (−20n dB/decade), and a progressively non-
linear phase response. Precisely this unique combination of frequency domain character-
istics—particularly a maximally flat passband and sharp stopband roll-off—makes the
Butterworth filter favorably suitable for the fine micro-Doppler signature extraction dis-
cussed earlier. This unique combination of frequency domain characteristics renders the
filter particularly advantageous in applications where precise spectral amplitude preser-
vation constitutes a critical requirement, such as biomedical signal spectral analysis and
radar micro-Doppler signature extraction. The spectrum of the filter for the two desired
pass bands is shown in Figure 2.
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Figure 2. The spectra of the Butterworth filter for the 2 bandpass operations.
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Bessel Filter: The Bessel filter distinguishes itself through three intrinsic characteristics
derived from its Bessel polynomial construction: a quasi-linear phase response ensuring
minimal waveform distortion across the operational passband, an attenuation rate gov-
erned by filter order (−20n dB/decade) in the stopband, and group delay stabilization
quantified by

τ0 =
(2n)!

2nn!ω0
(low-frequency approximation). (8)

These collective properties, particularly the temporal coherence preservation enabled
by the frequency-independent group delay, established the filter’s preeminence in applica-
tions demanding strict temporal fidelity, especially for vital sign detection in ISAC systems
where phase linearity crucially determines waveform integrity. For ISAC-based physiologi-
cal monitoring, this temporal fidelity is essential to preserve micro-Doppler signatures of
breathing and heartbeat in radar returns. The transfer function employing reverse Bessel
polynomials is expressed as

H(z) =
θn(0)

θn(z/ω0)
, where θn(z) =

n

∑
k=0

(2n− k)!
k!(n− k)!

zk (9)

with θn(z) representing the nth-order Bessel polynomial and ω0 denoting the reference fre-
quency. The spectrum of the Bessel filter for the two desired pass bands is shown in Figure 3.
The two distinct filters were applied to ensure that all the harmonics and intermodulation
terms in the received signal by the nonlinear phase modulation are eliminated.
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0.8–3 Hz

Figure 3. The spectra of the Bessel filter for the 2 bandpass operations.

3. Data Acquisition and Detection Method
This section explains the signal processing steps, consisting of signal conditioning,

pass-band filtering, and feature extraction, to determine the heartbeat and respiratory
information from the received OFDM signals.

3.1. Data Processing

The received signals in the time domain were recorded as complex numbers. Given
that the sampling rate was set to 1 MHz, this generates 2× 106 baseband samples (real
and imaginary) per second. In the following section, we will use the first 30 s data from a
45-s recorded dataset to perform signal processing according to the steps given in Figure 4
to estimate the frequencies in corresponding to the respiratory and heart rates.
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Figure 4. The flowchart of signal processing to detect the heartbeat and respiratory rates based on the
received OFDM signals.

Signal Conditioning: We reshape the (45× 106 × 2) samples into complex-valued
signal data (45× 106). Afterward, the first (30× 106) complex-valued samples are chosen,
and multistage anti-aliasing down-sampling is applied to reduce the sampling rate, lower-
ing the original 1 MHz sampled OFDM signal to 100 Hz. The down-sampling equation is

y(n) = x(Mn), (10)

where M is the factor for downsampling. After downsampling the original signal, the high-
frequency components above the new Nyquist frequency ( fs/M = 50 Hz) are filtered out,
ensuring no interference from the power supply to the vital sign signals.

In the first stage, a finite impulse response (FIR) filter was adopted to remove high-
frequency components and prevent aliasing, followed by decimation, reducing the signal
sampling rate from 1 MHz to 10 kHz. At this stage, the complex signal is compressed to
1 × 300,000. In the second stage, the process of filtering and decimation is repeated: the
signal sampling rate is reduced from 10 kHz to 100 Hz, further compressing the complex
signal to 1 × 3000. This hierarchical downsampling improves computational efficiency
while ensuring anti-aliasing. The bandwidth necessary for vital signs monitoring typically
ranges from 0.1 to 5 Hz, and the 100 Hz here significantly reduces computational overhead
while satisfying the Nyquist sampling theorem.

To correct the DC offset caused by the static background and hardware, we first
subtract the mean value from the signal. Then we perform envelope detection on the
processed complex signal to extract the amplitude values, resulting in a dataset having
1 × 3000 data points.

Signal Filtering: The downsampled data was still affected by various noises and
interferences, which can distort the real signal characteristics and lead to inaccurate fre-
quency estimates for respiration and heartbeat. Therefore, appropriate filtering is crucial.
Initially, a fourth-order Butterworth filter was applied for preliminary bandpass filtering
of the downsampled data, retaining the frequency range of 0.1 to 2 Hz for respiration
and 1 to 3 Hz for heartbeat. The Butterworth filter has a flat passband response, which
helps eliminate high-frequency noise interference; however, its phase response is nonlinear,
necessitating further processing.

A Bessel filter, known for its nearly linear phase response, is employed to effectively
preserve the signal characteristics. Using a fourth-order Bessel filter, the signal was further
filtered within the bandpass frequency ranges of 0.1 to 0.5 Hz and 0.8 to 3 Hz, respec-
tively. By cascading the Butterworth and Bessel filters, along with the zero-phase filtering
technique described later, the high-fidelity extraction of the respiration and heartbeat infor-
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mation can be achieved. This method balances frequency band selection, phase linearity,
and interference resistance. Next, bidirectional filtering is applied to the signal to eliminate
group delays. This filtering technique is also known as zero-phase filtering, meaning
that it does not introduce any phase distortion during filtering, thus preserving the phase
characteristics of the signal.

Finally, since hardware and software filters cannot fully utilize preceding and suc-
ceeding data at the beginning and end of the signal, leading to inaccurate output, we
apply boundary truncation to remove the first and last 5% samples of the data to eliminate
transient effects and retain the valid signal.

Feature Extraction: To reduce spectral leakage and improve the accuracy and smooth-
ness of spectral estimation when calculating the power spectrum, a Hamming window
was applied to the data prior to performing the Fast Fourier Transform (FFT), with a 50%
overlap to ensure that each segment of the signal was analyzed multiple times. The smooth
decay characteristics of the Hamming window allow the signal to approach zero at the
boundaries, thereby reducing the truncation effects. Additionally, its moderate main lobe
width and significant side lobe attenuation enable the effective resolution of frequency
components while suppressing noise. After applying the FFT, the power spectrum of the
signal is obtained. Since the resulting spectrum is discrete, the frequency resolution is
limited by the sampling duration (△ f = 1

T ). The peak frequency of the actual signal may
lie between two discrete frequency points, and directly taking the maximum index can
introduce quantization errors. Therefore, a three-point parabolic interpolation method can
be used to enhance the accuracy of the estimation.

Let the maximum index be k and the power spectrum values of three adjacent fre-
quency points be y(k− 1), y(k), and y(k + 1). The corresponding frequencies are f (k− 1),
f (k), and f (k + 1), with a frequency interval of ∆ f = f (k)− f (k− 1). The quadratic fitting
function is defined as

y = aδ2 + bδ + c (11)

where δ denotes the offset relative to the midpoint f (k). The corrected peak frequency can
be obtained by calculating δ.

The coefficients a and b are derived from the following formulas:

a =
y(k− 1) + y(k + 1)− 2y(k)

2(∆ f )2 (12)

b =
y(k + 1)− y(k− 1)

2∆ f
(13)

By differentiating the quadratic function and setting the derivative to zero, the offset δ

at the vertex is calculated as

δ = − b
2a

=
y(k− 1)− y(k + 1)

2[y(k− 1) + y(k + 1)− 2y(k)]
(14)

The corrected peak frequency is then expressed as

fpeak = f (k) + δ∆ f (15)

The three-point parabolic interpolation method achieves sub-pixel-level frequency
estimation by fitting three adjacent points near the spectral peak, thereby avoiding quanti-
zation errors introduced by directly selecting the maximum index. Algorithm 1 presents
the entire signal processing algorithm explained and its steps.
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Algorithm 1 Vital Sign Detection—Multi-Physiological Parameter Analysis

Input: Complex RF signal in binary format Rx_Data_TD
Output: Respiratory frequency breath_ f req and heart rate heart_ f req
Step 1: System-Level Parameter Configuration
1: Fs_original ← 1× 106 ▷ Original sampling rate (1 MHz)
2: Fs_new← 100 ▷ Processing sampling rate (100 Hz)
3: analysis_duration← 60 ▷ Signal analysis duration (seconds)
Step 2: Signal Preprocessing
4: Open binary data file Rx_data_TD
5: Read IQ quadrature components and reconstruct complex signal Rx_signal
6: Multi-stage anti-aliasing downsampling: 1 MHz→ 100 Hz
7: Remove DC offset and extract signal amplitude feature real_signal
Step 3: Signal Filtering
8: Design bandpass filters to retain respiratory and heart rate frequency bands
9: Apply zero-phase filtering to obtain real_breathsignal and real_heartsignal
10: Eliminate boundary effects, retain middle 90% of valid data
Step 4: Feature Extraction
11: Use adaptive pwelch function to compute power spectral density px_breath and
px_heart
12: Use parabolic interpolation to estimate respiratory frequency breath_ f req and heart
rate heart_ f req
Step 5: Output Results
13: Return respiratory frequency and heart rate

3.2. Simulation of the Method

Firstly, we checked and verified the feasibility of our detection method presented in
Algorithm 1 in simulations. The simulation parameters are listed in Table 1.

Table 1. Parameters of the OFDM-based ISAC system on SDR.

Parameters Value Description

fc 1.15 GHz Carrier frequency
△ f 15 KHz Subcarrier interval
N 64 Number of subcarriers
fs 1 MHz Sample rate
B 1 MHz Bandwith
d0 1 m Distance between antenna and subject
△t 960 µs TDD frame duration
tsym 64 µs Elementary symbol duration
tcp 16 µs Cyclic prefix duration
PN0 −174 dBm/Hz Noise power

GTx GRx 60 dB Transmitter and receiver gains
GAntenna 7.0 dBi Antenna gain

P 1 Number of transmit antenna
Q 1 Number of receive antenna
O 4 Filter order

BF1low [0.1 2] The Butterworth low bandpass filter
BF1high [1 3] The Butterworth high bandpass filter
BF2low [0.1 0.5] The Bessel low bandpass filter
BF2high [0.8 3] The Bessel high bandpass filter
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Figure 5 demonstrates the signal processing outcomes of physiological monitoring
using an OFDM-based ISAC system based on simulations. Data were generated according
to the proposed system model. Figure 5a displays the time domain waveform after apply-
ing the 0.1–0.5 Hz bandpass filter, showing characteristic low-frequency oscillations with
peak-to-peak amplitude variations between −1 and 1 during the 30-s observation window.
Figure 5b presents the 0.8–2 Hz bandpass filtered signal in the time domain, revealing
higher-frequency pulsatile components with steeper waveform transitions. The correspond-
ing frequency-domain analyses in Figure 5c,d exhibit distinct spectral concentrations: the
lower band (0.1–0.5 Hz) displays dominant spectral energy centered at 0.2 Hz, while the
higher band (0.8–2 Hz) shows pronounced spectral peaks at 1.0 Hz, both aligned with the
expected fundamental frequencies of respiratory and cardiac activities, respectively. The
aforementioned simulation experiments systematically verified the effectiveness of the
proposed algorithm in separating and characterizing different physiological signatures via
frequency-selective processing. However, simulations are based on idealized conditions.
To evaluate its practical performance, upcoming experiments will be conducted in real-
world scenarios. Actual application environments are significantly more complex than the
simulated environment.

Figure 5. Simulation figures: (a) Time domain signal after 0.1–0.5 Hz pass-band filter. (b) Time
domain signal after 0.8–3 Hz pass-band filter. (c) The frequency spectrum for the lower pass-band
signal. (d) The frequency spectrum for the higher pass-band signal.

4. Experiments and Results
This section introduces the experimental setup for vital sign detection and evaluates

the results from the measurements. To experimentally validate the dual-functional perfor-
mance of the ISAC system, we implemented a co-located transceiver configuration using
two universal software radio peripheral (USRP) platforms B210 and X310 (Ettus Research,
Austin, TX, USA). To validate the performance of the algorithm, ground truth physiological
data—a respiratory pattern scientifically measured with the respiration monitoring belt
unit and cardiac rhythms by electrocardiogram (ECG)—were recorded and compared with
the results from the ISAC demonstrator.

4.1. Device Configuration

The system uses the USRP platform to transmit (B210 node) and receive (X310 node)
OFDM signals. Two platforms were synchronized through a common clock from the
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laptop. OFDM frames were transmitted in a sensing cycle. The block diagram for the
signal transmission and reception is shown in Figure 6, and the OFDM frame design for
the ISAC demonstration system is shown in Figure 7. Due to throughput limitation of the
network interface between the USRP and the host laptop, the instantaneous bandwidth of
the OFDM signal was chosen to be 1 MHz, and this bandwidth, we believe, is sufficient
to demonstrate the capability of the ISAC system once the vital signs can be successfully
retrieved under the designated frequency bandwidth.

Sensing 

Local 
Oscillator

Local 
Oscillator

Predefined 
Data

Frame Sync
Remove 

Doppler Shift 
and CP

FFTEqualizing
Remove Sync 
Words, Pilots 
and Headers

DecodingReceived 
Data

Encoding
(QPSK)

Header 
(BPSK)

Combining 
Header and 

Data

Subcarrier 
Allocation IFFT Add CP

Tx 

Rx for Communication

Figure 6. Schematic of the OFDM signal communication process in the ISAC demonstrator and data
acquisition approach for sensing.

64
 S

ub
ca

rr
ie

rs

OFDM 符号编号
5 Subcarriers

13 Subcarriers

6 Subcarriers

5 Subcarriers

Pilot

DC subcarriers

Sync words
Data
DC
Pilot

12 OFDM symbols

6 Subcarriers

13 Subcarriers
Pilot

Pilot Guard

5 Guard subcarriers

6 Guard subcarriers

Pilot

Figure 7. The OFDM signal frame design for the ISAC system.

The signal for the OFDM-based ISAC system is configured to operate in the central fre-
quency of 1.15 GHz with a total frequency bandwidth of 1 MHz, splitting into 64 subcarriers.
At the beginning, the binary data stream was modulated with QPSK and then packaged
into the OFDM frame. As illustrated in Figure 7, in each frame, the net data payload is
400 symbols, and another 48 symbols were added as headers for sequence control, filling
up the specified space in the frame. The other spaces were allocated for pilots and the
guard band between subcarriers.

The next step was to allocate subcarriers; 48 out of 64 subcarriers were used to carry
data, and the other 16 were for overhead transmission. In each super frame, two syn-
chronization OFDM symbols were added, forming the first two columns to facilitate
synchronization and remove frequency offset in the receiving process. For the 64 subcarri-
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ers in each OFDM symbol, there were 4 for pilot signals, 1 for DC, and 48 for data, leaving
11 subcarriers unused. The complete frame forms a 64 × 12 matrix.

Before transmission at the antenna, the assembled frame in the frequency domain was
converted into the time domain, and then CP (cyclic prefix) was added. The CP operation
involves copying the last quarter of each OFDM symbol’s data in the time domain and
appending it to the front. CP provides a guard interval, which helps to eliminate inter-
symbol interference and mitigate multipath interference.

The setup of the synchronization sequence on the transmitter is crucial, and the core
of timing synchronization lies in detecting the structure of the repeated training symbol
corresponding to the two identical parts in the first half of Figure 7. The auto-correlation
of the received signal r[n] over a sliding window is performed for time synchronization
as [36]

P[n] =
N/2−1

∑
k=0

r[n + k] · r∗[n + k + N/2] (16)

where, N denotes the OFDM symbol length (excluding cyclic prefix). r∗[n] is complex
conjugate of r[n]. P[n] denotes the magnitude of the auto-correlation at time index n.
By finding the perfect match between the training symbols, i.e., the highest auto-correlation,
the time synchronization is completed.

In the receiver, USRP X310 equipped with an antenna is utilized to receive the signal.
Upon receiving the radio frequency signals and obtaining the baseband data via RF chains,
the first step is to convert it from serial to parallel format, resulting in an 80 × 12 matrix.
Next, timing synchronization is performed, and then the frequency offset is compensated.
Since we added a CP at the transmitter before the frame, it needs to be removed. Af-
ter removing the CP, the frame structure becomes a 64 × 12 matrix corresponding to
the time-domain frame. To extract the transmitted data stream, it is converted to the
frequency via FFT with 64 points across 12 columns. This process yields the expected
64 × 12 frequency-domain frame structure. Over this data, symbol-based radar processing
is performed to obtain the radar channel, hence extracting the target information. After that,
the proposed method presented in Algorithm 1 is performed to obtain the heartbeat and
respiratory information.

4.2. Scene Setup

Figure 8 illustrates the experimental configuration in a standard research office envi-
ronment, where a host computer coordinates a B210 and X310 software-defined radio (SDR)
platform (GNU radio 3.7.13.5) through USB 3.0 interfaces. The transmission chain employs
a B210 unit connected via coaxial cable to a Matrix MG-RH02180 broadband antenna, while
the X310 platform interfaces with an identical receive antenna through a low-loss coaxial
link. The antenna array configuration maintained 20 cm element spacing at a 1 m elevation,
forming a bistatic radar configuration with boresight alignment toward the standing human
subject positioned 1 m from the antenna plane. We implemented an OFDM waveform
generator and digital receiver processing chain through customized GNU Radio Com-
panion (GRC) flowgraphs [37]. The version number of GRC is 3.7.13.5. The transmitted
signal undergoes multipath propagation in the office environment, with target-reflected
components captured by the receive antenna for vital sign monitoring. Baseband I/Q
samples were recorded pre-equalization for subsequent respiratory and cardiac rhythm
extraction through advanced signal processing algorithms. Concurrently, the adaptive
equalizer outputs were monitored in real time through constellation diagram visualization
(Figure 9) to ensure adequate communication link quality throughout data acquisition.
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Figure 8. Experimental setup and measurements for vital sign detection using the ISAC system based
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Figure 9. Received and demodulated OFDM communication signal and its constellation diagram
(QPSK) while performing vital sign detection. The real-time signal demodulation performed by the
communication receiver algorithm implemented on the SDR via GNU Radio software.

4.3. Experimental Results

Figure 10 illustrates the time domain signal extracted from the received data via the
proposed method, where several long-period fluctuations can be observed, potentially
corresponding to low-frequency respiratory signals. In addition, short-period spikes
are visible on each waveform, which may represent high-frequency heartbeat signals.
These fluctuations comprise the combined effects of respiration, heartbeat, and auxiliary
harmonics, necessitating further filtering through specialized signal-processing techniques.

Figure 11 gives the comparison between the bandpass-filtered signal (0.1–0.5 Hz) and
the reference signal from a respiration monitoring belt in the time domain. Both normal-
ized waveforms (confined to [0, 1] amplitude over 30 s) exhibit nearly identical periodic
oscillations reflecting respiratory cycles. The characteristic 8–9 cycles within the 30-s win-
dow correspond to 16–18 breaths per minute for both signals, remarkably aligning with
the typical adult resting rate (12–20 breaths/min). Notably, the slight cycle irregularity—
manifested through non-uniform waveform intervals—appears synchronously in both
recordings, suggesting this variation likely originates from authentic physiological phe-
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nomena rather than measurement artifacts. This temporal and morphological coherence
strongly supports the reliability of the extracted breathing pattern.
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Figure 10. The received signal after down-sampling; the frequency for sampling of the signal became
100 Hz. One dominant harmonic is observed.

Figure 11. The bandpass-filtered signal in the time domain compared with the reference signal
obtained from a respiration monitoring belt unit; the passband is between 0.1 Hz and 0.5 Hz.

Figure 12 demonstrates synchronized periodicity between the bandpass-filtered signal
(0.8–3 Hz) and the electrocardiogram (ECG)-derived reference signal in the time domain.
Both normalized waveforms (15-s duration, amplitude normalized to [0, 1]) exhibit phase-
aligned quasi-periodic fluctuations characteristic of cardiac rhythms. The filtered signal
precisely mirrors the ECG’s cyclic pattern, with dominant oscillations recurring at 0.85-s
intervals (71 bpm) for both signals—a rate consistent with healthy resting heart rates
(60–100 bpm). Notably, the timing of systolic peaks shows millisecond-level alignment
between the two signals, confirming their temporal coherence. While the amplitudes of the
detected curves vary in magnitude (possibly due to motion interference), the core period
is still strictly locked on the electrical activity of the ECG. This dynamic synchronization,
spanning both frequency (heart rate matching) and phase (peak correspondence), validates
the physiological origin of the extracted cardiac signal and its equivalence to gold-standard
ECG monitoring.
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Figure 12. The down-sampled signal in the time domain after applying the bandpass filter; the pass
band is between 0.8 Hz and 3 Hz, and the reference signal was based on the ECG.

Figure 13 depicts the spectrum of the lower bandpass signal (0.1–2 Hz). The red
dashed line indicates the dominant peak obtained through parabolic fitting at 0.29 Hz,
which we attribute to the respiratory process in the environment. This signal corresponds
to a normal physiological breathing rate of 17.4 breaths per minute. Additionally, lower
peaks occurred at approximately 0.6 Hz, 0.9 Hz, and 1.3 Hz, which may correspond to the
second and third harmonics of respiration and the cardiac harmonic, respectively.

Figure 13. The frequency spectrum for the signal after applying the lower bandpass filter.

Figure 14 depicts the frequency domain characteristics of the cardiac signal within
the high passband (0.8–3 Hz). The red dashed line indicates the dominant peak obtained
through parabolic fitting at 1.27 Hz, which we attribute to the heartbeat process in the
environment. This signal corresponds to a heart rate of 76.2 beats per minute. It is evident
that the high passband effectively suppresses the noise introduced by low-frequency
respiratory signals.
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Figure 14. The frequency spectrum of the signal after applying the higher bandpass filter.

5. Discussion
Extensive studies demonstrate that OFDM signals can be utilized to detect vital signs,

namely respiration and heartbeat rates, in addition to communication capacity. The scenario
we adopted in this study was LOS for simplicity. Although search and rescue operations
are generally performed under more complicated situations than LOS scenarios, and
hence loss of the propagation paths will be more substantial and the channel will be more
sophisticated, the proposed method is expected to still be valid when enough gain is
compensated over propagation paths. These complex scenarios, including sensing through
a wall or non-line-of-sight (NLOS) scenarios, will be investigated in future studies.

In the demonstration experiment, the processing time window is 30 s for the received
signal, and vital signs have been successfully recovered through the obtained data. In con-
trast, in the simulation study, the duration of the generated data for processing is 10 s,
which was sufficient for detecting vital signs. This information can be detected with the
data of a shorter time window; however, the accuracy will decrease.

During the data acquisition period, there was only one person (the subject) in the
room for the study. In order to avoid the disturbance caused by body movement at the
beginning and end of measurement, only the data of 30 s in the middle of the recorded
time period was used for processing. The presence of more subjects will be investigated in
a future study.

The central frequency of the OFDM system in this study was 1.15 GHz, with a fre-
quency bandwidth of 1 MHz. Although this frequency band has the ability to perform vital
sign sensing and penetrate through certain walls if necessary, OFDM systems operating at
a lower frequency band and with less bandwidth will be examined with the same approach
to expand its application and improve reliability for more complex scenarios, such as search
and rescue operations over rubble after earthquakes.

The OFDM-based ISAC system for vital sign sensing is compared with other state-
of-the-art technology for similar aims, as shown in Table 2. The advantage of the ISAC
approach is highlighted for its tradeoff capability among sensing and communication ser-
vices, frequency bandwidth, and power. It exhibited its potential to be embedded with UAV
for emergency search and rescue, where resources are limited in terms of power supply;
weight carrying allowance; and signal processing capacity. Communication capability
is markedly essential when the infrastructure is possibly damaged. The computational
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complexity in Table 2 only takes into account complex number calculations in the FFT
operation for the designed algorithm.

The precision of the detection on a single subject based on the proposed method
is given in Table 3. Among the trials in three human subjects, the worst case is 89% in
accuracy, with the other detection tests giving a correct estimate. It is worth noting that the
respiratory and heartbeat data from a respiratory monitoring belt and ECG do not have
identifiable information; the radar and reference signals are one-dimensional electrical
signals that are highly anonymous.

Table 2. Comparison with the state-of-the-art contactless vital sign detection techniques.

Techniques Central
Frequency Bandwidth Time

Window
Doppler
Resolution

Transmit
Power

Computational
Complexity

CW [9] 450 MHz N/A 25 s 0.0400 Hz 26 dBm (O(N log N) ∼ O(N2))
1.15 GHz N/A 25 s 0.0400 Hz 24.8 dBm (O(N log N) ∼ O(N2))

FMCW [38] 5.8 GHz 83.5 MHz 90 s 0.0111 Hz 13 dBm (O(N log N) ∼ O(N2))

UWB [4] 4.3 GHz 1.7 GHz 120 s 0.0083 Hz −9 dBm (O(N log N) ∼ O(N2))

This work—ISAC 1.15 GHz 1 MHz 30 s 0.0333 Hz 10 dBm (O(M log M) ∼ O(M3))
Variables: N: Number of samples, M: Number of subcarriers.

Table 3. Error evaluation for single-subject sensing.

Subject Age Respiration Detected
Respiration Heartbeat Detected

Heartbeat

Person 1 24 0.29 Hz 0.29 Hz 1.27 Hz 1.27 Hz
Person 2 21 0.20 Hz 0.20 Hz 1.44 Hz 1.44 Hz
Person 3 21 0.17 Hz 0.15 Hz 1.17 Hz 1.19 Hz

6. Conclusions
This study has proposed a method to detect vital signs using an OFDM-based ISAC

system, validated through practical experiments. Vital signs, including breathing and
heartbeat rates, have been successfully detected based on acquiring their micro-Doppler
signatures impinged through reflection from the human body, and this was realized by
adopting dual-functional OFDM signals in an LOS scenario and implemented on SDRs.
Moreover, the communication performance is maintained when the data for sensing is
acquired and recorded. By measuring the channel responses for closely spaced frequency
subcarriers, the serious phase distortion in CSI-based detection techniques has been avoided
effectively. The positive outcome consolidates the prospect of ISAC technologies in health-
care monitoring or search and rescue applications under more sophisticated situations,
on top of its genuine communication capability. While this work can serve as a success-
ful proof-of-concept ISAC demonstration for vital sign detection under controlled LOS
conditions, more investigations on the impact of distance, multiple targets, and non-line-
of-sight scenarios will be carried out to increase its capacity and reliability for practical
implementations.
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FFT Fast Fourier Transform
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