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Abstract

Medical imaging is pivotal in diagnosis and treatment planning, with modal-

ities such as Positron Emission Tomography (PET) and Magnetic Resonance

Imaging (MRI) providing critical insights into physiological and anatomical

structures. The process of reconstructing images from raw scanner measure-

ments, known asmedical image reconstruction, is essential for producing clini-

cally useful images. This thesis develops advanced methods for medical image

reconstruction using deep generative and functional approaches, focusing pri-

marily on PET and MRI.

First, we developed a Deep Image Prior (DIP) method for PET image re-

construction. DIP is an untrained deep generative model that leverages the in-

ductive bias of network architectures to regularise the reconstruction process.

Applied to fully three-dimensional problems, the DIP method demonstrated

strong performance in moderate noise settings but encountered challenges at

higher noise levels. To address this, we incorporated additional traditional reg-

ularisation techniques to stabilise the reconstruction and improve performance

compared to traditional methods alone.

The second study investigates normalisation techniques for supervised PET

image reconstruction. These supervised methods directly predict the recon-

struction from raw measurements or an approximate reconstruction. We pro-

posed and compared a range of normalisation techniques to handle the widely

varying dynamic range of PET images. The normalisation strategies improved

clinically relevant image assessment methods as compared with unnormalised

models.

In the third study, we adapted Score-based Generative Models (SGMs), a

trained deep generative model, for PET image reconstruction. This method
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utilised a learned prior, sampled while ensuring consistency with PET mea-

surements, which necessitated careful handling of PET data-consistency. We

also developed normalisation strategies and extensions for fully 3D imaging.

For pairedPET andMRI images, wedeveloped a guided reconstructionmethod

that enforced consistencywith both PETmeasurements and the corresponding

MRI image. The results were compared with state-of-the-art methods, demon-

strating improved performance.

Finally, we developed Adaptable Blobs (A-Blobs), a continuous functional

image representation, for parallel MRI reconstruction. A-Blobs represents the

image as a summation of Gaussians with parameterised locations, shapes, and

intensities. Exploiting the properties of Gaussians, we derived an analytical for-

wardmodel for parallelMRI, termedMR-Blob. Thismethod exhibited favourable

properties, including noise robustness and dense representational capacity.

Collectively, these studies expand the scope of medical image reconstruc-

tion anddemonstrate the potential of deep generative and functional approaches

to significantly advance the field.
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Impact Statement

My research advances the field of medical image reconstruction by develop-

ing deep generative and functional approaches that integrate known physics

into the reconstruction process. This work has significant implications both

within academia and in clinical settings, benefiting clinicians, patients, and the

broader scientific community.

A key impact of this research is the potential improvement in clinical out-

comes. By leveraging advanced techniques for medical image reconstruction,

we can produce higher-quality medical images with fewer artifacts and re-

duced noise. This enhancement allows for lower radiation doses or shorter

scanning times, directly benefiting patients by increasing the safety and effi-

ciency of medical imaging procedures.

Beyond direct patient benefits, the research contributes novel techniques to

the field of medical imaging. For example, the application of DIP and SGMs

for PET image reconstruction, as well as developing a continuous functional

approach to image representation and reconstruction of parallel MRI image.

For these studies I utilised open-source software such as: Synergistic Image

Reconstruction Framework (SIRF) and Software for Tomographic Image Re-

construction (STIR).

I have contributed to open-source development and reproducibility that

amplifies the impact on the scientific community. By making code, datasets,

and methodologies publicly available, the research facilitates further innova-

tion and bridges the gap between basic and clinical research. These open-

source contributions enable other researchers to rigorously test advanced al-

gorithms with realistic data, accelerating scientific progress —a trend that has

already proved fruitful in the development of deep learning technologies.
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The work has been well-received in the academic community, as evidenced

by presentations at leading conferences such as the Medical Imaging Confer-

ence (MIC) 2022, Fully3D 2023, and the Medical Imaging with Deep Learn-

ing (MIDL) 2024, as well as invited talks at prestigious institutions like New

York University, the University of Bremen, and Case Western Reserve Univer-

sity. These engagements have promoted the importance of open-source soft-

ware and reproducible practices, fostering a culture of collaboration and trans-

parency in research.

In summary, the impact of this research extends from improving patient

outcomes and clinical practices to advancing the field of medical imaging and

promoting scientific openness. The integration of deep learning with estab-

lished reconstruction engines and the development of advanced methods have

set new standards in the field. The wide-reaching benefits are expected to con-

tinue as these technologies are further refined and adopted.
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Chapter 1

Introduction

The pipeline of medical imaging, from scanner to clinical outcome, has been

developed by many disciplines, each contributing advancements both techno-

logical and scientific. The content of this thesis is concerned with image re-

construction. More concretely, given a set of - often indirect, noisy and under-

sampled - measurements how does one transform these measurements back

into the underlying internal patient anatomy?

Measurement Acquisition

Preprocessing

Image Reconstruction

Postprocessing

Image Analysis

Clinical Outcome

Figure 1.1: Flow diagram of the medical imaging pipeline.

Using indirect, or more precisely projection-based, measurements to re-
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construct internal anatomy allows the imaging of internals without invasive

surgery. It has been 120 years since the first non-invasive imaging - Wilhelm

Röntgen’s grainy X-ray of his own hand [193], and now non-invasive imaging

is widely available in hospitals with Computed Tomography (CT), Positron

Emission Tomography (PET) andMagnetic Resonance Imaging (MRI) among

the modalities often available for clinicians.

The purpose of image reconstruction is to produce accurate, reliable, and

ideally quick, reconstructions that serve to improve clinical outcomes whether

for diagnosis or treatment planning. As well as the reconstruction procedure

maintaining appropriate quality and speed, the acquisition procedure is de-

veloped to improve patient comfort, increase patient throughput, or reduce

patient’s absorbed radiation dose.1 The image reconstruction is therefore con-

strained in the medical imaging pipeline seen above - Fig. 1.1. Upstream it is

beneficial that the measurement acquisition be quicker, or with lower radiation

doses to the patient; where the implications on the measurements is increased

under-sampling and noise. Advanced image reconstruction aims to compen-

sate for these degraded measurements whilst ensuring downstream analyses

are minimally affected.

1.1 Inverse Problems

Medical image reconstruction is a classic example of an inverse problem, where

the quantity of interest (derived from patient anatomy) is not measured di-

rectly. A general definition is that “inverse problems are concerned with de-

termining causes from a desired or observed effect” [65]. In this context, the

cause is the patient anatomy, and the observed effect are the measurements

from a scanner. Examples of established clinical scanners include CT, PET, and

MRI, where the measurements y and objects x are as follows:

CT: The measurements y are the amplitudes of X-rays detected after irra-

diating the patient, while the object x is the attenuation of X-rays by the

patient’s tissue.
1Advanced acquisition methods can be developed to exploit known physical principles in

novel ways, as described in Section 7.1.
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PET: The measurements y are detected photons following the injection of

a radiotracer, and the object x is the radiotracer distribution within the

patient.

MRI: The measurements y are spatial encoded signals corresponding to

specific tissue contrasts, such as T1, T2 or FLAIR, and the object x is the

cumulative transversemagnetisation of hydrogen nucleui for this specific

contrast.

These modalities are tomographic meaning that measurements are projec-

tions of the object (the patient). The measurements the outcome of the follow-

ing true physical process:

y = Atrue
ε (xtrue),

where Atrue
ε is the true, often non-linear, physical model that incorporates

the true noise process indicated by ε, y are the measurements, and xtrue is the

true sought-after object i.e. the solution. The true physical model is approxi-

mated with a forward model to respect the modality at hand. Solving the in-

verse problem amounts to attempting to invert the model, i.e. to go from the

measurements back to the object that produced them.

The process of solving an inverse problem is referred to as the reconstruction

process or simply reconstruction, herein these terms are used interchangeably.

A key difficulty in inverse problems arises when they are ill-posed, where well-

posedness is defined as a unique solution x existing that is stably dependent on

themeasurements y. An ill-posed inverse problem is one that violates the above

definition.

For non-trivial inverse problems, acquiring fewer measurements and in-

creasing noise leads to amore ill-posed problem. To stabilise the solution regu-

larisation can be included to the reconstruction process, making the reconstruc-

tion better-posed. Broadly speaking, this is the established approach to image

reconstruction: ensuring data-consistency between the measurements and the

solution, as well as penalising the solution.
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1.2 Deep Learning

Deep learning has advanced various fields by learning intricate patterns and

representations fromdatawith large complex neural networkmodels [76]. The

widespread adoption of deep learning in research is largely facilitated by the

development of robust frameworks that offer highly optimised linear algebra

routines and automatic differentiation.

In recent years, computer vision research has beendominated bydeep learn-

ing with state-of-the-art performance on a range of tasks including image re-

construction. The approaches vary significantly in the amount of data, the type

of data, and the computation needed. Supervised learning requires labelled

paired data to train a model to map from the data to the label. The hope here is

that the trained model would be able to generalise sufficiently to data outside

the training distribution.

Unsupervised learning forgoes the label and trains only with data. For im-

age reconstruction an unsupervised model requires test-time optimisation to

reconstruct images consistent to measured data. This is an inherently more

flexible framework, but at the cost of increased reconstruction time.

The inclusion of deep learning into medical image reconstruction requires

careful attention. With the added complexity there are two new factors that

need to be assessed: Interpretability andgeneralisability. An interpretablemodel

would be able to give a clinician more faith in the reconstruction, whereas gen-

eralisability is particularly vital for medical image reconstruction where, for

example, a rare pathology should not be obfuscated by a model that has not

been trained to reconstruct it.

1.3 Motivations

A key motivation is to respect the known physics and intricacies of the imag-

ing modalities while improving image quality by reducing noise and artifacts.

Physics is respected by enforcing test-time data-consistency with the measure-

ments, where the data-consistency term includes the physics via the forward

model. By ensuring the methods produce data-consistent reconstructions, the
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interpretability and generalisability of the methods can be improved. This is

true for the studies on DIP, SGMs and A-Blobs, but not for supervised meth-

ods. Furthermore, the methods are unsupervised meaning that, at most, they

only require a dataset of high-quality reference images, rather than labelled

paired medical data that is difficult to obtain.

From a different perspective stated in Dimakis [55], the deep generative ap-

proaches (DIP and SGMs) to medical image reconstruction attempt to separate

out the forward modelling from image modelling. Framing variational meth-

ods -discussed in Section 2.1.1- from this perspective, image modelling is done

with hand-crafted regularisation. In a deep generative approach the network

is leveraged to image model. At test-time both the forward model and image

model are used iteratively to reconstruct an image that respects the model as

well as the forward model. By separating out these models the generalisation

of the approach is improved, for example using the same image model (i.e. a

model restricting the solutions to PET images) could be used across forward

models (i.e. different scanners, noise-levels) with minimal, or no, re-tuning.

The motivation of A-Blobs is to leverage a continuous functional image rep-

resentation in order to improve reconstructed image quality. The A-Blobs are

able to suppress noise due to their smoothness, and also it was of interest to

develop them for an analytical formulation of the forward model in an effort to

mitigate discretisation error of the forward model.

1.4 Outline

The background in Chapter 2 introduces literature on inverse problems, medi-

cal image reconstruction, and the application of deep learning for medical im-

age reconstruction. The first section introduces the concept of inverse prob-

lems, framed through perspectives of regularisation and statistical approaches.

These foundational principles are subsequently applied in the context of med-

ical imaging reconstruction, focusing specifically on PET and MRI. This in-

cludes a discussion of the physical forward models that underpin these imag-

ing modalities and a review of established algorithms used for image recon-
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struction. The chapter concludes by exploring deep learning paradigms, in-

cluding supervised and unsupervised learning, with a specific focus on how

these paradigms have been adapted and applied to medical image reconstruc-

tion. This chapter provides the theoretical and conceptual foundation for the

studies presented in the subsequent chapters.

In Chapter 3, the application of Deep Image Prior (DIP)methods to PET im-

age reconstruction is explored in depth. This chapter builds on previous work

[215, 218], focusing on extending DIP to address the challenges posed by low-

count measurements in DIP imaging. The study demonstrates the adaptability

and potential of DIP for improving image quality under these challenging con-

ditions, setting the stage for further exploration of reconstruction methodolo-

gies.

Chapter 4 shifts the focus to supervised approaches for PET image recon-

struction, with particular emphasis on normalisation techniques. The chapter

investigatesmethods for improving image quality through post-processing and

learned primal-dual approaches. These methodologies, described in detail in

[216], highlight the role of normalisation in enhancing the robustness and ac-

curacy of supervised learning-based reconstruction methods.

In Chapter 5, the use of Score-basedGenerativeModels (SGMs) for PET im-

age reconstruction is studied. This chapter introduces innovative adaptations

of sampling techniques and proposes new normalisation procedures tailored

for PET imaging. Additionally, it explores the integration of MR-guided recon-

struction using SGMs and demonstrates the scalability of this approach to fully

three-dimensional reconstructions. This work is published in [220].

The penultimate chapter, Chapter 6, introduces Adaptable Blobs (A-Blobs)

as a continuous functional image representation and examines their applica-

tion in parallel MRI reconstruction, coined Magnetic Resonance A-Blobs (MR-

Blob). This study explores the advantages of using continuous representations

for improving image reconstruction quality and computational efficiency in

MRI, presenting a novel approach to parallel imaging.

Finally, Chapter 7 summarises the key findings of this thesis, and proposes

directions for future research giving unpublished preliminary research.



1.4. Outline 43

1.4.1 Additional Contributions

In addition to the work presented in this thesis, my PhD studies include con-

tributions to the following publications:

• “Development and evaluation of intraoperative ultrasound segmentation

with negative image frames and multiple observer labels” [37].

• “Magnetic Resonance Fingerprinting with Total Nuclear Variation Regu-

larisation” [217].

• “Data-driven approaches for electrical impedance tomography image seg-

mentation from partial boundary data” [52].

• “Usability of PETSIRD, the PET Raw Data open format of the Emission

Tomography Standardization Initiative (ETSI): results from ETSI’s first

hackathon” [114].

Furthermore, outside of publications I have contributed to the following:

• Contributed to the development of the open-source software projects Syn-

ergistic Image Reconstruction Framework (SIRF) and Software for Tomo-

graphic ImageReconstruction (STIR) [https://www.ccpsynerbi.ac.uk/

ccp-synerbi-prizes-2023-2024/].

• Assisted in organising a training school on PET/MR reconstruction at the

PSMRConference 2022 [https://hackmd.io/4bW24YXTSJ-zwJ_XdMn0wA].

• Presented at a short course on image reconstruction and AI at the IEEE

MICConference 2022 [https://www.eventclass.org/contxt_ieee2022/

scientific/online-program/session?s=SC-06].

• Participated in a stochastic hackathon, contributing to the development

of a framework for stochastic optimisation algorithms for PET reconstruc-

tion [https://petpp.github.io/hackathon].

• Recently participated in the PET Rapid Image Reconstruction (PETRIC)

challenge, achieving joint second place [https://petric.tomography.

stfc.ac.uk/leaderboard/#timeseries].

https://www.ccpsynerbi.ac.uk/ccp-synerbi-prizes-2023-2024/
https://www.ccpsynerbi.ac.uk/ccp-synerbi-prizes-2023-2024/
https://hackmd.io/4bW24YXTSJ-zwJ_XdMn0wA
https://www.eventclass.org/contxt_ieee2022/scientific/online-program/session?s=SC-06
https://www.eventclass.org/contxt_ieee2022/scientific/online-program/session?s=SC-06
https://petpp.github.io/hackathon
https://petric.tomography.stfc.ac.uk/leaderboard/#timeseries
https://petric.tomography.stfc.ac.uk/leaderboard/#timeseries
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Chapter 2

Background

In this chapter we present a background on inverse problems, then focus on

medical image reconstruction (specifically PET and MRI), and finally intro-

duce deep learning for medical image reconstruction. This background aims

to contextualise subsequent chapters by introducing pertinent literature, con-

cepts, and topics.

2.1 Inverse Problems

As introduced in Section 1.1, consider again the true physical process of the

form: y = Atrue
ε (xtrue). The inverse problem is concerned with finding the so-

lution x to this true physical process where the true physical model is Atrue
ε :

X → Y , known measurements are y ∈ Y , and unknown object that is sought,

i.e. the solution, x ∈ X .

In practice, we typically do not have access to the true physical modelAtrue
ε ,

as it is often too complex, highly non-linear, and operates over infinite-dimensional

spaces. Instead thismodel is approximated and discretised as a forwardmodel,

which is also referred to as the forward operator, that approximates true physi-

cal model to sufficient accuracy. There exists a trade-off between forward mod-

elling fidelity and computational cost, where including more physics into the

forward model can lead to computationally prohibitive algorithms. Nonethe-

less the systematic error induced by approximation of the forward model is

assumed to be within the noise level of acquisition [112]. The inverse prob-
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lem can be now formulated as the seeking the solution to the more canonical

forward problem:

y = A(x),

where the forward model A ≈ Atrue
ε : X → Y is the approximated operator

that maps the solution x to the measurements y.1 The practical perspective of

inverse problems is focused with determining the solution x, while the theoret-

ical focus is on proving existence, uniqueness and stability of the solutions, as

well as the convergence of numerical methods.2 The inverse problem is said to

bewell-posed in the sense of Hadamard if the following properties are satisfied

[106]:3

Existence: A solution x exists for any y ∈ Y . (2.1)

Uniqueness: The solution x is unique for any y ∈ Y . (2.2)

Stability: The solution x depends continuously on y. (2.3)

Violation of one, or more, of the above conditions renders the inverse prob-

lem ill-posed. Note that this is not a mathematical definition which would re-

quire specification of what a solution would be, what measurements are possi-

ble, the space Y , and how continuity is measured [65].

In a practical setting the measurements are a discrete vector y ∈ FNy with

Ny elements, and the solution is often parameterised onto a discrete grid of

piece-wise constant basis functions called pixels in two-dimensions and voxels

in three-dimensions. This discretises the solution as a vector x ∈ FNx . Other

representations of the solution are discussed in Section 2.2.1, and a new repre-

sentation is described in Chapter 6. The discrete forward operator is a linear

operator A ∈ FNy×Nx . Thus the inverse problem seeks to find the solution to:

1This would mean y ≈ Ax, but the approximation is omitted as is common in literature.
2Theoretical research often involves functional-analytic regularisation techniques, which is

concerned predominantly with stabilising ill-posed inverse problems [65, 234].
3In fact the stability criteria was included, at least more clearly, after Hadamard [19, 110].
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y = Ax.

This formulation is used in established medical image reconstruction ap-

proaches where x would be the image. A solution to the inverse problem can

be obtained through inverting A such that x† = A−1y. Unfortunately this is only

available for invertible forward operators A. Another reconstruction method is

least-squares. This method is applicable when A is not invertible, and a com-

mon approach utilises theMoore-Penrose pseudoinverse [172], denoted as A+,

to obtain the least-squares solution.

The Moore-Penrose pseudoinverse is often computed via an Singular Value

Decomposition (SVD) of A = UΣV∗with A+ = VΣ+U∗ [33], where the columns

[u1, . . . ,uNy] = U ∈ FNy×Ny are the left singular vectors and columns [v1, . . . , vNx] =

V ∈ FNx×Nx are the right singular vectors and both matrices are unitary, i.e.

UU∗ = I and VV∗ = I where ∗ denotes the conjugate transpose and identi-

ties are of appropriate dimension. The diagonal elements of Σ ∈ RNy×Nx
≥0 are

the singular values and are ordered such that [Σ]11 ≥ [Σ]ii ≥ [Σ]rank(A). Here

Σ+ ∈ R
Nx×Ny
≥0 is a diagonal matrix with:

[Σ+]ii =


1

[Σ]ii
for i < rank(A)

0 for otherwise
,

where it can be observed that the singular vectors that are related to smaller

singular values are amplified with the pseudoinverse. This makes the decay of

the singular values pertinent to the stability, and well-posedness, of the recon-

structionmethod. As each singular value [Σ]ii is associatedwith corresponding

left and right singular vectors, larger singular values relate to low-frequency

singular vectors, while smaller singular values correspond to high-frequency

singular vectors.

To observe the instability of the reconstruction method, consider forward

problem with additive noise ε:

yε = Ax + ε. (2.4)



48 Chapter 2. Background

The least squares solution is given by:

x† = A+yε = A+Ax + A+ε =
rank(A)∑

i=1
vi

(
v∗i x︸︷︷︸

solution
component

+
u∗i ε
[Σ]ii︸︷︷︸
noise

component

)
.

Here it can be clearly seen that the noise component is scaled by 1
[Σ]ii

, while

the solution component is not. Focusing on the noise component:

rank(A)∑
i=1

1
[Σ]ii

vi(u∗i ε).

For small singular values [Σ]ii → 0 the contribution of u∗i ε is amplified. Con-

sequently, the components of the noise aligned with high-frequency singular

vectors (the smaller singular values) are particularly amplified. This property

makes the least-squares solutionmore sensitive to noise, and the reconstruction

method is deemed more ill-posed.

In addition to noise amplification, the singular value spectrum of A can

reveal information loss due to the null-space of the operator. In cases where

the SVD of the forward operator A = UΣV∗ includes zero-valued singular val-

ues, directions in the solution space corresponding to those singular values lie

within the null-space and are mapped to zero. This means that components

aligned with the corresponding singular vectors are lost.

By considering the least squares solution of a noisy linear inverse problem,

the ill-posed nature can be observed. The reconstruction method is limited by

the fundamental constraints imposed by the singular value spectrum and the

null-space of the forward operator.

To combat this sensitivity to noise, regularisation can be used to make the

reconstruction method better-posed. While regularisation can stabilise the in-

version, it cannot recover information lost to the null-space. In other words,

regularisation can only partially address the ill-posed nature of the problem; it

cannot restore details that A fails to capture in the first place.
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2.1.1 Regularisation Perspective

Historically, regularisation has transformed theway ill-posed problems are per-

ceived, challenging Hadamard’s original assertion that only well-posed prob-

lems correspond to physical reality. Despite the initial scepticism, ill-posed

problems have proven to be ubiquitous across scientific disciplines [6, 65].

Regularisation can make the reconstruction method better-posed, stabilis-

ing the inversion and mitigating noise amplification. However, it can also shift

the solution away from the true solution, thus introducing bias. It is therefore

important to consider the balance between bias and variance, which is referred

to as the bias-variance trade-off in statistical learning [89].4 This trade-off arises

when efforts to improve the stability of the solution (by reducing variance) can

lead to a loss in reconstruction accuracy (an increase in bias). Typically, this

balance between bias and variance is controlled through a hyper-parameter,

which allows adjustment between two goals: maintaining fidelity to the ob-

served measurements (data-consistency) and enforcing a regularisation con-

straint that introduces a controlled bias. This tuning process helps ensure that

the solution aligns well with the data while meeting desired stability criteria

[202].

An example of the regularised reconstruction is the truncated pseudoin-

verse solution [112]:

x† =
∑

[Σ]ii≥τ

vi

(
v∗i x +

u∗i ε
[Σ]ii

)
,

where the hyper-parameter τ is a threshold set based on noise characteristics

and the desired solution stability. By adjusting τ, one can control the bias-

variance trade-off: increasing τ eliminates smaller singular values, removing

high-frequency components of the solution. While this process dampens noise,

an excessively high τ can result in information loss of the sought after solu-

tion. In imaging, high-frequency components are associated with both noise

and large gradients that define structural details such as edges [202]. Thus, an

4It is important to note that density estimation methods in statistical learning often involve
solving ill-posed problems [246]. As a result, regularisation is commonly used, making the
bias-variance trade-off a central consideration.
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overly large τmay adversely affect image quality. Conversely, if τ is set too low,

noise may re-enter the solution, resembling the non-truncated case.

An alternative established reconstruction approach is to use variationalmeth-

ods [202]:

x† = argmin
x

Φ(x) := ρ(Ax, yε)︸     ︷︷     ︸
data-consistency

+ λη(x)︸︷︷︸
regularisation

 (2.5)

where ρ is the data-consistency between forward-projected solution Ax and

noisy measurements yε, and η is the regularisation function that restricts x to

a more feasible set of solutions. The hyper-parameter λ ∈ R≥0 is the regular-

isation parameter that balances the data-consistency and regularisation. The

choice of the regularisation parameter is non-trivial and depends on the noise

present on measurements and the assumptions on solution [202]. An example

of strategy for setting the regularisation parameter is Morozov’s Discrepancy

Principle. This states that if there is a known discrepancy δ between the noisy

measurements and measurements without noise, the regularisation parameter

should be set such that ||Ax† − yε|| = δ [81].

The optimisation problemoutlined in Eqn. (2.5) can be solvedusing various

optimisation algorithms. The choice of algorithmdepends on themathematical

properties of the objective function Φ, as well as requirements for convergence

speed and solution accuracy. Examples are described in Section 2.2.3.

Tikhonov regularisation was one of the first variational methods [106, 234],

the objective function is given by:

Φtikh(x) := ||yε − Ax||22 + λ||Γx||22,

where Γ ∈ RNx×Nx is the Tikhonovmatrix. This solution can be obtained analyt-

ically from xtikh† = (A∗A + λΓ∗Γ)−1A∗yε, but this is often infeasible in-practice

due to the expense of inverting a large matrix for high-dimensional problems

and numerical instabilities arising from ill-conditionedmatrices. For zeroth or-

der Tikhonov, where Γ = λI, the solution can alternatively be obtained through
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an SVD, such that:

xtikh
† =

rank(A)∑
i=1

vi([Σ]2
iiv
∗
i x + [Σ]iiu∗i ε)

[Σ]2
ii + λ

2
.

When comparing with the truncated pseudoinverse solution, Eqn. (2.1.1),

we see that the high-frequency components of the solution can be damped

through the regularisation parameter λ. Having the constant λ2 in the de-

nominator flattens the singular spectrum of A making the operator less ill-

conditioned, and the reconstruction method better-posed. Note that as λ → 0

then xtikh† tends to the least squares solution.

It is important to note that regularisers within a variational method do not

act alone. The zeroth order Tikhonov example penalises ||x||22, which by itself

has a trivial uniqueminimawhen x = 0. Through the action of data-consistency

and regularisation, the regularisation affects the solution locally, smoothing

noise and regularising the solution.

Tikhonov regularisation and truncated pseudoinverse solutions are classi-

cal approaches. Recent advances in regularisation [19] use regularisation func-

tions that extend beyond simple functional forms, leveraging advanced math-

ematical constructs such as sparsity-promoting norms, and total variation.

Sparsity-promoting norms encourage solutions with many elements that

are exactly zero. This is typically achieved by applying an ℓ1-norm regulari-

sation to a transformed representation of the solution. The transformation is

often chosen such that the solution becomes sparse in that domain — for ex-

ample wavelet, Fourier, or other suitable domain where the solution exhibits

sparsity. A general form for a sparsity-promoting regulariser is given as:

ηSP(x) = ||Ψx||1,

with the discrete sparsifying transform denoted Ψ. In fact the truest mea-

sure of sparsity would be the ℓ0 that is simply the number of non-zero com-

ponents. However, solving for ℓ0-norm solutions requires combinatorial algo-

rithms, which are not feasible for high dimensions. The ℓ1-norm is a convex re-

laxation of the ℓ0 [63]. Further, regularisation that imposes a sparse structure is
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related to the popular reconstruction approach of compressed sensing. Com-

pressed sensing gives theoretical guarantees for the exact recovery of sparse

solutions from fewer measurements than typically required [35, 58]. Unfortu-

nately these guarantees only exist under assumptions that are violated in practi-

cal applications. Despite the lack of theoretical guarantees sparsity-promoting

regularisers have been shown to work well in practice [147].

Total Variation (TV) regularisation is a sparsity-promoting regulariser on

the gradient of the solution. This can be expressed as:

ηTV(x) = ||∇x||1,

where Ψ = ∇ is the gradient operator. TV is effective at promoting piece-wise

constant structures that are often sought after characteristics of the solution, be-

cause of this it is often referred to as a edge-preserving regulariser. That said,

when over-regularised the solutions exhibit blocky artifacts that are unappeal-

ing [19]. Further development of TV include non-linear methods that smooth

the solution based on local gradient magnitudes that can better reduce noise in

the solution [173, 194].

All the reconstruction methods introduced thus far have been hand-crafted

which involves the deliberate design of regularisation terms that encode spe-

cific assumptions or desired properties of the solution. While these methods

have proven highly effective in stabilising reconstruction andpreserving impor-

tant features in the solutions, they rely on constructs that may not fully capture

the underlying statistical properties of the sought-after solution.

2.1.2 Statistical Perspective

For the statistical perspective of inverse problems the measurements are mod-

elled as samples drawn from a probability distribution characterising the noise

corrupting the measurements. For the noisy forward problem described in

Eqn. (2.4) it is common to have normally distributed noise ε ∼ N(0, Iν2). The

statistical inverse problem in that case can be expressed as:
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yε ∼ N(Ax, Iν2), (2.6)

where themean of themeasurements is ȳ = Ax. The likelihood function plkhd(yε|x)

quantifies the probability of observing measurements yε given the solution x.

In statistical inference for inverse problems, our goal is to estimate properties of

a distribution based on the observed data, the statistical properties of the noise,

and -optionally- some prior knowledge of the solution.

There are two primary schools of thought for statistical inference applied to

inverse problems: Frequentist and Bayesian.

2.1.2.1 Frequentist Inference

In the frequentist perspective, the solution x is treated as an unknown but fixed

parameter, while the randomness arises solely from themeasurements y, which

are considered random samples from their probability distribution. The objec-

tive is to estimate this fixed but unknown solution based on the observed data.

One of the foundationalmethods in this context is theMaximumLikelihood

(ML), introduced by Fisher in 1922 [71]. The ML estimate seeks the solution

that maximises the likelihood function:

x†MLE = argmax
x

plkhd(yε|x).

For the case of normally distributed i.i.d noise, as Eqn. (2.6), the likelihood

function is given by:

plkhd(yε|x) =
1

(2π)n/2νn
exp

−||yε − Ax||22
2ν2

 .
Maximising this likelihood is equivalent to minimising the negative log-

likelihood, as the logarithm is a monotonically increasing function, leading to

the least-squares method:

x†MLE = argmin
x

[
− log plkhd(yε|x) ≡

1
2ν2 ||y

ε − Ax||22

]
.

This is equivalent to the Moore-Penrose pseudoinverse solution described
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in Section 2.1.1. As described previously, this solution is sensitive to noise in

the measurements. Note that in a regularisation framework, discussed in Sec-

tion 2.1.1, a statistical model for the measurements is often used to justify the

data-consistency in a variational method [112]. Furthermore, the frequentist

approach does admit regularised solutions, where regularisation improves the

properties of the estimation procedure rather than including probabilistic be-

liefs of the prior.

2.1.2.2 Bayesian Inference

In contrast, the Bayesian perspective treats the solution x as a random variable

with a prior distribution π(x). This prior encapsulates any existing knowledge

or assumptions about x before observing the data. When newmeasurements yε

are obtained, Bayes’ theorem is used to update the prior distribution, resulting

in the posterior distribution:

ppost(x|yε) =
plkhd(yε|x)π(x)

p(yε)
, (2.7)

where p(yε) is the marginal likelihood that normalises the posterior.

A common approachwithin Bayesian inference is computing theMaximum

A Posteriori (MAP) estimate,5 which seeks the solution x that maximises the

posterior probability [112]:

x†MAP = argmax
x

ppost(x|yε).

Observe that the marginal likelihood is not a function of the solution mean-

ing it does not affect the extrema location and it can be ignored for optimisation.

By taking the negative log-likelihood and the posterior is maximised through

minimising:

x†MAP = argmin
x

[
− log plkhd(yε|x) − log π(x) + const

]
.

This formulation reveals a direct connection between Bayesian inference

and regularisation methods [106]. The term − log plkhd(yε|x) corresponds to
5Other estimators include posterior mean E[x|y] =

∫
xppost(x|y)dx.
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the data-consistency term, ensuring the solution fits the observed data, while

− log π(x) serves as a regularisation term that incorporates prior information

about the solution.

The connection is further observed by considering a Gaussian prior π(x) =

N(0, χ2I) with mean-zero and isotopic variance χ such that:

− log π(x) =
1

2χ2 ||x||
2
2 + const.

Supposing we have the same normally distributed likelihood as before, the

MAP estimate is obtained from:

x†MAP = argmin
x

[
− log plkhd(yε|x) − log π(x)

]
= argmin

x

[
1

2ν2 ||y
ε − Ax||22 +

1
2χ2 ||x||

2
2

]
.

This is equivalent to zeroth order Tikhonov regularisation, where the regulari-

sation term arises naturally from the prior [106]. The Bayesian framework thus

provides a probabilistic justification for regularisation techniques, linking the

choice of prior to the form of the regularisation.

By leveraging the Bayesian framework, we can derive regularisation tech-

niques grounded in statistical principles, allowing for more flexible and data-

adaptive approaches to defining a prior. Furthermore, other properties of the

posterior distribution can be assessed which is useful to capture uncertainty in

reconstruction [112].

In the next section, we focus onmedical image reconstruction, with particu-

lar emphasis on PET andMRI. For the remainder of this thesis, we simplify the

notation by omitting the ε superscript used for noisy measurements. Instead, y

will denote the noisy measurements, as noise is inherently present in practical

scenarios.
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2.2 Medical Image Reconstruction

Medical image reconstruction is typically an ill-posed inverse problem. A range

of medical imaging modalities exist but for this thesis we focus on PET and

MRI. Figure 2.1 gives idealised measurements and images.

Idealised PET Image Idealised MRI Image

PET Measurements
(Sinogram)

MRI Measurements
(k-space)

Figure 2.1: A comparison of idealised PET andMRI images from the BrainWeb dataset
with their corresponding idealised raw measurements. The magnitude
fully-sampledCartesian k-spacemeasurements are displayed on a logarith-
mic scale.

These modalities are distinct in what they measure and how they mea-

sure it, but both are non-invasive tomographic imaging techniques where mea-

surements are projections. With undersampling and noise, the problems be-

come increasingly ill-posed, primarily due to challenges associated with the

null space of the forward operator and the amplification of noise, as outlined

in Section 2.1.
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As discussed in Section 1, medical image reconstruction is an integral part

of themedical imaging pipeline. Upstream, the acquisition process often yields

noisy and incomplete measurements, while downstream, it is crucial to ensure

that the reconstructed images do not compromise subsequent analyses. In or-

der to faithfully reconstruct medical images one must first ask the question:

2.2.1 What Are Medical Images?

Medical images in our context are visual representations of the interior of a

body. These images are either two-dimensional Ndim = 2 images or three-

dimensional Ndim = 3 volumes,6 while dynamic imaging can include another

temporal dimension. An image can be described as a scalar-valued function:

x(r) : RNdim → F,

where r ∈ RNdim is the spatial coordinate. Discretisation of these images is

required for digital processing. The image is often represented as a linear com-

bination of basis functions with associated coefficients of the form:

x(r) =
Nb∑

b=1
c(b)ψ(b)(r),

where Nb is the number of basis functions, ψ(b) is the b-th basis function, and

c(b) is the b-th coefficient. The digital image is sampled at a discrete set of spatial

locations, denotedΩr = {(r( j))}
Nr
j=1, where Nr is the number of spatial coordinate

samples. The discretised image is denoted:

x = x(r)|Ωr =

Nb∑
b=1

c(b)ψ(b)(r)|Ωr .

Here we use |Ωr to represent the ordered evaluation at sample coordinates,

producing a vector. A variety of basis functions have been proposed, where

their properties lend themselves to different applications. For smoother basis-

functions such as Gaussian and Kaiser-Bessel, often referred to blobs in liter-

ature [84, 208], their properties are favourable when noise suppression is re-
6Image is often used interchangeably with volume.
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quired. The most prevalent basis function are piece-wise constant pixels or

voxels.

The choice of discretisation significantly impacts both the systematic error

in forward modelling and the ill-posedness of the inverse problem [106]. In

Chapter 6, we propose a novel parameterisation that treats the image as a con-

tinuous Gaussian functions.

The representation of an image x with a fixed number of basis functions

can be written as as a basis-transformation matrix. Let Ψ ∈ RNb×Nr denote the

basis-transformation matrix, where each entry [Ψ]i j = ψ(i)(r( j)) represents the

evaluation of the i-th basis function at the j-th coordinate.

x = Ψc.

For pixels and voxels, Nb = Nr and the basis-transformation matrix is ef-

fectively an identity matrix. Thus we omit the basis-function and coefficient

notation, as is common in literature, when using piece-wise constant basis func-

tions. Note that pixels and voxels resolution is defined by the support of each

piece-wise constant basis function. Further discussion on alternatives to voxels

is discussed in Chapter 6.

Medical images possess intrinsic properties independent of discretisation.

More broadly, the characteristics of natural images have been extensively stud-

ied [70, 214] revealing key properties — such as spatial correlations, locality,

compositionality, scale-invariance, and non-Gaussian statistics. In medical im-

age reconstruction, incorporating these properties into priors or regularisers

can enhance the fidelity of reconstruction:

• Spatial correlations refer to statistical dependencies that can exist over

varying distances between pixels, capturing patterns or structures that

repeat across an image. This concept encompasses broader relationships

beyond immediate neighbours and is often associated with spatial sta-

tionarity, where statistical properties are consistent across regions.

• Locality refers specifically to the relationships between neighbouring pix-

els or patches, emphasising their strong correlation due to spatial prox-
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imity. Regularisationmethods, such as TV, leverage this property by pro-

moting local consistency while preserving edges [194].

• Compositionality refers to the principle that images can be represented as

a combination of simpler, semantically meaningful components, such as

shapes, textures, or anatomical structures. This can be leveraged by rep-

resenting images as combinations of known basis functions or predefined

structures, enabling more interpretable and efficient representations [3].

• Scale invariance suggests that image structures are self-similar across scales.

Multi-scale regularisationmethods capture features at various levels, pre-

serving both fine details and large-scale structures [149].

• Non-Gaussian statistics refer to pixel intensities and filter responses in

natural and medical images deviate from Gaussian distributions, often

exhibiting heavy tails that indicate a higher occurrence of extreme val-

ues. Modelling these non-Gaussian properties, such as with sparsity-

promoting regularisers, enhances image reconstruction by better captur-

ing the image’s true structure [177].

Both PET andMRI images exhibit the discussedproperties despite their fun-

damentally different imaging mechanisms. PET captures functional informa-

tion by detecting photons that result from radiotracers that trackmetabolic pro-

cesses [50], while MRI generates high-resolution structural images by detect-

ing signals from the transverse magnetisation of hydrogen nuclei in response

to magnetic fields [30]. These shared image properties arise from the intrinsic

characteristics of natural images, but the specific way each modality generates

and relates data to the underlying image depends on its forward model. The

forward model encapsulates the physical and mathematical processes linking

measurements to the image, and understanding it is crucial for accurate recon-

struction, as detailed in the next section.

2.2.2 Modelling the True Physical Forward Process

Medical imagingmeasurements are the product of complex physics and practi-

cal hardware constraints. The true physical forward process is an operator that
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converts the object into measurements acquired by the scanner. We introduce

a brief review of the true physical forward process that produces the measured

data for PET and MRI, as well as describing models for those processes.

2.2.2.1 PET Forward Model: From Radiotracer to Sinogram

PET is a non-invasive imaging modality that detects photons produced by the

annihilation of a positron and an electron. The positron is emitted during the

decay of a radiotracer, which is a biologically active molecule labelled with a

positron-emitting radionuclide.

The PET imaging process begins with the administration of a radiotracer,

which exposes patients to ionising radiation. Commonly used radiotracers

include 18F-FluoroDeoxyGlucose (FDG) for cancer detection, 18F-Florbetapir

(Amyloid) for Alzheimer’s disease detection, andOxygen-15 labelledwater for

blood flow studies [12]. These radionuclides are produced in cyclotrons. Dur-

ing β+ decay, the radionuclide undergoes a transformation in which a proton is

converted into a neutron, emitting a positron (e+) and a neutrino (νe):

a
z X→ a

z−1Y + e+ + νe,

where a
z X is the parent radionuclide and a

z−1Y is the daughter nuclide.

The kinetic energy of a positron is a characteristic of its specific radionu-

clide. Once emitted the positron travels and undergoes Coulomb elastic col-

lisions with atomic nuclei and inelastic collisions with atomic electrons [140].

Typically, the positron must lose all its energy before annihilating with an elec-

tron [94]. This energy loss occurs gradually through inelastic collisions, each

of which dissipates a small amount of energy, requiringmany such interactions

and the positron follows a tortuous path [11]. This expected distance that the

positron travels is referred to as the positron range [140]. Since the positron’s

kinetic energy is radionuclide-dependent, the spatial resolution is inherently

tied to the choice of radionuclide.

The positron-electron annihilation results in the emission of two 511 keV

gamma photons travelling in approximately opposite directions (co-linear an-

nihilation). However, due to the residual momentum of the positron-electron
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pair, the annihilation photons are emitted at an angle deviating from 180 de-

grees. This non-collinearity introduces additional blurring in the reconstructed

image, with the blurring effect increasing with the diameter of the scanner

[213].

As the high-energy annihilation photons traverse the body, they interact

with matter primarily through Compton scattering. Compton scattering is the

dominant interaction in human tissue for photons between approximately the

energies of 100 keV and 2 MeV [12]. The probability of scattering is governed

by the Klein-Nishina equation [127], and this is the basis of single scatter sim-

ulations often used to account for scatter in the PET forward model [253].

Compton scattering aswell as other interactions contribute to amacroscopic

linear attenuation coefficient µ(r).7 Attenuation is a measure of the probability

that a photon will be attenuated by a unit length of the medium [12].

The PET scanner consists of an array of scintillation detectors arranged in a

ring configuration. Each detector comprises a scintillator crystal coupled to a

photodetector. When two detectors register photon events within a predefined

time window, they are considered coincident events and the line connecting

the two detectors defines a Line Of Response (LoR). The recorded coincidence

events can be split into three categories: true coincidences where no scatter-

ing occurs and photons are from the same annihilation event; scattered coin-

cidences that are from the same annihilation event although the photons are

affected by scattering; and random coincidences where coincidences are not

from the same annihilation event and could have undergone scattering [12].

Furthermore, the detectors are limited by dead time (periods when the detec-

tor cannot record new events), discretisation errors due to finite detector size,

crystal penetration, inter-crystal scattering, and normalisation factors affecting

detector sensitivity [32]. These hardware constraints are an important feature

of the true physical forward process.

The coincident events for each LoR are accumulated and these are organised

into a sinogram based on their spatial relationship. Considering a single ring,

given a set of parallel LoRs forms aprojection for a given angleα, where the one-
7Such as photoelectric absorption, pair production, Rayleigh scattering, triplet production

and photo-nuclear reactions.
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dimensional projection dimension s is perpendicular to the LoRs. Therefore,

each element of the sinogram corresponds to a binned LoR with specific angle

α and position s, i.e. the sinogram is parameterised by α and s.

The sinogram is the discrete representation of the Radon Transform of the

two dimensional object x(rx, ry). The Radon Transform R(α, s) is defined [106]:

Rx(α, s) =
∫ ∞
−∞

∫ ∞
−∞

x(rx, ry)δ(rx cosα + ry sinα − s)drxdry,

δ is the Dirac delta function ensuring integration along the line s = rx cosα +

ry sinα.8 In three dimensions the transform is a ray transform, and the inter-

ring coincidence events ofmulti-ring scanners are often stored inMichelograms

[66]. This data-format is often high dimensional with themeasurements y hav-

ing Ny elements that are the product of the number of projections, projection

angles, and inter-ring cross-planes. To lower the computational demand the

discretisation can bemade coarser viamashing and rebinning [245], this comes

at the expense of error in forward modelling.

When developing the forward model A the aforementioned processes re-

quire correction and incorporation into the forward model. The resolution of

the PET image x ∈ RNx
≥0 is affected predominately by positron range and non-

collinearity, this can be modelled as a blurring operator ARes. ∈ RNx×Nx .9 How-

ever, resolution modelling is not always used in clinical practice due to the oc-

casional increase in variability when quantifying small structures [182].

The attenuation correction is typicallymodelled as the diagonalmatrixAAttn. ∈

R
Ny×Ny
≥0 [123], which gives the probability of a photon being detected for a given

LoR. The detected signal of an LoR ILoR is governed by the Beer-Lambert law:

ILoR = I0 e−
∫
LoR µ(l)dl︸        ︷︷        ︸

attenuation factor
,

where variable l lies on the LoR and I0 is the intensity prior to attenuation.

The linear attenuation coefficient can often be obtained from a CT scan. Al-
8Given a point source at rx = x0 and ry = y0, the Radon Transform simplifies to R(α, s) =

δ(s − x0 cosα − y0 sinα) which is a sinusoidal curve in the sinogram. This sinusoidal pattern is
characteristic and gives the sinogram its name.

9PET modelling does not involve complex numbers, hence the restriction of image and for-
ward modelling terms to real number.
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ternatively there are methods that attempt to reconstruct as well as estimate

attenuation [162].

To correct for scatter and random coincident events additive factors are in-

cluded in the forward model. The aforementioned single scatter simulation

can be used to correct for scattered photons and is denoted s̄ ∈ RNy [253]. The

randoms can be separately corrected for and are denoted as ϵ̄ ∈ RNy [12].

Detector sensitivity refers to the ability of each detector to register incoming

photons. The sensitivity of a detector can be modelled as a function of the de-

tector’s physical characteristics and position within the ring. In practice, nor-

malisation factors are applied to compensate for sensitivity variations across

the detectors and are denoted as a diagonal matrix ANorm. ∈ RNy×Ny [12].

The final component of the PET forward model is the projection operator

AProj. ∈ RNy×Nx , this models the transformation from three-dimensional radio-

tracer distribution to number of events on an LoR. This is the most computa-

tional intensive operation, requiring projection operators that computeweighted

line integrals through the volume. Sophisticated software exist for this compu-

tation [207, 233].

The PET forward model, or model of the mean of the measurements [187],

is given by:

ȳ = Ax + b̄ = ANorm.AAttn.AProj.ARes.x + s̄ + ϵ̄, (2.8)

where both scatter and randoms contribute to the estimated background counts

b̄ = s̄ + ϵ̄ [180]. These background counts attempt to account for the true scat-

tering and detection processes, but cannot account for the inherent noise on the

measurements. This noise is due to the photon-counting process of detection,

and given dimensionality of the measurements, concentration of radiotracer,

and the duration of a scan, the measurements are a result of a low-counting

photon process. This means that the measurements can be modelled as a sam-

ple from Poisson distribution with mean the expected measurements y ∼ P(ȳ)

[21, 99].
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2.2.2.2 MRI Forward Model: FromMagnetic Dipoles to k-space

MRI is a non-invasive imaging technique that provides high-resolution struc-

tural information by exploiting the magnetic properties of, typically, hydrogen

nuclei that are abundant in biological tissues (water and fat).10 The protons

within these hydrogen nuclei possess a quantum property called spin, which

can be thought of as intrinsic angular momentum. In the absence of an external

magnetic field, these spins are randomly oriented, resulting in no net magnetic

dipole moment.

However, when subjected to a strong magnetic field B0 of an MRI scanner,

the spins tend to to align either parallel (lower energy state) or anti-parallel

(higher energy state). This alignment creates a small, but detectable net mag-

netisation M0 that point along B0 [30]. This behaviour is governed by:

M0 = N
γ2ℏ2B0
4kBT

,

where N is the number of spins per unit volume, γ is the gyromagnetic ratio,

ℏ is the reduced Planck constant, kB is the Boltzmann constant, and T is the

absolute temperature.11 For context, the magnetic field strength of a typical

clinical scanner (B0 ≈ 3 T) is more than 45,000 times stronger than the Earth’s

magnetic field.

In imaging applications, after alignment to the B0 field -defined as B =

[0, 0, B0]⊤ (i.e. along the z-direction)- themagneticmomentM = [Mx,My,Mz]⊤,

which is initially aligned as M = [0, 0,M0]⊤, is perturbed by a carefully de-

signed Radio-Frequency (RF) pulses. These pulses are typically applied at the

Larmor frequency (ω0 = γB0) that ensures the spins undergo nuclearmagnetic

resonance, allowing them to efficiently absorb energy from the RF pulse [181].

The RF pulses, typically applied perpendicular to B0, rotate M into specified

orientations. Each pulse can vary in amplitude, duration and phase, and is part

of a pulse sequence designed to manipulate the spins for spatial encoding and

contrast generation [30]. The time evolution of the magnetisation vector M

10Originally, MRI was called Nuclear Magnetic Resonance Zeugmatographic Imaging [131,
132].

11It is important to note that M0 is made significant due to the sheer number of spins N in a
sample.
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during and after the pulses is governed by the phenomenological macroscopic

Bloch equations [24]:

d
dt


Mx

My

Mz

 =

− 1

T2
γBz −γBy

−γBz − 1
T2

γBx

γBy −γBx − 1
T1



Mx

My

Mz

 +


0

0
1

T1

 , (2.9)

where γ is the gyromagnetic ratio specific to the nucleus (for hydrogen, γ/2π ≈

42.58 MHz/T), T1 is the longitudinal relaxation time, and T2 is the transverse

relaxation time. The Bloch equations omit additional factors such as diffusion

and chemical exchange that can be can be introduced [151, 236].

The measurable component of the magnetisation is on the transverse plane

M⊥ = Mx + iMy and is referred to as the transverse magnetisation M⊥. The

transverse magnetisation is spatially varying, and to reconstruct an image spa-

tial encoding is required. Spatial encoding in MRI is achieved using magnetic

field gradients superimposed on the static B0 field. These gradients, denoted
dB
dt = [dBx

dt ,
dBy
dt ,

dBz
dt ]⊤, create a spatial variation in the magnetic field, and thus

in the Larmor frequency. These gradients are usually linear and they allow the

encoding of spatial information into the phase and frequency of the transverse

magnetisation [131]. The signal received by a receiver coil at time t can be ex-

pressed as:

s(t) =
∫
Ωr

M⊥(r)e−iϕ(r,t)dr, (2.10)

where M⊥(r) is transverse magnetisation at position r and ϕ(r, t) is the accumu-

lated phase at time t, given by:

ϕ(r, t) = ω0t + γ
∫ t

0

dB
dt
τ · rdτ.

By substituting ω0 = γB0 and considering that the static field contributes

a constant phase evolution common to all spins, we can focus on the phase

accumulation due to the gradients:

ϕ(r, t) = γ
∫ t

0

dB
dt
τ · rdτ.
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This remaining term encodes spatial information via the gradients. Defin-

ing the spatial frequency variables k = [kx, ky, kz]⊤ (also known as k-space tra-

jectories):

k(t) =
1

2π
γ

∫ t

0

dB
dt
τdτ,

the accumulated phase becomes:

ϕ(r, t) = 2πk(t) · r.

Substituting back into the signal equation, Eqn. (2.10), we obtain:

s(t) =
∫
Ωr

M⊥(r)e−i2πk(t)·rdr.

This shows that the measured signal is the Fourier transform of the trans-

versemagnetisation. In practice, the signal is sampled at discrete time points tn,

corresponding to discrete points in k-space kn = k(tn). We denote the ordered

set of measured k-space points as Ωk, and the discretised signal measurements

can be represented as:

sn =

∫
Ωr

M⊥(r)e−i2πkn·rdr, n = 1, . . . ,Ny,

where Ny is the number of measurements.

Further, multiple receiver coils can be used in a technique known as parallel

imaging. Each coil is modelled as:

s(κ)(t) =
∫
Ωr
υ(κ)(r)M⊥(r)e−i2πk(t)·rdr,

where υ(κ) represents the sensitivity of the κ-th coil out of Nκ coils. The coil

sensitivity, υ(κ), encodes spatial dependency, allowing for better spatial localisa-

tion of the transversemagnetisation. This is particularly valuable in accelerated

imaging applications, where not all of k-space is sampled, resulting in under-

sampled measurements [53]. The discrete forward model for parallel imaging

is often denoted:
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ȳ = AFourierACoilsx (2.11)

Here themeasurements are for all the coils y ∈ CNκ.Ny ,AFourier ∈ C(NyNκ)×(NxNκ)

is a discrete Fourier transform for the corresponding k-space coordinates Ωk

that has a block-repeated structure, ACoils ∈ C(NxNκ)×Nx are the discrete coil

sensitivities that have a stacked diagonal structure, x ∈ CNx is the discrete im-

age of transverse magnetisation. In practice there a few techniques to estimate

the coil sensitivities, whether it explicit knowledge [179, 241], or calibration of

the k-space measurements [80], this is discussed further in Section 2.2.3.2

In practical MRI systems, several factors affect the accuracy and quality of

the forward model. These can be incorporated into the forward model as sepa-

rate components. The finite relaxation times T1 and T2 cause themagnetisation

to decay over time toward equilibrium M = [0, 0,M0]⊤. This decay can be mod-

elled by including exponential attenuation in the signal [68]:

s(κ)(tn) =
∫
Ωr
υ(κ)(r)M⊥(r)e−i2πkn·re−tn/T ∗2 dr,

where T ∗2 accounts for both T2 relaxation and magnetic field inhomogeneities.

Additionally, variations in B0 and susceptibility differences introduce phase

errors [68]. These can be modelled by adding a spatially varying off-resonance

frequency ∆ω(r), adding this to the phase gives:

ϕ(r, tn) = 2πkn · r + ∆ω(r)tn.

There are further imperfections such as gradient linearity, eddy currents,

and hardware limitations that can be included too. Notwithstanding, in many

cases the simplified forward model of receiver coils and Fourier transform suf-

fices. This is denoted as:

ȳ = Ax,

where A includes are linear approximations to MRI physics and hardware con-

straints. The noise affecting MRI k-space measurements additive, white com-



68 Chapter 2. Background

plex Gaussian noise [95].12

2.2.3 Model-based Medical Image Reconstruction

Model-based reconstruction approaches are among the most established and

flexible methods in medical imaging. These models explicitly incorporates a

mathematical model for the imaging process and follows the variational ap-

proaches discussed earlier in Section 2.1.1. In particularly the forward model

represents the imaging process from image to measurements A : X → Y . In

addition to leveraging the imaging process, prior information about the target

image can be leveraged. Thus, in variational framework, the choice of regu-

lariser is tailored for the properties of the imaging modality, see 2.2.1.

As described in Section 2.1.2, the noise model dictates the data-consistency

term, which quantifies the discrepancy between the expected measurements

ȳ and the actual observed measurements y. This term must respect the noise

model inherent to the measurements, as different imaging modalities are af-

fected by different types of noise. For instance, in PET, the measurements are

affected by Poisson noise due to the stochastic nature of radioactive decay and

photon detection. Each element of the PET, sinogram data is modelled as a re-

alisation from a Poisson random variable [12]. In MRI, the measurements are

modelled as corrupted by white complex-valued Gaussian noise [30].

In the following sections, we will consider approaches for model-based re-

construction for both PET andMRI, highlighting important considerations, caveats,

and algorithms used in practice.

2.2.3.1 PET Image Reconstruction

ThePET scanner event detection is a photon-countingprocess. Photon-counting

is intrinsically integer-valued, and is dictated by the half-life and spatial dis-

tribution of the radio-tracer. Given this process, PET measurements are most

appropriately modelled as a realisation from a Poisson distribution:

y ∼ P(ȳ).

12The noise on magnitude images follows a Rician distribution, not Gaussian [36].
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Given that the noise model is Poisson, the likelihood function, which en-

sures data consistency, is the Poisson likelihood. In practice, the Poisson Neg-

ative Log-Likelihood (NLL) is commonly used. Taking the logarithm, as dis-

cussed in Section 2.1.2, is valid because it is a monotonic transformation that

preserves the location of the minimiser. Furthermore, the logarithm simplifies

the product into a summation, and the negative sign is necessarywhen framing

the problem as a minimisation task.13 The Poisson NLL is expressed as:

− log plkhd(y|ȳ) = − log


Ny∏
i=1

plkhd(yi|ȳi)

 (2.12)

= − log


Ny∏
i=1

exp(−ȳi)
ȳyi

i
yi!

 (2.13)

=

Ny∑
i=1

ȳi−yi log(ȳi) + log(yi!),︸      ︷︷      ︸
independent of ȳ

 (2.14)

where the forward problem is the models of the mean measurements ȳ:

ȳ = Ax + b̄.

the term independent of ȳ in Eqn. (2.14) would not affect a minimisation prob-

lemwhere x is the variable. Thus, omitting this term theNLL, or data-consistency

is given by:

ρPET(y|Ax + b̄) :=
Ny∑
i

[Ax + b̄]i + yi log([Ax + b̄]i).

The PET data-consistency ρPET is convex, however, the data-consistency is

not defined log([Ax + b̄]i) = log(0). PET reconstruction engines, such as STIR,

are able to account for this.

The gradient of the PET data-consistency is given by:

∂ρPET(y|Ax + b̄)
∂x

:= A⊤
[
y ⊘ [Ax + b̄] − 1

]
,

13In PET literature maximisation is more commonly used. Whereas minimisation is the stan-
dard approach in other fields such as machine learning and MRI image reconstruction.
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where ⊘ denotes element-wise division and ⊤ denotes the adjoint. Challenges

arise when any element of [Ax + b̄]i = 0 while the corresponding yi > 0, as this

leads to a division by zero in the term y ⊘ [Ax + b̄]. However the background b̄

is usually non-zero and this is rarely observed in practice [180].

The PET measurements are typically affected by a large amount of noise,

especially in the low-count regime, necessitating strong regularisation in the

reconstruction algorithm to suppress noise amplification and stabilise the so-

lution [12]. Moreover, the reconstructed image must satisfy the non-negativity

constraint x ∈ RNx
≥0 as the radiotracer cannot be negative. Additionally, due to

patient-specific variations in metabolism and other factors, the dynamic range

of x can vary significantly [161].

Maximum Likelihood Expectation Maximisation (MLEM) is an algorithm

that updates the image estimate to obtain the ML estimate, x(k) where k indi-

cates the iterate, to maximise the likelihood as described in Section 2.1.2.1 to

obtain the ML estimate [211]. For PET this update is given by:

x(k+1) =
x(k)

A⊤1
A⊤

(
y

Ax(k) + b̄

)
.

The first iterate x(0) ∈ RNx
≥0 is strictly positive, and MLEM preserves non-

negativity through themultiplicative updates. In practice a small positive value

is included in the numerator of x(k)

A⊤1 to ensure the solution updates as a value of

zero would cease to update. The term A⊤1 is called the sensitivity image that

can be pre-computed, and x(k)

A⊤1 is often referred to as the Expectation Maximi-

sation (EM) preconditioner.

In practice, MLEM is early-stopped to prevent the solution over-fitting to

noise in the measurements. Further, the algorithm converges slowly, and the

application of the forward operator A and adjoint A⊤ is expensive due to the

number of LoRs of the scanner. Thismotivates algorithms that converge quicker

that include Ordered Subset Expectation Maximisation (OSEM) and Block-

Sequential Regularised ExpectationMaximisation (BSREM). These algorithms

update the solution based on a subset (block) of themeasurements, thus reduc-

ing forward operator A to only the rows corresponding to thosemeasurements.
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OrderedSubset ExpectationMaximisation algorithm is an adaptation ofMLEM

that uses subsets [103]. A subset of the measurements is denoted {(ys)}NS
s=1

where the index s is a specific subset out of Ns disjoint subsets. These subsets of-

ten correspond to a set of equally spaced rows across all sinogram-measurements,

which is suggested to balance to subsets to minimise variance between them

[103, 180]. The accessing of these subsets can additionally be tuned to com-

pensate for unbalanced subsets, which can aid convergence [96]. A subset of

the background is denoted b̄s, and corresponding rows of the forward operator

is As. This gives the OSEM update:

x(k+1) =
x(k)

A⊤1
A⊤s(k)

 ys(k)

As(k)x(k) + b̄s(k)

 . (2.15)

The subset index s(k) = (k mod Ns) + 1 cyclically iterates through the Ns

subsets. This algorithm does not converge to the ML estimate [31, 180]. In

clinical practice OSEM reconstructions are early-stopped and post-smoothed to

supress noise [180]. The EM preconditioner x(k)

A⊤1 often includes small positive

value similar to MLEM.

MaximumAPosteriori estimates donot rely onheuristics such as early-stopping

and post-smoothing, and instead incorporate regularisation into the objective

function, i.e. this can be viewed as a variational method, see Eqn. (2.5), of the

form:14

Φ(x) := ρPET(y|Ax + b̄) + λη(x).

The inclusion of regularisation mitigates the need for early-stopping, with

regularisation parameter λ weighing regularisation strength. This objective

function can be split into subsets such that:

Φs(x) := ρPET(y|Asx + b̄s) +
λ

Ns
η(x), (2.16)

14This muddles the functional analytic regularisation and Bayesian inferences approaches of
Sections 2.1.1 and 2.1.2.2. The priors, Quadratic Prior and Relative Difference Prior, are only
weakly motivated from a statistical perspective. Perhaps more correctly they can be referred to
as regularisers or penalisations that penalise the solution to have desired properties. We refer
to these “priors” as regularisers or penalisations henceforth.



72 Chapter 2. Background

with {(Φs)}Ns
s=1 sub-objective functions. For PET, regularisers that reduce noise

and smooth the image are particularly effective. Two well-established regu-

larisers in this context are the Quadratic Prior and the Relative Difference Prior

[78, 79, 161].

Quadratic Prior encourages smoothness in the reconstructed image by pe-

nalising the squared differences between neighbouring voxels [78, 79]. It is

defined as:

ηQP(x) =
1
2

Nx∑
i=1

∑
j∈Ni

wi j(xi − x j)
2,

whereNi denotes the set of neighbouring voxels of voxel i, and wi j are weights

that are often set to one or determined based on voxel distances. This prior

is also equivalent to Tikhonov regularisation, see Section 2.1.1, provided the

appropriate neighbourhood and weights.

The gradient of the QP with respect to x is:

[
∂ηQP(x)
∂x

]
i
=

∑
j∈Ni

wi j(xi − x j).

RelativeDifference Prior is designed to preserve edgeswhile enforcing smooth-

ness in homogeneous regions [161], it is defined as:

ηRDP(x) :=
Nx∑
i=1

∑
j∈Ni

wi j
(xi − x j)2

xi + x j + γ|xi − x j|
,

where a small positive value is often included in the denominator to avoid di-

vision by zero, γ is the edge-preserving hyper-parameter, and wi j is as before.

The gradient of the RDP with respect to x is:

[
∂ηRDP(x)

∂x

]
i
=

∑
j∈Ni

wi j
(xi − x j)(γ|xi − x j| + xi + 3x j)

(xi + x j + γ|xi − x j|)2 .

RDP preserves anatomical edges, which is crucial inmedical imaging [161].

Additionally, the gradient can be rewritten in terms of the ratio ri j =
x j
xi
:
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[
∂ηRDP(x)

∂x

]
i
=

∑
j∈N j

wi j
(ri j − 1)(γ|ri j − 1| + ri j + 3)

(ri j + 1 + γ|ri j − 1|)2 ,

this makes RDPmore appropriate for PET as the gradient is stable to variations

in dynamic range, meaning that the choice of λ is also easier to tune.

Block-Sequential RegularisedExpectationMaximisation is an subset-based

accelerated algorithm used in PET to solve the previously described objective

function [4, 49]. BSREM is provably convergent under mild assumptions and

employs an additive update given by [180]:

x(k+1) = Px≥0
[
x(k) − α(k)D(k)(x(k))∇Φs(k)(x(k))

]
. (2.17)

This is gradient descent with subset gradient Φs(k), where s(k) again cycli-

cally accesses the subsets. The k-th step-size is given by α(k), preconditioner

by D(k)(·) which is often the EM preconditioner, and Px≥0[·] is a non-negativity

projection. The step-size is computed with α(k) = α0/(ζn + 1), where α0 is the

initial step-size and ζ is a relaxation coefficient. This decaying step-size is re-

quired to ensure convergence.

2.2.3.2 MRI Image Reconstruction

MRI measurements are modelled as being corrupted by white complex Gaus-

sian noise and themeasurements aremodelled as a realisation from aGaussian

distribution y ∼ G(ȳ, Iσ2) where σ is the standard deviation [51, 95]. The data-

consistency for MRI measurements is derived from the Gaussian NLL:
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− log plkhd(y|ȳ) = − log


Ny∏
i

[
1

σ
√

2π
exp

(
−

(ȳi − yi)2

2σ2

)]
=

Ny∑
i

[
log(σ

√
2π) +

1
2σ2 (ȳi − yi)

2
]

= Ny log(σ
√

2π)︸            ︷︷            ︸
independent of ȳ

+

Ny∑
i

1
2σ2 (ȳi − yi)

2.

Now consider the forward problem ȳ = Ax. For simplicity and without loss

of generality, the factor 1
σ2 can be absorbed into the regularisation parameter.

Thus, the data-consistency term becomes:

ρMRI(x) =
1
2
||Ax − y||22.

The MRI data-consistency term is convex and has a Lipschitz continuous

gradient. The gradient given by:

∂ρMRI(x)
∂x

= A∗ (Ax − y) .

This is equivalent to least-squares function form described in Section 2.1.1

inverse Fast Fourier Transform (iFFT) can be directly applied to k-space

measurements when sampled on a Cartesian gridwith a low noise level. In this

setting the iFFT performs well. The reconstruction is obtained directly from:

x† = A−1y,

where A−1 denotes the iFFT operator [44]. The iFFT can be computed im-

plicitly with a computational complexity of O(N log N), with N being the num-

ber of voxels or k-space points. However, in clinical practice, acquiring fully

sampled k-space data is time-consuming and may be impractical. To reduce

scan times, undersampling strategies are employed, leading to incomplete k-
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space data and an ill-posed inverse problem [68].

inverseNon-Uniform Fast Fourier Transform (iNUFFT) can be leveraged in

scenarioswhere k-space data are acquired alongnon-Cartesian trajectories—such

as radial, spiral, or other non-uniform sampling patterns that do not lie on auni-

form grid. The Non-Uniform Fast Fourier Transform (NUFFT) can be used to

efficiently compute the Fourier transform of non-uniformly sampled data [69,

166].

TheNUFFT approximates the Fourier transformby interpolating non-uniform

k-space samples onto a uniform grid, applying the FFT, and compensating for

interpolation errors. The forward operator A in this context incorporates the

NUFFT, and its Hermitian adjoint A∗ is used in iterative reconstruction algo-

rithms [69].

For undersampled k-space the forward operator has a significant null-space

and requires regularisation, see Section 2.1. This is usually approached as a

variational method, and a Total Variation regularisation is popular in MRI re-

construction.15

Total Variation (TV) regularisation is awidely used technique inMRI recon-

struction that promotes piecewise smoothness while preserving sharp edges

and fine details, this was briefly discussed in Section 2.1.1. A variety of dis-

crete formulations of TV exist, and we focus on isotropic TV [43].

The discrete isotropic total variation of an image x ∈ RNx is defined as:

ηTV(x) =
Nx∑
i=1

√ ∑
j∈Ni

wi j(xi − x j)2, (2.18)

in this case the neighbourhood Ni is defined such that xi − x j is an (forward)

finite difference approximation of a gradient for a two or three-dimensional

image [43]. The weighting wi j is often used in practice and depends on the

resolution. This function is convex, but the gradient is non-smooth meaning

that special consideration needs to be taken to ensure correct treatment.

15Note that TV has also been proposed for PET [61]. However it is more widely used inMRI.
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Fast Iterative Shrinkage Thresholding Algorithm (FISTA) can be used to

solve the regularised reconstruction problem efficiently, especially with non-

smooth regularisation terms such as TV [17]. The FISTA iterative updates are:

x(k+1) = proxγλη
(
x̃(k) − γ∇ρMRI(x̃(k))

)
,

t(k+1) =
1 +

√
1 + 4(t(k))2

2
,

x̃(k+1) = x(k+1) +
t(k) − 1
t(k+1) (x(k+1) − x(k)),

where x̃(k) is an extrapolated point incorporating momentum to accelerate con-

vergence, γ > 0 is the step size, chosen to satisfy certain convergence crite-

ria - see [17] for details, ∇ρMRI(x̃k) = A∗(Ax̃k − y) is the gradient of the data-

consistency term, and proxη(·) is the proximal operator associated with the reg-

ularisation term λη(·) [27, 170]. The proximal operator for a function λη(·) is

defined as:

proxγλη(v) = argmin
x

(
1

2γ
||x − v||22 + λη(x)

)
.

For certain choices of η(x), the underlyingminimisation problemof the prox-

imal operator has a closed-form solution. For example, if η(x) = ||x||1, the prox-

imal operator corresponds to the soft-thresholding function [170]:

[proxγλ||·||1(v)]i =


vi − γλ if vi > γλ,

0 if |vi| ≤ γλ,

vi + γλ if vi < γλ.

FISTA has a convergence rate of O(1/k2)16. This makes FISTA particularly

suitable for large-scale MRI reconstruction problems where convergence speed

is paramount.

Parallel MRI Reconstruction encompasses several established methods that

include SENSitivity Encoding (SENSE), GeneRalized Autocalibrating Partial
16For functions such as MRI data-consistency with isotropic TV, see [17] for details.
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Parallel Acquisition (GRAPPA), and Eigenvector-based iterative Self-consistent

Parallel Imaging Reconstruction (ESPIRiT) [80, 179, 241].

SENSE poses parallel image reconstruction as a linear inverse problem by

directly approximating the coil sensitivitiesACoils fromEqn. (2.11) [179]. GRAPPA

treats the reconstruction problem as an interpolation problem in k-space [80].

In GRAPPA the missing lines of k-space are interpolated via a kernel deter-

mined from an auto-calibration region of k-space. The interpolated k-space is

used to compute coil images that are combined to give a magnitude image.

The third method ESPIRiT leverages ideas from both SENSE and GRAPPA,

where an auto-calibration region is used to estimate coil sensitivities directly

- see [241] for details. These methods leverage the redundancy of multi-coil

measurements to mitigate the ill-posedness of accelerated parallel MRI recon-

struction. As stated in [241], the methods can be described as subspace meth-

ods, where missing measurements are reconstructed by restricting a solution

to a subspace. This concept is extended in Chapter 6, where sensitivities and

image are defined a subspace of Gaussian functions.

2.2.4 Image Quality Assessment

Image Quality Assessment (IQA) is a critical aspect of medical imaging, par-

ticularly in the context of image reconstruction where the goal is to produce

images that are diagnostically useful. IQA provides a means to quantify the

performance of reconstruction algorithms. As described in [28], if a ground-

truth image is available the assessment relies on a notion of distance between

the reconstructed image and the ground-truth image. We typically distinguish

quality metrics into global and local categories. Global assessment involves

evaluating the full images, while local assessment focuses on specific regions

of interest.

Important and widely used global IQA methods are Mean Squared Error

(MSE), Peak Signal-to-NoiseRatio (PSNR) and Structural Similarity IndexMea-

sure (SSIM). The MSE is a quality metric that computes:
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MSE(x†, xGT) =
1

Nx

Nx∑
i=1

(
[x†]i − [xGT]i

)2
, (2.19)

which is simply the squared ℓ-2 norm ||x† − xGT||22 and a smaller MSE corre-

sponds to closer agreement of the reconstruction with the ground-truth. The

PSNR is defined as:

PSNR(x†, xGT) = 10 · log10

(
max(xGT)2

MSE(x†, xGT)

)
, (2.20)

where the higher the PSNR indicates higher reconstruction quality. However,

an increase in PSNR, or decrease in MSE, may not correspond to an increase

in perceptual quality [104]. Perceptual quality is distinct to the error that is

assessed with MSE and PSNR, and is concerned with human interpretation of

the image [252].

SSIM was developed to better correlate with perceived quality of an image

[251], and is defined by:

SSIM(x†, xGT) =
1

Nx

Nx∑
i=1

l(x†i , xGT,i)c(x†i , xGT,i)s(x†i , xGT,i). (2.21)

The functions l, c, and s computemeasures of luminance, contrast and struc-

ture between the images, we refer the reader to [251] for further detail. Tradi-

tional metrics such as MSE and PSNR provide objective, quantitative measures

of image quality but often fail to alignwith human visual perception. SSIMwas

introduced to address this limitation and attempts to improve correlation with

perceived image quality. However, even SSIM does not fully capture the com-

plexities of human visual perception, particularly in medical imaging contexts

[29]. Observer studies, where human readers evaluate images for diagnostic

tasks, remain the gold standard for IQA, but these studies are time-consuming

and resource-intensive. Recent research [29] has shown that newer metrics

like HaarPSI demonstrate stronger correlations with human observer perfor-

mance, particularly for medical images, suggesting a promising alternative to

traditional approaches [188].
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2.2.4.1 IQA for Medical Image Reconstruction

In addition to the previously discussed IQA methods, specialised approaches

exist for assessing the quality of medical image reconstructions. Given that

measurements in medical imaging are often affected by noise, the evaluation

of noise properties becomes a critical component in understanding overall re-

constructed image quality.

For instance, in PET, significant research has been conducted to studymeth-

ods for quantifying noise characteristics [235]. Moreover, the importance of lo-

calised IQA cannot be overstated, as medical images frequently contain region-

specific information that is essential for clinical decision-making. Global IQA

metricsmay fail to detect subtle distortions in localised structures, such as small

lesions, that are crucial for accurate diagnosis.

A frequently used local IQAmethod commonly used for quantification and

detectability of lesions is Contrast Recovery Coefficient (CRC). Let l ∈ RNl rep-

resent the voxels valueswithin the lesion RegionOf Interest (ROI), and d ∈ RNd

represent the voxel values with the background ROI, where Nl and Nd denotes

the number of voxels in the respective ROIs. The mean value of each ROI is

denoted l̄ := 1
Nl

∑
i∈Nl li and d̄ := 1

Nd

∑
i∈Nd di. The CRC computes the ratio of rel-

ative intensities between the reconstructed ROIs and ground-truth image ROIs:

CRC(l,d) :=
(

l̄
d̄
− 1

)
/

(
l̄GT
d̄GT

− 1
)
, (2.22)

where the subscript GT denotes the ground-truth ROIs.

Noise can be studied in reconstructed images by analysing a background

ROIwith approximately uniform intensity, denoted as d. The BackgroundRough-

ness (BR) is then defined as:

BR(d) :=

√∑
i∈Nd(di − d̄)2

Nd
. (2.23)

Amore accurate characterisation of the noise is EnsembleNoise (EN) [235].

This is computed from multiple reconstructions that correspond to multiple

realisation of the noise on measurements, i.e. y(1), · · · , y(NR) ∼ p(ȳ) where NR is

the number of realisations. EN is computed on the background ROIs d as:
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EN(d) :=
1

Nd

Nd∑
k=1

√√√√
1

NR − 1

NR∑
j=1

(d( j)
k − d̄k)2

d̄k
, (2.24)

where d( j)
k denotes the k-th element of the j-th realisation of the reconstructed

backgroundROI. Further, themean d̄k taken is over realisations d̄k =
1

NR

∑NR
j=1 d( j)

k .

Although not strictly for IQA, evaluating the data-consistency of the re-

construction can help evaluate if the reconstruction method is respecting the

measurements. For the PET data-consistency, Eqn. (2.14), the Poisson NLL

is equivalent to the Kullbeck-Liebler Divergence (KLDIV) up to constant. The

KLDIV is given by:

KLDIV(x) :=
Ny∑
i=1

[
ȳi − yi log(ȳi) + yi

]
, ȳ = Ax + b̄ (2.25)

This formulation highlights the discrepancy between the prediction of the

measurement mean ȳ and measurements, ensuring that the reconstruction re-

spects the underlyingmeasurement statistics. The additive constant yi does not

affect the assessment of consistency but is included formathematical complete-

ness.
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Bias-variance graphs are often used in PET image reconstruction assess-

ment often compares noise suppression properties of the reconstruction

and the performance on IQA methods. As such IQA methods are often

plotted against an estimate for the noise (BR or EN) in literature.

Further, reconstruction methods often have a tuning parameter that

trades-off data-consistency for regularisation, or prior strength, e.g. the

variational method see Section 2.1.1. Thus, multiple reconstructions can

be obtained with varying degrees of data-consistency. As data consis-

tency increases, the reconstruction begins fit the noise in the measure-

ments, resulting in a higher estimate of noise. Simultaneously, the perfor-

mance on IQAmethodsmay decrease. This indicates that the reconstruc-

tion is under-regularised, as the variance in themeasurements outweighs

the bias introduced by the reconstruction method. This phenomenon

exemplifies the bias-variance trade-off (described in Section 2.1.1). By

plotting an estimate for the noise versus IQA methods one can observe

the reconstructionsmethods performancewith varying data-consistency,

noting that low noise and high performance on IQA methods is sought.
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2.3 Deep learning forMedical ImageReconstruction

Deep learning is a subset of the broader field of machine learning, which is un-

derpinned by statistical learning theory [89]. In a broad sense, the chief concept

is learning from data, and statistical learning formalises this from a statistical

viewpoint. There are several frameworks for learning from data, these include

supervised and unsupervised learning [246]. In this section, we start by in-

troducing supervised learning, followed by unsupervised learning specifically

deep generative methods. Each of these concepts will be discussed in the con-

text of medical image reconstruction.

In this section we use yIN to denote an input to a network, and xGT as a

ground truth, reference or label.

2.3.1 Supervised Learning

In supervised learning we aim to find a function Gθ : YIN → XGT with param-

eters θ, where yIN ∈ YIN and xGT ∈ XGT are the input and label respectively.17

This function Gθ is an element of the hypothesis spaceH and is trained to min-

imise the expected risk between the prediction Gθ(yIN) and label xGT:

rexpected(Gθ) = EyIN,xGT∼p(yIN,xGT)Φ(Gθ(yIN), xGT),

where Φ is a distance often referred to as the loss function or objective function

[89]. This is intractable as p(yIN, xGT) is an unknown joint probability distri-

bution. Instead, assuming access to a paired input-label dataset {(y(s)
IN, x

(s)
GT)}Ns

s=1

where Ns is the number of samples, we use the tractable approximation - em-

pirical risk:

rempirical(Gθ) =
1

Ns

Ns∑
s=1
Φ(Gθ(y(s)

IN), x(s)
GT). (2.26)

Empirical risk minimisation is the optimisation of the parameters θ in order

to minimise empirical risk of the model:

17The relationship YIN → XGT is typically not a deterministic mapping between spaces, as is
the case in inverse problems described in Section 1.1.
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θ† = argmin
θ∈Θ

rempirical(Gθ).

The updating of the parameters is referred to as “learning” or “training” the

model.

Deep learning defines the function Gθ as a deep neural network. The Multi-

Layer Perceptron (MLP) was one of the first deep neural networks and is com-

posed of multiple “layers” of weights W, biases b and activation functions α

[195]:

Gθ(yIN) =W(Nl)α(. . . α(W(2)α(W(1)yIN + b(1)) + b(2)) . . .) + b(Nl),

where Nl is the number of layers, parameters are θ = {(W(l),b(l))}Nl
l=1, W(l) :

R(l−1) → R(l), b(l) ∈ R(l), and activation function is usually chosen as non-linear

α : R(l) → R(l). This structure is an example of a network architecture, where

“deepness” arises from the stacking of multiple layers. The architecture can be

tailored and fine-tuned to suit the specific requirements of the task at hand, as

described in Section 2.3.3.

Tominimise the empirical risk rempirical(Gθ), we need to optimise the param-

eters θ of the model. However, due to the non-linear and non-convex nature of

deep learningmodels, finding the globalminimum is challenging, if not impos-

sible [76]. Gradient-based optimisation algorithms are employed to iteratively

update the parameters in a direction that reduces the loss function. The gradi-

ent is computed with the back-propagation algorithm that efficiently computes

gradients [129].

The choice of optimisation algorithm has been key to the success of deep

learning. Techniques like StochasticGradientDescent (SGD) introduce stochas-

ticity by computing gradients on small, randomly selected subsets of the data

(batches) [129]. This not only makes the computation more efficient, but also

helps themodel to generalise better by avoiding over-fitting to the training data.

Specifically, the noise introduced by random batches allows SGD to escape

sharpminima, which are often associatedwith poor generalisation, in favour of

flatter minima that lead to better performance on unseen data [122]. Further-
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more the inherent stochastic nature of SGD prevents the optimisation process

from perfectly fitting the training set [85] and discouragesmemorisation [264].

From a different perspective, the optimisation process also influences the

effective hypothesis spaceH that the model explores during training. WhileH
theoretically includes all functions representable by the neural network archi-

tecture, practical modelling choices - such as architectural design and optimi-

sation strategy- bias the search to a subspace of the hypothesis space [15, 159].

This phenomenon relates to the concept of inductive bias [18], which refers to

the set of assumptions a learning algorithm relies on to make predictions for

unseen inputs [16]. By constraining H, inductive biases enable learning algo-

rithms to generalise effectively beyond training data.

The architecture of the neural network is a key component that shapes the

inductive bias. In the domain of computer vision, the U-Net architecture has

proven to be particularly effective [255]. An overview of the U-Net is presented

in Section 2.3.3, that bias the hypothesis toward the properties of medical im-

ages as described in Section 2.2.1.

An important optimisation algorithm in deep learning is Adaptive Moment

Estimation (Adam) [124], which refines the training process by adaptively ad-

justing the step size for each parameter based on the first and second moments

of the gradients. Adam achieves faster convergence and improved stability by

combining the benefits of momentum and adaptive learning rates, where the

learning rate acts as a scaling factor for the step size. These characteristics make

Adam particularly effective in training deep neural networks, especially in sce-

narios where the magnitudes of gradients vary significantly between parame-

ters [129].

This interplay between optimisation, model architecture, and data-fitting

leads to the critical issue of bias-variance trade-off discussed in Section 2.1.1.

Considering the expected prediction error at yIN:

E[(Gtrue(yIN) − Gθ(yIN))2] = ς2 + Bias2 + Variance,

where Gtrue is the true function, Bias = E[Gθ(yIN)] − Gtrue(yIN) measures the

error introduced bymodel assumptions or restrictions, Variance = E[(Gθ(yIN)−



2.3. Deep learning for Medical Image Reconstruction 85

E[Gθ(yIN)])]2 quantifies model sensitivity to fluctuations in training data, and

ς2 is irreducible noise inherent to Gtrue(yIN) [23, 89]. Under-fitting occurswhen

the model exhibits high bias, often due to strong restrictions on the hypothesis

space, which limits the models ability to capture complex patterns in the data.

Conversely, over-fitting arises when the model is overly complex, as excessive

flexibility allows it to capture noise in the training data - increasing variance.

The balance between bias and variance is influenced by the choice of model

complexity, regularisation techniques, and optimisation choices, all of which

play a critical role in achieving good generalisation [23].

Returning to medical image reconstruction, deep learning has significantly

advanced the field in recent years [6, 92, 187]. Supervised learning in this con-

text usesmeasurements (or approximate reconstructions) asmodel inputs yIN,

and the model is trained to predict desired ground-truth images xGT. It is im-

portant to note that these ground-truth images (labels) are typically not avail-

able in medical imaging, and instead images of target quality are often used.

2.3.2 SupervisedApproaches toMedical ImageReconstruction

Although supervised approaches are often state-of-the-art for medical image

reconstruction, in this thesis these approaches are only of peripheral interest

due the lack of data-consistency and lack of separation of image modelling

from forward modelling [6], as discussed in Section 1.3. This will be explained

further in the context of two established supervised methods: post-processing

and Learned Primal-Dual (LPD) algorithms. Additionally, we develop these

methods for PET in Chapter 4 where network architectures are given in Figs.

4.1 and 4.2 for post-processing and learned primal-dual respectively.

2.3.2.1 Post-Processing

One of the earliest andmost straightforward deep learning approaches tomed-

ical image reconstruction is post-processing. In this method, a traditional re-

construction algorithm is often first applied to themeasurements to produce an

approximate image x̃, this image is then refined using a neural network [109,
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169]:18

x† = Gθ(x̃),

where x† is the resulting reconstruction. The network parameters θ are trained

with empirical risk minimisation (Eqn. (2.26)), with a commonly used MSE

loss function:

θ† = argmin
θ∈Θ

1
N

Ns∑
s=1
||Gθ(x̃(s)) − x(s)

GT||
2
2. (2.27)

Onepopular example of a post-processingmethod is the FBPConvNet [109].

That paper proposed using aU-Net architecturemotivating the choice by draw-

ing parallels between the U-Net and traditional wavelet-based denoisingmeth-

ods [192]. The U-Net is ubiquitous in computer vision and it is described fur-

ther in Section 2.3.3.

While post-processing methods like FBPConvNet are relatively simple and

have shown promising results, they have limitations. The primary concern is

the lack of data consistency; the network’s output Gθ(x̃) is not guaranteed to

be consistent with the original measurements, ||y − AGθ(x̃)|| ≫ ||ε|| where ||ε||

captures known discrepancies such as noise in the measurements [6].

Furthermore, since the neural network operates solely in the image domain,

it does not explicitly incorporate the forward model or the physics of the imag-

ing system. This separation can lead to a dependence of the model on the for-

ward model; where the approximate reconstruction x̃ exhibits features specific

to the forward model. This means that the model is less likely to generalise, for

example across scanners or acquisition protocols [1].

The last critical issue is that the U-Net architecture used in post-processing

typically has a large number of parameters, which increases the complexity

of the model and the amount of training data required to prevent over-fitting.

This high data requirement can be a significant limitation in medical imaging

applications where paired data is scarce [203].

18There exists methods that predict directly from raw measurements [266]. However this
requires partially learning known physics that is computationally expensive.
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2.3.2.2 Learned Primal-Dual

To address some of the limitations of post-processing methods, the Learned

Primal-Dual (LPD) algorithm was proposed [1]. This approach integrates the

forward and adjoint operators A of the imaging system into the neural network

architecture, which embeds known physics within the network.

LPD unrolls an iterative reconstruction algorithm into a fixed number of it-

erates [153], each consisting of learnable modules that process both in the pri-

mal (image) and dual (measurement) spaces. These updates were inspired by

Primal-Dual Hybrid Gradient algorithm [38]. The method alternates between

updating the primal variable x(k) and dual variable y(k):

y(k+1) = D(k)
θ

(
y(k),A(x(k))

)
,

x(k+1) = P(k)
θ

(
x(k),A∗(y(k+1))

)
,

where the networks P(k)
θ

and D(k)
θ

are the k-th unrolled iterates for the primal

and dual spaces respectively. The unrolled algorithm is denoted as:

x† = Gθ(y(0), x(0)), where Gθ = D(k)
θ
◦ P(k)

θ
. . .D(0)

θ
◦ P(0)

θ
,

the initial dual variable is set as the measurements y(0) = y, the initial value

for primal x(0) can be either zeros or an approximate reconstruction x̂, and the

network is trained using the same supervised paradigm as in Eqn. (2.27).

An important advantage of the LPD algorithm is that it uses smaller neural

networks forP(k)
θ

andD(k)
θ

compared to the largeU-Net used in post-processing

methods. These networks are typically shallow and have fewer parameters, re-

ducing the complexity of the model. This simplicity means that the LPD algo-

rithm generally requires less training data to achieve good performance, mak-

ing it more practical in scenarios where paired data is limited. Furthermore, by

explicitly incorporating the forward and adjoint operators, the LPD algorithm

enhances the interpretability of the reconstruction process and ensures that the

physics of the imaging system are included throughout the reconstruction.

However, the LPD algorithm still relies on supervised training with paired
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data, requiring ground-truths from a diverse distribution. Such data is rarely

available in practice for medical imaging [92, 187]. Furthermore, the absence

of test-time data consistency further restricts its generalisability.

We now turn our attention to outlining the U-Net architecture that is the

back-bone for many deep learning approaches in computer vision, including

the post-processing approach discussed earlier.

2.3.3 Overview of the U-Net Architecture

The U-Net architecture is a deep convolutional neural network that has be-

come the de facto standard for medical imaging tasks due to its remarkable

ability to capture both global context and fine-grained local features [192]. Its

name, “U-Net”, originates from its distinct symmetric U-shaped design, which

is composed of twomain components: a contracting path (encoder) and an ex-

panding path (decoder). The encoder progressively extracts hierarchical fea-

ture representations through downsampling, while the decoder reconstructs

these features into a high-resolution output via upsampling.

conv 3x3, ReLU

copy and concat

max pool 2x2

bilinear upsampling

conv 1x1

Figure 2.2: An example U-Net architecture illustrating the encoder, decoder, and skip
connections.

Unlike traditional encoder-decoder architectures, theU-Net employs convo-

lutional layers to extract hierarchical features acrossmultiple scales. Thismulti-
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scale feature extraction is crucial for medical images, where regions of interest

may vary significantly in size and shape. There is a growing body of literature

[109, 111, 144, 184, 255, 260] exploring the connections between U-Nets and

wavelet decompositions, where wavelets are described in Section 6.2.2. This

connection highlights the multi-scale nature of U-Net, and interpretation from

a more classical signal-processing perspective.

2.3.3.1 Convolutional Layers

In the U-Net architecture convolutional layers are pivotal for feature extraction.

The discrete convolution of a one-dimensional input data x and kernel w can be

written as:

s(t) =
∑
τ

x(τ)w(t − τ),

where s(t) represents the output features at position t. This formula represents

the general discrete convolution operation, which sums the product of two se-

quences over their overlap. Here, w is a learnable kernel specifically designed

for extracting features from x. In deep learning frameworks the operation is

typically implemented without flipping the kernel [76]:

s(t) =
∑
τ

x(τ)w(t + τ),

which is more akin to cross-correlation. Regardless, this is referred to as a con-

volutional layer in the deep learning community, and it allows a network to

extract useful data-driven kernels that can be used to decompose the input into

sets of features [134].

An important property of convolutions is that they are shift-equivariant

meaning that shifting the input signal results in a corresponding shift in the

output signal. This property ensures that the convolutional operation is con-

sistent across different positions in the input, this exploits the stationarity of

natural images discussed in Section 2.2.1.
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2.3.3.2 Activation functions

The activation functions introduce non-linearity that allows the network to learn

complex patterns. Coupled with convolutional layers, the activation functions

allow complex non-linear interactions between the features, which can make

them richer and more informative [77]. A popular choice is the Rectified Lin-

ear Unit (ReLU) [158]:

ReLU(x) =


x, if x ≥ 0

0, if x < 0
. (2.28)

This is equivalent to a non-negativity projection ontoP≥0(·). This non-linearity

is non-differentiable at zero, and creates sparse representations within the net-

work [72]. This can be unfavourable, particularly when there is a bad initial-

isation or poor gradient step for network parameters that could impede opti-

misation. As such, there are a more advanced activations such as exponential

linear units and scaled exponential linear units that are reported to improve

convergence and performance [126].

2.3.3.3 Down-sampling

Down-sampling in the contracting path of the network reduces the spatial di-

mensions of featuremaps, enabling the network to capture relationships across

larger regions of the input, taking advantage of scale-invariance and spatial cor-

relations within natural images, see Section 2.2.1. This is referred to a broad-

ening the receptive field of the network and is often achieved using pooling

layers or strided convolutions. Pooling layers decrease the spatial dimensions

by computing the average or maximum over non-overlapping patches. Strided

convolutions reduce spatial dimensions by performing convolution operations

with stride k:

s(t) =
∑
τ

x(τ)w(k · t + τ),

with a stride greater than one the dimension of input is decreased [263].

After down-sampling and feature extraction through convolutional layers,
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the network produces a latent vector denoted as z. This latent vector encapsu-

lates the essential information from the input in a compressed, lower-dimensional

form [18], effectively distilling the input into the most salient features required

for the task. This is often referred to as an information bottleneck and is re-

lated to the manifold hypothesis that is discussed in Section 2.3.4.1. Further,

the elements of the latent vector can relate to different semantically meaning-

ful components that make up natural images as discussed in Section 2.2.1.

With sufficient convolutions and down-sampling, this representation be-

comes invariant to small shifts in the input, meaning minor translations do not

significantly impact the output. However, complete shift invariance is not guar-

anteed due to factors such as aliasing, and solutions to address these limitations

have been proposed in the literature [265].

2.3.3.4 Up-sampling

Upsampling increases the spatial dimensions in the expanding path of the net-

work. Transposed convolutions have been a popular option in the past, but

can introduce chequerboard artifacts [164]. Modern upsampling typically uses

nearest-neighbour or bilinear interpolation followed by standard convolutions.

2.3.3.5 Skip Connections

U-Nets have skip connections that link corresponding layers in the encoder and

decoder paths. This preserves spatial information lost during down-sampling,

which have been shown to be vital for image quality [255]. Skip connections

also alleviate the vanishing gradient problem by providing direct pathways for

gradient flow [90].

2.3.3.6 Attention Mechanism

Attention mechanisms, broadly, refer to techniques that allow neural networks

to dynamically focus on the most relevant parts of their input. Unlike standard

convolutions, which process local information within a fixed kernel size, atten-

tion mechanisms adaptively model relationships between different spatial or

feature dimensions, regardless of distance [247].
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In the context of a U-Net architecture, attention can be integrated by incor-

porating self-attention modules within the skip connections between encoder

and decoder layers [165]. Self-attention computes pairwise relationships be-

tween all spatial positions in the input feature map to capture long-range de-

pendencies.

Self-attention uses three learnableweightmatrices: queryWQ, keyWK, and

value WV, each of dimension RNC×Nd . Given feature maps X ∈ RNH×NW×NC ,

where NH × NW are the height and width of the input image or patch, and NC

is the number of channels, we first reshape X to RNp·NC . with Np = NH × NW.

The query Q, key K and value V are computed as:

Q = XWQ, K = XWK, V = XWV,

resulting in matrices of dimension RNp×Nd . The attention score is computed as:

S = QK⊤ ∈ RNp×Np ,

representing similarities between different spatial positions. The attentionmap

A is obtained by scaling and normalising the scores:

A = softmax
 S√

Nd

 ,
where the softmax function ensures the attention weights sum to one across

each row. The self-attention is then computed as:

self-attention(X) = AV ∈ RNp×Nd ,

which is reshaped back into RNH×NW×Nd .

By integrating self-attentionmodules, theU-Net architecture effectivelymod-

els global relationshipswithin input features, enhancing performance by focus-

ing on important regions across the entire image [165]. Thesemodules are used

on lower resolution scales of the U-Net-based score-model in Chapter 5 - see

Fig. 5.2.
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2.3.4 Unsupervised Learning - Deep Generative Models

Generative models attempt to estimate an unknown data distribution, denoted

as π(x),19 using a dataset of samples
{
x(s)
GT

}Ns

s=1
drawn from that distribution.

Since this dataset is unpaired, generative models are typically categorised as

unsupervised learning methods. The samples are used to define an empirical

(discrete) distribution [23]. This empirical distribution is defined:

pempirical(x) =
1

Ns

Ns∑
s=1

δ(x − x(s)
GT), (2.29)

where δ is a Dirac delta function that is one if x is a sample from the dataset{
x(s)
GT

}Ns

s=1
and zero otherwise. The generative model seeks to approximate em-

pirical distribution with a continuous parameterised density pθ(x) such that:

pempirical(x) ≈ pθ(x), (2.30)

where θ are the parameters of the generativemodel. The goal is that by approx-

imating pempirical(x) the underlying true data distribution π(x) is also approxi-

mated [23].

Traditional generative models, such as Gaussian Mixture Models and Hid-

den Markov Models, often rely on relatively simple statistical assumptions.

These assumptions, while often well-motivated theoretically, can restrict the

flexibility of such models, particularly when dealing with high-dimensional

data. In these scenarios, complex relationships between featuresmay exist, and

traditional models often struggle to capture these intricacies due to the curse

of dimensionality [89, 157].

Deep generative models address these limitations by leveraging the repre-

sentational power of deep neural networks to model complex, non-linear de-

pendencies within the data. Unlike traditional generative models, deep gener-

ative models are capable of learning highly intricate patterns, enabling them to

capture more nuanced structures in high-dimensional data. This capacity al-

lows deep generative models to generate realistic, high-quality samples, mak-

ing them especially effective in applications such as image synthesis, natural
19This notation is used as this distribution is used as the prior in Chapter 5.
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language generation, and other domains where traditional methods often fall

short [76].

A central challenge for generative models is balancing accurate represen-

tation of the pempirical(x) with generalisation to approximate π(x). As stated

in Eqn. (2.29), the empirical distribution represents the data points as Dirac

delta functions, and fitting these exactly can lead to mode memorisation -an

over-fitting regime where the model fails to generalise. This phenomenon is

closely related to mode collapse, where the model captures only a subset of the

data distribution, effectively assigning zero probability to some modes while

memorising others [76].

Mode coverage is therefore a key aspect of generative modelling, as it re-

flects the model’s generalisation to capture the full diversity of π(x) encompass-

ing all relevant modes. Achieving mode coverage is particularly challenging

for high-dimensional data. A fundamental assumption that aids in addressing

these challenges is the manifold hypothesis [76].

2.3.4.1 The Manifold Hypothesis

To define the manifold hypothesis, we must first understand the concept of a

manifold. Consider the data x ∈ RNx where RNx is often referred to as the

ambient space. A subset M ⊆ RNx is a d-dimensional manifold if: For every

point p ∈ M, there is a open neighbourhood N ⊂ RNx containing p, and a

function ϕ : N ∩M→ Rd, where ϕ is continuous, bijective, and invertible with

continuous inverse (i.e. is a homeomorphism). This definition ensures that

M is locally homeomorphic to the d-dimensional Euclidean space Rd, even if

its global structure may be complex or non-linear. Here, d is referred to as the

intrinsic dimension of the manifold, while Nx is the ambient dimension [135].

Intuitively, this means that while M may be curved or have a complicated

shape in the ambient space, any sufficiently small neighbourhood of a point on

M resembles a flat d-dimensional space. Themanifold hypothesis assumes that

high-dimensional data lie approximately on such a d-dimensionalmanifoldM,

where d≪ Nx [23].

This hypothesis is particularly significant in the context of deep genera-
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tive modelling, such as Generative Adversarial Networks (GANs), Variational

Auto-Encoders (VAEs) and Score-based Generative Models (SGMs). These

models often aim to learn a latent space —a d-dimensional manifold— that

captures the essential structure of high-dimensional data.20 By assuming that

data reside on or near a manifold, these models can map low-dimensional la-

tent vector, denoted as z ∈ Z , to the high-dimensional data space. This map-

ping enables the generation of realistic samples while efficiently modelling the

underlying data distribution.

2.3.4.2 Generative Adversarial Networks, Variational Auto-Encoders, and

Score-based Generative Models

Among many existing methods, three established deep generative models for

imaging are GANs, VAEs, and SGMs [55]. The models are denoted as Gθ,
where new samples are generated as x ∼ Gθ(yIN), where the input yIN is differ-

ent for each model.

GANs learn the empirical probability distribution by employing a game-theoretic

approach [77]. GANs consist of two networks: the generator Gθ(z) and dis-

criminator DθD(x), where z is the latent vector that is typically sampled from a

tractable prior distribution such as Gaussian N(0, I). The generator maps the

latent space to the data space, where the latent space can be considered as

the lower-dimensional manifold discussed earlier. The discriminator outputs a

probability assessing whether the sample is real or generated.

The loss is formulated as a min-max game between generator and the dis-

criminator:

min
θ

max
θD
ExGT∼pempirical[logDθD(xGT)] + Ez∼pz[log(1 −DθD(Gθ(z)))],

where pz is often Gaussian distribution. The generator attempts to minimise
20For SGMs, there is no explicit lower-dimensional latent space. However, the stochastic

process discussed later provides a scale-space of simplified densities, which can be interpreted
as an implicit latent space [97, 228]. That said, latent diffusion models explicitly incorporate
latent vectors [191]. Note that, in practice, for all generativemodels, the latent spaces are rarely
lower-dimensional than the ambient dimension.
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discriminator’s ability to distinguish between real andgenerated sampled,while

the discriminator seeks to maximise this distinction.

GANs showed great empirical success in producing highly realistic images.

Specifically the StyleGAN family of models [116–119] which are an advanced

extension of GANs that introduce disentanglement in the latent space by con-

ditioning the generation process on separate style and noise components, offer-

ing greater control over specific features in the generated samples. Despite this

success they are prone to mode collapse, and as a result are notoriously hard

to train [197].

GANs are characterised as implicit models as they do not explicitly model a

likelihood function for the data, but instead learn the distribution through the

adversarial interaction between generator and discriminator [77].

VAEs also use a latent vector z to generate samples from Gθ(z) [125], while

the training maximises the likelihood of the data, p(x) =
∫

p(x|z)p(z)dz. Since

direct optimisation of p(x) is intractable due to the integral over z, the Evidence

Lower Bound (ELBO) provides a tractable variational approximation instead

[125]:

log p(x) ≥ ELBOϕ,θ(x) := Eqϕ(z|xGT)[log pθ(x|z)] − ρKLDIV(qϕ(z|x)||p(z)),

where qϕ(z|x) ≈ p(z|x), p(z) is tractable distribution - usually Gaussian, and

ρKLDIV is the KLDIV. The first component of the ELBO Eqϕ(z|x)[log pθ(x|z)] en-

sures the generated images are of high fidelity, and ρKLDIV(qϕ(z|x)||p(z)) ensures

the latent space aligns with the prior that ensures mode coverage. Thus, VAEs

can be considered capable of covering all the modes, generating diverse sam-

ples [125]. Unfortunately, the generated samples are often blurry and unrealis-

tic [257]. This issue can be remedied by adapting the sampling process, using

advanced architectures, or incorporating more expressive priors [243]. How-

ever, the inability to generate high-quality images remains the predominant

challenge for VAEs.



2.3. Deep learning for Medical Image Reconstruction 97

SGMs model the data distribution through the score function - the gradient

of the log-density ∇x log p(x) - rather than directly modelling p(x) itself [97, 222,

230]. This avoids the computation of a normalising constant that is often com-

putationally intractable. To illustrate this consider the parameterised density:

pθ(x) =
e−fθ(x)

Z
,

where fθ is an energy function that parameterises the unnormalised log-density,

Z is the normalisation ensuring
∫

pθ(x)dx = 1. Maximising the parameterised

density requires computing the normalisation constant, which involves inte-

grating over x. However, by taking the gradient of the log-density, the normal-

isation constant is no longer required:

Gθ(x) = ∇x log pθ(x) = −∇x log fθ(x) − ∇x log Z︸   ︷︷   ︸
=0

.

Unfortunately, the score ∇x log pθ(x) is not directly accessible. Instead, the

gradient of the log-density of a tractable noise-corrupteddistribution∇xt log pt(xt)

is used, where xt represents a noisy version of the data.21 Sampling from an

SGMs is an iterative denoising process that progressively refines the noisy data

xt to sample from π(x). This approach is computationally expensive, as it re-

quires numerous evaluations of the score-model at different noise levels. We

provide further details in Chapter 5.

These models were introduced to highlight the trilemma between three key

properties necessary for real-world adoption of deep generative models [257],

namely:

• High-quality sampling: Samples must be realistic and visually convinc-

ing.

• Mode coverage and sample diversity: The generated samples should re-
21Notation disclaimer: A probability density can be denoted p but for SGMs an additional

subscript is used to emphasize a time dependence pt that is associated with random vector
xt. The gradient operator ∇ uses a subscript to denote the gradient with respect to that set
of variables, i.e. ∇xt f (xt) =

∂ f
∂xt

. The random vector xt belongs to a stochastic process that is
indexed in time t, and for notational simplicity the distinction between a random vector and
realisation from the distribution of a randomvector is omitted such that xt ∼ pt(xt) as is common
in literature [230].
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flect the entire data distribution, including regions of low density, to en-

sure diversity.

• Computationally efficiency: Sampling should be fast and computation-

ally inexpensive.

This trade-off can be visualised diagrammatically in Fig. 2.3.

High Quality
Samples

Fast
Sampling

Mode Coverage
and Diversity

Generative
Adversarial
Networks

Score-based
Generative Models

Variational
Auto-Encoders

Figure 2.3: Trilemma diagram, recreated and mildly edited from [257].

Recent advancements in accelerated sampling techniques for SGMs have

significantly improved their efficiency, making them the de facto standard for

image generation [146]. These improvements address computational constraints

whilemaintaining high-quality sampling andmode coverage, positioning SGMs

as a versatile solution to the trilemma.

2.3.5 UnsupervisedApproaches forMedical ImageReconstruc-

tion

In recent years, unsupervised learning approaches have gained significant at-

tention inmedical image reconstruction due to their ability to leverage inherent

data structures without the need for large paired datasets [6]. The motivations
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for this thesis, discussed in detail in Section 1.3, closely align with these ad-

vancements. Specifically, the approaches of interest integrate data consistency

with known physics at test time and are agnostic to the forward model. This

flexibility allows the same method to be applied across different forward mod-

els (i.e. different scanners), enhancing its generalisability.

Unsupervised approaches have shownpromise in reconstructing high-quality

images from undersampled or corrupted measurements. According to the tax-

onomy presented in [55], these deep generative models can be broadly cat-

egorised into trained and untrained models. Trained models require an un-

paired dataset of ground-truth images {x(s)
GT}

Ns
s=1 for learning the underlying

data distribution, whereas untrained models do not rely on any training data

and instead only exploit inductive bias of the network.

Using the taxonomy of [55], this thesis focuses with two deep generative

models; Deep Image Prior (DIP), an untrained deep generative model, and

SGMs, a trained deep generative model. Another notable unsupervised ap-

proach involves using Implicit Neural Representations (INRs) for medical im-

age reconstruction, where the image is represented as a continuous function.

This approach relates to work in this thesis that also aims to reconstruct a con-

tinuous function.

As these approaches are central to this thesis, we will briefly describe them

here, with additional literature discussed in the respective chapters.

2.3.5.1 Deep Image Prior

DIP parameterises an image as an output of a U-Net, denoted as Gθ [242]. DIP

utilises the inductive biases of theU-Net architecture to implicitly regularise the

reconstruction process. The parameters of the network are randomly initialised

and input yIN is typically static random noise meaning that no training data

is required. The image is parameterised as x = Gθ(yIN), and reconstruction

process

θ† = argmin
θ

ρ(y,AGθ(yIN)), where x† = Gθ†(yIN) (2.31)
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where x† is the reconstruction, ρ is the data-consistency term -see Section 2.2.3,

A is the forward operator, and y are the measurements.

The U-Net is typically over-parameterised, meaning that DIP can fit most

images, including noise. The key aspect of DIP is its inductive bias, which

suppresses noise during optimisation, allowing natural features to be recov-

ered first [242]. Therefore, it is crucial to stop the optimisation early, before

the model begins to fit the noise -this is often referred to as early-stopping. For

further literature and development of DIP for PET image reconstruction see

Chapter 3.

2.3.5.2 Score-based Generative Models

SGMs can be used to solve inverse problems by integrating data consistency

into the iterative denoising process [46, 107, 254]. More specifically, the trained

score-model sθ approximates a data distribution π. From the Bayesian perspec-

tive of statistical inverse problems (see Section 2.1.2.2), this distribution serves

as a prior. The relationship can be expressed as ∇x log p0(x0) = ∇x log π(x),

where the subscript denotes that the equivalence with the prior holds only

when the image is free of noise.

SGMs applied to inverse problems represent a burgeoning area of research

[46, 254]. In Chapter 5, we explore the application of SGMs to PET image re-

construction and situate this work within the context of relevant literature.

2.3.5.3 Implicit Neural Representations

The final approach of note is the Implicit Neural Representations (INRs). INRs,

also known as coordinate-based neural networks, represent signals such as im-

ages or volumes as continuous functions parameterised as a MLP, Gθ [221]. In
the context of image reconstruction, INRs can model an image as a continuous

function, x(r), where r represents the spatial coordinate.

As discussed in Section 2.2.1, medical images are continuous functions with

specific properties. INRs, like DIP, utilise inductive bias toward those proper-

ties to obtain high-quality reconstructions [210]. The reconstruction is obtained

from:
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θ† = argmin
θ

ρ(y,AGθ(r)|Ωr), x† = Gθ†(r)|Ωr ,

where Ωr are the coordinates where the image is sampled, therefore Gθ†(r)|Ωr

is an image.

In Chapter 6 this continuous “functional” approach to image representation

is developed for image reconstruction with Adaptable Blobs (A-Blobs). Al-

though not precisely an INR, the proposed representation bares resemblance,

with many of the same challenges.
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Chapter 3

Deep Image Prior

3.1 Introduction

In this chapter we develop DIP for PET image reconstruction and improve re-

construction stability and quality when measurements are low-count. The re-

sults presented are published in works [215, 218]. As described in Section

2.3.5.1, DIP is an unsupervised deep learning method that was originally pro-

posed by Ulyanov et al, for image denoising and restoration [242]. The core

concept is to parameterise the image as the output of a U-Net [192] architec-

ture: x = Gθ(yIN), where parameters are updated according to Eqn. (2.31). DIP

is untrained and the network is initialised randomly, where the input yIN is of-

ten a static random image [242]. To regularise the inverse problem, DIP relies

on the inductive bias of the U-Net, see Section 2.3.3 for more details.

DIP’s ability to fit natural images before noise has been studied extensively

and is partially attributed to spectral bias toward low spatial-frequencies [93,

212]; as natural images have a fast decaying power spectrum, i.e. more infor-

mation is present in the lower frequencies [214], see Section 2.2.1. However,

DIP is not merely a low-pass filter [57, 232], and completely removing high fre-

quencies is undesirable because they encode important features such as image

edges [173]. The inductive bias of theU-Net ismore nuanced and can be tuned,

which is described in Section 2.3.3.

Early-stopping is necessary to prevent fitting to noise with DIP. The early-

stopping criterion is typically chosen through hyper-parameter selection on a
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validation dataset. More recently a wide variety of other criterion have been

proposed, for example tracking image-based variance metrics to indicate stop-

ping [250].

The choice of optimisation algorithm also influences the inductive bias of

the method, this referred to as implicit regularisation see Section 2.3. As anal-

ysed in [232], the Adam optimiser [124] causes larger changes in the hidden

layers, and it was reported this enabled more informative features to be ex-

tracted from y earlier in the architecture, leading to Adam providing better re-

constructions than SGD. In literatureAdam is predominate choice for optimiser

used in DIP [57, 232, 242].

3.2 DIP for Tomographic Inverse Problems

Tomographic inverse problems, where measurements are projections of the

sought object, were not addressed in the original DIP work [242]. The first

applications of DIP for tomographic problems are for CT and PET [9, 74]. In

Baguer et al [9], additional regularisation is includedwithin the objective func-

tion:

θ† = argmin
θ

[
Φ := ρ(y,AGθ(yIN)) + λη(Gθ(yIN))

]
, x† = Gθ†(yIN). (3.1)

The input to the network yIN is static random noise, not the measurements

y. This objective function is in-line with classical variational approaches to in-

verse problems, see Section 2.1.1. The regularisation η(·) in Baguer et al, was

discrete TV given by Eqn. (2.18). It was found that the regularisation was able

to alleviate the need for robust stopping criteria, which is critical to prevent DIP

over-fitting to noise. The regularisation effect was two-fold; regularisation via

explicit TV regularisation, and implicit regularisation via early stopping of the

optimisation with the inductive bias of the U-Net. For their optimisation they

utilised Adam, which required access to the gradient ∂Φ
∂θ , this can be simply

expanded to:
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∂Φ

∂θ
=

∂Φ

∂Gθ(yIN)
·
∂Gθ(yIN)

∂θ
, where Gθ(yIN) = x. (3.2)

The gradient ∂Φ
∂x is computed in established modern regularisation algo-

rithms described in Section 2.2.3. Thus, modern reconstruction engines are able

to compute these efficiently. While on the other-hand, the gradient computed

from the output of the generator to network parameters ∂Gθ(yIN)
∂θ are obtained

through automatic differentiation. Automatic differentiation is the back-bone

of software packages for deep learning.

This gradient, Eqn. (3.2), therefore requires both the automatic differen-

tiation and advanced model-based reconstruction techniques. In order to di-

rectly update the parameters of a network based on gradients computed from

reconstruction engines onemust integrate the reconstruction engine into a deep

learning framework. In Bauger et al [9], this was already available in the soft-

ware used. Namely, they used the Operator Discretization Library (ODL) re-

construction engine with CT models within the PyTorch deep learning frame-

work [2, 171], this is elaborated upon in Section 3.2.1.

The application of DIP to PET Gong et al, was more involved due to the

lack of integration of the PET forward model with a deep learning framework

[74]. Additionally, they omitted the regularisation in Eqn. (3.1), and posed the

problem as a constrained optimisation that is equivalent to Eqn. (2.31):

θ† = argmin
θ

ρPET(y,Ax + b̄) s.t. x = Gθ(yIN),

with the PET forward model A · +b̄ as described in Section 2.2.2.1.

The constrained optimisation was written in the following augmented La-

grangian form:1

ρPET(y,Ax + b̄) +
β

2
||x − Gθ(yIN) − u||2 +

β

2
||u||2,

where u is the Lagrange multiplier and β > 0 is a hyper-parameter used to

1The standard augmented Lagrangian is usually written as ρPET(y,Ax + b̄)+u⊤(x−Gθ(yIN))+
β
2 ||x − Gθ(yIN)||2. Gong et al opt to write the augmented Lagrangian in a non-standard format.
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enforce the constraint and prevent u from becoming too large. The Alternat-

ing Direction Method of Multipliers (ADMM) was used to optimise it and the

variable updates are given by:

x(k+1) = argmin
x

ρPET(y,Ax + b̄) +
β

2
||x − Gθ(k)(yIN) + u(k)||2, (3.3a)

θ(k+1) = argmin
θ
||Gθ(yIN) − (x(k+1) − u(k))||2 (3.3b)

u(k+1) = u(k) + x(k+1) − Gθ(k+1)(yIN). (3.3c)

ADMM splits the optimisation into a image reconstruction update and a

deep learning parameter update, and alleviates the need to integrate the re-

construction engine within a deep learning framework. The first sub-problem

Eqn. (3.3a) is a classical image reconstruction-type problem that is used in con-

ventional model-based reconstruction methods. In fact it is a MAP estimate

and it was solved using a modified EM update such as BSREM. The second

sub-problem Eqn. (3.3b) is a problem that can be solved within deep learning

frameworks. InGong et al [74], a variety of algorithmswere tested to solve Eqn.

(3.3b) and itwas determined that Limited-Broyden–Fletcher–Goldfarb–Shanno

algorithm performed best. Furthermore, the tuning of β was vital to ensure

stability of the method. It would therefore be beneficial to not split the op-

timisation and pose it as a single optimisation without this additional hyper-

parameter β. To do this the forward operator needs to be integrated into a deep

learning framework.

In Hashimoto et al [88], DIP was implemented as a single optimisation

problem, thus reducing the number of hyper-parameters and the computa-

tional overhead; simplifying implementation. The forward model was stored

as a sparse matrix that had an excessive GPUmemory overhead. Furthermore,

MSE was used as the data-consistency term, which is not appropriate for the

noise affecting PETmeasurements, see Section 2.2.3.1. Their work was recently

extended to 3D PET through slicing the forward operator and solving with a

subset-based block iterative approach, as well as including additional regular-
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isation, although this study did not compare with traditional MAP reconstruc-

tions [87].

3.2.1 Framing Medical Image Reconstruction in PyTorch

There exists a variety of medical image reconstruction engines that can be used

formodel-based reconstruction, includingODLwhich uses theASTRA toolbox

projectors for CT [2, 244], Gadgetron for MRI [83, 258], and Software for To-

mographic Image Reconstruction (STIR) for emission tomography modalities

such as PET [233].

Large-scale established reconstructionmethods are often first-order optimi-

sationmethods. The computation of these first-order derivatives require access

to the forward-projection, i.e. the application of A to x, and the back-projection,

which is the adjoint A∗ ≡ A⊤ for PET.

First order optimisation methods are also the primary algorithms used in

deep learning optimisation, where gradients are computed using automatic

differentiation. Briefly, as an example, consider automatic differentiation of

gradients in PyTorch via the chain-rule from objective function Φ:

∂Φ

∂θ
=
∂ρ(Ax + b̄)

∂x
·
∂Gθ(yIN)

∂θ
+ λ

∂η(x)
∂x
·
∂Gθ(yIN)

∂θ
. (3.4)

The derivative of the data-consistency term requires access to the adjoint of

the forward operator: ∂ρ(Ax+b̄)
∂x = A⊤ ∂ρ(ȳ)

∂ȳ where ȳ = Ax+ b̄. From this it can be

observed that, given a linear operator A, PyTorch requires access to the adjoint

of the linear operator to back-propagate to the image x.

To correctly integrate a linear operator within PyTorch requires allowing

the auto-differentiation library access to the application of the linear operator

and the application of the adjoint linear operator. This is done by extension

of torch.autograd library with a custom torch.autograd.Function. This is

what was done in ODL [2], to allow Baguer et al [9], to update DIP parameters

based on CT measurements as a single optimisation.

In this work, rather than wrapping the forward operator, the full function

and gradient can be wrapped; Φ and ∂Φ
∂x respectively. This is particularly im-
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portant in the case of the PET objective function, where the Poisson NLL is

convex but not Lipschitz continuous as noted in Section 2.2.3.1. It is therefore

important to correctly handle the objective function to ensure stability of the

optimisation. For this reason the SIRF objective function is directly wrapped,

and used to back-propagate and update the network parameters θ.

3.3 Objectives

The application of deep learning to PET image reconstruction is challenging

due to a lack of integration of the PET forwardmodel into deep learning frame-

works. This results in the need to formulate the problem via split-optimisation

[74, 169], where the objective function is split into sub-problems such as EM

with the forward model, and denoising with the network. Although these

methods often utilise the same objective function, tuning of hyper-parameters

is needed to ensure stability and reasonable convergence rates. An alterna-

tive approach integrates the forward model into the deep learning framework,

and automatic differentiation can be applied from the full-objective function

Φ through the forward model to the network parameters θ. The parameters

are then updated via the gradient descent algorithm. This single optimisation

allows for a simplified implementation, which reduces the number of hyper-

parameters and the computational overhead.

The first objective of this chapter is implementing and testing the objective

function wrapper, in a similar manner to Baguer et al. The wrapper integrated

SIRF a multi-modality reconstruction framework into PyTorch an established

deep learning framework. SIRF utilises the PET reconstruction engine STIR

[233]. STIR benefits from a parallelised C++ backend, access to GPU-based

projector [207], and clinically relevant PET regularisation penalties. Through

using the SIRF objective, direct comparison between traditional reconstruction

and DIP reconstruction was made.

The further objectiveswere scaling to fully 3D reconstruction and investigat-

ing the use of additional regularisation to alleviate the need for early-stopping.
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3.4 Experimental Methods

In this study we consider the objective function of the form given in Eqn. (3.1).

The PET data-consistency term ρ is the Poisson NLL while both QP and RDP

regularisationwere tested as regularisation,these are described in Section 2.2.3.1.2

TheRDP edge-preservation parameterwas set to γ = 2 for all tests, this is in-line

with clinical settings.

3.4.1 Dataset

The dataset comprised of a single voxelised XCAT torso phantom [209], with

activity concentrations representative of an FDG study. Measurements were

obtained from numerical GATE photon emission simulation of back-to-back

511 keV photon emissions [108]. The simulated scanner was a General Electric

Discovery 690 [22] with uniform crystal efficiencies, and the simulation was

performed via the STIR-GATE-Connection [239] where normalisation, atten-

uation, randoms and scatter were estimated from the Monte-Carlo data and

incorporated within the forward model, as described in Section 2.2.2.1. Cylin-

drical hot lesions were inserted into the abdominal wall, liver, lung and spine.

Note that cardiac motion, respiratory motion, and radioactive decay were not

modelled.

In 2D, the data were binned into sinograms with 288 projection angles ex-

tracted for a 1 ring, and for 3D all 24 rings were used with all ring differences.

The 3D data was also split into datasets containing 250 (“lower”) and 1200

(“higher”) million coincidence events, and the reconstruction volume had di-

mensions of 47 × 128 × 128 with voxel-size 3.27 × 4.0 × 4.0mm.

3.4.2 Established Reconstruction Methods

The established reconstruction algorithms were different in 2D and 3D cases.

In 2D, the ML estimate was computed with OSEM, Eqn. (2.15), while Green’s

Ordered Subset Maximum A Posteriori One Step Late (OSMAP-OSL) [78, 79]

was used to computeMAP estimates with QP and RDP, denotedOSMAP-OSL-
2For this study STIR’s RDP was exposed within SIRF.
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QP andOSMAP-OSL-RDP respectively. TheOSMAP-OSL is a simple adaption

of OSEM given by:

x(k+1) =
x(k)

A⊤1 + λ∇xη(x)
A⊤s(k)

 y
As(k)x(k) + b̄s(k)

 ,
where ∇xη(x) is the gradient of the regulariser with respect to the image, and

other terms are as before, see Eqn. (2.15). This algorithm is non-convergent

for more than one subset, as such it was only used in the 2D case, where the

operator and measurements were split into four subsets. Results were given

after 200 epochs of updates.

In 3D, we utilise the BSREM algorithm, Eqn. (2.17), to compute the MAP

estimate with RDP and 34 subsets. This is denoted BSREM-RDP, and the re-

laxation parameter η was chosen to ensure convergence within 1000 epochs,

where an image based convergence metric was used.

3.4.3 Image Quality Assessment

As ground-truth images were known we used standard PET methods for IQA.

Specifically we used CRC and BR, see Eqns. (2.22) and (2.23) respectively. On

the CRC-BR graphs the further to the top-left corresponds to better reconstruc-

tions that correspond to better noise suppression whilst recovering the contrast

of the lesion. In 2D multiple regularisation parameters were varied λ for both

DIP approaches and comparison methods. Evaluating the DIP approach after

the approximate convergence enables us to observe the agreement of estab-

lished methods and DIP; validating the wrapping of the objective function.

In 3D, the DIP approaches were evaluated throughout the optimisation tra-

jectory and compared to converged MAP estimates. From this we can observe

whether DIP is able to out-perform established methods independent of the

choice of stopping criterion.

3.4.4 Proposed DIP for PET Methods

Three DIP approaches were tried in 2D: DIP without additional regularisation

PET-DIP, with QP regularisation PET-DIP+QP, and with RDP regularisation
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Figure 3.1: U-Net used for the 3D PET-DIP.

PET-DIP+RDP. In 3D only PET-DIP and PET-DIP+RDP were tested.

For all studies a U-Net [192] architecture was used, see Section 2.3.3. The

network is over-parameterisedutilising an architecture that used linear-upsampling

and strided convolutions to change scale, with the number of features compen-

sating for the increase/decrease of spatial dimensionality. Batch normalisation

and Leaky ReLU were included after each convolution. Skip connections were

also present between encoding and decoding paths of the network. A ReLU

was used on the network output as a non-negativity constraint. The network

in 3D was unaltered from previous work [74, 87] as shown in Fig. 3.1, while

two network choices - 2 and 6 scale U-Nets - were evaluated in 2D. The ter-

mination criterion was fixed at 50, 000 epochs in 2D, and 20, 000 epochs in 3D.

Optimisation was performed with the first-order Adam optimiser. In 3D an

initial learning rate of 1.0 was cosine annealed to 0.0 over the 20, 000 epochs.

The following Table 3.1 summarises the methods in this study.
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Approach Name Optimisation
Algorithm Used

Explicit Regulariser 2D or 3D

MLE OSEM None 2D
PET-DIP Adam None Both

PET-DIP+QP Adam QP 2D
OSMAP-OSL-QP OSMAP-OSL QP 2D
PET-DIP+RDP Adam RDP Both

OSMAP-OSL-RDP OSMAP-OSL RDP 2D
BSREM-RDP BSREM RDP Both

Table 3.1: Algorithms used in 2D and 3D

3.5 Results and Discussion

In 2D, a feasibility study was conducted and the obtain results compared DIP

with classical MAP estimates computed with OSMAP-OSL. In 3D, the network

architecture is brought in-line with published work on applying DIP for PET

image reconstruction [74, 87], and results are presented for two noise levels.

Instead of using an early-stopping criteria in 2D, the network was run for a

fixed number of iterations. In 3D, the quality metrics were monitored along

the optimisation trajectory.

3.5.1 2D Results

The wrapper was tested with PET-DIP, PET-DIP+QP and PET-DIP+RDP with

two architectures of 2-scale and 6-scale. In Fig. 3.2we see solutions of the differ-

ent regularisation strengths, the λ values used are λ ∈ {20, 10, 7.5, 5, 2.5, 1}×10−4

for OSMAP-OSL-QP and PET-DIP+QP, this is similarly presented for results

with RDP with λ ∈ {20, 10, 7.5, 5, 2.5, 1} × 10−2. Given the sweeps of λ, it can be

seen that RDP is better at suppressing noise (lower BR) while retaining a high

lesion detectability (high CRC). This is unsurprising as RDP was hand-crafted

to have edge-preserving properties [161]. Qualitatively, the effect of DIP can

be observed in Fig. 3.3. The first row compares approximate ML estimates pa-

rameterised as an image and as the output of the U-Net. From the inset, DIP

can be observed to have smoother solutions, indicating the noise impedance

properties of DIP.

DIP was run for 50,000 epochs and it was observed that the objective func-
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Figure 3.2: For the baseline, we use 200 epochs of the OSMAP-OSL modification of
OSEM [103] with 4 ordered subsets. For DIP both 6-scale and 2-scale U-
Net architectures are tested and 50,000 epochs are used. OSMAP and DIP
results on CRC of lung/lung lesion ROIs and STD of lung ROI. Both the QP
and RDP are tested with various λ values: QP λ ∈ {20, 10, 7.5, 5, 2.5, 1}×10−4

and RDP λ ∈ {20, 10, 7.5, 5, 2.5, 1} × 10−2.

tion did not continue to decay; meaning that the reconstruction was approxi-

mately converged. The quantitative and qualitative discrepancy between DIP

and comparison methods can be attributed to the non-convex optimisation of

U-Net parameters. This means that the optima could be a local, rather than a

global minima. Further, the OSMAP-OSL is a non-convergent algorithm, this

latter points was addressed in 3D work where a convergent algorithm is used.

Nonetheless, these 2D results demonstrate consistent results between the

baseline and DIP with wrapped SIRF objective. The consistency in results in-

dicate that the value and gradient of the objective function, from SIRF, was

correctly passed to PyTorch.

3.5.2 3D Results

In 3D, DIPwas evaluated on two count levels. For the BSREM-RDP reconstruc-

tions, a set of eleven regularisation values λwere used for each count level. For

the higher count (lower noise) λ ∈ [3.125, 31.25]×10−3; for lower count (higher

noise) λ ∈ [1.5, 15]×10−2. The largest and smallest values in the range represent

over-regularised and under-regularised solutions respectively.
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MLE PET-DIP

OSMAP-OSL-QP (β = 2.5× 10−4) PET-DIP+QP (β = 2.5× 10−4)

OSMAP-OSL-RDP (β = 2.5× 10−2) PET-DIP+RDP (β = 2.5× 10−2)
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Figure 3.3: OSEM, OSMAP and DIP (6-scale) reconstruction images. DIP - Maximum
Likelihood Estimate (MLE) was obtained after 50,000 epochs, and OSEM
after 200 epochs with 4 subsets. The λ values for regularised reconstruc-
tions were determined from greatest CRC values for RDP and QP from Fig.
3.2. The inset shows the reconstruction of the lung lesion ROI.
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DIP results are shown for theminimum-loss reconstruction every 100 epochs

between 10,000 and 20,000 epochs. For PET-DIP+RDP, four regularisation val-

ues λwere used for each count level: higher count λ ∈ {3.125, 12.5 , 21.875, 31.25}×

10−3; lower count λ ∈ {1.5, 6.0, 10.5, 15.0} × 10−2. For the higher count Fig. 3.4a,

unregularised DIP considerably out-performs BSREM-RDP across all lesions.

For the lower count Fig. 3.4b, this is not the case. Including RDP in the objec-

tive function, improves the trajectory of PET-DIP+RDP significantly; improved

image quality metrics are observed in both lower and higher count see Figs.

3.4c and 3.4d. However, the improvement is not consistent across all lesions.

Namely, as observed in Fig. 3.4d, the spine lesion CRC with PET-DIP+RDP is

notably worse than that of BSREM-RDP reconstruction. Furthermore, with

RDP there is a large drop in CRC for the abdominal lesion in higher count

data. This could be due to the abdominal lesions’ location at the edge of the

axial field-of-view, where noise is higher as sensitivity is lower. These issues of

lesion dependence on local sensitivity, contrast and surrounding activity have

been observed and investigated with non-DIP reconstruction [238].

We observed that PET-DIP+RDP worked best when λwas lowest but non-

zero. Results for DIP reconstruction of lower count data for individual lesions

with different regularisation strengths are shown in Figs. 3.5a, 3.5b, 3.5c and

3.5d.

The results for best regularisation strength in higher and lower count data

are shown in Figs. 3.4c and 3.4d respectively, and DIP alone are given in Figs.

3.4a and 3.4b. Qualitative visual comparisons of the lower count reconstruc-

tions are given in Fig. 3.6.

Table 3.2: GPU memory requirements on tested data for explicit vs. our implicit
projector; estimated from sinogram/image sizes as well as 8-byte sparse
element-size, and observing GPU memory usage respectively. Memory re-
quirements for the 3D U-Net used in forward and backward modes, and
maximum image volume allowable on a 24 GB GPU.

Projector 3D U-Net
Explicit
matrix

Implicit
(ours)

Forward Backward Maximum
Volume

> 100GB < 1GB 0.65 GB 0.88 GB 3003
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(a) PET-DIP comparison on higher countmea-
surements
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(b) PET-DIP comparison on lower count mea-

surements
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(c) PET-DIP+RDP (λ = 3.125 × 10−3 com-
parison on higher count measurements,
marker indicates the same λ BSREM-
RDP reconstruction
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(d) PET-DIP+RDP (λ = 1.5 × 10−2) com-
parison on higher count measurements,
marker indicates the same λ BSREM-
RDP reconstruction.

Figure 3.4: Contrast Recovery Coefficient vs. Background Roughness for abdominal
wall, liver, lung and spine lesions. Solid lines correspond to the BSREM-
RDP reconstruction with different regularisation strengths. Cross markers
DIP reconstructions every 100 epochs.

A single NVIDIA RTX 3090 with 24GB of dedicated memory (VRAM) was

used in this study. PARALLELPROJ [207] was used for the projection opera-

tor, both the forward and adjoint are implemented in CUDA (GPU-specific lan-

guage). One full gradient 3DPETDIP iteration took≈ 2.4s, therefore 13.3 hours

for the 20,000 iterations. This included costly copying to-and-from the GPU

which is currently necessary for integration with SIRF. The wrapper could be
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(a) Abdominal wall lesion
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(b) Liver lesion
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(c) Lung lesion
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BSREM-RDP
PET-DIP+RDP β = 0.0
PET-DIP+RDP β = 0.015
PET-DIP+RDP β = 0.06
PET-DIP+RDP β = 0.105
PET-DIP+RDP β = 0.15

(d) Spine lesion

Figure 3.5: Contrast Recovery Coefficient vs. Background Roughness for lower count
measurements with 5 different regularisation strengths. Solid lines cor-
respond to the BSREM-RDP reconstruction with different regularisation
strengths. Cross markers DIP reconstructions every 100 epochs.

developed further by interfacing directly with the projector through a CUDA-

based PyTorch wrapper which would keep operations on the GPU and arrays

saved in VRAM, speeding up computation. Run-time could also be reduced

by the use of subsets in PET-DIP+RDP. This will be pursued in the future as

it would be an important step in developing efficient deep learning techniques

for PET reconstruction.
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Figure 3.6: Axial slices taken through the centre of lesions. Slices of ground truth
emission and lower count data reconstructions with PET-DIP, BSREM-
RDP (λ = 4.5 × 10−2), and PET-DIP+RDP (λ = 1.5 × 10−2). CRC and
BR values quotes are for the lesion shown in the slice. DIP reconstructions
are the minimum-loss solutions over 20,000 epochs. Colour-scales between
reconstructed image slices are kept constant.

3.6 Conclusions

Although DIP is attractive due to requiring no ground-truth training data, it

was found to not constitute a stable prior for PET. With the push toward ever-

more ill-posed PET reconstruction (reducing dose and acquisition time) [143],

DIP does not seem a viable avenue alone for reconstruction. Furthermore, su-

pervision via hyper-parameter tuning is needed to ensure performance gains

from DIP. This bias in reconstruction can limit the generalisability and could

be a factor in lower count data reconstructions failing with DIP alone. If this is
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the case, this would require DIP architectures and early-stopping criteria to be

tuned for given count levels, hampering chances of actual adoption in clinical

practice.

The introduction RDP to PET-DIP+RDP is a double-edged sword. On one

hand, the DIP reconstruction is stabilised having less dependency on the stop-

ping criteria, which is observed in literature [9]. On the other hand, we ob-

served that this introduces issues with lower sensitivity slices requiring dif-

ferent penalty strengths to higher sensitivity slices. Additionally, finding the

appropriate penalty strength requires further tuning.

By leveraging established reconstruction engines for PET, the sophisticated

forward model and can integrated into deep learning framework by wrapping.

This opens the door for further research, specifically for methods that separate

forward modelling from the image modelling, which is used in Chapter 5.

3.6.1 Limitations

The focus of this work was first evaluating the effectiveness of the the PyTorch

wrapper, and then investigating additional regularisation to alleviate the need

for early stopping. For this work only a single dataset of the in-silico XCAT

torso phantom was used. Further studies would require multiple datasets that

would ideally be in-vivo, which are hard to obtain in practice. Additionally, the

effects of cardiac, respiratory motion and radioactive decay were not included

in the simulation, limiting the realism of the simulations.

This work did not investigate the choice of stopping criterion, but this is a

critical component of DIP. Without a stopping criteria there is no decision on

which reconstruction to use along the optimisation trajectory. As can be seen in

Fig. 3.4d, the reconstructions can perform worse than the established method

BSREM-RDP.

For 20,000 iterations of 3D DIP required 13.3 hours to obtain a reconstruc-

tion. This is prohibitively time consuming for clinical practice.
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3.6.2 Avenues of Further Research

To accelerate the reconstruction one can educate DIP by pre-training it on a task

such as post-processing an approximate reconstruction, see Section 2.3.2.1. This

would mean the static random input would be replaced with the approximate

reconstruction. At test-time the network can be further tuned in a DIP fashion

to fit the measurements. This approach was proposed for micro CT reconstruc-

tion [14]. Further, the idea of fine-tuning a supervised approach based on test-

time measurements has been described in [47] and was shown to combat the

distribution shift between training and test-time.

In literature it is well-known that while DIP is typically over-parameterised,

the number of parameters that significantly impact the output are lower. As it

was noted by Tachella et al [232]:

“The effective degrees of freedom are significantly smaller than the actual

number of weights in the network, being fully characterized by the architecture

and initialization of the network.”

This is a motivation for the deep decoder architecture [91], which replaces

the over-parameterised U-Net with an under-parameterised network. Further,

recent work by colleagues Riccardo et al [13], provide an interesting avenue

of research. In that work a low-rank approximation of DIP is sought using

a data-driven approach. More specifically, a singular value decomposition of

network weights is used to define a sub-space of DIP that is then optimised

over for subsequent reconstructions. Constraining DIP to a sub-space of a prior

image could provide a natural way of introducing guidance information into

DIP reconstruction.

Rather than pre-defining a subspace, one could pre-define that the output

must have a low-rank structure. Using lightweight networks DIP could learn

decomposition into this low-rank structure using methods such as [198].

Guided reconstruction of PET-DIP with an MRI image was proposed by

[74], here the image reconstruction was guided by substituting the input static

random image with an alignedMRI image. In that case it was unclear how and

if the MRI image is used by the algorithm. Designing a U-Net, as described in

[255], to ensure guidance is enforced would be a powerful avenue for the fu-
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ture. Thoroughunderstanding the inductive bias of theU-Net is the paramount

to the success of DIP. This is still poorly understood, but an active area of re-

search.
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Chapter 4

Post-Processing and Learned Primal

Dual

4.1 Introduction

Supervised approaches for medical image reconstruction often provide state-

of-the-art performancewhen the test data is sufficiently in-distributionwith the

training data, and they are widespread in the literature [6] -see Section 2.3.2

for more details. For this reason, they are often treated as the gold standard to

compare against for advanced image reconstruction.

In this chapter, we focus on the application of supervised approaches for

PET image reconstruction [86, 187]. PET images of Activity Concentration

(AC) are inherently non-negative and exhibit significant variations in dynamic

range between patients. These variations arise from factors such as patient size,

radio-tracer dose, and metabolism differences, making PET image modelling

challenging. The non-negativity is physically realistic since AC cannot be neg-

ative. To address these challenges, normalisation techniques have been pro-

posed in related imaging fields, such as MRI [163], and more recently in PET

imaging [155]. However, there are no studies specifically focused on develop-

ing and applying such normalisation techniques for deep learning-based PET

image reconstruction.

In thiswork, we consider twopopular supervised learning techniques -post-

processing and LPD- which are described in Sections 2.3.2.1 and 2.3.2.2 respec-
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tively. For post-processing the input yIN = x̃ is an approximate reconstruc-

tion, and for LPD the input is the measurement yIN = y. These methods have

been previously applied to PET image reconstruction without accounting for

the wide dynamic range [82, 113]. In this investigation, we propose the use of

a simple linear instance normalisation to stabilise the image distribution, and

the results presented are published in [216].

The objective of this study is to investigate the effect of linear instance nor-

malisation on supervised approaches for PET image reconstruction.

4.2 Normalisation Approaches

Given a supervised dataset {(y(s)
IN, x

(s)
GT)}Ns

s=1 with Ns samples of target reconstruc-

tions x(s)
GT and correspondingmeasurements y, the training loss with linear nor-

malisation factor c is given by:

min
θ

Ns∑
s=1
∥

1
c(s)Gθ(c(s)y(s)

IN) − x(s)
GT∥

2
2,

where c(s) the sample-dependent intensity normalisation. Normalisation is

used to stabilise the variation of the inputs to the network. The chosen normal-

isation techniques depended solely on the measurements, or the approximate

OSEM reconstruction. In this work four normalisations were tested and are

summarised in Table. 4.1. Additionally, no normalisation denoted No Norm

was a baseline, where c(s) = 1.

Table 4.1: Normalisation techniques investigated for PET reconstruction with super-
vised learning.

MeanY MeanCY MeanOSEM MaxOSEM
c(s) 1

Mean(y(s))
1

Mean(y(s)−b̄(s))
1

Mean(x̃(s))
1

max(x̃(s))
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4.3 Experimental Methods

4.3.1 Dataset

The BrainWeb dataset comprises of 20 anatomical brain phantoms [8] that are

segmented into regions of: background, cerebrospinal fluid, graymatter, white

matter, fat, muscle, muscle/skin, skull, blood vessels, connective tissue (region

around fat), dura matter, and bone marrow. These regions are assigned inten-

sities based on the simulated radio-tracer. In this study FDG radio-tracer was

simulated with the volumes further perturbed by three realisations of random

distortions, giving 60 ground truth volumes in total [205]. The random distor-

tions perturbed the contrast, added a low-bias field to greymatter, and included

blurring and noise. This degraded these target images as well as expanded the

training set. The high resolution (2 mm3) phantoms defined ground truth PET

and CT volumes, where CT volumes were used to compute attenuation factors

used for measurement simulation. The test set (subject 04) included ground-

truths with simulated hot elliptical lesions. The true measurements yGT were

simulatedwith a single crystal ringGEDiscoveryMI acquisition geometrywith

resolution, attenuation factors and sensitivity models included, this was done

in pyParallelProj [207]. The noise level was set by re-scaling the true counts

to ensure a prescribed true count per emission voxel. For supervised training

data the prescribed true counts per emission voxel were 5, 10, 50, and for test

data it was 2.5. After scaling, a constant background based on the mean true

counts was added before applying Poisson noise. The approximate forward

model for reconstruction was modelled with low resolution images (8 mm3)

to avoid an inverse crime [112]. Note, axial slices were used to simulate mea-

surements and the investigation is strictly in 2D.

4.3.2 Network Details

For both methods, the network architectures used were changed minimally

from DivαL implementations [138]. The PET-LPD was adapted by using the

OSEM reconstruction as initialisation of primal channels, and by including an

affine forward operator with sample-specific multiplicative A(s) and additive
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factors b̄(s), see Section. 2.2.2.1. To reduce computational time, a total of 3 un-

rolled iterationswere used for PET-LPDnetwork. The PET-U-Net inputwas the

same OSEM reconstruction after 1 epoch with 34 subsets. PET-U-Net used a

U-Net architecture with 1,783,249 trainable parameters, and the PET-LPD used

sets of convolutional filters at each iteration with 132,300 trainable parame-

ters. The intensity normalisation was passed as an input parameter to the net-

works. For PET-U-Net the OSEM image was normalised and output of the U-

Net was unnormalised. For PET-LPD the input to each network iteration was

normalised and output unnormalised.

Figure 4.1: Network architecture for the post-processing U-Net.

The PET-U-Net was trained for 250 epochs using the Adam optimiser with

a learning rate of 3 × 10−4. The PET-LPD model was trained for 100 epochs

using the Adam optimiser with a learning rate of 1 × 10−3. For both models,

the model with the lowest validation error (based on a held-out validation set)

was used for evaluation.
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Figure 4.2: Network architecture for the learned primal-dual network. The first itera-
tion is expanded to see internal layers. The initial persistent channels and
projected channels (x̂0 and ŷ0) are initialised with raw measurements or
the OSEM image for dual and primal iterates respectively.

4.3.3 Image Quality Assessment

For this investigation we compute CRC, EN and PSNR as described in Section

2.2.4. Additionally, KLDIV between clean measurements y and estimate of the

mean of the measurements ȳ = AGθ(yIN) + b̄.

4.4 Results and Discussion

Results are shown for out-of-distribution test data (2.5 true counts per volume

with lesions) in Tables 4.2 and 4.3 for PET-U-Net and PET-LPD respectively.

In addition, Figure 4.3 gives a qualitative comparison of sample with No

NormandMeanCY.Wefind thatmodelswith normalisation benefit fromhigher

CRC and lower KLDIV. The EN is higher with normalisation, meaning recon-

structions are more sensitive to perturbations in noise, and is a result of being



128 Chapter 4. Post-Processing and Learned Primal Dual

Table 4.2: OSEMConvNet: Mean (standard error) of the quality metrics on 80 sam-
ple test set. Bold indicates the best performance. Confidence is based on a
paired t-test.

No Norm MeanY MeanCY MeanOSEM MaxOSEM

CRC 0.749 0.805*** 0.788*** 0.803*** 0.758***
(0.014) (0.015) (0.014) (0.015) (0.017)

EN 0.216 0.248 0.244 0.247 0.264
(0.005) (0.007) (0.007) (0.008) (0.008)

PSNR 27.55 27.93*** 27.94*** 27.94*** 27.08*
(0.38) (0.40) (0.40) (0.39) (0.43)

KLDIV 68128 63068*** 63115*** 63069*** 63667***
(127) (246) (245) (246) (268)

***p < 0.01, **p < 0.05, *p < 0.1

Table 4.3: Learned Primal-Dual: Mean (standard error) of the quality metrics on 80
sample test set. Bold indicates the best performance.

No Norm MeanY MeanCY MeanOSEM MaxOSEM

CRC 0.749 0.876*** 0.862*** 0.893*** 0.874***
(0.016) (0.013) (0.013) (0.011) (0.011)

EN 0.163 0.230 0.227 0.278 0.250
(0.005) (0.008) (0.008) (0.006) (0.008)

PSNR 27.94 28.38*** 28.50*** 27.89* 28.00**
(0.44) (0.44) (0.44) (0.41) (0.43)

KLDIV 63925 63153*** 63027*** 62958*** 63089***
(239) (225) (243) (238) (249)

***p < 0.01, **p < 0.05, *p < 0.1

more data-consistent. Normalisation based on OSEM images shows instabil-

ity with regards to PSNR and can under-perform as compared with No Norm.

More work is needed to conclusively establish the best normalisation practice,

although it has been shown that normalisation practices have significant im-

pact on generalisability. This can be seen by the statistically significant p < 0.01

paired T-test against No Norm.

4.5 Conclusion

In this study four linear intensity normalisation approaches were investigated

for supervised PET image reconstruction. The normalisation approaches pro-

vided a statistically significant impact on generalisability, allowing the model
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Ground Truth

CRC: 0.72, STD: 0.13

No Norm

CRC: 0.85, STD: 0.18

MeanCY

0 5 10 15 20

Figure 4.3: Reconstruction for Learned Primal-Dual with a noise level equivalent to an
average of 2.5 true counts per emission voxel with no normalisation and
normalisation by MeanCY.

to fit the measurements more closely and improve CRC. Specifically, MeanCY

normalisationwas deemed best performing and it was used in supervised com-

parison methods against SGM reconstructions in Chapter 5.

4.5.1 Limitations

Due to computational overhead, and lack of ground-truth data, 2D in-silico
evaluation was performed limiting applicability to clinical practice.

The linear choice of normalisation could be overly restrictive, and non-linear

techniques can further improve stability of the intensity distribution. Further,

an estimate for the whole body concentration of the injected dose of the radio-

tracerwould allow for normalisation in a similar fashion to standardiseduptake

values. Nonetheless these has been shown to require standardisation due to

variations in patient-related factors and technical factors [155].
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Chapter 5

Score-based Generative Models

5.1 Introduction

This chapter introduces anddevelops SGMs for PET image reconstruction, with

the presented results published in [220]. This study addresses the unique chal-

lenges of PET imaging, such as its widely varying dynamic range and inherent

non-negativity -see Section 2.2.2.1 for details. Additionally, the method is ex-

tended to includeMR-guided SGM reconstruction and fully 3D reconstruction,

expanding its applicability.

The methods discussed in this chapter integrate known physics with data

consistency, following a similar approach to DIP in Chapter 3. However, un-

like DIP, which operates in an untrained paradigm requiring only raw mea-

surements and the forward model, SGMs rely on an unpaired dataset of high-

quality target images. These target images define an empirical distribution,

pempirical, which approximates the true sought-after distribution π -see Section

2.3.4. As described briefly in Section 2.3.5.2, the score model is used to approxi-

mate this prior πwhen applying trained generativemodels to inverse problems,

including PET image reconstruction.

The subsequent sections expand on these concepts, presenting an extensive

review of background literature before detailing the application of SGMs for

PET image reconstruction.
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5.2 What is a Diffusion Model?

Recently, the term “diffusion model” has come into widespread use within the

computer vision community. It broadly refers to a class of deep generativemod-

els that leverages the (Stein) score-matching objectives to train model Gθ to ap-

proximate the score ∇x log π(x) of the empirical distribution [105]:

LSM(θ) = Ex∼π(x)
[
||Gθ(x) − ∇x log π(x)||22

]
.

This objective requires the true score of the distribution, ∇x log π(x), which

is not directly accessible in practice. Instead Vincent [249] gave the connection

between score-matching and denoising auto encoders, showing that Denoising

Score Matching (DSM) can be used as theoretically-sound and tractable alter-

native objective:

argmin
θ

{
LDSM(θ) = Et∼U[0,T ]Ex0∼πExt∼pt(xt |x0)

[
∥Gθ(xt, t) − ∇xt log pt(xt|x0)∥22

]}
.

(5.1)

Here, the subscript t denotes a time-dependency that defines the noisy im-

age xt. This noisy image xt is a sampled from a distribution pt, which is defined

as a convolution of a tractable distributionwith the complex distribution π. The

tractable distribution is typically Gaussian N(0, I). As time approaches the ter-

minal time t → T , the terminal distribution approaches the tractable distribu-

tion (i.e. pT := N(0, I)), while the initial distribution is defined as p0 := π. These

properties ensure that, over time, the distribution is progressively smoothed.

For a single dimension this is illustrated in Fig. 5.1, where the bimodal 1D π is

successively smoothed to become a unimodal Gaussian at t = T .

Returning back to Eqn. (5.1), the time t is sampled uniformly from the in-

terval [0,T ], the clean image is sampled from the image distribution π (i.e. it

is a sample from a dataset), and xt is a sampled from the conditional distribu-

tion pt(xt|x0). This conditional distribution is constructed to be tractable, in fact

it is simply scaled summation of two random vectors γtx0 + νtε ∼ pt(xt|x0) ≡

N(xt; γtx0, ν
2
t I) where ε ∼ N(0, I) and x0 ∼ π, where γt and νt are scalar-valued
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xt

p
t(

x t
)

Times
t=0
t=.33 T
t=.67 T
t=T

Figure 5.1: One-dimensional probability density scale space. Convolution of the bi-
modal π distribution at t = 0 with a Gaussian untill t = T .

functions of t that are defined later. The conditional score is therefore defined

as:

∇xt log pt(xt|x0) = ∇xt

− 1

2ν2
t
||xt − γtx0||

2
2 + const.

 = − 1

ν2
t

(xt − γtx0) (5.2)

= −
ε

νt
where ε =

xt − γtx0
νt

. (5.3)

The score-model is trained to approximate this score which is the noise

added to the image Gθ(xt, t) ≈ − ενt
. Thus the model Gθ(xt, t) can be used to

denoise xt. Other parameterisations exist that can train the model as image

denoising or noise prediction [190], for this thesis only the score-based param-

eterisation is only considered.

There have been a various motivations and formulations of diffusion mod-

els, these include denoising diffusion probabilistic modelling [97, 222], and

score-matching Langevin dynamics [227]. In this thesis the formulation chosen

unifies these approaches through the lens of a Stochastic Differential Equation

(SDE). This formulation is coined SGMs [230].

Comparedwith denoisingdiffusionprobabilisticmodelling [97, 222], SGMs

generalise t to be continuous rather than discrete. The continuous forward dif-

fusion process is defined by an Itô SDE
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dxt = h(xt, t)dt + g(t)dwt, x0 ∼ π, (5.4)

where {xt}t∈[0,T ] is a stochastic process indexed by time t. Each random vector xt

is associated with a family of time-dependent density pt(xt). The multivariate

Wiener process {wt}t≥0 is the standard Brownian motion. Starting at the image

distribution π, the vector-valued drift function is a h(·, t) : RNx → RNx and the

diffusion function g(t) : R → R are chosen such that the terminal distribution

at t = T approximates the standard Gaussian, pT ≈ N(0, I). Thus, the forward

diffusion process maps the image distribution π to a tractable, analytic distri-

bution. In this thesis the variance preserving SDE is used [97] and defines the

drift and diffusion as h(xt, t) = −
β(t)
2 xt and g(t) =

√
β(t).1 The resulting SDE of

the form:

dxt = −
β(t)
2

xtdt +
√
β(t)dwt, (5.5)

where β(t) = βmin + t(βmax − βmin) is a linear schedule with βmin = 0.1 and

βmax = 10 with a terminal time T = 1. As described previously, it can be

observed that this chosen formulation Eqn. (5.5) is the summation of two

scaled independent random vectors at any time point. With the tractable dis-

tribution dominating toward t = 1. The transition kernel for the variance pre-

serving SDE is a Gaussian and has closed-from mean and variance [200], i.e.

pt(xt|x0) = N(xt; γtx0, ν
2
t I), with coefficients

γt = exp
(
−

1
2

∫ t

0
β(s)ds

)
, ν2

t = 1 − exp
(
−

∫ t

0
β(s)ds

)
. (5.6)

Using the terms above andEqns. (5.1) and (5.2), the denoising scorematch-

ing loss can be rewritten as:

LDSM(θ) = Et∼U[0,1]Ex0∼πEε∼N(0,I)

[
ωt

∥∥∥∥∥Gθ(xt, t) +
ε

νt

∥∥∥∥∥2

2

]
, (5.7)

1This is equivalent to denoising diffusion probabilistic models [97] in the limit when the
time discretisation approaches continuous time.
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where the choice of ωt = ν
2
t is used to approximate maximum likelihood train-

ing [226]. Note that from Eqn. 5.2, xt = νtε + γtx0 the score-model Gθ attempts

to predict the noise −ε/νt.

Having trained a model to approximate the score, it can be used to reverse

the forward diffusion process; to start with pure-noise, and apply the score-

model iteratively to attain a sample from π. This is available as the forward

stochastic process Eqn. (5.4) has an existing reverse stochastic process [5] that

is defined

dxt = [h(xt, t) − g(t)2∇xt log pt(xt)]dt + g(t)dw̄t, (5.8)

that runs backwards in time. TheWiener process {w̄t}t≥0 is time-reversed Brow-

nian motion, and the score ∇xt log pt(xt) approximated with the trained score-

model ∇xt log pt(xt) ≈ Gθ(xt, t) so that the approximate reverse SDE is

dxt =

[
−
β(t)
2

xt − β(t)Gθ(xt, t)
]

dt +
√
β(t)dw̄t. (5.9)

Using the score-model the reverse diffusion process can be sampled by first

drawing a sample from the terminal distribution x1 ∼ N(0, I), and then simu-

lating the reverse SDE Eqn. (5.9) backwards in time until t = 0. The latter can

be achieved by Euler-Maruyama schemes [230].2

The Euler-Maruyama scheme is classical method for approximate the so-

lutions of an SDE. This scheme uses an equidistant time discretisation of the

form 0 = t0 ≤ . . . tk · · · ≤ tN = 1 for N ∈ Z, with a time step ∆t = −1/N. A single

iteration of Euler-Maruyama for Eqn. (5.9) SDE is given by:

xtk−1 = xtk +

[
−
β(tk)

2
xtk − β(tk)Gθ(xtk , tk)

]
∆t +

√
|∆t|β(tk)ε, ε ∼ N(0, I), (5.10)

This formulation requires a fine discretisation∆t to correctly approximate as

solution of the reverse SDE, leading to slow generation of samples. This is be-

cause larger step sizes can cause non-convergence in high dimensional spaces

2With a finite time this formulation can be shown to be equivalent to denoising diffusion
probabilistic models [97, 230].
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due to the randomness of the Wiener process [128, Chapter 11]. Additionally

the method is Markovian, meaning the next step is only dependent on the cur-

rent step and not the history of previous iterates.

As derived in [230, Appendix D.1], for the above reverse SDE there exists a

deterministic Ordinary Differential Equation (ODE), referred to as the proba-

bility flow ODE, with the same marginal density as the reverse SDE:

dxt
dt
= −

β(t)
2

xt︸  ︷︷  ︸
linear

+
β(t)
2
∇xt log pt(xt)︸                ︷︷                ︸
non-linear

. (5.11)

Unlike the reverse SDE, this ODE is deterministic, producing a smooth tra-

jectory that continuously evolves towards the target distributions. These prop-

erties have led to the development of faster non-Markovian samplers [120, 146].

The next section introduces a different perspective on SGMs, which motivates

quicker sampling methods that leverage the probability flow ODE.

5.2.1 The Denoising Perspective and Denoising Diffusion Im-

plicit Models

The key insight to move beyond the slow, stochastic reverse time SDE is the

connection to denoising. The link between SGMs is made explicit through the

relationship between the score and the conditional expectation E [
x0|xt

] - the
mean estimate of x0 given the noisy xt. The connection is formally derived

using the first order Miyasawa relationship [152]:

∇xt log pt(xt) = E
[
∇xt log pt(xt|x0)|xt

]
,

given that the condition score is ∇xt log pt(xt|x0) = − 1
ν2

t
(xt − γtx0), we can substi-

tute this into the expression and rearrange to solve for the conditional mean:

∇xt log pt(xt) = E

− 1

ν2
t

(xt − γtx0)|xt


E

[
x0|xt

]
=

xt + ν
2
t ∇xt log pt(xt)

γt
.
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By replacing the true score∇xt log pt(xt)with our trained score-modelGθ(xt, t),

we obtain a remarkable result known as Tweedie’s Formula [40, 59]. This for-

mula provides a one-step denoising estimate of the original data:

x̂0(xt) :=
xt + ν

2
t Gθ(xt, t)
γt

≈ E[x0|xt]

This equation shows that a trained score-model can be directly used as a

denoiser to predict the clean image from any noisy input in a single step. While

powerful, this alone does not accelerate the standard generative process.

Denoising Diffusion Implicit Models (DDIM) leverages the one-step de-

noiser x̂0(xt) to formulate a much faster sampling procedure. The core idea

is to define a new, non-Markovian forward process that, while being a purely

mathematical construct, is guaranteed to have the same marginals pt(xt|x0) as

the original forward SDE. This ensures that the same pre-trained score-model

Gθ can be used.

The benefit of this alternative process is that it allows for a corresponding

reverse process that is not strictly tied to the small, stochastic steps of the SDE.

Instead, it can be understood as a numerical discretisation of the deterministic

probability flow ODE [146, 225]. This perspective frames the DDIM sampler

as an iterative refinement process: at each step tk, it uses the Tweedie estimate

x̂0(xtk) to predict the final clean image and then takes a large, direct step toward

it.

The general DDIM update rule to get from xtk to xtk−1 is formulated as:

xtk−1 = γtk−1 x̂0(xtk) − νtk

√
ν2

tk−1
− ζ2

tkGθ(xtk , tk) + ζtkε, ε ∼ N(0, I). (5.12)

The parameter ζtk controls the stochasticity of the update.3 Different choices

of ζt result in different sampling schemes. In this work, ζtk = ζψtk with a hyper-

parameter ζ ∈ [0, 1], controlling the amount of stochasticity in the sampling,

and ψtk = νtk−1/νtk
√

1 − γtk/γtk−1 [225].

3In fact it is only truly DDIM when ζtk = 0
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5.3 Inverse Problems andScore-basedGenerativeMod-

els

From a Bayesian perspective of inverse problems, see Section 2.1.2.2, we are

concerned with sampling from the posterior defined:

ppost(x|y) ∝ plkhd(y|x)π(x), (5.13)

where the likelihood plkhd is known, given the forwardmodel and noisemodel

of the measurements y. The goal in the application of SGMs for inverse prob-

lems is to approximate the prior π in order to sample from the posterior. This

aligns with the motivations of the thesis, where the image modelling is sepa-

rated from the forward modelling.

While SGMs can be applied to inverse problems through trained conditional

mechanisms [98], we focus on the application of unconditional SGMs for in-

verse problems. In this case data-consistency with measurements is required

during the sampling of the score-model to sample the posterior. There exist

two main directions for incorporating data-consistency with an unconditional

score-model:

1. Approximation of plkhdt (y|xt)

2. Projection-type data-consistency

The term plkhdt (y|xt) is often referred to a the noisy or time-dependent like-

lihood. It is derived by considering a posterior ppostt (xt|y) that has the form:

ppostt (xt|y) ∝ plkhdt (y|xt)pt(xt),

where the posterior ppost0 (x0|y) at t = 0 is precisely the posterior we would like

the to sample from in Eqn. (5.13). Taking the gradient-log of the posterior

gives:
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∇xt log ppostt (xt|y) = ∇xt log plkhdt (y|xt) + ∇xt log pt(xt)︸          ︷︷          ︸
score

,

∇xt log ppostt (xt|y) ≈ ∇xt log plkhdt (y|xt) + Gθ(xt, t),

the gradient-log of the time-dependent prior is the score that is approximated

by the score-model. To sample from ppost0 (x0|y) requires conditioning the re-

verse SDE themeasurements. This can be obtained by substituting in the gradient-

log of the posterior into the reverse SDE (Eqn. (5.9)), which results in:

dxt =

[
−
β(t)
2

xt − β(t)(∇xt log plkhdt (y|xt) + Gθ(xt, t))
]

dt +
√
β(t)dw̄t. (5.14)

Sampling this reverse SDE to t = 0 results in a sample of the posterior

ppost(x|y), and repeated sampling allows for the estimation of higher posterior

moments. In spite of this, the common practice only computes a single sample

for the reconstruction, due to computational overhead of repeated sampling

[42, 107, 229].

The term ∇xt log plkhdt (y|xt) is only available in analytic form at t = 0, i.e.

when it is the likelihood ∇x log plkhd(y|x). The approximation of the noisy like-

lihood is the basis for several methods for formulating SGMs for inverse prob-

lems. One approximation is the the annealed likelihood [107, 185]:

∇xt log plkhdt (y|xt) ≈ λt∇xt log plkhd(y|xt). (5.15)

This approximation is referred as the Annld approximation, where the

penalty strength λt typically increases as t → 0. This enforces the likelihood

more closer to t = 0, as plkhdt ≈ plkhd is more valid closer to t = 0.

A recent popular choice for the approximation of the noisy likelihood is Dif-

fusion Posterior Sampling (DPS) [40]. Rather than computing the likelihood

based-off the noisy image xt, the Tweedie’s estimate x̂0 is used to compute the

conditional mean, from which the likelihood gradient is computed.
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∇xt log plkhdt (y|xt) ≈ λt∇xt log plkhd(y|x̂0(xt)), (5.16)

this approximation is denoted DPS. Given that the Tweedie’s estimate Eqn.

(??) applies the score-model to denoise xt, the gradient therefore requires back-

propagation through the score-model, adding extra computational overhead in

comparison toAnnld approximation, and the time-dependent penalty λt is still

required. Nonetheless, this approximation has been shownperform favourably

on several image reconstruction tasks [40].

The projection-type data consistency modifies the DDIM sampling rule in

Eqn. (5.12) for data consistent conditional generation [41, 224, 267]. These

methods generally consist of three steps: Estimate the denoised image x0 using

Tweedie’s estimate x̂0(xtk); update x̂0(xtk) with a data consistency step; and add

the noise back, according to the DDIM update rule, in order to get a sample

for the next time step tk−1. Importantly, with this approach there is no need

to estimate the gradient of the time-dependent likelihood ∇xt log plkhdt (y|xt) as

data consistency is only enforced on Tweedie’s estimate at t = 0.

The conditional DDIM samplers differ predominately in the implementa-

tion of the data consistency update. Decomposed Diffusion Sampling (DDS)

[41] proposes to align Tweedie’s estimate with the measurements by running

p steps of a Conjugate Gradient (CG) scheme for minimising the negative log-

likelihood at each sampling step. Let CG(p)(x̂0) denote the p-th CG update ini-

tialised with x̂0(xtk). This can be seen as an approximation to the conditional

expectation, i.e. E[x0|xt, y] ≈ CG(p)(x̂0) [186]. Using this approximation, the

update step for DDS can be written as:

xtk−1 = γtk−1CG
(p)(x̂0) − νtk

√
ν2

tk−1
− ζ2

tkGθ(xtk , tk) + ζtkε, with ε ∼ G(0, I), (5.17)

This projection method is denoted DDS, and by leveraging DDIM the sam-

pling is greatly accelerated, as the fine time discretisation for sampling the re-

verse SDE is not needed. Above, the amount of data consistency is controlled,

coarsely, by the number of steps p to prevent over-fitting to noise in the mea-
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surements.

5.4 Image Modelling - the PET Intricacies

The use of an unconditional score-model for inverse problems aids in gener-

alisation as the model is trained to only sample from the prior distribution

π. Through data consistency one can attempt to sample the posterior distri-

bution, i.e. condition the score-model sampling on the measurements. The

training and sampling of the score-model must be adapted given intricacies of

the modality at hand. More specifically, the score-model must faithfully and

robustly model images obtained from the modality.

PET images ofActivity Concentration (AC) are inherently non-negative and

have greatly varyingdynamic ranges betweenpatients [161]. The non-negativity

is physically realistic as AC cannot be negative, and the dynamic range vari-

ations are due the patient size, radio-tracer dose and metabolism differences

between patients. These factors make the imagemodelling of PET images chal-

lenging.

5.4.1 PET Normalisation for Score-based Generative Models

As it was noted in Chapter 4, normalisation is an important technique that can

improve image reconstruction when networks are trained. This can be par-

tially attributed to overcoming bias toward intensity levels that appear more

frequently in the training set. Consequently, the network might struggle to

handle new images with unseen intensity levels, leading to instability in the

learning and evaluation process [237]. Although unsupervised, a score-model

may exhibit these instability too when trained on PET images of a widely vary-

ing dynamic range. It is importance to stabilise this widely varying dynamic

range to aid generalisability. Furthermore, for SGMs it is noted in literature

that the noisy image xt must converge to noise similarly for all target images

defining the empirical dataset [145]. This is because the forward diffusion pro-

cess is predefined with the rate at which it converges to Gaussian is dependent

on the dynamic range of the target images. A larger intensity scale of images
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will converge to pure noise slower. This can make training and sampling more

unstable [145].

Input normalisation is a standard deep learning methodology to deal with

intensity shifts and normalise the inputs to the network. We propose input nor-

malisation to ensure that the score-model Gθ(xt, t) is able to estimate the score

of images with arbitrary intensity values. In the training stage, each training

image x0 is normalised to ensure voxel intensities are within a certain range.

To do this, a training normalisation factor ctrain is introduced that when ap-

plied ensures the average emission per emission voxels (a voxel with non-zero

intensity value) is 1. This is computed as:

ctrain = c(x0) :=

∑Nx
j=1[x0] j

#{ j : [x0] j > 0}
, (5.18)

where the numerator ∑Nx
j=1[x0] j computes the total emission in the image and

the denominator #{ j : [x0] j > 0} is the number of emission voxels. The nor-

malisation factor is incorporated into the DSM training objective function by

rescaling the initial image, yielding the objective

Et∼U[0,1]Ex0∼πEε∼G(0,I)Ec∼U[ ctrain
2 ,

3ctrain
2 ]

[
ν2

t

∥∥∥∥∥Gθ(x̃t, t) +
ε

νt

∥∥∥∥∥2

2

]
, (5.19)

with x̃t = γtx0/c + νtε. Compared with Eqn. 5.7, the scale-factor in range c ∼

U[ctrain
2 , 3ctrain

2 ] is used to encourage the score-model to be more robust with re-

spect to misestimations of the normalisation constant during sampling.

The incorrect estimation of the normalisation constant is due to the true

number of emission voxels #{ j : [x0] j > 0} is not known during sampling. A

surrogate for the number of emission voxels can be obtained by estimating it

from an approximate OSEM reconstruction. TheOSEM is fast to compute often

using a single epoch of OSEM from non-negative initialisation. The resulting

sampling normalisation factor is given by:

cOSEM =

∑m
j=1[xOSEM] j

#{ j : [xOS EM] j > Q0.01}
, (5.20)
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where Q0.01 defines the 1%percentile of xOSEM values. This threshold is heuris-

tically chosen to ensure that noise and reconstruction artefacts do not cause an

over-estimation of the number of emission voxels.

In proposed sampling methods the normalisation constant cOS EM is ap-

plied as a factor scaling the time-dependent likelihood such that∇xt log plkhdt (y|cOSEMxt).

At final time step t = 0, the output x0 is rescaled by cOS EM to recover the cor-

rect intensity level. In projection-type data consistency the Tweedie’s estimate

is rescaled.

5.4.2 Modifications of Sampling Methods

The sampling schemes and approximations in Section 5.3 were originally pro-

posed for inverse problems with Gaussian NLL. To work with a Possion NLL

the sampling techniquemust bemodified to take into account the inherent non-

negativity. Thework onDPS [40] also considers inverse problemswith Poisson

noise model, but utilises a Gaussian approximation, which is known to be un-

suitable for PET reconstruction in the event of the low photon count [21, 99].

For methods that approximate the gradient-log of the noisy likelihood, i.e.

Annld and DPS, the non-negativity required for the Possion NLL can be en-

sured with a non-negativity projection. This type of projection can be seen in

the context of guided diffusion where the iterates xtk are projected to a speci-

fied domain after each sampling step [142, 196]. However, this creates a mis-

match between the forward and reverse SDEs. In literature it is noted that this

mismatch results in artefacts in the reconstructions andmay even lead to diver-

gence of the sampling [145]. We observed that thresholding all negative values

of xtk leads to a divergence of the sampling process. Therefore only threshold

the input to the Possion NLL, i.e. with ∇xt log plkhd being the Possion NLL, see

Eqn. (5.15), for the PET-Annld approximation we use:

∇xt log plkhdt (y|xt) ≈ λAnnld
t ∇xt log plkhd(y|cOSEMP≥0[xt]), (5.21)

and likewise for PET-DPS, i.e. DPS in Eqn. (5.16):
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∇xt log plkhdt (y|xt) ≈ λDPS
t ∇xt log plkhd(y|cOSEMP≥0[x̂0(xt)]), (5.22)

whereP≥0 is the non-negativity projection. This leads to a perturbed likelihood

gradient that is not computed on the true iterate xt, but only on the projection.

In order to reconstruct the PET image the reverse SDE is solved using the spe-

cific approximation (PET-Annld or PET-DPS) as the likelihood term. The al-

gorithms for PET-Annld and PET-DPS are given in Algos. 1 and 2 respectively.

In addition to gradient based approximations, the projection-type data con-

sistency ismodified. This reduces reconstruction time bymodifying theDDIM-

based sampling rule DDS [41, 267], and the new rule is coined PET-DDS. This

rule enforces data consistency by projecting the Tweedie’s estimate x̂0(xtk) to-

ward the measurement manifold by running gradient descent steps of a MAP

objective, see Section 2.2.3.1. The update is given by:

x(0)
tk = x̂0(xtk) (5.23)

x(i+1)
tk = Px≥0

[
x(i)

tk + D(x(i)
tk )∇xΦ(x(i)

tk )
]

(5.24)

i = 0, . . . , p − 1

xtk−1 = γtk−1x(p)
tk − νtk

√
ν2

tk−1
− ζ2

tkGθ(xtk , tk) + ζtkε, ε ∼ N(0, I), (5.25)

where D(x) = diag
{
max(x, 10−4)/A⊤1

}
is the preconditioner. The objective Φ is:

Φ(x(i)) = − log plkhd(y|cOSEMx(i)) + λDDS∥x(i) − x̂0∥
2
2. (5.26)

The term ∥x(i) − x̂0∥
2
2 can be considered an anchoring term that ensures the

update does not deviate too far from the Tweedie’s estimates. Given this formu-

lation the objective Eqn. (5.26) is convex, and gradient descent could converge

to a unique minimum. To alleviate the computational burden of running to

convergence, a fixed number of iterations p are chosen to ensure sufficient data

consistency. This approach implicitly enforces regularisation due to early stop-

ping from the Tweedie’s estimate initialisation. The amount of regularisation is
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therefore defined by the number of iteration p as well as penalty strength λDDS.

The different proposed sampling schemes for PET are summarised in Table.

5.1.

Table 5.1: Summary of different sampling schemes proposed for PET.

Method Data consistency with − log plkhd

PET-Annld − log plkhd(y|cOSEMP≥0[x]) 5.21
PET-DPS − log plkhd(y|cOSEMP≥0[x̂0(x)]) 5.22
PET-DDS p steps of MAP objective 5.24 and ??

Algorithm 1 PET-Annld
Require: Measurements y
Require: Number of steps N
Require: Time discretisation 0 = t0 ≤ · · · ≤ tN = 1

xtN ∼ N(0, I) ▷ Sample initial noise
for k = N − 1, . . . , 1 do

Gθ ← Gθ(xtk+1 , tk+1)
ε ∼ N(0, I)
∆t ← tk − tk+1
x̃tk ← xtk+1 +

[
g(xtk+1 , tk+1) − g(tk+1)2Gθ

]
∆t + g(tk+1)

√
|∆t|ε ▷ Unconditional

score update
xtk ← x̃tk − g(tk+1)2λAnnld

tk+1
∇xtk+1

log plkhd(y|cOSEMP≥0[xtk+1])∆t ▷ Data
consistency step
end for
x† ← cOSEMxt1

5.5 Further adaptions for PET image reconstruction

In addition to the intricacies of the PET image modelling, there are other adap-

tations that can be considered given the available side-information acquired

with PET measurements, as well as considerations for fully 3D PET image re-

construction.

In more recent years the emergence of PET/MR scanners allows for the si-

multaneous acquisition of both PET and MRI measurements. As described

in 2.2.1, these modalities provide complementary information. Additionally,

clinical PET images are fully 3D voxelised volumes. Training a score-model

to generate fully 3D volumes is extremely computationally expensive as well
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Algorithm 2 PET-DPS
Require: Measurements y
Require: Number of steps N
Require: Time discretisation 0 = t0 ≤ · · · ≤ tN = 1
Require: Transition density p(xt|x0) = N(xt; γtx0, ν

2
t I)

xtN ∼ N(0, I) ▷ Sample initial noise
for k = N − 1, . . . , 1 do

Gθ ← Gθ(xtk+1 , tk+1)
x̂0(xtk+1)← γ−1

tk+1
(xtk+1 + ν

2
tk+1

Gθ) ▷ Compute Tweedie estimate
ε ∼ N(0, I)
∆t ← tk − tk+1
x̃tk ← xtk+1 +

[
h(xtk+1 , tk+1) − g(tk+1)2Gθ

]
∆t + g(tk+1)

√
|∆t|ε ▷ Unconditional

score update
ℓ ← − log plkhd(y|cOSEMP≥0[x̂0(xt)])
xtk ← x̃tk + λ

DPS
tk+1

/ℓ ∇xtk+1
log plkhd(y|cOSEMP≥0[x̂0(xtk+1)])∆t ▷ Data

consistency step
end for
x† ← cOSEMxt1

as requiring access to many 3D volumes of target image quality. These fac-

tors necessitate the use of a 2D score-model for fully 3D reconstruction. Fur-

ther, the computation of the fully 3D forward model is expensive and reducing

this computational burden is important in allowing reconstruction timeswithin

clinically acceptable time-frames.

5.5.1 Guided Reconstruction with an MR image

MRI is able to provide high resolution images that highlight the structure of

soft-tissue. This is complementary to PET images that give lower resolution

functional information. This complementary nature of the modalities can be

leveraged to regularise the inverse problems making it better-posed [7]. More

specifically, additional MR images can be used to regularise the PET image re-

construction by encoding the common anatomical features through edges or

other hand-crafted regularisers [10, 26, 62, 223]. Using a high quality recon-

structed MR image to guide PET image reconstruction is referred to as guided

reconstruction [60]. In a statistical sense, this corresponds to formulating a con-

ditional prior π(x|xMR), where xMR is the guidanceMR image. The gradient-log

posterior is then given by:
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∇x log ppost(x|y, xMR) = ∇x log plkhd(y|x) + ∇x log π(x|xMR),

here it is assumed that both y and xMR are conditionally independent given x.

The likelihood plkhd(y|x) is given by the Poisson noise model and π(x|xMR) is

a prior conditioned on the MR image xMR. The conditional prior requires the

training of a conditional score-model Gθ(xt, t, xMR) ≈ ∇xt log pt(xt|xMR). Given

this conditional score, the reverse SDE can be written as:

dxt = [h(xt, t) − g(t)2
(
∇xt log plkhdt (y|xt) + ∇xt log pt(xt|xMR)

)
]dt + g(t)dw̄t. (5.27)

As before both PET-Annld or PET-DPS can be used to approximate the score

of the time dependent likelihood ∇xt log plkhdt (y|xt). Within SGM literature, the

score-model with an additional conditioning input is known as a conditional

score-model. Conditional score-models are popular and are the basis of es-

tablished text-to-image approaches such as Stable Diffusion [191]. Addition-

ally this conditional approach has been applied for PET image denoising [75],

where the conditional input is a noisy PET image and is trained with paired

target PET image. To train a conditional score-model, a paired dataset of tar-

get images and conditioning input (i.e. the MR image) is needed. This paired

dataset is difficult to obtain, and Classifier-free Guidance (CFG) alleviates the

burden by requiring only a partially paired dataset. This consists of paired im-

ages as well as only target PET images without MR image input. CFG trains

an unconditional and conditional score-model by passing an image of zeroes

as the MR image during training. This means that the same model can be used

for unconditional and conditional sampling; by passing zeroes or theMR image

respectively. This is denoted as:

Gθ(xt, t, xMR) ≈ ∇xt log pt(xt|xMR) and Gθ(xt, t, xMR = 0) ≈ ∇xt log pt(xt),

The corresponding training objective for CFG requires an adaption of DSM;
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Et∼U[0,T ]Ex0,xMR∼πExt∼pt(xt |x0)Eq∼B(q)
[
ωt∥Gθ(xt, t|xMR)−∇xt log pt(xt|x0)∥22

]
}.

(5.28)

Note that q is an additional scalar that drawn from Bernoulli distribution

that nullifies the conditioning MR image setting it to zeroes. After training,

CFG can use both conditional and unconditional score-models in a linear com-

bination to control the amount of guidance from the MR image:

Ḡθ(xt; t, xMR) = (1 + w)Gθ(xt, t, xMR) − wGθ(xt, t, 0),

the weighting w is the guidance strength. It is this combined score-model G̃θ
that can be inserted directly into the sampling to guide reconstruction with

additional MR image.

5.5.2 Fully 3D reconstruction

PET images in clinic are typically full 3D volumes, with photons detected across

multiple detector rings. This forward model in this case is inherently 3D and

computationally expensive. These two aspects need to be addressed to develop

clinically orientated algorithms for PET image reconstruction. The PET-DDS

algorithm is further adapted for 3D reconstruction as it is the most scalable.

The score-model Gθ is trained in 2D slices due to the computation and data

demand of training a fully 3D score-model. More specifically, the dataset only

contained axial slices meaning that the score-model provided a prior on the

axial plane, leaving the orthogonal direction without regularisation. Addi-

tional regularisation in the orthogonal directionwas used to ensure consistency

across axial slices. The RDPwas used in this axial direction by formulating a 1D

neighbourhood penalising variation along the axial z-direction that is denoted

ηz.

To further accelerate the computation of the data consistency update, block-

sequential subset objective gradients were computed. This was inspired by es-

tablished PET image reconstruction algorithms BSREM and OSEM; that cycli-

cally iterate through a set of Ns objective subsets to accelerate convergence see
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Section 2.2.3.1. There is however a trade-off, by utilising subsets the individ-

ual updates may not converge, and the likelihood is only based off a subset of

all available measurements; making it noisier and less accurate. However, the

acceleration would allow for clinically feasible reconstruction times. The sub-

set objectives were ordered in a staggered fashion meaning that equally spaced

projections are taken across the angles of all the projections. Further, when

these subsets are accessed they are accessed in the Herman-Meyer order [96]

in an attempt to maximise orthogonality between subsets.

Formalising this the PET-DDS algorithm is given in Algo. 3. Note that the

hyper-parameters λDDS and p control the amount of data-consistency.

Algorithm 3 PET-DDS
Require: Measurements y
Require: Number of steps N
Require: Time discretisation 0 = t0 ≤ · · · ≤ tN = 1
Require: Transition density p(xt|x0) = N(xt; γtx0, ν

2
t I)

Require: Number of inner optimisation steps p, number of subsets Ns
Require: Stochasticity {ζt}t≥0

xtN ∼ N(0, I) ▷ Sample initial noise
for k = N − 1, . . . , 1 do

Gθ ← Gθ(xtk+1 , tk+1)

Noise(xtk+1 ,Gθ)← −νtk+1

√
ν2

tk − η
2
tk+1

Gθ
x(0)

tk+1
= x̂0(xtk+1)← γ−1

tk+1
(xtk+1 + ν

2
tk+1

Gθ) ▷ Compute Tweedie estimate
for i = 0, . . . , p − 1 do ▷ Inner optimisation for data consistency

s← (p(N − k) + i mod Ns) + 1
Φs(x(i)

tk+1
) ← − log plkhd(y|AscOSEMx(i)

tk+1
+ b̄s) + (λRDPηz(x(i)

tk+1
) +

λDDS∥x(i)
tk+1
− x̂0(xtk+1)∥22)/Ns

x(i+1)
tk+1

← P≥0
[
x(i)

tk+1
+ D(x(i)

tk+1
)∇xΦs(x(i)

tk+1
)
]

end for
ε ∼ N(0, I)
xtk ← γtkx(p)

tk+1
+Noise(xtk+1 ,Gθ) + ζtk+1ε

end for
x̂← cOSEMxt1

5.6 Experimental Methods

We aim to evaluate the effectiveness of SGMs for PET image reconstruction,

focusing on the applicability of SGMs as a prior; independent of the optimal
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regularisation parameter.

5.6.1 Network Architecture

In this work, we adopt the architecture proposed by [54].4 Thismodel is shown

in Fig. 5.2 and is derived from the widely used U-Net framework [192], fea-

turing a decoder designed as a sequence of residual blocks (ResBlock) com-

bined with downsampling layers, and an encoder comprising residual blocks

with upsampling operations. At the smaller spatial resolution (32× 32, 16× 16

and 8×8) global attention layers are introduced to enhance representation, see

Section 2.3.3. To integrate the timestep into each residual block, the architec-

ture leverages adaptive group normalisation (AdaGN) layers, formulated as

AdaGN(h, e) = esGroupNorm(h) + eb, where h are intermediate features and

e = [es, eb] embeds the time step. This embedding utilises a sinusoidal and

MLP time embeddings. For the MRI-guided model, the clean MRI image is

incorporated as an additional input channel to the network.

5.6.2 Dataset

Due to data-availability it was chosen to have in-silico experiments based on

the BrainWeb dataset. This consisted of 20 patient-realistic volumes [8]. There

were two sets of simulation conducted; one for the target PET images and one

for the noisy measurements (i.e. the raw scanner data). The experimental

methods differed between 2D and 3D testing, but the same score-model was

used for both.

The score-model learns a target empirical distribution, and therefore only

target PET images are required for training. The score-model was trained on

axial slices of 19 PET simulated volumes, with three realisations of random

distortions as per [205], see Section 4.3 for more details. A FDG tracer was sim-

ulated and zero intensity slices were removed resulting in 4569 training slices

in total. The training slices were healthy, with no lesions, and with distortions

that were deemed realistic. For the MR guided score-model, MR images that

correspond to the PET image were simulated and used during training.
4Available at https://github.com/openai/guided-diffusion.

https://github.com/openai/guided-diffusion
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Figure 5.2: Enter Caption

In 2D evaluation, the image simulationwas conducted the same as the train-

ing data, but on 20 equidistant axial slices of the held-out subject 04 evaluation

volume. These slices were further diversified by the addition of simulated le-

sions as local regions of elliptical hyper-intensity within soft-tissue. The im-

ages were then scaled to ensure that the total counts divided by the emission

volume was on average 2.5 or 10, corresponding to low and normal dose PET

activity concentration respectively. Measurements were then simulated using

pyParallelProj [207] and included resolution, attenuation (from simulated

CT image), sensitivity and background contamination giving clean measure-

ments. These measurements were then corrupted with Poisson noise with 10

different noise realisations. The forward model for these measurements in-

cluded approximations of the aforementioned resolution, attenuation, detec-

tor sensitivities and background, as well as the scanner geometry, see Section

2.2.2.1 for more details. The total true counts averaged over the evaluation set
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were 122, 808 and 491, 232 for the low and normal dose PET measurements re-

spectively.

For 3D evaluation the image simulation used the full subject 04 evaluation

volume, with the addition of ellipsoidal lesions of hyper-intensity within soft-

tissue. In this setting two tracers were simulated, a FDG tracer as well as an

Amyloid tracer to provide further out-of-distribution evaluation. Themeasure-

ments were simulated with a Siemens BiographmMR scanner geometry [115],

and detector sensitivities and attenuation were simulated and included in the

forward model using SIRF and STIR [167, 233]. Poisson noise was added to

the measurements and 5 realisations were obtained. The noise level was equiv-

alent to 40 million counts without background, corresponding to low dose PET

scan. The projector and measurements were ordered into 28 staggered subsets

unless otherwise specified.

5.6.3 Comparison Reconstruction Methods

The comparison methods for 2D included the post-processing and unrolled

iterative methods described in Section 4; the PET-U-Net and PET-LPD respec-

tively. These supervised methods were trained on measurements of noise lev-

els 5, 10 or 50without lesions. Additionally, the PET image denoising approach

developed in [75] was compared. This method is denoted as Annld (OSEM)

as it is equivalent to PET-Annld with the MSE ensure data-consistency with

the OSEM image, i.e. ||xOSEM − xt||
2
2. This surrogates the likelihood on mea-

surements, and the same score-model for both sampling methods.

In 3D, reconstructions were compared against state-of-the-art DIP unsuper-

visedmethod described in Chapter 3, as well as convergedMAP estimates with

the RDP regulariser computed with BSREM -see Section 2.2.3.1.

5.6.4 Image Quality Assessment

Two global quality methods of PSNR and SSIM were used to quantify overall

fidelity of reconstructions against the simulated ground truths. Two further

metrics were computed locally to assess lesion detectability and noise level,

these were CRC and EN respectively. These are described Section 2.2.4. In
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2D the KLDIV between measurements y and estimated measurements ȳ was

computed to quantify data consistency. All metrics are averaged over the re-

spective evaluation set and across realisations. With algorithms that required

tuning of a penalty strength, a range of penalty strengths were swept to pro-

duce bias-variance graphs. This aided in the assessment of the SGM as a prior.

The graphs have EN along the x-axis as a surrogate for penalty strength, as it

quantifies the noise in the reconstructions across realisations of the measure-

ments, where higher EN corresponds to greater data consistency. The converse,

lower EN corresponding to more influence of the prior, is not necessarily true

in the case of SGM prior, where multiple reconstructions with high likelihood

under the model increase EN.

5.7 Results and Discussion

In 2D, we compare the different SGM sampling methods - Annld (OSEM),

PET-Annld, PET-DPS and PET-DDS - against one another and against state-of-

the-art supervised methods - PET-U-Net and PET-LPD. Two noise levels are

evaluated as well as with and without lesions. MR-guided SGM reconstruc-

tions are compared with non-guided SGM reconstruction.

In 3D the results are given with lesions and two tracers for PET-DDS. These

are comparedwith classicalMAP estimates and state-of-the-art DIP reconstruc-

tions. All results are computed on a single NVIDIA GeForce RTX 3090.

5.7.1 2D Results without Lesions

The penalty strengths λAnnld
t and λDPS

t are both time dependent, while λDDS

is not. The parameters are defined λAnnld
t = λAnnld(1− t) as proposed in [107],

and λDPS
t = λDPS

log plkhd(y|x̂0)
as proposed in [40]. For PET-DDS the number of

iterations was first tuned to ensure that reconstructions over-fit to noise in the

measurements, then the penalty strength λDDS was increased to increase the

influence of the score-model. In 2D the number of projection steps for PET-

DDS were set to 4 for noise level 2.5 and 15 for noise level 10.

Figs. 5.3 and 5.4 show that results for the four SGM methods vary greatly.
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Notably, the EN for PET-Annld is significantly higher at both noise levels 10

and 2.5. When we apply the non-negativity projection Px≥0[xt] to the noisy

image, we set all negative values to zero. This operation causes a mismatch be-

tween the training distribution —which includes negative values in the noisy

images— and the conditional sampling used in PET-Annld. This mismatch

leads to a divergence in the sampling process, resulting in a considerable in-

crease in EN compared to the other methods.
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Figure 5.3: Results for BrainWeb without lesions with noise level 10 for different
penalty strengths. The Standard Deviation is computed over reconstruc-
tions of noise realisations y. The points represent different values of the
parameter λ.
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Figure 5.4: Results for BrainWeb without lesions with noise level 2.5 for different
penalty strengths. Standard deviation is across reconstructions from dif-
ferent realisations of measurements.

PET-DPS is the best performing method on global quality metrics, with the

highest PSNR and SSIM, with low EN. However, it is also computationally the

most expensive, requiring 1000 steps with back-propagation through the score
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Table 5.2: The computing time of a single reconstruction averaged over 5 reconstruc-
tions.

Method PET-Annld PET-DPS PET-DDS

Time (s) 41.52 60.64 3.90

model. PET-DDS performs competitively with a much lower computational

overhead of 100 steps without score-model back-propagation. In Table 5.2, the

computational time for one single reconstruction is compared. PET-Annld and

PET-DPS are largely comparable in terms of inference efficiency, and are about

ten times slower than PET-DDS. The difference in computing times can be at-

tributed to the fact that PET-DDS requires fewer time steps through the use of

the accelerated DDIM sampling method.

At noise level 10, Fig. 5.3, the KLDIV is lower for PET-DDS than other meth-

ods meaning that it is able to ensure data consistency whilst still being compet-

itive in-terms of other metrics. Note that the “mean KL” is the divergence be-

tween the measurements with and without noise, and is a threshold indicating

that the reconstruction is sufficiently data consistent.

Table 5.3: The mean quality score and standard error using the best hyperparameters
for each method for BrainWeb without lesions for noise level 2.5 (out-of-
distribution) and 10 (in-distribution). The penalty strength used for each
SGM method is denoted by λ. The best SGM is highlighted in grey, and
overall best metric is underlined. Supervised methods are trained on data
with noise levels 5, 10 and 50.

Noise Level Method PSNR, λ SSIM, λ

2.5

Annld (OSEM) 22.38±0.82, 0.527 0.770±0.02, 3.08
PET-Annld 21.52±0.84, 12.0 0.781±0.01, 12.0
PET-DPS 22.80±0.81, 650. 0.818±0.01, 750.
PET-DDS 22.46±0.82, 0.25 0.789±0.02, 0.2

PET-LPD 23.06±0.85, N/A 0.806±0.01, N/A
PET-U-Net 22.80±0.82, N/A 0.798±0.01, N/A

10

Annld (OSEM) 23.40±0.84, 0.2 0.793±0.02, 0.9
PET-Annld 22.81±0.87, 10. 0.815±0.01, 10.
PET-DPS 23.70±0.83, 400. 0.850±0.01, 400.
PET-DDS 23.55±0.77, 0.025 0.849±0.01, 0.025

PET-LPD 24.74±0.91, N/A 0.861±0.01, N/A
PET-U-Net 24.52±0.85, N/A 0.868±0.01, N/A

In Table 5.3 results are given with penalty strengths that give the best PSNR
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or SSIM values. Results are also given for PET-U-Net and PET-LPD that are

trained on measurement noise levels of 5, 10 and 50. This means that noise

level 2.5 is more out-of-distribution than noise level 10 for supervisedmethods.

At noise level 10 the supervised approaches are the best, whilst at noise level

2.5 SGM approaches are more competitive. Between the noise levels PET-LPD

has a decrease fo 6.7% and 6.6% in PSNR and SSIM, while PET-DPS has as

moderate drop of 3.4% and 3.8% respectively. In the table it is of note that

there is a pronounced change in the selected λ values between noise levels 2.5

and 10 for PET-DDS, especially when compared with other methods. This is

due to the p number of BSREM-like data consistency updates run, where at

the noise level 2.5 less steps are needed to fit to noise than at noise level at 10

necessitating much stronger regularisation.

5.7.2 2D Results with Lesions

Both the score-model and supervisedmethodswere trained on imageswithout

lesions. Evaluation on images with lesions gives an insight into the generali-

sation to out-of-distribution data, as well as allowing the computation CRC to

evaluate lesion detectability - a clinically pertinent metric. The bias-variance

graphs in Figs. 5.5 and 5.6 show similar trends to the without lesion evaluation

with regard to PSNR, SSIM and KLDIV. However, PET-DDS shows significant

improvements to CRC as compared with other SGMmethods.
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Figure 5.5: Results for BrainWebwith lesionswith noise level 10 for different penalty
strengths. The Standard Deviation is computed over reconstructions of dif-
ferent noise realisations y. The points represent different values of the pa-
rameter λ.
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Figure 5.6: Results for BrainWebwith lesionswith noise level 2.5 for different penalty
strengths. Standard deviation is across reconstructions from different real-
isations of measurements.The points represent different values of the pa-
rameter λ.

It can be seen in Table. 5.4 that the CRC ismuch improved for SGMmethods

compared to supervised methods across both noise levels. This performance

increase can again be attributed to SGMs being unsupervised and more gener-

alisable as compared to supervised methods. Further, PET-DDS performs the

best with regards CRC across all methods. Given this performance on the most

clinically relevant metric and the low computational overhead, it was chosen

that this was the most appropriate method to evaluate in a MR guided and 3D

settings.

The choice of quality metric has implicit bias in the features that are as-

sessed, see Section 2.2.4. While both global and local measures are desirable

for PET reconstructions, they are not always consistent. For example smooth-

ing may suppress the noise and increase PSNR and SSIM, but it can reduce the

contrast, leading to a worse CRC. Likewise, if the method preserves details, it

may increase the contrast at the expense of having a higher noise in the image

and decreasing PSNR and SSIM. Thus, the results in Table 5.4 indicate that PET-

DDS is more effective than PET-DDS in enhancing the contrast of the ROIs, but

less effective in suppressing the noise.

5Regularised due to denoised score estimate initialisation.
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Table 5.4: Results using the best hyperparameters for each method for BrainWebwith
lesions for noise level 2.5 and 10. The penalty strength used for each SGM
method is denoted by λ. The best score-basedmethod is highlighted in grey.
The overall best score per noise level is underlined.

Noise
Level

Method PSNR, λ SSIM, λ CRC, λ

2.5

Annld (OSEM) 27.60±0.87, 0.527 0.821±0.02, 1.71 0.891±0.02, 50.
PET-Annld 26.82±0.90, 12. 0.817±0.02, 12. 0.908±0.03, 50.
PET-DPS 27.99±0.85, 625. 0.855±0.01, 650. 0.886±0.02, 1500.
PET-DDS 27.46±0.83, 0.15 0.841±0.01, 0.15 0.977±0.01, 0.01

PET-LPD 28.40±0.92, N/A 0.853±0.01, N/A 0.865±0.03, N/A
PET-U-Net 27.74±0.83, N/A 0.836±0.01, N/A 0.805±0.03, N/A

10

Annld (OSEM) 28.87±0.93, 0.25 0.847±0.01, 0.9 0.902±0.02, 4.
PET-Annld 28.07±0.94, 10. 0.845±0.01, 7.5 0.911±0.02, 20.
PET-DPS 29.01±0.87, 400. 0.878±0.01, 400. 0.920±0.02, 550.

PET-DDS 28.99±0.88, 0.025 0.879±0.01, 0.025 1.00±0.01, 0.5

PET-LPD 30.07±0.96, N/A 0.894±0.01, N/A 0.904±0.02, N/A
PET-U-Net 29.41±0.82, N/A 0.889±0.01, N/A 0.865±0.03, N/A

5.7.3 MR Guided 2D Results

MR guided reconstruction with CFG provides the flexibility adjust the level

of guidance from the MR image. Three guidance strengths were evaluated

w = 0.25, 0.5, 1.0, where smaller values of w ∈ [0, 1] correspond to stronger

guidance. The evaluation was conducted with a noise level of 2.5; with and

without lesions.

The qualitative results without lesions are shown in Fig. 5.7. These re-

sults demonstrate that guidance suppresses hallucinations in greymatter tracts

while improving PSNR and SSIM. From the bias-variance graphs in Fig. 5.8, we

observe that guided reconstruction achieves high PSNR and SSIM, while low-

ering EN and increasing KLDIV. This suggests that the guided reconstruction

is effectively performing as an image translation process, transforming MR im-

ages into PET images. This transformation is sufficient to achieve high perfor-

mance on global quality metrics, even with elevated KLDIV. Since the images

are well-aligned and not significantly out-of-distribution, image translation is

expected to perform well. Increasing EN, by increasing data-consistency, re-

duces performance on global qualitymetrics. Comparedwith unguided recon-
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struction, both data consistency and global quality metrics show improvement

with guidance.
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Figure 5.7: Comparisons of the PET-DDS MR guided vs. unguided at noise level 2.5
without lesions.
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Figure 5.8: Results for 2D reconstruction guided vs unguided without lesions for
noise level 2.5. The points represent different values of the parameter λ.

For evaluation with lesions, the MR image does not provide any indica-
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tion of abnormal pathology and represents a worst-case scenario for guidance,

where the clinically relevant pathology is absent in the guidance modality. As

shown in Fig. 5.9, guidance suppresses the lesion in the reconstruction, result-

ing in a reduction in CRC, while still improving global metrics PSNR and SSIM.

The bias-variance graphs in Fig. 5.10 further emphasizes this observation,

highlighting the biases inherent in different quality metrics. Locally, the lesion

is not well recovered, but globally, the guidance successfully reconstructs com-

mon anatomical features, boosting global quality metrics. This demonstrates

both the potential risks of guidance and the critical need to evaluate local and

global quality metrics independently.

The quantitative results in Table 5.10 reinforce this finding: while halluci-

nation suppression globally improves metrics due to the recovery of common

anatomy, local quality metrics suffer when the guidance is mismatched.

Table 5.5: Results using the best hyperparameters for SGMmethods for noise level 2.5
withMR image guidance. The penalty strength used for each SGMmethod
is denoted by λ. The best method by performance metric is highlighted in
grey forwith/without lesion. The penalty strength is tuned for eachmethod
individually.

without lesions with lesions
PSNR, λ SSIM, λ PSNR, λ SSIM, λ CRC, λ

DDS (w/o MR) 22.46, 0.25 0.789, 0.2 27.46, 0.15 0.841, 0.15 0.910, 0.01
DDS w = 0.25 30.22, 0.35 0.950, 0.35 31.21, 0.15 0.954, 0.25 0.726, 0.0
DDS w = 0.5 29.32, 0.25 0.940, 0.25 31.12, 0.15 0.946, 0.25 0.778, 0.0
DDS w = 1.0 26.66, 0.15 0.899, 0.15 29.31, 0.1 0.906, 0.15 0.939, 0.0
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Figure 5.9: Comparisons of single slice reconstructions with the PET-DDS MR guided
vs. unguided at noise level 2.5 without lesion (top) andwith lesion (bot-
tom).
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Figure 5.10: Results for 2D reconstruction guided vs unguided with lesion for noise
level 2.5. The points represent different values of the parameter λ.
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5.7.4 3D Results

The 3DPET-DDSwas analysed for fully 3DPET reconstructionwith two tracers

and simulated lesions. The performance was evaluated with and without RDP

regularisation in the z-direction perpendicular to axial slices (termed RDPz),

and subset-based data consistency updates as in Eqn. (??). The use of subsets

accelerate reconstruction by evaluating the forward model block sequentially.

The trade off between quality metrics and number of subsets can be seen in

Table. 5.6. The higher the number of the subset, the coarser the approximation

of the gradient update with regards to the full update. The number of subsets

used for subsequent experiments used in clinical practice was 28, and this was

the same used in BSREM computed MAP estimates.

Table 5.6: 3D PET-DDS+RDPz computing time with different numbers of subsets.
Quality metrics computed on the first realisation of FDG tracer measure-
ments using 3D PET-DDS+RDPz with λ = 158.0 and β = 21.9. Best values
are highlighted in grey.

Number of subsets 1 4 7 14 28 42

Reconstruction time (min) 47.8 13.6 8.6 5.1 3.4 2.8
PSNR 25.91 25.90 25.89 25.84 25.72 25.57
SSIM 0.927 0.927 0.927 0.925 0.922 0.919
CRC 0.990 0.990 0.990 0.985 0.987 0.988

From the bias-variance graphs Figs. 5.11 and 5.12 for FDG and Amyloid

tracers respectively, the improvements to PSNR and SSIM are apparent with

PET-DDS+RDPz as opposed to PET-DDS. Both PET-DDS+RDPz and PET-DDS

outperform the comparison methods in terms of CRC, while RDP provides the

highest PSNR values.

From the reconstructions given in Figs. 5.13 and 5.14, it can be observed

that the SGM-based methods provide sharper, less blurry, images. This gives

an insight into the success of RDP reconstruction for PSNR as this metric is bi-

ased toward blurry images, meaning blurry images still give good performance

for that metric. Comparing PET-DDS and PET-DDS+RDPz it can be seen that

the axial slices are coherent for both methods, but for coronal and sagittal there

are discontinuities between slices due to the 2D score-model only being ap-

plied axially. This highlights the need for additional regularisation to ensure
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Figure 5.11: Results for 3D reconstruction using the FDG tracer for different penalty
values. PET-DDS-RDPz β = 21.9, and DIP+RDP β = 0.1. Standard devia-
tion is across reconstructions from different realisations of measurements.
For DIP, the points corresponds to various number of optimisation steps.
For the other methods, the points represent different values of the param-
eter λ.
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Figure 5.12: Results for 3D reconstruction using the Amyloid tracer for different
penalty values. PET-DDS-RDPz β = 21.9, and DIP+RDP β = 0.1. Standard
deviation is across reconstructions from different realisations of measure-
ments. For DIP, the points corresponds to various number of optimisation
steps. For the other methods, the points represent different values of the
parameter λ.

coherence in the direction orthogonal to that which the score-model is applied.

From Table. 5.7, the ability for the SGM methods to work well for both FDG

and Amyloid can be observed and highlights the generalisation capability of

SGMs.
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Figure 5.13: 3D reconstruction for the different methods with FDG tracer, and metrics
computed on the inset lesion.

Table 5.7: Results using the best hyperparameters for each method for 3D BrainWeb
data with FDG and Amyloid tracers. The penalty strength used for each
SGM method is denoted by λ. The best performing method is highlighted
in grey.

Tracer Method PSNR, λ SSIM, λ CRC, λ

FDG

RDP 25.74, 1.81 0.911, 2.77 0.994, 0.5
DIP+RDP 25.26, 9, 800 0.917, 10, 800 0.966, 9, 500
PET-DDS 24.83, 398 0.910, 398 1.01, 158
PET-DDS+RDPz 25.70, 158 0.922, 63.1 0.996, 158

Amyloid

RDP 24.15, 2.77 0.898, 1.81 0.996, 0.5
DIP+RDP 24.10, 10, 200 0.894, 10, 800 0.964, 9, 500
PET-DDS 23.08, 1000 0.890, 398 1.009, 10
PET-DDS+RDPz 24.15, 398 0.906, 158 0.999, 10

5.8 Conclusion

In this work, we adapted SGMs for PET image reconstruction by incorporating

PET-specific constraints, such as Poisson noise and non-negativity, into pop-

ular sampling techniques. Additionally, we introduced a measurement-based
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Figure 5.14: 3D reconstruction for the different method with Amyloid tracer, and met-
rics computed on inset lesion.

normalisation technique to stabilise the dynamic range. Experimental results

demonstrate that integrating these PET-specific constraints within SGMs leads

to improved image quality, effectively leveraging the strengths of SGMs for im-

age modelling while separating the forward modelling, where known physics

are integrated into the sampling. The obtained samples approximately repre-

sent the posterior ppost.

Further work incorporating reflected SGMs could introduce non-negativity

into the sampling procedure in a more principled manner [145], further en-

hancing the theoretical robustness of the reconstruction. Additional further

work is described in Section 7.2.

While the U-Net architecture has proven highly effective in modelling com-

plex image structures within the SGMs framework, its theoretical foundations

remain an area for ongoing study, as explored in [111, 255]. Moreover, there

is a need for deeper theoretical validation of whether SGMs accurately sample

from the true posterior p(x|y), especially in the context of inverse problems such
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as PET imaging. Recent work [67] provides a foundation for establishing the

mathematical guarantees and convergence properties of these methods.

Finally, our approach highlights the potential of guided SGMreconstruction

with multimodal data, such as MR-guided PET imaging. Preliminary results

suggest that incorporating an additional MR guidance image via CFG can en-

hance reconstruction quality. An interesting extension could be the synergistic

reconstruction for PET/MR with joint prior [7, 45, 139].

5.8.1 Limitations

Despite the promising outcomes, several limitations warrant discussion. First

and foremost, all experiments were conducted in-silico using simulated data.

While simulation studies allow for controlled experimentation and initial val-

idation, they do not fully capture the complexities and variabilities present in

clinical PET imaging. The ground truth images used to define the prior distri-

bution πmay possess higher quality and less variability than real clinical data,

potentially leading to reconstructions that are unrealistically good compared

to what is achievable in practice.

Furthermore, our investigation into the generalisation capabilities of the

score model was limited. The model was trained on patient-realistic slices de-

void of lesions and tested on slices containing lesions. Although this provides

an initial assessment of the model’s ability to generalise to unseen pathological

features, it does not encompass the full spectrum of anatomical and patholog-

ical variations found in diverse patient populations. A comprehensive evalua-

tion onmore extensive and varied datasets, including real in-vivo data, is essen-
tial to thoroughly understand the biases and limitations of SGMs in a clinical

context.
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Chapter 6

Adaptable-Blobs

6.1 Introduction

In this chapter, we introduce the Gaussian radial basis function “blobs” with

adaptable covariance (shape) and centroid (location), for which we coin the

term A-Blobs. This A-Blobs representation is a continuous functional repre-

sentation that is developed to represent images and formulate inverse problems

-with relevant literature briefly outlined in Sections 2.2.1 and 2.3.5.3.

It is important to note that methods such as DIP and SGMs applied data-

consistency principles to ensure faithfulness to measurements. Despite their

success and apparent generalisability, the underlyingmechanisms of thesemeth-

ods remain poorly understood. The neural networks used in previous chapters,

primarily U-Nets, are highly over-parameterised, obscuring the specific fac-

tors contributing to their effectiveness. Additionally, these networks are con-

strained to fixed image sizes, such as 128 × 128, which limits their flexibility

and generalisability. The A-Blobs allow for a continuous function representa-

tion that is more interpretable as it is a linear sum of basis functions.

This chapter begins with an overview of relevant literature and discussion

on alternatives to voxel-based representations. We then develop the A-Blobs

framework for parallel MRI and present the results published in [219].
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6.2 Alternatives to Voxels

As described in Section 2.2.1, a 3D medical image is defined as an object in a

continuous three-dimensional space given by coordinate r = [rx, ry, rz]⊤. The

object is a scalar-valued function x(r) : R3 → Fwhere the value is the quantity of

interest, i.e. AC for PET or transverse magnetisation for MRI etc. This function

is discretised as is required for digital computation. The most common choice

for discretisation is voxels. This choice is informed by their simplicity, linearity,

regularity, uniformity, and efficiency in representation. However, if the object to

be represented takes up only a small portion of the overall volume domain this

can lead to an inefficient representation. Additionally, the piece-wise constant

nature of voxels can easily represent high frequency details corresponding to

noise and artifacts. There exists a trade-offwhen considering the representation

for medical image reconstruction [84]. The representations considered are a

discrete linear combinations of basis-functions:

x(r) =
Nb∑

b=1
c(b)ψ(b)(r) (6.1)

where c(b) and ψ(b) are the b-th coefficient and basis respectively. The sum-

mation is the linear combination of all Nb basis functions. Note that this gives

the functional definition of an image, and a digital image is sampled at a dis-

crete set of spatial locations. The discrete set of spatial locations is denoted

Ωr = {(r(i))}
Nr
i=1 ⊂ R

Ndim , where Nr are the number of sample points for the

discrete image. This defines the discrete image as:1

x = x(r)|Ωr .

Given a fixed number of basis functions Nb and Nr, the basis-transformation

matrix is given as:

Ψ ∈ FNb×Nr where [Ψ]i j = ψ(i)(r( j)).

From this basis-transformation matrix the discrete image is:
1There is an implicit assumption that the image is well-approximated or exactly represented

within this subspace.
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x = Ψc,

where c ∈ FNb is the coefficient vector. In this context a basis vector is an element

of the basis-transformationmatrix such thatΦ = [ψ(1),ψ(2), . . . ,ψ(Nb)]where the

basis vector is ψ(b) = ψ(b)|Ωr .

6.2.1 Local Basis Functions

Voxels are a regular grid of non-overlapping piece-wise constant local basis

functions, where Nb = Nr and Ψ = I. They have a fixed size that define the res-

olution of the discretised image. Other local basis function have been proposed,

for example triangular, B-Splines, Gaussian, and Kaiser-Bessel [141].

Globally-supported functions such as Gaussians decay quickly in space but

are globally defined; as such they are often truncated in this context to be locally

defined [84, 208]. The choice of local basis function can have favourable prop-

erties for the resultingmedical image reconstruction. For example, as shown in

[150], 3D PET image reconstruction can benefit greatly from using alternative

basis functions; improving contrast recovery and reducing noise. Smoother

basis functions such as Gaussians and Kaiser-Bessel are often referred to as

“blobs” in this literature, and we adopt this convention.

6.2.2 Non-local and Data-driven Adaptive Basis Functions

Non-local basis functions can capture long-range dependencies within an im-

age and represent global structures that allow for more compressed represen-

tations. A canonical example of non-local basis functions is the Fourier basis,

which represents images in terms of global frequency componentswithout spa-

tial localisation. Wavelets [48] incorporate both frequency and spatial localisa-

tion, offering a hybrid between local and non-local basis functions. This makes

them useful in image processing, as they provide a joint space-frequency rep-

resentation of an image. Wavelet transforms can be continuous or discrete, and

they may form either linearly independent basis functions or frames.

In a discrete setting the basis-transformationmatrixΨ has linearly indepen-
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dent basis vectors ψ(b) if the only solution toΨc = 0 is c = 0. WhenΨ spans the

entire space x ∈ X the discrete image can be exactly represented by x = Ψc. In

other words, if Ψ is linearly independent and spans X , it forms a basis, in the

strict sense, for X .

The Haar wavelet is one of the simplest wavelets, providing a compactly

supported, linearly independent basis. Each Haar wavelet vector is piecewise

constant and localised in space. The Haar basis vectors are shift and scaled

versions of the Haar wavelet function, that in 1D is:

ψ(r) =


1 0 ≤ r < 1

2 ,

−1 1
2 ≤ r < 1,

0 otherwise.

The resulting basis-transformation matrix is orthonormal - i.e. Ψ⊤Ψ = I.

Many other families of other wavelets exist [48, 148], one family is used for

image compression with the JPEG image file format - the most widely used im-

age compression standard in the world [102].2 Wavelets have also been exten-

sively used in image reconstruction as natural images have been observed to be

sparser when represented with wavelet coefficients, allowing for denoising of

MRI reconstructions via shrinkage [147]. A reconstruction method enforcing

sparsity of wavelets coefficients is formulated as:

x† = argmin
x

ρ(y,Ax) + λ||Ψ−1x||1,

where Ψ−1 is a discrete sparsifying transform - in-fact the matrix Ψ is usually

orthonormal meaning Ψ−1 = Ψ⊤. As described in Section 2.1.1, the ℓ1-norm

encourages sparsity.

A frame for X is the matrix Ψ that satisfies the frame inequality:

a||x||22 ≤ ||Ψ
⊤x||22 ≤ b||x||22,

for all x ∈ X , with 0 < a ≤ b < ∞ as frame bounds. Frames allow for over-

2Originally JPEG used cosine transform but the more modern standard (JPEG-2000) uses a
wavelet transform.
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completeness, meaning Ψ may have more columns than the dimension of X ,

enabling robust representations even with linearly dependent columns.

The Gabor wavelet forms an over-complete frame with linearly dependent

set of basis vectors. A Gabor wavelet in one dimension is defined as:

ϕ(r) =
1

σ
√

2π
e
− r2

2σ2 ei2πur,

where u is the central frequency and σ controls the scale of the Gaussian en-

velope. The redundancy of this over-complete frame provides a robust repre-

sentation even in the presence of noise or incomplete data, making it ideal for

applications where resilience to perturbations is beneficial [136, 148].

In contrast to being hand-crafted, basis vectors can be defined from adataset

as is the case with dictionary learning [3]. This approach is among the earli-

est example of machine learning for medical image reconstruction. For Elec-

trical Impedance Tomography, Principle Component Analysis was used to de-

fine a dictionary to constrain the solution with a basis vectors defined from an

anatomical dataset [248]. In a similar vein to wavelets the discrete image can

be represented by:

x = Dc,

where the dictionary D is a collection of Na atoms D = [d1,d2...,dNa] that, when

linearly combined, can approximate the image [64]. While dictionary learn-

ing is a powerful technique, dictionaries do not need to be data-driven. As

described in [39], dictionaries can include over-complete basis vectors such as

the Gabor wavelets introduced earlier. As an image can be non-uniquely rep-

resented, there is a possibility for an adaptive representation, i.e. choosing out

of many representations one that is most appropriate for the task at hand. For

inverse problems this can be formulated as:

c† = argmin
c

ρ(y,ADc) + λ||c||1, where x = Dc.

Similar to wavelet reconstruction, sparsity is encouraged through the ℓ1-

norm. The goals of adaptive representation, as outlined in [39], are: sparse-
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ness of the representation within the dictionary, higher resolution than non-

adaptive methods, and speed of computation of the representation.

6.2.3 Implicit Neural Representations

INRs are a new paradigm that represents continuous images using neural net-

works, see Section 2.3.5.3 for a brief overview. With INRsMLPs are used tomap

spatial coordinates directly to image values [221]. INRs leverage the universal

function approximation property of neural networks to approximate continu-

ous image functions.

Considering theMLP as formulated in Eqn. (2.3.1), INRs are fit to an image

xGT through the following optimisation:3

θ† = argmin
θ
||xGT − Gθ(r)

∣∣∣
Ωr
||22.

The choice of activation function of the MLP plays a crucial role in the rep-

resentational capacity of the network. For example, sinusoidal activation func-

tions [221], Gaussian activations [183], and complex Gabor wavelet activations

[199] have been proposed to improve the network’s ability to represent com-

plex signals. These different activations have different properties that canmake

the optimisationmore prone to poor local-minima, and if initialised incorrectly

the network may not be able to successfully represent the object [183].

This highlights the two open problems with INRs: Sensitivity to initialisa-

tion, where non-convex objective function can lead the optimisation to poorly

performing local-minima. Given the high resolution and dimensionality of

medical images the evaluation of Gθ at every sample point Nr becomes quickly

infeasible.

That said, the ability to approximate more complex images increases signif-

icantly with depth of the network layers. This representation can be considered

as a structured dictionary [261], where the network’s parameters implicitly de-

fine a set of low-rank basis functions as they have shared parameters. Further,

INRs have been applied to inverse problems, where the reconstruction is cast
3As the output of layer is often linear, we can consider anMLP as a linear sumof a non-linear

low-rank set of basis functions.
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as an optimisation problem over the network parameters, minimising the dis-

crepancy between the measurements and the forward model applied to the

network’s output [210]. Note, that in that work the network parameters were

initialised with a prior image.

6.2.4 Gaussian Splatting

For 3D graphics, specifically radiance fields, Gaussian Splatting methods are

developing into the de facto choice for volumetric rendering [121]. In Gaussian

Splatting the volume is represented with Gaussian functions that are fitted,

optimising the covariance (shape), centroid (location) and other parameters,

to the volume of interest. This fitting and subsequent rendering utilises the

fast splatting procedure to approximate the projection of the 3D Gaussians to

a 2D plane. This models the fact that multiple images from multiple views are

used to generate a 3D volume. Splatting allows for these images to be quickly

approximated, allowing for the fitting of Gaussians as well as rendering of new

views [268].

The formulation of Gaussians to represent a volumetric object linear sum-

mation of Gaussians -Eqn. (6.1). In this case the basis ψ is dependent on the

centroid and covariance of the Gaussian, µ and Σ respectively, such that:

ψ(r;µ,Σ) = exp
(
−

(r − µ)⊤Σ−1(r − µ)
2

)
.

In the original Gaussian splatting paper the covariance was parameterised

as three components scaling, rotation, and skew.

6.2.5 Alternatives to Voxels for Medical Image Reconstruction

Analysing the previously introduced alternatives to voxels requires a set of cri-

teria specific to medical image reconstruction. In literature, work has already

analysed local basis functions for CT image reconstruction [84]. In that paper

a set of favourable basis function properties is defined as:

1. The basis set should exhibit linear independence, meaning no basis func-

tion can be expressed as a linear combination of the others. This ensures
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uniqueness of the coefficients c(b), avoiding redundancy.

2. Power of Approximation: As the number of basis functions Nb increases,

the approximation error ||x(r) −
∑Nb

b=1 c(b)ψ(b)(r)|| should decrease at a de-

sirable rate. Ideally, the error decreases rapidly with increasing Nb, indi-

cating an efficient representation.

3. Insensitivity to Shift of Basis Function Set: A shift in the placement of the

basis functions within the domain should not cause a significant drop in

the approximation power. This property ensures robustness to the spatial

configuration of the basis functions.

4. EfficientComputation of Projections andBack-Projections: The basis func-

tions should allow for efficient computation of the forward model (pro-

jections) and its adjoint (back-projections), which are essential operations

in medical image reconstruction.

5. Efficient Implementation of Reconstruction Constraints: Constraints such

as non-negativity or spatial support should be easily incorporated into

the reconstruction algorithm, possibly by choosing basis functions that

inherently satisfy certain constraints.

6. Fidelity of Visual Appearance: The reconstructed images should be vi-

sually accurate, preserving important features and details necessary for

clinical interpretation.

The insensitivity to a shift of the basis functions is not relevant for adaptive

or data-driven basis functions. As such, this criteria can be ignored. In-fact,

the sensitivity to shifts indicates the basis functions has been informed by the

structure of represented object, which can be useful.

For adaptive basis sets like overcomplete dictionaries and frames, the strong

linear independence criterion can be relaxed. While overcomplete dictionaries

introduce redundancy, sparsity-promoting techniques can be used to select a

subset of basis functions, leading to unique and efficient representations [63].

Frames, being overcomplete, provide stable and robust representations, but the
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non-uniqueness requires additional constraints like sparsity for practical use

[148].

Additionally, for strong linear independence the space in-which the image

lies needs to be of fixed regularity or resolution. If an image can be repre-

sented with a linear independent basis at a fixed resolution, if the resolution

is increased (number of sample points is increased) the previously linear inde-

pendent basis is under-complete. The contrary is true too, if the resolution is

decreased (fewer sample points) the basis would then be over-complete. Lin-

ear independence can only be sought for images of fixed resolution. For recon-

struction of images that are resolution-agnostic the strong linear independence

is unattainable.

6.3 Adaptable Blobs

Blobs, as described in the preceding sections, are a family of smooth local-basis

functions that can be used to represent an image. In the rest of this chapter the

termA-Blobs is used to describe Gaussian blobswith parameterised covariance

(shape) and centroid (location). This is related to Gaussian splatting, where

A-Blobs are Gaussian splats without splatting procedure [268].

Another perspective from Poggio and Girosi [176], is that A-Blobs is an ap-

proximation scheme, that can be mapped into a neural network. This has links

with RegularizationNetworks andHyper Basis Functions, as an approximation

scheme an important question, neglected in this thesis, is: “howmany samples

are needed to achieve a given degree of accuracy?” This accuracy is depen-

dent on the number of coordinate Nr and the smoothness of the function to be

approximated [231].

In contrast with the original 3DGaussian splatting paper [121], more recent

work [56] parameterises the inverse covariance through the Cholesky decom-

position with a lower triangular matrix L such that Σ−1 = L⊤L. This ensures

the covariance is semi-positive definite for any real values of the lower diagonal,

i.e. there are no non-negativity constraints as required by the earlier parameter-

isation. Additionally, the eigenvalues that dictate the scale of each A-Blobs are
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simply the squares of the leading diagonal terms ofL. This allows formore con-

trollability of the blobs, where minimum or maximum scale can be enforced,

and the skew of the blobs is simply the ratio between the largest and smallest

eigenvalue, i.e. the condition number. For these reasons the lower triangular

matrix parameterisation is used in this chapter where the basis function can be

written:

ψ(r;µ,L) = exp

−||L(r − µ)||22
2

.
Further we define the upper triangular matrix U as U = L−⊤ which in-turn

defines L = U−⊤, this is important for notational simplicity in the subsequent

sections such that Σ = U⊤U.

Given the unique properties of Gaussians, the forward model for inverse

problems can begin to be formulated directly. This work is in 2Dwhere we first

demonstrate image representation and Fourier image representation, and then

define a forwardmodel for ParallelMRI. The latter is developedwith additional

regularisation functions to aid the reconstruction of theMRI images from noisy

and undersampled parallel MRI measurements.

6.3.1 Image Representation and Fourier Image Representation

A single adaptable blob is given by:

b(r; c,µ,L) = cψ(r;µ,L) = c exp

−||L(r − µ)||22
2

,
where c, µ and L are parameters to be optimised. Only the non-zero elements

of L are used in the parameterisation, ensuring that the lower triangular form

is enforced. The image is represented as a linear combination of these A-Blobs:

x(r; c,Γ) =
Nb∑

b=1
b(r; c(b),µ(b),L(b)) =

Nb∑
b=1

c(b) exp

−||L(b)(r − µ(b))||
2

2

,
with Nb the number of A-Blobs discretising the object, c = {(c(b))}

Nb
b=1 and Γ =

{(L(b),µ(b))}
Nb
b=1.
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To assess the ability of A-Blobs to represent amedical image in 2D, a varying

numbers of A-Blobs are used to represent a single axial T2-weighted BrainWeb

MR image. As before, the notation x(r)|Ωr is used to denote the A-Blobs repre-

sentation evaluated at all the pixel locations, with Nr = 256 × 256. Further, the

shorthand ||xgt − x(r)|Ωr ||
2
2 is the MSE between ground-truth pixel represented

BrainWeb and A-Blobs represented BrainWeb.

In addition to the fully parameterised A-Blobs representation, we compare

with A-Blobs representations that are partially parameterised. More specifi-

cally, increasing levels of parameterisation are evaluated. Startingwith only the

coefficients c parameterised on fixed grid with fixed size and isotropic shape,

similar to previous work [84, 208]. Note, isotropic blobs have one scaling factor

controlling the size that can be described as L = sI, where s is the scale. For the

next level of parameterisation the coefficient and the scale of the blobs is param-

eterised whilst being on a fixed grid. The next level additionally parameterises

the centroid of the blobs, and finally the full A-Blobs parameterises coefficient,

centroid and full covariance through the lower triangular matrix. Table. 6.1

summarises the levels of parameterisation:

Parameterisation coeff coeff & iso cov coeff, iso cov & cent A-Blobs
θ := c(b) c(b), s(b)I c(b),µ(b), s(b)I c(b),µ(b),L(b)

Table 6.1: Different parameterisations evaluated for image representation with A-
Blobs

To represent the image xGT with A-Blobs, the following optimisation prob-

lem is solved:

θ∗ ∈ argmin
θ
||xgt − x(r; θ)|Ωr ||

2
2. (6.2)

The above optimisation problem is solved using Adam optimiser [124]. The

initialisation of the A-Blobs is as a grid of isotopic covariance scaled such that

the overlap between A-Blobs is able to fully cover the domain as described in

[176, 208], i.e. s ∝
√
∆x with ∆x the spacing between blob centroids on the grid.

The size of the grid is set as [8 × 8, 12 × 12, 16 × 16, 24 × 24, 32 × 32, 48 × 48,

64 × 64].

Given the properties ofGaussian functions the Fourier-transformedA-Blobs



178 Chapter 6. Adaptable-Blobs

(a) Image quality assessedwithMean Squared
Error vs number of A-Blobs.

(b) Image quality assessedwithHaarWavelet-
Based Perceptual Similarity Index vs num-
ber of A-Blobs.

Figure 6.1: Plots assessing image representation of A-Blobs with varying degree of pa-
rameterisation and number of A-Blobs.

Figure 6.2: Images of changing the parameterisation, while keeping number of A-
Blobs the same Nb = 4096. Mean Squared Error (MSE) is given for each
parameterisation.
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can be formulated as:

F[b](k; c,µ,U) = c(2π)
Ndim

2 | det U| exp (−k⊤µi −
1
2
||Uk||22). (6.3)

The Fourier A-Blobs F[x] is the summation of Nb analytical Fourier blobs

each with their own parameters:

F[x](k; c,Γ) =
Nb∑

b=1
F[b](k; c(b),µ(b),U(b)) (6.4)

=

Nb∑
b=1

c(b)(2π)
Ndim

2 | det U(b)| exp (−k⊤µ(b)i −
1
2
||U(b)k||22). (6.5)

Given this analytical representation of FourierA-Blobs, the Fourier-transformed

BrainWeb F[xGT] can be used to fit parameters c and Γ. The set of k-space,

or Fourier, coordinates are denoted Ωk = {(k(s))}
Nk
s=1 and correspond to full

grid of 256× 256 k-space coordinates. Initialised with the previously described

isotropic grid of A-Blobs, the Fourier A-Blobs are optimised with the objective

function:

c†,Γ† = argmin
c,Γ

||F[xgt] − F[x](k; c,Γ)|Ωk ||
2
2. (6.6)

We compare the reconstruction accuracy of parameters obtained from Eqn.

(6.6) by evaluating A-Blobs on Ωr. Thus the quality assessment methods MSE

and HaarPSI are compute between x(r; c,Γ)|Ωr and xGT.

Discussion and Important Observations: Quantitatively from Fig. 6.1 both

MSE and HaarPSI improve with increased number of A-Blobs and increased

amount of parameterisation. The ability of the increasingly parameterised A-

Blobs can be qualitatively observed in Fig. 6.2, where isotopic covariances lead

to distinctly blob-like artifacts. The full A-Blobs parameterisation gives an im-

agewhereA-Blobs are skewedwith important features of the underlying anatomy.

It is observed that there is good agreement between Fourier A-Blobs and

A-Blobs representation as is seen in Fig. 6.3. Although, for Fourier A-Blobs the

optimisation Eqn. (6.6) minimises discrepancy in k-space, this results in in-
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(a) Image quality assessedwithMean Squared
Error.

(b) Image quality assessedwithHaarWavelet-
Based Perceptual Similarity Index.

Figure 6.3: Plots assessing image representation of A-Blobs with varying numbers of
A-Blobs and parameters obtained through optimisation with spatial or fre-
quency measurements, A-Blobs or Fourier A-Blobs respectively.

Figure 6.4: Images of Fourier A-Blobs with varying numbers of A-Blobs. Mean
Squared Error (MSE) is given for each number of A-Blobs.

creased error when computingMSE in the spatial domain. The images given in

Fig. 6.4, show the Fourier A-Blobs images for varying numbers of A-Blobs. Ar-
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tifacts are seen with 64, 256 and 1024 A-Blobs with a small number large overly

skewed A-Blobs visible. This could be due to two factors; F[xGT] is computed

with an FFT that assumes a periodic boundary condition this is not assumed

for analytical Fourier A-Blobs, and the optimisation procedure was not tuned

further from spatial representation leading to poor local minima. Further, by

virtue of fitting to Fourier data with a finite number of A-Blobs leads to an ap-

proximation error that may be small in frequency domain but large in the spa-

tial domain. In other-words, regularisation, see Section 2.1.1, may be needed to

encourage approximations that adhere to specific spatial assumptions, poten-

tially removing the large overly skewed A-Blobs.

The optimisation and initialisation of A-Blobs requires careful attention. It

was observed that the non-linear optimisation is prone to stalling in poorly per-

forming minima, and incorrect initialisation (i.e. placing Gaussian’s centroids

away from image structure) leads to poor image representation. Unlike INRs, a

more principled initialisation is attainable by initialising as a uniformgrid. This

is what is done in [208], and further described as the “Practical Algorithm” in

[176].

For this experiment and all subsequent experiments the Adam optimisa-

tion algorithm is used [124]. We observed that the adaptive nature of Adam,

that rescales parameter-wise step-sizes based on running averages, allowed

for stable optimisation. For these reasons Adam is also what is commonly

used for INRs. The parameterisation with “coeff” is a linear and convex op-

timisation, which is a linear least-squares problem, and the full A-Blobs pa-

rameterisation is a non-linear least-squares problem. The formulation of A-

Blobs is more straightforward than INRsmeaning that more sophisticated non-

linear least-squares optimisation algorithms could be used. An example would

be Levenberg-Marquardt [154], in fact this was recently applied for Gaussian

splatting [100]. Further to this, the objective functions considered are separable

non-linear least-squares problems as they are comprised of a linear combina-

tion of non-linear functions. For this class of problem more specialised algo-

rithms such as VARPRO could be leveraged [73]. However, the application of

these advanced optimisation algorithms is left for further work.
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In the next section we introduce MR-Blob, the formulation of A-Blobs for

parallel MRI reconstruction.

6.4 MR-Blob Reconstruction

In parallel MRI the measurements are acquired simultaneously across multi-

ple receiver coils. As described in Section 2.2.2.2, these coils have a sensitivity

that further spatially encode the measurements. This enables accelerated ac-

quisition with fewer measurements wile maintaining high quality reconstruc-

tions, as themultiple coil sensitivities can be leveraged in advanced reconstruc-

tion algorithms. The coil sensitivities are not known a-priori and the estima-

tion of sensitivities and reconstruction of the image can be cast as a non-linear

inverse problem [240]. Other established methods linearise the problem by

pre-computing estimates of the coils or by calibrating for the affect of the coils,

GRAPPA, SENSE and ESPIRiT [80, 179, 241].

In this work we explicitly model the coil sensitivities as single isotropic

Gaussian functions, and we leverage the specific properties of Gaussians to de-

velop an analytic forwardmodel with A-Blobs approximating the image. A coil

sensitivity is modelled as:

b(κ)(r;µ(κ), s(κ)) = exp

− s2
(κ)I||(r − µ(κ))||

2
2

2

.
with κ denoting the κ-th coil with isotropic scale s(κ) and centroid µ(κ). The coil

sensitivity acts such that signal closer to the centre is stronger and decays in

space exponentially. A coil image, the image obtained from a coil, is modelled

as the product of Gaussians [174]:

Nb∑
b=1

b(κ)(r;µ(κ), s(κ))︸              ︷︷              ︸
Coil sensitivity

· x(r; c(b),µ(b)L(b))︸                 ︷︷                 ︸
A-Blobs image

=

Nb∑
b=1

a(κ,b) exp

− (r − µ(κ,b))
⊤Σ−1

(κ,b)(r − µ(κ,b))

2

 ,
where
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Σ−1
(κ,b) = (L⊤(b)L(b) + s2

(κ)I),

µ(κ,b) = (L⊤(b)L(b) + s2
(κ)I)−1(L⊤(b)L(b)µ(b) + s2

(κ)Iµ(κ))

a(κ,b) = c(b) exp

− (µ(b) − µ(κ))
⊤(U⊤(b)U(b) + s−2

(κ)I)−1(µ(b) − µ(κ))

2

 .
MRI measurements acquired by a coil are in the frequency (k-space) do-

main. These can be modelled in k-space coordinates k = [kx, ky]⊤ by Fourier

transforming b(κ)(r) · x(r):

F {bκ·x}(k; sκ,µκ, c,Γ) =

Nb∑
b=1

(2π)
Ndim

2

√
det(Σ(κ,b))a(κ,b) exp

(
−ik⊤µ(κ,b) −

1
2

k⊤Σ(κ,b)k
)
,

where c = {(c(b))}
Nb
b=1, Γ = {(µ(b),L(b))}

Nb
b=1 and we define Γκ = {(µ(κ), s(κ))}

Nκ
κ=1.

The MR-blob is defined:

MR-blob(k; c,Γ,Γκ) :=


F(b(1) · x)(k; s(1),µ(1), c,Γ)

...

F {b(Nκ) · x}(k; s(Nκ),µ(Nκ), c,Γ)

 .
The same parameters c and Γ are used across all coils. The inverse problem

is seeking the solution to:

MR-blob(k; c,Γ,Γκ)|Ωk = y,

where parallel MRI measurements are y with Nκ ∈ N coils, the measurement

are defined on Ωk = {(k(i))}
Nk
i=1 with Nk sampled coordinates.

In the variational framework of inverse problems[202], see Section 2.1.1, we

recover the parameters of the reconstruction through optimising:

c†,Γ†,Γκ† ∈ min
c,Γ,Γκ

{
1

Nk
||MR-blob(k; c,Γ,Γκ)|Ωk − y||22 + λη(x(r; c,Γ))

}
, (6.7)
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where the first term promotes data-consistency, and the second is a regulariser

with strength λ. We directly optimise over blob parameters c,Γ, as well as over

the coil sensitivities Γκ. Thus, we jointly reconstruct the image and optimise

the coil sensitivities. The reconstruction is given by:

x(r; c†,Γ†)|Ωr ,

where the spatial sample coordinates Ωr are determined from the image as a

regular grid corresponding to pixel centroids.

We consider two regularisers. The first penalises the skewness of the A-

Blobs:

ηcond(Γ) :=
1

Nb

Nb∑
b=1

cond(L⊤(b)L(b)) − 1, (6.8)

by penalising the skewness, we penalise overly elongated A-Blobs and encour-

age a shape closer to isotropic. The condition number for a blob is computed

in 2D as: cond(L⊤(b)L(b)) =
max([L2

(b)]11,[L2
(b)]22)

min([L2
(b)]11,[L2

(b)]22)
.

The other regulariser considered is more akin to traditional regularisation,

and is continuous TV:

ηTV(r; c,Γ) :=
1

Nr
= ∥∇rx(r; c,Γ)|Ωr∥1,

where the spatial sampling is the same that is used for the image.

6.5 Experimental Methods

Three methods were compared to illustrate the features of reconstruction with

pixels (M1), A-Blobs (M2) and MR-blobs (M3). The NUFFT with coil sen-

sitivities forward model as A : CNr → CNk×Nκ . The corresponding objective

functions are given by
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Algorithm 4 MR-blob reconstruction: the ADAM optimisation algorithm is
used to update the parameters [124]. All operations are element-wise.
Require: Measurements y
Require: MR-blob parameters c,Γ,Γκ
Require: Number of iterations Ni
Require: Stepsize α
Require: Exponential decay rates for the moment estimates β1, β2
Require: Objective function Φ(Ω; c,Γ,Γκ)
Require: Initial parameters c(0),Γ(0),Γ(0)

κ
Require: Initialise 1st and 2nd moment vectors m(0), v(0) respectively.
for i = 0, . . . ,Ni − 1 do

g(i) ← ∇c(i),Γ(i),Γ
(i)
κ
Φ(Ω; c(i),Γ(i),Γ(i)

κ ) ▷ Get gradient using AutoDiff
m(i+1) ← β1 ·m(i) + (1 − β1) · g(i) ▷ Update biased first moment estimate
v(i+1) ← β2 · v(i) + (1 − β2) ·

(
g(i)

)2
▷ Update biased second moment

estimate
m̂(i+1) ← m(i+1)/(1 − βi

1) ▷ Bias-corrected first moment estimate
v̂(i+1) ← v(i+1)/(1 − βi

2) ▷ Bias-corrected second moment estimate
{c(i+1),Γ(i+1),Γ(i+1)

κ } ← {c(i),Γ(i),Γ(i)
κ } − α · m̂(i+1)/(

√
v̂(i+1) + ϵ)

end for
c(N),Γ(N),Γ(N)

κ

M1 (Pixels): min
f

{
1

Nk
||Af − y||22 +

λ

Nr
||∇f||1

}
M2 (Blobs): min

c,Γ

{
1

Nk
||Ax(r; c,Γ)|Ωr − y||22

+ 10 · ηcond(Γ) + ληTV(r; c,Γ)
}

M3 (MR-blob): min
Γκ,c,Γ

{
1

Nk
||MR-blob(k; c,Γ,Γκ)|Ωk − y||2

+ 10 · ηcond(Γ) + ληTV(r; c,Γ)
}
,

TV regularisation with the same λ was tested for all three methods, see Sec-

tion 2.2.3.2 for details on TV. For M2 and M3 we include a constant skew-

penalisation and evaluate TV at points corresponding to pixel centres.

For evaluation a 128×128 Shepp-Logan phantomwas used. Measurements

were simulated via NUFFT with 25 radial spokes and a golden angle spoke

offset; this resulted in an affective 9.7× acceleration. The measurements were

degraded with complex white Gaussian noise to an SNR of 20dB. The coil sen-
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sitivities were included in the simulation and modelled as a Gaussian function

as implemented in torchkbnufft [156].

For IQA, PSNR, SSIM, and CRCwere computed. CRCwas evaluated on the

small lower three ellipsoids of the Shepp-Logan. Additionally, data-consistency

was computed for the reconstructions, giving an indication of how closely the

forward projected reconstruction agrees with measurements.

The gradients of 6.7 are obtain using automatic (reverse-mode) differenti-

ation and the Adam optimiser is used [124]. The initialisation was a 30 × 30

equispaced grid of isotropic blobs.

For in-vivo MR-Blob we evaluated on a single 16-coil in-vivo sample from

the FastMRI dataset [262]. As noted in [240], the non-linear estimation of sen-

sitivities and reconstruction of the image is an undetermined problem with a

free parameter. This free parameter g acts by giving the infinite set of solutions

{κ · g, x/g} with κ the coil sensitivity. In our formulation this is restricted by

using unnormalised isotropic Gaussians such that max(|b(κ)|) = 1. To evaluate

the performance of the coil sensitivity estimation we compare against ESPIRiT

estimated coil sensitivities [241], as is shown in Fig. 6.7. We use fully sampled

k-space and the resulting reconstruction compared to root-sum-of-squares im-

age. “The root-sum-of-squares is an absolute sum of squares of the coil images,

which are then square-rooted.”

6.6 Results and Discussion

From Fig. 6.5, there is good quantitative agreement between all three meth-

ods, this is particularly true at higher regularisation values. At lower regular-

isation values the deviation is most prominent in Data-Consistency. Both A-

Blobs-based methods (M2 & M3) show a larger deviation. This could be due

to the high noise regime of themeasurements and the difficulty of representing

non-smooth noise with smooth functions; the reconstruction is restricted to a

subspace that does not approximate noise well.

The number of parameters for A-Blobs methods were 2.6× less parameters

than pixels. Additionally, the piece-wise-constant structure of the Shepp-Logan
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Figure 6.5: CRC, SSIM, PSNR and data-consistency for all three meth-
ods swept over the same range of regularisation parameters
(log10(λ) ∈ {1.00, 1.28, 1.56, 1.83, 2.11, 2.39, 2.67, 2.94, 3.22, 3.50}).

Figure 6.6: Well-regularised reconstructions (λ = 1, 668) from noisy, under-sampled
measurements. Note the instability exhibited in MR-blob reconstruction.

phantom is not well approximated by smooth basis functions such as blobs. In

spite of this in Fig. 6.6 the reconstruction quality is visually and quantitatively

competitive.

The optimisation ofMR-blob (M3) includes the parameters of the coil-sensitivities

that are initially centred in the image. The optimisation allows the coils to trans-

late and re-scale to fit the measurements. This resulted in the coil sensitivities

and coil images shown in Fig. 6.7. Here it can be seen that the MR-Blob coils

are able to approximate the ground truth coils.

TheM2 andM3 reconstructions exhibit basis functionswith prominent struc-

ture, see Fig. 6.8. It is noted thatM3gave fewer zero contrasts, less skewedblobs

and a larger range of scales compared to M2.

The same forward model used for simulation is used for reconstruction for

M1 andM2, this means that for these methods an inverse crimewas committed

[112]. This means that the same forward model used for simulation is used

to solve the inverse problem, potentially giving over-performing results. This

makes the competitive performance of M3 more impressive.

With respect to in-vivo MR-Blob, in Fig. 6.9 we observe that the reconstruc-
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Figure 6.7: Top row: Ground truth (red) and MR-blob optimised (blue) coil sensitiv-
ities, MR-blob coils were initialised at the centre at set scale. Middle row:
Ground truth coil images. Bottom row: Well-regularised (λ = 1, 668) MR-
blob reconstructed coil images. Columns correspond to individual coils.

Figure 6.8: Coordinate transformed blob parameters of well-regularised (λ = 1, 668)
M2 and M3 reconstructions. Left: centroid of A-Blobs. Centre left: Condi-
tion number of covariance (skewness). Centre right: Maximum eigenvalue
(scale) of covariance. Right: Contrast of A-Blobs.
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tion is visually similar but there is a discrepancy in the scale of the image.

This can be attributed to the free-parameter discussed earlier. Further work

is needed to ensure robust scaling.

Figure 6.9: MR-Blob reconstruction qualitative comparison against root-sum-of-
squares reconstruction.

FromFig. 6.10we observe that isotropic Gaussians give a coarse approxima-

tion to the coil sensitivities obtained from ESPIRiT. The coil sensitivities were

initialised at the centre of the image and the optimised sensitivities are shown.

For coils 1 and 16 the approximation is closer to that observed with ESPIRiT

and for coil 9 there is a larger discrepancy.

As there were 16 coils and fully sampled 320×640 k-space data, the compu-

tational cost for updates was prohibitively large. As such the parameters were

updated based on subsets of the measurements in a block-sequential fashion

with an Adam optimiser. In spite of this the results are promising.

6.7 Conclusion

Over the last few years has been a renewed interest in alternatives to voxels

[137, 178, 199, 221]. In this chapter we proposed A-Blobs as an alternate, and

forward model directly. It was shown that by increasing the parameterisation

of A-Blobs we enable the blobs to adapt more flexibly to the structure of the

underlying function; reducing the approximation error of image and Fourier
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Figure 6.10: Coil sensitivities from coils 1, 9 and 16 obtained from MR-Blob and ES-
PIRiT. An image of a masked-magnitude coil sensitivity is overlayed with
iso-contours of the coil sensitivity. Separate colour bars are given, and
MR-Blob coils were initialised at the centre with equal scale.
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image representation significantly.

Further, it is known that Gaussianmixtures, that A-Blobs can be interpreted

as, are able to approximate densities to arbitrary precision given Nb [175]. With

this insight the decrease of approximation error with Nb is expected and ob-

served in experiments. This indicates that arbitrary precision can be attained

in the case of A-Blobs, although rigorous analysis is required to prove this.

For MR-Blob, the modelling of coil sensitivities as a single isotropic Gaus-

sian could be overly restrictive and potentially increase model error see Section

2.1. We give results for both in-silico and in-vivo reconstruction that show com-

petitive performance with voxelised representations, but more rigorous anal-

ysis is required to validate the use of isotropic coils. It is worth noting that

modelling as isotropic Gaussians we effectively constrain the coil sensitivities

to a subspace, and more established approaches can be observed to constrain

to a subspace too. albeit less restrictive [80, 179, 241].

The optimisation of A-Blobs utilised Adam. With the tractable formulation

of A-Blobs it would be of interest to utilise advanced algorithms for non-linear

objective functions [100]. The reconstruction could benefit from initialisation

based on an approximate reconstruction, and development of continuous reg-

ularisation terms [178]. Additional further work is described in Section 7.2.
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Chapter 7

Conclusions

This thesis investigates advanced methodologies in medical image reconstruc-

tion, focusing on PET andMRI imaging. The overarchingmotivation was to in-

corporate known physics through data-consistency at test time, enabling more

robust and generalisable image reconstructionmethods. The studies presented

span a range of innovative approaches, each addressing specific challenges and

contributing significantly to the field.

The first study developed DIP for PET reconstruction, a method that re-

quires no training data, and has been shown to be effective for PET reconstruc-

tion in prior studies [74]. This study validated these results as well as devel-

oping it further by stabilising reconstruction in a lower-count measurements

regime. By introducing established regularisation into the objective function,

the need for robust stopping criteria was alleviated, and DIP+RDP outper-

formed established methods on ability to recover lesions. An important aspect

of this study was the integration of a PET forward model into a deep learning

framework, for this SIRF, STIR and PyTorch software were leveraged.

The next study considered supervisedmethods for PET reconstruction. There

we accounted for the intricacies of PET, specifically the widely varying dy-

namic range. We developed normalisation approaches for two supervised ap-

proaches, post-processing and LPD, and demonstrated improvements in CRC

and data-consistency.

The previously developed insights informed our next work on the applica-

tion of SGMs for PET image reconstruction. Specifically, the integrating PET
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forward models into deep learning frameworks, and accounting for the widely

varying dynamic range of PET with normalisation. In the study we devel-

oped sampling methods to deal with the non-negativity inherent to PET. We

also proposed MR guidance and scaling to 3D. The evaluation showed that the

proposed methods were competitive with supervised methods, even outper-

forming them on data further outside of the training distribution. This fur-

ther demonstrates the generalisability enabled through data-consistency. With

guided reconstruction we observed that hallucinations were suppressed, al-

though lesions were also affected. The scaling to 3D improved reconstruction

quality as compared to comparison methods, and was accelerated only require

3.4 minutes per volume.

The final study focused on a functional approach using A-Blobs. By pa-

rameterising images as continuous functions, this method offers a promising

alternative to voxel-based representations. A forward model for parallel MRI

reconstruction was developed and allowed for direct formulation of A-Blobs

in k-space. Initial results indicated competitive reconstruction quality, but fur-

ther work is needed to refine the approach, address modelling limitations, and

validate its applicability in clinical settings.

With these concluding remarks it would be remiss to not include recent

trends in acquisition for PET andMRI. This is because advancedmedical image

reconstruction is constrained by the acquisition process.

7.1 Trends in Advanced Acquisition

For PET a key development neglected in this thesis has been the development

of increase Time of Flight (ToF) resolution, where ToF allows for localisation

of the annihilation event along an LoR [133]. With a fine enough resolution it

has been noted that one could obtain “reconstruction-free” Positron Emission

Imaging [206].1 Furthermore, detectors are growing smaller and the length

of scanners (i.e. Total-Body PET) is growing longer meaning that most LoRs

detect one or zero photons, resulting in extremely sparse sinograms [160, 259].
1With fine enough ToF resolution themodality ceases to be tomographic andmeasurements

can be viewed as a point cloud.
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This motivates the use of list-mode data [12], and an important challenge is

how to deal with the highly heterogeneous sensitivities of the scanner [25].

From anMRI perspective, there has been an interest in low fieldMRI, which

uses B0 ≈ 1 − 199 mT rather than ≥ 1.5 T used in clinical practice [201].2 The

problems encountered in this regime are low signal-to-noise ratio of measure-

ments (driven by the inherent supra-linear relationship with B0 [101]), and

strong B0 field inhomogeneities, requiring sophisticated treatment for image

reconstruction [204]. On the other hand, ultra high fieldMRI with B0 > 7 T are

being developed for clinical use [256]. The challenges here are the increased RF

field inhomogeneity and power deposition in tissue [130], which can be some-

what mitigated by parallel RF transmission [168]. However, there still exists

many technical challenges [256].

The advanced acquisition described above provide interesting challenges

with respect tomedical image reconstruction. In the next sectionwewill present

future work that is in-line with the studies presented in this thesis.

7.2 Future Work

This section highlights preliminary, unpublished results as part of future work.

Further research directions for each developed method are detailed in their

respective chapters.

SGM-based Unsupervised Anomaly Localisation Training the score-model

exclusively on healthy patient data could enable the detection of pathologi-

cal abnormalities [20], such as lesions, by observing increased posterior un-

certainty in affected regions. This approach could serve as a valuable tool for

anomaly localisation. An illustrative example of this concept is provided in

Appendix A, demonstrating its potential in guided reconstruction scenarios.

3D A-Blobs and Volumetric Regularisation Given the simple analytical and

parallelisable formulation of A-Blobs, we implement CUDA-kernels for 3D A-

Blobs by analytically computing the value and gradient, as is done with Gaus-
2Ultra low field MRI exist that have even weaker magnetic strength.
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sian Splatting [121]. Furthermore, we investigate the use of volumetric regular-

isation based on sparsity to remove A-Blobs that do not contribute sufficiently

to the representation. This is shown in Appendix B.
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Appendix A

SGM-based Unsupervised Anomaly

Localisation

The guided reconstruction approach presented in Section 5.5.1 facilitates the

translation from healthy MR images to healthy PET images in the absence of

data consistency constraints. However, when data consistency is enforced us-

ingmeasurements fromanatomieswith lesions, a distributionalmismatch arises.

This mismatch occurs because the score-model, trained on healthy patients, is

applied to measurements from patients with pathologies. By sampling multi-

ple reconstructions using the proposed guided reconstructionmethod (Section

5.5.1), we can assess the variance across these reconstructions to localise abnor-

malities. Specifically, ten reconstructions were computed from a single set of

measurements. The resulting mean, variance, and variance-to-mean ratio are

displayed in Fig. A.1, which highlight areas indicative of anomalies.
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Figure A.1: Guided reconstruction of score-model trained on healthy patients and
tested with measurements of an unhealthy patient. Ten reconstructions
are sampled and the mean and variance are shown.
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Appendix B

3D A-Blobs and Volumetric

Regularisation

In the previous implementation AutoGrad was used to automatically compute

the gradients using reverse-mode automatic differentiation. Given the simplic-

ity of A-Blobs the gradients with respect to the parameters c ∈ C, µ ∈ R3 and

L ∈ R3×3 can be derived. Starting with the definition of a single adaptable blob:

b(r; c,µ,L) = c exp

−||L(r − µ)||22
2

,
The gradients are:

∂b(r; c,µ,L)
∂c

= exp
(
−

1
2
||L(r − µ)||22

)
,

∂b(r; c,µ,L)
∂µ

= L⊤L(r − µ)b(r),

∂b(r; c,µ,L)
∂L

=
[
L(r − µ)(r − µ)⊤b(r)

]
lower .

The derivatives of the Fourier-transformed A-Blobs are:
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∂F[b](k)
∂c

= (2π)
Ndim

2 | det(U)| exp
(
−ik⊤µ −

1
2
||Uk||22

)
(B.2a)

∂F[b](k)
∂µ

= −ikF[b](k) (B.2b)

∂F[b](k)
∂ui j

=


(−k⊤Uk) [F[b](k)]upper if i , j

( 1
ui j
− k⊤Uk) [F[b](k)]upper if i = j.

(B.2c)

Note that special attention need to by taken to ensure µ ∈ R3 and L ∈ R3×3,

which requires taking the conjugate Wirtinger derivative [189].

In addition to the explicit gradients above, we can also derive a sparsity

promoting volumetric regularisation, where the volume of an A-Blobs is v =

c(u11 · u22 · u33)2 and det(U) = u11 · u22 · u33.1

η(c,Γ) = λ
Nb∑

b=1
|v(b)|,

the proximal operator corresponds to the soft-thresholding function [170]:

[proxγλ||·||1(v)](b) =


v(b) − γλ if v(b) > γλ,

0 if |v(b)| ≤ γλ,

v(b) + γλ if v(b) < γλ,

where γ described in Section 2.2.3.2. This is equivalent to:

[proxγλ||·||1(v)](b) =


c(b) −

γλ

([U(b)]11·[U(b)]22·[U(b)]33)2 if v(b) > γλ,

0 if |v(b)| ≤ γλ,

c(b) +
γλ

([U(b)]11·[U(b)]22·[U(b)]33)2 if v(b) < γλ.

In Fig. B.1 we show results for image representation in 3D for various pa-

rameterisation and with the proposed regularisation. In Fig. B.2 we give qual-

itative results for the various parameterisations in 3D.

1This is related to reweighted ℓ1 minimisation [34], where we reweigh the coefficient based
on the determinant or the covariance.
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(a) Image quality assessed withMean Squared
Error vs number of A-Blobs.

(b) Image quality assessed with HaarWavelet-
Based Perceptual Similarity Index vs num-
ber of A-Blobs.

Figure B.1: Plots assessing image representation of A-Blobs with varying degree of
parameterisation and number of A-Blobs.
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Figure B.2: Images of changing the parameterisation, while keeping number of A-
Blobs the same. Mean Squared Error (MSE) is given for each parameteri-
sation.
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