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Abstract

This thesis investigates the development of motor synergies during the acquisition

of complex manual motor skills, specifically sequential typing tasks. Motor syn-

ergies - defined here as coordinated movements across multiple digits - form the

foundation of skilled performance. Combining behavioural annotation, markerless

pose estimation tools that estimate 2-D finger positions from video, and remote

data collection methods, three studies were conducted to examine the emergence,

refinement, and transfer of these coordinated movements during practice and rest in

sequential motor learning.

Study 1 shows significant changes in motor synergies during early-stage prac-

tice. Over thirty-six trials, participants rapidly improved typing performance, with

gains plateauing after early learning. Improvements coincided with more efficient,

modular movement strategies, suggesting early establishment of control structures.

Study 2 shows that these patterns reorganise substantially during brief rest in-

tervals rather than during active performance. This finding supports the idea that

rest facilitates micro-offline consolidation of skill.

Study 3 explores transfer of coordination patterns from simple to complex

tasks. Despite similarities in sensorimotor demands, coordination patterns from the

simpler task did not transfer seamlessly to the complex one. Instead, participants

formed new strategies to meet the demands of the five-element sequence.

Collectively, these studies advance our understanding of how motor synergies

emerge and adapt during learning. They underscore the importance of both practice

and rest, and the task-specific nature of motor control, offering insights for person-

alised training and rehabilitation.



Impact Statement

This thesis advances the scientific understanding of motor skill acquisition, with

potential applications across clinical and technological domains. Motor sequence

learning is foundational to skilled behaviour, yet traditional protocols often de-

emphasise the importance of rest and the task-specific nature of motor coordination.

This research focuses on how motor synergies develop, refine, and transfer

across tasks. It shows that significant consolidation of motor skill can occur over

brief periods of rest, and that learned motor synergies are often specific to the prac-

tised task. These findings suggest that structuring rest with active practice could

enhance motor learning - a principle relevant for motor and neuro-rehabilitation.

For example, future rehabilitation protocols could integrate structured rest with

task-specific repetition to improve motor recovery in post-stroke populations, po-

tentially accelerating reorganisation of coordinated motor activity. Similarly, in

domains like surgery, athletics, or fine arts, strategically timed rest may help con-

solidate motor strategies more effectively than continuous practice.

Methodologically, this thesis introduces a scalable approach to motor be-

haviour assessment using markerless pose estimation, unsupervised clustering, and

divergence metrics. Specifically, Jensen–Shannon Divergence (JSD), a measure of

distance between distributions, was used to compare how the relative frequency of

motor behaviours changed from one trial to another.

Future work could explore applying this framework in clinical trials or adap-

tive rehabilitation systems. By bridging neuroscience, machine learning, and reha-

bilitation science, this thesis contributes toward the development of more effective,

individualised motor training strategies.
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better understanding of motor learning principles. By bridging gaps between neuro-

science and rehabilitation, it lays a foundation for innovations that can enhance in-

dividual performance, reduce healthcare burdens, and improve societal well-being.
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Chapter 1

INTRODUCTION

“How did she do that?”

— GMM

1.1 Motivation for This Thesis
My daughter watched an Olympic diver twist smoothly through the natatorium air

and enter the pool at La Défense Arena with only a short, foamy splash. “How

did she do that,” she asked, her eyes and heart fixed on the television. The dive

impressed her enough that she needed to know. I couldn’t fault her. I felt the same.

“Honestly, love, I’m not sure”. I avoided a complex reply and instead joined my

daughter in her wonder. Of course we do know in part how athletic performance is

formed at the behavioural, cognitive, and neurological level, but to her credit, many

related questions in movement neuroscience have not been fully answered - how did

she do that? How much practice must she have completed and how did she learn to

blend each separate movement into one fluid execution? In this thesis, I will address

each question by way of three experiments measuring kinematic and performance

changes of participants learning novel keypress sequences.

* * *
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This thesis is concerned with how humans move. Specifically, it addresses

open questions regarding when and to what degree movement features emerge,

change, or transfer over the course of learning new skills, during practice, and over

periods of rest. In the next sections, I will introduce several topics relevant to the

experimental chapters: motor skill learning, motor sequences, motor skill transfer,

motor synergy, and the open questions surrounding motor synergy development.

Each section will serve as a primer for the chapters to follow.

1. Motor Skill Learning and Practice

Motor skill development is fundamentally about learning through practice. From

the earliest stages of learning - when an individual is consciously aware of each

movement - to the later stages, where the movements become automatic, mo-

tor learning involves the constant refinement of internal models that guide action

(Shadmehr and Krakauer, 2010; Krakauer and Mazzoni, 2019). In the case of the

diver, each practice session would have involved refining the execution of individual

movements as well as the integration of those movements into a coherent sequence.

Research in motor learning shows that practice is essential for skill acquisition

because it allows the brain to update its internal models based on sensory feedback

(Wolpert and Flanagan, 2001). Over time, these updates help the learner improve

the timing, accuracy, and efficiency of their movements. This principle applies to

elite athletes as well as everyday motor tasks like learning to walk or type. As

movements are practised and refined, they shift from being explicitly controlled to

becoming more implicit, relying on the brain’s ability to execute actions without

conscious oversight (Adams, 1971; Shadmehr and Krakauer, 2010).

2. Motor Sequence Learning: Combining Movements

One of the key processes behind motor learning is motor sequence learning - the

ability to combine individual movements into a continuous sequences. In the diver’s

case, this means knowing not just how to execute a dive but also how to transition

smoothly from one movement to the next. Motor sequence learning is essential

for any skilled task that involves multiple steps, from playing a musical piece to
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performing a complex athletic routine (Abrahamse et al., 2013; Karni et al., 1995).

Initially, learners master individual components of a sequence, consciously

planning each action. But with practise, these individual actions become “chun-

ked” into larger units, making it easier to recall and execute entire sequences (Ver-

wey, 2001). For the diver, this means that the entire dive - composed of various

twists and turns - can be executed as a single fluid motion rather than a series of

disjointed movements. Research suggests that as motor sequences are learned, the

brain improves prediction of outcomes of movements, allowing for smoother tran-

sitions between actions (Hikosaka et al., 2002).

3. Motor Synergies: Coordinating Movements

Underlying the fluidity of the diver’s movements is another important concept: mo-

tor synergy. This refers to the way the nervous system coordinates muscles, joints,

or movements to produce smooth, efficient movements (Latash, 2008a). With over

600 muscles in the human body, coordinating them all to produce a simple move-

ment, let alone a complex dive, is challenging. Motor synergies simplify this co-

ordination by grouping muscles movements together into functional units, allowing

efficient and effective performance (Bizzi et al., 1991; Turvey, 2007).

For the diver, motor synergies ensured muscle groups works together to pro-

duce the mastered movements with minimal effort. This coordination is not some-

thing that happens overnight; it is the result of extensive practice, where the body

learns to exploit synergies to minimize effort and maximize performance. As these

synergies become more refined, the diver is able to execute increasingly complex

dives with greater precision and control (Bernstein, 1967; Latash and Huang, 2015).

4. Motor Skill Transfer: Solving Redundancy

Motor skill transfer refers to the process where learning one motor skill influences

the acquisition of another. This phenomenon can occur when the components of

a newly learned skill share similarities with a previously mastered skill (Schmidt,

1975; Wolpert et al., 2011). When the Olympic diver, for example, executes a new

and complex dive, much of their ability to quickly master it comes from previ-
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ously learned dives that share similar motor components. In essence, the nervous

system identifies and implicitly transfers muscle activation patterns and joint co-

ordinations, thereby minimising the need to re-learn redundant motor behaviours

(Berniker and Kording, 2008; Diedrichsen et al., 2005).

Solving redundancy in motor control is central to transfer. Redundancy refers

to the fact that there are often multiple ways to achieve the same motor goal, with

different combinations of muscle activations and joint movements producing the

same result (Latash, 2010). To solve for computational redundancy, the body may

reuse previously cost-efficient and successful patterns when a new skill incorpo-

rates elements of those previously learned. In the case of our diver, this means that

muscle synergies and coordination strategies from earlier dives aid in learning new

dives. The reuse of motor components underpins the concept of motor skill transfer

and is a critical factor in motor learning research though large gaps remain in its

understanding (Newell, 1991; Turvey, 1990).

5. Open Questions: The Development and Transfer of Synergy

In the field of motor learning, there are many open questions surrounding motor

synergy development and their timescale - how long does it take for motor synergies

to develop fully, and once developed, can synergies transfer to new tasks?

While research has shown that motor synergy is crucial in motor sequence

learning, the exact mechanisms and timescale by which they develop and transfer

remain unclear. Understanding these processes could have substantive implications

for athletics and rehabilitation, where the ability to transfer motor skills from one

context to another is critical. This thesis will address how and when motor synergy

emerges, evolves, and transfers amid motor sequence learning.

1.2 Motor Skill Learning
Motor learning can be defined as any experience-dependent improvement in motor

performance (Wolpert et al., 2011; Krakauer and Mazzoni, 2019). As highlighted

earlier, motor learning is crucial not only for expertise in activities like athletics but

also for day-to-day tasks. From a child learning to walk or tie their shoes to an
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adult learning to drive or an elderly person learning to use new technology, motor

learning underpins many essential life skills. Moreover, it is especially relevant for

patients undergoing rehabilitation following motor disabilities such as stroke, where

re-learning skills becomes critical for functional recovery (Krakauer et al., 2000).

Daily motor tasks are incredibly diverse - whether diving or using the ped-

als while driving - and likely engage various learning mechanisms. One point of

agreement in the field is that motor learning typically results in improvements in

the speed and/or accuracy of movements, ultimately enhancing the speed-accuracy

tradeoff (Fitts, 1954). For example, a tennis player may improve by increasing

both movement initiation speed (e.g., allowing faster reactions and more powerful

strokes) and movement accuracy (e.g., choosing the correct stroke and executing it

reliably). Other aspects of motor learning include reduced susceptibility to external

perturbations (e.g., maintaining movement accuracy under force perturbations) and

the ability to perform tasks with reduced cognitive load, which can be measured

using dual-task paradigms (Johansson et al., 2023). These phenomena indicate that

motor learning occurs at multiple levels and is modulated to the task’s demands.

In laboratory settings, motor learning is typically studied through a variety of

tasks, which provide insights into the mechanisms underlying this process. Two

dominant paradigms have emerged: motor sequence learning and motor adaptation

(Krakauer and Mazzoni, 2019). In motor sequence learning tasks, participants are

asked to perform a series of key presses on a keyboard or button box as quickly and

accurately as possible, emphasizing learning of successive movements. In contrast,

motor adaptation tasks require individuals to adjust a well-learned movement (such

as a reaching task) in response to external perturbations, focusing on correcting and

adapting movements. See a brief table summarising the differences between se-

quence learning and adaptation in Table 1.1. These paradigms have advanced our

understanding of the neural substrates involved in motor learning. However, there

is ongoing debate about whether they serve as optimal models for real-world skill

acquisition (Doyon et al., 2003; Doyon and Benali, 2005; Morehead and Orban de

Xivry, 2021). A key difference between these tasks and real-world skills lies in the
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emphasis on movement execution. While laboratory tasks often prioritise move-

ment selection (e.g., selecting the correct sequence of key presses or correcting for

a perturbation), real-world tasks like tennis require both accurate selection and pre-

cise execution of movements (Haar and Faisal, 2020).

Table 1.1: Comparison of Motor Sequence Learning and Adaptation Tasks

Feature Sequence Learning Adaptation
Primary Goal Learn a novel sequence Compensate for perturbation

Example Task Serial Reaction Time, typing Force-field reaching

Neural Involvement Striatum, SMA, M1 Cerebellum, M1

Learning Outcome Faster, more accurate execution Realignment of motor commands

Consolidation Sensitivity Sleep-dependent Rapid, error-driven

In this thesis, I focus on the former paradigm, motor sequence learning, and

I model learning via a sequential typing task, where participants executed a series

of key presses as quickly and accurately as possible. This task captures the tempo-

ral and spatial ordering of motor elements, requiring the participants to recall and

perform sequences with precision and speed. By emphasizing motor execution, the

typing task provides an excellent model for understanding how motor sequences

are structured, learned, and refined over time. The choice of this task reflects its

relevance to daily life activities like typing or playing a musical instrument, both of

which rely on fine motor control and the development of complex motor synergies.

Additionally, this task enables the exploration of the motoric contributions

to sequence learning - specifically, the development of motor synergies and their

timescale. Investigating the formation of motor synergy through a sequential task

allows us to gain insight into how the brain organizes and optimizes motor com-

mands to produce consistent, coordinated movements. The study of motor syner-

gies is crucial for understanding the underlying processes that make motor learning

efficient and flexible, as they allow the motor system to manage the complexity of

movement by combining multiple motor elements into cohesive units.

While the focus of this thesis is on motor sequence learning, it is important

to situate such learning within the broader context of how practice influences be-
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haviour. Recent theoretical work suggests that practise leads to at least three dis-

tinct but interrelated behavioural changes: increased skill (improved speed and ac-

curacy), reduced cognitive load, and the development of habitual responses (Haith

and Krakauer, 2018). These effects, sometimes collectively referred to as auto-

maticity, do not necessarily evolve in lockstep and may reflect caching of different

intermediate computations. Motor sequence learning, as studied here, likely en-

gages a proportion of all three dimensions - requiring initial effortful selection and

execution of actions, which with practice become faster, less attentionally demand-

ing, and potentially habitual. Exactly which components of a manual keypress task

are governed more by skill or habit as they are defined by Krakauer and Haith - e.g.

the keypress itself or the transition between any two keypresses - is topic up for de-

bate. A richer understanding of motor skill learning thus benefits from considering

these dissociable but co-occurring effects of practice.

This thesis, therefore, focuses on the cognitive and motoric aspects of sequence

learning, investigating how motor synergy develops over time and whether these

synergies can be transferred across skills. This focus enables an expanded under-

standing of motor learning processes, as they apply both in controlled laboratory

settings and in real-world scenarios.

1.3 Motor Sequence Learning

Considerable research in motor learning over the past century has focused on how

actions are organized into specific temporal sequences to achieve tasks. This or-

ganization may involve discrete movements, such as those needed to prepare tea,

or continuous and overlapping actions within a single movement, such as muscle

activations for a tennis serve (Abrahamse et al., 2013; Ahmadi-Pajouh et al., 2012;

Berniker and Kording, 2011). Understanding how sequences are learned, repro-

duced, and represented in the brain is crucial for insights into motor control.

In daily activities, task completion also necessitates performing a sequence of

actions in a prescribed order. For example, making tea involves actions such as

filling a kettle, boiling water, placing a teabag in a cup, and pouring water over
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it. While certain steps can be reordered without significantly affecting the outcome

(e.g., placing the teabag before or after adding water), others must follow a strict

sequence (e.g., boiling water before pouring it) (Benke, 1993). Thus, the goal of the

sequence is to complete the task, with individual actions well understood.

Language is another domain where sequence learning is fundamental. Rules

of phonology, morphology, and syntax dictate the order in which sounds and words

are arranged to convey meaning (Lashley, 1951). These rules, in turn, influence

motor control of speech production. In both motor behaviour and language, in-

dividual elements often become grouped into chunks - hierarchical groupings that

facilitate the representation and recall of subsequences (Jeannerod, 1988; Albouy

et al., 2008). For example, a sequence of sounds can form a word that is executed

through a specific pattern of muscle movements. Patients with apraxia of speech

struggle with producing these sequences, resulting in inaccurate sound production

(Benke, 1993). In laboratory settings, action sequences are often studied using sim-

plified tasks such as button-pressing sequences or saccadic eye movements, with

an emphasis on learning to select and execute actions in the correct order (Verwey,

2001). Over time, these actions are generated more automatically and accurately,

reinforcing the notion of motor chunking (Abrahamse et al., 2013).

Motor sequence learning can be broadly categorized into two types: learning

discrete action sequences and learning continuous movements. Discrete sequence

learning focuses on the correct temporal order of distinct actions, while continuous

actions involve overlapping or uninterrupted movements, such as a tennis serve,

where task goals are achieved through the coordination of multiple muscle activa-

tions (Abrahamse et al., 2010; Albouy et al., 2013). Although these two forms of

learning are distinct, they are often studied together. For example, a patient with

ideational apraxia may be able to perform a simple reaching movement but struggle

with completing a series of discrete tasks (Benke, 1993). This distinction highlights

the potential involvement of different motor planning stages during improvements

in sequential tasks (Abeele and Bock, 2001).

In discrete sequence tasks, the goal is to rapidly and accurately select and ex-
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ecute each action in a prescribed order. For instance, in the Discrete Sequence

Production (DSP) task, participants practice keypress sequences, improving speed

and accuracy as the movements become more automatic (Abrahamse et al., 2013).

Over time, as finger movements overlap temporally, sequence execution becomes

faster and smoother, supported by the formation of new neural representations that

underlie this performance improvement (Abdelghani et al., 2008). Similarly, the

Serial Reaction Time Task (SRTT) involves executing movements in response to

stimuli presented in a fixed sequence. This task allows researchers to assess se-

quence learning by comparing response times for learned sequences versus random

sequences (Albouy et al., 2008).

The second conceptualization of sequence learning, involving continuous ac-

tions, focuses on refining the execution of uninterrupted movements, such as a ten-

nis serve or a simple reach. These tasks involve the sequential activation of muscles

in a precise order, coordinated through complex motor commands. For example,

reaching movements are associated with the triphasic burst pattern in fast-reaching

tasks or the coordinated activation of extraocular muscles during saccades (Ramat

et al., 2007; Robinson, 2022). Unlike discrete sequences, the motor system gener-

ates these patterns unconsciously, reflecting the smooth and continuous nature of

the movement (Ahmadi-Pajouh et al., 2012).

In this context, while discrete sequence learning provides insights into how

the brain encodes the order of individual actions, and continuous movement studies

highlight the complex coordination of muscle activations required for fluid execu-

tion, tasks that embody elements of both paradigms offer a unique opportunity to

explore the interplay between discrete and continuous motor learning mechanisms.

In this thesis, I use a typing task that integrates both concepts. Although the task in-

volves discrete actions - individual keypresses - it demands that the whole sequence

be executed repetitively without pauses, mirroring the characteristics of continuous

movements. This design allows us to investigate how the motor system transitions

from planning discrete movements to achieving coordinated, continuous execution.

A key mechanism that facilitates this transition is the formation of motor chunks,
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where individual actions are grouped into cohesive units.

1.3.1 The Formation and Representation of Chunking

In motor sequence learning, a key characteristic is that once a sequence has been

mastered, its individual elements are no longer executed independently but are

grouped into collective units, or chunks. This grouping forms a more efficient neu-

ral representation of the entire sequence, allowing for rapid recall and execution.

Evidence supporting this idea comes from the observation that the reaction time

(RT) for the first movement in a sequence increases as the number of subcompo-

nents increases, suggesting that the entire ordered set of actions is recalled before

initiating the first element (Verwey, 2001; Abrahamse et al., 2013). Instead of plan-

ning each movement separately, the motor system treats the sequence as a unified

pattern, storing subsequent action order in a buffer for efficient execution (Verwey,

2001; Hikosaka et al., 2002).

This principle of chunking is not unique to the motor domain: expert mem-

ory performance in complex cognitive tasks, such as chess, similarly relies on the

rapid retrieval of pre-formed knowledge structures. For example, Gobet and Simon

demonstrated that chess masters could recall multiple board positions far beyond

typical short-term memory limits by drawing on domain-specific templates - essen-

tially chunked configurations of pieces - stored in long-term memory (Gobet and

Simon, 1996). Such cross-domain parallels suggest that chunking reflects a gen-

eral mechanism by which the brain simplifies complex information into coherent,

retrievable units.

However, many motor sequences can be quite long and complex, and evidence

suggests there is a limit to the number of elements that can be grouped into a sin-

gle unit. Typically, sequences are divided into smaller chunks, each containing 3-7

elements (Miller, 1956; Verwey and Eikelboom, 2003). These “chunks” are often

indicated behaviourally by an increase in response time for the first element of a

new chunk, suggesting that the motor system is recalling and pre-planning the en-

tire chunk at once (Verwey, 1996; Verwey and Eikelboom, 2003). For example, in

keypress sequences, participants typically show slower response times at the start
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of each chunk, followed by faster responses for the remaining elements. This pat-

tern reflects the cognitive grouping of actions into chunks, which facilitates more

efficient sequential execution (Verwey, 1996; Abrahamse et al., 2013)..

Recent evidence, however, has suggested that these changes in response time

may not always correspond to chunk boundaries, but might also reflect biomechan-

ical constraints or idiosyncratic strategies used by participants (Ramkumar et al.,

2016). Despite these challenges, the idea of chunking remains central to how se-

quences are organized in the brain. Chunking allows for sequences that exceed

working memory capacity to be recalled more efficiently, by reducing the cognitive

load to remembering a few chunks rather than many individual elements (Verwey,

2001; Verwey and Eikelboom, 2003). This strategy is not unique to motor sequences

but is also seen in language and problem-solving, where individuals rely on chunk-

ing to manage large amounts of information (Chase and Simon, 1973).

The specific length and structure of chunks may be influenced by working

memory capacity and the degree to which a sequence can be compressed or simpli-

fied into a more manageable form (Miller, 1956; Verwey, 2001). For instance, in

skilled performance, such as chess or music, experts often utilize chunking strate-

gies to recall complex configurations or sequences that would otherwise overwhelm

working memory (Chase and Simon, 1973). This ability to form and manipulate

chunks is thought to be a fundamental cognitive strategy that supports both motor

learning and broader cognitive functions.

The chunking process typically begins with the associative learning of sim-

ple transitions between small fragments of a sequence, such as pairs of responses

(Johnson, 1970; Miller, 1956; Laird et al., 1984; Graybiel, 1998; Servan-Schreiber

and Anderson, 1990; Verwey et al., 2015). Initially, these transitions are stimulus-

dependent, but with practice, they evolve into longer, more stable fragments that

can be executed with increasing autonomy (Verwey et al., 2015). Over time, these

chunks become reinforced through repetition, resembling statistical learning mech-

anisms (Perruchet and Pacton, 2006; Hunt and Aslin, 2001).

Chunking provides a distinct performance advantage. Sequences constructed
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by recombining familiar chunks are executed more efficiently than completely novel

sequences, though not necessarily as fluently as well-practised ones (Wymbs et al.,

2012). This suggests that not only are individual elements learned within chunks,

but the transitions between them are also integrated as part of the sequence represen-

tation (Diedrichsen and Kornysheva, 2015). Moreover, chunking emerges dynami-

cally during skill acquisition: practice strengthens these structured representations,

but inefficient chunking patterns established early in learning tend to persist despite

extensive training (Verwey et al., 2015). This suggests that chunking is not solely

a mechanism for optimising motor execution but rather a process of structuring and

organizing movement elements into manageable units.

The formation of chunks is task-dependent: advantages arise when an entire

sequence is practised as a unit rather than through isolated repetitions of common

sub-elements (Kornysheva and Diedrichsen, 2014; Kornysheva et al., 2019). How-

ever, the extent to which chunking contributes to long-term memory formation and

consolidation remains uncertain. While hierarchical and modular structures of mo-

tor sequences appear to stabilise with practice, it is still unclear whether these struc-

tures strengthen through consolidation or whether they are simply a function of

initial learning organization (Diedrichsen and Kornysheva, 2015).

There has been significant debate regarding whether higher-order representa-

tions, like chunks, are motoric or exist at a cognitive level. Lashley (1951) proposed

that higher-order representations organize sequence elements abstractly rather than

focusing on the motor details of individual actions. This view is supported by find-

ings that sequences learned symbolically, such as through colour-coded cues, can

transfer across different effectors, including saccadic eye movements (Verwey et al.,

2015). Similarly, sequence learning through observation can yield performance

benefits comparable to active practice, suggesting that chunking can emerge inde-

pendently of direct motor execution (Bird and Heyes, 2005; Hardwick et al., 2018).

The ability to transfer sequence rules, where the specific elements change but their

relationships remain intact, also points toward a hierarchical, cognitive organization

that is action-independent but order-dependent (Schmidt and Lee, 2005).
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Recent neuroimaging studies bolster the notion that chunking is hierarchical.

Activity in the primary motor cortex (M1) during motor sequence learning does

not necessarily reflect a reorganization of individual movement representations but

rather a compressed encoding of sequential dependencies (Wymbs et al., 2012).

Even after extensive training, motor chunking appears to be represented more ro-

bustly in premotor and parietal areas than in M1, supporting the idea that chunking

is a strategy for organizing sequence order rather than transforming motor execu-

tion itself (Tanji and Shima, 1994; Kennerley et al., 2004; Kornysheva et al., 2019).

Cortico-striatal interactions, particularly within the basal ganglia, have also been

implicated in sequence chunking, with evidence suggesting that striatal activity pre-

cedes the execution of well-learned chunks, possibly acting as a gating mechanism

for sequential action (Graybiel, 1998; Boyd et al., 2009).

The debate over whether chunking represents a motoric phenomenon or an ab-

stract cognitive strategy underscores the complexity of motor sequence learning.

It highlights the interplay between the cognitive processes that organise and recall

the order of actions and the sensorimotor processes that execute these actions ef-

ficiently. This dichotomy reflects the broader components of motor learning: the

spatial-ordinal aspect and the sensorimotor aspect. Understanding how chunking

facilitates the integration of these components is essential for a comprehensive view

of motor skill acquisition (Ariani and Diedrichsen, 2019; Zimnik and Churchland,

2021). In the following section, I explore these components of learning in detail.

1.3.2 Components of Learning

The process of motor learning can be broadly categorized into two fundamental

components: the spatial-ordinal or “what-to-do” component, and the sensorimotor

or “how-to-do” component. The spatial-ordinal aspect refers to the learner’s ability

to understand and sequence the actions required for task completion. This compo-

nent emphasizes the order and spatial arrangement of movements within a motor

sequence, such as the steps involved in playing a musical scale or executing a com-

plex athletic manoeuvrer (Karni et al., 1995; Abrahamse et al., 2010). It is deeply

rooted in cognitive processes, where the motor system learns to map external goals
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onto specific motor actions, and heavily relies on both working memory and atten-

tion. On the other hand, the sensorimotor component pertains to the fine-tuning of

the physical execution of these movements. It focuses on performance quality, in-

cluding timing, force, and fluidity, and is shaped by repeated practice and feedback,

allowing efficient and adaptive execution of learned actions (Schmidt, 1975; Fitts,

1964). Together, these two components underpin the holistic development of motor

skill, where both the knowledge of what actions to perform and the skilful execution

of those actions are mastered over time.

The Spatial-Ordinal Component of motor sequence learning includes the

learner’s capacity to understand and reproduce the correct spatial arrangement

and temporal order of movements. This aspect is vital for both simple and complex

tasks, whether it’s typing on a keyboard or playing a musical instrument. The ability

to map movements spatially ensures that the sequence can be accurately repeated.

Research has demonstrated that humans, when learning motor sequences, tend to

prioritize understanding the spatial order of movements before perfecting their ex-

ecution, as this provides the foundation for later refinement of timing and precision

(Verwey, 2001; Abrahamse et al., 2013). Furthermore, spatial understanding is es-

sential for motor tasks that require precision, such as surgical procedures or sports,

where any deviation in spatial order can lead to errors or suboptimal performance.

Spatial learning becomes especially important in tasks where movements are

directed toward specific spatial targets. For instance, in tasks that involve reaching

or saccadic eye movements, the accuracy with which spatial positions are remem-

bered and executed is a determinant of success. The precision of spatial-ordinal

learning is thought to be supported by the brain’s ability to map both egocen-

tric (body-centered) and allocentric (external environment-centered) spatial frame-

works. This dual spatial representation allows for more flexible motor control and

is necessary for tasks that involve the transformation of spatial representations from

one context to another, such as when an individual is required to perform learned

movements across environments (Jeannerod, 1988; Kalaska and Crammond, 1992).

In empirical studies of motor sequence learning, spatial-ordinal information
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has been shown to drive early improvements in sequence execution. As learners

become familiar with the order of the required movements, performance becomes

more consistent, and the motor system begins to encode these spatial patterns more

robustly. Importantly, learning the spatial-ordinal structure of a task also facilitates

transfer to new tasks. For instance, once a spatial sequence is learned in one hand,

it can often be transferred to the other hand, demonstrating the generalisation capa-

bilities of the motor system (Hardwick et al., 2013). This highlights the critical role

of spatial-ordinal learning in forming flexible motor representations.

Overall, spatial-ordinal learning forms the basis of motor sequence learning,

upon which more complex, sensorimotor refinements are built. The process of en-

coding these spatial relationships enables the learner to transition from conscious,

effortful execution to more automatic, fluid movements as the sequence becomes

ingrained in both memory and motor control systems.

The Sensorimotor Component of motor sequence learning involves the integration

of sensory input with motor output, which is critical for refining movement execu-

tion over time. While spatial-ordinal learning focuses on the order and arrange-

ment of movements, the sensorimotor aspect emphasizes the quality of execution -

timing, force, and coordination. Sensorimotor integration ensures that movements

are adapted in real-time based on feedback from the body and environment. This

feedback loop allows for ongoing adjustments that transform the task-relevant kine-

matics (speed, smoothness, etc.), which is essential for developing highly skilled

behaviours (Adams, 1971; Shadmehr and Krakauer, 2010).

Sensorimotor learning is particularly crucial for tasks that require fine motor

control, such as playing a musical instrument or performing delicate surgical ma-

noeuvrers. These tasks demand precise timing and coordination, which can only

be achieved through the close integration of sensory information (such as propri-

oception and vision) with motor commands. The role of feedback in this process

cannot be understated - real-time corrections allow for adjustments that enhance ac-

curacy and performance (Wolpert and Flanagan, 2001). As learners practice, they

become more adept at using this feedback to make micro-corrections that optimize
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movement, leading to improved efficiency and reduced variability in execution.

Evidence suggests that sensorimotor learning plays a critical role in the later

stages of motor sequence learning, as performance becomes increasingly dependent

on the fine-tuning of movements. During practice, the brain refines its internal mod-

els, which predict the outcomes of actions and adjust motor commands accordingly.

These internal models are crucial for the smooth and efficient execution of com-

plex motor sequences, as they allow anticipatory adjustments rather than reactive

corrections (Flanagan and Wing, 1997; Wolpert and Flanagan, 2001). In this sense,

the sensorimotor system is continuously learning how to better predict and control

movement outcomes based on past experience.

In sequence learning tasks, such as the serial reaction time task (SRTT), partic-

ipants gradually improve their performance as they refine the coordination between

sensory input and motor execution. With practice, the motor system becomes more

efficient at integrating sensory feedback, resulting in faster and more accurate re-

sponses. This integration of sensory feedback not only facilitates the learning of

specific motor tasks but also allows for the generalisation of learned skills to new

contexts, demonstrating the flexibility of the sensorimotor system.

1.3.3 Stages of Sequence Learning

A growing body of evidence suggests that motor sequence learning can be divided

into three distinct stages, as first proposed by Fitts and Posner in 1967. These stages,

typically labelled as the cognitive, associative, and autonomous stages, reflect the

progression from effortful, conscious control of movements to automatic execution.

Although different theoretical models use varying terminology, the core idea of a

phased learning process remains consistent across studies.

The first stage, often referred to as the cognitive, fast or early stage, is marked

by rapid improvements in performance as the learner begins to understand the basic

structure of the motor sequence. During this phase, performance gains are typically

seen in the form of reduced reaction times and increased accuracy in executing the

sequence (Doyon and Ungerleider, 2002; Karni et al., 1995). These improvements

are largely driven by cognitive processes, as learners rely heavily on explicit mem-
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ory to remember the sequence and consciously guide their movements.

During the early phase, participants tend to make frequent errors as they at-

tempt to memorize the order of actions. However, with repeated practice, the fre-

quency of these errors decreases, and performance becomes more consistent (Karni

et al., 1995). This rapid improvement in the early stage is thought to be due to the

formation of initial motor representations, which serve as the foundation for further

refinement in the later stages of learning.

The intermediate or associative stage follows the initial cognitive phase and

marks a period of consolidation and refinement. In this stage, learners begin to

make fewer errors and rely less on conscious control, as their movements become

more fluid and consistent. Attention is gradually redirected from remembering the

order of actions to improving timing and coordination. Performance becomes more

stable, and learners start to recognize and correct their own mistakes, reflecting a

shift from explicit control to more efficient sensorimotor integration (Fitts and Pos-

ner, 1967; Doyon and Ungerleider, 2002). This phase is often associated with the

strengthening of cortico-striatal pathways and increased involvement of the senso-

rimotor cortex as skill becomes more embodied.

The late (slow) learning stage is characterized by the automation of motor se-

quences. This stage, also referred to as the autonomous phase, is characterized

by subtle improvements to performance, e.g. gains in efficiency, movement fluid-

ity, and precision, rather than large reductions in response times. The motor se-

quence, now more deeply encoded in neural circuits, operates with minimal con-

scious oversight, relying predominantly on implicit memory systems. This shift

reflects the gradual internalization of motor commands, particularly as neural activ-

ity becomes focused in brain regions associated with habit formation and automated

actions, such as the basal ganglia and the cerebellum (Doyon and Ungerleider, 2002;

Karni et al., 1995). The refinement of internal models within these regions supports

smoother execution, even under complex and variable task conditions.

In the late stage, the motor system demonstrates greater adaptability to pertur-

bations, further refining the timing, coordination, and overall quality of movements.
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However, this phase is not solely about the automation of movement. Evidence

suggests that the representation of motor sequences may shift from cortical areas

involved in planning, such as the premotor cortex (PMC), toward more execution-

based regions, including the primary motor cortex (M1) (Hikosaka et al., 2002;

Doyon and Ungerleider, 2002). The PMC, responsible for integrating sensorimotor

information, continues to play a role in fine-tuning motor sequences, while M1 is

engaged in executing actions (Hardwick et al., 2013).

The point of motor learning plateau, often referred to as the retention stage,

is characterized by nearly automatic execution of motor sequences. How skilled

behaviour transitions from goal-directed to habitual activity has been extensively

studied (Adams, 1971; Dickinson and Balleine, 1994). During the early stages of

motor learning, actions are selected based on expected outcomes, meaning that in-

dividuals choose movements they believe will lead to success. This goal-directed

system is computationally intensive and relies on explicit memory processes. As

learning progresses, however, skill becomes habitual, based on past successes rather

than immediate outcomes (Daw et al., 2005; Balleine and Dickinson, 1998).

Neural correlates of the habitual and goal-directed systems involve the basal

ganglia and prefrontal cortex, respectively (Balleine and Dickinson, 1998). When

participants are under time pressure and forced to make rapid decisions, they are

more likely to rely on habitual responses. In contrast, when given more time, par-

ticipants revert to goal-directed decision-making, which can result in better task

performance (Balleine and Dickinson, 1998). These findings suggest that habitual

and goal-directed systems operate in parallel, each utilised based on task demands.

This co-utilisation allows for continued refinement of motor skills and maintenance

of performance even after the early and late learning phases have concluded.

Long-term retention and maintenance of motor sequence skills requires ongo-

ing engagement with the learned material to prevent skill decay. Long-term main-

tenance involves processes that ensure motor skills remain accessible and efficient

over extended periods. Regular rehearsal and reactivation of motor memories are

essential to counteract forgetting and reinforce the neural representations responsi-
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ble for sequence execution (Censor et al., 2014; Brunton et al., 2009).

A critical aspect of long-term maintenance is the concept of reconsolidation,

where previously consolidated motor memories are retrieved and updated based on

new experiences or environmental changes. Reconsolidation allows the brain to re-

fine and adjust motor sequences, ensuring that they remain adaptable and relevant

to the individual’s current motor demands (Nader et al., 2000; Gelman, 2003). For

instance, in sports or rehabilitation, periodic revisiting of motor tasks allows indi-

viduals to not only maintain proficiency but also improve upon previously learned

skills by incorporating novel feedback into their motor programs.

Another factor influencing long-term maintenance is the spacing of practice

sessions. Distributed practice, where learning is spread out over time, has been

shown to be more effective for long-term retention than massed practice, where

learning occurs in concentrated bursts (Karni et al., 1995; Baddeley and Longman,

1978). The spacing effect allows for the gradual strengthening of motor memories,

reducing the likelihood of forgetting and promoting the durability of the learned

sequences. This principle is particularly relevant in skill-based domains such as

surgery, where proficiency must be maintained over long periods without regular

engagement with the specific motor task.

1.4 Mechanisms of Motor Sequence Consolidation

Motor sequence learning stage progression is supported by the consolidation of

movement patterns into stable motor memories. Consolidation refers to the pro-

cesses that stabilise and enhance motor memories after initial learning, making

them more resistant to interference and decay. In the context of motor sequence

learning, consolidation can occur during active practice (online), during periods of

wakeful rest (offline), and during sleep. Each of these phases contributes uniquely

to the development of skilled performance. This section examines the mechanisms

underlying motor sequence consolidation, focusing on behavioural and neurologi-

cal evidence for online consolidation during practice, offline consolidation during

wakeful rest, and overnight sleep consolidation.
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1.4.1 Online Consolidation During Practice

Online consolidation in motor sequence learning refers to the rapid improvements in

performance observed during active practice. Behavioural studies have consistently

shown that participants exhibit significant reductions in reaction time (RT) and im-

provements in accuracy while practising motor sequences within a single session

(Karni et al., 1995; Dayan and Cohen, 2011). Improvements often follow a charac-

teristic learning curve, with rapid gains early in practice that gradually plateau - a

phenomenon reflecting the initial encoding and refinement of motor sequences.

For example, in serial reaction time tasks (SRTT), participants respond to

sequential stimuli by performing corresponding motor actions. As practice pro-

gresses, RTs decrease, indicating that the sequence is becoming more ingrained and

that movements are being executed more efficiently (Nissen and Bullemer, 1987).

Similarly, in discrete sequence production (DSP) tasks, participants show faster ex-

ecution of practised sequences, suggesting that they are consolidating the motor

patterns required for the sequence during practice (Verwey, 2001).

Neural mechanisms underlying online consolidation during motor sequence

practice involve a widespread network including the prefrontal cortex, premotor

cortex, parietal cortex, basal ganglia, and cerebellum (Hikosaka et al., 2002; Doyon

and Ungerleider, 2002). These areas are associated with attention, planning, and the

execution of movements. As practice continues and performance improves, there is

a shift in neural activation patterns. Activity becomes more focused in the primary

motor cortex (M1) and supplementary motor area (SMA), regions directly involved

in motor execution and sequence representation . This neural reorganization reflects

the consolidation of motor sequences into more efficient neural circuits, enabling

faster and more automatic execution of the learned sequences (Karni et al., 1995).

At the cellular level, synaptic plasticity mechanisms such as long-term poten-

tiation (LTP) are believed to contribute to the strengthening of synaptic connections

within motor circuits during practice (Rioult-Pedotti et al., 2000). These changes

enhance the responsiveness of motor neurons to specific patterns of input, facilitat-

ing the consolidation of motor sequences during online learning.
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1.4.2 Offline Consolidation During Wakeful Rest

Offline consolidation during wakeful rest refers to performance improvements in

motor sequence learning that occur between practice sessions without additional

practice or sleep. Behavioural studies have demonstrated that brief rest periods

interleaved within practice sessions can lead to significant gains in performance

known as micro-offline gains (Antonenko et al., 2013; Bonstrup et al., 2019).

Bönstrup et al. (2019) found that participants practising a finger-tapping motor

sequence exhibited marked improvements in speed and accuracy after short rest in-

tervals compared to continuous practice without breaks. Improvements suggest that

the motor system continues to consolidate and optimize the learned sequences dur-

ing wakeful rest, enhancing performance upon resumption of practice. Moreover,

the magnitude of offline gains during wakeful rest is pronounced in the early stages

of motor sequence learning, where initial encoding is followed by rapid consoli-

dation processes (Hotermans et al., 2006). This emphasizes the importance of rest

periods in facilitating the consolidation of newly acquired motor sequences.

Neurological evidence supports the role of wakeful rest in the consolidation of

motor sequences. During rest periods following motor sequence practice, there is

continued activation in motor-related brain regions, including M1, SMA, and the

basal ganglia (Albouy et al., 2008). This ongoing neural activity suggests that the

brain is replaying or reinforcing the motor sequences learned during practice. Elec-

troencephalography (EEG) studies have identified patterns of oscillations during

wakeful rest that correlate with offline performance gains. For example, increased

beta-band oscillatory activity in motor regions during rest has been associated with

improved motor sequence performance, indicating that neural synchronization may

play a role in consolidating motor memories (Penhune and Steele, 2012). Trans-

cranial magnetic stimulation (TMS) research shows changes in cortico-spinal ex-

citability during wakeful rest following motor sequence learning (Robertson, 2005),

which reflect synaptic modifications in motor pathways that contribute to the stabil-

isation and enhancement of motor sequences during offline periods.
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1.4.3 Overnight Sleep Consolidation

Overnight sleep has been extensively studied for its role in consolidating motor

sequences. Behavioural experiments have shown that participants often exhibit sig-

nificant performance improvements in motor sequence tasks after a night of sleep

compared to equivalent periods of daytime wakefulness (Walker et al., 2002; Fis-

cher et al., 2002). These improvements include faster execution speeds, increased

accuracy, and reduced variability in movement timing.

For example, Walker et al. (2002) demonstrated that participants practising a

finger-tapping sequence showed substantial gains in speed and accuracy after sleep

but not after an equivalent period of wakefulness. In tasks such as the serial reaction

time task (SRTT), participants not only maintain performance after sleep but often

display improvements without additional practice, reflecting the strengthening of

motor memories during sleep (Schapiro et al., 2018).

Further, the amount of performance improvement correlates with specific sleep

stages. Studies have found that both non-rapid eye movement (NREM) sleep, par-

ticularly stage 2 sleep spindles, and rapid eye movement (REM) sleep contribute to

motor sequence consolidation (Fischer et al., 2005; Nishida and Walker, 2007). En-

hanced sleep quality, particularly with an emphasis on increasing slow-wave sleep

(SWS), can lead to more pronounced gains in motor sequence learning, suggesting

a direct relationship between sleep architecture and learning efficiency.

The influence of sleep on motor sequence learning is not uniform and can be

affected by factors such as sleep quality, the complexity of the motor task, and indi-

vidual differences in sleep architecture. Disruptions in sleep, such as sleep depriva-

tion or fragmentation, have been shown to impair the consolidation of motor skills,

leading to poorer performance outcomes the following day (Fischer et al., 2002).

Conversely, improving sleep quality can enhance learning efficiency, indicating the

importance of optimal sleep conditions for motor memory consolidation.

Sleep-dependent consolidation of motor sequences involves complex neural

processes that reorganize and strengthen motor memory representations. Neu-

roimaging studies using fMRI have shown that after sleep, there is increased ac-
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tivation and functional connectivity in motor regions associated with the learned

sequences, such as the primary motor cortex (M1), supplementary motor area

(SMA), and the cerebellum (Tamaki et al., 2013). Sleep promotes synaptic plas-

ticity and neural reactivation of motor sequences. During NREM sleep, particularly

slow-wave sleep (SWS), replay of neural patterns associated with the practised se-

quences occurs in motor-related areas and the hippocampus, reinforcing synaptic

connections (Walker and Stickgold, 2005; Born and Wilhelm, 2010; Diekelmann

and Born, 2010). This replay enhances synaptic plasticity, making the learned mo-

tor sequences more robust and integrated into long-term memory networks. Sleep

spindles, characteristic of stage 2 sleep, have been linked to synaptic consolidation

processes that strengthen motor memories (Barakat et al., 2013).

Additionally, REM sleep is thought to contribute to the integration and refine-

ment of motor sequences into existing memory networks, facilitating the general-

ization and transfer of skills (Stickgold and Walker, 2007; Smith, 2001). REM sleep

may facilitate synaptic pruning and the optimization of neural networks, enhancing

motor efficiency and allowing the motor system to execute learned sequences with

greater automaticity and precision. This balance between SWS and REM sleep

stages ensures that motor memories are not only retained but also refined for future

performance (Walker and Stickgold, 2005).

Table 1.2: Overview of consolidation mechanisms and associated neural regions

Mechanism Description Neural Correlates

Online Consolidation occurring during active
practice; improvements emerge
during repetition.

Motor cortex (M1), Striatum (Dayan
and Cohen, 2011)

Micro-offline Rapid consolidation during short rest
periods between practice bouts, even
within a single session.

Supplementary Motor Area (SMA),
Striatum (Bonstrup et al., 2019)

Sleep-dependent Consolidation across longer
timescales (e.g., overnight), with
delayed performance gains.

Hippocampus, M1 (Walker and
Stickgold, 2003, 2005)
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1.4.4 How We Move On: Motor learning to motor control

Consolidation over online, offline, and sleep-dependent phases stabilises motor se-

quences and refines performance in unique ways. Online consolidation strengthens

initial motor representations, offline consolidation during wakeful rest allows for

rapid enhancements and stabilisation, and overnight sleep facilitates long-term re-

tention and integration of motor sequences into broader motor networks.

While consolidation processes stabilise and enhance motor sequences, effec-

tive execution of these sequences relies on motor control. In the next section,

I explore the relationship between motor control and motor learning, examining

how neural and cognitive mechanisms underlying movement execution interact with

learning processes to produce coordinated and efficient motor behaviours.

1.5 Motor Control, Redundancy and Noise
Motor control involves the cortico-spinal coordination of muscles and joints to exe-

cute actions. A central challenge in motor control is redundancy, where the body’s

numerous degrees of freedom provide myriad ways to perform the same movement

(Bernstein, 1947a; Latash, 2010). For instance, a simple reach can be executed us-

ing many different muscle combinations and joint angles. The brain must select the

most appropriate strategy for a given task from the large number of possibilities at

hand, often gravitating toward stereotypical movement patterns, such as the slight

curvature observed in reaching movements (Morasso, 1981).

A second challenge is motor noise, which refers to variability in the motor

system that increases with the magnitude of movement (Harris and Wolpert, 1998).

This phenomenon, known as signal-dependent noise, arises from fluctuations in

neural signals, muscle recruitment variability, and biomechanical factors. For ex-

ample, when reaching to lift a full cup versus an empty one, the heavier cup requires

more force, which in turn introduces more variability into the movement. The motor

system must compensate for this increased noise to maintain precision, especially

during fast or forceful actions.

Motor sequence learning is a crucial aspect of managing these control chal-
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Shoulder joint

Target position

Elbow joint

Figure 1.1: Redundant joint angle configurations reaching a common target. The same
hand position can be achieved with multiple elbow angles, demonstrating the problem of
redundancy in human motor control.

lenges. When a sequence of actions is required - such as typing a password or play-

ing a melody on a piano - the brain must not only plan each individual action but

also ensure the fluid execution of the entire sequence. Initially, movements within

a sequence are executed slowly and deliberately, requiring attention and conscious

control (Karni et al., 1995; Hikosaka et al., 2002). As practice continues, these

movements become automated and shift from being controlled by higher-level cor-

tical regions to being embedded in subcortical circuits, such as the basal ganglia and

cerebellum (Doyon and Ungerleider, 2002; Karni et al., 1995). To do this, motor

sequence learning must navigate redundancy and noise by forming reliable internal

models of movement dynamics. These models allow the brain to predict the sen-

sory consequences of motor commands and adjust movements accordingly, helping

to overcome temporal delays in sensory feedback (Kawato, 1999).

In short, motor control is not just about selecting and executing individual

actions but also about learning and optimizing sequences of movements. By mas-

tering sequences through practice, the motor system develops internal models that

enable efficient, reliable performance across a range of tasks. This sets the stage for

the more complex challenge of coordinating multiple limbs and effectors, which I

explore in the next section.
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1.6 Multi-Effector Motor Control

Motor control complexity scales as we coordinate multiple effectors, such as biman-

ual tasks or walking and adjusting arm movements simultaneously. Multi-effector

control refers to the coordination of multiple limbs or digits at once, ensuring that

each move effectively to achieve a shared goal. This process requires the integra-

tion of sensory input and motor commands across various regions of the brain, e.g.

the premotor cortex and supplementary motor area plan and initiate movements in

bimanual tasks, while the cerebellum tunes coordination to prevent errors and facil-

itate smooth execution of movements (Koziol et al., 2014).

Understanding how the motor system controls multiple effectors - whether co-

ordinating limbs or muscles across joints - requires sophisticated models that ex-

plain the underlying neural computations. Two major frameworks, optimal control

theory and the internal model framework, have been pivotal in providing theoretical

explanations for how the brain manages the complexities of multi-effector control.

Optimal Control Theory proposes that the brain continuously seeks to minimize a

cost function during movement execution. This cost function encompasses factors

such as effort, noise, and accuracy, balancing them to achieve an efficient and adap-

tive movement outcome (Todorov and Jordan, 2002; Scott, 2004). In multi-effector

tasks, where coordination between limbs is crucial, the motor system must account

for both internal constraints (e.g., muscle strength, limb length, and redundancy

in degrees of freedom) and external environmental perturbations (e.g., gravity or

friction). Rather than aiming for flawless precision, the motor system optimizes

performance by finding the best compromise between competing demands.

For example, consider a person reaching for an object with one hand while

using the other to stabilise themselves. Optimal control theory predicts that the brain

will allocate control resources based on task relevance: the reaching arm, which is

central to the task, receives higher precision and tighter control, while the stabilising

arm may tolerate greater variability. This strategic distribution minimizes overall

effort while ensuring successful task performance (Todorov and Jordan, 2002).
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Extensions of optimal control theory incorporate both feedback and feedfor-

ward mechanisms that govern multi-effector coordination. In feedback control,

sensory signals are used to correct ongoing movements. In feedforward control, the

brain generates predictions about the consequences of motor commands and adjusts

them in advance of sensory feedback. By integrating both mechanisms, the motor

system can anticipate and correct errors dynamically, allowing for smooth coordi-

nation across multiple effectors. This interplay is especially important in complex

tasks such as playing the piano or typing, where multiple limbs or digits must act in

synchrony toward a shared objective (Franklin and Wolpert, 2008).

The Internal Model Framework emphasizes the brain’s ability to predict the out-

comes of its motor commands. According to this framework, the brain builds and

updates internal representations (models) of the body and the external environment

(Kawato, 1999; Wolpert and Flanagan, 2001). Internal models serve two key pur-

poses: forward models predict the sensory consequences of motor actions, and in-

verse models determine the motor commands needed to achieve a desired outcome.

In multi-effector tasks, internal models allow the brain to coordinate move-

ments across different limbs by predicting how changes in one effector will im-

pact the others. For example, when reaching with one hand while balancing on

one leg, the brain uses internal models to predict how shifts in the body’s centre

of mass will affect stability and adjust accordingly (Kawato, 1999; Shadmehr and

Krakauer, 2010). This predictive capability is particularly important in tasks that

involve rapid, synchronized movements, such as playing a musical instrument or

performing a gymnastics routine. Here, the timing and coordination between limbs

must be finely tuned, and the internal models allow the motor system to adjust

movements even before feedback from the limbs is available.

Internal models also contribute to the brain’s ability to adapt to new conditions.

In situations where the dynamics of the environment change - such as when using

tools or performing tasks in altered gravity - the brain can update its internal mod-

els to reflect the new context, ensuring accurate multi-effector coordination. This

adaptability is crucial in real-world scenarios, where changes in the environment
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require rapid recalibration of motor commands.

Internal models provide a theoretical basis for understanding how the brain

manages the complex task of controlling multiple limbs while maintaining skill. By

simplifying control through predictive models and a mechanism that I will explore

in the next section, motor synergies, the motor system is able to achieve smooth,

coordinated movement across different effectors.

1.7 Motor Synergy

What is synergy? Synergy is a term that frequently appears in the field of motor

control, but it often lacks a clear definition. Many papers claim to investigate fea-

tures or mechanisms of synergy without fully explaining what it entails. In some

instances, synergy is loosely described as “coordinated action,” though coordination

itself is rarely defined. At other times, synergy is operationally defined as variables

that “change together,” where this co-variation can range from simple linear scaling

to more complex indices of coherence. The concept has been discussed at length in

various papers, chapters, and books (Bernstein, 1947b; Latash et al., 2007; Turvey,

2007; Latash, 2008a, 2020; Tresch and Jarc, 2009; Bruton and O’Dwyer, 2018).

Despite these discussions, consensus on its meaning remains elusive.

Synergy has been a foundational concept in studies of biological action for

centuries. Notably, St. Gregory Palama, an Orthodox Christian theologian from the

13th and 14th centuries, used the term to describe the cooperative action of God and

Man in human salvation (Palamas, 1983, 1988; Meyendorff, 1974). He described

a negative co-variation between the efforts of God and Man, a concept surprisingly

close to modern interpretations of synergy in motor control.

By the 19th century, terms like synergy, asynergia, and dyssynergia were used

in clinical neurology to describe coordination impairments in patients with neuro-

logical disorders (Hughlings Jackson, 1889; Babinski, 1899). For example, Babin-

ski associated synergies with normal cerebellar function, an insight supported by

relatively modern research (Thach et al., 1992; Welsh and Llinas, 1997; Ting and

McKay, 2008). However, during the mid-20th century, the meaning of synergy in
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clinical contexts shifted to describe poor coordination patterns, particularly those

seen in stroke patients (Bobath, 1978; Dewald et al., 1995). These “pathological

synergies” included flexion and extension synergies that were seen as impediments

to functional movement, leading to a use of the term as a negative.

Nikolai Bernstein laid the groundwork to understand synergy in the context of

motor control, describing it within a multi-level hierarchical framework. He asso-

ciated synergies with the organization of muscles and the maintenance of dynamic

stability during movement. His insights into the “Level of Synergies” highlighted

how the central nervous system copes with the inherent unpredictability of both

internal and external forces acting on the body (Bernstein, 1947b, 1967).

Supplementary
Motor Area (SMA)

Primary Motor
Cortex (M1)

Spinal Cord (Synergy
Implementation)

Muscle Groups

Proprioceptive,
visual feedback:
muscle spindles,
joint receptors

Figure 1.2: Model of synergy pathways from cortex to muscle, with feedback.

An alternative perspective, deeply rooted in engineering and control theory,

posits that the brain generates “internal models” to plan, predict, and execute motor

commands at the level of muscles and joints (Wolpert et al., 1995; Kawato, 1999;

Shadmehr and Wise, 2005). Although Bernstein’s approach and control theory are

based on fundamentally different assumptions, they both contribute valuable in-

sights into the mechanisms underlying motor control. In this thesis, motor control
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is examined as a critical aspect of motor sequence learning, with motor synergy po-

sitioned as a specialized control mechanism that enhances motor skill performance.

Specifically, synergy is conceptualized here as the coordination and co-variation of

multiple kinematic features across the hand during skilled movement. This defini-

tion reflects the dynamic interactions that explain gains in motor performance and

invites further comparison with broader theories of motor control, including optimal

control and internal models.

An important distinction in the literature is between synergy as a descriptive

construct and synergy as an explanatory control mechanism (Tresch et al., 1999).

In the descriptive sense, synergies are observed as systematic co-variation between

effectors - such as fingers or limbs - across repeated movements. This co-variation

may arise passively from biomechanical constraints or statistical regularities with-

out implying active neural coordination. In contrast, the explanatory view posits

that synergies reflect centralized neural strategies, wherein the motor system ac-

tively groups effectors into functional units to reduce computational complexity.

This thesis adopts the latter perspective, treating motor synergy as a purposeful

control structure that enhances performance in skilled motor sequences.

This explanatory perspective aligns with, but also challenges, aspects of op-

timal control theory and internal model frameworks. While optimal control the-

ory explains motor behaviour as the outcome of minimizing task-relevant costs

(e.g., effort, noise, inaccuracy), it typically assumes flexible, continuous control

over individual effectors. In contrast, a synergy-based model may impose modu-

lar constraints on effector coordination, potentially limiting flexibility in favour of

stability and efficiency. Whether synergies emerge from optimal control principles

or represent a distinct layer of motor organization remains debated. Nonetheless,

both frameworks converge on the idea that the brain achieves coordinated behaviour

through economical, adaptive strategies, especially in multi-effector tasks.

1.7.1 Synergy Expression

Synergies are expressed across various domains - kinematic, muscular, cognitive,

and neurological - offering a rich framework for understanding how humans pro-
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duce coordinated movements. The observation of synergies across these dimensions

dates back to early explorations in motor control, where researchers began to recog-

nize that movement is not the result of isolated muscle activity but rather the product

of organized patterns across muscle groups, joints, and neural networks.

Historically, synergies were first studied in kinematic terms, focusing on how

the body achieves fluid, coordinated movement across joints and limbs. As technol-

ogy advanced, muscle activity was increasingly understood through electromyogra-

phy (EMG), allowing for direct observation of how different muscle groups are ac-

tivated in concert during complex actions. These muscular synergies revealed that

groups of muscles are recruited together as functional units, providing efficiency

and stability in movement.

Simultaneously, studies of the brain’s role in motor control have revealed that

synergies are not merely a byproduct of physical constraints but are actively orches-

trated by the CNS. Neurological research has shown that synergies are encoded in

the motor cortex and other regions of the brain, where preconfigured patterns allow

for rapid and flexible motor responses. Cognitive research, too, has added to this

understanding, highlighting how synergies are involved not just in motor execution

but also in planning, decision-making, and even skill acquisition, reinforcing the

multidimensional nature of synergy expression. I will touch on each of these modes

of expression in the sections below.

Kinematic indicators of synergy involve the spatial and temporal coordination of

movement patterns and reveal how different segments of the body move in unison

to accomplish a specific task. Kinematics refers to the study of motion without

considering forces, focusing on aspects like velocities and trajectories.

A classic example of kinematic synergy can be seen in reaching movements.

When a person reaches for an object, the shoulder, elbow, and wrist move in a co-

ordinated fashion, minimizing the degrees of freedom and simplifying the control

problem. Studies have shown that even in multi-joint movements, individuals tend

to use highly stereotyped movement trajectories that reflect underlying motor syn-

ergies (Morasso, 1981; Bernstein, 1967). Additionally, in locomotion, kinematic
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synergies are observed in the coordination of limbs to maintain balance and stabil-

ity during gait, with the legs and arms moving in a synchronized fashion to optimize

energy expenditure (Winter, 1990).

Kinematic synergies are also apparent in skilled tasks, such as playing a musi-

cal instrument or typing. In such tasks, finger movements are often coordinated to

form a sequence of actions that minimize errors and increase speed (Latash, 2008a).

The ability to optimise joint angles and trajectories while maintaining task accuracy

is a hallmark of kinematic synergy expression, highlighting the motor system’s ca-

pacity to streamline control across multiple degrees of freedom.

Muscular indicators of motor synergy refer to the coordinated activation of multi-

ple muscles to produce effective movement. Instead of controlling each muscle in-

dividually, the CNS groups muscles into synergies, allowing more straightforward

and robust movement execution. These synergies are often flexible, meaning that

the same group of muscles can be used to produce different movements depending

on the task demands.

Electromyography (EMG) studies provide insight into how muscle synergies

are expressed. EMG recordings show that certain muscle groups are activated to-

gether in a highly correlated manner during specific movements. For instance, in

locomotion, the muscles of the lower limbs exhibit coordinated patterns of activa-

tion to produce smooth and rhythmic walking motions (Overduin et al., 2008, 2012;

Bizzi et al., 2008). Even in tasks that require fine motor control, such as grasping,

muscle synergies can be observed, with specific hand muscles activating together to

stabilise and manipulate the object (Delis et al., 2018).

Cognitive and neurological indicators of motor synergy involve physiological

markers of higher-order motor planning and decision-making in generating coor-

dinated movements. The planning of actions, particularly those involving multi-

effector control, relies heavily on working memory, attention, and decision-making

processes. For instance, studies have shown that the ability to recall sequences and

apply them in a motor context is highly dependent on cognitive load and the in-

volvement of prefrontal cortical areas (Yokoyama et al., 2019). These areas of the
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brain contribute to the selection and organisation of motor synergies, ensuring that

groups of muscles are activated in an efficient and task-relevant manner. More-

over, as movements become more automatic with practice, the cognitive load de-

creases, reflecting the shift from active decision-making to more ingrained, habitual

responses. This cognitive shift is associated with a reduction in the involvement of

prefrontal regions, as control over movements transitions to subcortical structures,

such as the basal ganglia which are theorised to be involved in the selection and

initiation of motor synergies, especially in the context of sequential tasks (Graybiel,

2008; Shadmehr and Krakauer, 2010).

Further, the cerebellum contributes to the fine-tuning of motor synergies, en-

suring that movements are smooth and well-coordinated. It does so by constantly

integrating sensory feedback and adjusting ongoing movements to correct for errors

(Manto et al., 2012). The cerebellum is especially important for timing and coor-

dination in tasks that require precise synchronization of multiple limbs or muscle

groups. Disruptions in cerebellar function often lead to a breakdown in motor syn-

ergies, resulting in uncoordinated or jerky movements, as seen in disorders such as

ataxia (Wolpert and Flanagan, 2001).

The premotor cortex (PMC) and supplementary motor area (SMA) are also

heavily involved in the planning and execution of synergies. The PMC integrates

sensory and motor information to organize movements across multiple effectors,

while the SMA is particularly important for coordinating internally generated se-

quences of actions, such as those required for typing or playing an instrument

(Hikosaka et al., 2002; Doyon and Ungerleider, 2002). The interaction between

these cortical regions and subcortical structures allows the motor system to dynam-

ically adjust synergies based on both internal goals and external feedback.

1.7.2 Synergy Quantification

To comprehensively appreciate the expression of synergies, it is crucial to quantify

them accurately across various domains. Quantifying synergies offers insights into

the underlying physiological and mechanical strategies that govern coordinated mo-

tor behaviours. Several advanced techniques have been developed to achieve this,
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ranging from mathematical factorization methods to models rooted in non-linear

dynamics and dimensionality reduction. This section delves into these methods

– Non-negative Matrix Factorization (NNMF), the Uncontrolled Manifold (UCM)

hypothesis, and non-linear dimensionality reduction techniques – all of which have

become critical for understanding the structure of motor synergies.

Principal Component Analysis (PCA) is a widely-used method in detecting and

analysing motor and muscle synergies, especially when processing large datasets

from electromyography (EMG) recordings. PCA identifies the principal compo-

nents, or key modes of variance, within a dataset, enabling researchers to reduce the

dimensionality of EMG data without losing significant information. This reduction

is particularly beneficial in motor control studies, where multiple muscles contribute

to complex motor tasks. By using PCA, muscle synergies can be extracted as linear

combinations of muscles contributing to the same motor function, allowing an un-

derstanding of how muscle groups are activated together during movement (Cheung

et al., 2005; Castellini and van der Smagt, 2013).

PCA is particularly valuable in synergy analysis because it identifies patterns of

co-activation across muscles, which can be interpreted as muscle synergies. These

synergies are defined as the coordinated activation of muscles to achieve a specific

motor goal. PCA elucidates these patterns by reducing the complexity of EMG

signals into a set of orthogonal components. In studies of locomotion or grasping,

for example, PCA has revealed that a small number of synergies can account for

most of the variance in muscle activity, suggesting that the nervous system simpli-

fies control by activating muscles in groups rather than individually (Cheung et al.,

2005; Castellini and van der Smagt, 2013). Such findings indicate that PCA is cru-

cial for isolating key muscle patterns that contribute to effective motor control in

both simple and complex tasks.

PCA’s ability to represent the majority of a dataset’s variance in a reduced

number of components is highly advantageous in motor control research. It allows

researchers to focus on the critical aspects of motor behaviour. For instance, when

analysing gait or postural adjustments, PCA can distinguish between healthy and
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pathological movement patterns and identify the primary muscles responsible for

maintaining balance or producing movement (Berman et al., 2014; Cappellini et al.,

2010). Moreover, by extracting synergies through PCA, researchers can compare

patterns across different conditions or patient groups, providing insights into the

neurological basis of movement disorders.

Despite the many advantages of PCA in detecting synergy, it has several short-

comings. One of the primary limitations is that PCA assumes linear relationships in

the data, meaning it may fail to capture more complex, non-linear synergies that are

present in real-world motor tasks. This linearity assumption can overlook important

interactions between muscles or motor patterns that do not follow straightforward,

linear trends (Sanger, 2000). Additionally, PCA’s sensitivity to noise can be prob-

lematic, especially when applied to biological data like EMG signals, which tend to

have a high degree of variability. Even slight changes in the data can significantly

affect the principal components, making it difficult to distinguish genuine motor

synergies from noise (Bruton and O’Dwyer, 2018). Another shortcoming is PCA’s

dependence on the scale of the data. If the input features are not properly normal-

ized, PCA may assign disproportionate weight to features with larger variances,

leading to misleading results. This is particularly relevant in muscle synergy stud-

ies, where the magnitudes of EMG signals can vary widely across different muscles

(Tresch and Jarc, 2009). Finally, while PCA is effective at reducing dimensionality,

it is not always interpretable. The principal components themselves may not cor-

respond to physically meaningful muscle synergies, making it challenging to draw

direct conclusions about motor control from the results. In cases where more inter-

pretability is needed, alternative methods such as non-negative matrix factorization

might be preferred over PCA (Lee and Seung, 1999).

Non-negative Matrix Factorization (NNMF) is a commonly used method in the

analysis of muscle activity during motor tasks, particularly through EMG data.

NNMF is a powerful factorization technique that decomposes complex multivariate

data into lower-dimensional components, which in the context of motor control, can

represent underlying muscle synergies. By applying NNMF to EMG recordings, it
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is possible to identify the basic building blocks of muscle coordination - synergies -

without making a priori assumptions about the data structure (Lee and Seung, 1999;

Tresch et al., 1999).

In motor control research, NNMF extracts spatial and temporal patterns of

muscle activations that contribute to a specific motor behaviour. For instance, dur-

ing walking or reaching movements, the technique can break down the complex

EMG data into several non-negative components, each corresponding to a distinct

muscle synergy (Tresch et al., 2006; Mussa-Ivaldi, 1999). These synergies, once

identified, offer a parsimonious explanation of how groups of muscles are activated

together to produce smooth, coordinated movements. NNMF’s ability to uncover

these functional muscle groups has been instrumental in revealing invariant patterns

of muscle activity across different motor tasks, which can help understand the mod-

ularity of the motor system and how it flexibly adapts to changing task demands

(d’Avella et al., 2006; McGowan et al., 2010).

While NNMF is widely appreciated for its interpretability and its biologically

plausible constraints (i.e., non-negativity), the challenge remains in its sensitivity to

noise and the choice of the number of synergies to retain in a given dataset. This

limitation requires careful consideration in practical applications, often demanding

cross-validation methods to ensure the robustness of the extracted synergies.

Uncontrolled Manifold (UCM) hypothesis alternatively focuses on the variability

in movement performance itself. UCM assumes that the nervous system organizes

motor control in such a way that variability in motor outputs is structured: vari-

ability that affects task performance is minimized, while variability in dimensions

irrelevant to task performance is allowed (Scholz and Schöner, 1999; Latash et al.,

2007). Essentially, the UCM framework posits that the nervous system does not

control each degree of freedom independently, but rather it controls them in func-

tional groups, allowing for variability that does not affect task success.

Quantifying synergies under the UCM hypothesis involves examining the vari-

ability of joint or muscle activation patterns across repeated trials of a motor task.

The method computes the variability in the “task space,” partitioning it into com-
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ponents that do (or do not) affect task performance (Latash, 2010). This allows

researchers to assess how motor synergies function in maintaining task-relevant

features of movement while allowing flexibility in other motor dimensions. For

example, in reaching tasks, the UCM hypothesis has been used to show that joint-

level variability is higher in directions that do not interfere with task success (e.g.,

reaching the target), supporting the idea that the CNS organizes synergies to mini-

mize task-relevant variability (Reisman and Scholz, 2003; Danion et al., 2000).

The strength of the UCM framework lies in its ability to assess motor redun-

dancy not as a limitation but as a feature of efficient motor control, whereby the

system organizes itself to exploit variability that does not impact goal achievement.

However, one challenge in UCM analysis is its reliance on accurate kinematic and

dynamic models of movement to estimate the degrees of freedom involved in a task.

Table 1.3: Comparison of PCA, NNMF, and UCM for Synergy Quantification

Method Core Principle Advantages Limitations

PCA Identifies orthogonal
components that explain
maximal variance in EMG
or kinematic data.

Data reduction; captures
common co-activation
patterns; widely used and
well understood.

Assumes linearity;
sensitive to noise and
scale; components may
lack interpretability.

NNMF Factorizes data into
non-negative, additive
components that reflect
muscle synergies.

Intuitive interpretation of
synergies; biologically
plausible; flexible for
different motor tasks.

Sensitive to noise;
component number must
be chosen carefully; results
can vary with initialization.

UCM Decomposes variability
into task-relevant and
task-irrelevant subspaces
to study control structure.

Directly relates to motor
performance; captures
structured variability and
redundancy.

Requires accurate models
of task kinematics; not
designed for pattern
extraction or factorization.

Non-linear dimensionality reduction techniques are increasingly being applied to

study motor synergies, offering a sophisticated method to capture the structure of

complex, high-dimensional motor data. Traditional linear methods, such as PCA,

often fail to capture the true nature of non-linear relationships within motor data,

particularly when examining synergies across different effectors or tasks. Non-

linear methods, including techniques like t-SNE (t-distributed stochastic neighbour

embedding) and UMAP (Uniform Manifold Approximation and Projection), are ef-
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fective in overcoming this limitation by providing a low-dimensional representation

of high-dimensional movement data, while preserving its intrinsic structure (van der

Maaten and Hinton, 2008; McInnes et al., 2018).

These techniques are particularly useful in exploring how synergies evolve

over time or change across different contexts. By applying non-linear dimensional-

ity reduction to multi-effector tasks, researchers can visualise how the motor system

organizes synergies dynamically in complex tasks such as bi-manual movements,

tool use, or gait (Weaver et al., 2024). These methods also allow for the identifi-

cation of task-specific synergy patterns that may not be evident using linear tech-

niques, offering insight into the modularity of the motor system.

In this thesis, I apply non-linear dimensionality reduction to understand how

synergies restructure in response to motor learning. For example, as individuals

practice a new motor task, their synergies may initially be transient or inconsistent,

but over time, these patterns become more structured and persistent. Non-linear di-

mensionality reduction helps capture these transitions (Valero-Cuevas, 2019), pro-

viding a visual and quantitative measure of how motor synergies are refined with

practice. The use of these techniques has broadened the scope of synergy quantifi-

cation, enabling the exploration of complex behaviours that would be difficult to

capture using more traditional approaches.

1.8 On the Transfer of Motor Synergy Between Skills

The transfer of motor synergies between tasks is an emerging aspect of motor con-

trol and learning research. While the broader field of motor learning transfer has

been explored in depth, the specific transfer of synergies from one motor skill to an-

other - particularly when tasks are similar but not identical - remains understudied.

However, there are several relevant strands of research that highlight the potential

mechanisms and contexts in which synergy transfer may occur.

One area of research is the generalisation of motor learning and synergy for-

mation. Generalisation allows motor skills learned in one context to extend to other

tasks with similar motor or environmental demands. Although much of the research
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in this area has focused on task-level learning, motor synergies, as functional units

of motor coordination, may be the underlying mechanism that enables transfer be-

tween related skills (Newell, 1991; Sarwary et al., 2015; Schoenfeld et al., 2024).

For example, research into motor adaptation suggests that individuals can reuse

learned patterns of muscle activation in new tasks with modified demands, poten-

tially transferring synergies as needed (Berniker and Kording, 2008).

Multi-joint movements provide an interesting view into synergy transfer. Tasks

such as rowing or swimming, which rely heavily on multi-joint coordination, have

shown that synergies developed in one task can be applied to another with similar

bio-mechanical demands (Turvey, 1990; Latash, 2008b). This phenomenon has

been observed in athletes who transition between related sports, where they can

leverage synergies developed for one set of movements to perform in a new context.

As individuals acquire and refine motor skills, the synergies that guide move-

ment become more specialized. Some evidence from motor sequence learning sug-

gests that synergies developed in the early stages of skill acquisition can be applied

to more complex sequences, allowing for faster learning and better performance

in subsequent tasks (Diedrichsen et al., 2019; Latash, 2008b). This is particularly

evident in tasks involving serial elements, such as playing a musical instrument or

typing, where synergies established during simpler tasks can scaffold learning in

more complex contexts (Verwey et al., 2015; Krakauer and Mazzoni, 2011).

Motor synergies also play an essential role in rehabilitation, particularly for pa-

tients recovering from motor impairments such as stroke. In these cases, therapists

aim to retrain synergies that can generalise to everyday tasks, allowing patients to

regain functional motor abilities. Synergy transfer in this context is critical for the

development of adaptive motor patterns that are robust across different activities of

daily living (Kleim, 2011; Hong et al., 2021; Zhao et al., 2023).

Research has also shown the flexibility of motor synergies and their adaptabil-

ity across different tasks in healthy participants. This flexibility is particularly im-

portant in sports and musical performance, where high levels of motor coordination

are required, and the transfer of motor synergies can significantly impact perfor-
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mance (Latash, 2008b; Bernstein, 1967). Understanding how these synergies can

be reused or adjusted across tasks provides important insights into skill transference

and motor learning.

Despite a growing body of research, studies have only indirectly addressed the

transfer of motor synergies. Current research suggests that synergies serve as an

adaptive framework for motor skill generalisation, enabling the transfer of learned

motor patterns to novel tasks (Kutsuzawa and Hayashibe, 2022; Berg et al., 2023;

Herzog et al., 2024). However, further investigation is required to clarify the be-

havioural and biomechanical mechanisms that govern this transfer.

1.9 Synergy Following a Clinical Event

Movement stability is a common issue in various neurological disorders, most no-

tably in conditions such as ataxia in patients with cerebellar disorders and postural

instability in individuals with Parkinson’s disease (PD). Normal synergic control

involves two critical functions: ensuring the stability of motor actions and reducing

this stability in preparation for rapid movement, a process known as anticipatory

synergy adjustment (ASA). Neurological patients often demonstrate impairments

in both these aspects, manifesting as reduced stability, reflected by a lower synergy

index, and diminished agility, characterized by short or limited ASAs (Latash and

Huang, 2015). Studies of neurological patients, including those with PD, multiple

sclerosis, and multi-system atrophy, have consistently demonstrated impaired sta-

bility (Park et al., 2014; Jo et al., 2016b; Ambike et al., 2021). Research on stroke

survivors has provided evidence of both impaired and unaltered stability during

tasks such as multi-joint reaching and multi-finger force production (Reisman and

Scholz, 2003; Jo et al., 2016a; Tomita et al., 2020). These findings underscore the

critical role of subcortical circuits in maintaining unimpaired synergies.

ASAs are impaired across all major patient groups, including stroke survivors

who display no detectable changes in their synergy index. Reduced ASAs in both

duration and magnitude have been implicated as potential contributors to phenom-

ena like freezing, which is characterized by an inability to initiate movement, such
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as stepping. This is a significant disabling factor commonly observed in patients

with late-stage PD (Falaki et al., 2018, 2023). Research suggests that indices of

synergic control are highly sensitive to early stages of neurological disorders, often

preceding clinical manifestations. For instance, similar changes in synergy indices

and ASAs have been observed in both hands of PD patients at Hoehn and Yahr (HY)

stage-I, even when clinical signs are restricted to one side of the body (Hoehn and

Yahr, 1967). Additionally, multi-muscle synergies that stabilise posture have been

shown to be impaired in patients at HY stage-II, before clinical signs emerge.

The sensitivity of stability control indices to treatment interventions is also

well-documented. For example, both synergy index and ASAs show improvement

in PD patients undergoing dopamine replacement therapy, such as with L-DOPA

(Park et al., 2014; Falaki et al., 2017). Notably, the effects of the first dose of

L-DOPA differ significantly from those seen in patients on chronic L-DOPA treat-

ment, who are tested in “off-drug” and “on-drug” states (De Freitas et al., 2020a,b).

These findings suggest that chronic exposure to L-DOPA alters the neural circuitry’s

sensitivity to drug administration and withdrawal. Deep brain stimulation (DBS) is

another treatment in PD, and its effects on stability and agility have been mixed. For

instance, DBS applied to the subthalamic nucleus or globus pallidus has been shown

to improve ASA indices without significantly affecting stability, which could lead

to increased falls despite improved agility (Falaki et al., 2018). These observations

raise concerns about the widespread use of DBS, especially in cases where agility

improves but stability does not, potentially leading to further instability (Marconi

et al., 2008; Rocchi et al., 2012; Cossu and Pau, 2017; Bjerknes et al., 2021).

Bernstein’s work (Bernstein, 1947a) emphasized the role of subcortical loops,

particularly those involving the basal ganglia and thalamus, in the control of syner-

gies. This has been corroborated by more recent studies exploring the involvement

of cortico-basal-thalamo-cortical and cortico-cerebellar-thalamo-cortical loops in

motor coordination (Thach et al., 1992; Houk et al., 1996). The neurophysiological

mechanisms underlying synergies are likely distributed across the central nervous

system, with significant contributions from spinal circuits. For instance, segmen-
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tal reflexes and the stretch reflex loop are thought to stabilise peripheral movement

components (Latash, 2008a). A recent study examined the synergic control of the

flexor digitorum superficialis during single-finger force production tasks and found

robust force-stabilising synergies, though individual motor unit modes were not sta-

bilised (Madarshahian and Latash, 2021; Aeles et al., 2020). This aligns with work

showing a trade-off of features between synergies at different hierarchical levels

(Gorniak et al., 2007, 2009).

Lastly, it is important to clarify that the research presented in this thesis fo-

cuses exclusively on the development of motor synergy in healthy individuals. In

this context, synergy refers to the acquisition of coordinated motor patterns that are

optimised through practice to benefit the performance of motor sequence learning.

The term “synergy” has a distinct history in the clinical domain, as noted above,

where it often describes compensatory motor patterns that emerge following neuro-

logical insult, such as stroke (Dewald et al., 1995; McPherson and Dewald, 2022).

Clinical synergies, while adaptive in response to injury or dysfunction, frequently

lead to compensatory movements as the motor system adjusts to the loss of healthy

function. This thesis discusses clinical synergy generally in Chapter 6, but never

specifically with experimental data.

1.10 Thesis Overview
This thesis investigates the development of motor synergies in motor sequence

learning, focusing on when synergies emerge and evolve during different learning

phases. It explores the role of online and offline consolidation in synergy formation,

aiming to determine whether synergies are primarily developed over active practice

or rest. Additionally, the thesis examines whether synergies formed over early-stage

learning of simpler tasks flexibly transfer to more complex tasks.

1.10.1 Methods for the Remote Collection of Motor Data

In Chapter 2, I detail the methods and procedures developed specifically for remote

collection of behavioural and motor sequence learning data used in Studies 1 and 2.

These studies required adaptations due to the limitations imposed by the COVID-19
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pandemic, leading to the creation of a novel data collection framework that allowed

participants to perform sequential motor tasks from the safety of their homes. Using

a combination of high-definition, high-frame-rate cameras and online experimental

software, participants were able to practice a 5-element motor sequence (typing

the numbers 4-1-3-2-4 on a standard keyboard) over multiple sessions, while their

performance and learning progress were tracked remotely.

1.10.2 Study 1: A comparison of motor synergy development in

early and late stages in motor sequence learning

In Chapter 3, I investigated the development of motor synergy over learning a 5-

element motor sequence. The study was conducted remotely, with 20 healthy par-

ticipants over two training sessions. The first session occurred on Day 1, and the

second session followed 24 hours later. The primary aim of the study was to ex-

amine the rate at which synergy behaviours developed across the early and the late

stages of learning. Synergy was quantified by examining changes in motor be-

haviour across these trials, particularly as Jensen-Shannon divergence (JSD) mea-

sures between behavioural distributions. I hypothesized that the bulk of synergy

development would occur in the early stage of learning, evidenced by significant

changes in JSD during early stage trials, while minimal changes would occur af-

ter early stage trials. Moreover, I expected skill gains, measured as the number

of correct sequences per second, to correlate with the changes in JSD during early

learning but not during the later stage, suggesting a plateau in both performance and

synergy development.

1.10.3 Study 2: A comparison of motor synergy development in

practice and rest periods in motor sequence learning

In Chapter 4, I present data from 20 healthy participants (also collected remotely)

who learned the same 5-element sequence (4-1-3-2-4) over 36 trials of practice

interleaved with periods of rest. The primary aim was to investigate the influence of

rest periods on the development of motor synergies, specifically whether offline rest

or online practice periods accounted for the majority of synergy development. The
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methods for data collection were identical to Study 1. I hypothesized that synergy

development would occur primarily over rest periods within early stage trials, while

significantly fewer changes would occur over online practice periods. An alternative

hypothesis was that synergies would primarily form during active practice, with rest

contributing to the stabilisation of these patterns rather than further development.

1.10.4 Study 3: A comparison of motor synergy transfer across

skills in three durations of training

In Chapter 5, I investigate whether synergies formed during a simple motor skill

transfer to more complex skills. Sixty healthy participants were divided into six con-

ditions and trained on a 3-element motor sequence (e.g., typing 4-1-3), followed by

a paired 5-element sequence (e.g., typing 2-4-1-3-4), wherein the initial 3-element

sequence was embedded. Participants practised the unique 3-element sequence for

either 3, 7, or 11 trials and then practised the paired sequence for an equal number

of trials. The primary aim was to determine whether synergies developed during

the simpler sequence would transfer to the more complex task. I hypothesized that

transfer of synergy behaviour would occur after 3 trials, but not after 7 or 11 trials.

1.11 Impact of the Coronavirus Pandemic
The COVID-19 pandemic significantly altered the design of my project. Notably,

Chapters 3 and 4 for this thesis were originally designed for a laboratory setting and

in-person data collection. However, as the pandemic progressed and restrictions

were put in place, in-lab research became infeasible. This led to a re-envisioning of

my methods, culminating with a redesign for remote data collection.

With a dedicated support team consisting of Margaret Hayward, Rawan

Fakhreddine, and Giselle Rodriguez, from the National Institutes of Health (NIH),

National Institute of Neurological Disorders and Stroke (NINDS), and the Human

Cortical Physiology Section, we recruited 90 participants who completed the proto-

col from the safety of their homes. The research was facilitated through the use of

high-definition, high frame rate cameras and online experimental software designed

to capture fine motor learning details in a remote setting. Data collection involved
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capturing video and performance metrics from participants performing motor se-

quence skills in a manner that closely replicated the intended in-lab studies.

Despite the successful pivot to remote experimentation, the process of setting

up remote data collection was not without its challenges. Developing and then

awaiting a decision on the novel remote data collection ethics policy took significant

time, and the separation from co-workers slowed the preparation required for remote

study execution. As noted, Studies 1 and 2, corresponding to Chapters 3 and 4

of this thesis, were most affected by the pandemic. In response to these delays,

Chapter 2 of this thesis is dedicated to a comprehensive description of the methods,

technologies, both physical and digital, and the data collection pipelines developed

for Chapters 3 and 4.



Chapter 2

METHODS AND THE USE OF

HIERARCHICAL UNSUPERVISED

CLUSTERING OF MARKERLESS

POSE DATA FOR DISCOVERY OF

MULTI-EFFECTOR SYNERGY

“Measure twice, cut once.”

— John Florio
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This chapter provides a complete guide to the remote data collection methods,

both technologies and procedures, of Studies 1 and 2. Since development of these

methods was extensive, and given that they were the foundation for two studies, an

account of my methodological reasoning is warranted.

Any methodological variations or additions specific to a particular study will

be addressed within the corresponding experimental chapter. For example, Study 3

involved additional equipment and protocols that deviated from the remote frame-

work used in Studies 1 and 2 and as such will be detailed in Chapter 5. Further, the

data analysis pipeline was largely consistent across all studies, but any deviations

specific to any study will be expanded upon in the relevant chapter’s methods.

While the primary aim of this chapter is to detail the preparation and procedu-

ral standardization that enabled reliable remote data collection, the secondary aim

of this chapter is to detail alternative methodologies available in behavioural an-

notation, pose estimation, and physical technologies, offering a comparative look

between the tools and techniques employed for these research studies and those

currently shaping the study of behavioural quantification.

2.1 Advances in Behavioural Quantification

Unsupervised behavioural categorization is a relatively recent development in neu-

roscience, yet there is a rapidly growing array of tools and techniques available for

use. DeepLabCut (Mathis et al., 2018) has become a popular method for defining

the positions of body parts in each frame of a video, facilitating easy limb tracking

over time. While static limb coordinates are not behaviours in themselves, several

tools have been developed to translate these positions into meaningful behavioural

categories. Some of these include Deepbehaviour for automated analysis of be-

havioural kinematics (Arac et al., 2019), VAME for segmenting behaviour using la-

tent space representations and hidden Markov models (Luxem et al., 2020), MoSeq

for mapping sub-second structure in mouse behaviour (Wiltschko et al., 2015), B-

SOID for unsupervised behaviour identification (Hsu and Yttri, 2021), and Motion

Mapper for mapping stereotyped behaviour in fruit flies (Berman et al., 2014). Each
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approach has its own advantages and limitations, which need to be carefully con-

sidered depending on the specific research question and application.

Table 2.1: Comparison of popular unsupervised behavioural analysis tools

Method Animal/Human
Focus

Temporal Scale Strengths Limitations

DeepLabCut Both (Tracking
only)

Frame-by-frame High-accuracy
body part
tracking; flexible

Not behaviour
classification

DeepBehaviour Human-focused Sub-second to
multi-second

Kinematic feature
extraction;
clinical alignment

Requires
supervised labels;
limited in
unsupervised
modes

VAME Animal-focused Sub-second Learns latent
structure; HMM
segmentation

Sensitive to latent
dimensionality
and tuning

MoSeq Mice 100–500 ms
(sub-second)

Robust to noise;
reveals
microstructure of
behaviour

Highly
species-specific;
camera and setup
dependent

B-SOID Animal-focused Millisecond-to-
second

Fast,
interpretable
clusters; minimal
preprocessing

Limited
validation in
human data

Motion Mapper Fruit fly, mouse Sub-second to
second

Frequency
decomposition;
no feature
engineering

Challenging to
scale to high-DoF
human motion

HUB-DT Animal, extended
to human

Trial-level or
continuous

Unsupervised
discovery;
adaptable to
different species

Originally
animal-focused;
requires
parameter tuning

In this context, behaviour is often treated as a broad and nonspecific concept,

with what qualifies as behaviour varying depending on the approach used. This the-

sis advocates for a machine learning-driven method capable of exhaustively char-

acterising human movements across closely related motor skills. By refining how

we define and analyse motor behaviour, we can move beyond subjective classifica-

tions toward more objective, data-driven characterizations that allow for a deeper

understanding of human behaviour.

To that end, I used HUB-DT (Hierarchical Unsupervised Behavioural Discov-
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ery Toolbox) as the primary tool for performing unsupervised behavioural clas-

sification (Lindsay and Seamans, 2024). Originally designed for analysing free-

ranging animal behaviour, HUB-DT’s flexibility made it an ideal choice for cap-

turing and analysing human hand movements during motor sequence learning. Its

capacity for unsupervised discovery enabled the identification of motor synergies at

a trial-by-trial resolution, offering valuable insights into the timescale and evolution

of motor synergy development throughout motor sequence learning.

Despite the rapid advancement of these tools, their adoption in human mo-

tor learning research remains limited. This is due in part to several challenges:

the higher dimensionality and variability of human movements compared to con-

strained laboratory animal behaviour, the lack of annotated datasets for supervised

training, and the difficulty of validating unsupervised outputs against gold-standard

clinical or behavioural metrics. Additionally, some tools - particularly those devel-

oped for animal posture - require retraining or substantial parameter tuning to apply

meaningfully to fine-grained human motor skills.

HUB-DT supports both traditional behavioural annotation and parameter-free

discovery, making it ideal for capturing subtle variations in hand movements. Sim-

ilar to Motion Mapper, it analyses frequency components of movement through

wavelet fitting and applies clustering techniques to classify unique movement pat-

terns. This enabled us to label distinct behaviours during skill acquisition and com-

pare them with manually annotated data, providing a comprehensive understanding

of motor synergy emergence and development.

2.2 Behavioural Annotation Software

In the field of behavioural annotation, there are numerous tools, each designed for

specific use cases. As noted, HUB-DT was chosen as the primary tool for the pur-

poses of this thesis due to its flexibility in capturing fine-grained motor behaviours

during motor sequence learning, as well as its capacity for unsupervised behavioural

classification. However, it is important to acknowledge that HUB-DT represents

one approach within a diverse landscape of tools. Below is a detailed examination
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of several prominent alternatives, each with distinct methodologies, strengths, and

limitations. By understanding the range of available tools, I highlight the rationale

behind my choice to use HUB-DT and explore how other methods could potentially

serve researchers with different data or experimental designs.

Table 2.2: Comparison of behavioural annotation tools by relevance to thesis

Tool Unsupervised Variable
Behaviour

Low Compute Fine-Grained
Motion

Human-
Adaptable

DEEPbehaviour Optional ✓ ✗ ✓ ✓

Motion Mapper ✓ ✗ (periodic focus) ✓ ✗ ✗

VAME ✓ ✓ ✗ ✓ ✗

B-SOID ✓ ✗ (short bouts) ✓ ✓ (frame wise) Partial

MoSeq ✓ ✓ ✗ ✓ (3D) ✗

HUB-DT ✓ ✓ ✓ ✓ ✓

Ease of use is a major consideration in the adoption of behavioural annota-

tion tools, especially in human motor learning, where experimental pipelines often

span modalities. Many tools were developed for high-frame-rate, low-dimensional

animal behaviour and require technical adaptation for human data. Additionally,

several tools demand high-end GPU compute and extensive tuning, limiting their

accessibility for labs without deep ML expertise. These practical barriers contribute

to their underutilization in human research, despite their analytical potential.

DEEPbehaviour (Arac et al., 2019) is an early machine learning-based pipeline

for end-to-end kinematic analysis. Using a multi-camera setup, it tracks body parts

without markers by leveraging convolutional neural networks and long-short-term

memory (LSTM) recurrent neural networks. These networks generate bounding

boxes for limbs or digits, transforming the data into trajectories. A key aspect

of DEEPbehaviour is its flexibility in clustering behaviour, with options for both

supervised and unsupervised learning. The dynamic time alignment kernel tech-

nique allows for flexible clustering of behavioural trajectories. However, the tool’s

complexity lies in its computational requirements. Significant time and resources

are required for neural network training, and the clustering and classification algo-

rithms need fine-tuning for each experiment. This makes DEEPbehaviour powerful

yet highly demanding in customized experimental setups.
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Motion Mapper (Berman et al., 2014) focuses on identifying stereotyped be-

haviours using spectrographic projection. The tool was originally designed for

fruit flies and uses multiple camera views to extract posture data, which is trans-

formed into high-dimensional behavioural space using frequency analysis and Mor-

let wavelets. Dimensionality of the space is then reduced using t-distributed

Stochastic Neighbour Embedding (t-SNE). The final step uses the watershed trans-

form to cluster behaviours. Motion Mapper excels at capturing periodic behaviours,

which are stereotypical and often frequency-locked. However, this reliance on peri-

odicity can be problematic for non-stereotyped or highly variable behaviours, such

as those observed in rodents. Additionally, the method’s non-parametric clustering

is sensitive to poorly separated density spaces, which can limit its effectiveness in

less constrained environments.

VAME (Luxem et al., 2020) uses variational autoencoders (VAEs) to produce a

latent behavioural space. The architecture is built on recurrent neural networks that

take fixed-length sequences of positional data as input, whether from video annota-

tions or marker-based tracking. The autoencoders compress this data into a lower-

dimensional representation, generating a behavioural latent space. Hidden Markov

Models (HMMs) are then used to classify behaviours, treating the behavioural space

as a dynamical system with discrete states. VAME is particularly useful for detect-

ing short, repeated motifs in locomotion or grooming, making it ideal for open-field

experiments. However, the tool requires considerable computational power due to

the complexity of training both neural networks and HMMs. Its reliance on fixed-

length sequences can introduce bias towards short behaviours, and interpreting the

results can be challenging due to the purely probabilistic nature of the HMMs.

B-SOID (Hsu and Yttri, 2021) is an unsupervised tool designed for rodents in

open-field experiments. It uses frame-difference measures to track derivatives of

position, angle, and relative pose, which are then reduced to two dimensions using

Uniform Manifold Approximation and Projection (UMAP) for clustering. The core

of B-SOID’s clustering method is HDBSCAN, a hierarchical density-based cluster-

ing algorithm that identifies clusters in the reduced space as potential behaviours.
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B-SOID is well-suited for experiments with repeated behaviours, as it is optimized

for high framerates and repeated short-sequence data. However, this specialization

limits its effectiveness with smaller, more diverse datasets where local behavioural

structures are critical. Adjustments may also be necessary to optimise performance

at lower framerates, as noise or slow video capture can reduce accuracy.

MoSeq (Wiltschko et al., 2015) is unique among the tools discussed because it

uses 3-D depth imaging to track behaviour without the need for multiple cameras.

MoSeq segments behaviour into sub-second motifs, or behavioural “syllables,” us-

ing autoregressive Hidden Markov Models (AR-HMMs). Like Motion Mapper,

MoSeq uses wavelet transformations to quantize behaviours, but it adds the AR-

HMM to focus on transitions between behaviours. This probabilistic approach is

effective for identifying short, transient actions, providing an additional layer of

analysis on behavioural transitions. However, working with 3-D depth data requires

careful setup of the experimental environment, particularly if electrophysiology is

also being recorded. Additionally, MoSeq’s computational complexity and param-

eter dependency may require substantial adaptation for non-standard use cases, and

its focus on transitions means that the definition of behaviours is somewhat depen-

dent on the AR-HMM model rather than the structure of the behaviour itself.

Each of these tools has distinct advantages and challenges, and their effective-

ness depends on the specific research question, data characteristics, technological

constraints, and experimental design. While DEEPbehaviour and VAME offer flex-

ibility with machine learning-based models, they demand significant computational

resources and fine-tuning, which may not be feasible in all settings. Motion Mapper

and MoSeq provide robust methods for capturing stereotypical, periodic behaviours

but may struggle with more variable or complex actions. B-SOID stands out for

its simplicity and effectiveness in experiments with repeated behaviours but may

require modifications for diverse datasets.

Ultimately, the choice of behavioural annotation software must be tailored to

the requirements of the research. Factors such as the behaviours studied, the avail-

able computational resources, and the specific objectives of the experiment are con-
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siderations for the most appropriate tool. In this case, HUB-DT was selected for

its ability to capture fine-grained motor behaviours during motor sequence learning

and its capacity for unsupervised behavioural classification (Lindsay and Seamans,

2024). The next critical consideration in behavioural analysis is selecting appropri-

ate pose estimation software. In the next section, I describe the rationale for my

choice of pose estimation software and explore alternative tools.

2.3 Pose Estimation Software

Central to this thesis was the need to select pose estimation software capable of cap-

turing detailed human movement across diverse contexts. After evaluating various

computer vision tools, DeepLabCut was the optimal choice due to its accuracy in

tracking complex motor behaviours. This section introduces DeepLabCut and then

reviews several prominent alternatives, highlighting their methodologies, strengths,

and potential applications. Specifically how DeepLabcut was employed in my stud-

ies is covered in section 2.5.1, Markerless pose estimation with DeepLabCut.

DeepLabCut (Mathis et al., 2018) is a widely-used tool for markerless pose

estimation that applies deep learning to track animal movements. Using a convolu-

tional neural network (CNN), DeepLabCut identifies body parts in videos without

the need for physical markers. It was originally designed for lab animals like mice

but has since been expanded to other species and even human pose tracking. Its

flexibility, combined with the ease of use, makes it a popular choice in behavioural

neuroscience and biomechanics. However, like many deep learning tools, its ac-

curacy depends on careful manual labeling during the training phase, and it may

require significant computational resources for large-scale datasets.

OpenPose (Cao et al., 2021) is known for its ability to track multiple individ-

uals in real time. This open-source framework uses a bottom-up approach, first

detecting body parts and then associating them with individuals. OpenPose can es-

timate poses for entire bodies, including hands and faces, in both 2-D and 3-D. Its

strength lies in its real-time performance, which makes it ideal for applications in

sports analysis, video games, and virtual reality. However, OpenPose is relatively
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resource-intensive, especially when tracking multiple subjects in high-resolution

video, and may require powerful GPUs for optimal performance.

AlphaPose (Fang et al., 2022) is designed to handle real-time multi-person

pose tracking. AlphaPose stands out for its high accuracy and ability to address

occlusion challenges, where body parts are obscured in video frames. By using a

more refined part detection network and an advanced pose recovery system, Alpha-

Pose achieves high performance in detecting body poses, even in crowded scenes.

While extremely accurate, AlphaPose is computationally demanding, particularly

in real-time applications, but it has been successfully applied in diverse fields like

action recognition, behavioural tracking, and human-computer interaction.

PoseNet (Kendall et al., 2015) is a deep learning-based pose estimation al-

gorithm that estimates camera poses in real-time. It was originally designed for

mobile device applications, using a lightweight architecture that enables pose esti-

mation without requiring large computational resources. PoseNet performs well for

tasks such as augmented reality (AR) and robotics, where understanding the spa-

tial relationship between a camera and the world is critical. Despite its efficiency,

PoseNet is limited to estimating 2-D pose and lacks the advanced features found in

more sophisticated pose estimation systems.

HRNet (Cheng et al., 2020) is designed to maintain high-resolution represen-

tations of inputs throughout its pipeline. Unlike previous methods that downsample

input images for efficiency, HRNet keeps high-resolution inputs to preserve spatial

details. This results in significantly higher accuracy in pose estimation, particularly

in challenging scenarios like complex backgrounds and crowded scenes. HRNet’s

architecture is highly flexible and can be extended to tasks like object detection and

semantic segmentation. Its main drawback is the computational demand, particu-

larly during training, as it requires large amounts of memory and processing power.

ArtTrack (Insafutdinov et al., 2017) is designed for multi-person pose estima-

tion in complex environments. Unlike other methods, ArtTrack focuses on both

pose estimation and tracking across frames, making it particularly useful for main-

taining identity over time. ArtTrack combines both CNNs and graphical models to
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enhance tracking accuracy. However, its complex architecture can make it challeng-

ing to implement in real-time without significant computational resources.

DensePose (Güler et al., 2018) extends keypoint detection with dense surface

mapping for human body pose estimation. Using a fully convolutional network,

DensePose maps every pixel of a detected person to a 3-D surface model of the

body, providing a highly detailed and continuous understanding of human pose.

DensePose is particularly useful in computer graphics, virtual reality, and human

motion analysis. DensePose is computationally demanding, however, and requires

sophisticated data collection and processing tools.

Table 2.3: Comparison of pose estimation tools by key functional criteria

Feature DeepLabCut OpenPose AlphaPose PoseNet HRNet ArtTrack DensePose

Species Animal, Human Human Human Human Human Human Human

Real-time ✗ ✓ ✓ ✓ ✗ ● (limited) ✗

Multi-
subject

✗ ✓ ✓ ✗ ✗ ✓ ✓

3D pose ● (3D possible) ✓ ✓ ✗ ✓ (high-res 2D) ✓ ✓ (dense 3D)

Compute
demand

Moderate High High Low Very High High Very High

Each of these tools offers distinct advantages depending on the research aims

and experimental requirements. Tools like DeepLabCut and AlphaPose are better

suited for highly accurate, animal-specific pose tracking, while tools like OpenPose

and DensePose enable real-time, multi-subject tracking in human-centric applica-

tions. The trade-offs between computational demand, ease of use, and accuracy

make choosing the right pose estimation tool a matter of balancing these factors

with the needs of the research.

2.4 Methods for the Remote Collection of Pose Data
Having selected the technologies best suited for my project, I next adapted these

tools for remote data collection - a necessity brought about by the COVID-19 pan-

demic. Traditionally, motor learning experiments are conducted in person using

specialized equipment, such as digital tablets, robotic devices, and VR displays,

to capture high-resolution temporal and spatial data. However, the pandemic dis-
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rupted any capacity for in-person research, introducing new logistical challenges.

In this section, I detail my method for the capture of remote, online behavioural

data, collected from participant homes amidst lockdown orders.

Remote, online experiments have long been used in the social sciences to

gather behavioural data. Platforms like Amazon Mechanical Turk enable re-

searchers to recruit large, diverse participant pools, run pilot studies quickly, and

collect data using a range of experimental designs. Compared to in-lab studies,

these online methods offer a more representative sample of the general population

and can even include individuals with mobility impairments who may otherwise

be unable or unwilling to visit a research lab. While the use of online platforms

is well-established in many areas of research, there has been limited application in

sensorimotor learning studies.

Despite this limitation, existing research suggests that data collected through

online studies are often comparable to those obtained in-person. However, prior

work in motor learning at home has focused on more naturalistic or ecological se-

tups, limiting the generalisability of findings. To address this, a hybrid platform was

developed for the studies in this thesis, integrating the advantages of online research

with controlled, lab-based elements. This approach enabled real-time observation

and the use of standardised input devices to ensure consistent data collection. In

this section, I exhaustively detail my approach, or manual of operating procedure

(MOP), for Studies 1 and 2, which is then followed by the data processing pipeline,

which, among other components, details my uses of DeepLabCut and HUB-DT.

Pre-Screening

To begin, all potential participants were pre-screened over the phone according to

protocol. The responsible investigator entered the responses to the screening ques-

tions in the online regulatory binder. Participants were asked questions regarding

the inclusion criteria for Studies 1 and 2: if they spoke English, were right-handed,

had internet access and a USB port, and if they could type with their left hand with-

out pain. Additionally, eligible participants were required to be between 18 and

90 years old, live in the United States, and not be staff members of the National

https://www.mturk.com/
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Institutes of Health. If these questions were answered in the positive, the potential

participant was deemed eligible and enrolled in the protocol.

Enrollment and Study Preparation

Eligible participants received an email with a link to an “Acknowledgement of Par-

ticipation” agreement (an NIH-approved, low-risk, remote equivalent of a consent

form). Once completed, the participant was assigned a unique subject ID code. The

participant was then asked if they were able and willing to participate in a second

day of the study for additional compensation.

Upon receiving the participant’s name and address, home address labels were

generated for shipping and return for study materials. The investigator prepared and

shipped the materials, updating the tracking spreadsheet accordingly. A confirma-

tion email was sent to the participant with the shipping details and expected delivery

date. Upon receipt, a video conference was scheduled with the participant to review

the study protocol, confirm the experiment’s details, and review all study materials.

Materials Description

Materials used for the remote collection of data included one AKASO EK7000

camera, one Cherry-brand 104 key full-size keyboard, two SanDisk SD cards, one

extra camera battery, a battery charger, and a return shipping label. The choice of

the AKASO EK7000 camera was motivated by its price-to-quality ratio, offering

high-resolution recording capabilities at an affordable price point. The camera was

capable of 120 frames per second (fps) at a 720p resolution recordings, which was

deemed more than sufficient for capturing the fine-grained movement data neces-

sary for pose estimation. Additionally, the extra battery and charger were requisite,

as the study spanned two days, and battery depletion overnight was a concern. The

Cherry-brand keyboard was selected due to its precision and reliability, requiring

approximately 0.45 N of force for keypress actuation, an average amount that would

be consistent with most participants’ typing experiences.

On receipt of study materials, participants visually inspected the AKASO

EK7000 for any damage. The battery was located, charged. Labels for the cam-
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era, battery, and charger were verified by the investigator to ensure identification.

After charging, the battery was inserted into the camera, and functionality was con-

firmed by powering the camera on and off. The SanDisk SD card was also formatted

and its serial number was verified. A test photo was taken to ensure the SD card

saved data as expected. The keyboard was carefully inspected, plugged into the par-

ticipant’s home computer to verify its functionality, and its serial number was also

verified. Lastly, camera settings, lighting, and framing of the hand and keyboard

were adjusted to ensure a preferred resolution and clarity. Once all items were

properly prepared and double-checked for functionality, the investigator instructed

the participant in the set-up of all materials.

Experimental Sessions

Once setup was complete, the participant received the link to the online motor se-

quence task, carefully reviewed instructions with the investigator, began the cam-

era recording, and then began the motor sequence task. The investigator remained

available for technical support but did not interfere with task performance. After the

session, the investigator ensured the data was recorded correctly, and the equipment

was stored safely for future use or returned as needed.

For participants who agreed to continue to Day 2, the equipment was left in

place overnight, and the study was repeated the following day using the same setup.

If not, the equipment was dismantled and safely stored.

Post-Participation Activities

After the final session, the participant was responsible for repacking materials and

attaching the return shipping label. The investigator arranged for FedEx pickup or

drop-off and ensured all study materials were returned promptly. If multiple partic-

ipants were involved at the same location, the investigator repeated the setup and

screening process for each individual before collecting and returning the equipment.

Material Receipt and Inspection

Upon receiving returned materials, the investigator verified that all equipment labels

were intact. The AKASO 5700 camera was unpacked, inspected for damage, and
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sanitized. The camera’s functionality was checked by powering it on, reviewing

the participant’s videos, and powering it off. The SD card was removed, data was

transferred to the NIH server, and the card was reformatted and reinserted into the

camera. The camera battery was sanitized, charged, and replaced before the camera

was repackaged for further use or storage.

The keyboard underwent a similar process: it was unpacked, sanitized, tested

for functionality, and repackaged for the next participant. All materials were then

placed back into the parcel box, which included stickers, return labels, and other

necessary supplies. If the equipment was not immediately shipped to the next par-

ticipant, the investigator made note of when the preparation steps were completed.

If more than seven days passed before shipment, the camera battery charge was

checked again before mailing.

Remote Study Protocol Overview

1: Pre-Screening. Participants were screened via phone to confirm eligibility (age, hand-

edness, language, internet access, and exclusion criteria such as NIH staff status).

2: Enrollment and Consent. Eligible participants signed an NIH-approved “Acknowl-

edgement of Participation” and assigned a subject ID.

3: Shipping. Study kits containing all required materials (camera, keyboard, SD cards, bat-

tery, charger, return label) were packed and shipped. Tracking information was recorded

and sent to the participant.

4: Setup. On receipt, experimenters guided participants through inspection, charging, test-

ing, and preparing equipment. The camera was positioned and settings were adjusted to

ensure hand and keyboard visibility.

5: Experimental Session(s). Participants completed the motor sequence task while record-

ing video locally. The investigator remained on-call but did not interfere. If the partici-

pant consented to Day 2, the same procedure was repeated the following day.

To ensure the integrity of the recorded video data, all files were reviewed for

completeness and quality prior to analysis. Sessions were inspected for corrupted

files, missing footage, or frame rate inconsistencies. Frame counts were verified

to confirm 120 fps sampling, and videos were checked to ensure full capture of
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the keyboard and participant’s hand movements. Trials in which recording failed,

the hand was obstructed, or typing deviated substantially from the instructed pat-

tern were flagged and excluded from downstream analysis. These quality control

steps ensured that pose estimation and behavioural labelling were based on clean,

interpretable input data.

2.5 Online Task and Performance Data

Following equipment setup, participants were emailed a link for the motor sequence

task wherein they repetitively typed a 5-item numerical sequence (4-1-3-2-4) as

quickly and as accurately as possible. Keypresses were performed with the partici-

pant’s non-dominant, left hand and applied to a standard, 104-key keyboard. Key-

press 1 was performed with the little finger, keypress 2 with the ring finger, keypress

3 with the middle finger and keypress 4 with the index finger (See Figure 2.1). In-

dividual keypress times and identities were recorded for behavioural data analysis.

Participants practised the task for thirty-six (36), 10 s duration trials. 10 s rest pe-

riods were interleaved between trials. During practice, participants were instructed

to fixate on the five-item sequence displayed for the full duration of the trial. Small

asterisks appeared above a sequence item when a keypress was recorded, providing

feedback to the participant about their current location within the sequence. After

completion of a full iteration of the sequence, the asterisks were removed. The as-

terisk display did not provide error feedback since they appeared for both correct

and incorrect keypresses. During the 10 s interleaved rest periods, the sequence was

replaced with the letters “REST”, which participants were instructed to fixate on.

Visual stimuli and task instructions were presented, and keypress responses were

recorded using custom code hosted online at Psytoolkit. Psytoolkit is an online

platform designed for running cognitive-psychological experiments and surveys. It

provides researchers with tools for both programming and administering a wide va-

riety of tasks in behavioural research. For this study, Psytoolkit was used to design

and execute the motor sequence task, ensuring consistency in how instructions and

feedback were presented. Psytoolkit also recorded a range of performance met-

https://www.psytoolkit.org/
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rics, including both accurate and inaccurate keypresses, as well as time stamps to

the millisecond. From these metrics, the primary measure of learning - correct se-

quences per second (cs/s) - was calculated, providing a quantitative assessment of

participants’ skill learning over time.

Figure 2.1: Motor Sequence Task and Skill Calculation. (A) Subjects learned a motor
sequence over 36 trials within a single training session (Walker, Brakefield et al. 2002,
Censor, Horovitz et al. 2014). Each trial consisted of alternating rest and training periods
for 10 s duration each. (B) Skill was measured as the typing speed of correct sequences
per second (cs/s). Early learning developed over the initial trials of training (trial set within
which 95% of total learning occurred, mean ± STD (Bonstrup, Iturrate et al. 2019).

2.5.1 Skill Measure Calculation

Skill learning in this study was defined by a composite measure of speed and ac-

curacy, specifically quantified using the metric of correct sequences per second

(cs/s). This metric reflects the participant’s ability to accurately execute the entire

5-element sequence within a given time, providing a clear measure of performance

at the sequence level. The rate of skill acquisition was modelled using a logarithmic

growth curve applied to the cs/s data. By fitting a logarithmic model to these data,

I was able to estimate the rate of improvement over time, capturing the gains in

performance that typically characterize early motor learning (See Figure 2.1 Right).

To ensure precise identification of correct sequences, individual keypresses

were analysed in relation to the specific 5-item sequence “41324.” Keypresses were

labelled as part of a correct sequence if they matched any circular permutation of

this sequence (e.g., “41324,” “32441,” etc.). This method allowed flexibility in
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identifying correct sequences while maintaining stringent criteria for sequence ac-

curacy. By accounting for circular shifts, participants were credited for executing

the correct sequence regardless of where they began typing within it, ensuring accu-

rate measurement of skill execution. For each trial, performance was summarized

as the mean instantaneous correct sequence speed, providing a detailed measure of

how efficiently and accurately participants could produce the required sequences

throughout the practice trials.

2.5.2 Learning Stage Calculation

Early-stage learning was defined as the period spanning from Trial 01 up to a cutoff

trial, T , at which 95% of the group-level performance gains were achieved. The

cutoff trial T was determined through the following process. First, the trial-by-

trial group average of correct sequences per second (cs/s) was modeled using an

exponential growth function of the form:

L(t) =C1 +C2 ·
(

1− e−λ t
)

where L(t) represents the group average learning state at practice trial t, C1 ac-

counts for pre-training performance, and C2 represents the asymptote, or the maxi-

mum extent of learning. The parameter λ controls the learning rate, dictating how

quickly participants approach their maximum performance.

The parameters C1, C2, and λ were estimated using a constrained nonlin-

ear least-squares method, implemented via MATLAB’s lsqcurvefit function,

which employed the trust-region-reflective algorithm. The boundary constraints for

these parameters were set as follows: C1 within the range [0, 5], C2 within [0, 15],

and λ within [0, 2] (Buch et al., 2021).

Next, I accumulated the values of L(t) across all trials t, and divided each trial’s

cumulative sum by the total area under the curve. This allowed us to compute the

trial-by-trial cumulative percentage of learning. The cutoff trial T was then defined

as the first trial where the cumulative percentage of learning reached 95%.
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2.5.3 Skill Calculation Following Overnight Consolidation

In Study 1, I accounted for the experience of a “warm-up” period of performance,

wherein motor sequence skill is quickly regained and eventually matches the level

achieved by the end of the previous day. To select the first trial following warm-up

on Day 2, I used the same model at which 95% of performance gains are achieved at

the group level on Day 1. The model allowed us to pinpoint the first trial following

the rapid gains in performance following a warm-up at the group level.

2.5.4 Skill Calculation Following Online and Offline Periods

In Study 2, I assessed early learning changes at the individual trial level by quanti-

fying performance improvements occurring during individual practice and rest pe-

riods. Micro-online learning was defined as the change in correct sequences per

second between the first and final seconds of each trial. Micro-offline learning was

defined as the absolute difference in cs/s between the last second of a trial and the

first second of the following trial. These epoch boundaries were chosen to match

the resolution of the skill metric (cs/s), ensuring sensitivity to 1 s temporal reso-

lution of skill measurement. Cumulative micro-online and micro-offline learning

scores measured over the first T trials for each participant were used to assess their

respective contribution to total early learning(Bonstrup et al., 2019).

2.6 Analysis Pipeline for Pose Data
In the following section, I outline the technologies and parameters selected for Stud-

ies 1 and 2 with a focus on two key tools: DeepLabCut (DLC) for pose estimation

and HUB-DT for behavioural annotation. I will provide a detailed description of

how each was applied, along with the specific modifications and extensions made

to their underlying codebases to tailor them to the unique demands of my project.

Please see Figure 2.2 for a visual of the full pipeline.

2.6.1 Markerless Pose Estimation with DeepLabCut

DeepLabCut (DLC), a machine-learning toolbox designed for pose estimation, was

utilized to track the movement of four fingers during the motor sequence keypress
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task. DLC employs deep neural networks and transfer learning to precisely deter-

mine the position of specific body parts in each video frame. This software has been

extensively used for animal tracking but can be applied to human movement anal-

ysis. The primary advantage of DLC is its ability to learn the spatial relationships

between body parts from labelled training data and generalize these relationships to

new, unseen frames during prediction (Mathis et al., 2018).

For Studies 1 and 2, sixty video frames from each participant were randomly

selected, resulting in a total of 2,400 frames, balanced across the 36 trials for each

study. Frames were manually labelled with the position of the four digits, specif-

ically above the lunula. Labelled frames were then used to train a neural network

that generalized digit poses across all frames. The neural network employed in

this study was a ResNet-50 architecture, pre-trained on the ImageNet dataset. The

pre-training allowed the network to leverage a large body of prior knowledge about

image features, improving the accuracy of pose estimation. Training was performed

using the DLC toolbox (available at https://github.com/DeepLabCut/DeepLabCut).

Training involved one million iterations and utilized three colour channels

(RGB), with pairwise terms, but without additional supervision. Data augmenta-

tion was performed before training, as necessary, by re-scaling images to maintain

a consistent image scale across all frames. This augmentation process helped in-

crease the network’s robustness to variations in image conditions, ensuring reliable

tracking. After training, the neural network was used to predict the position of the

four fingers in all frames of every trial. The predicted position of a finger in each

frame was determined by the peak of the output score-map generated by the net-

work. Frames where fingers were occluded or not clearly visible were identified by

low peak scores, indicating uncertainty in the network’s predictions.

Training and subsequent predictions were conducted on the NIH High Perfor-

mance Computing Biowulf cluster, allowing for efficient processing of the large

dataset. Validation of the network’s tracking accuracy was conducted post hoc.

This was achieved through visual inspection of predicted finger trajectories for each

participant, along with the use of a likelihood parameter provided by DLC. The

https://github.com/DeepLabCut/DeepLabCut
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likelihood parameter, which quantifies the confidence of the network’s predictions,

was manually set at 95%. Pose estimation below this threshold was inspected manu-

ally and either included or excluded from the dataset, based on its accuracy. Missing

data points were linearly interpolated to maintain continuity in the tracking data. Pi-

lot tests indicated that 60 manually labelled training frames were sufficient to train a

network that could estimate finger positions across all frames and participants with

an accuracy greater than 90%.

Output from DLC analyses consists of CSV files. In Studies 1 and 2, each CSV

contained approximately 43,200 rows (86,400 for all data over two days). Rows

correspond to the x, y positional data of each digit, per frame, sampled at 120 Hz

over a duration of 720 seconds (the total experiment time) minus 360 seconds (the

total rest period time). These data were used for subsequent kinematic analysis to

investigate the emergence of motor synergy during learning of the motor sequence.

2.6.2 Morlet Wavelet Transformation of Pose Data

DLC output provides frame-by-frame 2D coordinates for each feature of interest.

While these instantaneous body part locations are valuable, they do not inherently

represent behaviour. Behaviour, as we define it, arises from changes in pose that

unfold across varying timescales. Thus, to capture behaviour effectively, both spa-

tial (position) and temporal components must be considered, particularly at multiple

temporal scales. Traditional methods that rely on fixed time periods - common in

many existing behavioural analysis tools - present several key limitations. These

are discussed extensively in the Motion Mapper paper by Berman et al. Notably,

fixed-time period methods constrain temporal information to a single scale, which

often leads to the omission of multi-scale interactions across and within features -

interactions that are fundamental to many typical behaviours.

The raw DLC traces do contain some temporal information, such as rates of

change in positions. However, these traces are limited in their ability to distinguish

between behaviours with similar positional changes but differing dynamics. For

example, a rapid oscillatory movement and a slow, smooth displacement might pro-

duce similar x, y displacements over a given period but represent entirely different
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Figure 2.2: Pose Data and Morlet Wavelet Transformation. (A) Top: High-definition video
was used for markerless tracking of digit movements. Bottom: Markerless pose estimation
identified x, y poses of each digit. (B) Poses identified from markerless tracking depict digit
positions during performance of keypresses in the motor sequence task. Finger displace-
ments were calculated along the x and y axis of the camera frame in terms of pixels. Trials
1-12 are shown. Tracked features are transformed from the (C) temporal domain to the
(D) frequency domain by applying the Fast Fourier Transform. The transformed features
are then convolved with a series of Morlet wavelets, at widths set by the frequencies over
which I aim to capture behaviour. The amplitude of response to the wavelets is then trans-
formed back to the temporal domain by the inverse Fast Fourier Transform, resulting in a set
of wavelet amplitudes. Performing wavelet projection on the whole set of features produces
a full set of wavelet responses, which form the behavioural space whose dimensionality is
expanded by a fold equal to the number of chosen frequencies.

behaviours. To address this, I used HUB-DT’s spectrographic projection with Mor-

let wavelets to transform the raw spatial coordinates into an expanded space that

simultaneously captures both spatial and temporal features at multiple timescales.

Morlet wavelets, which are complex Gaussian functions modulated by a sinusoidal

wave, are particularly effective for highlighting periodic and dynamic patterns in

the data, such as the oscillations seen in chunking of keypress sequences. This

transformation enables the representation of motion patterns across varying tempo-

ral frequencies, effectively disambiguating behaviours that might otherwise appear

similar in the raw traces.

The resulting dataset embeds each frame of video into a high-dimensional spa-
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tiotemporal manifold. The dimensions of this manifold correspond to the response

amplitudes of each feature (and its two spatial coordinates) to each wavelet fre-

quency used in the projection. For my analysis, the manifold spans 5 wavelet fre-

quencies, 4 features of interest, and 2 tracked coordinates per feature, providing a

rich and detailed description of the motion of tracked features.

While this manifold offers a comprehensive description of the tracked features,

its high dimensionality introduces practical challenges. High-dimensional spaces

often include redundant or irrelevant information, which can impair the effective-

ness of clustering algorithms - a phenomenon known as the “curse of dimensional-

ity” (Bellman, 1957, 1961; Hastie et al., 2011). To address this, I performed dimen-

sionality reduction before clustering. This step helps distil the manifold into a more

computationally manageable representation while preserving the most informative

aspects of the data. Although algorithms like neural networks can learn latent rep-

resentations directly from high-dimensional data, I prioritised interpretability by

explicitly reducing dimensionality before unsupervised clustering.

2.6.3 Fit Wavelet Projections into a 2-D Embedding

Dimensionality reduction is a key step in data pre-processing and is often initiated

using Principal Component Analysis (PCA). PCA creates a sequence of uncorre-

lated projections, which are linear approximations of the input data, ordered by

variance. A subset of these projections can be selected to form a lower-dimensional

representation of the data, effectively preserving most of the information. This re-

duced space is particularly useful for identifying global patterns and trends in the

data. However, for behavioural data, where key information may be embedded in

local patterns, PCA may not always be the optimal approach. Several other methods

of dimensionality reduction are more suited to preserving local structures. At the

start of my project, I had two primary options.

t-SNE (t-distributed Stochastic Neighbour Embedding) is an alternative to

PCA that emphasizes the preservation of local relationships in the data. t-SNE

produces low-dimensional embeddings (often in 2 or 3 dimensions) that maintain

proximity relationships from the original high-dimensional space. It does this by
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modelling similarities between points in both the input and output spaces as prob-

ability distributions - Gaussian in the input and a t-distribution in the output. This

ensures that local structures, such as clusters and manifold relationships, are re-

tained, though at the expense of global accuracy. The primary parameter in t-SNE

is perplexity, which controls the number of nearest neighbours used to preserve

local distances. While highly effective, t-SNE is computationally intensive and

transductive, meaning it cannot project new data into an existing embedding. Re-

cent advancements, such as those from van der Maaten (2014) and Linderman et al.

(2017), have improved its efficiency through methods like neighbourhood approxi-

mation and interpolation, as implemented in the openTSNE package.

UMAP (Uniform Manifold Approximation and Projection) offers another

powerful approach to dimensionality reduction, which shares similarities with t-

SNE but follows a distinct methodology. UMAP begins by constructing a fuzzy

topological representation - modelling data relationships probabilistically to ac-

count for uncertainties and preserve both local and global structures - of the data

that captures local relationships in its high-dimensional form (McInnes et al., 2018).

This topological structure is then optimized to fit a lower-dimensional space us-

ing cross-entropy, creating an embedding that reflects the original data’s structure.

UMAP is parametrised by the number of neighbours, which adjusts the scale of

local relationships, and it includes a minimum distance parameter that controls the

spacing of points in the low-dimensional space. These parameters allow for fine-

tuning and greater flexibility in preserving local structures. UMAP is computa-

tionally efficient and scalable, making it suitable for large datasets and applications

requiring rapid dimensionality reduction.

Ultimately, I chose HUB-DT’s UMAP implementation over t-SNE for this

work due to several critical advantages, particularly in terms of computational effi-

ciency and scalability. While t-SNE offers excellent local structure preservation,

it is computationally expensive, especially for large datasets. Given the repeti-

tive nature of human hand movements during sequential typing, where I needed

to track subtle changes in behaviour over time, UMAP’s faster runtime and abil-
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ity to handle larger datasets beneficial. UMAP’s ability to preserve both global and

local structures, combined with its scalability, allowed us to explore fine-grained be-

havioural synergy without being limited by the computational overhead associated

with t-SNE. Further, UMAP’s flexible parameterisation gave us finer control over

the reduced space, which was essential for detecting small but significant changes

in typing patterns over the course of skill learning.

2.6.4 Hierarchical Unsupervised Clustering

The low-dimensional embeddings of the behavioural space offer a valuable visual-

isation of behaviour patterns across the entire dataset. These embeddings facilitate

the identification of recurrent motion patterns that may exhibit consistent character-

istics across trials, i.e. motor synergy. Visualising this structure helps distinguish

between stereotyped, repetitive movements and more variable, exploratory actions.

The unsupervised segmentation of behaviours, therefore, emerges naturally from

clustering techniques applied to this reduced space, allowing us to classify and

group behaviours based on their intrinsic characteristics.

To introduce how I clustered behaviour in the reduced space, I’ll first describe

Density-Based Spatial Clustering of Applications with Noise, or DBSCAN, a well

used algorithm for clustering high-dimensional data. DBSCAN operates without

making assumptions about the shape or distribution of clusters. Instead, it identifies

core samples - points that reside in regions of high density - and expands these

regions by including neighbouring points within a specified distance, denoted by

the parameter ε (Ester et al., 1996). Clusters are thus formed by expanding from

core points, and isolated points that do not meet the density threshold are labelled as

noise. The key advantage of DBSCAN lies in its ability to detect clusters of varying

shapes and sizes, making it particularly effective for behavioural data that may not

conform to predefined cluster shapes.

However, DBSCAN employs a single density threshold (ε) to form clusters,

which may oversimplify complex, fine-grained data such as ours, where behaviours

occur at multiple levels of granularity. Recognizing this limitation, I opted for an

extension of DBSCAN that addresses these issues - Hierarchical Density-Based
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Spatial Clustering of Applications with Noise (HDBSCAN).

HDBSCAN extends the principles of DBSCAN by introducing a hierarchical

approach that captures clusters across varying densities, making it more suitable for

complex behavioural datasets (Campello et al., 2013; McInnes et al., 2017). Rather

than relying on a fixed density threshold, HDBSCAN constructs a minimum span-

ning tree based on reachability distances between points in the data, generating a

hierarchy of clusters that persist across different levels of density. This hierarchical

structure allows the algorithm to identify stable clusters that exist across multiple

scales, eliminating clusters that are too small or too diffuse to be meaningful by

applying a minimum cluster size parameter.

In the context of my behavioural data, where movements vary across digits and

participants in terms of frequency, duration, and consistency, HDBSCAN’s hierar-

chical nature enables the detection of clusters that may not be captured by simpler

algorithms like DBSCAN. By condensing the cluster hierarchy and discarding un-

stable or noise-laden clusters, HDBSCAN provides a set of robust, well-defined

clusters that represent meaningful patterns in the data. This capability is particu-

larly valuable in detecting synergies in motor sequence learning, as it allows us to

observe how clusters evolve across trials. HDBSCAN ensures that the identified

clusters accurately reflect the underlying structure of the behaviour, offering insight

into the progression of motor sequence learning and underlying motor synergies.

Each frame of video is represented as a row of wavelet-transformed pose fea-

tures, which are projected into a two-dimensional space using UMAP. These 2D

coordinates serve as the spatial representation of each frame. HDBSCAN then op-

erates on this low-dimensional space, grouping nearby points into clusters based

on local density. Frames that fall into high-density regions are assigned cluster la-

bels, while those in sparse areas are labelled as noise (–1). In this way, each frame

receives a label based solely on its location in the UMAP space, allowing for unsu-

pervised segmentation of behaviour across the time series.

Labelled clusters can be visualised by colour coded plots in the embedded

space. Each colour indicates a separate cluster, corresponding to a putative be-
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Figure 2.3: Left: A 2D UMAP embedding of high-dimensional pose-derived wavelet data,
where each point represents a single video frame. Center: HDBSCAN clustering assigns
labels based on local density; noise is shown in low opacity. Right-center: After removing
noise, distinct behavioural clusters emerge, including the circled pink cluster of interest.
Right: Mean wavelet amplitudes for each digit (little, ring, middle, index) are computed for
the circled cluster to characterise its kinematic signature.

haviour. Therefore, each cluster in the label set corresponds to a single discovered

behaviour. The pose kinematics of that behaviour can be visualised by plotting the

mean wavelet amplitudes for points in a cluster. This is the averaged wavelet re-

sponse for each feature, and together shows the changes in pose across the range of

selected frequencies that characterise that behaiour. Here, these clusters represent

the first step in identifying motor synergy.

2.6.5 Synergy Analysis Pipeline

To this point, I have been leveraging the functions available in the HUB-DT pack-

age. Following the acquisition of cluster labels from HDBSCAN, I diverged from

the HUB-DT package to examine motor synergy in detail. While HUB-DT provided

an essential foundation for unsupervised behavioural classification and clustering, it

became necessary to develop custom code that would allow for a deeper exploration

of the temporal and spatial dynamics of motor synergies. This shift in methodology

enabled us to analyse motor behaviours at a finer granularity, focusing specifically

on how synergies evolve and stabilize over time within a motor sequence. The cus-

tom pipeline described facilitated the identification, quantification, and statistical

validation of motor synergies across trials.
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Frame-by-Frame Label Tracking and Processing

To capture and analyse motor synergy during skill learning, a custom pipeline

was developed to process the frame-by-frame labelled data collected during ex-

periments. Each row of the data represented a frame and the associated motor be-

haviour label for that specific frame. I then created a function to tally continuous

occurrences of each behaviour label. Noise, as determined by the HDBSCAN clus-

tering, was represented by the label -1 and was filtered. For each non-negative label,

I tracked the number of continuous frames during which that behaviour occurred.

The start frame and total count for each occurrence across trials, as well as the

mean duration in frames of each behaviour was recorded to isolate the time-series

of motor synergies for analysis.

These extracted features were formatted into a structured array, which served

as the foundation for my analysis, including time-series comparisons and the cal-

culation of velocity and acceleration metrics. This method ensured a systematic

approach to tracking and analysing motor synergy throughout the experiment.

Label Distribution Across Trials

Following the frame-by-frame label tracking, I calculated and plotted the distribu-

tion of labels across all trials, both excluding and including noise labels. I calculated

the relative frequency of each label within each trial, normalizing the counts to con-

trol for varying amounts of noise. This normalization allowed us to observe the

proportional distribution and evolution of motor synergies across trials. This step

was necessary to assess the prevalence and frequency of labelled motor synergies

during motor sequence learning.

I then repeated this process but included noise labels in the analysis to assess

their impact on the data. The distributions were visualized using stacked bar plots,

where the x-axis represented trial numbers and the y-axis indicated the proportion

of labels present (in other terms, I display the proportion as ‘percent use’ per trial).

Label-Specific Kinematics

To analyse for synergy from each label, I calculated several data points:
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Figure 2.4: (A) Left: A UMAP projection of the wavelet-transformed amplitude data is
shown, with HDBSCAN-derived cluster labels visualised as coloured points. Three exam-
ple synergies are circled for reference. The left-centre portion of the panel displays the
original behavioural labels across three real trials, each shown as a stacked bar spanning
1200 video frames. Each frame is assigned a label - colours represent synergy labels, while
grey denotes frames labelled as noise. In the right-centre portion, noise labels are filtered
and collected at the base of each bar to visualise the proportion of noise within each trial;
synergy-labelled frames remain unchanged. Finally, in the rightmost panel, noise is fully
removed, and the remaining synergy labels are normalised to now represent all behaviour
in a trial as a distribution of synergy behaviours. (B) Shows the behavioural label distri-
butions (including noise) for all 36 trials, with grey indicating noise and colour showing
identified synergies. Panel C displays the same distributions after noise has been excluded
and synergy behaviours scaled to sum to one per trial. These normalised distributions form
the basis for trial-by-trial comparisons of motor synergy development throughout training.
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First, I determined the keypress count, defined as the number of correct key-

presses within each label. This metric provided a direct measure of participant

performance within each labelled behaviour. Note in Figure 2.5 B and Figure 2.6 B

that keypress events are determined by first calculating the keypress onset and offset

events and then detecting the peak of the time series between the onset and offset.

Next, I calculated the mean duration of each label in milliseconds. This was

achieved by converting the frame count of each label segment into time, using a

frame rate of 120 frames per second. By assessing the duration of each label, I

could examine the temporal characteristics of motor synergies.

Further, I computed for normalised correct keypresses, referred to as nor-

malised Hz. This involved normalising the keypress count within each label to

account for variations in label duration. Specifically, I adjusted the keypress fre-

quency to a standard reference duration of 1 second (120 frames). This normali-

sation was essential to prevent distorted interpretations when comparing labels of

different durations. For example, two labels might both have a keypress count of

four, but if one label spanned 90 frames and the other 200 frames, their activity lev-

els per unit time would differ significantly. By normalising to Hz, I could accurately

compare the activity levels across labels, identifying which labels were more active

in terms of correct keypresses within a fixed window. This approach allowed us to

evaluate the relative success of different motor synergies in the context of the task.

Calculations of keypress counts, durations, and normalised frequency for each

label gave insights into the emergence and evolution of motor synergies as par-

ticipants practised the keypress task. Results for each label were then compiled

and exported to a CSV format. The CSV file also contained ‘presence-of-label’ or

‘absence-of-label’ markers (0 for absent, 1 for present) for each trial. The exported

CSV data enabled us to evaluate the occurrence and underlying kinematics of motor

synergies across participants.

Dynamic Time Warping and Synergy Identification

To identify all occurrences of a synergy from the data, I employed dynamic time

warping (DTW), a technique designed to align sequences with temporal shifts. This
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algorithm is particularly useful in multi-effector motor synergy identification, as it

allows us to compare sequences that may vary in time or speed within a threshold

while retaining the same core structure. DTW computes the optimal alignment by

minimizing the distance between sequences, enabling the identification of synergy

patterns across trials.

I first extracted the target synergy, defined by the start and end frames of its

first occurrence. The DTW algorithm was then applied to locate similar patterns

of motor behaviour across the remaining trials. This method allowed us to search

for patterns that were not perfectly time-synchronized but exhibited a highly similar

motor structure. The DTW distance for each comparison was calculated, and the

lowest distances were used to select the most similar occurrences of the synergy.

The DTW distance between two time series X and Y , each of length T , is

computed by constructing a cost matrix C, where each entry C(i, j) represents the

Euclidean distance between points xi and y j.

The time series are defined as:

X = {x1,x2, . . . ,xT}, Y = {y1,y2, . . . ,yT}.

The goal is to find a warping path W :

W = {w1,w2, . . . ,wK},

where each element

wk = (ik, jk)

aligns point xik with y jk , such that the total cost is minimized:

DTW(X ,Y ) = min
W

K

∑
k=1

C(wk)

This path provides an optimal alignment between the two sequences.

Once each occurrence of the synergy was identified across trials, I plotted the

mean and confidence intervals for each digit time series to visualize how reliably
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the synergy was performed. The value in plotting these mean and confidence in-

tervals was also to support the claim that the behaviour identified was indeed a

multi-effector synergy, rather than isolated or infrequent movements. The aim here

is to quantify the emergence and evolution of motor synergies across skill learning.

This interpretive step - from clustered behaviour to candidate synergy - requires

methodological justification, particularly in light of traditional dimensionality-

reduction approaches. Classical synergy detection methods such as PCA, NNMF, or

UCM typically operate on discrete, isolated motion segments (e.g., single reaches)

and output as a fixed number of components. By contrast, my approach identifies

continuous, multi-effector behaviours that unfold continuously over time, reflect-

ing coordinated patterns that occur within the span of the task - rather than being

extracted from isolated movements or predefined event windows.

Rather than assuming coordination through decomposition-first techniques, I

begin by extracting wavelet representations of kinematic time series and project-

ing them into a lower-dimensional space using UMAP. I then apply unsupervised

clustering (via HDBSCAN) to this embedding to identify dense, recurring patterns

of movement. These candidate synergies are validated through their statistical den-

sity, recurrence across trials, and consistency in kinematic execution. This offers a

behaviourally grounded and statistically defensible alternative - one that prioritises

what the learner actually does, rather than what a model is constrained to extract.

In this way, synergy is discovered through emergent regularity and contextual em-

beddedness, not merely inferred from dimensional compression.

Time Series Analysis and Kinematic Calculations

For each identified synergy, time-series data for each digit were extracted and anal-

ysed to compute key behavioural metrics. Kinematic data were processed to de-

termine the onset, peak, and offset of all digit movements leading to keypresses.

Specifically, the Euclidean distance d(x,y) between successive data points xi and

xi+1 in the time-series was calculated to capture changes in digit position over time:
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d(xi,xi+1) =

√
n

∑
j=1

(xi, j − xi+1, j)2

where n is the number of dimensions (typically x, y, and z coordinates) and

j indexes each dimension. From these distances, I identified the onset, peak, and

offset of motor events for each digit.

Velocity v for each digit was calculated as the rate of change in position over

time, using the equation:

v =
∆d
∆t

where ∆d is the change in Euclidean distance between frames and ∆t is the time

interval between successive frames. Acceleration a, the rate of change in velocity,

was then derived by measuring changes in velocity across consecutive frames:

a =
∆v
∆t

Additionally, I calculated what is known as an overlap metric, which assigns

a value to the temporal coordination of multiple digits. Specifically, the overlap

metric quantified the percentage of frames during which multiple digits were active

at once, i.e. the duration of time wherein the onset of a subsequent digit movement

occurred prior to the offset of the preceding digit movement.

The percentage of overlap was calculated as follows:

Percent Overlap =
Number of Overlapping Frames

Total Frames
×100

By analysing the overlap of digit movements, I could evaluate how digits

“worked together” during motor sequence learning. This metric, combined with

velocity and acceleration data, provided a ‘fingerprint’ of the temporal dynamics of

any given synergy, contributing to a deeper understanding of how motor synergies

evolve and stabilize with practice.

In Figures 2.5 and 2.6, I present visual summaries of the analysis pipeline
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applied to pose data. Figure 2.5 illustrates the results for a motor synergy that

emerged during early-stage learning and became increasingly prominent over the

course of training. In contrast, Figure 2.6 depicts the results for a motor synergy

that gradually diminished and became nearly extinct as training progressed. Each

figure consists of four elements (A, B, C, D), which are described in detail below.

Element A of Figures 2.5 and 2.6 highlights two aspects of the identified motor

synergy. The left panel shows a single HDBSCAN cluster representing all frames

labelled with the synergy of interest. Data are drawn from one participant. The right

panel displays the distribution of this synergy across 36 trials, with each vertical bar

corresponding to a single trial (as described in Figure 2.4). In this context, the grey

segments do not represent noise. Rather, they reflect all other synergy labels, which

have been desaturated to visually emphasise the synergy of interest. The height of

the coloured segment in each bar indicates the proportion of the synergy in that trial,

illustrating how its expression changes over training.

Element B shows the y-axis pose of each digit across the duration of a rep-

resentative instance of the synergy. The x-axis explicitly lists the duration of the

synergy in video frames (120 frames = 1 s). Each line corresponds to the y-pose of

one digit, and keypress events are annotated: green circles for onsets, red stars for

keypresses, and magenta circles for offsets.

Element C shows the average pose (lines) and 95% CI (shaded regions) for

each digit across all occurrences of the synergy. These plots were generated by

aligning the time series using dynamic time warping (DTW), which accounts for

temporal variability between instances. This visualisation captures both the consis-

tency and variability in digit movement patterns that define the synergy.

Element D quantifies three kinematic features of the synergy. The first panel

presents the mean velocity (pixels/second) for each digit; the second shows mean

acceleration (pixels/s2); and the third measures the percentage of temporal overlap

between digits, capturing a degree of coordination between digits over the synergy.

It is important to note that although clustering was unsupervised and therefore

performed without temporal linearity, HDBSCAN clusters do capture statistically
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distinct, recurring patterns of digit coordination that span linear behaviours. As

noted, these patterns - some encompassing full 5-element sequences, others repre-

senting common sub-sequences or transitional fragments - are treated as candidate

motor synergies. Importantly, their definition is based on spatial-temporal struc-

ture, not on frame-by-frame adjacency. This approach enables the discovery of

behavioural motifs that recur across trials, even if they do not occur at precisely the

same moment in each trial. Figures 2.5 and 2.6 illustrate this principle, showing

how the frequency of specific synergies rises or falls across the 36 training trials.

These dynamics - emergence, stabilisation, or extinction of synergies - underscore

their behavioural relevance and functional role in learning.

Given this framework, I used Jensen-Shannon Divergence (JSD) to quantify

how the distribution of behavioural strategies shifts across trials. Rather than

comparing individual synergies directly, JSD compares the full distribution of be-

havioural labels within each trial, capturing how learners change their reliance on

different motor patterns over time. Further, JSD treats label distributions as un-

ordered sets, meaning that the numerical label identities (e.g., cluster 0, 1) and their

order have no bearing on the divergence - as only the relative frequencies matter.

This design is sensitive to the re-weighting of strategy use shown in motor skill ac-

quisition, especially when behaviours are phased out or replaced. The choice for

JSD is justified in Section 2.6.6, where I explain its robustness to sparsity, bound-

edness, and symmetry - critical properties for comparing probabilistic data.

2.6.6 Jensen-Shannon Divergence, Permutation Test, and Stouf-

fer’s Method Calculations

To quantitatively assess the development of motor synergies across participants, I

detail exactly how I extract label distributions, then detail steps to compute Jensen-

Shannon Divergence (JSD) values between trials, and statistically evaluate these

comparisons through permutation tests and p-value adjustments.
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Figure 2.5: Synergy analysis of a representative participant, Example A.
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Figure 2.6: Synergy analysis of a representative participant, Example B.
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Data Extraction and Preprocessing

Behavioural labels from each participant were stored in .spydata files. These

files were systematically processed by a custom Python function to ensure con-

sistency in analysis. The first step involved loading the .spydata files into a

dictionary format for each participant:

1 def load_spydata(file_path):

2 try:

3 data, error = io.load_dictionary(file_path)

4 if error:

5 raise ValueError(f"Error loading {file_path}: {

error}")

6 return data

7 except Exception as e:

8 print(f"Failed to load {file_path}: {e}")

9 return None

Label Distribution Comparison

For each trial, behavioural clusters were compared by counting the number of oc-

currences of each label and converting these counts into probability distributions.

These distributions were then used to calculate the JSD between different trials.

1 def compare_clusters(cluster_labels1, cluster_labels2,

all_labels):

2 counts1 = np.array([np.sum(cluster_labels1 == label) for

label in all_labels if label != -1])

3 counts2 = np.array([np.sum(cluster_labels2 == label) for

label in all_labels if label != -1])

4 return counts1, counts2

The comparison function processed each .spydata file, extracted the be-

havioural labels, and converted these labels into counts and proportions.
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JSD Calculation

JSD was calculated between the probability distributions (proportional distributions

of synergy) of different trials. JSD measures the similarity between two distribu-

tions and is expressed as:

JSD(P∥Q) =

√√√√1
2

(
∑
k

P(k) log
2P(k)

P(k)+Q(k)
+∑

k
Q(k) log

2Q(k)
P(k)+Q(k)

)

Where P and Q represent the probability distributions of behavioural labels at

two different time points, and k represents each cluster label.

Suitability of JSD for Comparing Behavioural Proportions

When comparing proportions of behaviour, selecting an appropriate distance mea-

sure is essential. For my purposes, JSD has proven to be particularly effective. JSD

is a symmetric and smoothed version of the Kullback-Leibler Divergence (KLD),

and it offers several advantages over other distance measures. However, to fully

appreciate why JSD is the most suitable option for my data, it is crucial to explore

both the properties of JSD and the alternative distance measures, evaluating their

strengths and limitations.

JSD is favoured for several reasons. First, it is symmetric, ensuring that

JSD(P∥Q) = JSD(Q∥P), which is critical when comparing behavioural proportions

because it treats the distributions equally without assigning directional bias (Lin,

1991). Second, JSD values are bounded between 0 and 1, with 0 indicating identi-

cal distributions and 1 indicating maximal divergence. This bounded range provides

a clear and interpretable metric, allowing for consistent comparisons across multiple

trials or participants. Third, JSD can handle zero values in the distributions, which

is especially important in behavioural data where certain behaviours may be absent

in some trials but present in others. This capability avoids the problematic infini-

ties seen in KLD when one distribution has a zero probability for an event (Wong,

2019). Finally, JSD is sensitive to both large and small differences between distri-

butions, which is particularly valuable in motor learning studies where behavioural
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changes emerge gradually across trials.

The rationale for using JSD extends beyond its mathematical properties. In

this context, JSD was not used to compare individual synergies directly, but rather

to compare the full distribution of behavioural labels within each trial. This de-

sign reflects my focus on compositional strategy - how learners reallocate effort

across a set of motor patterns, rather than substituting one for another. Comparing

individual synergies would obscure this broader dynamic, particularly during skill

acquisition, where older behaviours are phased out and new ones emerge with dif-

ferent frequencies. JSD is uniquely suited to capturing this re-weighting of motor

synergies across time, providing a principled and interpretable measure of change

in behavioural strategy.

Figure 2.7: Illustration JSD calculation between trials based on normalised synergy labels.
(A) UMAP projection of behavioural embedding with selected clusters (synergies) circled.
(B) Normalised behavioural label distributions for three example trials (noise removed, pro-
portions scaled to 1). Each vertical bar represents the synergy composition within a single
trial. (C) The same data from (B) restructured to highlight the distribution of synergies
across trials. Bars of the same colour represent the same label, and their heights reflect the
proportion of that label within each trial. When a label occurred multiple times within a
trial, its proportions were summed (e.g., the blue label in trials 2, 3). JSD values are calcu-
lated between the full label distributions of different trials (e.g., trials 1 vs. 2 and trials 2 vs.
3), providing a quantitative measure of change in behavioural strategy across learning.

Despite JSD’s advantages, there are alternative distance measures that could

be considered for comparing behavioural proportions, and they may be more appro-
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priate for different datasets. The Euclidean distance, for example, is a simple and

intuitive metric that measures the straight-line distance between two points (Xu and

Wunsch, 2003). While it is computationally simple and easy to interpret, Euclidean

distance is sensitive to scaling issues and may not appropriately handle probabilistic

data like ours, where the magnitude of differences is crucial. This limitation makes

it less suitable for behavioural data with categorical distributions.

The Kullback-Leibler Divergence (KLD) is another prominent alternative.

KLD is widely used in information theory to quantify how one probability distribu-

tion diverges from a reference distribution, making it useful in scenarios where the

direction of divergence is important (Kullback and Leibler, 1951). However, KLD

is asymmetric, meaning KLD(P∥Q) ̸= KLD(Q∥P), and this can introduce bias de-

pending on the order of comparison. Additionally, KLD is particularly problematic

when dealing with zero values in the distributions, as it tends to diverge to infinity in

such cases, making it unsuitable for sparse behavioural data like ours (Wong, 2019).

The Bhattacharyya distance measures the overlap between two statistical dis-

tributions. It takes into account both the mean and variance of the distribu-

tions, providing a more detailed comparison of distributional similarity (Bhat-

tacharyya, 1946). However, it can be computationally intensive, especially for high-

dimensional data, and like KLD, it does not handle sparse distributions well.

The Wasserstein distance or Earth Mover’s Distance measures the cost of trans-

porting probability mass from one distribution to another and is especially effective

for comparing distributions that differ in shape (Villani, 2008). This makes Wasser-

stein distance particularly useful for continuous data, such as spatial distributions,

but its computational expense makes it less practical for large datasets like ours.

Additionally, while Wasserstein is robust to distributions with non-overlapping sup-

port, this property is not necessary for my behavioural data, which tend to exhibit

consistent overlap across trials.

Finally, Cosine similarity measures the cosine of the angle between two vec-

tors, focusing on the orientation rather than the magnitude of the distributions (Sing-

hal, 2001). Cosine similarity is often used in high-dimensional comparisons, such
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as text data, where the direction of data points is more important than their magni-

tude. However, for my purposes, where the magnitude of differences in behavioural

proportions is crucial, cosine similarity is less appropriate.

Therefore, I concluded that JSD is suited for comparing label distributions.

Symmetry, boundedness, and ability to handle zero values make it effective for

quantifying the overall divergence between synergy distributions across trials, with-

out the need to account for directional differences or continuous distributions.

Permutation Test for JSD Significance

To assess the statistical significance of each observed JSD value, a permutation test

was applied. This method shuffled the labels between trials, recalculating the JSD

for each permutation to derive an empirical p-value.

1 def permutation_test_jsd(proportions1, proportions2,

observed_jsd, n_permutations=100000):

2 combined_counts = np.concatenate((proportions1,

proportions2))

3 n = len(proportions1)

4 perm_jsds = []

5

6 for _ in range(n_permutations):

7 np.random.shuffle(combined_counts)

8 perm_proportions1 = combined_counts[:n]

9 perm_proportions2 = combined_counts[n:]

10 perm_jsd = jensenshannon(perm_proportions1,

perm_proportions2)

11 perm_jsds.append(perm_jsd)

12

13 perm_jsds = np.array(perm_jsds)

14 p_value = np.sum(perm_jsds >= observed_jsd) /

n_permutations

15 return observed_jsd, p_value

The permutation test p-value was calculated as:
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Permutation P-value =
Number of permutations with JSD ≥ Observed JSD

Total number of permutations

Original Distributions

P1

P2

Shuffling Process

Pk
1 Pk

2

Permutation Test Results

Observed JSD

Figure 2.8: Schematic of the permutation test procedure used to evaluate JSD between dis-
tributions. (Left): Original distributions P1 and P2 represent the behavioural label frequen-
cies for two trials. (Middle): These labels are randomly shuffled and reassigned to generate
permuted distributions (Pk

1 ,P
k
2 ), simulating the null hypothesis of no difference. (Right): A

null distribution of JSD values is built from many such permutations (grey bars), against
which the observed JSD (magenta dot) is compared to calculate an empirical p-value.

Combining P-Values Across Participants Using Stouffer’s Method

After calculating p-values for each participant, values were combined across the

cohort using Stouffer’s method. This method aggregates p-values into a combined

test statistic. p-values from each participant were first converted into z-scores:

z = Φ
−1(1− p/2)

Then, the combined z-score was calculated as:

Z =
∑z√

n

where n is the number of participants. The combined p-value was determined

using:

Combined P-value = 2(1−Φ(|Z|))

This combined p-value reflects the overall significance of the differences in
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distributions across participants.

1 def combine_pvalues(p_values):

2 z_scores = np.array([norm.ppf(1 - p / 2) for p in

p_values])

3 combined_z = np.sum(z_scores) / np.sqrt(len(z_scores))

4 combined_p = 2 * (1 - norm.cdf(np.abs(combined_z)))

5 return combined_p

The significance of the combined p-value was determined using a predefined

significance threshold:

1 def determine_significance(p_value):

2 if p_value < 0.001:

3 return "p < 0.001"

4 elif p_value < 0.01:

5 return "p < 0.01"

6 elif p_value < 0.05:

7 return "p < 0.05"

8 else:

9 return f"p = {p_value:.3e}"

With Stouffer’s method, I combined p-values from each participant, ensuring

a comprehensive analysis of the overall significance of group differences in motor

synergy distributions between trials.

2.7 Methods Summary
In this chapter, I provided a complete overview of the methods used in Studies 1

and 2 of this thesis, focusing on remote data collection and analytical techniques

for motor sequence learning. I began by discussing the advances in behavioural

quantification, highlighting the rapidly growing array of tools and techniques avail-

able for unsupervised behavioural categorization in neuroscience. Emphasizing the

need for machine learning-driven methods capable of exhaustively characterising

human movements across closely related motor skills, I selected HUB-DT as the
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primary tool for unsupervised behavioural classification due to its flexibility and

capacity to capture subtle variations in hand movements.

Next, I examined alternative behavioural annotation software, providing a de-

tailed evaluation of several prominent tools such as DEEPbehaviour, Motion Map-

per, VAME, B-SOID, and MoSeq. Each tool was detailed in terms of its method-

ologies, strengths, and limitations, highlighting the rationale behind my choice of

HUB-DT and exploring how other methods could potentially serve researchers with

different data or experimental designs.

I then addressed the selection of pose estimation software, which was central to

analysing human movement across diverse contexts. After evaluating various com-

puter vision tools, I selected DeepLabCut due to its accuracy in tracking complex

motor behaviours. I provided an overview of several prominent alternatives, includ-

ing OpenPose, AlphaPose, PoseNet, HRNet, ArtTrack, and DensePose, discussing

their methodologies, strengths, and potential applications.

Following this, I detailed the methods for the remote collection of motor data,

a necessity brought about by the COVID-19 pandemic. I adapted traditional in-

person motor learning experiments to a remote setting by developing a hybrid plat-

form that integrated the advantages of online research with controlled, lab-based

elements. The methods of operating procedure included pre-screening of partic-

ipants, enrolment and study preparation, and the provision of essential materials

such as high-resolution cameras and standardized keyboards. I described the ex-

perimental sessions conducted in participants’ homes, post-participation activities

including the return of equipment, and the procedures for material receipt, ensuring

data integrity and consistency throughout the study.

Finally, I described the analysis pipeline for pose data, focusing on the appli-

cation of DLC for markerless pose estimation and HUB-DT for behavioural anno-

tation. DLC was first employed to extract x and y poses of finger movements from

video of the keypress task, generating frame-by-frame coordinates for each digit.

These data were transformed using Morlet wavelets to capture both spatial and tem-

poral features of behaviour, projecting the data into a high-dimensional behavioural
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space. UMAP was then applied to fit the high dimensional wavelet projections

into a two-dimensional embedding, preserving local and global structures. Hierar-

chical clustering using HDBSCAN identified clusters in the 2-D embedded space. I

developed a custom synergy analysis pipeline to analyse clustered behaviours in de-

tail, including calculations of keypress counts, durations, normalized frequencies of

keypress counts, as well as velocity, acceleration, and digit overlap. Analyses such

as JSD, permutation tests, and Stouffer’s method, were conducted to quantitatively

assess the development of motor synergies across trials and participants.

In sum, the methods detailed in this chapter were developed to support Studies

1 and 2 of this thesis, enabling reliable remote data collection and analysis of motor

sequence learning. The following chapters will present data from Studies 1 and 2,

on the timing and development of motor synergy in motor sequence learning.

Table 2.4: Summary of tools and parameters used in Studies 1 and 2

Stage Details

Pose Estimation Tool: DeepLabCut (DLC)
Parameters: Tracked 5 digits on left hand; 120 fps, 720p. Custom-
trained model per participant using 200 manually labelled frames.

Behavioural Clustering Tool: HUB-DT
Parameters: Morlet wavelets (25 scales); UMAP (n neighbours =
30, min dist = 0.3); HDBSCAN (min cluster size = 50).

Dimensionality Reduction Tool: UMAP
Parameters: Applied to wavelet output. Metric = cosine or Eu-
clidean; 2D output.

Clustering Tool: HDBSCAN
Parameters: Applied to 2-D UMAP space. min cluster size = 50,
min samples = 10. Clusters refined via stability index.

Similarity Metric Tool: Jensen–Shannon Divergence
Use: Compared synergy distributions across early and late trials.

Statistical Tests Tools: Permutation testing, Stouffer’s method
Parameters: 100,000 shuffles for null distribution; combined p-
value via Z-score aggregation.



Chapter 3

MOTOR SYNERGY CHANGES

SIGNIFICANTLY WITH

PRACTICE AND LARGELY IN

EARLY-STAGE LEARNING

“Beginnings are such delicate times.”

— Frank Herbert

3.1 Introduction
Motor skill acquisition enables individuals to perform activities ranging from basic

daily tasks to complex professional and athletic skills. Early stages of motor se-

quence learning are characterised by rapid performance improvements as learners

transition from isolated movements to coordinated sequences. Understanding the

mechanisms underlying these rapid enhancements is crucial for developing effec-

tive training and rehabilitation strategies (Shadmehr and Krakauer, 2010).

Sequential motor skills, such as playing a musical instrument or typing, require

integrating individual movements into fluid sequences, forming multi-effector mo-

tor synergies. These synergies support tasks like grasping, typing, finger spelling,
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and haptic exploration (Turvey, 2007).

Although significant performance gains occur during early learning, the spe-

cific kinematic mechanisms facilitating these improvements are not fully under-

stood. Previous research suggests that increased movement speed directly benefits

skilled performance of motor sequences (Doyon and Ungerleider, 2002), but these

studies often focus on simple, discrete tasks involving a single limb and effector,

limiting generalisability to real-world scenarios. Understanding how multiple ef-

fectors coordinate in continuous motor sequence skills requires analysing the kine-

matics of each effector over time. The timeline of motor synergy development

across effectors during early learning remains unknown, or at the very least, evi-

dence disagrees (Latash, 2008b; Karni et al., 1995).

Early and late stages of motor learning engage different neural substrates.

Early learning involves increased activity in brain regions responsible for atten-

tion, planning, and error correction, such as the prefrontal cortex, premotor areas,

cerebellum, and parietal regions (Hikosaka et al., 2002). As learning progresses,

reliance shifts towards the primary motor cortex with decreased activation in pre-

frontal areas, reflecting skill automatisation and reduced cognitive demands (Pol-

drack et al., 2005). While my study focuses on behavioural aspects, acknowledging

these neurological processes provides context for understanding how stages of mo-

tor learning may influence motor synergy development.

Determining the rate at which synergies develop during early learning is es-

sential for tailoring training programmes to maximise motor skill acquisition. If

synergy formation occurs rapidly, interventions can enhance early motor transfor-

mations through targeted practice strategies. Conversely, if synergies develop grad-

ually, training may need to support ongoing motor synergy emergence and use over

extended periods with sustained practice and reinforcement.

Current Study

Study 1 aims to understand the rate at which motor synergies develop during early

and late stages of learning a novel motor sequence. I examined changes in mo-

tor synergy use across practice trials to quantify synergy development using JSD
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between motor synergy distributions. Twenty healthy participants learned a five-

element keypress sequence over two training sessions, with the first session on Day

1 and the second 24 hours later.

I hypothesised that multi-effector motor synergy development would be sig-

nificantly greater during the early stages of learning than during later stages. This

expectation is supported by evidence indicating that rapid skill gains occur early

in the learning process due to swift neural and behavioural adaptations (Dayan and

Cohen, 2011). Additionally, studies have shown that muscle synergies can develop

quickly in natural motor behaviours, such as grasping, suggesting that the nervous

system efficiently organises motor elements into coordinated patterns during initial

practice (d’Avella and Bizzi, 2005; Overduin et al., 2012). While these findings

highlight the importance of synergies in manual behaviours requiring coordinated

muscle activity, they do not indicate whether such rapid synergy development is

possible in continuous motor sequence tasks. I expected minimal changes in syn-

ergy formation during later stages, indicating a plateau in both performance and

motor pattern optimisation. Furthermore, I anticipated that skill gains - measured

as the number of correct sequences performed per second - would correlate with

changes in synergy measures during early learning but not during later stages.

By clarifying the timeline of motor synergy development during early learn-

ing, this study aims to enhance understanding of the kinematic mechanisms under-

lying rapid skill acquisition. The findings may inform the design of training and

rehabilitation protocols by identifying critical periods when interventions can most

effectively promote motor skill development.

Significance and Implications

Understanding the rate and extent of motor synergy development during early learn-

ing has significant implications for neuroscience, physical therapy, and skill train-

ing. If most synergy formation occurs during initial practice sessions, training pro-

grammes can focus on this critical period, incorporating strategies that enhance

synergy development. This approach may lead to more efficient learning processes

and improved motor performance.



3.2. Methods 108

In rehabilitation settings, identifying when motor synergies develop can in-

form interventions for patients recovering from motor impairments. By targeting

early learning phases, therapists may facilitate the re-establishment of functional

movement patterns and expedite recovery. Additionally, understanding the plateau

in synergy development can help determine when to introduce new challenges or

variations in training to promote continued motor adaptation. Overall, this research

contributes to our understanding of motor skill acquisition by exploring the tempo-

ral dynamics of motor synergy development during early learning.

3.2 Methods
Methods for Study 1 are exhaustively detailed in Chapter 2, but I will provide a

brief overview here of those elements most relevant to the proceedings.

3.2.1 Overview

In Study 1, I used high-definition video capture of participant movements through

online, remote data collection methods to record performance in a motor sequence

learning task. Participants learned to type the sequence 4-1-3-2-4 as quickly and

accurately as possible, with each digit specifically assigned to one number: the in-

dex digit for number 4, the middle digit for number 3, the ring digit for number 2,

and the little digit for number 1. Motor sequence skill learning was captured using

the online platform PsyToolkit, with performance quantified as correct sequences

per second (cs/s), reflecting both speed and accuracy in sequence execution. The

rate of skill acquisition was modelled using a logarithmic growth curve applied

to the cs/s data, allowing estimation of improvement over time and capturing the

gains characteristic of early stage learning. Digit movements captured in the videos

were analysed using DLC to estimate pose data across all trials. Pose data were

dimensionally expanded using Morlet wavelet transformations, projecting the data

into a time-frequency domain to capture both spatial and temporal features of the

movements. Wavelet projections were subsequently fitted into a two-dimensional

space using UMAP. With dimensionality reduction and hierarchical clustering via

HDBSCAN, I analysed the pose data to discover motor synergy use over trials.
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Kinematic analyses were conducted across participants for each digit within each

clustered behaviour to determine motor synergies, including calculations of key-

press counts, duration of behaviour, normalised frequency of keypresses, velocity,

acceleration, and digit overlap. Please take note that use of the phrase ’keypress

counts’ here is used to illustrate the number of keypresses made within a clus-

tered behaviour and is separate from the accurate or inaccurate keypresses made

and counted by Psytoolkit during the online task. Because data were processed in-

dividually through UMAP and HDBSCAN - and since there is no practical method

to perform embedding alignment on UMAP embeddings - I performed permutation

tests on individual participant JSD scores between early and late stage learning tri-

als. To determine whether significant changes in motor synergy use occurred across

trials at the group level, I used Stouffer’s method to combine p-values from individ-

ual analyses. My approach emphasises the necessity for individual data processing

and allows for an understanding of motor synergy development across participants.

3.2.2 Inclusion criteria

Participants were recruited if they were between 18 and 90 years old, spoke English,

and were right-handed. Additional inclusion criteria required participants to have

an internet-connected home computer with a USB port or USB port adapter, be

able to participate in a videoconference with a member of the research team, and be

capable of typing with their left hand without pain or discomfort. Participants had

to be located within the United States to receive study materials. Exclusion criteria

included being a staff member of Human Cortical Physiology Section (HCPS; my

section with the NIH). If participants were unable to receive materials within the

United States, they were required to withdraw from the study or defer participation

until they could receive materials in the country.

3.2.3 Participants

Twenty naive right-handed healthy participants (12 women; mean ± SD age 29.2

± 2.12) gave their written informed consent to participate in the project, which

was approved by the Combined Neuroscience Institutional Review Board of the
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National Institutes of Health (NIH). The study was split between two days, 24 hours

apart from one another. However, at the time of pre-screening and recruitment, 10

of the 20 participants declined to participate on the second day, resulting in only

10 participants completing both sessions. Active musicians were excluded from the

study (Abraham and Drory, 2014). The sample size was determined via a power

analysis of skill learning data collected using the same task (Censor et al., 2014).

3.2.4 Study design

Study 1 uses a within-subject, repeated-measures experimental design to investigate

changes in motor synergy during motor sequence learning over 10 s periods of prac-

tice and rest. Participants learned a motor sequence task - typing the sequence 4-1-

3-2-4 as quickly and as accurately as possible, with each digit specifically assigned

to one number. Over two days, participants completed 36 trials per day, with each

trial consisting of 10 s of practice followed by 10 s of rest. The primary outcome

measure was the JSD, calculated from pose estimation data to quantify differences

in motor synergy distributions between early and late stages of learning. By em-

ploying a within-subject design with repeated measurements, the study allowed for

direct comparison of each participant’s motor performance across different learn-

ing stages. This design minimised inter-subject variability and enhanced statistical

power, making it well-suited for detecting significant changes in motor synergy use

attributable to the learning process.

3.3 Results
In Figure 3.1 (Left), we see skill gains through the early learning stage over Day 1.

The black line represents trial means, while the red line shows a fitted logarithmic

model that effectively captures the rapid improvement in correct sequence speed

(measured in cs/s) during the initial trials, eventually levelling off at 95% saturation

by Trial 12 (the dashed, vertical line). This plateau indicates the end of the early

learning phase for the motor sequence. The mean correct sequence speed at Trial 1

is 0.472 (SEM = 0.048), increasing to 0.949 (SEM = 0.062) at Trial 12, correspond-

ing to the 95% gain in performance. The gain observed from Trial 1 to Trial 12 is
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0.476 ± 0.078, reflecting significant improvements in participants’ performance.

Data from Day 2 show a distinct phase of post-warm-up performance. The

fitted logarithmic model and trial means indicate that the initial improvement on

Day 2 is more modest, as participants quickly return to their prior skill level after

an initial warm-up phase. The performance begins at a mean of 0.839 cs/s (SEM

= 0.075) in Trial 1 and reaches 1.075 cs/s (SEM = 0.072) by Trial 3, which is

marked as the point of 95% skill saturation following the warm-up. The observed

gain from Trial 1 to Trial 3 is 0.237 ± 0.104. The reduced variability and plateaued

performance beyond Trial 3 indicate a stabilisation of motor skill, suggesting that

participants quickly regained proficiency before entering a phase characterised by

stable, consistent execution of the learned motor sequence.

Figure 3.1: Skill was measured in correct sequences per second (cs/s). The black line indi-
cates mean trial performance, and the red line shows the fitted logarithmic model. Vertical
dashed lines mark the point of 95% skill gain - Trial 12 on Day 1 and Trial 3 on Day 2.
Shaded regions represent the standard error of the mean (SEM) across participants.

Results of the permutation test between Trials 1 and 12 are summarised in

Table 3.1, presenting the observed JSD value, corresponding permutation p-values,

and Z-scores for each of the 20 participants. Notably, several participants exhibit

significant p-values, specifically Participants 001, 003, 006, 018, 019, and 020, with

p-values below the conventional threshold of 0.05, suggesting that their observed

JSD values are unlikely to have occurred by chance. The corresponding Z-scores

for these participants are also among the highest, indicating a stronger deviation

from what would be expected under the null hypothesis.

The variability in p-values and Z-scores across participants highlights differ-
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Table 3.1: Permutation Test Between Trials 1 and 12.

ences in individual synergy uses across trials. The Stouffer’s method, which aggre-

gates p-values across all participants, yields a Stouffer’s P-value of 6.083×10−10,

suggesting that, collectively, the results provide strong evidence of an effect when

comparing Trials 1 and 12. This Stouffer’s P indicates a consistent trend across

participants, supporting the hypothesis that there is a difference in motor synergy

behaviour use between the two trials across the cohort.

Results of the permutation test between Trials 13 and 36 in Table 3.2 show

subtle variability across participants in the observed JSD values and correspond-

ing p-values. Notably, Participant 009 has a lower permutation p-value (0.0112),

suggesting a significant deviation when compared to other participants, with a cor-

responding Z-score of 2.5355. This stands out in contrast to the generally higher

p-values observed among most other participants, indicating a lack of significant

divergence between the trials for the majority of the cohort.

Stouffer’s combined p-value of 0.1065 suggests that, when considering all par-

ticipants collectively, there is no strong evidence of significant differences between

Trials 12 and 36. This aligns with the generally non-significant p-values for indi-

vidual participants, implying that the transition between these trials does not exhibit



3.3. Results 113

Table 3.2: Permutation Test Between Trials 13 and 36.

a pronounced overall effect and no significant change in motor synergy use.

Table 3.3: Permutation Test Between Trials 36, Day 1 and Trial 3, Day 2.

Permutation test results between Trials 36, Day 1, and Trial 3, Day 2 show

little variation across participants, as evidenced by consistently high permutation p-

values. The observed JSD values range from 0.070 to 0.4767, and the correspond-

ing Z-scores are notably low, indicating a lack of strong deviation from the null

hypothesis. The consistently high p-values (mostly above 0.96) suggest that there is

no significant difference in the observed motor synergy distributions between these

trials for the majority of participants. This consistency is underscored by the Stouf-
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fer’s p-value of 0.9256, which suggests that the differences across motor synergy

distributions between the two trials are not statistically significant.

Overall, data indicate that the transition between Day 1 and 2 exhibits stability

in participants’ motor synergy use, as reflected in the low Z-scores and the high

permutation p-values. This could imply that motor synergies following overnight

sleep dependent consolidation and ‘warm up’ on the following day do not undergo

significant alterations, suggesting a possible plateau for synergy development.

Figure 3.2: Kinematic Changes Over Early Learning. Weighted averages and confidence
intervals are shown in each plot. Key press count (A) shows the average number of key
presses made by participants in each synergy behaviour. Duration of synergy behaviour
(B) shows the average duration of synergy behaviour in milliseconds. Normalised data (C)
shows a standardised score of key presses made when key press counts are normalised to
120. This data shows how key press counts per synergy behaviour increase over trials re-
gardless of duration. Overlap data (D) shows the extent to which, in percent of total frames
of the synergy behaviour, digit movements ”overlapped” with one another. Generally, over-
lap means that a proceeding key press movement (n+1) had a detectable onset prior to the
offset of the preceding key press movement (n).

Kinematics data - including Key press count, Duration (in ms), Normalised Hz,

and Overlap - over the course of early learning Trials 1 to 12, and up to Trial 36, are

shown in Figure 3.2. A trend of improvement is observed across all metrics. Key
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press count weighted average increases from 2.649 (Trial 1) to 3.440 (Trial 12), a

gain of 0.791 ± 0.364 (SEM), indicating enhanced speed and increased consistency

as denoted by the standard error of the mean. Duration, which is the weighted av-

erage of synergy durations used in a trial, shows a reduction from 1065.804 ms

(Trial 1) to 968.286 ms (Trial 12), indicating a slight decrease in synergy lengths

over early stage learning. The difference of -97.517 ± 107.387 suggests consider-

able variance in individual performance, as seen in the large SEM values. Keypress

count normalised to 120 Hz also displays a positive trend, increasing from 2.432 to

3.705 between Trials 1 and 12, with a difference of 1.274 ± 0.281, reflecting that

synergies contained more keypresses over early stage learning regardless of dura-

tion. This trend is further supported by the increase in overlap percentage, which

rose from 5.642% in Trial 1 to 17.273% in Trial 12, with a difference of 11.631 ±

2.249. The increase in overlap suggests that participants became better at chunk-

ing individuated keypress movements, thereby reducing the temporal gaps between

successive actions. Overall, the observed changes point to an improvement in both

temporal and spatial integration of motor actions, consistent with the development

of multi-effector synergy as participants progressed through early stage learning.

Figure 3.3: Each subplot displays a linear regression (gray line) with shaded 95% confi-
dence intervals, illustrating the relationship between mean keypress count and three kine-
matic measures: (A) Duration of synergy behaviour (ms), (B) Normalised keypress count
(per 120 frames), and (C) Overlap percentage. Each dot represents one trial in early learn-
ing (12 trials shown). Inset statistics include the coefficient of determination R² (explaining
the proportion of variance accounted for by the linear model), corresponding p-value, and
standard error of the mean (SEM).

Fig 3.3 shows three correlations with original Keypress count, including Dura-

tion in ms, Normalised key press count in Hz, and Overlap in %. The relationship
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between key press count and Duration (in ms) revealed a weak negative correlation

(R² = 0.169, p = 0.1836), suggesting that increased key presses are loosely associ-

ated with a decrease in synergy duration, albeit not significantly. This could imply

that the length of motor synergies does not necessarily decrease as a function of in-

creasing keypress count per synergy over early stage learning. The second and third

plots examine the associations between Key press count and two additional metrics

- normalised frequency (120 Hz) and overlap percentage - both of which demon-

strate strong positive correlations (R² = 0.777 and R² = 0.805, respectively, and p

< 0.001). These correlations indicate that as participants increase their number of

key presses, they also show a greater number of accurate keypresses per 120 frames

(as seen in normalised frequency) and greater overlap between digit movements,

reflecting the emergence of motor synergies. This pattern shows how skill in motor

sequences is characterised by increased speed, yes, but also enhanced consistency

and overlap in the execution of multi-effector synergies. A summary of the study

results is presented below in Table 3.4.

Comparison Measure Result

Trials 1–12 (Day 1) Stouffer’s P 6.083×10−10

Trials 13–36 (Day 1) Stouffer’s P 0.1065

Trials 36 (Day 1) vs Trial 3
(Day 2)

Stouffer’s P 0.9256

Keypress Count (Trial 1–12) Mean ∆ per synergy +0.791±0.364
Synergy Duration (Trial
1–12)

Mean ∆ in ms −97.517±107.387

Normalized Keypress (Trial
1–12)

Mean ∆ per 120 Hz +1.274±0.281

Overlap (Trial 1–12) Mean ∆ in % +11.631±2.249%

Table 3.4: Summary of key statistical results from Study 1, including permutation test re-
sults and kinematic changes. Stouffer’s P values are derived from participant-level permu-
tation tests comparing JSD values between trial distributions. Reported kinematic measures
reflect the mean change (∆) and standard error across early learning.

3.4 Discussion
Study 1 investigated the early stages of motor sequence learning by analysing the

development of motor synergies as participants practised a five-element keypress
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sequence over two training sessions. I characterised motor synergies at the trial

level by identifying clusters in dimensionally reduced pose data using HDBSCAN,

considering each cluster as a motor synergy. I examined and confirmed these syner-

gies by calculating the underlying kinematics of each HDBSCAN-determined clus-

ter. Motor synergy development over time was quantified by calculating JSD scores

between synergy distributions across trials. My primary hypothesis was that sig-

nificant motor synergy development would occur in the early trials, stabilising as

participants reached a performance plateau. Results confirmed this hypothesis, as

synergy metrics indicated rapid development within the first 12 trials, followed by

minimal changes in later trials. Moreover, kinematic data suggested an improve-

ment in multi-effector coordination, with increased keypress overlap and consis-

tency across trials. Collectively, these findings show the timeline of motor synergy

formation and its impact on motor sequence skill learning.

3.4.1 Timing of Motor Synergy Formation in Early Learning

The aim of Study 1 was to examine the timeline and process of motor synergy

emergence during the early stages of learning a novel motor sequence skill. While

previous research has explored motor synergies in various contexts, few studies

have investigated their development at this granular timescale. By leveraging a

time-resolved analysis of motor sequence learning, this study shows when and how

motor synergies begin to form and stabilise.

Findings indicate that motor synergy formation begins at the start of learning,

with significant adjustments observable across initial trials. The rapid emergence

of synergies suggests that even in the earliest stages of learning, participants are

capable of initiating coordinated movements that optimise task performance. These

findings align with theories suggesting that the nervous system can quickly integrate

sensory feedback and motor output to facilitate efficient task execution (d’Avella

and Bizzi, 2005; d’Avella et al., 2006). By employing high-resolution kinematic

data and using JSD to quantify changes in synergy distributions over time, I provide

quantitative evidence of rapid and stable motor adjustments. This interpretation is

further supported by the internal consistency of synergy labels over time. Because
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clustering was applied in a reduced wavelet space, substantial drift in movement

structure would have led to reassignment into a different cluster or designation as

noise. Thus, the persistence of synergy labels across trials implies behavioural re-

currence, not silent drift.

It is important, however, to contextualise these results within the specific task

constraints of the study. The use of a fixed keypress sequence, which participants

were instructed to perform as quickly and accurately as possible, inherently binds

the complexity of motor learning involved, not only to the task but also to the re-

quirements, i.e., speed. Such tasks, with their low skill ceiling, are well-suited for

capturing rapid skill gains but may not fully reflect the processes involved in acquir-

ing more complex motor skills, e.g., a tennis serve that involves the entirety of the

body. The observed rapid synergy formation may be more reflective of the task’s

structured, repetitive nature rather than a universal characteristic of motor learning

(Kitago and Krakauer, 2016).

Given this understanding, while the study suggests that synergies can develop

quickly within motor sequences executed in a continuous, circular manner, it re-

mains speculative to assume that similar patterns would be observed in more com-

plex motor learning contexts, such as those involving more intricate requirements.

As such, while these findings may inform strategies for optimising early-stage learn-

ing in highly structured tasks, their applicability to broader training or rehabilitation

contexts should be approached critically.

In particular, the idea that targeted interventions could enhance synergy forma-

tion in early learning phases may hold for tasks with clearly defined motor patterns,

but it remains uncertain whether such strategies would be effective in scenarios

that have more variable motor patterns. Further research exploring a wider range

of motor tasks, especially those with higher skill ceilings and more complex skill

demands, is needed to determine the generalisability of these findings.

3.4.2 Notes on Participant Specific Analyses

Analysing motor synergy development at the participant level allowed for a de-

tailed capture of each participant’s unique learning trajectory. This individualised
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approach highlighted the variability in synergy formation, revealing distinct kine-

matic patterns that might have been obscured by pooling data across participants.

Indeed, the range of motor synergy use each participant exhibited in response to the

task demands discovers a nuanced view of motor synergy development.

A limitation of this participant-specific approach was the challenge of embed-

ding alignment across participants. Individual UMAP embeddings created for each

participant could not be merged post hoc for direct group-level comparisons, limit-

ing my ability to generalise findings across the cohort. This lack of a standardised

embedding space meant that while I captured fine-grained details for each partici-

pant, any group-level similarities in synergy patterns remained less accessible.

Further, computational demands were high as each participant’s data under-

went independent processing. Although resource-intensive, this approach preserved

the integrity of each participant’s unique motor patterns, which was crucial for un-

derstanding variability in early motor learning. However, this individualised method

would be impractical to scale in larger settings, such as hospitals, where stream-

lined, efficient processing across patients is essential. Implementing individualised

analysis on a large scale would require significant computational resources and time,

which may not be feasible in real-world clinical or remote care contexts.

In summary, individual participant analysis in Study 1 provided valuable in-

sights into personalised trajectories of motor learning but also presented challenges

in generalising these findings across the cohort. Addressing these limitations could

refine future approaches to analysing motor synergy development and improve ap-

plicability in larger-scale settings.

3.4.3 Implications for Training and Rehabilitation

Findings from Study 1 highlight the value of focusing on early-stage learning of

skill acquisition in healthy individuals. The rapid emergence of motor synergies

observed in the data suggests that the initial phase of practice could be particularly

conducive to fostering coordinated movement patterns (d’Avella et al., 2006). For

athletes, musicians, and other skill-based performers, early interventions that em-

phasise multi-effector coordination could accelerate the integration of individual
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actions into fluid, efficient sequences. Structuring practice drills to focus on spe-

cific key transitions may help reinforce the synergy structures that support seamless

execution. Additionally, introducing task variations after foundational synergies are

established could further enhance adaptability, enabling performers to adjust to new

or complex motor challenges.

However, translating these findings to rehabilitation, especially for individuals

with neuromotor impairments such as stroke or traumatic brain injury (TBI), neces-

sitates a more cautious approach. Research indicates that such patients often expe-

rience disruptions to corticospinal pathways, leading to impaired motor control and

the reliance on compensatory, rather than adaptive, movement patterns (Kitago and

Krakauer, 2016). Unlike the rapid synergy formation seen in healthy participants,

patients recovering from neurological damage may not follow the same trajectory

due to structural and functional changes in the brain.

Instead of exclusively prioritising the rapid development of new motor syner-

gies, rehabilitation protocols may benefit from a balanced approach that focuses on

both optimising the functionality of existing, albeit compensatory, synergies while

still attempting to promote the formation of new, more adaptive patterns. While

some patients may show the potential for synergy reformation, others might reach

a plateau, where further attempts to modify deeply ingrained compensatory strate-

gies yield diminishing returns. For these individuals, the focus should shift towards

refining existing motor patterns to improve motor efficiency, reduce biomechanical

strain, and lower the energy costs of movement.

At the same time, insights gained from the observed timeline of synergy sta-

bilisation in healthy individuals can still inform rehabilitation practices. Early, in-

tensive practice sessions can be useful, but the emphasis should be on clinical mon-

itoring to detect when a patient may have reached the limits of their capacity for

synergy development. An adaptive strategy ensures that the focus remains on real-

istic and patient-centred rehabilitation goals, where training intensity and strategy

can be adjusted based on observed progress.

Simultaneously encouraging the formation of new motor synergies and op-
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timising existing, compensatory patterns may tailor rehabilitation programmes to

meet the individual needs of patients. Continuous monitoring and reassessment

would be essential to identify patient maximums for motor synergy modification.

At that point, the rehabilitation strategy could shift towards optimising the efficiency

and functionality of existing motor strategies to support sustained improvements in

daily activities and quality of life.

Ultimately, a flexible and responsive approach - grounded in both the observed

potential for early synergy formation in healthy individuals and the realities of neu-

rological recovery - could lead to more effective, individualised interventions that

maximise patient outcomes without setting unattainable expectations. Future re-

search is needed to explore how this balanced strategy of promoting new synergies

and optimising existing patterns can be systematically implemented in clinical set-

tings to enhance motor recovery.

3.4.4 Limitations and Methodological Considerations

One important limitation of this study, and others like it (Bonstrup et al., 2019; Buch

et al., 2021), was the brief training period, which consisted of only two practice ses-

sions within a 24-hour span. While the study design intentionally targeted the early

stages of motor learning, a longer training period may be necessary to observe the

stabilisation and refinement of motor synergies beyond the initial rapid learning

phase. The short duration likely emphasised the formation of synergies that sup-

port immediate performance gains rather than those that underpin long-term skill

retention and adaptability.

Moreover, the task required participants to execute the sequence at maximum

speed and accuracy from the outset, which may have influenced the nature of the

synergies observed. In many domains, especially sports and high-level motor per-

formance, the capacity to execute tasks rapidly and precisely is a hallmark of ex-

pertise. However, for participants acquiring a de novo skill, the speed requirement

may have compelled participants to form motor synergies more rapidly and with

less explicit consideration than they would under less demanding conditions.

In this context, the results emphasise how motor synergies might develop un-
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der conditions that prioritise immediate performance over gradual refinement. Such

conditions may encourage the formation of synergies that benefit high-speed exe-

cution but are not yet optimised for slight variations or the ability to adjust to new

movement goals - characteristics that would emerge with extended practice under

variable conditions. This limitation suggests that the synergies detected in this study

could be specific to scenarios that emphasise rapid skill acquisition under pressure,

which may differ from synergies formed through prolonged, gradual practice. Thus,

while the study captures an intriguing aspect of early-stage motor learning, future

research should explore how these initial synergies evolve over extended periods

and whether they transition into more flexible patterns with continued practice.

These limitations point toward two promising directions for future research.

First, longitudinal studies spanning weeks or months of practice would enable re-

searchers to track whether early-emerging synergies become further refined, reor-

ganised, or supplanted by more efficient patterns over time. Such work could clar-

ify whether early-stage coordination structures form the basis for long-term motor

habits or whether they reflect transient solutions tailored to initial task demands.

Second, incorporating more complex or ecologically valid tasks - such as variable

sequence structures, dual-task interference, or real-world motor challenges - could

reveal how synergies adapt under pressure, generalise across contexts, or break

down under cognitive load. Together, these extensions would help distinguish tran-

sient coordination from robust, transferable motor skills.



Chapter 4

MOTOR SYNERGY CHANGES

LARGELY FOLLOWING

PERIODS OF REST

INTERLEAVED WITH PRACTICE

“Sweet is the rest after labour.”

— Ovid

4.1 Introduction
As shown in Study 1, early stages of motor sequence learning are characterised by

rapid performance improvements. During this phase, learners transition from exe-

cuting individuated movements to performing multi-effector motor sequence syn-

ergies with proficiency (Karni et al., 1995). Understanding the fine-grained time

course and mechanisms underlying these rapid changes in motor behaviour is cru-

cial for developing effective training protocols and rehabilitation strategies.

Recent research has highlighted that a significant portion of early learning

gains occurs not only during active practice (online), but also during short rest

periods interleaved with practice (offline). These micro-offline gains - defined as
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short-term performance improvements observed between successive practice blocks

- suggest that consolidation processes may operate within a single training session,

not solely between sessions (Bonstrup et al., 2019). This challenges the traditional

view that continuous practice is essential for skill acquisition, and instead under-

scores the functional role of rest in the learning process.

This phenomenon raises important questions about the kinematic mechanisms

that facilitate rapid skill consolidation during short rest periods. While it is estab-

lished that rest can enhance performance, it remains unclear whether specific motor

patterns or synergies develop during these brief intervals (Fricke et al., 2020). If rest

contributes to the emergence of motor synergies, incorporating strategic breaks into

training could optimise learning outcomes. Conversely, if synergies form mainly

during active practice, rest may serve to stabilise rather than enhance these patterns.

Study 1 showed that motor sequence skill improvements in early learning re-

flect both increased movement speed and consistent overlap in digit movements.

However, the precise timeline of these changes - whether they emerge during rest

or practice - remains unknown. Some evidence suggests multi-digit synergies may

appear rapidly, within seconds, while other findings point to a slower progression

over minutes or hours (Gentner et al., 2010). Clarifying when and how these syner-

gies develop will inform strategies for optimising motor learning and rehabilitation

protocols (Dayan and Cohen, 2011).

Current Study

The present study aims to investigate the influence of rest periods on the develop-

ment of motor synergies during the early stage of learning a novel motor sequence

skill. Specifically, I examine whether significant synergy formation occurs during

rest periods (offline) or active practice periods (online) within training sessions.

Twenty healthy participants practised a five-element keypress sequence over 36 tri-

als, with practice sessions interleaved with rest periods. The methods for data col-

lection were identical to those used in Study 1 on synergy development across early

and late learning stages.

I hypothesized that motor synergies would develop primarily during rest pe-



4.1. Introduction 125

riods within early learning trials, evidenced by significant measures of Jensen-

Shannon divergence in motor synergy distributions during these intervals. This

would suggest that rest facilitates rapid consolidation and refinement of motor syn-

ergy executions, contributing to performance improvements upon resumption of

practice. An alternative hypothesis considered that motor synergies may primar-

ily form during active practice, with rest periods contributing to stabilization rather

than further development.

To quantify synergy development, I analysed changes in motor behaviour, i.e.

distributions of synergy use over trials, using JSD. Skill gains were assessed by

measuring the number of correct sequences performed per second. By comparing

synergy development and performance improvements during rest and practice peri-

ods, I aimed to show the temporal dynamics of motor learning and the specific role

of rest in facilitating skill acquisition.

Significance and Implications

Understanding how periods of rest influence the development of motor synergies

during early learning has implications for neuroscience, psychology, physical ther-

apy, and skill training. If rest periods substantially contribute to synergy formation,

incorporating strategically timed breaks into training programs could enhance learn-

ing. This approach may be especially beneficial in rehabilitation settings, where

patients need to relearn motor skills and integrate them into functional activities.

By identifying the conditions that facilitate rapid skill consolidation, practi-

tioners can develop strategies to optimize motor learning outcomes. Recognizing

the critical role of rest periods allows for tailored interventions that promote the

development of efficient movement patterns.

This research advances our understanding of early motor skill acquisition

mechanisms. By elucidating the impact of rest periods on motor synergy devel-

opment, this work provides valuable insights that can optimize training protocols

across various applications, ultimately improving outcomes for individuals seeking

to enhance or restore motor function.
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4.2 Methods
Methods for Study 2 are exhaustively detailed in Chapter 2, but I will provide a

brief overview here of those elements most relevant to the proceedings.

4.2.1 Overview

In Study 2, I assessed motor sequence skill changes over specific periods of practice

and rest during early-stage learning. Twenty participants learned the same motor

sequence task as in Study 1 - typing the sequence 4-1-3-2-4 with each digit specif-

ically assigned to one number: the index digit for number 4, the middle digit for

number 3, the ring digit for number 2, and the little digit for number 1. Perfor-

mance was measured as correct sequences per second (cs/s) across all trials. For

each participant, the trial at which 95% of total skill gains were achieved was iden-

tified and denoted as T. This marked the end of early-stage learning and defined the

window over which subsequent behavioural and kinematic changes were analysed.

This threshold was chosen to isolate the rapid initial phase of learning, following

prior work showing that early trials are most sensitive to micro-timescale learning

dynamics (Bonstrup et al., 2019). Micro-online learning, occurring during practice

periods, was defined as the change in cs/s from the beginning to the end of a trial

- specifically, the difference between the first and final full seconds. Micro-offline

learning, corresponding to rest periods, was defined as the change in cs/s between

the last second of one trial and the first second of the next. These one-second win-

dows were selected because the cs/s metric is computed at a one-second resolution,

making it the most appropriate timescale for capturing fine-grained fluctuations in

performance. To assess changes in motor synergy use during these same intervals,

I computed the Jensen–Shannon Divergence (JSD) between synergy label distri-

butions at the beginning and end of each micro-online and micro-offline period.

Cumulative JSD values over the first T trials were used to quantify total synergy

change during practice and rest. Digit movements were extracted using DeepLab-

Cut (DLC), transformed via Morlet wavelets, and embedded into a two-dimensional

UMAP space. HDBSCAN clustering was then used to segment behavioural syner-

gies from the resulting time series. Unlike in Study 1, where permutation tests were
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used to compare specific trial pairs, the goal here was to assess whether the magni-

tude of micro-timescale synergy changes predicted overall learning. Accordingly,

I fit two linear regressions: one testing whether mean micro-online JSD predicted

total cs/s gain over early learning, and another for mean micro-offline JSD. This ap-

proach allowed us to directly examine whether within-trial or between-trial synergy

reorganisation better accounted for individual differences in learning trajectory.

4.2.2 Inclusion criteria

Participants were recruited if they were between 18 and 90 years old, spoke English,

and were right-handed. Additional inclusion criteria required participants to have

an internet-connected home computer with a USB port or USB port adapter, be

able to participate in a videoconference with a member of the research team, and be

capable of typing with their left hand without pain or discomfort. Participants had

to be located within the United States to receive study materials. Exclusion criteria

included being a staff member of Human Cortical Physiology Section (HCPS; my

section with the NIH). If participants were unable to receive materials within the

United States, they were required to withdraw from the study or defer participation

until they could receive materials in the country.

4.2.3 Participants

Twenty naive right-handed healthy participants (16 women; mean± SD age 22.4

± 2.63) gave their written informed consent to participate in the project, which

was approved by the Combined Neuroscience Institutional Review Board of the

National Institutes of Health (NIH). Active musicians were excluded from the

study(Abraham and Drory, 2014). The sample size was determined via a power

analysis of skill learning data collected using the same task (Censor et al., 2014).

4.2.4 Study design

Study 2 used a within-subject, repeated-measures experimental design to investigate

changes in motor synergy during motor sequence learning over short-term prac-

tice sessions, focusing specifically on micro-online and micro-offline assessments

within early-stage learning. Participants learned the same motor sequence task -
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typing the sequence 4-1-3-2-4 as quickly and accurately as possible, with each digit

specifically assigned to one number. Over a single day, each participant completed

36 trials, with each trial consisting of 10 seconds of practice followed by 10 sec-

onds of rest, ensuring consistent practice exposure across individuals. Outcome

measures included cumulative cs/s and JSD values during micro-online (practice)

and micro-offline (rest) periods within early stage of learning.

A within-subject design with repeated measurements allowed for direct com-

parison of each participant’s performance and motor synergy use during the micro-

on and -offline periods. I assessed whether performance gains and changes in motor

synergy occurred mainly during active practice or rest intervals within early-stage

learning. The design minimized inter-subject variability and enhanced statistical

power, making it well-suited for detecting significant changes in motor synergy use

and its relationship to micro-level learning processes during skill acquisition.

4.3 Results

Figure 4.1 illustrates skill learning from Study 2, depicting the progression in se-

quence speed (cs/s) across trials. The black line shows the trial means, while the

red line represents the fitted logarithmic model. The shaded gray area around the

trial means indicates the standard error of the mean (SEM), capturing variability in

performance across participants.

At Trial 1, mean cs/s is 0.444 (SEM ±0.034), establishing the baseline skill

level. By Trial 11, where participants reach 95% of their skill gain, mean cs/s

has increased to 0.853 (SEM ±0.043). The dashed line marks the point of 95%

saturation in learning. The total gain from Trial 1 to Trial 11 is 0.409 cs/s (SEM

±0.055), highlighting the rapid improvement in early trials. The close alignment of

the trial means with the logarithmic model shows the model’s accuracy in capturing

the early learning trajectory.

Figure 4.2 presents cumulative cs/s gains over the first 11 trials in Study 2,

segmented into micro-online and micro-offline periods. Each data point reflects the

cumulative change in correct sequence speed, with red representing online gains
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Figure 4.1: Study 2, Skill Performance (N = 20). Skill is measured as Correct Sequences
per Second (cs/s). The black line shows the mean performance across participants, with the
shaded region representing ±1 SEM. The red curve is a fitted logarithmic model capturing
early learning. The vertical dashed line marks Trial 11, which corresponds to the point of
95% total skill gain (T), defining the end of early-stage learning.

over practice and blue representing offline gains following rest. The y-axis, labelled

as cumulative cs/s, captures the progressive skill learning across trials.

Data highlights that offline gains, or the improvements occurring after rest,

consistently surpass online gains, underscoring that the majority of early learning

can be attributed to offline changes. For instance, at Trial 1, the cumulative offline

change reaches 0.187 cs/s (SEM ±0.028), while the online gain is 0.063 cs/s (SEM

±0.034). This pattern persists through Trial 11, where cumulative offline gains con-

tinue to drive the overall learning trajectory, suggesting that the offline periods play

a substantial role in skill acquisition during the early learning phase. Notably, be-

tween the last offline gain at Trial 10 (0.529 cs/s, SEM ±0.059) and the final online

gain at Trial 11 (0.409 cs/s, SEM ±0.055), there is a slight reduction, indicating

a stabilization as participants approach the 95% gain mark. The SEM bars indi-
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cate variability across participants, but the trend consistently favours offline gains,

demonstrating the significance of rest in skill consolidation.

Figure 4.2: Cumulative correct sequence speed (cs/s) gains are plotted across the first 11
trials of Study 2 (N = 20). Blue represents micro-offline gains (rest periods), and red repre-
sents micro-online gains (practice periods), with each point showing group means ±1 SEM.
Offline gains consistently exceed online gains across trials, suggesting that brief rest periods
contribute substantially to early learning.

Figure 4.3 illustrates cumulative sequence speed (cs/s) gains and motor syn-

ergy use over early learning in Study 2, with each dot representing an individual

participant’s mean. The left panel shows cumulative skill change segmented into

total, micro-online, and micro-offline gains. Total early learning is 0.409 cs/s (SEM

±0.055), with offline gains of 1.406 cs/s (SEM ±0.317) markedly outweighing the

online losses of -0.997 cs/s (SEM ±0.325). This pattern shows the dominant role of

offline, rest-driven gains in early learning, as offline periods account for the majority

of cumulative skill acquisition.

The right panel presents JSD values for the change in motor synergy use

through early learning. The offline JSD mean is 0.596 (SEM ±0.026), substan-

tially higher than the online mean of 0.316 (SEM ±0.028). These values suggest

that motor synergy use largely changes following offline intervals, paralleling the

cumulative skill gains. A paired t-test confirms a highly significant difference be-

tween online and offline JSD (p < 2.086e-15, t19 = -23.22), reinforcing the con-

clusion that offline periods are critical for consolidating motor synergy adjustments
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essential to skill learning.

Figure 4.3: Skill and Synergy Summary Over Early Learning.

Figure 4.4 shows the relationship between motor synergy use – over offline

and online periods – in JSD, and total early learning gains (cs/s) in Study 2. The

left panel shows a significant positive correlation between offline JSD and total

early cs/s gain (R² = 0.7112, p < 0.001, SEM = 0.2924). This strong relationship

suggests that changes in motor synergy use occurs following offline periods of rest

and are closely associated with improvements in total skill learning. In contrast, the

right panel illustrates the relationship between online JSD and total early learning

gains, where no significant correlation is observed (R² = 0.1037, p = 0.1661, SEM

= 0.4850). The lack of association between online motor synergy use and early

learning gains demonstrates the importance of offline processes in facilitating skill

learning, indicating that offline synergy use change is likely integral to early stage

skill learning and consolidation.

4.4 Discussion
Study 2 examined the temporal dynamics of motor synergy development during

early-stage motor sequence learning, focusing on the role of alternating practice
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Figure 4.4: Offline and Online JSD Correlations with Total Early Learning.

and rest periods. Training to learn a new skill commonly involves practice of alter-

nating periods of practice and rest (Christiansen et al., 2018; Song and Cohen, 2014;

Maier et al., 2019). Recent work showed that substantial performance gains during

early learning develop during rest periods interspersed with practice, a form of rapid

consolidation of skill (Bonstrup et al., 2019). In that vein, little is known about the

morphology of synergies over those periods of skill acquisition. To address those

questions in this study, participants practised a five-element keypress sequence over

36 trials, with skill gains assessed by correct sequences per second (cs/s) and syn-

ergy development measured using Jensen-Shannon divergence (JSD) in motor be-

haviour distributions. My primary hypothesis was that offline rest periods would

facilitate rapid motor synergy formation, contributing significantly to early learning

gains. Results confirmed this hypothesis, with offline gains surpassing those during

practice, as indicated by higher cumulative JSD values and significant correlations

with total skill improvements. Offline periods not only enhanced performance but

also promoted the transformation of motor synergies, characterised by increasingly

efficient and overlapping digit movements. In the context of learned skills, multi-

effector synergies may represent the manifestation of an optimal or most efficient

modular control strategy used by the central nervous system when delicate manual

coordination is required (Poggio and Bizzi, 2004; Gentner et al., 2010; Tresch and

Jarc, 2009; Santello et al., 2016; Fricke et al., 2020). These results underscore the

critical role of rest in skill consolidation, revealing a mechanism through which the
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central nervous system optimises motor sequence execution during early learning.

4.4.1 Temporal Dynamics of Micro-Offline Learning

Study 2 replicates previous findings showing that the most substantial performance

improvements in early motor sequence learning occur not during active execution

but during rest periods interleaved with practice (Bonstrup et al., 2019). These

micro-offline gains refer to short-term performance improvements observed be-

tween practice trials, and are quantified as increases in correct sequences per second

(cs/s) from the end of one trial to the start of the next.

This phenomenon challenges the traditional paradigm that views rest as merely

a break to prevent fatigue. Instead, these findings indicate that rest periods act as

active processing windows, during which the nervous system consolidates recent

motor experiences into more stable coordination patterns. One might think of rest

periods as akin to a “compression algorithm” applied to recent motor sequences:

the brain summarises, streamlines, and stabilises relevant patterns, reducing noise

and improving efficiency on the next attempt.

The rapid onset of consolidation during these brief rest intervals suggests that

motor memory is not only formed but also meaningfully reorganised in seconds -

not hours - after practice. This aligns with theories of fast synaptic plasticity, where

memory traces are strengthened immediately post-experience through reactivation

and integration into ongoing motor representations (Albouy et al., 2013).

Recognising rest as an active contributor to skill acquisition has clear practical

implications. Training protocols could be optimised by deliberately incorporating

short, strategically timed breaks to capitalise on this consolidation effect. This is es-

pecially relevant in time-constrained settings such as rehabilitation or elite training

environments, where efficient learning is essential. Future studies should further

investigate how the timing and duration of rest intervals modulate consolidation to

enhance motor performance.
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4.4.2 Neural Mechanisms of Rapid Consolidation

The enhancement of motor skills during rest intervals observed in Study 2 high-

lights the critical role of neural mechanisms underlying rapid consolidation. Rest

intervals of approximately 10 seconds, as used in this and previous studies (Bon-

strup et al., 2019; Buch et al., 2021), have been shown to be sufficient for trigger-

ing measurable consolidation effects, suggesting that neural replay and plasticity

mechanisms can initiate within seconds of rest onset. This reactivation is thought

to strengthen synaptic connections, thereby stabilising newly acquired motor mem-

ories. Functional neuroimaging studies support this mechanism, showing increased

activity in motor regions during rest following motor learning tasks (Albouy et al.,

2013). Such activity suggests that the brain continues to process and refine motor

information even in the absence of overt movement. Additionally, electrophysiolog-

ical studies have demonstrated that synaptic plasticity markers, such as long-term

potentiation, are enhanced during rest periods (Dong et al., 2021). These findings

indicate a continuum of overlapping processes between practice and rest, rather

than distinct phases of memory encoding and consolidation. The neural substrates

engaged during rest may involve not only the motor cortex but also the hippocam-

pus and other areas associated with memory processing (Tamaki et al., 2013). This

interconnected activity underscores the complexity of motor learning and the impor-

tance of considering both practice and rest in training paradigms. Understanding the

neural mechanisms of rapid consolidation has implications for optimising learning

strategies. By tailoring practice schedules to align with periods of heightened neural

plasticity during rest, it may be possible to enhance skill acquisition.

4.4.3 Motor Synergy Development During Rest Periods

Study 2 demonstrates that motor synergies evolve not only during active practice but

also significantly during rest periods in early motor sequence learning. These of-

fline intervals were associated with greater cumulative changes in motor behaviour

distributions, as quantified by JSD, indicating substantial reorganisation of synergy

structure compared to practice periods.

During rest, participants exhibited increased overlap and coordination among
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digit movements, suggesting that the central nervous system uses these intervals

to refine the temporal and spatial coupling of effectors. This likely reflects the

consolidation of more efficient multi-effector synergies that support smoother, more

integrated execution of the keypress sequence. These findings support the view

that motor synergies are adaptable control modules that are reshaped through both

experience and consolidation (Tresch and Jarc, 2009; Santello et al., 2016).

I propose that during short rest periods, the CNS may fine-tune inter-digit tim-

ing relationships to reduce temporal gaps and redundant motor output, optimising

the modular organisation of motor commands. This refinement process may im-

prove the efficiency of motor control, supporting more fluid and economical se-

quence production (Gentner et al., 2010; Poggio and Bizzi, 2004).

These results extend prior work by showing that not only does behavioural

performance improve during rest, but the underlying structure of motor coordination

also undergoes meaningful transformation - underscoring the functional importance

of rest in shaping motor skill development.

4.4.4 Distinctions Between Online and Offline Learning

My findings reinforce findings that a clear distinction exists between online gains

occurring during active practice and offline gains emerging during rest periods.

While practice is essential for encoding new movement patterns, the disproportion-

ate improvements observed during rest suggest that consolidation processes play a

more substantial role in early skill development than previously recognised. This

challenges the conventional emphasis on continuous practice for motor learning.

The differentiation between online and offline learning reflects distinct but

complementary mechanisms of memory stabilisation and refinement. Online learn-

ing engages neural circuits associated with motor execution and immediate feed-

back processing (Classen et al., 1998). In contrast, offline learning during rest may

involve synaptic reorganisation and the strengthening of neural pathways without

the interference of new motor inputs (Shadmehr and Mussa-Ivaldi, 2012).

These distinctions have practical implications for task design and training effi-

ciency. The assumption that skill improvements occur uniformly across practice is
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not supported by the data. Instead, incorporating rest intervals strategically within

practice sessions may maximise learning by allowing offline consolidation to oc-

cur. This approach could lead to more efficient use of training time and potentially

reduce the total amount of practice required to achieve proficiency.

Further research is needed to explore the optimal balance between practice

and rest. Variables such as the timing, duration, and frequency of rest periods may

differentially affect learning outcomes. Additionally, individual differences in re-

sponse to online and offline learning phases should be considered, as they may

influence the effectiveness of training interventions.



Chapter 5

MOTOR SYNERGY DOES NOT

TRANSFER BETWEEN

SUBSEQUENTLY LEARNED

SKILLS

“Oh, East is East, and West is West, and never the twain shall meet.”

— Rudyard Kipling

5.1 Introduction
Motor sequence learning and the ability to transfer or generalise learned skills to

new contexts are fundamental aspects of human behaviour. The nervous system’s

capacity to generalise learned motor patterns facilitates adaptation to novel envi-

ronments and tasks, which is crucial for daily functioning (Adams, 1987; Schmidt,

1975). Understanding the mechanisms underlying motor skill transfer has signif-

icant implications for neuroscience, psychology, rehabilitation, and skill training

(Gentile, 2000; Krakauer and Mazzoni, 2019).

Motor skill transfer is represented as the gain (or loss) in proficiency in one

motor task as a result of practice on another task. Traditional research in motor
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adaptation has extensively explored this phenomenon using controlled laboratory

tasks, such as targeted reaching movements, where altered sensory feedback or dy-

namic conditions led to measurable performance errors that diminish with practice

(Shadmehr and Wise, 2005; Krakauer and Shadmehr, 2006).

Evidence from adaptation studies suggests that transfer is frequently partial

and highly dependent on the degree of similarity between the trained and trans-

fer tasks (Krakauer, 2009; Taylor and Ivry, 2013; Taylor et al., 2014). For instance,

adaptation to a visuomotor rotation during reaching movements can facilitate subse-

quent adaptation to different degrees of rotation, but the transfer is often incomplete

and context-specific. Transfer tends to occur when tasks share common spatial,

temporal, and biomechanical characteristics, involving similar workspaces, muscle

groups, or movement patterns (Seidler et al., 2010; Wang and Sainburg, 2007).

Contrastingly, clinical observations provide compelling evidence of significant

transfer between distinct, naturalistic tasks. Patients undergoing rehabilitation for

motor impairments often show improvements in untrained tasks following targeted

therapy (Lang et al., 2013; Wolf et al., 2006). For example, practising activities

like writing or using utensils can lead to enhanced performance on standardised

functional assessments, despite the tests not being directly practised during therapy.

This suggests that motor skill transfer in real-world contexts may be more exten-

sive than observed in controlled experiments. The discrepancy between laboratory

findings and clinical observations raises important questions about the factors that

facilitate or constrain motor skill transfer.

Specific transfer occurs when there is a close alignment between pre-existing

coordination patterns and the demands of the new task, allowing for the direct ap-

plication of learned skills. General transfer involves applying general capacities,

such as perceptual skills or postural control, to new tasks where specific move-

ment patterns may differ (Schmidt, 1975; Adams, 1987). Exploratory behaviours

and movement variability play crucial roles in facilitating both specific and gen-

eral transfer by allowing performers to adapt and discover functional movement

solutions in novel environments (Latash et al., 2007). While brief, this distinction
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underlies my approach to interpreting transfer and is summarised in Table 5.1.

Transfer Type Definition Example / Implication
Specific Transfer Occurs when previously

learned coordination patterns
apply directly to a new task
due to structural similarity.

Using a trained 3-element
sequence (e.g., 4-1-3) within
a 5-element sequence (e.g.,
2-4-1-3-4). The 3-element
synergy maps cleanly onto a
portion of the new task.

General Transfer Involves the application of
broader perceptual-motor
strategies or skills to novel
tasks with different structures.

Improved postural control,
attention, or timing flexibility
from training one sequence
aids a different, structurally
unrelated task.

Table 5.1: Summary of specific vs. general transfer of motor sequences.

Motor skill transfer is not only influenced by the similarity between tasks but

also by the amount and structure of practice (Wulf, 2008; Wulf and Lewthwaite,

2010). Early in learning, motor synergies are more flexible and can be adapted

to new tasks. With increased practice, synergies may become more specialised

and less transferable due to the consolidation of task-specific coordination patterns

(Santello et al., 2016; Latash, 2021). This suggests an optimal window during which

practice facilitates transfer before motor synergies become too rigid.

Furthermore, interference with motor memory consolidation during the imme-

diate post-acquisition period can degrade not only the learning but also the transfer

of motor skills to new tasks, underscoring the critical role of consolidation in fa-

cilitating skill generalisation (Robertson, 2019; Censor et al., 2014). The neural

substrates for motor memory consolidation, which are essential for both retention

and successful transfer, depend on the structure of practice. Interference to the

primary motor cortex affects retention and transfer of the practised skill following

constant practice but not variable practice, whereas interference to the dorsolateral

prefrontal cortex affects retention and transfer following variable practice but not

constant practice (Kantak et al., 2010; Krakauer and Mazzoni, 2019). When prac-

tice is organised using a variable structure, it enhances transfer performance on

novel versions of the task more effectively than constant practice. Variable practice

allows learners to compare and contrast different task versions, leading to deeper

processing and the learning of abstract rules that facilitate both retention and trans-
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fer to new skills (Wulf, 2008; Schmidt, 1975).

Statistical models of motor learning further suggest that the history of prior mo-

tor behaviour and context significantly influence transfer and interference between

skills (Donchin et al., 2003; Wang and Sainburg, 2005). Generalisation depends not

only on the similarity of contextual cues but also on the uncertainty associated with

parameter estimates derived from previous experiences. The extent of transfer is

thus modulated by the learner’s history of interactions with different tasks and con-

texts, shaping their expectations and error generalisation processes (Kording and

Wolpert, 2004; Gonzalez Castro et al., 2014).

Recent studies have investigated the role of context in motor learning, skill

transfer, and the ability to learn and recall overlapping motor mappings (Wang and

Sainburg, 2005; Taylor et al., 2014). For example, switching the effector used to per-

form a task can serve as a contextual cue that reduces interference and allows inde-

pendent learning of opposite visuomotor rotations (Krakauer and Shadmehr, 2006).

Contextual differentiation can facilitate the formation of separate motor memories,

enhancing the ability to transfer skills without detrimental interference.

Despite extensive research on motor skill transfer, there remains a gap in under-

standing how motor synergies developed during the learning of simple tasks transfer

to more complex tasks, particularly within the context of motor sequences. Previ-

ous studies have largely focused on adaptation in single, isolated movements or on

tasks involving continuous dynamics, often neglecting the discrete and hierarchical

nature of many real-world motor skills (Schmidt, 1975; Santello, 2002).

Current Study

The present study aims to address how motor synergies developed during the learn-

ing of simple tasks transfer to complex tasks, specifically within the context of

motor sequences. While previous research has primarily focused on isolated move-

ments or continuous tasks, this study investigates the discrete and hierarchical na-

ture of motor sequences, which more closely resemble real-world motor skills. The

study examines whether synergies formed during the practice of a three-element

motor sequence can facilitate performance in a paired five-element sequence that
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embeds the initial sequence. By manipulating the amount of practice on the initial

sequence (3, 7, or 11 trials), the aim is to determine how practice duration impacts

the flexibility and effectiveness of motor synergy transfer.

Study 3 hypothesises that synergies are more flexible during early stages of

learning and that brief, varied practice may enhance transfer by preserving this flex-

ibility. The study’s design allows us to explore whether longer practice durations

lead to more rigid, task-specific synergies that may limit transfer. The choice of

three- and five-element sequences reflects the hierarchical nature of motor learning,

where simpler learned components often underpin more complex behaviours.

The novelty of study 3 is in its focus on continuous motor sequences and the

temporal aspects of synergy formation and transfer, which remain under-explored.

By investigating how practice structure and consolidation processes influence the

development and transfer of motor synergies, this study seeks to fill critical gaps in

our understanding of motor skill learning and generalisation.

Significance and Implications

Despite extensive research on motor skill acquisition and transfer, significant gaps

remain in understanding how motor synergies developed during the learning of

simple tasks transfer to more complex sequences. Previous studies have primar-

ily focused on adaptation in single, isolated movements or continuous tasks, often

neglecting the discrete, hierarchical nature of many real-world motor skills. Fur-

thermore, whilst the role of practice in enhancing motor skill retention is well-

documented, less is known about how the structure and duration of practice in-

fluence the transfer of motor synergies. This gap is particularly pronounced when

considering the temporal dynamics of motor synergy development and their appli-

cability across tasks of differing complexity.

By addressing these gaps, this study has implications for both theoretical and

applied domains. If brief early practice enhances transfer by preserving the flexibil-

ity of synergy structures, training programmes could emphasise varied and shorter

practice sessions to optimise learning outcomes. This could be advantageous in

rehabilitation settings, where patients recovering from motor impairments must re-
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learn foundational motor skills and apply them to diverse, daily activities.

Identifying the specific conditions that facilitate synergy transfer can also guide

strategies to minimise interference between tasks and enhance the consolidation of

beneficial movement patterns. By considering factors such as practice duration,

task complexity, and individual variability in learning dynamics, practitioners can

develop tailored interventions that support both the acquisition and transfer of mo-

tor skills. Ultimately, this research contributes to a more nuanced understanding

of motor learning and transfer, offering insights that could improve the design of

training and rehabilitation protocols and promote more effective skill generalisation

in both clinical and everyday contexts.

5.2 Methods
Methods for Study 3 differ from the exhaustive description set forth in Chapter 2.

This section will begin with an overview, followed by one section for each method,

technology, or analysis new to Study 3.

5.2.1 Overview

Study 3 examined motor sequence learning transfer by analysing correct keypresses

per second (ckp/s), keypress transition speeds, and motor synergy at the trial level.

Sixty healthy participants were randomly assigned to one of six orders of motor

sequences, referred to as rotations, designed to reduce ordering effects and diversify

sequence exposure. In each rotation, participants trained on a unique 3-element

sequence (e.g., 4-1-3) for either 3, 7, or 11 trials, followed by a 5-element paired

sequence (e.g., 2-4-1-3-4) in which the initial 3-element sequence was embedded,

for the same number of trials.

The equal number of trials for each sequence pair allowed me to examine how

synergies formed during the 3-element sequence transferred to the more complex

5-element sequence, under varying durations of practice. To preserve the ability to

detect transfer specifically (rather than co-learning), I avoided including a warm-up

period at the onset of the 5-element sequence. Unlike Study 1, where synergies

were compared across trials of the same sequence, Study 3 required the immediate
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comparison of a learned and a novel sequence to isolate transfer.

I used ckp/s to quantify skill learning (i.e., participants’ speed and accuracy)

through each trial. Keypress transition speeds, measured in milliseconds, served

as an initial metric for evaluating skill transfer, specifically to assess whether the

skill learned from the 3-element sequence transferred to the same embedded subse-

quence within the 5-element task.

To investigate group-level patterns, UMAP with Hamming distance was ap-

plied to all participant data within each rotation, providing a loose grouping of pose

data related to specific 3-element sequences and their paired 5-element sequences.

Motor synergies were identified at the trial level using recursive HDBSCAN, which

segmented clusters iteratively to reveal synergy patterns relevant to transfer.

To assess whether motor synergies developed in the 3-element sequence trans-

ferred to the paired 5-element sequence, I performed JSD analyses between the final

trial of the 3-element sequence and the first trial of its paired 5-element sequence

(i.e., whether synergies formed during training were immediately deployed in the

more complex context before any additional learning could take place). Permutation

tests on JSD values determined empirical p-values, allowing us to statistically quan-

tify the transfer of motor synergies. This approach provided insight into how motor

synergies develop and transfer as participants progressed from simple to complex

motor sequences under different training durations.

5.2.2 Apparatus

The data collection apparatus for Study 3 comprised several key components, each

selected for their specific capabilities in capturing and recording participants’ hand

movements during motor sequences.

The frame of the data collection apparatus was constructed using 14 pieces of

45 mm x 45 mm T-slot aluminium, configured into a structure measuring 75 cm

wide, 60 cm tall, and 60 cm deep. T-slot aluminium is a robust, modular building

material widely used in research and industrial applications due to its adaptability

and ease of assembly. This design provided a customizable framework, allowing

precise placement of key components. The use of T-slot aluminium was advanta-
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geous for securely affixing all components at optimal positions for data collection,

while also allowing adjustments as needed for different experimental setups.

Figure 5.1: Study 3 apparatus and components. (Left) shows the full data collection frame;
(Top-middle) Storm Interface 4-Key Polymer Keypad, (Top-right) Ultimarc U-HID Control
Interface, (Lower-middle) SMALLRIG 5 in Magic Arm with Clamp, and (Bottom-right)
GoPro HERO10 Black Camera used to record hand motion.

Figure 5.1 shows the completed apparatus for data collection, which includes

all mounted components, each affixed to the frame in configurations facilitating data

collection and accessibility. The modular T-slot design allows for the integration

of future components if needed. I’ll now offer a brief introduction to each of the

components affixed to the apparatus.

The Storm Interface 4-Key Polymer Keypad input device featured four

coloured buttons, each with 1.4 mm key travel and an actuation force of 150 g. The

button box is ideal for consistent tactile feedback in experimental settings, and the

high responsiveness is suited to capturing data for motor sequence keypress tasks

with millisecond resolution.

The Ultimarc U-HID Control Interface features 50 connections that can be

configured for various inputs, including pushbuttons, joysticks, and rotary encoders.

Using the U-Config software and the U-HID SDK package, I assigned the num-

bers 1, 2, 3, and 4 to buttons from left to right. Additionally, a small LED was

https://uk.rs-online.com/web/p/keypads/7933755
https://www.ultimarc.com/control-interfaces/u-hid-en/u-hid/
https://www.ultimarc.com/control-interfaces/u-hid-en/u-hid/
https://www.amazon.co.uk/dp/B088YRD5G4/?th=1
https://gopro.com/en/gb/shop/cameras/hero10-black/CHDHX-101-master.html?
https://uk.rs-online.com/web/p/keypads/7933755
https://www.ultimarc.com/control-interfaces/u-hid-en/u-hid/
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programmed to illuminate for the duration of each ‘4’ keypress, visible to the Go-

Pro camera to facilitate post-hoc video syncing. The U-HID allowed for precise

mapping of keypresses to specific functions, facilitating accurate data capture of

participants’ inputs during the keypress sequences.

The SMALLRIG 5 in Magic Arm with Clamp is a versatile mounting so-

lution designed to securely attach monitors, projectors, LED lights, and cameras,

such as the GoPro, to various surfaces. The flexible 5-inch arm allows for precise

angle adjustments, ideal for positioning the GoPro cameras for optimal recording

of hand movements during motor sequence performance. The Clamp component is

compatible with the T-slot aluminium structure, enabling a stable and customizable

mount on the apparatus frame, which allowed easy adjustments during setup and

ensured reliable placement throughout data collection.

Lastly, the GoPro HERO10 Black Camera is an advanced action camera

equipped with a 23.6-megapixel sensor, enabling high-resolution video capture at

up to 5.3K at 60 frames per second. The camera’s compact design and image quality

make it ideal for recording detailed hand movements. For this study, the camera was

set to record at a resolution of 1280x720 and a frame rate of 120 fps.

Note: The GoPro HERO10 automatically splits video files once they reach a size

of 4GB. As a result, most participant videos from Study 3 were internally split into

two separate files. The methods for programmatically reducing the resolution and

“stitching” the split videos back together will be covered in a subsequent section,

accompanied by the corresponding Python code.

5.2.3 Inclusion criteria

Participants were recruited if they were > 18 years old had normal or corrected-to-

normal vision. Exclusion criteria included a history of severe head trauma associ-

ated with loss of consciousness, brain surgery, or surgical procedures to the spinal

cord. Participants with upper limb motor impairments or any pain or discomfort

of the hands that would prevent them from using a computer keyboard were also

excluded. Additionally, individuals who were taking or had taken any prescribed

medications as part of treatment or research within the last two weeks (excluding

https://www.amazon.co.uk/dp/B088YRD5G4/?th=1
https://gopro.com/en/gb/shop/cameras/hero10-black/CHDHX-101-master.html?
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contraceptives) were not eligible to participate. Those suffering from any neuro-

logical or psychiatric diseases were excluded to ensure the integrity of the study’s

focus on motor sequence learning in a neurologically healthy population.

5.2.4 Participants

Sixty naive right-handed healthy participants (51 women; mean ± SD age 20.1 ±

3.27) gave their written informed consent to participate in the study, which was

approved by the UCL Research Ethics Committee. Active musicians were excluded

from the study (Abraham and Drory, 2014). The sample size was determined a

priori via a power analysis of prior skill learning data collected in my NIH research

group using a similar motor sequence task. Of the 60 participants recruited, data

from 13 participants were excluded due to technical issues: 6 camera failures, 5

online data collection failures, 1 SD card failure, and 1 keyboard failure. This

resulted in a final sample size of 47 participants included in the analysis.

5.2.5 Study Design

Participant Assignment and Rotational Structure

Participants in Study 3 were randomly assigned to one of six rotations, each defining

a unique order of motor sequence tasks. In this study, I will refer to these unique

orders as “rotations” rather than “conditions” to distinguish them from traditional

experimental conditions. The purpose of these rotations was threefold: to balance

participants’ exposure to various motor sequences, observe skill acquisition across

different trial structures, and control for order effects in the results. My design

ensures that any observed differences in skill learning are not artifacts of sequence

order but rather reflect differences in learning dynamics.

Each rotation consists of a distinct ordering of paired sequences, with each pair

composed of an initial sequence followed by a paired sequence in which the initial

sequence is embedded. Rotations adjust the order of these sequence pairs by rotat-

ing them counter-clockwise across the six possible assignments. Note the initial and

paired sequence text in red below and it’s ‘Rotation’ over each assignment. Further,

note that each Rotation lists the number of participants in (parentheticals).
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• Rotation 1 (6 Participants):

(413, 24134) (241, 12413) (143, 31432)

(342, 23423) (324, 43241) (234, 32342)

• Rotation 2 (7 Participants):

(241, 12413) (143, 31432) (234, 32342)

(413, 24134) (342, 23423) (324, 43241)

• Rotation 3 (9 Participants):

(143, 31432) (234, 32342) (324, 43241)

(241, 12413) (413, 24134) (342, 23423)

• Rotation 4 (8 Participants):

(234, 32342) (324, 43241) (342, 23423)

(143, 31432) (241, 12413) (413, 24134)

• Rotation 5 (8 Participants):

(324, 43241) (342, 23423) (413, 24134)

(234, 32342) (143, 31432) (241, 12413)

• Rotation 6 (9 Participants):

(342, 23423) (413, 24134) (241, 12413)

(324, 43241) (234, 32342) (143, 31432)

Trial Structure and Task Progression

Each sequence pair within a rotation was practised across multiple trials in a struc-

tured progression. Participants first performed three trials of the initial sequence

followed by three trials of the paired sequence, with subsequent increases in trial

counts per pair: seven trials for the next initial-paired sequence set, then eleven

trials. After these trial blocks, participants took a five-minute rest.

Following the rest, participants continued with the next set of sequences, start-

ing again with three trials per sequence in the pair. This structured approach pro-
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vided multiple opportunities to learn each sequence under controlled trial counts

while ensuring balanced exposure to both initial and paired sequences.

Table 5.2 illustrates the sequence progression for Rotation 1, showing the num-

ber of trials for each initial and paired sequence. In this table, characters “A” and

“B” denote the initial and paired sequences, respectively. Superscript numbers indi-

cate the sequential order of the sequences within Rotation 1 (e.g., A1 , B1 represent

the first sequence pair, followed by A2 , B2 , and so forth). The sequences are prac-

tised in blocks of increasing trials: 3 trials each for the first pair, 7 trials each for the

second pair, and 11 trials each for the third pair.

3 Trials each 7 Trials each 11 Trials each

Initial Sequence A1 413 A2 241 A3 143

Paired Sequence B1 24134 B2 12413 B3 31432

Initial Sequence A4 342 A5 324 A6 234

Paired Sequence B4 23423 B5 43241 B6 32342

Table 5.2: Trial structure for Rotation 1, illustrating the sequence progression through ini-
tial and paired sequences with varied trial counts. Cells shaded in red denote trials before a
5-minute rest, while blue cells indicate trials after the rest period.

Cells shaded in red indicate trials conducted before a mandatory 5-minute rest

period, while cells shaded in blue represent trials that occur after the rest. This al-

ternating structure allows participants to revisit different motor sequences in varied

trial lengths, ensuring a balanced exposure to all sequences while allowing suffi-

cient rest intervals to promote skill consolidation. This rotation design minimizes

ordering effects, helping to isolate learning patterns across different sequences.

5.2.6 Analysis

The following section outlines analysis methods unique to Study 3, introduced due

to differences in study design and data complexity from Studies 1 and 2. The sub-

sequent sections provide detailed descriptions of the modified skill measure calcu-

lation, UMAP with Hamming distance, and recursive HDBSCAN clustering, used

to assess motor sequence learning and synergy use in this study.
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Skill Measure Calculation

In Study 3, I introduced a modified skill metric, switching from the correct se-

quences per second (cs/s) used in Studies 1 and 2 to correct keypresses per second

(ckp/s). The new measure for motor skill learning focused on individual keypresses

rather than complete sequences, accommodating the changing sequence lengths

(from 3 to 5 elements) and diverse sequence orders across rotations.

The calculation of ckp/s involved the following steps:

1. Define specific target sequences for each rotation and parse these sequences

as integer arrays.

2. Use patternDetect function to evaluate each participant’s stream of key-

presses against the target sequence, returning a score based on the number of

matching pairs.

3. Compute mean correct keypresses per second (ckp/s) for each trial and calcu-

late keypress transition speeds to gauge the smoothness of transitions within

each sequence.

This code defines the patternDetect function, which calculates correct

keypresses per second by identifying pairs in the participant’s keypress stream that

match the target sequence. A ‘ghost element’ is appended at the end of the target

sequence, allowing the function to treat the sequence circularly, ensuring accurate

detection of repeated patterns as participants type the target sequence continuously.

Interruptions, or instances where pairs do not match the target, are tracked to ac-

count for transitions back to the target sequence, providing a more robust measure

of participants’ adherence to the target pattern over time.

It is important to note here that although participants typed the 3-element se-

quences continuously during each 10-second trial, I verified that they adhered to

the prescribed sequence order (e.g., 4–1–3) rather than adopting rotated alternatives

(e.g., 1–3–4). While the patternDetect algorithm was designed to be tolerant to

sequence rotations, adherence to the correct starting point was independently vali-

dated using output from PsyToolkit, which recorded the raw order of keypresses in
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each trial. This allowed us to identify the first keypress in every sequence attempt

and confirm whether participants initiated the trial with the correct digit. Trials or

participants that failed this check were flagged and excluded from further analysis.

This verification ensured that motor synergies analysed for transfer were formed in

accordance with the intended sequence structure, not alternative permutations.

Transition Speed and Skill Learning Transfer

In Study 3, I examined transition speeds between consecutive keypresses as a mea-

sure of motor skill learning transfer. By analysing combined transition speeds, I

assessed participants’ ability to generalise skill from 3- to 5-element sequences.

In this analysis, transition “speed” was operationalised as transition time - specifi-

cally, the time in milliseconds between consecutive keypresses. Although the term

speed is colloquially associated with higher values indicating faster responses, my

measure reflects the inverse: longer durations between keypresses indicate slower

transitions. Importantly, I did not compare overall performance between the 3- and

5-element sequences, but rather isolated the same subsequence (e.g., 2-4-1) embed-

ded within both conditions. This allowed us to measure how the execution timing

of a learned sequence changed when embedded in a more complex motor context.

Thus, an increase in transition time from the 3- to 5-element condition reflects not

a general unfamiliarity with the 5-element task, but a measurable slowdown of a

previously learned motor sequence when it is nested within a longer, complex se-

quence. This distinction is critical for interpreting the meaning of the transition time

results and a visualisation of the concept is summarised in Figure 5.2.

The calculation of combined transition speeds involved the following steps:

1. Define transition pairs: Specific pairs of keypress events, i.e. transition

pairs, were identified based on the target sequences.

2. Calculate time intervals: Time intervals between consecutive keypresses

were computed to determine individual transition speeds.

3. Identify valid sequence: Consecutive transitions matching transition pairs

were identified and their speeds summed.
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4. Aggregate data: Combined speeds were aggregated across trials and partici-

pants to evaluate performance trends over time.

Figure 5.2: Schematic of the transition time comparison used to assess skill transfer. Iden-
tical keypress transitions (2→4→1) were isolated from both the final trial of the trained
3-element sequence (2-4-1) and the corresponding subsequence embedded within a paired
5-element sequence (1-2-4-1-3). Arrows denote the inter-key intervals measured in mil-
liseconds. This approach allows evaluation of whether execution speed for a learned subse-
quence is preserved when recontextualised within a more complex motor task.

This process identifies consecutive keypress events matching transition pairs

and calculates their combined transition speed by summing the time intervals of

relevant transitions. The resulting list represents the execution speed of sequences.

By analysing these combined speeds, I evaluated participants’ ability to transfer

and generalise motor skills. This approach extends beyond accuracy metrics to

emphasise the temporal dynamics of motor learning.

UMAP with Hamming Distance

UMAP with Hamming distance was implemented to explore clustering patterns at

the group level, rather than individually as in Studies 1 and 2. This methodological

change was necessary due to the large data set, which exceeded the sample counts

of Study 1 by over 20-fold, reaching up to 907,200 samples in Rotation 3 alone.

The UMAP embedding with Hamming distance allowed for the incorporation

of one-hot encoded features representing trial groupings between initial and paired
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sequence trials. This allowed for a synergy analysis between initial and paired trial

sets while not overextending the search for transferred synergies beyond each tested

set of initial and paired sequences. This process involved:

1. Wavelet-transforming pose data to extract spatial-temporal features, followed

by UMAP dimensionality reduction.

2. Using Hamming distance and one-hot encoding to categorize and project

pose data into two-dimensional space, allowing loose grouping of specific

3-element and paired 5-element sequences within rotations.

1 mapper = umap.UMAP(n_neighbors=8, n_components=2, min_dist

=0.3, metric=’hamming’, init=’random’)

2 embed = mapper.fit_transform(proj_with_one_hot)

This code sets up the UMAP embedding using Hamming distance, where

proj with one hot represents the combined wavelet-transformed features and

one-hot encoded data across trials in the rotation.

Recursive-HDBSCAN

I used recursive HDBSCAN clustering on the UMAP-embedded data across all par-

ticipants in a rotation. By recursively applying HDBSCAN on initially discovered

clusters, I could identify granular motor synergy patterns that emerge as participants

transition from simpler to more complex sequences.

This clustering approach involved:

1. Running initial HDBSCAN clustering on the full UMAP-embedded data set

for each rotation.

2. Selecting the original clusters and performing HDBSCAN recursively on

each to identify sub-clusters that capture specific synergy patterns.

3. Assigning unique cluster labels based on these refinements, showing detailed

and stable clusters that reflect motor synergies across all trials.
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1 # Run initial HDBSCAN

2 clusterobj = hdb_clustering.hdb_scan(embed, 1500, 20,

selection=’leaf’, cluster_selection_epsilon=0.05)

3 labels = clusterobj.labels_

4 probabilities = clusterobj.probabilities_

5

6 # Recursive HDBSCAN on original clusters

7 for cluster_id in original_clusters:

8 selected_cluster_mask = labels == cluster_id

9 selected_points = embed[selected_cluster_mask]

10 refined_clusterobj = hdb_clustering.hdb_scan(

selected_points, max(len(selected_points) // 35, 10),

10, selection=’leaf’, cluster_selection_epsilon=0.01)

Recursive-HDBSCAN procedure allows for detailed exploration of motor syn-

ergies within each rotation by iteratively refining clusters based on group-level

data.An example of the recursive-HDBSCAN output, as well as a visualisation of

how Hamming distance affects the spatial arrangement of the UMAP embedded

space can be found in Figure 5.2.

In the next section, I present the results of Study 3, with one section for skill

performance (e.g. correct keypresses per second and transition times) and permu-

tation tests across all rotations, showing how motor synergies do or do not transfer

across trials and motor sequences. Following this, I detail population-level results -

in terms of the kinematic differences between 3- and 5-element motor sequences -

across all rotations to describe motoric trends in motor sequence learning transfer.

Finally, I provide a summary of results in Study 3 to consolidate the key findings.

5.3 Results

5.3.1 Skill Performance and Learning

Performance, as indexed by correct keypresses per second (ckp/s), improved con-

sistently across sequences and rotations, with some sequences reaching a plateau
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Figure 5.3: (Left) UMAP with Hamming distance shows the two-dimensional projection
of wavelet-transformed pose data from all trials in Rotation 6, where each point represents a
pose in one video frame. (Right) Recursive-HDBSCAN clustering identifies discrete motor
synergies as coloured clusters and sub-clusters. The full pipeline comprises three stages:
(1) spatial–temporal embedding of wavelet transformed data, (2) UMAP dimensionality
reduction using Hamming distance on one-hot encoded trial groupings, and (3) recursive
application of HDBSCAN to extract granular, synergy behaviour clusters.

after 7 or 11 trials. However, closer examination of transition times between shared

3-element sequences in simple and complex tasks revealed a distinct slowing, in-

dicating altered motor execution in the complex task context. Results from each

Rotation are available in Figure 5.3 and Figure 5.4.

It is important to emphasise: To first assess how practised transitions gener-

alised within more complex contexts, I compared the average keypress transition

times for identical transition pairs (e.g., 2→4, 4→1, 1→3) in both 3-element se-

quences and their embedded locations in 5-element sequences. The resulting deltas

reflect the *increase* in transition time when these same transitions were executed

in the more complex context. These slower transition times indicate that even well-

practised transitions became more effortful when embedded in novel or longer se-

quences, suggesting that synergy transfer was incomplete.

In Rotation 1, ckp/s improved across most sequences, such as 24134 and

31432, which showed increases of 1.33 ± 0.39 and 1.00 ± 0.37, respectively. Tran-

sition time deltas revealed slower execution of known transitions in the 5-element

sequence: for instance, 241 to 12413 showed a delta of 267.91 ms (p = 0.0003), indi-
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cating degraded fluency. Rotation 2 showed similar learning gains, with sequences

12413 and 342 increasing by 1.07 ± 0.47 and 1.25 ± 0.36. Again, transitions such

as 241 to 12413 were significantly slower by 453.73 ms (p = 0.0014), highlighting

reduced transition efficiency when context complexity increased. In Rotation 3,

skill improvements were seen in sequences 23423 and 43241, with differences of

1.42 ± 0.42 and 1.12 ± 0.43. Sequence 241 increased by 1.30 ± 0.48. The transition

from 324 to 43241 had a delta of 302.77 ms (p = 0.0217), while 241 to 12413 had a

non-significant delta of 528.60 ms (p = 0.1212), suggesting mixed transfer effects.

Rotation 4 featured strong ckp/s gains in sequences like 43241 (1.50 ± 0.21)

and 234 (1.24 ± 0.33). The transition time delta from 342 to 23423 was 257.84

ms (p = 0.0011), while 241 to 12413 showed a delta of 416.79 ms (p = 0.0009),

again pointing to slowed transitions despite prior practice. In Rotation 5, sequences

143 and 324 improved by 1.38 ± 0.31 and 1.36 ± 0.43. Sequence 413 showed

the greatest increase (1.74 ± 0.30). The transition from 234 to 32342 was slower

by 370.98 ms (p = 0.0003), and from 241 to 12413 by 319.19 ms (p = 0.0006).

Finally, Rotation 6 participants demonstrated increases in 43241 (1.52 ± 0.38) and

31432 (1.23 ± 0.37), with 24134 showing the greatest improvement (1.58 ± 0.43).

Transition time deltas were again substantial: 234 to 32342 was slower by 390.21

ms (p = 0.0001), and 241 to 12413 by 379.17 ms (p = 0.0042).

5.3.2 Permutation Tests

Permutation tests were conducted to assess whether motor synergies developed dur-

ing the final trial of the 3-element sequence transferred to the first trial of the paired

5-element sequence. For each of the 36 sequence comparisons across six rotations,

100,000 permutations were performed to generate empirical null distributions of

JSD values. The overwhelming majority of comparisons yielded significant diver-

gence, indicating non-transfer of motor synergies across sequence contexts.

In Rotation 1, strong divergence was observed in all sequences. Notable re-

sults included 324 to 43241 (JSD = 0.6897, p = 1.0e-04), 234 to 32342 (JSD =

0.6857, p = 1.2e-04), and 241 to 12413 (JSD = 0.6830, p = 2.3e-04). The least sig-

nificant result, 342 to 23423, still reached significance (JSD = 0.6349, p = 1.291e-
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Figure 5.4: Skill performance and transition speed comparisons for Rotations 1–3. Top
panels depict mean ckp/s across all trials for each sequence, with error bars indicating
±SEM. Each cluster of points corresponds to a different sequence, revealing improvements
in ckp/s as participants progressed. Bottom panels show average keypress transition speeds
(ms) between identical 3-element subsequences embedded in both 3- and paired 5-element
sequences. Specifically, transition times from the last trial of the 3-element sequence are
compared to the corresponding transitions within the first trial of the 5-element sequence.
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Figure 5.5: Skill performance and transition speed comparisons for Rotations 4–6. Top
panels depict mean ckp/s across all trials for each sequence, with error bars indicating
±SEM. Each cluster of points corresponds to a different sequence, revealing improvements
in ckp/s as participants progressed. Bottom panels show average keypress transition speeds
(ms) between identical 3-element subsequences embedded in both 3- and paired 5-element
sequences. Specifically, transition times from the last trial of the 3-element sequence are
compared to the corresponding transitions within the first trial of the 5-element sequence.
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02). Rotation 2 showed comparable findings. Sequences 143 to 31432 (JSD =

0.6851, p = 1.61e-03), 413 to 24134 (JSD = 0.6825, p = 3.05e-03), and 234 to 32342

(JSD = 0.6854, p = 3.95e-03) all demonstrated robust differences. The weakest, 342

to 23423, again remained significant (JSD = 0.6873, p = 1.049e-02).

In Rotation 3, sequence 241 to 12413 (JSD = 0.6844, p = 1.0e-04) and 234

to 32342 (JSD = 0.6869, p = 5.5e-04) showed strong divergence. Sequence 413

to 24134 reached only marginal significance (JSD = 0.6834, p = 3.038e-02), but

remained consistent with the broader trend. Rotation 4 continued the pattern, with

234 to 32342 (JSD = 0.6763, p = 9.2e-04), 324 to 43241 (JSD = 0.6842, p = 3.3e-

03), and 143 to 31432 (JSD = 0.6845, p = 1.72e-03) all showing significant di-

vergence. The weakest results again came from 241 to 12413 (JSD = 0.6846, p =

1.388e-02) and 413 to 24134 (JSD = 0.6846, p = 1.844e-02).

In Rotation 5, the sequences 324 to 43241 (JSD = 0.6874, p = 1.0e-04), 234 to

32342 (JSD = 0.6876, p = 6.0e-05), and 342 to 23423 (JSD = 0.6829, p = 9.7e-05)

showed the strongest divergence. Other sequences such as 413 to 24134 (JSD =

0.6847, p = 4.7e-03) remained significant. Sequence 241 to 12413 (JSD = 0.6793, p

= 1.903e-02) was again among the weaker - but still significant - results. Rotation

6 replicated the pattern. Sequences 342 to 23423 (JSD = 0.6876, p = 2.3e-04), 241

to 12413 (JSD = 0.6838, p = 6.3e-04), and 413 to 24134 (JSD = 0.6854, p = 5.5e-

04) all demonstrated substantial divergence. The least significant result was 234 to

32342 (JSD = 0.6833, p = 1.082e-02).

Study 3 results confirm a consistent pattern of non-transfer in motor synergies

across all Rotations. Despite variability in sequence content, participant group, and

learning duration, the final trial of the 3-element sequence consistently differed from

the initial trial of its paired 5-element sequence. This supports the central finding

that synergies formed in one task do not immediately generalise to a more complex

task, even when sequence components are embedded.

5.3.3 Population Results

Figures 5.8, 5.9, and 5.10 show results regarding the gain or loss of velocity, accel-

eration, or overlap when transitioning from 3-element to 5-element sequences. In
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Figure 5.6: Any two coloured bars show synergy distributions from the final trial of a
3-element sequence and the first trial of its corresponding 5-element sequence. Colours
indicate distinct synergy clusters. Adjacent histograms display null distributions of JSD
values from permutations; red dashed lines mark the observed JSD, with p-values indicating
the proportion of permutations yielding a JSD of equal or greater magnitude.
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Figure 5.7: Any two coloured bars show synergy distributions from the final trial of a
3-element sequence and the first trial of its corresponding 5-element sequence. Colours
indicate distinct synergy clusters. Adjacent histograms display null distributions of JSD
values from permutations; red dashed lines mark the observed JSD, with p-values indicating
the proportion of permutations yielding a JSD of equal or greater magnitude.
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Figure 5.8: Any two coloured bars show synergy distributions from the final trial of a
3-element sequence and the first trial of its corresponding 5-element sequence. Colours
indicate distinct synergy clusters. Adjacent histograms display null distributions of JSD
values from permutations; red dashed lines mark the observed JSD, with p-values indicating
the proportion of permutations yielding a JSD of equal or greater magnitude.
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each figure, each plot has a title-detail written at the top of the plot, e.g. ”Sequence:

342”, which is in reference to the 3-element sequence that was the initial sequence

and then embedded into the paired, 5-element sequence. In terms of velocity, there

were significant differences between any last trial of a 3-element sequence and the

first trial of the paired 5-element sequence across participants. For instance, Se-

quence 342 showed a marked difference in velocity with a higher mean for the last

trial of the 3-element sequence (2.181 ± 0.246) compared to the first trial of the 5-

element sequence (1.700 ± 0.224), resulting in a large effect size (Cohen’s d = 0.728,

p = 8.99e-06). The same trend was observed for Sequences 413 (Cohen’s d = 0.782,

p = 2.62e-06) and 241 (Cohen’s d = 0.799, p = 1.73e-06), all of which showed sig-

nificant velocity advantages in the last trial of the 3-element sequence. The greatest

difference was seen in Sequence 234, where the last trial of the 3-element sequence

(2.460 ± 0.234) greatly exceeded the first trial of the 5-element sequence (1.396 ±

0.177), resulting in the highest Cohen’s d of 1.042 (p = 5.51e-09). Overall, the last

trial of the 3-element sequence consistently demonstrated higher velocities across

sequences (Overall d = 1.350, p = 4.45e-12).

Figure 5.9: Changes In Velocity Between Sequences.
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Acceleration data presented less striking differences, with some sequences fail-

ing to reach significance. For instance, in Sequence 342, while the acceleration in

the last trial of the 3-element sequence (0.718 ± 0.109) was higher than in the first

trial of the 5-element sequence (0.592 ± 0.118), the difference was not statistically

significant (p = 2.12e-01, Cohen’s d = 0.184). Similarly, Sequence 241 showed no

significant difference in acceleration (p = 5.32e-01, Cohen’s d = 0.092). However,

some sequences did show notable differences. Sequence 324 had a significant dif-

ference, with a mean acceleration in the last trial of the 3-element sequence of 0.878

± 0.150 and 0.599 ± 0.104 in the first trial of the 5-element sequence (p = 1.60e-02,

Cohen’s d = 0.365), and Sequence 143 also showed a meaningful difference with

a Cohen’s d of 0.434 (p = 4.63e-03). When averaged across all sequences, the last

trial of the 3-element sequence had a modest advantage in acceleration (Overall d =

0.467, p = 2.49e-03), though the effect sizes were small to medium.

Figure 5.10: Changes In Acceleration Between Sequences.

Overlap data exhibited the most variability across sequences. In some cases,

such as Sequence 342, there was no significant difference in overlap between the

last trial of the 3-element sequence and the first trial of the 5-element sequence (p
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= 5.78e-01, Cohen’s d = -0.082). In contrast, certain sequences revealed substantial

differences. For instance, in Sequence 234, the overlap in the last trial of the 3-

element sequence (19.489 ± 4.012) was significantly higher than in the first trial of

the 5-element sequence (2.128 ± 0.570), leading to a large effect size (Cohen’s d =

0.658, p = 4.43e-05). Sequence 413 also demonstrated a marked difference, with a

Cohen’s d of 0.517 (p = 9.09e-04). Overall, the last trial of the 3-element sequence

consistently showed greater overlap (Overall d = 0.804, p = 1.56e-06).

Figure 5.11: Changes In Overlap Between Sequences.

Figure 5.12: Summary of Changes Between Sequences.

If all data from each sequence are collapsed into one summary plot for each
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metric – velocity, acceleration, and overlap – the population differences are clear.

In Figure 5.11 (Left), there is a significant difference between the 3-element and

5-element sequence velocities, with a t-value of 9.258, degrees of freedom (df)

= 46, and Cohen’s d = 1.350, indicating a strong effect size (p < 0.001). The

mean velocity was notably higher in the 3-element sequences, suggesting partici-

pants performed faster in these shorter, simpler sequences than in the more com-

plex 5-element sequences. In terms of mean acceleration (Middle), a statistically

significant difference was also detected, though with a smaller effect size (Cohen’s

d = 0.467) and a t-value of 3.200 (p < 0.01, df = 46). The 3-element sequences

exhibited slightly higher mean acceleration than the 5-element sequences, imply-

ing that participants adjusted their movement initiation per keypress in response to

the increased complexity in the 5-element sequence. Lastly, mean overlap (Right)

showed substantial variation, with a marked difference between the two sequence

element lengths (t = 5.509, Cohen’s d = 0.804, p < 0.001, df = 46). The higher

overlap values in the 3-element sequence suggest that participants exhibited greater

temporal overlap in their actions when executing the simpler sequence. This de-

crease in overlap with the introduction of the 5-element sequence indicates a shift

towards more segmented movements, potentially reflecting the increased cognitive

and motor demands associated with the added sequence complexity.

5.3.4 Disagreement Between Transition Speeds and Kinematics

This section presents example time series of motor sequence performance in cases

where transition speeds between the final trial of a 3-element sequence and the

first trial of its paired 5-element sequence showed no significant differences, yet

observed JSD values between motor synergy distributions indicated significant dif-

ferences. These examples highlight instances where the timing between keypresses

might suggest successful skill transfer, but the pose time series and JSD analyses

show notable differences, suggesting that the underlying motor synergies did not

transfer between the sequences. By examining each pair of sequences within the

shaded regions of the time series, discrepancies between skill learning and execu-

tion can be observed.
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Rotation 3: Sequence 143 and 31432

In Figure 5.22, I compare the final trial of sequence 143 (top) and the first trial of

sequence 31432 (bottom) in Rotation 3. Transition speed analysis between trials

showed no significant difference (mean speeds: 772.70 ± 91.01 ms vs. 1126.36 ±

232.26 ms; t = -2.02, p = 0.0741, d = -0.62), which could suggest a transfer in skill

learning. However, JSD analysis revealed a significant difference (observed JSD =

0.6867, p = 7.6e-04), indicating distinct motor synergies between these sequences.

Figure 5.13: Pose Differences Between Sequences, Examples A & B.

Within the shaded region, pose data reveal subtle yet important shifts. In se-

quence 143, the index finger shows a stable downward movement for each keypress,

while the ring finger’s motion remains relatively consistent. In contrast, sequence

31432 shows broader, less uniform movements, particularly in the index and ring

fingers, suggesting a reconfiguration of motor patterns for the 5-element sequence.

This discrepancy between timing and kinematic patterns emphasizes how the JSD

metric captures motor adjustments that transition speeds alone may overlook.

Rotation 3: Sequence 241 and 12413

Figure 5.23 compares sequence 241 (top) with sequence 12413 (bottom) in Rotation

3. Transition speeds between these trials were also non-significant (mean speeds:
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625.91 ± 100.47 ms vs. 1154.51 ± 304.05 ms; t = -1.73, p = 0.1212, d = -0.74), but

JSD analysis showed a significant difference (observed JSD = 0.6844, p = 1.0e-04).

Figure 5.14: Pose Differences Between Sequences, Examples C & D.

The shaded area reveals different kinematic profiles between sequences. In

sequence 241, the index and ring fingers move in steady, consistent trajectories with

clear downward peaks on each keypress. In sequence 12413, however, the peaks

become less consistent, with larger fluctuations, particularly in the index finger.

This variation points to a shift in motor synergies despite similar transition speeds,

illustrating the value of JSD in highlighting changes in motor control that timing

metrics alone might miss.

Rotation 2: Sequence 324 and 43241

Figure 5.24 contrasts sequence 324 (top) with sequence 43241 (bottom) in Rota-

tion 2. Transition speed analysis indicated no significant difference (mean speeds:

541.92 ± 56.75 ms vs. 734.41 ± 116.80 ms; t = -2.21, p = 0.0548, d = -0.64), yet

JSD values were significantly different (observed JSD = 0.6855, p = 4.14e-03).

Within the shaded segment, differences in the kinematic patterns of the middle

and ring fingers are shown. In sequence 324, these fingers display smooth, uni-

form trajectories, while in sequence 43241, their movements are more varied, with
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Figure 5.15: Pose Differences Between Sequences, Examples E & F.

pronounced fluctuations and a less stable rhythm. This kinematic shift indicates a

change in motor synergy required for the more complex sequence, demonstrating

how motor synergy adjustments may remain hidden in transition speed metrics.

Rotation 6: Sequence 342 and 23423

Figure 5.25 compares sequences 342 (top) and 23423 (bottom) in Rotation 6. Tran-

sition speeds again showed no significant difference (mean speeds: 656.38 ± 75.80

ms vs. 948.31 ± 170.91 ms; t = -2.19, p = 0.0566, d = -0.67), but JSD analysis

indicated a significant difference (observed JSD = 0.6876, p = 3.0e-05).

In the shaded region, the kinematic profiles of the index and middle fingers

show distinct patterns between the sequences. Sequence 342 features consistent,

sharp downward movements for each keypress, whereas sequence 23423 exhibits

larger and more irregular peaks. This change in motor synergy highlights an adap-

tation to the embedded sequence within the 5-element task, reinforcing the utility

of JSD in identifying subtle yet meaningful motor adjustments.

These findings illustrate that even in the absence of significant differences in

transition speed, changes in motor synergy distributions and kinematic time series

can reveal substantial reorganisation of motor control. Although only 4 out of 36
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Figure 5.16: Pose Differences Between Sequences, Examples G & H.

sequence pairs showed this dissociation, their presence underscores the limitations

of speed-based metrics in capturing transfer. In applied contexts such as rehabilita-

tion or sports, such discrepancies may signal compensatory strategies or incomplete

generalisation masked by fluent execution. This highlights the value of incorporat-

ing synergy-level analyses alongside conventional performance metrics - a point

expanded upon in the Discussion.

5.3.5 Results summary

This section consolidates the findings from Study 3, focusing on rotation-specific

results, population-level analyses, and cases where kinematic and transition speed

measures disagreed, ultimately emphasizing the lack of motor synergy transfer be-

tween subsequent motor sequence skills.

The rotation-specific analyses revealed consistent improvements in partici-

pants’ performance across rotations. Correct keypresses per second (ckp/s) in-

creased from the first to last trials in each rotation, indicating skill acquisition

over time. Transition speeds also showed significant reductions as participants

progressed through the trials, suggesting enhanced fluency in executing keypress

sequences. Despite these improvements in timing, permutation tests revealed sig-
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nificant differences in motor synergy distributions between the final trial of each

3-element sequence and the first trial of the paired 5-element sequence. These ob-

served JSD values indicated substantial divergence in motor synergy patterns be-

tween sequence types, supporting the notion that motor synergies developed in one

skill do not transfer directly to a subsequent, more complex skill.

Although the primary hypothesis was that synergy transfer would be more

likely after brief practice (3 trials) than after longer practice (7 or 11 trials), this

pattern was not statistically supported. Permutation tests on trial-level JSD values

revealed no significant transfer of motor synergy from the final 3-element trial to

the first 5-element trial in any condition. While this null result technically aligns

with the hypothesis for 7- and 11-trials, it also contradicts the predicted transfer in

3-trials. Although a within-subject comparison of transfer across trial counts (e.g.,

via repeated-measures ANOVA on JSD values or permutation z-scores) could have

been conducted, the absence of significant effects in any condition made such con-

trasts uninformative. Future work with greater sensitivity or different transfer tasks

may help test this hypothesis more conclusively.

This absence of transfer may be explained by the timing and nature of syn-

ergy consolidation. Study 1 showed that motor synergy distributions stabilised by

Trial 12, suggesting a transition from flexible to more rigid motor control patterns

even within short learning windows. Prior research supports this rapid transition:

Latash (2010) outlines early-stage motor learning as a period of synergy formation

followed by rapid consolidation; Komar et al. (2023) report that solution spaces

narrow during early practice, limiting behavioural variability; and Cheung et al.

(2009) and Kaufmann et al. (2024) show that synergies stabilise with increased pro-

ficiency, reducing trial-to-trial variability and overlap. These findings help explain

why longer practice durations might hinder transfer due to increased task-specificity

and reduced flexibility. Conversely, the null result in the 3-trial condition suggests

that even brief exposure may not provide sufficient consolidation to form transfer-

able synergies, or that task complexity interrupts their application.

Turning our attention to population metrics like velocity, acceleration, and
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overlap provided further insights into motor synergy differences between 3-element

and 5-element sequences. Velocity consistently showed higher values in the last

trial of 3-element sequences compared to the first trial of 5-element sequences, in-

dicating that participants moved faster in simpler tasks. Acceleration differences,

though significant, were smaller in effect size, suggesting modest adjustments in

movement initiation. Overlap data revealed the most substantial difference, with

higher values in 3-element sequences, reflecting greater temporal overlap in par-

ticipants’ actions. These population-level results highlight a shift in motor control

strategies when participants transitioned from simpler to more complex sequences,

aligning with the individual findings from the rotations.

The cases of disagreement between transition speeds and pose time series

data highlight instances where skill learning transfer - suggested by stable transi-

tion speeds - did not align with significant changes in motor synergy use. In these

specific trial pairs, although transition speeds between the final trials of 3-element

sequences and the initial trials of paired 5-element sequences were not significantly

different, the pose time series data and JSD analyses revealed significant differences

in motor synergy distributions. For example, in some time series comparisons, dis-

tinct shifts in finger movement patterns emerged, illustrating that participants gen-

erated new motor patterns for more complex sequences. These cases underscore

the value of examining nuanced motor control changes that are not reflected in

transition speed alone. Thus, even when transition speeds suggested skill transfer,

the shifts in pose data and motor synergy distributions indicate that the synergies

formed in simpler sequences did not fully transfer to more complex tasks.

Together, these findings provide compelling evidence that motor synergies de-

veloped in one skill do not automatically transfer to subsequent skills, especially

when task complexity increases. While transition speed improvements suggest that

participants learn to perform sequences more fluently, JSD and kinematic differ-

ences demonstrate that underlying motor synergy use shifts as tasks become more

complex. Notably, cases of disagreement between transition speeds and JSD values

were rare, occurring in only 4 out of the 36 total sequence pairs across all rotations,
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underscoring that these were specific, rather than pervasive, instances. Addition-

ally, it is important to note that there was no instance where observed JSD was

non-significant while transition speeds were significant, further highlighting the ro-

bustness of JSD in detecting subtle but meaningful changes in motor synergies. This

divergence emphasizes the limitations of relying solely on timing or speed metrics

to assess motor skill transfer and underscores the importance of considering both

temporal and kinematic dimensions in understanding motor learning.

5.4 Discussion

Study 3 examined the transfer of motor synergies between simpler and more com-

plex motor sequences, focusing on whether practice duration and task structure in-

fluence synergy transfer. Participants practised 3-element sequences followed by

paired 5-element sequences that embedded the initial sequence, allowing us to eval-

uate whether synergies developed during the simpler task transferred to the more

complex one. While participants exhibited improvements in correct keypresses

per second (ckp/s) and transition speeds across trials, distributions of motor syn-

ergies used did not transfer between tasks, as quantified with Jensen-Shannon di-

vergence (JSD). Significant differences in synergy distributions between the final

trial of 3-element sequences and the initial trial of 5-element sequences suggested

that motor synergy transformation is required when transitioning to more complex

tasks. These findings highlight the hierarchical and task-specific nature of motor

synergies, where the modular control strategies developed for one task may not

generalise effectively to tasks with increased complexity (Latash, 2021; Bizzi and

Cheung, 2013). At the population level, metrics such as velocity, acceleration, and

overlap revealed additional insights into the differences between 3-element and 5-

element sequences. Higher velocities and overlaps in 3-element sequences indicated

more efficient and temporally coordinated movements in simpler tasks, whereas re-

duced values in 5-element sequences reflected the increased cognitive and motor

demands of task complexity. Further, UMAP with Hamming distance and recursive

HDBSCAN clustering allowed us to identify group-level patterns in motor synergy
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development, providing a detailed view of how participants adjusted their motor

strategies across sequence lengths in spite of shared sequential components. De-

spite individual variability, the overall results consistently showed that while sim-

pler motor sequences enabled participants to develop modular control strategies,

those strategies used for the 3-element sequences required reconfiguration for suc-

cessful execution of the same sequence once embedded into the 5-element structure.

5.4.1 In the Context of Generalisation Literature

Study 3 results emphasise the utility of JSD in capturing nuanced changes in motor

control that are not reflected in traditional performance metrics like correct key-

presses per second (ckp/s) or transition speeds. While these measures indicated

improvements in execution, JSD analyses revealed significant shifts in motor syn-

ergy patterns, showing a reconfiguration of motor commands in response to in-

creased task complexity. This reconfiguration underscores findings in prior research

that motor skill transfer is frequently task-specific and context-dependent (Schmidt,

1975; Krakauer and Shadmehr, 2006). Such specificity highlights the challenges of

generalising synergies across tasks that differ in structure or complexity.

The lack of synergy transfer observed in this study agrees with adaptation

studies that suggest transfer is most effective when tasks share spatial, temporal,

and biomechanical characteristics (Wang and Sainburg, 2007). For example, vi-

suomotor adaptation research has consistently demonstrated that generalisation is

strongest when trained and transfer tasks are highly similar in workspace, move-

ment dynamics, or sensory feedback (Seidler et al., 2010). In contrast, tasks with

increased complexity or altered demands often necessitate significant reorganisation

of motor synergies, as observed in Study 3. The hierarchical structure of the paired

3- and 5-element sequences likely constrained the direct transfer of synergies, re-

quiring participants to adjust their motor control strategies for the more complex

task. This may have been due to the fact that the embedded 3-element sequences

went unrecognised, as the cognitive or hierarchical cue for their execution was mis-

aligned within the 5-element task. Focused on rapid adaptation to meet the speed

and accuracy demands of the task, participants may have transformed their syn-
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ergies to accommodate immediate needs rather than relying on previously formed

patterns. This finding aligns with theories that synergies operate as modular units

optimised for specific task demands, where their flexibility diminishes as complex-

ity increases (Tresch and Jarc, 2009; Santello et al., 2016).

At the same time, these results challenge the broader notion of synergy flex-

ibility as described in general motor control theories. While synergies are often

characterised as adaptable and capable of supporting novel task demands (Latash,

2021; Bizzi and Cheung, 2013), the observed need for synergy reconfiguration sug-

gests that adaptability may be limited by the degree of overlap between sequential

components or task goals. Study 3 findings suggest a more nuanced perspective:

although synergies may initially exhibit flexibility, their task-specific refinement

during practice may constrain their ability to generalise to tasks that embed those

same components in a new structural framework.

The hierarchical structure of motor sequences explored in this study also con-

trasts with findings from studies on continuous movement tasks. Continuous tasks,

such as reaching or walking, often show partial transfer of synergies across different

contexts due to the overlapping biomechanical and neural requirements (Krakauer,

2009). However, the motor sequences here likely introduced unique cognitive

and motor challenges, particularly as participants transitioned from 3-element se-

quences to those sequences embedded into the 5-element sequences. This finding

extends prior work by illustrating how the nature of real-world motor skills can

further constrain generalisation.

In some cases, results observed in Study 3 resemble findings from rehabili-

tation research, where transfer between trained and untrained tasks is often lim-

ited despite functional improvements in related behaviours (Lang et al., 2013; Wolf

et al., 2006). Such research highlights that while general motor improvements may

be evident, task-specific adaptations frequently require additional practice to con-

solidate. Study 3 similarly demonstrates that motor synergies do not automatically

transfer across tasks, even when they share overlapping components, emphasising

the critical role of task structure and complexity in generalisation.
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Together, these findings refine existing theories of motor generalisation by

showing that synergy adaptability is constrained not only by task demands but also

by structural embedding and sequence context. Rather than reusing previously ac-

quired motor modules, participants appeared to reconfigure their synergies in re-

sponse to the added complexity of the 5-element sequences - even when the under-

lying components remained the same. These results suggest that generalisation is

not simply a matter of shared biomechanical components, but is also shaped by the

broader task architecture and cognitive framing. This distinction has methodolog-

ical implications as well, motivating the group-level clustering and pose-derived

metrics used in Study 3 to detect shifts in motor organisation across structurally

related but functionally distinct tasks.
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Figure 5.17: Illustration of the hypothesised relationship between task similarity and syn-
ergy transfer likelihood. As tasks become more similar in spatial, temporal, and biomechan-
ical features, the probability of reusing pre-formed synergies increases. Transfer is limited
when tasks differ structurally or cognitively.

5.4.2 Notes on Group-Level Analyses

Unlike Studies 1 and 2, which focused on individual-level analyses, Study 3 em-

ployed group-level methods to accommodate the larger dataset and diverse trial

structures. This shift required methodological adaptations, such as the use of

UMAP with Hamming distance and recursive HDBSCAN clustering, to identify

shared patterns across participants. While these techniques effectively captured

group-level trends, they also introduced challenges in interpreting individual vari-

ability. For instance, differences in learning rates and motor control strategies
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among participants may have contributed to the observed variability in JSD values.

Group-level analyses also highlight the benefits of using metrics like veloc-

ity, acceleration, and overlap, to contextualise and explain cluster-based findings in

interpretable terms. These measures provided a comprehensive view of motor per-

formance, revealing consistent trends across participants despite individual differ-

ences. However, future studies should aim to integrate group- and individual-level

analyses to pursue a nuanced understanding of motor skill/synergy transfer.

5.4.3 Study Limitations

In parallel with these modifications for group-level analyses, I must also acknowl-

edge the limitations of study design. The first limitation concerns sequence over-

lap and repetition. Due to the counterbalanced structure of the study, in which all

participants practised six different initial–paired sequence pairs in rotation, each

3-element sequence not only appeared in its paired 5-element sequence but also oc-

casionally reappeared in later 5-element sequences. This partial redundancy may

have introduced familiarity effects unrelated to the intended transfer. For instance,

sub-sequences such as 241 or 234 were embedded in multiple different 5-element

sequences, raising the possibility that participants benefited from general exposure

rather than true transfer of a previously formed synergy structure.

Another important limitation is the absence of a no-practice control condition.

Without a control group that performs the 5-element sequence without prior expo-

sure to the embedded 3-element sequence, it is difficult to definitively attribute any

observed differences in performance or synergy structure to transfer, rather than to

general task familiarity or baseline variability. Although my within-subject design

permitted testing multiple transfer scenarios under different levels of prior practice,

it did not allow us to quantify the added benefit (or lack thereof) of prior training on

the embedded 3-element subsequence.

This trade-off between ecological realism and experimental control is a com-

mon challenge in motor learning research. The rotation-based design reduced or-

dering effects and increased sequence diversity, but limited the interpretability of

any one trial pair. Future studies could adopt a hybrid approach - retaining the
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sequence-pair structure while adding a between-subjects control group - to better

isolate the causal contribution of prior practice to motor synergy transfer.

5.4.4 GoPro Video Challenges

A key challenge in Study 3 was managing video data recorded using GoPro cam-

eras. Due to file size limitations, GoPro cameras automatically split recordings into

multiple files. For each participant session, this resulted in video files with identi-

cal prefixes but unique suffixes (e.g., GX010001.MP4 and GX010002.MP4). To

address this, custom Python scripts were developed to programmatically resize and

stitch videos back together.

The solution consisted of two main steps: (1) resizing videos to a consistent

resolution (1024x576) to reduce file size and processing overhead, and (2) stitching

files with matching prefixes and sequential suffixes into single, continuous videos.

Below is the implementation:

1 import os

2 import re

3 import numpy as np

4 from moviepy.editor import VideoFileClip,

concatenate_videoclips

5 from send2trash import send2trash

6 from PIL import Image

7

8 # Step 1: Resize videos to reduce resolution

9 def custom_resize(clip, newsize):

10 def resize_image(image):

11 pil_image = Image.fromarray(image)

12 resized_pil_image = pil_image.resize(newsize, Image.

LANCZOS)

13 return np.array(resized_pil_image)

14 return clip.fl_image(resize_image)

15

16 def resize_videos(videos, output_directory, resolution):
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17 for video_path in videos:

18 clip = VideoFileClip(video_path)

19 clip_resized = custom_resize(clip, resolution)

20 base_filename = os.path.basename(video_path)

21 new_filename = f"{os.path.splitext(base_filename)[0]}

_resized.mp4"

22 output_path = os.path.join(output_directory,

new_filename)

23 clip_resized.write_videofile(output_path, codec=’

libx264’, audio_codec=’aac’)

24 clip.close()

25 clip_resized.close()

26 send2trash(video_path)

27 print(f"Original file {video_path} moved to trash.

Resized file saved as {output_path}")

28

29 # Step 2: Stitch videos with matching prefixes

30 def find_videos_with_prefix(directory, prefix):

31 videos = []

32 pattern = re.compile(rf"ˆ{prefix}.*\.MP4$")

33 for filename in os.listdir(directory):

34 if pattern.match(filename):

35 videos.append(os.path.join(directory, filename))

36 return videos

37

38 def stitch_videos(video1_path, video2_path, output_path,

resolution):

39 clip1 = VideoFileClip(video1_path)

40 clip2 = VideoFileClip(video2_path)

41 fps = clip1.fps

42 clip1 = custom_resize(clip1, resolution)

43 clip2 = custom_resize(clip2, resolution)
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44 final_clip = concatenate_videoclips([clip1, clip2])

45 final_clip.write_videofile(output_path, fps=fps, codec=’

libx264’, audio_codec=’aac’)

46 send2trash(video1_path)

47 send2trash(video2_path)

48 print(f"Stitched video saved as {output_path}")

49

50 # Example usage

51 directory = "/path/to/videos"

52 output_directory = "/path/to/output"

53 prefix = "GX01"

54 resolution = (1024, 576) # Desired resolution

55

56 # Resize and stitch videos

57 videos = find_videos_with_prefix(directory, prefix)

58 if len(videos) > 1:

59 for i in range(0, len(videos) - 1, 2):

60 video1, video2 = videos[i], videos[i + 1]

61 output_path = os.path.join(output_directory, f"

stitched_{i // 2}.mp4")

62 stitch_videos(video1, video2, output_path, resolution)

Critical Elements of the Code:

• Resizing Videos: The custom resize function ensures all videos are re-

sized to a consistent resolution (1024x576) using Lanczos filtering for high-

quality downscaling. This reduces file size and processing overhead while

maintaining sufficient visual quality for kinematic analysis.

• Finding Video Files: The find videos with prefix function uses

regular expressions to identify all video files with a specified prefix in a di-

rectory. This ensures only relevant files are processed.

• Stitching Videos: The stitch videos function concatenates two video
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clips, resizing them to the specified resolution and ensuring consistent frame

rates. The original files are moved to the trash after successful stitching to

avoid duplication.

• Automation: The script is designed to handle multiple video pairs automati-

cally, iterating through files with matching prefixes and stitching them into a

single output file.

Intention: I include this solution in the discussion only to provide a practical re-

source for researchers facing similar challenges with GoPro video management. By

combining automated resizing and stitching, the script streamlines data processing

and integration of video data into analysis workflows.



Chapter 6

GENERAL DISCUSSION

“I may not have gone where I intended to go, but I think I have ended

up where I needed to be.”

— Douglas Adams

6.1 Thesis Overview
This thesis examined the early stages of motor sequence learning, focusing on the

emergence, timing, and development of motor synergies, as well as their transfer

between motor sequence skills. Across three experimental studies, I investigated

how synergies are initially formed, how they develop during early-stage practice,

and whether they transfer between tasks of differing complexity. While the find-

ings provide insights into these processes, they also reveal the limits of transfer,

suggesting that synergy reconfiguration is often necessary for new task demands.

Below, I summarise the key contributions of each chapter, emphasising the broader

implications for motor learning research.

6.1.1 Chapter 2: Methods

Chapter 2 detailed the methods developed for Studies 1 and 2, addressing the unique

challenges posed by remote data collection during the COVID-19 pandemic. These

methods enabled rigorous behavioural quantification and unsupervised classifica-
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tion of motor behaviours using tools such as DeepLabCut for pose estimation and

HUB-DT for behavioural annotation. I highlighted the integration of UMAP and

HDBSCAN for dimensionality reduction and clustering, enabling the identification

of motor synergies at the trial level.

6.1.2 Chapter 3: Early Motor Synergy Development

Study 1 investigated the formation and stabilisation of motor synergies during early-

stage learning. By analysing synergy distributions across trials, I found that rapid

gains in synergy organisation occurred within the first 12 trials, followed by stabili-

sation as participants approached a performance plateau. These findings highlighted

the timeline of synergy development, suggesting that early practice is critical for es-

tablishing modular control strategies that underpin skilled performance.

6.1.3 Chapter 4: The Role of Rest in Synergy Development

Study 2 explored the role of rest in motor learning, revealing that offline periods

between practice sessions facilitated rapid motor synergy reorganisation. Results

demonstrated that rest enhanced skill consolidation, with synergy transformations

contributing significantly to performance gains. This study provided evidence for

the motor system’s capacity to alter control strategies over periods of rest rather

than active practice.

6.1.4 Chapter 5: Synergy Transfer Across Tasks

Study 3 examined whether motor synergies developed during simpler tasks could

transfer to more complex ones. Results showed limited direct transfer, as partic-

ipants required reconfiguration of synergies when transitioning to tasks with in-

creased complexity. The findings underscored the hierarchical and task-specific na-

ture of motor synergies, where previously learned strategies must often be adapted

to accommodate new task demands. However, the sensitivity of synergy transfer

to training duration and cue placement warrants further investigation, particularly

concerning cognitive and contextual factors that may influence transfer efficacy.
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6.1.5 Integration with Broader Literature

The findings of this thesis contribute to a growing body of research on motor se-

quence learning by providing a detailed examination of the early stages of motor

synergy formation, development, and transfer. Prior studies have established that

motor synergies serve as modular units of control, enabling the central nervous sys-

tem to simplify the coordination of complex movements (Bizzi and Cheung, 2013;

Latash, 2021). However, much of this work has focused on well-learned behaviours

or adaptation processes, with limited emphasis on how synergies emerge and sta-

bilise during the early stages of learning a continuous motor sequence skill. This

thesis addresses this gap by highlighting the timing and rapid organisation of motor

synergies during initial practice, as seen in Study 1, and the critical role of rest in

facilitating their transformation and consolidation, as demonstrated in Study 2.

The negligible transfer of synergies in Study 3 aligns with prior research on

the context-specific nature of motor learning (Schmidt, 1975; Seidler et al., 2010).

Previous studies on visuomotor adaptation have shown that transfer is most ef-

fective when tasks share spatial and biomechanical similarities, underscoring the

challenges of applying learned motor strategies to tasks with altered cues or de-

mands (Wang and Sainburg, 2007). The hierarchical structure and embedded com-

ponents of the sequences expand on this work, revealing that even minor cognitive

or structural modifications can disrupt synergy transfer. This insight complements

the growing recognition of task-specific learning mechanisms, where synergies re-

flect an optimisation tailored to the immediate demands of the practised task.

Moreover, use of unsupervised clustering and dimensionality reduction tech-

niques, such as HDBSCAN and UMAP, extends existing approaches to behavioural

analysis by offering data-driven, non-linear methodologies for quantifying synergy

formation. These methods align with recent trends in motor neuroscience, where

advanced computational tools are increasingly employed to uncover latent patterns

in high-dimensional movement data (Hausmann et al., 2021; Wagner et al., 2020).

The use of JSD to capture changes in synergy distributions further shows how met-

rics can deepen our appreciation for motor control, bringing together traditional
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kinematic analyses and modern data science approaches.

In synthesising these findings with existing literature, this thesis contributes to

an understanding of motor sequence learning. While supporting the modular and

hierarchical framework of motor synergies, it also raises questions about their flex-

ibility and the extent to which early-stage synergies can be repurposed for tasks

of greater complexity. These contributions provide an interesting waypoint for fu-

ture investigations into the interplay between task structure, cognitive demands, and

motor control strategies in both typical and impaired populations.

6.1.6 Practical Implications and Future Directions

The findings of this thesis have possible practical implications for understanding

and enhancing motor sequence learning, particularly in educational, clinical, and

rehabilitative contexts. The identification of distinct stages in motor synergy devel-

opment, as seen in Studies 1 and 2, underscores the importance of tailoring training

protocols to the specific phases of skill acquisition. Early-stage learning, charac-

terised by rapid synergy formation, may benefit from intensive, focused practice

sessions that prioritise consistency and accuracy. Conversely, the role of rest in

facilitating skill consolidation, as demonstrated in Study 2, highlights the need to

balance practice with sufficient offline periods to optimise learning outcomes.

From a clinical perspective, Study 3 results raise important considerations for

rehabilitation. The need for synergy reconfiguration when transitioning to more

complex tasks suggests that interventions should carefully sequence tasks to build

upon previously learned skills. Incorporating hierarchical task structures, where

simpler components are embedded saliently within progressively complex activ-

ities, may help patients incorporate motor strategies more effectively. This ap-

proach could be beneficial for individuals recovering from neurological injuries,

such as stroke, where supplementing existing clinical synergies with biomechani-

cally healthy, or typical,motor synergies is a primary goal.

The application of computational tools, such as UMAP and HDBSCAN, fur-

ther extends the scope of motor learning research by enabling detailed, unsupervised

analysis of high-dimensional behavioural data. These methods are a framework for
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automated systems capable of monitoring skill acquisition and offering feedback

to learners and clinicians in real time. Such technologies could be integrated into

wearable devices or mobile applications, making them accessible to a wide range

of users. Moreover, the use of metrics like Jensen-Shannon divergence to quantify

changes in motor synergies presents an opportunity to refine assessments of mo-

tor function, particularly in clinical populations where traditional measures may be

insufficient to capture subtle behavioural adaptations.

Looking forward, several questions remain unanswered and warrant further

exploration. For example, how do cognitive and contextual factors, such as cue

placement and task familiarity, influence the transfer of motor synergies? Addi-

tionally, future work could test my findings across diverse populations, including

individuals with motor impairments, to understand a broader applicability.

Finally, this thesis supports the need for interdisciplinary collaboration in mo-

tor learning research. Bridging neuroscience, data science, and clinical practice can

accelerate the development of innovative tools and interventions that enhance our

understanding of motor control while addressing practical challenges in skill acqui-

sition and rehabilitation. By integrating empirical findings with cutting-edge tech-

nologies, future research has the potential to transform both theoretical perspectives

and real-world applications in motor learning.

6.2 Considerations for the Collection of Remote Data

In Chapter 2 of this thesis, I provided a comprehensive guide to the methods em-

ployed in Studies 1 and 2, both of which utilised remote data collection technolo-

gies and procedures. As noted, my remote methods were designed to meet the

challenges of studying motor skill learning behaviour whilst stay-at-home orders

were in effect in the United States during the COVID-19 pandemic. Indeed, the

initial aim of this doctoral research was to work directly with stroke patients to

develop and validate an in-home clinical evaluation system, using video to track

specific upper limb movements and analyse data to quantify recovery. However, the

COVID-19 pandemic and resulting lockdowns imposed significant restrictions on
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in-person research activities, limiting my ability to engage with this patient popu-

lation as planned. Despite these challenges, working with the participants we were

able to include provided valuable insights into the practicalities of implementing

a process for remote data collection for patients in the home setting. These ex-

periences highlighted key considerations in both hardware and software domains,

informing strategies to scale the project effectively while ensuring accessibility.

Hardware Considerations

Implementing an at-home clinical evaluation system for stroke patients at scale ne-

cessitates careful planning of hardware requirements to ensure effective data collec-

tion and usability across diverse populations.

Device Selection and Variability

The first hardware to consider is a camera capable of capturing video suitable for

pose estimation. To collect data from a large number of patients in their homes, the

system must utilise devices that are widely accessible and affordable across socioe-

conomic statuses. One practical solution is leveraging the ubiquity of smartphones

or tablets, which often come equipped with advanced camera technology. These

devices could capture video data without imposing additional costs on patients. De-

veloping a user-friendly application compatible with a range of devices and operat-

ing systems could facilitate adoption. However, this approach introduces variability

in hardware capabilities, such as differences in camera resolution, frame rates, pro-

cessing power, and sensor quality, which can affect data consistency and quality.

Standardising data collection protocols is essential to mitigate these issues. This

could involve setting minimum hardware requirements for device compatibility or

implementing software-based adjustments to account for hardware differences.

Ease of Use and Accessibility

Ensuring ease of use for patients who may have limited technical proficiency or

physical impairments is important. The hardware setup should require minimal

configuration and intuitive interfaces with clear visual cues. Voice command or

simplified touch support may also enhance usability for a broader range of patients.



6.2. Considerations for the Collection of Remote Data 187

Connectivity and Data Transfer

Connectivity is another significant consideration. Patients may have limited ac-

cess to high-speed internet, which poses challenges for transmitting video data.

Implementing data compression techniques, such as efficient video codecs or trans-

mitting only essential data (e.g., extracted pose coordinates instead of raw video),

can reduce bandwidth requirements. Alternatively, allowing for offline data collec-

tion with periodic uploads when connectivity is available can accommodate patients

with intermittent internet access.

Environmental Factors and Setup Guidance

Environmental factors within patients’ homes must also be considered. Variations

in lighting, background, camera positioning, and available space can all impact

pose estimation or patient performance. Algorithms must therefore be designed

to tolerate these challenges, possibly through data augmentation or preprocessing

techniques. Providing patients with guidance on optimal setup is also important.

This could include recommendations on camera placement, suggestions for suitable

locations within the home (e.g., areas with adequate lighting), and instructions to

minimise occlusions (e.g., avoid loose clothing that obscures body movements).

Including real-time feedback mechanisms within the application can help patients

adjust their setup if the system detects suboptimal conditions.

Software Considerations

Scaling relevant project software involves developing systems capable of processing

and analysing large volumes of data efficiently and accurately.

Scalability and Cloud Infrastructure

As the number of patients increases, the software must handle extensive datasets

without compromising performance or responsiveness. Implementing scalable

algorithms and leveraging distributed computing resources are key strategies to

achieve this goal. Any adapted self-supervised or unsupervised framework for time

series data will require significant computational power for training and inference.

Utilising cloud computing platforms can provide the necessary resources, offering
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scalability through on-demand provisioning of computational and storage capaci-

ties. Cloud services, such as Amazon Web Services (AWS), Google Cloud Platform

(GCP), or Microsoft Azure, offer tools for distributed computing, allowing the sys-

tem to parallelise processing tasks across multiple servers. This reduces processing

times and enables the handling of large datasets efficiently.

Automated Pipelines and Data Flow

Automated data processing pipelines are essential for handling continuous data

streams from patients. These pipelines should encompass data ingestion, prepro-

cessing, feature extraction, model training, and real-time inference. Automation

minimises the need for manual intervention, reducing the potential for errors and

improving efficiency. Implementing technologies like Apache Kafka or AWS Ki-

nesis can facilitate real-time data streaming and processing.

Storage Solutions and Data Management

Developing scalable databases and storage solutions capable of handling time series

data effectively is another important consideration. Employing databases optimised

for high write and read throughput, such as time series databases (e.g., InfluxDB,

TimescaleDB) or NoSQL databases (e.g., MongoDB, Cassandra), can improve data

retrieval and storage efficiency. Data indexing, sharding, and partitioning strategies

can enhance performance for large datasets by distributing the data across multiple

nodes and facilitating parallel access.

Model Maintenance and Monitoring

The software must also include mechanisms for model updates and maintenance.

As more data becomes available, models may need retraining to improve accuracy

and generalisability. Implementing continuous integration and continuous deploy-

ment (CI/CD) pipelines allows for seamless updates to the system without disrupt-

ing service. Tools like Jenkins, GitLab CI/CD, or AWS CodePipeline can automate

the build, test, and deployment processes. Monitoring model performance in pro-

duction is essential to detect model drift or degradation in accuracy. Implementing

monitoring tools and alerting systems can help maintain model reliability. Tech-
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niques like A/B testing or canary deployments can be used to evaluate new models

before full-scale deployment.

Scaling an at-home clinical evaluation system involves leveraging available

hardware, ensuring the system is accessible, and reliably collecting diverse data

from patients. On the software side, employing scalable architectures and robust

data processing pipelines enables efficient handling of datasets and timely insights.

Addressing these considerations are a start for future developments in remote pa-

tient monitoring and personalised rehabilitation.

Hardware
Camera choice;

Capture data

Software
Pipeline choice;

Data evaluation

Analysis
Evaluate skill;

Track progress

Clinical
Guide treatment;

Update goals

Figure 6.1: Circular pipeline for remote data collection and evaluation. Hardware (e.g.,
cameras) enables data capture, which is processed by Software pipelines, analysed to track
skill learning and motor recovery, and fed back into Clinical decision-making loops.

6.3 Synergy and Skill Requirement
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In this section, I consider how the requirements of a task drive the emergence and

configuration of motor synergies. Findings across Studies 1–3 suggest that the syn-

ergies observed were not solely the result of biomechanical or neural constraints, but

also significantly shaped by task demands - specifically, the instruction to perform

each sequence as quickly and accurately as possible. This constraint consistently di-

rected participants toward movement strategies optimised for speed-accuracy trade-

offs, rather than theoretical efficiency or exploratory movement diversity.

This interpretation aligns with prior work showing that synergies are flexible,

task-dependent constructs. Latash (2021) describes synergies as modular systems

capable of adaptation even under tight constraints. Similarly, Bizzi and Cheung

(2013) demonstrate that synergy composition reflects the demands of the environ-

ment and goal. The speed–accuracy requirement in my studies likely constrained

the solution space, encouraging the consolidation of highly repeatable movements.

Study 3 offers a useful lens through which to examine this constraint-driven

optimisation. As participants transitioned from 3-element to 5-element sequences, I

observed that synergies often reorganised entirely - despite the 3-element sequence

being embedded within the longer, complex task. This reconfiguration may have

reflected the need to maintain speed and accuracy over a more complex structure,

highlighting how increased task demands reshape motor control.

To illustrate how alternative constraints might yield different outcomes, con-

sider a hypothetical version of the same task in which participants are instructed to

prioritise variability or novelty of movement, rather than speed. Under such instruc-

tions, one might expect greater within-participant variability and slower conver-

gence toward stable synergies, or even the emergence of different exploratory strate-

gies altogether. Alternatively, if participants were explicitly instructed to maintain

uniform timing between keypresses or emphasise movement smoothness, the result-

ing synergy patterns could reflect different coordination principles, such as tempo

regulation or biomechanical efficiency rather than pure speed.

This possibility raises a broader question about the boundaries of synergy

adaptability: how plastic are these control strategies when the task goal shifts? Al-
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though this thesis focused on speed-constrained learning, future studies could in-

vestigate the reconfiguration of motor synergies under alternate performance goals.

Such work may help distinguish between synergies that are robust across contexts

and those that are tightly coupled to a particular task structure.

Finally, this discussion complements findings in motor adaptation, where task

goals have long been recognised as a key determinant of learning trajectories (Sei-

dler et al., 2010; Wang and Sainburg, 2007). Across domains, task specificity ap-

pears to drive not only the acquisition of skill but also the architecture of the motor

solutions used to support it. The findings in this thesis contribute to that body of

work, offering new insights into the relationship between motor learning, task con-

straints, and synergy flexibility.

6.4 Synergy: An Ill-Defined Problem

Despite the widespread use of the term synergy in motor control research, its defi-

nition and application remain highly variable and context-dependent. In this thesis,

I examined motor synergies through a specific lens: as clusters of motor behaviours

identified using unsupervised computational techniques, such as UMAP and HDB-

SCAN. While this approach yielded valuable insights into the timing, emergence,

and development of synergies, it also raised questions about what synergy truly sig-

nifies in the broader context of motor learning.

Latash (2021) aptly summarises this challenge, describing synergy as a concept

with “many solutions.” Synergies may be defined and calculated based on muscle

activation patterns, joint kinematics, or even neural activity, depending on the exper-

imental framework. This diversity of definitions is both a strength and a limitation

for the field. On one hand, it reflects the multifaceted nature of motor control; on

the other, it complicates cross-study comparisons and theoretical integration.

The issue is further exacerbated by the validation loops inherent in synergy

research. Researchers often define synergies based on specific tasks and methods,

then validate their findings using metrics optimised for those same tasks. While this

approach ensures internal consistency, it risks creating isolated pockets of knowl-
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edge rather than a unified understanding of motor control or motor synergy. For

instance, studies focusing on muscle synergies often highlight their modularity as

evidence of neural optimisation (Bizzi and Cheung, 2013), while kinematic analy-

ses may emphasise biomechanical efficiency (Tresch and Jarc, 2009).

This lack of consensus prompts a critical question: What are researchers truly

pursuing when they study synergy? Is it a purely descriptive construct, or does it

represent an underlying principle of motor organisation? Addressing these ques-

tions requires interdisciplinary collaboration and methodological standardisation,

drawing from neuroscience, biomechanics, and computational modelling.

Future research must also consider the contextual dependency of synergy for-

mation. For example, the synergies observed in this thesis were heavily influenced

by the requirement to perform tasks rapidly and accurately. In other contexts, such

as rehabilitation or creative motor tasks, entirely different synergy configurations

may emerge. Exploring these variations could help clarify whether synergies repre-

sent universal principles of motor control or task-specific adaptations.

Domain Definition of Synergy Measurement Modality

Muscle Activation Synergies as coordinated
patterns of muscle
co-activation that reduce the
dimensionality of control

Electromyography (EMG)

Joint Kinematics Synergies as covarying joint
angles or limb segment
trajectories during movement

Motion capture; Inertial
measurement units (IMUs)

Neural Activity Synergies as structured
patterns of population-level
neural firing or cortical
organisation

fMRI, EEG, or invasive
recording

Behavioural Clustering Synergies as recurring
clusters of behavioural states
or movement patterns
identified using unsupervised
learning

Pose estimation +
UMAP/HDBSCAN or other
clustering algorithms

Table 6.1: Summary of synergy definitions and corresponding measurement modalities
across domains.

Ultimately, synergy remains an ill-defined but indispensable concept in motor
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control research. By recognising its limitations and embracing its diversity, the

field can move toward a more comprehensive and integrative understanding of how

humans and other animals achieve skilled movement.

6.5 Neurology of Rest-Based Calculations

Rest plays a critical role in motor skill learning, acting as a period for the consol-

idation of both spatial-ordinal information (the what to do in a sequence) and sen-

sorimotor strategies (the how to do it). This thesis demonstrated how the the motor

system leverages brief periods of rest to reorganise and refine motor synergies on a

trial-by-trial basis. These findings underscore a capacity to rapidly update cognitive

representations of task demands and concurrently optimise motor behaviours.

The central nervous system’s ability to execute complex operations within sec-

onds is of note. It involves integrating feedback from prior movements, predicting

future task requirements, and restructuring motor synergy modules to accommodate

evolving demands. This rapid consolidation highlights the adaptability of motor

circuits, which can process and encode a high volume of sensorimotor information

even during short pauses in task performance.

While prior studies have emphasised the role of extended rest periods in offline

skill consolidation, Study 2 findings support modern evidence that learning can oc-

cur within seconds. Interleaved rest intervals facilitate iterative updates, allowing

the motor system to reorganise control strategies. This is distinct from online learn-

ing, where changes occur during active task execution and are often driven by error

correction and feedback-based adaptation. In contrast, rest-based reorganisation

appears to reflect a process that coordinates neural resources across networks to

solidify and reconfigure synergies without concurrent motor output.

Emerging work by Cohen, Buch, and Bonstrup supports this distinction, show-

ing increased functional connectivity between motor, sensory, and prefrontal net-

works during rest. These findings indicate a heightened state of coordination and

information exchange during brief pauses, underscoring the importance of short,

strategically placed rest intervals in skill acquisition (Buch et al., 2021).
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Given these findings, future research should delve deeper into the neurolog-

ical underpinnings of rest-based learning, exploring how motor circuits dynam-

ically balance the consolidation of spatial-ordinal and sensorimotor information.

Key questions include whether the benefits of rest extend to more complex mo-

tor tasks, how rest duration modulates synergy reorganisation, and how rest-based

consolidation differs in populations with varying neurological profiles.

Rest
Pause between trials

Consolidate
Stabilise motor plans

Reorganise
Update motor modules

Figure 6.2: Schematic of the rest → consolidation → synergy reorganisation cycle in Study
2. Rest intervals trigger internal processing that consolidates motor experiences, which then
facilitates reorganisation of motor synergies in preparation for subsequent trials.

6.6 Rest in Clinical Participants
Assuming a critical stance on the topic of rest and the results of Study 2, I turn

briefly to a conversation on the nature of rest in clinical populations and how extant

results in healthy participants may not reasonably replicate in those with neurolog-

ical insult. Resting-state neurological activity in individuals recovering from stroke

- particularly in the subacute and chronic phases - differs significantly from that of

healthy populations. These differences are often linked to disrupted connectivity in

motor and sensory networks, which play central roles in skill consolidation. Studies

have shown that stroke patients exhibit reduced functional connectivity between pri-

mary motor areas and distributed networks important for learning, potentially limit-

ing their capacity to benefit from rest-dependent reorganisation processes (Grefkes
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and Fink, 2011; Stagg and Johansen-Berg, 2013).

The findings presented in this thesis raise important questions about the gener-

alisability of rest-based learning paradigms to such populations. While healthy par-

ticipants demonstrated rapid synergy reorganisation following brief rest intervals,

it remains unclear whether individuals with neurological injuries - especially those

in the chronic stage - experience similar benefits. Subacute stroke patients may re-

tain a greater degree of neuroplastic potential, but they too show signs of altered

resting-state dynamics. For instance, hyperexcitability in motor circuits, frequently

observed post-stroke, often results from imbalances in interhemispheric inhibition

and reduced cortical GABAergic activity (Stinear et al., 2015). This pathological

state may interfere with the consolidation processes observed in healthy adults.

A critical future direction involves piloting the same sequence learning

paradigm used in this thesis - particularly Study 2 - in clinical populations using

the existing keyboard interface. This low-cost, at-home compatible device could

be used to assess whether rest-related synergy reorganisation is observable in post-

stroke individuals. By targeting both subacute and chronic stroke patients, future

work can better characterise how the time since injury influences rest-state consoli-

dation. Rest intervals could be manipulated to examine dose-responsiveness, while

neuroimaging or portable EEG could provide insight into the neural substrates of

rest-related changes. Such studies would help determine whether rest retains the

same functional role in clinical contexts or whether additional interventions are

needed to unlock its rehabilitative potential. Understanding these differences is

vital for translating synergy-based frameworks to rehabilitation, particularly for de-

veloping scalable, rest-enhanced training protocols suited to home-based recovery.

6.7 Defining Average Movement

Remaining on the topic of motor skill learning research as a possible benefit to clin-

ical populations, I am reminded of another critical idea in the field that is difficult to

approach, i.e. agree on terms for, and even more difficult to solve: defining “aver-

age” movement. The concept of average movement is a central challenge for motor
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impairment, neurorehabilitation and the computational evaluation of movement and

recovery following stroke. While the methods developed in this thesis offer tools

for analysing motor development using unsupervised machine learning techniques,

the question of what constitutes “average movement” remains inherently complex.

The complexity is rooted in inter-individual variability in motor strategies, biome-

chanics, and demographics. How we solve for that variability to capture a true and

useful metric for average movement remains elusive.

Work on motor control and rehabilitation highlights the variability of motor

strategies and behaviour within tasks. For example, in an exploration of compen-

satory strategies in individuals with stroke, Cirstea and Levin (2000) and Levin

et al. (2002) observed unique adjustments, such as increased trunk involvement dur-

ing reaching tasks, that enabled functional goal achievement despite motor impair-

ments. These findings emphasise that “typical” movement is not a fixed standard

but rather a dynamic construct that varies across individuals and contexts.

In clinical practice, frameworks such as the Fugl-Meyer Assessment of Mo-

tor Recovery (FMA) and the NIH Stroke Scale (NIHSS) are used to approximate

functional impairment and recovery benchmarks. The FMA, for instance, provides

a quantitative index of motor function for the upper extremity, reflecting reflexes,

coordination, and movement quality. The NIHSS includes upper limb motor com-

ponents within a broader neurological examination. While both tools offer clinically

actionable thresholds and serve as proxies for “average” impairment levels, they do

not define biomechanical averages or movement profiles. Instead, they reduce com-

plex motor behaviour to ordinal scores, which are useful for stratifying patients but

insufficient for modelling motor strategy variation at the kinematic level.

From a clinical perspective, the lack of pre-stroke movement data for most pa-

tients further complicates the establishment of a baseline for recovery. As clinicians

often rely on relative improvements within each patient rather than comparisons

to a universal standard, the absence of a universally accepted definition of “aver-

age” movement raises questions about the validity and reliability of cross-patient

assessments. Levin and Demers (2021) have argued for personalised rehabilita-
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tion approaches that consider each patient’s unique motor patterns, a perspective

that aligns with the notion that motor recovery should account for biomechanical

idiosyncrasies rather than attempting to standardise movement across populations.

Research conducted at National Hospital for Neurology and Neurosurgery

(NHNN) also highlights the individualised nature of motor recovery, emphasis-

ing that rehabilitation must account for the unique neural and functional profiles

of each patient (Ward et al., 2019). Work on intensive upper limb neurorehabilita-

tion demonstrates that tailored, context-specific programmes can lead to significant

functional improvements even years post-stroke, challenging the notion of a uni-

form “typical” movement pattern. This perspective is crucial when applying clus-

tering techniques like UMAP and HDBSCAN to create population-level maps of

motor behaviours, as these tools, while powerful, risk oversimplifying the diversity

of human movement. By integrating the insights of clinical research, future ap-

plications of modern computational methods may better supplement rehabilitation

practises and capture the nuanced, individualised nature of motor strategies.

Future research could aim to address these challenges by expanding the scope

of movement datasets to include more diverse populations, tasks, and contexts. Lon-

gitudinal studies that track motor behaviours over time could help identify common

trajectories of recovery while accounting for individual variability. Additionally, in-

corporating insights from work on compensatory strategies and personalised reha-

bilitation could refine clustering methods to better capture the dynamic and context-

specific nature of motor control. In short, defining “average” movement remains a

complex and critical question that demands the integration of individual variability,

contextual factors, and broader theoretical frameworks.

6.8 Concluding Remarks

This thesis furthers our understanding of motor sequence learning by investigating

the emergence, timing, and development of motor synergies, as well as their trans-

fer across tasks of differing complexity. Through three studies, I demonstrated the

central role of task structure, rest, and practice duration in shaping motor synergies
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during early-stage learning. Additionally, the methods developed for behavioural

quantification and unsupervised classification offer scalable tools for analysing mo-

tor behaviours in both research and clinical settings.

These findings have implications for motor learning and rehabilitation, partic-

ularly in understanding how synergies evolve to meet the demands of specific tasks.

Results emphasise the mutable nature of the motor system, which not only consol-

idates spatial-ordinal and sensorimotor information with remarkable efficiency but

also reorganises motor strategies for each challenge. By addressing key questions

about the transferability and specificity of motor synergies, this work contributes to

ongoing discussions about the modular and hierarchical nature of motor control.

In closing, this thesis represents a contribution to the study of motor sequence

learning and motor synergy, highlighting both the capabilities and complexities of

the human motor system. I explored the interplay between motor skill sequence

learning, practice, rest, and synergy development, and any insights gained here re-

flect the collective and collaborative efforts of a scientific community dedicated to

understanding human learning and its applications by way of neuroscience, data

science, and clinical expertise. This research would not have been possible without

each of these fields and I believe any successes are owed to working together.

* * *

Anyway. We’ve since moved on from the Paris Olympics and are currently

immersed in my daughter’s ballet class at the Royal Academy of Dance. I watch

from the house seats - she moves across the floor with an intensity and joy that feels

larger than her small frame. Each plié and pirouette is a puzzle. How does she

coordinate her movements so effortlessly, finding balance and fluidity in something

so unfamiliar? She’s only just learned these steps, yet her body seems to know what

to do. It is fascinating, and the scientist in me itches to understand the mechanics

that make it all possible. But then I hear her laugh when she misses a turn, resetting

with a determination that’s all her own. And in that moment, it doesn’t matter if I

know. Instead, I just sit, watch, and wonder - how does she do that?



Appendix A

SELF-SUPERVISED LEARNING

FOR CLINICAL PHENOTYPING

OF POSE DATA

A.1 Rationale

Stroke remains one of the leading causes of death and long-term disability world-

wide, with an estimated 13.7 million new cases occurring each year globally (Feigin

et al., 2021). Survivors often endure a spectrum of motor, sensory, and cognitive

impairments, the severity and specific manifestations of which vary significantly

between individuals. The complexity of motor impairments post-stroke poses sig-

nificant challenges; even subtle differences in movement patterns can profoundly

affect a patient’s ability to perform daily activities and respond to rehabilitation.

Traditional clinical assessments may not fully capture these nuanced differences,

leading to generalized treatment plans that may not address individual needs ef-

fectively. Therefore, machine learning-based phenotyping of post-stroke symptoms

may offer a more nuanced understanding of the specific patterns and complexities

of motor impairment that clinicians can use to tailor rehabilitation strategies.



A.2. The Need for Democratizing At-Home Clinical Evaluations 200

A.2 The Need for Democratizing At-Home Clinical

Evaluations

Socioeconomic barriers can significantly impede access to consistent, high-quality

rehabilitation for stroke survivors. Patients from lower socioeconomic backgrounds

often face challenges in accessing care due to limited resources, geographic iso-

lation, or the inability to attend frequent in-clinic evaluations. At-home clinical

evaluation systems offer a promising solution to these barriers by ensuring equi-

table access to care. Moreover, home-based rehabilitation allows for the monitoring

of patients in a more naturalistic environment, providing ecologically valid assess-

ments of motor function. The integration of advanced technological solutions, such

as computer vision and machine learning, into at-home evaluations can further de-

mocratize healthcare by making high-quality clinical tools available at lower costs

and with greater frequency. These technological advancements facilitate remote as-

sessments and personalized rehabilitation programs, augmenting clinical ability to

monitor the recovery process, adjust treatment plans accordingly, and aim to im-

prove patient outcomes regardless of socioeconomic status.

A.3 Technological Advancements in At-Home Clini-

cal Evaluations

Technological advancements, particularly in the fields of computer vision and ma-

chine learning, have opened new possibilities for at-home healthcare evaluations. In

recent years, computer vision models have been successfully applied to a variety of

healthcare challenges, including gait analysis, motion tracking, and gesture recog-

nition. Specifically, the use of pose estimation algorithms, such as OpenPose (Cao

et al., 2021) and MediaPipe (Lugaresi et al., 2019), has demonstrated the poten-

tial for precise and non-intrusive tracking of human movement, which is especially

pertinent in the assessment of motor function in stroke patients.

Time series analysis plays a crucial role in understanding the dynamics of hu-

man motion over time. Advancements in machine learning, including unsupervised
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and self-supervised learning techniques, have enabled more refined analyses of se-

quential patient data without the need for extensive labelled datasets. Models such

as SimCLR, originally developed for visual data, can be adapted for time series data

to capture temporal patterns in patient movements. By incorporating time series-

specific augmentations and architectures suited for sequential data, these models

make more capable the analysis of motion patterns over time.

These technological advancements are particularly valuable for large-scale

data collection in home settings, where it is often impractical to manually label ev-

ery instance of patient movement. When combined, computer vision and machine

learning offer powerful tools for continuous and detailed tracking of post-stroke

motor recovery, providing clinicians with deeper insights into patient recovery.

A.4 Addressing the Problem of Refined Phenotyping

with Machine Learning
The application of machine learning algorithms presents a novel approach to refin-

ing the phenotyping of post-stroke motor impairments. By adapting learning mod-

els like SimCLR to handle time series data effectively, we can capture the temporal

dynamics of patient movements. This adaptation involves incorporating time series-

specific augmentations - such as time warping, jittering, and scaling - to enhance

the model’s ability to learn meaningful representations of sequential data. Addition-

ally, employing neural network architectures suited for sequential data processing,

such as one-dimensional convolutional neural networks (1D CNNs), ensures that

the temporal structure of the data is preserved and effectively analysed.

Using these models enables the clustering of complex motion data collected

from patients, allowing us to identify distinct movement patterns that may cor-

respond to different neurological conditions or recovery trajectories. Traditional

clinical evaluations, which rely on subjective assessments, can overlook subtle dif-

ferences in motor performance that may be indicative of specific impairments. In

contrast, machine learning models can process large amounts of pose data captured

over extended periods, identifying patterns not easily observable by clinicians.
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Furthermore, the integration of self-supervised learning reduces the need for

manually labelled datasets, making it feasible to collect and analyse data at scale

from stroke patients in their homes. As patients interact with their environments

during daily activities, the algorithm can capture and analyse the subtleties of their

movement in real time, without the need for constant clinician oversight. This level

of granularity in phenotyping has the potential to reveal new categories of impair-

ment and recovery, which in turn could guide more personalized rehabilitation pro-

grams. For example, identifying patients with similar movement patterns but dif-

ferent clinical outcomes could lead to insights about which rehabilitation strategies

are most effective for particular phenotypes.

A.5 Summary of the Algorithm and Its Applications
The algorithm developed here leverages a combination of self-supervised learning

(SimCLR), dimensionality reduction (UMAP), and density-based clustering (HDB-

SCAN) to analyse pose data captured from stroke patients during at-home evalua-

tions. SimCLR allows for robust feature extraction from the raw pose data, while

UMAP reduces the dimensionality of the learned features to facilitate clustering.

HDBSCAN is used to group the data into meaningful clusters, identifying distinct

motor patterns among patients.

The pipeline aims to be a scalable and automated method to post-stroke phe-

notyping, a complement to traditional, in-person clinical assessments. By captur-

ing and analysing movement data in real-world environments, this algorithm aims

to enrich the understanding of recovery processes with personalized rehabilitation

strategies. The following sections provide a detailed breakdown of the algorithm,

including the mathematical principles behind each component and all Python code.

Pipeline Overview

This section is offers a detailed explanation of the pipeline for pose data analy-

sis, including the mathematical methods and corresponding Python code applied

at each step. The process includes seven steps: Data Collection and Preprocess-

ing, Feature Extraction, Self-Supervised Learning with SimCLR, Dimensionality
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Reduction with UMAP, Clustering with HDBSCAN, Evaluation of Clustering, and

visualisation of Cluster Health.

1. Data Collection and Preprocessing

In this step, we generate synthetic pose data that mimics realistic time series pat-

terns, such as sine waves, cosine waves, sawtooth waves, and random noise. This

data simulates human motion over time and is essential for training models that

generalize well to real-world scenarios. Each sample consists of multiple time-steps

and features, representing different pose coordinates over time.

Synthetic data generation involves creating time series s(t) using functions like

sine and cosine with added Gaussian noise to simulate measurement inaccuracies:

s(t) = f (t)+ ε, ε ∼ N (0,σ2)

where f (t) is a function like sin(t) or cos(t), and ε is Gaussian noise.

The generated data is then normalized per feature across all samples to ensure

zero mean and unit variance, which is crucial for model training:

x′ =
x−µ

σ

where x is the original data, µ is the mean, σ is the standard deviation, and x′

is the normalized data.

1 import numpy as np

2 from sklearn.preprocessing import StandardScaler

3 from scipy import signal

4

5 # Generate synthetic pose data (time series data) with

realistic patterns

6 def generate_synthetic_data(n_samples=1000, n_timesteps=120,

n_features=17):

7 np.random.seed(42)

8 data = []

9 for _ in range(n_samples):
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10 # Randomly choose a pattern

11 pattern_type = np.random.choice([’sine’, ’cosine’, ’

sawtooth’, ’random’])

12 t = np.linspace(0, 2 * np.pi, n_timesteps)

13 if pattern_type == ’sine’:

14 series = np.sin(t) + np.random.normal(0, 0.1, size

=(n_timesteps,))

15 elif pattern_type == ’cosine’:

16 series = np.cos(t) + np.random.normal(0, 0.1, size

=(n_timesteps,))

17 elif pattern_type == ’sawtooth’:

18 series = signal.sawtooth(t) + np.random.normal(0,

0.1, size=(n_timesteps,))

19 else:

20 series = np.random.normal(0, 1, size=(n_timesteps,)

)

21 # Create features by adding slight variations

22 sample = np.array([series + np.random.normal(0, 0.05,

size=(n_timesteps,)) for _ in range(n_features)]).T

23 data.append(sample)

24 data = np.array(data)

25 return data

26

27 data = generate_synthetic_data()

28

29 # Normalize the data per feature

30 n_samples, n_timesteps, n_features = data.shape

31 data_reshaped = data.reshape(-1, n_features)

32 scaler = StandardScaler()

33 data_normalized = scaler.fit_transform(data_reshaped)

34 data_normalized = data_normalized.reshape(n_samples,

n_timesteps, n_features)



A.5. Summary of the Algorithm and Its Applications 205

2. Feature Extraction

The normalized data is processed to extract key kinematic features such as position,

velocity, acceleration, and jerk. These features capture the dynamics of motion and

are essential for understanding the temporal patterns in the data. The derivatives are

calculated without padding, accepting the reduced sequence length to avoid intro-

ducing artificial artifacts.

The derivatives are computed as:

v(t) =
p(t +1)− p(t)

∆t

a(t) =
v(t +1)− v(t)

∆t

j(t) =
a(t +1)−a(t)

∆t

where: - p(t) is the position at time t, - v(t) is the velocity, - a(t) is the accel-

eration, - j(t) is the jerk, - ∆t is the time step between observations (assumed to be

1 for simplicity).

The features are then concatenated along the feature axis to form a combined

feature matrix.

1 def extract_features(data):

2 # Compute velocity, acceleration, and jerk without

padding

3 velocity = np.diff(data, axis=1) # Shape: (n_samples,

n_timesteps - 1, n_features)

4 acceleration = np.diff(velocity, axis=1) # Shape: (

n_samples, n_timesteps - 2, n_features)

5 jerk = np.diff(acceleration, axis=1) # Shape: (n_samples,

n_timesteps - 3, n_features)

6

7 # Truncate data to match the shortest sequence

8 min_timesteps = min(data.shape[1], velocity.shape[1],

acceleration.shape[1], jerk.shape[1])
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9 data_truncated = data[:, :min_timesteps, :]

10 velocity = velocity[:, :min_timesteps, :]

11 acceleration = acceleration[:, :min_timesteps, :]

12 jerk = jerk[:, :min_timesteps, :]

13

14 # Concatenate features along the feature axis

15 features = np.concatenate([data_truncated, velocity,

acceleration, jerk], axis=-1)

16 return features

17

18 features = extract_features(data_normalized)

19 n_samples, n_timesteps, n_features_combined = features.shape

3. Self-Supervised Learning with SimCLR

To learn robust representations without labelled data, we employ the SimCLR

framework adapted for time series data. SimCLR uses contrastive learning by max-

imizing agreement between differently augmented views of the same data point. We

use time series-specific augmentations such as time warping, jittering, and scaling.

The contrastive loss function used is the normalized temperature-scaled cross-

entropy loss (NT-Xent):

Li, j =− log
exp(sim(zi,z j)/τ)

∑
2N
k=1⊮[k ̸=i] exp(sim(zi,zk)/τ)

where: - zi,z j are the normalized representations of augmented samples, -

sim(zi,z j) = z⊤i z j is the cosine similarity, - τ is the temperature parameter, - N

is the batch size.

1 import tensorflow as tf

2 from tensorflow.keras import layers

3 from scipy import signal

4

5 # Time series-specific augmentations

6 def time_series_augmentation(batch):
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7 augmented_batch = []

8 for series in batch:

9 # Randomly apply augmentations

10 if np.random.rand() < 0.5:

11 # Time warping (stretching or squeezing)

12 factor = np.random.uniform(0.8, 1.2)

13 series = signal.resample(series, int(series.shape

[0] * factor))

14 # Pad or truncate to original length

15 if series.shape[0] > n_timesteps:

16 series = series[:n_timesteps, :]

17 else:

18 padding = n_timesteps - series.shape[0]

19 series = np.pad(series, ((0, padding), (0, 0)),

’edge’)

20 if np.random.rand() < 0.5:

21 # Jittering (adding noise)

22 noise = np.random.normal(0, 0.05, series.shape)

23 series = series + noise

24 if np.random.rand() < 0.5:

25 # Scaling

26 scale = np.random.uniform(0.8, 1.2)

27 series = series * scale

28 augmented_batch.append(series)

29 return np.array(augmented_batch, dtype=np.float32)

30

31 def simclr_loss(z_i, z_j, temperature=0.1):

32 batch_size = tf.shape(z_i)[0]

33 z = tf.concat([z_i, z_j], axis=0)

34 z = tf.math.l2_normalize(z, axis=1)

35 similarity_matrix = tf.matmul(z, z, transpose_b=True) /

temperature
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36

37 labels = tf.concat([tf.range(batch_size), tf.range(

batch_size)], axis=0)

38 labels = tf.cast(labels, tf.int64)

39

40 mask = tf.eye(2 * batch_size, dtype=tf.bool)

41 logits = tf.boolean_mask(similarity_matrix, ˜mask)

42 logits = tf.reshape(logits, [2 * batch_size, -1])

43

44 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(

labels=labels, logits=logits)

45 loss = tf.reduce_mean(loss)

46 return loss

47

48 class SimCLR(tf.keras.Model):

49 def __init__(self, encoder, projection_head):

50 super(SimCLR, self).__init__()

51 self.encoder = encoder

52 self.projection_head = projection_head

53

54 def call(self, x):

55 h = self.encoder(x)

56 z = self.projection_head(h)

57 return z

58

59 # Encoder adjusted for time series

60 encoder = tf.keras.Sequential([

61 layers.Conv1D(64, 3, activation=’relu’, input_shape=(

n_timesteps, n_features_combined)),

62 layers.MaxPooling1D(),

63 layers.Conv1D(128, 3, activation=’relu’),

64 layers.GlobalMaxPooling1D(),
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65 layers.Dense(256, activation=’relu’)

66 ])

67

68 projection_head = tf.keras.Sequential([

69 layers.Dense(128, activation=’relu’),

70 layers.Dense(128)

71 ])

72

73 simclr_model = SimCLR(encoder, projection_head)

74 optimizer = tf.keras.optimizers.Adam()

75

76 # Training SimCLR on synthetic data

77 n_epochs = 10

78 batch_size = 32

79

80 for epoch in range(n_epochs):

81 indices = np.arange(n_samples)

82 np.random.shuffle(indices)

83 for i in range(0, n_samples, batch_size):

84 batch_indices = indices[i:i + batch_size]

85 batch = features[batch_indices]

86 with tf.GradientTape() as tape:

87 augmented_i = time_series_augmentation(batch)

88 augmented_j = time_series_augmentation(batch)

89 z_i = simclr_model(augmented_i)

90 z_j = simclr_model(augmented_j)

91 loss = simclr_loss(z_i, z_j)

92 gradients = tape.gradient(loss, simclr_model.

trainable_variables)

93 optimizer.apply_gradients(zip(gradients, simclr_model.

trainable_variables))

94 print(f"Epoch {epoch + 1}/{n_epochs}, Loss: {loss.numpy()
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}")

4. Dimensionality Reduction with UMAP

After obtaining the learned representations from the trained encoder, we apply Uni-

form Manifold Approximation and Projection (UMAP) to reduce the dimension-

ality of the data for clustering and visualisation. UMAP preserves the global and

local structure of the data, making it suitable for high-dimensional embeddings.

1 import umap

2

3 # Obtain representations from the trained encoder

4 representations = encoder.predict(features)

5

6 # Apply UMAP to the representations

7 reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric=’

euclidean’)

8 embedding = reducer.fit_transform(representations)

5. Clustering with HDBSCAN

We perform clustering using the Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) algorithm. HDBSCAN identifies clusters of

varying densities and sizes, and it can effectively handle noise in the data.

1 import hdbscan

2

3 # Clustering with HDBSCAN

4 clusterer = hdbscan.HDBSCAN(min_cluster_size=10)

5 clusters = clusterer.fit_predict(embedding)

6. Evaluation of Clustering

To evaluate the quality of the clusters, we use the Silhouette Score and the Davies-

Bouldin Index (DBI). Since HDBSCAN labels noise points as −1, we exclude these

points from the evaluation.
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- **Silhouette Score**:

s(i) =
b(i)−a(i)

max(a(i),b(i))

where a(i) is the mean intra-cluster distance for point i, and b(i) is the mean

nearest-cluster distance for point i.

- **Davies-Bouldin Index**:

DBI =
1
K

K

∑
i=1

max
j ̸=i

(
Si +S j

Mi j

)
where K is the number of clusters, Si is the average distance between each

point in cluster i and the centroid of cluster i, and Mi j is the distance between the

centroids of clusters i and j.

1 from sklearn.metrics import silhouette_score,

davies_bouldin_score

2

3 # Filter out noise points for evaluation

4 labels = clusters[clusters >= 0]

5 embedding_filtered = embedding[clusters >= 0]

6

7 if len(np.unique(labels)) > 1:

8 silhouette_avg = silhouette_score(embedding_filtered,

labels)

9 db_index = davies_bouldin_score(embedding_filtered,

labels)

10 stability_scores = clusterer.probabilities_[clusters >=

0]

11 else:

12 silhouette_avg = -1

13 db_index = -1

14 stability_scores = []

15
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16 print("Silhouette Score:", silhouette_avg)

17 print("Davies-Bouldin Index:", db_index)

18 print("Cluster Stability Scores:", stability_scores)

7. visualisation of Cluster Health

Finally, we visualize the clustering results and assess the health of the clusters. We

create UMAP projections of the clustered data and plot the cluster probabilities

(stability scores) and sizes.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 # Unique clusters and cluster sizes

5 unique_clusters = np.unique(clusters)

6 unique_clusters = unique_clusters[unique_clusters != -1]

7 cluster_sizes = np.bincount(clusters[clusters >= 0])

8

9 # UMAP Projection of HDBSCAN Clusters

10 plt.figure(figsize=(12, 8))

11 plt.scatter(embedding[:, 0], embedding[:, 1], c=clusters,

cmap=’Spectral’, s=5, alpha=0.5)

12 plt.colorbar(boundaries=np.arange(len(set(clusters)) + 1) -

0.5).set_ticks(np.arange(len(set(clusters))))

13 plt.title(’UMAP Projection of HDBSCAN Clusters’)

14 plt.xlabel(’UMAP 1’)

15 plt.ylabel(’UMAP 2’)

16 plt.show()

17

18 # HDBSCAN Cluster Stability

19 plt.figure(figsize=(10, 6))

20 plt.bar(unique_clusters, clusterer.probabilities_[clusters

>= 0], color=’skyblue’)

21 plt.xlabel(’Cluster Label’)
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22 plt.ylabel(’Stability Score’)

23 plt.title(’HDBSCAN Cluster Stability’)

24 plt.show()

25

26 # HDBSCAN Cluster Probability and Sizes

27 fig, ax1 = plt.subplots(figsize=(12, 6))

28 color = ’tab:blue’

29 ax1.set_xlabel(’Cluster Label’)

30 ax1.set_ylabel(’Cluster Probability’, color=color)

31 ax1.bar(unique_clusters, clusterer.probabilities_[clusters

>= 0], color=color, alpha=0.6, label=’Cluster Probability

’)

32 ax1.tick_params(axis=’y’, labelcolor=color)

33 ax1.legend(loc=’upper left’)

34

35 ax2 = ax1.twinx()

36 color = ’tab:green’

37 ax2.set_ylabel(’Cluster Size’, color=color)

38 ax2.plot(unique_clusters, cluster_sizes, color=color, marker

=’o’, label=’Cluster Size’)

39 ax2.tick_params(axis=’y’, labelcolor=color)

40 ax2.legend(loc=’upper right’)

41

42 fig.tight_layout()

43 plt.title(’HDBSCAN Cluster Probability and Sizes’)

44 plt.show()

Notes on Synthetic Data

The integration of machine learning into healthcare presents a complex interplay

between leveraging patient data for clinical advancement and the imperative to

safeguard patient privacy. Synthetic data generation has emerged as a promising

solution to this dilemma, offering the potential to utilize detailed datasets without
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compromising sensitive information. However, the adoption of synthetic data in-

troduces specific concerns that must be meticulously addressed to ensure ethical

compliance and maintain the utility of such data in clinical research.

There exists an ethical imperative to harness all available technologies, in-

cluding advanced machine learning algorithms, to enhance patient outcomes and

healthcare delivery. Comprehensive datasets are essential for training robust ma-

chine learning models capable of uncovering novel insights and improving clinical

decision-making processes. Synthetic data can enable researchers to exploit the sta-

tistical properties of real patient data while mitigating privacy risks, thus facilitating

broader data sharing and collaboration. Despite these advantages, data custodians

often perceive the risk-benefit balance as unfavourable due to legitimate privacy

concerns, which restricts access to high-quality datasets necessary for advancing

machine learning applications in healthcare.

The generation and application of synthetic data involve several complex chal-

lenges that must be addressed to realize their full potential. Defining data quality

remains a significant issue, as there is a lack of consensus on metrics for assessing

the fidelity of synthetic data to real datasets. For synthetic data to be valuable, they

must accurately capture the joint distributions and complex relationships inherent

in real data. Ensuring privacy preservation is also paramount; robust methods must

be developed to prevent the inadvertent disclosure of patient information, satisfying

both regulatory requirements and ethical standards. Furthermore, different clinical

applications demand synthetic data with tailored characteristics, such as time-series

data pertinent to stroke rehabilitation, which present unique challenges compared

to static datasets used in other medical research areas.

In the context of the self-supervised learning pipeline for clinical phenotyping

of pose data, the incorporation of synthetic data offers notable advantages. Syn-

thetic data can supplement limited real-world datasets, enabling the training of more

robust and generalizable machine learning models without the extensive data col-

lection efforts often constrained by privacy concerns. By providing a diverse ar-

ray of simulated patient movement patterns, synthetic data facilitate comprehensive
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testing and validation of the algorithm’s capability to capture and analyse complex

motor impairments. Utilizing synthetic data aligns with ethical standards by reduc-

ing the risk of exposing sensitive patient information, thereby fostering greater trust

among patients, clinicians, and data custodians.

Nevertheless, it is imperative to ensure that the generated synthetic pose data

authentically reflect the nuanced motor impairments observed in post-stroke pa-

tients to be effective in refining phenotyping and tailoring rehabilitation strategies.

Models trained on synthetic data should exhibit strong generalization when applied

to real-world patient data to maintain clinical relevance and efficacy. Continuous

evaluation and refinement of both the utility and privacy aspects of synthetic data are

necessary to adapt to evolving challenges and to enhance data generation method-

ologies continually. By meticulously balancing the risks and benefits and directly

addressing these technical and ethical challenges, the integration of synthetic data

can significantly advance machine learning applications in healthcare, ultimately

improving patient outcomes and contributing to a more effective healthcare system.

Conclusion
This pipeline illustrates the processing and analysis of pose data using time series-

specific methods. By generating synthetic data and leveraging feature extraction and

augmentation techniques, this approach integrates an adapted SimCLR framework

for time series data with UMAP for dimensionality reduction and HDBSCAN for

clustering to identify patterns in pose data. Evaluation metrics and visualisations

further assess the quality and stability of the clustered behaviours.



Appendix B

HIERARCHICAL CLUSTERING

WITH GOWER DISTANCE FOR

DYNAMIC PATIENT GROUPING

B.1 Rationale

Stroke is a leading cause of long-term disability worldwide, significantly impacting

survivors’ motor, sensory, and cognitive functions (Feigin et al., 2021). Rehabili-

tation aims to restore these functions, but outcomes vary widely among individu-

als. One critical yet under-explored factor influencing rehabilitation efficacy is the

social dynamics within the rehabilitation setting. Research suggests that patients

may benefit from interacting with peers who share similar levels of impairment,

as this can enhance motivation, foster mutual understanding, and allow for appro-

priately matched therapeutic activities (Bandura, 1977; English and Hillier, 2011).

Conversely, training with individuals of significantly different impairment levels

may present challenges, such as feelings of frustration or decreased self-efficacy

(Nichols-Larsen et al., 2005).

Traditional rehabilitation programs often overlook the social and psychologi-

cal dimensions of recovery, focusing primarily on physical therapy. However, the

composition of rehabilitation groups can significantly affect patient motivation, en-

gagement, and overall progress (Salbach et al., 2006). Patients training alongside
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peers with similar impairment levels tend to show improved motivation and en-

gagement, leading to better functional outcomes. In contrast, heterogeneous groups

with wide variations in impairment levels may hinder progress for some patients

due to mismatched therapeutic activities and social comparison effects (Törnbom

et al., 2019). Therefore, understanding and curating patients’ psychosocial support

structures is essential for optimizing rehabilitation outcomes. Personalizing group

rehabilitation by considering patients’ impairment levels, cognitive abilities, and

social capacities can enhance rehabilitation efficacy.

B.2 Machine Learning in Patient Grouping

Advancements in machine learning (ML) and data analytics offer new possibilities

for personalising rehabilitation groupings. ML algorithms can analyse complex pa-

tient data, including impairment severity, cognitive function, and social factors, to

identify patterns and clusters among patients (Xu and Wunsch, 2005; Chen et al.,

2015). Clustering algorithms, such as k-means clustering or hierarchical clustering,

can group patients based on multiple variables, facilitating the creation of rehabili-

tation groups with similar needs. Applying ML to patient grouping involves several

challenges, including data collection, feature selection, and algorithm choice. Col-

lecting complete patient data requires integrating clinical assessments, psychologi-

cal evaluations, and possibly in-situ time series. Feature selection must balance the

inclusion of relevant variables with the complexity of the model to avoid overfitting.

Unsupervised learning approaches like clustering are suitable for this task, as

they do not require labelled data and can reveal natural groupings within the patient

population (Jain, 2010). By clustering patients based on impairment levels, cogni-

tive function scores, and social engagement metrics, clinicians can form groups that

maximize therapeutic effectiveness and patient satisfaction. Additionally, ML mod-

els can incorporate psychological assessments to evaluate patients’ social capacities

and preferences, further refining group assignments. By leveraging these technolo-

gies, clinicians can design more effective, personalized rehabilitation programs that

account for the multifaceted nature of patient recovery.
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B.3 Key Considerations
Implementing a machine learning algorithm in a hospital setting to dynamically cal-

culate the fit between patients involves several key considerations. Firstly, the char-

acteristics of the data must be carefully evaluated. Patient data typically includes

mixed data types, such as numerical values (e.g., impairment scores), categorical

variables (e.g., types of impairments), and possibly textual data from clinical notes.

The data may also exhibit high dimensionality due to the numerous factors involved,

such as physical impairment levels, cognitive abilities, psychological assessments,

and social factors. Additionally, missing data, or “missingness”, is a common issue

in clinical settings, which must be addressed to ensure the algorithm’s effectiveness.

Secondly, clinical requirements play a crucial role in selecting and implement-

ing the algorithm. Interpretability is essential; clinicians need to understand how

the algorithm reaches its conclusions to trust and effectively use its recommenda-

tions. Scalability and efficiency are important because the algorithm must handle

data from many patients to be practical in a busy hospital environment. Privacy

and compliance with healthcare regulations (e.g., HIPAA, GDPR) are mandatory,

necessitating secure handling of patient data. Furthermore, the algorithm should

support dynamic updating to adapt as new patient data becomes available, ensuring

that patient groupings remain relevant over time.

B.4 Suitable Machine Learning Algorithms
Several machine learning algorithms are suitable for grouping patients based on

key factors reported in the literature. Unsupervised clustering algorithms are par-

ticularly appropriate, as they can identify natural groupings within the data with-

out requiring labelled outcomes. Among these, hierarchical clustering with Gower

distance, K-Prototypes clustering, fuzzy clustering, and graph-based clustering are

notable candidates for this task.

B.4.1 Hierarchical Clustering with Gower Distance

Hierarchical clustering builds a tree-like structure (dendrogram) of clusters without

needing to specify the number of clusters in advance. The Gower distance metric
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measures similarity between records with mixed data types, handling both numer-

ical and categorical variables. This method provides interpretable dendrograms,

allowing clinicians to visualise and understand patient groupings. However, it can

be computationally intensive with very large datasets.

B.4.2 K-Prototypes Clustering

K-Prototypes clustering is an extension of K-Means clustering designed to handle

mixed data types by combining K-Means (for numerical data) and K-Modes (for

categorical data) algorithms. The algorithm requires specifying the number of clus-

ters (K) and may converge to local minima, necessitating multiple runs. It is suitable

when the approximate number of patient groups is known from clinical experience.

B.4.3 Fuzzy Clustering

Fuzzy clustering algorithms, such as Fuzzy C-Means, assign membership levels to

data points for multiple clusters, reflecting the degree to which each patient belongs

to each group. This approach acknowledges that patients may share characteristics

with multiple groups, providing a nuanced view of patient similarities. It requires

specifying the number of clusters and can be more complex to interpret compared

to hard clustering methods. Fuzzy clustering is useful when patient characteristics

overlap, and flexible group assignments are beneficial.

B.4.4 Graph-Based Clustering

Graph-based clustering models patients as nodes in a graph, with edges represent-

ing similarities between them. Clusters are identified as communities within the

graph using community detection algorithms. This method captures complex rela-

tionships and is flexible in handling different data types. Graph-based clustering is

particularly suitable when relationships between patients are complex and not easily

captured by traditional distance measures. It is effective in situations where patient

similarities involve intricate patterns or when incorporating relational data, such as

social interactions or co-morbidities. This method can reveal community structures

within patient populations that may inform effective groupings.
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B.5 Summary of the Algorithm and Its Applications
This section presents a detailed explanation of the algorithm for patient grouping

using hierarchical clustering with Gower distance. The algorithm is designed to

handle mixed data types (numerical and categorical) commonly found in patient

data. The pipeline includes several steps: data collection and preprocessing, feature

selection and encoding, calculation of the Gower distance matrix, hierarchical clus-

tering, determination of optimal clusters, evaluation and visualisation of clusters,

and dynamic updating. The proposed algorithm aims to identify meaningful patient

groupings based on multifaceted clinical factors.

Pipeline Overview

The pipeline begins with the collection and preprocessing of patient data, ensur-

ing that all relevant numerical and categorical variables are accurately captured and

cleaned. Following this, feature selection and encoding are performed in collabora-

tion with clinicians to identify and prepare the most significant factors influencing

rehabilitation outcomes. Feature engineering and dimensionality reduction tech-

niques are applied to optimize the dataset for effective clustering. The Gower dis-

tance matrix is then calculated to measure similarities between patients with mixed

data types. Hierarchical clustering is applied to this distance matrix to form initial

groupings, after which the optimal number of clusters is determined using valida-

tion metrics. The clusters are then evaluated and visualized to assess their cohesion,

separation, and clinical relevance. Finally, dynamic updating methods are incorpo-

rated to ensure that the clustering model remains current as new patient data become

available and existing patients progress through rehabilitation.

1. Data Collection and Preprocessing

In this step, patient data are collected and prepared for analysis. Patient data are

sourced from medical records and recent assessments, ensuring comprehensive cov-

erage of all relevant features. The dataset includes both numerical and categorical

variables relevant to rehabilitation grouping, such as impairment levels measured

by standardized scales like the Fugl-Meyer Assessment, cognitive function assessed
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via tests such as the Mini-Mental State Examination (MMSE) scores, social factors

including support systems (’Weak’, ’Moderate’, ’Strong’), communication abilities

(’Poor’, ’Fair’, ’Good’), and psychological assessments covering motivation levels

(’Low’, ’Medium’, ’High’), self-efficacy, and mood evaluations.

For numerical features such as impairment level and cognitive scores, miss-

ing values are imputed using the mean or median of the available data to maintain

statistical consistency. For categorical features like support system strength, com-

munication ability, and motivation level, missing values are imputed using the mode

(the most frequent category) or by introducing a new category to represent missing

data, thereby preserving the integrity of categorical distributions.

1 import pandas as pd

2 import numpy as np

3

4 # Load the dataset

5 data = pd.read_csv(’patient_data.csv’)

6

7 # Handle missing values

8 # For numerical features

9 numerical_features = [’Impairment_Level’, ’Cognitive_Score’]

10 data[numerical_features] = data[numerical_features].fillna(

data[numerical_features].mean())

11

12 # For categorical features

13 categorical_features = [’Support_System’, ’

Communication_Ability’, ’Motivation_Level’]

14 data[categorical_features] = data[categorical_features].

fillna(data[categorical_features].mode().iloc[0])

2. Feature Selection and Encoding

Features relevant to the grouping are selected, and categorical variables are encoded

into numerical representations suitable for distance calculations.
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Feature Selection

Building upon the prepared data, relevant features are selected in collaboration with

clinicians to ensure that the most significant factors influencing rehabilitation out-

comes are included. This process involves assessing the relevance of each feature

and employing feature selection techniques, such as Recursive Feature Elimina-

tion (RFE) or feature importance scores from tree-based models, to systematically

evaluate and select pertinent features. This process ensures that the clustering al-

gorithm focuses on variables that have a meaningful impact on rehabilitation out-

comes, thereby enhancing the quality and interpretability of the resulting clusters.

Feature Encoding

Categorical variables need to be converted into numerical formats suitable for pro-

cessing by the clustering algorithm. Label encoding is employed to assign a unique

integer to each category, facilitating the inclusion of categorical data in distance cal-

culations. Specifically, support system strength is encoded as ’Weak’ → 0, ’Mod-

erate’ → 1, and ’Strong’ → 2. Communication ability follows a similar encoding

scheme: ’Poor’ → 0, ’Fair’ → 1, and ’Good’ → 2. Motivation level is encoded as

’Low’ → 0, ’Medium’ → 1, and ’High’ → 2. This encoding process transforms cat-

egorical data into a numerical format that retains the ordinal nature of the categories,

preserving meaningful relationships between them.

1 from sklearn.preprocessing import LabelEncoder

2

3 # Initialize LabelEncoders

4 le_support = LabelEncoder()

5 le_communication = LabelEncoder()

6 le_motivation = LabelEncoder()

7

8 # Encode categorical features

9 data[’Support_System_Encoded’] = le_support.fit_transform(

data[’Support_System’])

10 data[’Communication_Encoded’] = le_communication.
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fit_transform(data[’Communication_Ability’])

11 data[’Motivation_Encoded’] = le_motivation.fit_transform(

data[’Motivation_Level’])

Feature Engineering

Beyond selecting existing features, feature engineering can create new variables that

capture underlying patterns or interactions between existing features. For instance,

combining cognitive function scores with motivation levels may yield a composite

feature that better represents a patient’s readiness for rehabilitation. Such engi-

neered features can provide additional insights and improve the clustering perfor-

mance by highlighting more nuanced patient characteristics.

1 # Example of feature engineering by creating interaction

terms

2 data[’Cognitive_Motivation’] = data[’Cognitive_Score’] *

data[’Motivation_Encoded’]

Dimensionality Reduction

If the number of features is large, dimensionality reduction techniques may be nec-

essary to enhance the efficiency and performance of the clustering algorithm. Prin-

cipal Component Analysis (PCA) is one such technique that transforms the original

features into a set of linearly uncorrelated components while preserving as much

variance as possible. By reducing dimensionality, PCA helps mitigate the curse of

dimensionality, making the clustering process more manageable and interpretable.

PCA seeks to find the principal components PC1,PC2, . . . ,PCk that maximize

the variance in the data:

PCi = w⊤
i X

where wi are the eigenvectors corresponding to the largest eigenvalues of the

covariance matrix of X, the feature matrix.

1 from sklearn.decomposition import PCA
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2

3 # Initialize PCA to retain 95% of the variance

4 pca = PCA(n_components=0.95, random_state=42)

5 X_reduced = pca.fit_transform(data[features])

6

7 print(f"Original number of features: {data[features].shape

[1]}")

8 print(f"Reduced number of features after PCA: {X_reduced.

shape[1]}")

3. Calculation of Gower Distance Matrix

Gower distance is used to measure similarity between records containing mixed

data types. The Gower distance between two samples i and j is calculated as:

Di j =
∑

p
k=1 wkdi jk

∑
p
k=1 wk

where:

• p is the number of features.

• wk is the weight of feature k (usually 1).

• di jk is the distance between samples i and j for feature k:

– For numerical features:

di jk =
|xik − x jk|

rangek

– For categorical features:

di jk =

0 if xik = x jk

1 if xik ̸= x jk
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1 import gower # Make sure to install the ’gower’ library

2

3 # Prepare data for Gower distance

4 features = [’Impairment_Level’, ’Cognitive_Score’, ’

Support_System_Encoded’, ’Communication_Encoded’, ’

Motivation_Encoded’, ’Cognitive_Motivation’]

5 X = data[features]

6

7 # Calculate Gower distance matrix

8 gower_dist = gower.gower_matrix(X)

4. Hierarchical Clustering

Based on the data characteristics and clinical requirements, hierarchical clustering

with Gower distance is selected. This method is suitable for handling mixed data

types without a predefined number of clusters.

1 from scipy.cluster.hierarchy import linkage, dendrogram

2

3 # Perform hierarchical clustering

4 Z = linkage(gower_dist, method=’ward’)

5

6 # Plot dendrogram

7 import matplotlib.pyplot as plt

8

9 plt.figure(figsize=(10, 7))

10 dendrogram(Z)

11 plt.title(’Hierarchical Clustering Dendrogram’)

12 plt.xlabel(’Sample Index’)

13 plt.ylabel(’Distance’)

14 plt.show()
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5. Determination of Optimal Clusters

The optimal number of clusters k is determined by analysing the dendrogram or

using methods like the Elbow method or silhouette scores.

1 from scipy.cluster.hierarchy import fcluster

2

3 # Decide on the number of clusters

4 k = 3 # Example number of clusters; in practice, determine

based on analysis

5

6 # Assign cluster labels

7 cluster_labels = fcluster(Z, k, criterion=’maxclust’)

8 data[’Cluster’] = cluster_labels

6. Evaluation and visualisation of Clusters

Clustering results are first evaluated using internal validation metrics, such as sil-

houette scores, to assess cluster cohesion and separation. Second, clinicians evalu-

ate the clustering results to ensure interpretability and can thereafter guide adjust-

ments to the model or data preprocessing steps.

Silhouette Score

The silhouette score s(i) for each sample i is calculated as:

s(i) =
b(i)−a(i)

max{a(i),b(i)}

where:

• a(i) is the mean intra-cluster distance for sample i.

• b(i) is the mean nearest-cluster distance for sample i.

1 from sklearn.metrics import silhouette_score

2

3 # Since we have a precomputed distance matrix, use metric=’

precomputed’
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4 silhouette_avg = silhouette_score(gower_dist, cluster_labels

, metric=’precomputed’)

5 print("Silhouette Score:", silhouette_avg)

Visualisation

Multidimensional Scaling (MDS) is used to reduce the dimensionality of the dis-

tance matrix for plotting, facilitating the visualisation of clusters.

Note: The visualisation step uses MDS to project high-dimensional data into two

dimensions, allowing for graphical representation of the clusters.

1 from sklearn.manifold import MDS

2

3 # Reduce dimensions for visualisation

4 mds = MDS(n_components=2, dissimilarity=’precomputed’,

random_state=42)

5 coords = mds.fit_transform(gower_dist)

6

7 # Plot clusters

8 plt.figure(figsize=(10, 7))

9 scatter = plt.scatter(coords[:, 0], coords[:, 1], c=

cluster_labels, cmap=’Set1’)

10 plt.legend(*scatter.legend_elements(), title=’Clusters’)

11 plt.title(’Hierarchical Clustering with Gower Distance’)

12 plt.xlabel(’MDS Dimension 1’)

13 plt.ylabel(’MDS Dimension 2’)

14 plt.show()

7. Dynamic Updating

To ensure that patient groupings remain current and relevant, the clustering model

must be capable of dynamically adjusting as new patient data become available

and as existing patients progress through rehabilitation. Several methods and algo-

rithms can facilitate this dynamic updating, including online learning techniques,
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incremental clustering algorithms, and the integration of clinician feedback.

Online learning algorithms are designed to update models incrementally as

new data points arrive, without the need to retrain the entire model from scratch.

For clustering, incremental algorithms such as Incremental Hierarchical Cluster-

ing, Online K-Means, or density-based methods with incremental capabilities can

be employed. These methods adjust clusters to accommodate new data points or

changes in existing data. In the context of hierarchical clustering with Gower dis-

tance, incremental hierarchical clustering can be adapted to handle new patient data.

As new patients are admitted or existing patients’ assessments are updated, the algo-

rithm recalculates distances involving the new or updated data points and adjusts the

dendrogram accordingly. Given an existing distance matrix D and a new data point

xnew, the updated distance matrix D′ can be computed by calculating the Gower

distances between xnew and all existing data points:

D′ =

 D dnew

d⊤
new 0


where dnew is the vector of distances between xnew and each existing data point.

Bayesian clustering methods offer a probabilistic framework that incorporates

prior information into the clustering process. By placing prior distributions over

model parameters - such as cluster means, variances, or assignments - the approach

allows integration of previous patient scores or clinician insights as prior beliefs.

These priors are then updated with observed data to form posterior distributions,

resulting in clusters that reflect both existing knowledge and new evidence.

The posterior probability P(θ |X) is proportional to the product of the likeli-

hood P(X |θ) and the prior P(θ):

P(θ |X) ∝ P(X |θ) ·P(θ)

where θ represents the cluster parameters, and X is the data.

Semi-supervised learning methods allow the incorporation of expert knowl-

edge by using a combination of labelled and unlabelled data. Constraint-based
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clustering algorithms modify the clustering process to satisfy clinician-provided

constraints. The constrained clustering problem can be formulated by introducing a

penalty term in the clustering objective function that accounts for the constraints:

Objective = Clustering Loss+λ ×Constraint Penalty

where λ controls the influence of the constraints.

While many clustering algorithms are not inherently incremental, libraries such

as scikit-learn provide implementations for incremental versions of algo-

rithms like K-Means. For hierarchical clustering with mixed data types, custom

implementations may be required.

1 # Updating the Gower distance matrix with new data

2 import numpy as np

3 import gower

4

5 # Existing data

6 X_existing = data[features]

7 gower_dist_existing = gower.gower_matrix(X_existing)

8

9 # New data point

10 X_new = new_data[features]

11

12 # Calculate distances between new data and existing data

13 gower_dist_new = gower.gower_matrix(np.vstack([X_existing,

X_new]))[-1, :-1]

14

15 # Update the distance matrix

16 gower_dist_updated = np.vstack([

17 np.hstack([gower_dist_existing, gower_dist_new.reshape

(-1, 1)]),

18 np.hstack([gower_dist_new, np.array([0])])

19 ])
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20

21 # Perform hierarchical clustering on the updated distance

matrix

22 from scipy.cluster.hierarchy import linkage

23

24 Z_updated = linkage(gower_dist_updated, method=’ward’)

Selecting the appropriate method for dynamic updating depends on factors

such as the frequency of data updates, dataset size, computational resources, and

the importance of incorporating prior information and clinician feedback. A hybrid

approach may be most effective, combining incremental clustering for handling new

data with periodic retraining to recalibrate the model.

A Note on Dynamic Updating
While hierarchical clustering does not natively support incremental updates, updat-

ing the distance matrix and recomputing the clustering allows for the inclusion of

new data. For large datasets, recomputing the clustering can be computationally

intensive; therefore, considering alternative clustering algorithms that support in-

cremental updates may be necessary if scalability becomes an issue. Incorporating

clinician feedback through semi-supervised learning enhances the clinical relevance

of the clusters. Additionally, saving model components and data facilitates seamless

updates as new information becomes available, ensuring the model remains current.

Conclusion
This pipeline highlights the application of hierarchical clustering with Gower dis-

tance to uncover meaningful patient groupings based on multifaceted clinical fac-

tors. Through careful data preparation, feature selection, and variable engineering,

the dataset is optimised to enhance clustering performance. The inclusion of dy-

namic updating ensures that the model remains adaptable, continuously refining

clusters in response to new information about patient status. This approach offers a

flexible and insightful framework for analysing complex clinical datasets.
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Scholz, J. P. and Schöner, G. (1999). Uncontrolled manifold concept: identifying

control variables for a functional task. Experimental Brain Research, 126:289–

306.

Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional

motor control. Nature Reviews Neuroscience, 5(7):532–546.

Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin,

J. T., Kwak, Y., and Lipps, D. B. (2010). Motor control and aging: Links to age-

related brain structural, functional, and biochemical effects. Neuroscience and

Biobehavioral Reviews, 34:721–733.



REFERENCES 253

Servan-Schreiber, D. and Anderson, J. R. (1990). Learning artificial grammars with

competitive chunking. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 16(4):592–608.

Shadmehr, R. and Krakauer, J. W. (2010). A computational neuroanatomy for motor

control. Experimental Brain Research, 207:319–336.

Shadmehr, R. and Mussa-Ivaldi, S. (2012). Biological Learning and Control: How

the Brain Builds Representations, Predicts Events, and Makes Decisions. MIT

Press, Cambridge, MA.

Shadmehr, R. and Wise, S. P. (2005). The Computational Neurobiology of Reaching

and Pointing. MIT Press.

Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data

Engineering Bulletin, 24(4):35–43.

Smith, C. (2001). Sleep states and memory processes in humans: Procedural versus

declarative memory systems. Sleep Medicine Reviews, 5:491–506.

Song, S. and Cohen, L. G. (2014). Practice and sleep form different aspects of skill.

Nature Communications, 5:3407.

Stagg, C. J. and Johansen-Berg, H. (2013). Studying the effects of transcranial

direct-current stimulation in stroke recovery using magnetic resonance imaging.

Frontiers in Human Neuroscience, 7:857.

Stickgold, R. and Walker, M. P. (2007). Sleep-dependent memory consolidation

and reconsolidation. Sleep Medicine, 8(4):331–343.

Stinear, C. M., Petoe, M. A., and Byblow, W. D. (2015). Primary motor cortex

excitability during recovery after stroke: implications for neuromodulation. Brain

Stimulation, 8(6):1183–1190.

Tamaki, M., Huang, T. R., Yotsumoto, Y., and Hämäläinen, M. S. (2013). Enhanced
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