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 Abstract—Automotive energy management systems (EMS) are 

advancing towards comprehensive lifecycle intelligence, spanning 

from product development level to customer usage level. This 

paper proposes a bi-level transfer approach with model-agnostic 

meta-learning (MAML) to realize cross-platform transferable 

and online-adaptive EMS. During the development level, MAML 

is adopted to calibrate the heuristic control maps of an 

instantaneous optimization-based EMS, with a per-unit state and 

action space design facilitating knowledge transfer. Leveraging 

usage data, online adaptation is carried out with reliance on 

digital twin-based cloud computing, updating onboard controller 

parameters via over-the-air technology. The effectiveness of the 

proposed lifecycle intelligent EMS is validated through real 

vehicle experiments. Firstly, the entire MAML-assisted V-cycle 

development process is demonstrated to validate the optimality 

and knowledge transfer of the EMS, resulting in zero-shot 

transfer for EMS calibration on new vehicle products. 

Additionally, a correction of 8.0%~9.5% fuel economy is 

improved against the convention reinforcement learning-based 

EMS during usage via online-adaptation, effectively bridging the 

optimality gap between the control policy learned in development 

and the global optimal control in actual driving scenarios. 

 
Index Terms—Energy management, lifecycle intelligence, bi-level 

transfer, reinforcement learning, real vehicle experiments.  

 

I. INTRODUCTION 

HE escalating demand for eco-friendly logistics has 

spurred the widespread adoption of range extended 

electric trucks (REETs) [1], which effectively enhance 

the energy efficiency and effectively alleviate range anxiety 

[2]. As a result, optimizing energy management system (EMS) 

in these vehicles has emerged as a vital research area [3]. 

Nowadays, the artificial intelligence (AI)-assisted EMS 
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development of connected REETs holds tremendous promise 

and value, aiming to reduce calibration efforts of engineers [4, 

5], shorten vehicle development cycles and enable consecutive 

optimization under real application scenarios [6]. 

Currently, EMS is generally categorized into rule-based, 

optimization-based and learning-based approaches [7]. The 

former two types find extensive applications in REETs and are 

relatively easy to implement [8], but the optimality cannot be 

guaranteed when encountering incompatible parameter 

settings [9]. In recent years, a compelling approach to tackle 

control optimality and development efficiency involves the 

integration of deep reinforcement learning (DRL) and transfer 

reinforcement learning (T-RL) [10]. Several researchers have 

employed double deep Q-network (DDQN) [11] to establish 

EMS with discretized action space, specifically engine output 

power. Additionally, the actor-critic (AC) framework allows 

for continuous action-based EMS [12]. For instance, the 

adoption of deep deterministic policy gradient (DDPG) has 

proven successful in creating competent EMS with continuous 

output of engine power [13]. Furthermore, improved DRL 

algorithms capable of handling high-dimensional state 

variables [14], such as twin-delayed DDPG (TD3), can be 

combined with multivariate trip information for traffic-aware 

EMS, enhancing the optimality of EMSs in complex driving 

cycles [15]. Nonetheless, the learning-based EMS faces two 

primary challenges spanning from research and development 

(R&D) stage to usage phase, respectively [16].  

A significant challenge during the R&D phase is to ensure 

the EMS offline transferability across different vehicle 

platforms without necessitating re-training [17], denoted as 

level-1 (L1) transfer in this work. This involves the utilization 

of high-fidelity simulation environment and the effective 

transferable EMS model [18]. The digital twin (DT) model has 

been recognized as the foundation for RL reliable transfer 

from simulations to real-world applications [19]. Various 

research endeavors have employed DTs in the design and 

maintenance of automotive powertrains [20]. Lei et al. 

proposed a combined powertrain sizing and EMS calibration 

scheme for hybrid powertrain using a high-fidelity digital twin 

model, improving the fuel economy by 7.4% [21]. Spiryagin 

et al. introduced a digital-twin solution in the V-cycle 

development approach for electric vehicles as a virtual test 

facility [22]. Zhang et al. utilized a DT model in the 

development of EMS for a hybrid powertrain. The findings 

indicate that the DT-based EMS optimization led to 

improvement of fuel economy with the help of model 

accuracy [23]. With the help of DTs, Lian et al. applied TL 
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techniques to transfer neural networks (NNs) structure and 

parameters of a well-trained EMS agents in source domain to 

other three vehicles with different topologies in target domain 

[24]. Xu et al. proved that adding noise in the parameter space 

can increase robustness and achieve faster convergence rate of 

transfer process [25]. However, the state-of-the-art transfer 

DRL still needs to go through a time-consuming fine-tuning 

process, while the notable benefit is that it can avoid the more 

outrageous exploration process [26].  

The other challenge is how to enhance the real-world 

adaptability of EMS for online transfer from R&D stage to 

usage phase, indicated as level-2 (L2) transfer [27]. This is 

because that the EMS trained based on OEM's existing 

databases of driving data may not necessarily be suitable for 

actual users [28]. There could be discrepancies between 

estimated velocity from digital map traffic forecasting and the 

actual driving velocity due to factors like driver habits [29]. 

Moreover, the global optimality of EMS is closely related to 

the commonly used freight routes by truck users, significantly 

impacting the control strategy on battery state of charge (SOC) 

depletion [30]. Therefore, by leveraging the wealth of user-

generated data, the DT can be used to continually adapt the 

control system to real-world application scenarios [31]. Yue et 

al. employed TL to design a DT model for fuel cell 

degradation prediction. This approach resulted in enhanced 

accuracy when compared to the prediction model without TL 

[32]. He et al. investigated the method to transfer prior valid 

knowledge trained with a hybrid bus in source domain to Prius 

based on deep transfer learning, accelerating the new EMS 

convergence [33]. The resulting over-the-air (OTA) updates 

ensure that the onboard controllers of connected logistics 

vehicles remain perpetually equipped with the latest and most 

effective EMS [34]. Nonetheless, these DRL and TL strategies 

are still a long way from being practically adopted by original 

equipment manufacturers (OEMs), since directly employing 

NNs to control engine output power without any 

interpretability and transferability is not acceptable. 

Hence, it is crucial to investigate the AI-based transferrable 

EMS spanning from R&D to customer usage. To the authors' 

best knowledge, there is a scarcity of research on the lifecycle 

intelligent EMS, and no industrial applications of sim-to-real 

transfer have been found in any publications about RL-based 

EMS. In response to these gaps, this study proposes a bi-level 

RL transfer framework to realize transferable and online self-

evolving EMS for logistics REETs, as depicted in Fig. 1. The 

entire RL-assisted V-cycle development process in this work 

showcases the optimality, transferability and robustness of the 

lifecycle intelligent EMS. The proposed lifecycle intelligent 

EMS encompasses several key elements: (1) this work 

pioneers real vehicle experiments of transferrable RL-based 

EMS. To satisfy the explainable necessity in OEMs, the 

equivalent consumption minimization strategy (ECMS) [35] 

serves as the fundamental EMS framework to enable 

interpretability, transferability and robustness; and (2) the 

conventional heuristic control maps for equivalent factor (EF) 

estimation are replaced by a neural network calibrated by 

multistate DRL. By utilizing per-unit state and action spaces, 

the knowledge from the trained DRL agent can be shared 

directly among different vehicles types from passenger cars to 

logistics trucks. (3) the DRL agent is designed to be traffic 

aware where the real-time traffic information from Gaode map 

has been fed into the state space. By leveraging usage data 

feedback and DT-based cloud computing, the strategy adapts 

to discrepancies between map-forecasted speed and actual 

vehicle speed, effectively addressing deviations in the optimal 

policy for specific logistics scenarios.  

 
 Fig. 1. Bi-level lifelong learning-based transferable EMS. 

 

The rest of this article is structured as follows. Section II 

describes the powertrain models. Section III presents the design 

of the bi-level transfer framework for lifecycle intelligent 

EMS. In Section IV, the entire V-cycle development process of 

the REET is explained. Section V analyses the transferability, 

optimality and robustness of the proposed EMS. Section VI 

summarizes the key findings. 

II. POWERTRAIN MODEL IN SOURCE AND TARGET DOMAIN 

A. Powertrain Configurations and Energy Flow Modes 

In the source domain, the vehicles are passenger cars that 

utilize series-parallel hybrid systems. Conversely, the target 

domain features series hybrid trucks. An illustration of the 

powertrain architectures and engine efficiency characteristics 

for both vehicle types can be found in Fig. 2. Additionally, the 

energy flow dynamics for these powertrain systems are 

presented in Eq. (1). 

{
 
 
 
 

 
 
 
 
𝑖𝑓 𝐷𝑚 = 𝐸𝑉, {

𝑃𝐷𝑀 = 𝑃𝑑𝑒𝑚/𝜂𝑇               
𝑃𝑏𝑎𝑡 = 𝑃𝐷𝑀/𝜂𝐷𝑀 + 𝑃𝑎𝑢𝑥
𝑃𝐺𝐸𝑁 = 𝑃𝐼𝐶𝐸 = 0             

𝑖𝑓 𝐷𝑚 = 𝑃𝐻, {

𝑃𝐷𝑀 = 𝑃𝑑𝑒𝑚/𝜂𝑇 − 𝑃𝐼𝐶𝐸  
𝑃𝑏𝑎𝑡 = 𝑃𝐷𝑀/𝜂𝐷𝑀 + 𝑃𝑎𝑢𝑥
𝑃𝐺𝐸𝑁 = 0, 𝑃𝐼𝐶𝐸 = 𝑢         

𝑖𝑓 𝐷𝑚 = 𝑆𝐻, {

𝑃𝐷𝑀 = 𝑃𝑑𝑒𝑚/𝜂𝑇                             
𝑃𝑏𝑎𝑡 = 𝑃𝐷𝑀/𝜂𝐷𝑀 − 𝑃𝐺𝐸𝑁 + 𝑃𝑎𝑢𝑥
𝑃𝐺𝐸𝑁 = 𝜂𝐺𝐸𝑁𝑃𝐼𝐶𝐸 = 𝜂𝐺𝐸𝑁𝑢         

 (1) 
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where 𝑃𝑑𝑒𝑚  refers to the tractive power demand. Besides, 

𝑃𝐷𝑀 , 𝑃𝐺𝐸𝑁 and 𝑃𝐼𝐶𝐸  represents the output power of drive 

motor, generator and combustion engine. Also, 𝐷𝑚 means the 

operation mode, including pure electric (𝐸𝑉), parallel (𝑃𝐻) 

and series hybrid (𝑆𝐻). In addition, 𝜂𝑇, 𝜂𝐷𝑀 and 𝜂𝐺𝐸𝑁 refer to 

the efficiency of transmission, drive motor and generator. The 

𝑃𝐼𝐶𝐸  is defined as the control variable denoted as 𝑢.  

 
Fig. 2. Powertrain and engine map profiles of the vehicles in 

source and target domains. 

 

The electric machines (EM) model is illustrated in Eq. (2) 

showing the relationship between electrical power and 

mechanical torque and speed, while Eq. (3) describes the 

engine fueling rate 𝑚̇𝑓  with start/stop penalties based on 

steady-state maps detailed in Fig. 2.  

𝑃𝐸𝑀 = 𝑇𝐸𝑀𝜔𝐸𝑀𝜂𝐸𝑀(𝑇𝐸𝑀 , 𝜔𝐸𝑀)
𝜅 (2) 

𝑚̇𝑓 = 𝑃𝐼𝐶𝐸𝐵𝑆𝐹𝐶(𝑇𝐼𝐶𝐸 , 𝜔𝐼𝐶𝐸) + 𝑚𝑠𝑡 ∙ 𝛬 (3) 

where 𝜅 denotes the EM's operational mode, either as a motor 

or a generator. A value of -1 is allocated to 𝜅 when the EM is 

in motor mode. When functioning as a generator, 𝜅 adopts a 

value of 1. Additionally, the static fuel rate is obtained with 

the product of engine power 𝑃𝐼𝐶𝐸  and engine brake specific 

fuel consumption (BSFC), dependent on engine torque 𝑇𝐼𝐶𝐸  

and speed 𝜔𝐼𝐶𝐸 . The term 𝑚𝑠𝑡  signifies fuel consumption 

during engine startup, and Λ indicates the engine's initiation 

event. Further, the battery modeling is as follows: 

𝑃𝑏𝑎𝑡 = 𝑈𝑜𝑐𝐼𝑏𝑎𝑡 − 𝑅𝑏𝑎𝑡𝐼𝑏𝑎𝑡
2 (4) 

𝜉 = 𝜉0 −
1

3600𝐶 𝑏𝑎𝑡
∫ 𝐼𝑏𝑎𝑡𝑑𝑡
𝑡

0

 (5) 

where 𝜉0 and 𝜉 represent the battery's initial and present SOC, 

while 𝑃𝑏𝑎𝑡  stands for battery power. Concurrently, 𝑅𝑏𝑎𝑡 refers 

to resistance, 𝐶𝑏𝑎𝑡 to capacity, and 𝑈𝑜𝑐 and 𝐼𝑏𝑎𝑡  symbolize the 

open-circuit voltage and current, respectively. 

B. Vehicle Specifications and Digital Twin Validation 

Vehicle specification details for both the source and target 

domains can be observed in Table 1. This work refined the 

model by collating extensive real-vehicle testing data and 

combining the physical model with its data-driven counterpart. 

Digital twins of the vehicles were crafted for both domains, 

depicted in Fig. 5 (a). The EMS employs a finite state 

mechanism for mode determination, coupled with a lookup 

table to ascertain the engine and battery's output power. The 

engine's digital model power output closely mirrors the real-

world strategy, and the battery's SOC aligns well with bench 

test data, as demonstrated in Fig. 5 (b) and Fig. 5 (c). For the 

context of this study, the energy management tactic employed 

in the logistics REET of BYD is termed the benchmark (BMK) 

strategy, serving as the reference for subsequent energy 

management strategy assessments. 

TABLE I 

SPECIFICATIONS OF VEHICLES IN DIFFERENT DOMAINS 

Component Parameters Source 

domain 

Target 

domain 

Vehicle Total mass 1920 kg 4495 kg 

 Frontal area 2.63 m2 6.81 m2 

 Drag coefficient 0.325  0.613 

Engine Displacement type 1.5 T 2.0 

 Maximum power 120 kW 95 kW 

Generator Maximum power 50 kW 95 kW 

Motor Maximum power 70 kW 150 kW 

Battery Capacity 85 A·h 46 A·h 

 Nominal voltage 345 V 385 V 

 

 
Fig. 3. Validation of powertrain model and benchmark control 

system based on the digital twin-based modeling approach. 

 

III. BI-LEVEL TRANSFER FOR REINFORCEMENT  LEARNING-

BASED ENERGY MANAGEMENT STRATEGY 

A. DRL-based Energy Management Problem Formulation 

The algorithmic framework in this paper constructs the 

Markov Decision Process (MDP) problem by considering the 

entire hybrid power system, which uses the Pontryagin's 

Maximum Principle (PMP) [36] solution for energy allocation, 

as the environment. This paper defines the energy 

management of passenger cars under standard conditions as 

(a) (b) 
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the source domain 𝒟𝑆  and the energy management of 

commercial vehicles ultimately in actual user use as the target 

domain 𝒟𝑇. The MDP in source and target environments are 

modeled as ℳ𝑖(𝑠𝑖 , 𝑎𝑖 , 𝑝𝑖 , 𝑟𝑖) ∈ {ℳ𝑆,ℳ𝑇}. Here, 𝑠𝑖, 𝑎𝑖, 𝑝𝑖 , and 

𝑟𝑖 represent their unique state spaces, action spaces, transition 

probability and reward function, respectively. The transition 

probability 𝑝𝑖(𝑠𝑖
′|𝑠𝑖 , 𝑎𝑖) describes the distribution of the next 

state 𝑠𝑖
′ as a function of current 𝑠𝑖 and 𝑎𝑖. 

The transfer RL is designed to formulate an optimal strategy 

𝜋𝑇 for co-state estimation in target domain 𝒟𝑇 using external 

knowledge learned in 𝒟𝑆, both experience and policy, and the 

internal information obtained in 𝒟𝑇. Based on the EMS task 

constructed shown form Eq. () to Eq. (), the RL problem is 

formulated as an infinite-time optimal control process: 

𝜋𝑑
∗ = argmax

𝜋𝑑
𝔼(𝑠~𝑝𝑑,𝑎~𝜋𝑑,𝑑=𝑆,𝑇 ) [∑𝛾𝑖−1𝑟(𝑠, 𝑎)

∞

𝑖=1

] (6) 

where 𝑟(𝑠, 𝑎) denotes the reward associated with the state and 

action at time step 𝑡 . Besides, 𝑝  means the transition 

probability of MDP. Also, 𝛾 is defined as the discount factor 

belongs to [0,1].  

The transfer process from 𝒟𝑆  to 𝒟𝑇  is unobservable. 

Therefore, an intermediate domain 𝒟𝐼  is set up to showcase 

the intermediate transfer process. The transfer process of this 

paper includes two levels: L1 involves the transfer of EMS 

form the powertrain in 𝒟𝑆  to that in 𝒟𝐼 . L2 deals with the 

transfer of vehicles from standard driving cycles to user-

centric actual usage scenarios, namely from 𝒟𝐼 to 𝒟𝑇. 

L1 aims to realize a zero-shot transfer among different 

powertrains, relying on a transferrable modular agent design. 

We introduce a per-unit agent model into the PMP-based 

optimal control framework, which ensures that the MDPs of 

ℳ𝑆 and ℳ𝐼 share the same transition probability: 

𝑝𝑆 = 𝑝𝐼 , 𝑝𝑆 ∈ ℳ𝑆, 𝑝𝐼 ∈ ℳ𝐼 (7) 

L2 is a sample-efficient transfer involving the transition of 

vehicles from regulatory standard driving conditions to user-

centric actual scenarios. Compared to learning from scratch, 

transfer learning optimizes the agent's initialization process 

based on knowledge transferred from the source domain, 

thereby helping the agent converge in the target domain with 

fewer interactions. 

B. Modular RL agent design for cross-platform transfer  

The optimization problem is defined with the goal of 

minimizing global fuel consumption. Conventional PMP 

employs a shooting method to estimate the initial value of the 

equivalent factor to ensure that the SOC remains within a 

reasonable range. However, this method is only valid when the 

global operating conditions are known. The Hamiltonian 

operator is defined to transform the global optimization 

problem into a collection of instantaneous optimization 

problems, as shown in Eq. ().  

ℋ(𝑃𝑏𝑎𝑡 , 𝑃𝑑𝑒𝑚 , 𝑝) = 𝑚̇𝑓(𝑃𝑏𝑎𝑡 , 𝑃𝑑𝑒𝑚) − 𝑝𝜉̇(𝑃𝑏𝑎𝑡) (8) 

where 𝑝  refers to the co-state of the PMP problem and 𝜉̇ 
represents the state equation. When transformed into 

instantaneous optimization problem, the global optimality 

cannot be guaranteed. Therefore, this paper utilizes DRL for 

the optimal estimation of the co-state. Within the environment, 

PMP-based instantaneous optimization determines the unique 

engine output power based on the Hamiltonian operator ℋ as 

presented in Eq. (), thereby affecting fuel economy, as 

illustrated in Fig. X. 

𝑃𝑏𝑎𝑡
∗ = argmin

𝑃𝑏𝑎𝑡

(𝑚̇𝑓(𝑃𝑏𝑎𝑡 , 𝑃𝑑𝑒𝑚) + 𝑝
𝑝𝑢

𝑃𝑏𝑎𝑡
𝐻𝐿𝜂𝐼𝐶𝐸

∗ ) (9) 

 
 Fig. 4. EMS problem formulation with modular RL agent. 

 

1) Per-unit state space: The environment states of the MDP 

primarily encompass the power allocation relationships 

determined by PMP, which can be denoted as the engine 

power 𝑃𝐼𝐶𝐸 . Additionally, they include states relevant to the 

operating conditions. In this paper, the state space 𝑆 is defined 

to incorporate 𝑃𝐼𝐶𝐸 , the average power demand 𝑃𝑎𝑣𝑔  of the 

entire vehicle over a past time domain 𝑁𝑎𝑣𝑔 , the difference 

between the battery's SOC and its target value ∆𝜉 , and the 

projected vehicle speed 𝑉𝐹𝑋  over a future time horizon 𝑁𝐹𝑋 

extracted from maps. Further, a per-unit state space is 

proposed, where states related to the powertrain are divided by 

their respective reference or rated values. This method 

explicitly decouples the vehicle's physical attributes from the 

DRL agent. As a result, the powertrain parameters can be 

externally integrated, circumventing implicit embedding 

within the DRL agent's neural network, thus paving the way 

for seamless transfer across diverse vehicle platforms. 

𝑠𝑝𝑢 = [𝑃𝐼𝐶𝐸
𝑝𝑢
, 𝑃𝑎𝑣𝑔

𝑝𝑢
, ∆𝜉𝑝𝑢 , 𝑉𝐹𝑋

𝑝𝑢
] (10) 

{
 
 
 
 

 
 
 
 𝑃𝐼𝐶𝐸

𝑝𝑢
=

𝑃𝐼𝐶𝐸
𝑃𝐼𝐶𝐸
∗ |𝜂𝐼𝐶𝐸 = 𝜂𝐼𝐶𝐸

𝑚𝑎𝑥

𝑃𝑎𝑣𝑔
𝑝𝑢

=
𝑃𝑎𝑣𝑔

𝜔𝑛
𝑤𝑙𝑟 (𝑚𝑣𝑎𝑛 + 𝜇𝑚𝑣𝑔 +

1
2
𝜌𝐶𝐷𝐴𝑣

2)

∆𝜉𝑝𝑢 =
∆𝜉

∆𝜉𝑛
 

𝑉𝐹𝑋
𝑝𝑢
=
𝑉𝐹𝑋
𝑉𝐹𝑋
𝑛

 (11) 

where 𝑃𝐼𝐶𝐸
∗  denotes to mechanical power of the highest BTE 

point denoted by 𝜂𝐼𝐶𝐸
𝑚𝑎𝑥 . Also, 𝜔𝐷𝑀  means the drive motor 

speed. 𝑇𝑑𝑒𝑚 , 𝜌, 𝑔, 𝜇 , 𝐶𝑑  and 𝜎  represent the torque demand, 

air density, local gravitational acceleration, rolling resistance, 

air resistance coefficient and the road slope, respectively. 

Further, 𝑚𝑣, 𝑣 and 𝐴 donate to the vehicle mass, velocity and 

frontal area, respectively. Moreover, ∆𝜉𝑛 and 𝑉𝐹𝑋
𝑛  represent the 

value of maximum SOC deviation and maximum forecasted 

velocity. Also, 𝜔𝑛
𝑤𝑙  refers to the nominal wheel angular speed 
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Fig. 5. Algorithm design and application framework of the bi-level lifelong learning-based transferable EMS using MAML. 

 

determined by vehicle velocity limit. Besides, 𝑎𝑛  is the 

nominal value of acceleration which is determined by its 0 to 

100 km/h acceleration time. 

2) Per-Unit Action Space: In Eq. (X), this work adopts the 

engine optimal brake thermal efficiency (BTE) 𝜂𝐼𝐶𝐸
∗  and 

battery capacity 𝐶𝑏𝑎𝑡  to explicitly decouple the powertrain 

characteristics from the actions of DRL, facilitating a modular 

agent design using a per-unit co-state shown in Eq. (), where 

𝐻𝐿  refers to the fuel lower heating value. 

𝑝𝑝𝑢 = −
100%𝐻𝐿𝜂𝐼𝐶𝐸

∗

3600𝐶𝑏𝑎𝑡𝑈𝑜𝑐
𝑝 ∈ [1 − 𝜀, 1 + 𝜀] (12) 

The action space 𝑎 is defined by the per-unit costate  𝑝𝑝𝑢 as 

presented in Eq. (X) to facilitate modular RL design and 

obviates the need for fine-tuning process during L1 transfer. 

𝑎 = 𝑝𝑝𝑢 ∈ [1 − 𝜀, 1 + 𝜀] (13) 

3) Reward Formulation: The reward function 𝑟𝑡 is designed 

to include the engine fueling rate (mL/s), denoted as 𝑚𝑓̇ (𝑎), 

and the battery SOC penalty 𝜍(𝑠) , which are both set to 

negative as shown in Eq. (11). The weight 𝜆  balances the 

engine consumption and battery charge depletion. 

𝑟(𝑠, 𝑎) = −[𝜆𝑚𝑓̇ (𝑎) + (1 − 𝜆)𝜍(𝑠)] (14) 

𝜍(𝑠) = {
0,              ∆𝜉 ≥ 0

∆𝜉2, ∆𝜉 < 0
 (15) 

C. Model-agnostic meta-learning for adaptability 

The integration of twin-delayed DDPG (TD3) with MAML 

allows for a stable and efficient policy adaptation that can 

quickly converge to optimal policies for new tasks using a 

meta-learned initialization that encodes prior experiences. For 

the inner loop, the TD3 algorithm is utilized to adapt to each 

task 𝒯𝑘  from a batch of tasks 𝒯 . The adaptation process 

involves updating the policy parameters 𝜃  and critic 

parameters 𝑤1, 𝑤2 using task-specific data. 

1) MAML Inner Loop Adaptation with TD3: The Actor 

network is designed to yield a per-unit estimation of the co-

state as 𝑎 = 𝜋𝜃(𝑠) + 𝑁(0, 𝛿
2) with Gaussian noise. Prior to 

initiating the learning process, the replay buffer ℬ is initialized 

with the memory of 𝑀  to store the transition tuples 𝑒 

harvested from the interaction process.  

a) Critic update: the two Critic networks, parameterized by 

𝑤1  and 𝑤2  for network I and II respectively, assess the Q-

values from given state-action pairs and are updated using the 

following loss function to minimize the mean squared 

Bellman error (MEBE): 

  𝐽(𝑤𝑖) =
1

𝑀
∑[𝑦 − 𝑄𝑤𝑖(𝑠, 𝑎)]

2
, 𝑖 = 1, 2

𝑀

𝑗=1

 (16) 

  𝑦 = 𝑟 + 𝛾𝑚𝑖𝑛[𝑄𝑤1′ (𝑠
′, 𝑎̃′), 𝑄𝑤2′ (𝑠

′, 𝑎̃′)] (17) 

where 𝑄𝑤1′ (𝑠
′, 𝑎̃′) and 𝑄𝑤2′ (𝑠

′, 𝑎̃′) are derived from the Target 

Critic networks. The clipped action, symbolized as 𝑎̃ , 

originates from the Target Actor network and is enhanced with 
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bounded random noise for improved value estimating as 

defined in Eq. (24), where ±𝑐 demarcates its range. It should 

be noted that the Target networks has a slower update rate 

compared to the Evaluate networks. 

𝑎̃′ = 𝜋𝜃′(𝑠
′) + 𝑐𝑙𝑖𝑝[𝑁(0, 𝛿2), −𝑐, 𝑐] (18) 

b) Actor update: two distinct Evaluate Critic networks are 

adopted for Actor update. The Evaluate Actor network 𝜋𝜃 , , 

responsible for the policy update, utilizes the gradient from the 

Critic network 𝑤1 to adjust its parameters. Here, the gradient 

indicates how the policy should be changed to maximize the 

expected reward. Moreover, it should be noted that the update 

of the Target Actor network is carried out every 𝑑  steps, 

which means that the weights update of the Target network is 

slower than that of the Evaluate network. 

     ∇𝜃𝐽(𝜃) = 𝔼[∇𝑎𝑄𝑤1(s, 𝑎)|𝑎=𝜋𝜃(s)∇𝜃𝜋𝜃(𝑠)] 

≈
1

𝑀
∑∇𝑎𝑄𝑤1(𝑠, 𝑎)|𝑎=𝜋𝜃(s)∇𝜃𝜋𝜃(s) 

𝑀

𝑗=1

  
(19) 

2) MAML Outer Loop Meta-Optimization: After individual 

task adaptations in the inner loop, the outer loop optimizes the 

initial policy and critic parameters  𝜃 , 𝑤1  and 𝑤2  across all 

tasks. The meta-optimization aims to find parameters from 

which the inner loop adaptations lead to effective task-specific 

policies with minimal learning steps. 

a) Meta-Critic update: The meta-optimization for the critic 

parameters  uses the adapted parameters 𝑤1𝑘
′  and 𝑤2𝑘

′  of the 

Target Critic networks from each task in 𝒯𝑘 and updates the 

initial parameters to minimize the MEBE errors across tasks: 

 ∇𝑤  𝐽𝑚𝑒𝑡𝑎(𝑤) =
1

|𝒯|
∑∇𝑤𝑘

′  𝐽𝑇𝑘(𝑤𝑘
′ )

|𝒯|

𝑘=1

 (20) 

where  𝐽𝑇𝑘  denotes the loss function of task 𝒯𝑘 , and |𝒯| 

represents the cardinality of the set 𝒯.  

b) Meta-Actor update: Similarly, the meta-optimization for 

the Actor network updates the initial policy parameters 𝜃 

using the gradients from the task-specific adapted policies 𝜃𝑘
′ : 

     ∇𝜃  𝐽𝑚𝑒𝑡𝑎(𝜃) =
1

|𝒯|
∑∇𝜃𝑘

′  𝐽𝑇𝑘(𝜃𝑘
′ )

|𝒯|

𝑘=1

 (21) 

The Evaluate networks are optimized synchronously with 

the training progress, while the Target networks' weights take 

after the corresponding Evaluate networks with soft updates 

with ratio of 𝜎𝑤 and 𝜎𝜃, respectively []. 

3) Hybrid Transfer Scheme: this work employs a hybrid 

transfer methodology that integrates both experience transfer 

(ET) and policy transfer (PT), which obtained from MAML. 

Within the scope of ET, experiences 𝑒𝑆 = (𝑠, 𝑎, 𝑟, 𝑠
′)𝑆 

recorded from the source domain 𝒟𝑆  are stored in a replay 

buffer ℬ and then are inherited to the target domain, allowing 

the model to assimilate past experiences before encountering 

new situations within the target environment ℳ𝑆. In terms of 

PT based on MAML, the trained policy in domain 𝒟𝑆 is firstly 

transferred to the intermediate domain 𝒟𝐼, and then introduced 

into the target domain 𝒟𝑇 for fast adaptation, namely the L2 

transfer process, to align with the new environment. For the 

hybrid transfer mechanism, the model undergoes parallel 

training, leveraging both the ET and PT techniques. This dual 

mechanism, capitalizing on experiences and policy from 𝒟𝑆, 

anticipates a swifter convergence in 𝒟𝑇.  

TABLE II 

TD3-BASED MAML FOR POLICY ADAPTATION 

Model-Agnostic Meta-Learning Algorithm with TD3 

1 For outer loop episode = 1,2, … , |𝒯|, do 

2 Initialize task-specific buffers 𝐷𝑖(𝑖 = 1,2,… , |𝒯|)  with 

capacity 𝑀, number of tasks |𝒯|, number of adaptation 

steps 𝐾, Actor and Critic parameters: 𝜃 and 𝑤𝑖(𝑖 = 1,2) 
3 For inner loop task 𝒯𝑘 = 𝒯1 , 𝒯2, … , 𝒯|𝒯|, do  

4 For task episode = 1,2,… , 𝐸, do 

5 Sample transitions using 𝜋𝜃 and add to buffer 𝐷𝑖  
6 Initialize task-specific parameters by  

𝑤𝑖
′ ← 𝑤𝑖(𝑖 = 1,2) and 𝜃′ ← 𝜃 

7 Sample 𝑁𝑠 mini-batch of 𝑒𝑛 = (𝑠𝑛, 𝑎𝑛, 𝑟𝑛, 𝑠𝑛+1), 
(𝑛 = 1,2… ,𝑁𝑠), from buffer 𝐷𝑖 

8 Obtain  𝑎̃𝑡+1 = 𝜋𝜃′(𝑠𝑡+1) + 𝑐𝑙𝑖𝑝[𝑁(0, 𝛿′
2), −𝑐, 𝑐], 

𝑦 = 𝑟 + 𝛾min[𝑄𝑤1′(𝑠
′, 𝑎̃′), 𝑄𝑤2′(𝑠

′, 𝑎̃′)]  

9 Update Critics 𝑤𝑖(𝑖 = 1,2) by minimizing the loss: 

𝐽(𝑤𝑖) =
1

𝑁𝑠
∑ [𝑦 − 𝑄𝑤𝑖(𝑠, 𝑎)]

2
,

𝑁𝑠
𝑛=1 (𝑖 = 1,2)  

10 If Actor network update is called, then 

11 Update 𝜃 by the deterministic policy gradient: 

𝛻𝜃𝐽(𝜃) =
1

𝑁𝑠
∑ 𝛻𝑎𝑄𝑤1(𝑠, 𝑎)|𝑎=𝜋𝜃(𝑠)𝛻𝜃𝜋𝜃(𝑠)
𝑁𝑠
𝑛=1   

12 Update target networks: 

                  𝑤𝑖
′ ← 𝜎𝑤𝑤𝑖 + (1 − 𝜎𝑤)𝑤𝑖

′, (𝑖 = 1, 2) 

                  𝜃′ ← 𝜎𝜃𝜃 + (1 − 𝜎𝜃)𝜃
′ 

13 End If 

14 End For 

15 End For 

16 Meta-gradients for initial value update of 𝑤1, 𝑤2 and 𝜃 

17 For task 𝒯𝑘 = 𝒯1 , 𝒯2, … , 𝒯|𝒯|, do 

18 Update Critic network using ∇𝑤 𝐽𝑚𝑒𝑡𝑎(𝑤) and 𝜎𝑤 

19 Compute adapted policy gradient ∇𝜃 𝐽𝑚𝑒𝑡𝑎(𝜃) and  

update the Actor network with 𝜎𝜃 

20 End For 

21     Output the adapted parameters 𝜃 and 𝑤𝑖(𝑖 = 1,2) 
22 End for 

 

IV.  RESULTS AND DISCUSSIONS 

A. Testing and Validation Setup 

The V-cycle in Fig. 6 illustrates a systematic approach to 

the development and validation of the proposed transferable 

EMS, integrating both offline and online processes. After the 

system function definition, the framework starts the MAML 

for EMS training with reliance on a per-unit model suitable for 

offline cross-platform transfer (L1), symbolized as the left 

part. As the V-cycle ascends on the right, it represents the sim-

to-real application, beginning with online transfer through a 

digital twin-based validation, where the EMS undergoes 

control system validation using software-in-the-loop (MIL) 

and hardware-in-the-loop (HIL) simulation, ensuring that the 

system interacts correctly with actual hardware without the 

risk and expense of a full physical prototype. Then the real 

vehicle-in-the-loop (VIL) chassis tests are carried out, which 
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subject the EMS to actual powertrain to confirm its 

performance, reliability, and efficacy. Finally, the vehicles are 

dispatched to real-world driving conditions to collect 

customer-oriented usage data for online transfer (L2). This 

comprehensive V-cycle approach ensures that the T-RL-based 

energy management is thoroughly tested and validated at 

every stage from conceptualization to real-world deployment. 

 
 Fig. 6. The validation approach of the bi-level lifelong 

learning-based transferable EMS. 

 

For L1 offline learning, the training process is randomly 

initialized with composite homologation driving cycles using 

by OEMs including the worldwide harmonized light vehicles 

test cycle (WLTC), China light-duty vehicle test cycle 

(CLTC), China heavy-duty vehicle test cycle (CHTC), and the 

China version world transient vehicle cycle (C-WTVC). The 

forecasted velocity of the state input is replaced by a stepwise 

curve generated according to the average value of the real 

velocity every 500 seconds. The L2 online transfer shifted to 

accommodate real-world conditions, where the EMS was 

exposed to actual driving cycles, diverging from the 

standardized patterns used in offline learning. The input of 

traffic information is directly fed with real data from Gaode 

Map, reflecting the individual pattern in daily customer usage. 

The REET operative data in customer usage is compared to 

those of the OEM’s homologation driving cycles as shown in 

Fig. 9 and Fig. 10, which indicates the necessity of customer-

centric policy adaptation in the L2 online transfer. 

 
Fig. 7. Examples of ground truth velocity and Gaode map-

based forecasted velocity in the user driving cycle database. 

 

 
Fig. 8. Data plots of the original and user datasets in terms of 

the state space deviation. 

 

B. Parameter Design and Transfer Ability 

The specific hyperparameters are listed in Table III, and a 

total of 300 episodes have been designated for the L1 training. 

The neural network architecture consists of four fully 

connected layers, with each layer comprising 200, 150, 100, 

and 50 neurons respectively. These values have been 

determined based on comprehensive experiments and the 

latest literatures in this field.  

TABLE III 

HYPERPARAMETERS OF TD3 ALGORITHM 

Hyperparameter  Value Hyperparameter Value 

Discount factor 𝛾 0.995 Actor learning rate 1e-4 

Buffer capacity 𝑀 1e6 Critic learning rate 1e-4 

Batch size 𝑁𝑠 256 Update rate 𝜎𝑤, 𝜎𝜃 0.005 

Delayed update 𝑑 4 Noise clip range 𝑐 0.5 

 

Fig. 9 contrasts the efficacy of bi-level transfer learning 

approach with a modular agent against conventional RL. The 

purple curve signifies the training process for passenger cars 

under OEM’s homologation driving cycles. The T-RL 

benefiting from the per-unit design leverages existing network 

structures and parameters, initiating with a superior 

cumulative reward compared to the conventional RL which 

learns from scratch in the target domain, thereby enhancing 

transferability to new powertrains and user driving scenarios. 

 
 Fig. 9. Learning curve of the training process in source 

domain (purple line); T-RL with bi-level transfer (red line) 

and retraining (blue line) in target domain of user A. 
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C. Simulation Validation of the Bi-Level MAML 

1) Comparison Study of Level-1 Cross-Platform 

Transferability: To analyze the L1 transfer-based EMS under 

homologation cycles shown in Fig. 10, the L1 transfer 

performance from the passenger HEV (source domain) to the 

commercial REET (intermediate domain) is validated. The 

engine output power, battery SOC and the equivalence factor 

are compared for PMP, T-RL with L1 transfer, and the 

strategy obtained in source domain with standard RL without 

transfer. The L1 transfer-based T-RL demonstrates improved 

fuel economy (FE), as shown in Table IV, with managing 

engine power and battery charge with similar trend of offline 

PMP, suggesting successful cross-platform EMS transfer. 

 
 Fig. 10. Illustration of the effectiveness of L1 transfer of T-

RL in terms of the engine output power, battery SOC and 

equivalent factor under standard driving cycle. 

 

TABLE IV 

SIMULATION OF L1 CROSS-PLATFORM TRANSFERABILITY 

Performance PMP T-RL (L1) RL 

Initial SOC (%) 25.0 25.0 25.0 

Final SOC (%) 25.0 28.1 27.1 

Corrected FE (L/100km) 10.9 11.3 13.1 

Fuel savings (%) 16.2 13.7 - 

 

2) HIL Test of Level-2 Scenario Adaptation: The hardware-

in-the-loop (HIL) testing system, shown in Fig. 11, is utilized 

to validate the real-time control performance of the EMSs. 

This platform comprises an upper computer that manages and 

configures input and output (I/O) interfaces, communication 

interfaces, and test cases using NI VeriStand software. The I/O 

signals from the RCP are both connected to HIL terminals and 

the cloud platform, enabling real-time operation of the 

powertrain loaded in the real-time computer (RTPC). 

 
 Fig. 11. Hardware-in-the-loop simulator with cloud platform. 

 

Fig. 12 demonstrates the HIL-based assessment of different 

EMSs for REET, comparing engine output power, battery 

SOC and battery power across real-world driving cycle of user 

A. The results are summarized in Table V. The velocity 

profile serves as the driving cycle context. The graphs depict 

how each strategy performs in real-time, with the T-RL 

methods expected to adjust energy distribution more similar to 

that of the offline optimality, improving efficiency over the 

standard BMK approach by 10.4% while the conventional RL 

fails to improve the BMK fuel economy.  

 
 Fig. 12. HIL-based comparisons of the offline optimal 

strategy, T-RL with bi-level transfer, T-RL with L1 transfer 

and benchmark strategy in terms of the engine output power, 

battery SOC and battery power under user driving cycle A. 

 

Fig. 13 compares different EMSs during driving cycle of 

user B using HIL simulation, as shown in Table V. The 

powertrain dynamics including engine power, battery SOC 



5 

IEEE Transactions on Intelligent Vehicles 

 

and battery power over time. The performance of bi-level T-

RL strategy is highlighted to show more adaptive and efficient 

energy management compared to the T-RL-based EMS 

without L2 transfer, which offers 8.6% enhancement of fuel 

economy in real-world scenario, especially noticeable in the 

engine power and SOC graphs where T-RL is more consistent 

with the offline PMP. 

 
 Fig. 13. HIL-based comparisons of the offline optimal 

strategy, T-RL with bi-level transfer, T-RL with L1 transfer 

and benchmark strategy in terms of the engine output power, 

battery SOC and battery power under user driving cycle B. 

 

D. Real Vehicle Tests of Transferred Energy Management 

Fig. 14 illustrates a vehicle-in-the-loop (VIL) setup for 

validating the EMS of REET, where the vehicle chassis is 

mounted on a dynamometer with a cooling fan to mimic  

TABLE V 

HIL VALIDATION OF L2 SCENARIO ADAPTATION 

Drive 

cycle 

Method Initial  

SOC 

Final  

SOC 

Corrected  

FE 

Saving 

  (%) (%) (L/100km) (%) 

User A PMP 25.0 25.0 9.8 14.7 

 Bi-L 25.0 24.5 10.3 10.4 

 L1 25.0 24.5 11.3 1.7 

 BMK 25.0 26.1 11.5 - 

User B  PMP 25.0 25.0 8.1 16.5 

 Bi-L 25.0 28.1 8.5 12.3 

 L1 25.0 24.1 9.3 4.1 

 BMK 25.0 26.7 9.7 - 

 

natural airflow. The vehicle control unit (VCU) interacts with 

the powertrain and a cloud platform to simulate traffic 

forecasts of digital map. These inputs, alongside data recorded 

by the dynamometer's measurement systems, allow for 

comprehensive testing and calibration of the vehicle's energy 

management system under varying driving scenarios. 

 
 Fig. 14. Testing setup of vehicle-in-the-loop validation. 

 

1) VIL-based Validation of Level-1 Cross-Platform 

Transferability: Fig. 15 depicts the VIL testing comparison for 

T-RL system with L1 transfer against a benchmark strategy 

under standard driving cycle, and the results are summarized 

in Table VI. The recorded velocity profiles with respect to the 

two control strategies have been compared which confirms the 

effectiveness of comparison. The T-RL (L1) demonstrates the 

corrected fuel economy of 11.24 L/100km and higher terminal 

SOC, which outperforms the benchmark strategy with 11.91 

L/100km by 5.6%. 

 
 Fig. 15. VIL test-based comparisons of T-RL with L1 transfer 

and benchmark strategy in terms of battery SOC, engine 

output power and fuel usage under standard driving cycle. 

 

Fig. 16 presents engine operation conditions from real 

vehicle tests, contrasting the T-RL strategy after L1 transfer 

against the benchmark strategy. The BMK points (purple) 

cluster along lower efficiency BSFC contours, while the T-RL 
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points (orange) are more centered among the high-efficiency 

region. This suggests that the T-RL strategy can be effectively 

transferred to the intermediate domain, the REET powertrain 

under standard driving cycle. 

 
 Fig. 16. Comparisons of engine operative situation in T-RL 

with L1 transfer and benchmark strategy under standard 

driving cycle with VIL tests. 

TABLE VI 

EXPERIMENTS OF L1 CROSS-PLATFORM TRANSFERABILITY 

Performance T-RL (L1) BMK 

Initial SOC (%) 24.3 25.3 

Final SOC (%) 33.7 29.4 

Corrected FE (L/100km) 11.2 11.9 

Fuel savings (%) 5.9 - 

 

2) VIL validation of Level-2 Scenario Adaptation: Fig. 17 

visualizes the results from VIL tests comparing the two T-RL 

strategies, one with bi-level transfer and one with L1 transfer 

only, against a benchmark strategy during driving cycle of 

user A. The driving speed for testing the three control 

strategies can be found consistent which ensures the fairness 

of comparison. As observed in Table VII, the bi-level T-RL 

strategy obviously amends the damage of optimality of T-RL-

based EMS caused by state space deviation between standard 

driving cycles (intermediate domain) and the customer driving 

cycles (target domain). The bi-level transfer tends to 

outperform the benchmark strategy in terms of fuel economy 

by 9.8%, and outperforms the benchmark system by 12.9%. 

The VIL test-based engine operating conditions of the T-RL 

with bi-level transfer, T-RL with L1 transfer, and the 

benchmark strategy are compared as shown in Fig. 18. 

Displayed on engine speed-torque maps, the data points 

illustrate each strategy's engine load distribution relative to 

BSFC contours. The T-RL with bi-level transfer (orange) 

mostly congregate around the low BSFC levels, while T-RL 

with L1 transfer (blue) spread across various operation regions 

with low thermal efficiency. The benchmark (purple) shows a 

similar distribution to that of bi-level T-RL but witnesses a 

long-time operation in the BSFC states from 215 g/kWh to 

270 g/kWh, covering the power range from 15 kW to 20 kW. 

 
 Fig. 17. VIL test-based comparisons of T-RL with bi-level 

transfer, T-RL with L1 transfer and benchmark strategy under 

user driving cycle A 

 

The VIL test-based engine operating conditions of the T-RL 

with bi-level transfer, T-RL with L1 transfer, and the 

benchmark strategy are compared as shown in Fig. 18. 

Displayed on engine speed-torque maps, the data points 

illustrate each strategy's engine load distribution relative to 

BSFC contours. The T-RL with bi-level transfer (orange) 

mostly congregate around the low BSFC levels, while T-RL 

with L1 transfer (blue) spread across various operation regions 

with low thermal efficiency. The benchmark (purple) shows a 

similar distribution to that of bi-level T-RL but witnesses a 

long-time operation in the BSFC states from 215 g/kWh to 

270 g/kWh, covering the power range from 15 kW to 20 kW. 

 
 Fig. 18. Comparisons of engine operative situation under user 

driving cycle A with VIL tests. 



7 

IEEE Transactions on Intelligent Vehicles 

 

The VIL test results of the two transferable EMS, bi-level 

and L1 transfer-based T-RL, as well as a benchmark strategy 

during driving cycle of user B are compared in Fig. 19. 

Notably, the T-RL (bi-level) method shows a lower fuel 

consumption curve, indicating a more efficient energy 

management under the tested customer driving conditions than 

the T-RL (L1) and benchmark methods. The experiment 

results are summarized in Table VII, where the bi-level 

transfer results outperform the strategy obtained in the 

intermediate domain by 8.5%. Fig. 20 contrasts the engine 

operative points under the three strategies against the 

backdrop of BSFC contours during the driving cycle of user B 

in VIL tests. The bi-level T-RL strategy (orange) shows a 

concentrated pattern suggesting consistent engine operation, 

the T-RL with L1 transfer only (blue) demonstrates a broader 

spread indicating wrong decision of engine output power in 

unfamiliar driving conditions of user B. 

 
 Fig. 19. VIL test-based comparisons of T-RL with bi-level 

transfer, T-RL with L1 transfer and benchmark strategy under 

user driving cycle B 

 

TABLE VII 

VIL VALIDATION OF L2 SCENARIO ADAPTATION 

Test Performance Bi-L L1 BMK 

User A Initial SOC (%) 24.4 25.5 24.6 

 Final SOC (%) 27.0 23.8 26.2 

 Corrected FE (L/100km) 10.1 11.2 11.6 

 Fuel savings (%) 12.9 3.4 - 

User B Initial SOC (%) 24.8 25.1 25.0 

 Final SOC (%) 27.0 26.0 24.4 

 Corrected FE (L/100km) 8.6 9.4 9.9 

 Fuel savings (%) 13.1 5.1 - 

 

 
 Fig. 20. Comparisons of engine operative situation under user 

driving cycle B with VIL tests. 

 

The VIL test results of the T-RL with bi-level transfer or L1 

transfer are compared against the conventional RL and 

benchmark strategy in Fig. 16, which illustrate the 

convergence speed, corrected fuel economy under both 

standard and user driving cycles. The learning process when 

shifting from the source domain to the target domain is 

shortened by 91.7% with the bi-level transfer scheme. Besides, 

the fuel economy of T-RL is 5.9% less than that of the OEM’s 

benchmark strategy under standard cycle, and outperforms the 

state-of-the-art RL-based control and OEM’s benchmark 

under users’ actual driving scenarios by 8.7% and 12.6%, 

respectively. Therefore, the proposed method is capable of 

cross-platform application and fast online fine-tuning to adapt 

to unfamiliar state space in customers’ driving conditions. 

 
 Fig. 16. Real vehicle test results in terms of fuel economy, 

and convergence speed for new driving scenario adaptation. 

 

VI. CONCLUSIONS 

This paper proposes a bi-level T-RL based on model-

agnostic meta-learning to realize transferable and self-

evolving EMS for logistics REETs. The performance of the 

proposed T-RL has been validated by comprehensive HIL and 

VIL experiments under both homologation and real-world 

drive cycles, and the findings are summarized as follows: 

1) This work pioneers in real-vehicle experiments of 

implementing learning-based EMS. The ECMS serves as 
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the fundamental framework to enable interpretability and 

transferability, where the conventional heuristic control 

maps for equivalent factor estimation are replaced by a 

neural network calibrated by T-RL. This approach marks 

a firm advancement in sim-to-real transfer in RL-based 

EMS.  

2) The L1 transfer is validated by the per-unit agent trained 

in the source domain achieving 96% of the optimality 

realized by offline PMP in the intermediate domain, 

demonstrating a zero-shot knowledge transfer from 

passenger cars to logistics trucks. The T-RL with L1 

transfer is featured with a 13.7% gap in FE compared to 

conventional RL, and initiates with a superior cumulative 

reward for starting the fine-tuning of L2 transfer. 

3) The L2 transfer realizes online adaptation to real-world 

driving conditions enabled by usage data feedback and 

DT-based cloud computing, and a correction of 

8.0%~9.5% fuel economy is improved against the 

convention reinforcement learning-based EMS during 

usage via online-adaptation, effectively bridging the 

optimality gap between the control policy learned during 

development and the global optimal operation in actual 

driving scenarios. 
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