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Abstract

In the context of electron transport in two-dimensional disordered systems, an

Arrhenius Hall carrier density has never been observed alongside an Arrhenius

conductivity when the Fermi level is below a mobility edge. An Arrhenius quan-

tity decreases exponentially with inverse temperature. For over half a century,

it is the Hall mobility that has been consistently reported as being activated as

opposed to the Hall carrier density. This has historically been a significant issue

with respect to claiming transport via activation to a mobility edge. In this work,

for the first time, an Arrhenius Hall carrier density and an Arrhenius conductiv-

ity have been observed together. The system used is a two-dimensional electron

gas hosted in a gated GaAs/Al0.33Ga0.67As heterostructure. Furthermore, the

Hall mobility is shown to be independent of Fermi level. This itself is striking

and strong evidence of transport via activation to a mobility edge. A transition

between carrier density and mobility dominating the conductivity temperature

dependence has also been observed in this work. This could explain the historical

results in the literature. Additionally, transport within disorder broadened Lan-

dau levels has been investigated. The breakdown of the quantum Hall effect is

shown to agree well with a phenomenological electron overheating model and is

subsequently ascribed to electron-phonon decoupling. This decoupling manifests

itself as large, hysteretic current jumps in current-voltage characteristics. The

overheating model has previously been applied to transport in disordered thin
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films. The work presented in this thesis is the first in which it has been success-

fully applied to the breakdown of the quantum Hall effect. Finally, an unusual low

temperature Arrhenius resistivity regime has been observed in helium focused ion

beam damaged graphene. It is suggested that current theories in the literature

cannot explain the behaviour.



Impact Statement

There has been a significant renewal of interest in the field of localisation in recent

years. This, in the main, has centred around the concept of many-body localisa-

tion. This exotic state of matter, as yet unobserved in an electronic system, resists

thermalisation and has zero conductivity at finite temperature. The discovery of

such a state in an electronic system, would be highly significant with respect to

prevention of quantum decoherence and therefore quantum computing. The main

obstacle is that of the electron-phonon interaction.

In this thesis, the breakdown of the quantum Hall effect has been studied in the

context of electron-phonon decoupling. It is argued that such a decoupling man-

ifests itself as large, hysteretic current jumps in a given sample’s current-voltage

characterstics. Such characteristics are shown to agree well with an overheating

model. This indicates the electron system and phonon system have different tem-

peratures and are thus decoupled. Furthermore, secondary currents jumps have

been observed. It is suggested, within this thesis, that such observations could

be related to a non-uniform spatial distribution of electron temperature. Work of

this nature is highly relevant to the aforementioned goal of observing many-body

localisation in an electronic system.

Numerous localised transport regimes have been studied in this work. Strong

evidence of transport via activation to a mobility edge has been found. Sig-

nificantly, an Arrhenius carrier density has been observed in a system in which
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the Fermi level is below a mobility edge. Separately, an unusual low tempera-

ture Arrhenius transport regime has been observed in focused ion beam damaged

graphene. Such works are important in understanding disordered electronic sys-

tems in general and will hopefully contribute to achieving many-body localisation.

In addition to its relevance to the prevention of quantum decoherence, the

work presented in this thesis has other potential non-academic impact. Specifi-

cally, it is also relevant to the understanding of disorder and its impact in high

quality materials, which is important for the semi-conductor industry as a whole.

Insight into how disorder affects both transport and energy dissipation could help

to improve performance and reliability when carrying out chip fabrication. Fur-

thermore, the observed hysteretic current-voltage characteristics could be applied

to novel electronic switches based on electron-phonon decoupling. The sharp tran-

sitions in conductivity could be used to produce switching devices in nano-scale

electronic systems.
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Chapter 1

Introduction

Anderson’s seminal 1958 work arguably founded the field of localisation within

condensed matter physics [1]. It was in this work that, using a disordered tight

binding model, the concept of localisation due to disorder was first introduced.

Diffusive behaviour was shown to be lost. Although the initial motivation was that

of electron or spin transport, Anderson localisation is now synonymous with single

particle localisation, regardless of the specific system. See [2–7] for examples of

Anderson localisation using photons, matter waves, ultrasound and spin waves. At

the time of publication, and indeed during the proceeding decade, Anderson’s work

was not truly appreciated and in many cases not accepted. As a result, progress in

the field was initially slow. It was not until over two decades later, in 1979, that

the so-called “Gang of Four”, meaning Abrahams, Anderson, Licciardello, and

Ramakrishnan, established the scaling theory of localisation. The theory regards

the conductance of a general disordered electronic system [8]. By using a scaling

parameter that is dependent only on the conductance of a given sample, it was

shown that in one and two dimensions all single electron eigenstates are localised

given arbitrary disorder. This is a striking statement and was also not without

controversy.
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Mott was responsible for much in the field, in particular concepts such as vari-

able range hopping [9] and the mobility edge [10]. Over half a century later, there

still remain numerous unanswered issues related to both of these concepts. For

example, in the variable range hopping transport regime, the experimental obser-

vation of a quantised conductivity prefactor has no explanation [11,12]. Likewise,

in the context of transport in a disordered system, an Arrhenius Hall carrier den-

sity has never been observed alongisde an Arrhenius conductivity. If, as is often

claimed, transport is via activation to a mobility edge, it is anticipated that the

Hall carrier denisty should take on such a temperature dependence. Instead, while

the conductivity is Arrhenius, it is the Hall mobility that has been consistently

reported as being activated and not the carrier density [13–16]. This issue will be

addressed in this thesis.

In recent years, the field of localisation has undergone somewhat of a renais-

sance. This is in part due to work from 2006 by Basko, Aleiner and Altshuler [17].

They showed, theoretically, that the electron-electron interaction alone does not

guarantee thermalisation. A system which fails to thermalise is said to be many-

body localised. Such a concept can be thought of as the many-body generalisation

of Anderson localisation. Anderson himself, in his 1958 work, noted that in a

localised system there is no path to equilibrium. Due to the absence of thermal-

isation, the concept of temperature breaks down within a many-body localised

system. A fundamental property of such a system is that of zero conductivity

at finite temperature. The many-body localised state is therefore considered a

perfect insulator. Although many-body localisation has been reported in ultra-

cold atomic systems [18,19], it is yet to be observed in an electronic system. The

dominant obstacle is that of phonons, which act as an external bath and allow for

thermalistion. Recent research has focused on experimental signatures of many-

body localisation [20] and electron-phonon decoupling [21, 22], the latter being a
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necessary requirement to experimentally achieve the many-body localised state.

In this thesis, electron-phonon decoupling will be explored in the context of the

breakdown of the quantum Hall effect [23]. The quantum Hall effect, a topological

effect discovered in 1980 [24], is itself dependent on disorder and localisation. By

measuring in a Corbino geometry, transport via edge states can be avoided and

instead the bulk localised states of the disorder broadened Landau levels can be

probed.

There exists a substantial body of work in the literature in which disorder and

localisation are studied using gated two dimensional electron gases, see [14,25,26].

In such systems, a metal insulator transition can be observed by using the gate to

manipulate the Fermi level below a mobility edge. Furthermore, by pushing the

Fermi level further below the mobiltiy edge, a systematic study of the localised

states that form the band tail of the system is possible. See [27,28] for examples of

transitions between different forms of localised transport as Fermi level is varied

beneath a mobility edge. In this thesis, a two-dimensional electron gas, hosted

in a gated GaAs/Al0.33Ga0.67As heterostructure is used to study the Hall effect

in various localised transport regimes. The aforementioned issue regarding the

historical lack of an Arrhenius carrier density in the literature is considered.

The layout of the thesis is as follows. The theoretical background, which is

necessary in order to understand and contextualise the results, is presented in

chapter 2. The materials used in this work are discussed in chapter 3, namely

GaAs/AlxGa1−xAs heterostructures and graphene. How the Fermi level is ma-

nipulated to lie beneath a mobility edge and thus within localised states will also

be considered here. The three techniques that have been employed are the afore-

mentioned use of gating and disorder broadened Landau levels, as well as the

damging of graphene devices using a helium focused ion beam. Following this,

how the fabrication of devices was carried out is presented in chapter 4. Chap-
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ter 5 also discusses experimental methods, specifically how cryogenic transport

measurements were performed. In the following three chapters, the results of this

work are given. Firstly, in chapter 6, the Hall effect study is discussed. Specifi-

cally, how the Hall effect is altered as both Fermi level and temperature are varied

in the cases of transport via activation to a mobility edge and Efros-Shklovskii

hopping. In chapter 7 the breakdown of the quantum Hall effect is considered

in the context of electron-phonon decoupling. Chapter 8 considers focused ion

beam damaged graphene devices and ultra low temperature Arrhenius behaviour.

Finally, in chapter 9, the results are summarised and potential areas of future

work are raised.



Chapter 2

Disorder and Localisation

In this chapter, the relevant theoretical background concerning localisation is

given. Initially, in order to introduce fundamental concepts such as the density

of states and effective mass, disorder free systems are considered. Here electron

states are referred to as being extended and there is no localisation. Then the

discussion moves onto metallic systems in which the amount of disorder is small

and transport is considered diffusive. Charge carriers can be thought of as moving

at the Fermi velocity of the disorder free system, between scattering centres which

are separated by distances greater than the Fermi wavelength. This treatment is

semi-classical and ignores the effect of interference. When taking this into account

it can be shown that backscattering processes are enhanced, leading to a quantum

correction to a given sample’s resistance. This is known as weak localisation. It

relies on time reversal symmetry and is thus lost under application of a magnetic

field. The disorder level is then increased and single particle localisation, otherwise

known as Anderson localisation, is introduced. In an Anderson insulator, there

exist states which are no longer extended and are considered localised. Such states

have spatial extent characterised by their localisation length. Anderson himself,

in 1958, commented that an Anderson localised system has no possible path to

18
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equilibrium. This was more than 30 years before the eigenstate thermalisation

hypothesis was theorised in order to deal with thermalisation of isolated quantum

systems. After single particle localisation is discussed, finite temperature effects

are considered. In particular, activation to a mobility edge and hopping trans-

port. Systems displaying these transport mechanisms are considered insulators

and exhibit an increase in resistivity as temperature decreases. Electron-electron

interactions are then introduced in order to consider many-body localisation. As

discussed in the introduction to this thesis, a many body localised state has yet

to be observed in an electronic system. In such a system there is no thermalisa-

tion, conductivity vanishes below a finite temperature and it is thus considered a

perfect insulator. Finally, the quantum Hall effect is discussed. This topological

effect is dependent on disorder and localised states.

2.1 Periodic Potentials

Before introducing disorder and localisation, it is useful to first consider systems

without disorder. Electrons in crystalline material, by definition, reside in a pe-

riodic potential. The purpose of this section is twofold. Firstly, to introduce the

concept of a band structure. This is necessary when discussing how to create

two-dimensional electron systems via band structure engineering. Secondly, to

demonstrate that electrons in crystalline material can often be considered as free

electrons but with a modified mass. As a result of this, throughout this thesis,

the periodic potential of the relevant material is essentially ignored.

Bloch’s theorem states that the wavefunction, ψ(r), of an electron in a periodic

potential can be expressed as a plane wave multiplied by a function that has the

same periodicity as the potential [29]. That is to say,

ψ(r) = un,k(r) exp(ik · r). (2.1)
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Here n is a band index, k is a wavevector and un,k(r) has the same periodicity as

the potential. To see this, consider the following Hamiltonian which describes an

electron in a periodic potential,

Ĥ =
∑
k

[
h̄2k2

2m
|k⟩ ⟨k|+

∑
G

VG |k+G⟩ ⟨k|

]
. (2.2)

Here |k⟩ is a plane wave state with wavevector k and the second sum is over

all reciprocal lattice vectors, including the zero vector. The VG values are the

values of the fourier transform of the periodic potential, evaluated at reciprocal

lattice vector G. This Hamiltonian is applicable to any periodic potential. The

application of this general Hamiltonian to a plane wave state results in

Ĥ |k⟩ = h̄2k2

2m
|k⟩+

∑
G

VG |k+G⟩ . (2.3)

No matter the details of the periodic potential, the Hamiltonian maps between

plane wave states that differ by the reciprocal lattice vectors only. It is therefore

the case that a general solution can be written as

|ψ⟩ =
∑
G

cG |k+G⟩ (2.4)

where cG are constants to be determined. The associated wavefunction of this

general solution, ⟨r|ψ⟩, is

ψk(r) = exp(ik · r)
∑
G

cG exp(iG · r). (2.5)

The general wavefunction is therefore a plane wave, exp(ik · r), multiplied by a

function that has the same periodicity as the lattice:
∑

G cG exp(iG · r). This is

Bloch’s theorem. It is typical to restrict the wavevectors of Bloch states to only
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exist in the first Brillouin zone. This is the primitive unit cell of the reciprocal

lattice. By definition of the primitive lattice, all wavevectors outside the first

Brillouin zone are equal to the sum of a reciprocal lattice vector and a unique

wavevector from within the first Brillouin zone. Because of this, Bloch states

need only be associated with a wavevector from within the first Brillouin zone.

The remainder of the plane wave term can be absorbed into the function which

shares the periodicity of the lattice.

A dispersion relation is shown in Fig. 2.1 for a one-dimensional periodic po-

tential. The potential has period a. The band gaps arise due to plane wave

states at the edges of each Brillioun zone undergoing Bragg reflection and form-

ing standing waves. In the case of Fig. 2.1, the boundary of the first Brillioun

zone is at |k| = π/a. The Bragg reflection arises due to the crystal imparting

momentum equal to the reciprocal lattice vectors. At the Brillioun zone bound-

ary the reflected component exactly cancels the forward component. One of the

resultant standing waves has a probability density in phase with the maxima of

the potential, while the other is out of phase. Hence the energy splitting and

resultant gap. Pertubation theory can also be used to see that states closer to the

Brillioun zone boundary are altered more than states further from the boundary.

Figure 2.1b shows the same dispersion relation as Figure 2.1a, but with wavevec-

tors shifted by a reciprocal lattice vector so as to reside in the first Brillion zone.

Two bands are shown. If the Fermi level lies within a band, the material is ex-

pected to be metallic. Otherwise, depending on the size of the gap, the material is

considered either a semiconductor or an insulator. As shall be discussed in section

3.1.3, band structure engineering can be used to create metallic two-dimensional

electron systems from three-dimensional semiconductors.

By considering their response to external forces, electrons in a given band can
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be thought of as free electrons with a modified mass, known as an effective mass

1

m∗ =
1

h̄2
∇2

kϵk. (2.6)

Here ϵk is the energy of the state with wavevector k.

In free space, the density of states, N , is found by applying periodic boundary

conditions. This leads to only discrete values of wavevector being permissible.

The same reasoning applies to the wavevectors associated with the Bloch states.

The denisty of states is therefore the same as in free space, but with a modified

effective mass. In two dimensions, the dimension of interest within this thesis, the

density of states is a constant,

N = m∗/πh̄2. (2.7)

(a) (b)

Figure 2.1: Dispersion relation for a particle in a one-dimensional periodic po-
tential. The first two bands are shown in the a) extended zone scheme and b)
reduced zone scheme.
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2.2 Diffusive Conduction

Having established that electrons in a periodic potential can be considered as being

essentially in free space, but with an effecective mass, disorder is now considered

for the first time. Initially, the disorder will be considered weak, such that the

material is still considered metallic.

The scattering time, τ , is the time it takes for an electron’s initial momentum

to be lost as it scatters within the material. If f(θ) is the rate of scattering into a

state which has a wavevector at an angle θ from the current state, the scattering

time is given by

1

τ
=

∫ 2π

0

[1− cos(θ)] f(θ)dθ. (2.8)

Here scattering events have been weighted by how significantly they affect mo-

mentum [30]. The mean free path, l, is defined as the length scale associated with

τ , so-called because between scattering events the electron appears free. When

considering transport, it is the states at the Fermi level that are of particular

interest. It is these states that are responsible for the the net current. Thus both

τ and l are defined at the Fermi level. Given the electron appears free between

scattering events, τ = l/vF where vF = h̄kF/m
∗ is the Fermi velocity and kF is

the Fermi wavevector.

In principle, the Schrödinger equation for a given realisation of disorder could

be solved. Although this is typically impractical, it is instructive to consider

properties of the solutions. Consider the case in which the the disorder is a

random array of delta function spikes in potential energy. Each spike is referred

to as a scattering centre. It is assumed that the the distance between the scattering

centres is much greater than the Fermi wavelength, λF = 2π/kF . This ensures

that l ≫ λF . The Ioffe-Regel condition [31] concerns the boundary between
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metallic and insulating behaviour, known as a metal-insulator transition [32].

Using the Ioffe-Regel condition, the transition is said to occur when kF l ≈ 1.

Hence disorder is considered weak if l ≫ λF . Consider the case in which between

the delta function scattering centres, there is simply free space. The solution of

the Schrödinger equation is therefore made up of a linear combination of plane

wave states, which all have wave vectors of equal magnitude. At the scattering

centres, the necessary jump conditions associated with delta functions must be

satisfied. An electron in such a state will appear to be undergoing Brownian

motion. Between the scattering centres it appears as a free electron but, due to

the disorder, the direction of its wave vector changes throughout the crystal. If the

states that linearly combine to form the solution have wave vectors of magnitude

k, the magnitude of the electron velocity between scattering sites will simply be

h̄k/m∗. The interference of the various plane wave states that linearly combine

to form the new states has not been considered. This leads to the phenomenon

of weak localisation and is covered in section 2.3.

A current, due to this diffusive behaviour, is now derived. Consider a voltage,

V , applied between two reservoirs on either side of a two dimensional sample. The

difference in electrochemical potential between the two reservoirs is eV , where e is

the electron charge. One reservoir injects eV N more electrons per unit area than

the other, whereN is the density of states at the Fermi level. The result is a carrier

density concentration gradient, ∇n = −eV N/L, where n is the two-dimensional

electron density and L is the length of the sample. The current density can thus

be expressed as,

J = −eD∇n =
e2DVN

L
(2.9)

using Fick’s first law [33] and where D = l2/2τ is the the diffusion constant. Using
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vF = h̄kF/m
∗ = l/τ , N = m∗/h̄2π and n = k2F/2π results in,

J =
ne2τV

m∗L
=
ne2τ

m∗ E, (2.10)

with E = V/L being the applied electric field. This results in the conductivity

taking the form,

σ =
ne2τ

m∗ . (2.11)

The same conductivity also follows from the classical Drude model [34, 35]. This

model assumes that all carriers contribute to the conductivity. These carriers

are all randomly scattered, with scattering time τ , while being accelerated by

the electric field. This results in a mean drift velocity of all carriers of eEτ/m∗.

Mobility, often used as a parameter of material quality, is defined as the ratio of

this drift velocity to the applied electric field, therefore µ = eτ/m∗ within the

Drude model. Using (2.11), µ = σ/ne.

2.3 Weak Localisation

While discussing diffusive transport, quantum interference was neglected. The

analysis was essentially classical. In order to consider quantum interference, the

concept of time-reversal symmetry is first introduced. Consider the single particle

time-dependant Schroedinger equation in the position basis,

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t). (2.12)

Taking its complex conjugate and making a change of variables such that t→ −t

results in,

ih̄
∂ψ∗(r,−t)

∂t
= − h̄2

2m
∇2ψ∗(r,−t) + V (r)ψ∗(r,−t). (2.13)
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Hence it can be seen that if ψ(r, t) is a solution to the Schrödinger equation, then

so is ψ∗(r,−t). Such a system is said to display time-reversal symmetry. By taking

the complex conjugate of the time independent Schrödinger equation, it can be

shown that both solutions have the same energy eigenvalues. It is important to

note that if a magnetic field is present this logic does not apply. One can easily

check this by replacing − h̄2

2m
∇2 with 1

2m
(−ih̄∇ + eA)2, where A is the magnetic

vector potential. The Hamiltonian is no longer real in the position basis. Magnetic

fields break time reversal symmetry. As shall be seen in section 2.8.2 this is crucial

to the quantum Hall effect.

Systems which are time reversal symmetric display a phenomenon known as en-

hanced backscattering. A central quantity, when considering such a phenomenon

is the propagator,

A(r0, rend, t) = ⟨rend| e−iĤt |r0⟩ . (2.14)

This is the probability amplitude that an electron moves from r0 to rend in time t.

As shown in appendix A, the propagator is the sum of the probability amplitudes

associated with each possible path the electron can take between r0 and rend.

Consider two paths, which both go from one point back to itself but in opposite

directions. An example is shown in Fig. 2.2. In a time reversal symmetric system

these paths can be shown to have the same associated probability amplitudes.

They will thus interfere coherently. See section A for details. To see why this leads

to weak localisation, consider adding all of the probability amplitudes, denoted

αi, associated with different paths for a particle going from r0 to some other point

rx in time t. The probability, P (r0, rx, t), the particle moves from r0 to rx in this

time is simply the square of the magnitude of the sum.

P (r0, rx, t) = |
∑
i

αi|2. (2.15)
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For rx ̸= r0 no correlation between the phases of the various paths is assumed,

which leads to the classical result,

P (r0, rx, t) =
∑
i

|αi|2 for rx ̸= r0. (2.16)

However if rx = r0, each αi value will be equal in magnitude and phase to another,

associated with the same path in the opposite direction. Assuming no further

correlations,

P (r0, r0, t) =
∑
i

1

2
|2αi|2 = 2

∑
i

|αi|2. (2.17)

This is the essence of weak localisation [36]. In a system that is time-reversal

symmetric, the probability of being back scattered is twice the classical value,

while other probabilities are not affected.

Figure 2.2: Two paths, which are the same just in opposite directions, will interfere
constructively in a system with time-reversal symmetry.

In the previous section the concept of a transport lifetime was introduced. This

is the timescale over which the transport appears ballistic. Another timescale is

now introduced, the phase coherence time, τϕ. This is defined as the time over

which a particle retains its phase. Couplings to other degrees of freedom, such

as other electrons and phonons, result in the suppression of quantum interference

[37]. Associated with the phase coherence time is the phase coherence length,

lϕ. Over such a length scale, assuming lϕ > l, the electron will appear weakly
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localised due to interference effects and the resultant enhanced back scattering.

The phase coherence time and length are related by,

l2ϕ = Dτϕ =
l2τϕ
2τ

, (2.18)

where D is the diffusion constant defined in section 2.2.

Perhaps counter intuitively, conductivity decreases as phase coherence length

increases, assuming a constant mean free path. This is due to the strengthening

of weak localisation, which relies on quantum interference and thus on phase

coherence. How phase coherence, or lack of, quantitatively affects the conductivity

of a material will now be discussed using arguments from [38]. First consider the

Landauer conductance formula, see [39] and appendix B,

Gcl =
2e2

h
MT. (2.19)

Here M is the number of modes and T = 1 − R is the transmission coefficient

which is assumed to be the same for all modes, for simplicity. The reflection

coefficient is R. This conductance formula however, ignores quantum interference.

As previously discussed, the probability of an electron being back-scattered to its

initial position is twice its classical value. Likewise it can also be shown that the

probability an electron in a given mode is reflected back into this same mode is

twice its classical value. Thus the value of R, when quantum interference terms

are considered, should increase by R/M . This results in,

Gq =
2e2

h
M(1−R− R

M
) = Gcl −R

2e2

h
(2.20)

where Gq is the conductance considering quantum interference while Gcl ignores
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it. If the reasonable assumption that R ≈ 1 is made then,

Gq = Gcl −
2e2

h
. (2.21)

Note that this only holds for phase coherent materials, meaning the phase coher-

ence length must be larger than the sample size. Now consider piecing together

blocks of width W < lϕ and length lϕ to form a sample with width W and length

L >> lϕ. As the resistance of the blocks will add in series, the conductivity of

one block is the conductivity of the whole sample. Thus, using (2.21),

σq = σcl −
2e2

h

lϕ
W

(2.22)

where σq is the conductivity considering quantum interference while σcl ignores

it. However, this only holds while the width of the sample is less than the phase

coherence length. This is essentially a one dimensional result. To find the two

dimensional conductivity of a sample with width greater than this length, a cir-

cular geometry should be considered. This is due to diffusion being radial. The

conductivity of an annulus of inner radius l and outer radius lϕ is considered. It

is argued that its conductivity will also be the conductivity of larger samples.

Choosing lϕ as the outer radius is an obvious choice; the largest possible phase

coherent unit is wanted. The inner radius cannot be zero. This is due to the di-

vergence of the current density associated with a current point source. Choosing

the mean free path, l, for the inner radius is appropriate as any transport between

the centre of the annulus and the inner radius will be ballistic. Thus conductance

should not be significantly affected by removing an inner circle of this radius from

consideration. As this is a phase coherent unit the conductance between inner
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and outer radii is again given by (2.21). Using,

V =

∫ lϕ

l

E(r) · dr = 1

σq

∫ lϕ

l

J(r) · dr (2.23)

and

J(r) =
I

2πr
, (2.24)

where I is the current between the two radii, V is the voltage between them and

J(r) is current density at radius r, it can be seen that

Gq =
I

V
=

2πσq
log(lϕ/l)

. (2.25)

Combining (2.25) and (2.21) leads to

σq = σcl −
e2

πh
log(lϕ/l), (2.26)

which is applicable when l < lϕ and by construction holds for larger samples, not

just the phase coherent sample considered.

The quantum correction in (2.21) will not be exactly −2e2/h. Variations in

the quantum correction value result in the phenomenon known as universal con-

dutance fluctuations. Different realisations of disorder within otherwise identical

phase coherent samples will lead to fluctuations in conductance of order 2e2/h,

see [40,41]. The lengthscale on which these fluctuations can be observed is known

as the mesoscopic length scale. These fluctuations can be observed in samples that

are larger than the phase coherence length, but they will decrease in magnitude

as length increases. The fluctuations over each phase coherent unit are essentially

averaged out as the number of phase-coherent units is increased.

Using (2.18), the weak localisation correction given by (2.26), can be expressed
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in terms of τϕ and τ ,

σq = σcl −
e2

2πh
log(τϕ/2τ). (2.27)

Given that τϕ is typically expected to have a power-law dependence on temper-

ature, τϕ ∝ Tα, it can be seen that the weak localisation correction should have

a logarithmic temperature dependence. In two dimensions it is expected that

electron-electron interactions result in τϕ ∝ T−1 [42].

As previously discussed, a magnetic field breaks the time reversal symmetry

that is needed for weak localisation. Hence for small magnetic fields one often

observes a decrease in resistance as the magnitude of the magnetic field increases.

Coherent back scattering is reduced. For larger magnetic fields this simple de-

scription no longer works and one needs to consider the quantum Hall effect,

see section 2.8.2. One can also observe weak anti-localisation. See [43] for the

magnetic field dependence of the weak localisation correction, applicable to both

weak localisation and weak anti-localisation. In the case of weak anti-localisation,

quantum interference leads to a reduction in back scattering and a magnetic field

thus increases resistance. This can be observed in materials with strong spin-orbit

coupling. See [44,45] for experimental demonstrations.

The temperature dependence of the weak localisation correction is similar

to another correction term, namely the Altshuler-Aronov (AA) correction [46].

This correction is due to the combination of disorder and the electron-electron

interaction. Spatial charge fluctuations due to the electrons themselves, induced

by disorder, are further sources of scattering. The correction takes the form

σAA ≈ − e2

πh
log(h̄/τkBT ). (2.28)

Differentiating between the AA correction and the weak localisation correction

is difficult using only a sample’s temperature dependence, as they have similar
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forms. However, the AA correction is relatively insensitive to low magnetic fields,

unlike the weak localisation correction. This is due to weak localisation being

dependent on time reversal symmetry.

Finally the conductance of a ring with magnetic flux through its centre is

considered; both the Aharonov-Bohm effect [47, 48] and the Altshuler-Aronov-

Spivak (AAS) effect [49] are discussed. If there is little disorder within the ring

and the mean free path is of similar magnitude or larger than that of the ring,

the transport can be considered ballistic. If the phase coherence length also meets

this criteria, then oscillations in conductance as flux through the ring is varied

will be observed. Paths going opposite ways around the ring interfere. The

magnetic vector potential affects the phases of the interfering paths. The flux

period will be h/e. This is known as the Aharonov-Bohm effect. The effect can

be used to measure phase coherence lengths. See [50] for an example concerning

the temperature dependence of the phase coherence length and [51,52] for similar

measurements utilising weak localisation. Note that the ring does not have to be

on the expected classical current path to observe the oscillations, see [53] for an

experimental example of this. If however the transport is no longer ballistic, but

still phase coherent, one can observe oscillations of period h/2e. Conduction is

diffusive and it is instead paths that go all the way around the ring which interfere,

which halves the flux period. This is the AAS effect.

2.4 Mott Insulators

In 1937 de Boer and Verwey discovered that numerous transition metal oxides,

such as NiO, disagree with the predictions of band theory. The materials were

experimentally found to be insulators, but were predicted to have partially filled

valence bands and should therefore, by the logic of band theory, be metallic [54].

Mott proposed that the disagreement between theory and reality was due to



2.4. MOTT INSULATORS 33

electron-electron interactions [55]. A Mott insulator is a material that band the-

ory would predict as being a conductor, but electron-electron interactions result

in it being an insulator. Mott insulators are not reliant on disorder. A classic

example of a Mott insulator is the Hubbard model [56]. In this model, electrons

can hop between neighbouring sites but an energy penalty must be paid if two

electrons occupy the same site, due to Coulomb repulsion. The Hamiltonian is,

Ĥ = −t
∑

<i,j>,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑. (2.29)

Here the first sum is over nearest-neighbour sites, t parameterises the hopping, U

is the energy cost to have two electrons occupy the same site, ĉ†i,σ is the creation

operator for spin σ on site i and n̂i,σ = ĉ†i,σ ĉi,σ. If U = 0 this is simply a tight

binding model, which is a simple to solve single particle Hamiltonian. In this case,

if there are N sites which are regularly spaced in one dimension with spacing a,

the eigenstates are

|ψk⟩ =
1√
N

∑
n

exp(ikna) |n⟩ . (2.30)

Here spin has been ignored, |n⟩ is the state associated with site n and the

wavenumber, k, is such that k ∈ [−π/a, π/a) and is quantised in units of 2π/aN

when periodic boundary conditions are imposed. There are thus N solutions.

They have energies

E(k) = −2t cos(ka). (2.31)

The resultant band has bandwidth 4t. Unless this single band is completely filled,

the system will be metallic.

When U is finite, the problem is no longer a trivial single particle problem.

Without offering a many-body solution, it is still instructive to consider what

properties the dispersion relation of the many-body eigenstates will have. In-
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cluding spin, there will be 2N many-body eigenstates. If there are N electrons

in the system, all with same spin, one can imagine filling up all states of the

aforementioned spinless tight binding Hamiltonian. This corresponds to having

one electron per site. If one wanted to add an additional electron, of opposite

spin to the N electrons in the system, it would cost energy U even if the energy

associated with its wavenumber was as low as possible. This energy is measured

relative to the bottom of the first fully occupied band. Given the bandwidth of

the first fully occupied band is 4t, if U > 4t the system will be gapped. Two

bands, known as Hubbard bands, are formed. In this case, if there is one electron

per site, the system will be an insulator. This would not have been predicted

by band theory and is a result of electron-electron repulsion. This is the essence

of a Mott insulator. In d dimensions the requirement becomes U > 4dt, as the

bandwidth in d dimensions is 4dt. Note that a Mott insulator is not many-body

localised as it will have non zero conductivity at any finite temperature due to

excited states within the upper Hubbard band.

2.5 Single-Particle Localisation

The discussion of section 2.2, regarding diffusive metallic conduction, considered

the situation in which l ≫ λF . This allows one to consider that electrons travel as

free particles between scattering events, leading to the discussed diffusive trans-

port. In this section, much greater levels of disorder are considered meaning that

this is no longer the case. The previously discussed Ioffe-Regel criterion essentially

states that when l ≈ λF , the disorder is large enough to form localised states at

the Fermi level. These states are fundamentally different from the extended plane

wave states previously discussed. The natural starting point for a discussion of

such a system is Anderson’s seminal 1958 work [1].



2.5. SINGLE-PARTICLE LOCALISATION 35

2.5.1 1958 Anderson Result

In 1958 Anderson considered the following single particle Hamiltonian which mod-

els the superposition of disorder onto on a perfect crystalline lattice,

Ĥ =
∑
i

Eiĉ
†
i ĉi − t

∑
<i,j>

ĉ†i ĉj. (2.32)

Here < i, j > denotes nearest neighbour sites, t is the hopping integral between

these nearest neighbours and ĉi
† is the fermion creation operator for site i. Dis-

order is incorporated by asserting that the Ei values are uniformly distributed

between −W and +W . This is essentially a tight binding Hamiltonian but with

the addition of disorder.

In one and two dimensions, any finite value of W results in all eigenstates

being localised. Thus arbitrary disorder is enough to prevent the existence of any

extended states. An example of such a localied state in two dimensions, itself the

result of solving (2.32) numerically, is shown in Fig. 2.3. The wavefunction of

a localised state decays exponentially with distance from its centre. The rate of

decay is 1/ξ, where ξ is known as the localisation length and ultimately charac-

terises the spatial extent of the state. However, due to finite sample size, localised

states can appear extended. This is the case if ξ > L, where L is sample size.

Furthermore, if ξ > lϕ states will again appear extended. Phase coherence, as

with weak localisation, is necessary to form localised states. If phase coherence is

not preserved over the localisation length, Anderson localisation will break down.

Due to the temperature dependence of electron-electron scattering and phonon

scattering rates, this is a finite temperature effect. At zero temperature, phase

coherence length diverges. Both finite sample size and finite temperature effects

explain the existence of two-dimensional metallic systems.
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Figure 2.3: Two-dimensional numerical solution of Anderson’s model, (2.32),
demonstrating a localised state.

The situation is qualitatively different in three dimensions. Not all eigenstates

are localised under the influence of arbitrary disorder. In other words, a small

degree of disorder will not prevent the existence of extended states. With respect

to the Anderson Hamiltonian (2.32), the value of γ = t/W can be used to quantify

this statement. On a Bethe lattice, equivalent to an infinite regular Cayley tree,

with branching number K the critical value,

γc =
1

K logK
(2.33)

determines if all states are localised or not. For γ < γc all eigenstates are indeed

localised [57]. A cubic lattice in three dimensions can be approximated as a Bethe

lattice with K = 6.

Extended states and localised states cannot share the same eigenvalues [58].

Otherwise, any perturbation in the disorder potential will hybridise the states
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formerly of the same energy, leading to them all becoming extended. There would

then be no localised states. The boundary, in energy, between the two is known as

a mobility edge [10]. Localised states exist in band tails [59]. Figure 2.4 depicts the

density of states of a band tail, with the mobility edge labelled. If the Fermi level

is below the mobility edge, transport is no longer metallic. In two dimensions, due

to finite temperature, a quasi mobility edge exists. This separates localised states

and states that, as previously discussed, appear extended and support metallic

transport.

Figure 2.4: Density of states within a disordered materal. The energy at which
states become extended is known as the mobility edge. In two dimensions a quasi
mobility edge exists due to finite temperature or finite sample size effects.

There are numerous methods that can be used to differentiate between lo-

calised and extended states. One such method involves the spectral statistics of

the eigenenergies [60]. The normalised energy level spacings are defined as

si =
Ei − Ei−1

⟨Ei − Ei−1⟩
, (2.34)

where the Ei values are the ordered eigenenergies. The si values exhibit a Poisson

distribution if the eigenstates are localised. Due to the finite spatial distibution of

localised states and resultant lack of energy level repulsion, there is no correlation
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between neighbouring Ei values. The maximum of the probability density func-

tion, P (s), is therefore found at s = 0. However, if the eigenstates are extended,

due to energy level repulsion, P (0) = 0 and the si values are Wigner-Dyson

distributed [61]. A second method involves the spatial distribution of the eigen-

states [62]. If |n⟩ denotes the site associated with the nth lattice site, the inverse

participation ratio (IPR) of a general state
∑

n cn |n⟩ is defined as

I =
∑
n

|cn|4. (2.35)

For a system of N lattice sites, 1/N ≤ I ≤ 1. A fully localised state has I = 1,

whereas I = 1/N corresponds to an extended state which has spatially uniform

probability density. A general extended state has I = O(1/N). The IPR can thus

be used to differentiate between localised and extended states.

2.5.2 Scaling Theory of Localisation

In 1979 the so-called ‘Gang of Four’ proposed a scaling theory of localisation.

As with Anderson’s earlier work, they concluded that arbitrary disorder in both

one and two dimensions results in all states being localised [8]. The fundamental

assumption upon which their work lies, is that the conductance of a sample, g,

can be expressed purely as a function of the sample’s conductance on a smaller

length scale. That is to say

g(2dLd) = f
[
g(Ld)

]
, (2.36)

where L is sample size and d is dimensionality. Here g = (h/e2)/R denotes

dimensionless conductance, where R is resistance. To provide necessary context

underlying this reasoning, work by Thouless which considered the possibility of a

maximum metallic resistance of a thin wire [63], is first discussed.
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Consider a wire of length L and cross sectional area A. Assuming the wire is

metallic, meaning states are extended and conduction is thus diffusive, conduc-

tivity has the form

σ = e2DN, (2.37)

where D is the diffusion constant and N is the density of states per unit volume,

as discussed in section 2.3. The time taken to diffuse through the wire is given by

L2/D and the associated energy uncertainty is thus,

ϵ =
h̄D

L2
. (2.38)

If R = L/σA is the resistance of the wire,

ϵ =
h̄σ

L2e2N
=

h̄

Re2LAN
. (2.39)

The average spacing between energy levels at the Fermi level, ∆ = 1/LAN , can

be used to rewrite this as,

ϵ =
h

Re2
∆. (2.40)

Consider joining two of these wires, resulting in the wire length doubling. If the

energy uncertainty, ϵ, is greater than the level spacing, ∆, the difference in energies

between states in the first wire and the states in the second wire are not resolved

with respect to the energy uncertainty of the electrons. Electrons will continue

to be able to diffuse through the wire. Whereas if the energy uncertainty is less

than the level spacing, this will not be the case. The ratio of the two energies is

simply the dimensionless conductance of the first wire,

g =
ϵ

∆
=

h

Re2
. (2.41)
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If g > 1, diffusive conduction is expected meaning extended states at the Fermi

level. Whereas if g < 1 the opposite is true, meaning localised states. This

results in the, perhaps surprising, conclusion that for a one dimensional wire,

its resistance can simply determine whether or not the states at the Fermi level

are localised or not. Furthermore, the maximum metallic resistance, using this

reasoning, is R = e2/h. This analysis, of course, lacks rigour, but it is expected to

be indicative of what is happening with states at the Fermi level when g ≪ 1 or

g ≫ 1. Furthermore, it provides the motivation for (2.36) which asserts that the

conductance of a sample of size 2L depends only on the conductance of a sample

with size L, generalised to d dimensions. It follows from (2.36) that the change in

g with L can be expressed via a dimensionless scaling function which itself only

depends only on g,

d log g

d logL
= β(g). (2.42)

Assuming extended states and Ohm’s law for large conductances, g = (h/e2)σLd−2,

results in

lim
g→∞

β(g) = d− 2. (2.43)

Likewise, assuming transport via localised states at low conductances, g = Ce−αL,

results in

lim
g→0

β(g) = log g − logC. (2.44)

Based on these limits, Fig. 2.5 displays plots of β(g) against log(g). Crucially,

in one and two dimensions, β(g) is always less than zero. Using (2.42), it can be

seen that the system will always flow towards localised behaviour. As the amount

of disorder has not been specified, the conclusion is that arbitrary disorder will

cause localisation. This is not the case in three dimensions. If β(g) is greater than

zero, this will stay the case and conductance will always increase as sample size
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increases. Extended states will be present. Arbitrary disorder does therefore not

necessarily cause localisation in three dimensions. It should also be noted that the

assumption of a one parameter scaling function, β(g), is controversial. See [64]

for experimental work arguing against it.

Figure 2.5: Plot of β(g) against log g. The high and low limits of g were used to
find the limits of β(g).

2.6 Finite Temperature Effects

The effect of a finite temperature typically decreases the strength of quantum

interference, due to phase breaking scattering events [65]. This can reduce weak

localisation and even prevent the formation of Anderson localised states, as dis-

cussed in sections 2.3 and 2.5 respectively. Additionally, as shall be discussed

in this section, finite temperature effects result in a finite conductivity while the

Fermi level resides within localised states. The two most common mechanisms,

and the two which are studied within this thesis, are transport via activation

to a mobility edge and via hopping between localised sites. These mechanisms,
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and how they can be detected via their different conductivity temperature depen-

dences, are discussed within this section.

2.6.1 Activation to a Mobility Edge

When the Fermi level is below a mobility edge, conduction can occur via activation

from the Fermi level to the extended states above the mobility edge. The expected

form of the conductivity is thus Arrhenius,

σ = σ0 exp

(
−T0
T

)
. (2.45)

In this instance, T0 = (Eµ − EF )/kB, where Eµ is the mobility edge energy and

EF is the Fermi energy. See [13–16, 25, 26] for experimental examples of such

behaviour in silicon inversion layers and Ge-Sn quantum wells . The value of σ0

has been predicted to take on a universal value known as the minimum metallic

conductivity, the reasoning being that conduction is taking place just above a

mobility edge. Here the conductivity is necessarily metallic, but the extended

states hosting the transport are on the boundary of a metal insulator transition.

Hence the concept of a minimum metallic conductivity. The Ioffe-Regel condition

can be used to predict the value of σ0. As previously discussed in section 2.2,

the condition states that a metal-insulator transition is expected when kF l ≈ 1.

Inserting this approximation into the diffusive conductivity expression, (2.11),

results in a two-dimensional minimum metallic conductivity of σ0 ≈ e2/h. Mott

predicted a minimum metallic conductivity of σ0 = 0.7e2/h [66]. The value of σ0

should not be affected by movement of the Fermi level, assuming it stays below

the mobility edge. This is due to σ0 being purely dependent on the states above

the mobility edge. See [14, 25, 26] for examples of this, in which gate voltages

are used to manipulate the Fermi level and σ0 remains constant. The measured
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values of σ0 in these works are close to Mott’s predicted value.

If the mechanism of transport is via activation to a mobility edge, it is an-

ticipated that the carrier density of the sample should also have an Arrhenius

temperature dependence. Assuming the temperature dependence of the conduc-

tivity of the states above the mobility edge is negligible in comparison, the carrier

density should have the same characteristic temperature as the conductivity. That

is, the carrier density takes the form,

n(T ) = n0 exp

(
−T0
T

)
(2.46)

where n0 is a function of the density of states above the mobility edge. Using

(2.45) and (2.46), the mobility, given by µ = σ/ne, will simply be a temperature

independent constant, σ0/n0e. However, an Arrhenius carrier density, in which

carriers are activated to a mobility edge, has never been reported in the literature.

If it was observed, it would be strong evidence in support of the conduction via

activation to the mobility edge model. Ignoring issues related to the finite lifetime

at the mobility edge, an Arrhenius carrier density is a necessity of the model. In

this work, such behaviour has been observed and will be presented in chapter 6.

Carrier density is typically measured via the Hall effect. See section 2.8 for a

simple description of the effect. There are many instances of temperature depen-

dent Hall measurements being made, in order to investigate activated transport,

dating back to the 1960s. Instead of an activated carrier density, a temperature

independent carrier density and an activated mobility have consistently been re-

ported. See [13–16]. This is not compatible with the activation to mobility edge

model. The physical picture behind this is not clear and an accepted model de-

scribing this effect does not exist. A viscous liquid model was proposed in [67].

In this model, carriers are strongly correlated and groups of them move as one
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between differing configurations. The potential energy barriers between such con-

figurations is responsible for the activated conduction. Not all carriers move at

the same time, but the carriers as a whole are considered as being a viscous fluid

which can transmit pressure. The Lorentz force acting on a group of instanta-

neously moving carriers is thus transmitted to the whole of the fluid, meaning it

is spread between all carriers. The resultant Hall voltage is thus what it would

be if all carriers were moving at the same velocity independently of each other.

Such a Hall voltage is independent of temperature, leading to a temperature inde-

pendent carrier density. This, combined with the activated conductivity, leads to

an activated mobility being measured. However, the model is essentially classical

and fails to account for interference effects.

2.6.2 Nearest Neighbour Hopping

Unlike conduction via activation to a mobility edge, in which transport takes

place in extended states, conduction can also occur via localised states. Such

transport is referred to as hopping; carriers are said to hop between localised

states. Hopping is typically considered to be phonon-assisted. That is, each hop

is associated with the emission, or absorption, of a phonon. However, as shall be

discussed, hopping can also take place due to the electron-electron interaction. In

either case, as with activation to a mobility edge, hopping is a finite temperature

effect.

Miller and Abrahams calculated transition rates of electron hops using the

deformation potential approximation of the electron-phonon interaction. Under

this approximation, the energy change of a given localised site varies linearly with

the strain, due to phonons, at that site [68]. The rate at which an electron hops
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from an occupied site i to an unoccupied site j was shown to be,

Γij =


λ0 exp

(
− 2Rij/ξ − (Ej − Ei)/kBT

)
for Ej > Ei

λ0 exp(−2Rij/ξ) for Ei > Ej,

(2.47)

where Rij is the distance between sites i and j, Ei is the energy of site i and λ0

is a constant that depends on the phonon system. For Ej > Ei, the exponent

contains both a distance term and an energy difference term. The distance term is

related to the overlap of two localised sites which have localisation length ξ. The

factor of two is due to taking the square of the matrix element when considering

the electron-phonon interaction as a perturbation. It can be shown that (2.47) is

applicable in general, regardless of the hopping mechanism, be it electron-phonon

or electron-electron interactions. See appendix C and [69]. At high temperatures

the upward energy jumps, meaning Ej > Ei, are dominated by the distance term,

−2Rij/ξ. In this case, smaller distances are greatly favoured and hops predom-

inately occur between nearest-neighbour sites. Considering only these hops, the

distance term is then effectively a constant and can be absorbed into the prefactor

of the exponent. This leads to a nearest-neighbour hopping conductivity

σNN = σ0 exp(−T0/T ) (2.48)

where σ0 is the prefactor of the conductivity and T0 = kBENN is a characteris-

tic temperature where ENN is the energy difference between nearest neighbour

sites. Like activation to a mobility edge, nearest neighbour hopping results in an

Arrhenius conductivity. See [28, 70] for experimental examples. How the form of

the hopping conductivity varies with both temperature and the electron-electron

interaction will now be discussed.
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2.6.3 Mott Variable Range Hopping

Mott considered hopping at temperatures lower than the nearest-neighbour regime.

At such temperatures, hopping will be less likely to occur via nearest-neighbour

sites. Hops between sites separated by greater distances and, crucially, smaller

energies will be favoured. The result is known as Mott variable range hopping [9].

Mott’s original analysis involved maximising the rates given by (2.47). This can

be done by simply minimising the argument of the exponent. Before doing so,

the distance covered by a hop must be related to the energy jump of a hop. In

d dimensions the distance between localised states within an energy interval ϵ

around the Fermi level is given by

r ≈
(∫ EF+ϵ

EF

N(E)dE

)−1/d

. (2.49)

Assuming a constant density of states,

r ≈ (Nϵ)−1/d . (2.50)

As hopping takes places around the Fermi level, a hop between sites separated

by energy ϵ will be separated spatially by approximately the distance given by

(2.50). Using (2.47), the hopping rate between two sites separated by a distance

r is thus

Γr = λ0 exp

[
− 2r/ξ − 1/(rdNkBT )

]
. (2.51)

Only upward energy jumps have been considered as only their rates vary with

temperature and thus only they will affect the temperature dependence of the

hopping conductivity. Maximising the rate with respect to r results in an optimal
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hopping distance of

rV RH = ξ

(
d

2NξdkBT

) 1
d+1

. (2.52)

Due to the exponential term, the reasonable assumption is made that hops over

this distance dominate the transport. The conductivity can therefore be expressed

as

σV RH = σ0 exp
[
− (T0/T )

1
d+1

]
. (2.53)

Here T0 is a characteristic temperature. A more rigorous analysis using percolation

theory is given in [69], see appendix C. This results in T0 = αd/NkBξ
d, where αd

is a dimensional dependent constant. A Monte Carlo procedure was used to find

α2 = 13 in [71]. Regardless, the extra rigour does not change the general form of

the conductivity temperature dependence. Unlike nearest-neighbour hopping and

activation to a mobility edge, the transport is not Arrhenius. Thus, by measuring

a given material’s conductivity temperature dependence, variable range hopping

can be detected straightforwardly.

Note that as temperature increases the variable range hopping distance de-

creases, see (2.52). The transition to nearest neighbour hopping will occur when

rV RH ≈ rNN , due to the impossibility of rV RH < rNN . See [27, 28] for an exam-

ple of a transition between the two regimes. As anticipated, the variable range

regime occurs at lower temperatures. The effect of electron-electron interactions

on hopping transport will be discussed next.

2.6.4 Efros-Shklovskii Hopping

When discussing Mott variable range hopping, a central assumption is that the

density of states is constant around the Fermi level. Efros and Shklovskii consid-

ered electron-electron interactions and argued that this is not the case [72]. They

argue that the density of states is zero at Fermi level, N(EF ) = 0. This is known
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as the Coulomb gap and results in a modification to the temperature dependence

of variable range hopping transport.

The Coulomb gap was first considered by Pollak [73], with Efros and Shklovskii

determining its form. Before considering the quantitative form of the Coulomb

gap, a qualitative argument, from [74], justifying its existence is first given. Con-

sider adding an electron to a system of localised electrons in their ground state.

Prior to the addition the Fermi level is EF . Let the electron be added at posi-

tion x. No matter where the electron is inserted it will interact with all of the

electrons within the system. To achieve the new ground state, some of the other

electrons must move in order to minimise this additional Coulomb energy. The

energy saving associated with rearrangement is denoted W (x). This new ground

state’s Fermi level is equal to or infinitesimally greater than EF . Before relaxation

to this new ground state, the additional electron must have been added at energy

W (x) > 0 above the Fermi level. No matter where the electron is inserted, it can

never be inserted at the Fermi level. The density of states, therefore, at the Fermi

level must be zero.

To find the form of N(E), the argument is made quantitative. To add an elec-

tron at site j to the ground state of a system of localised electrons, the additional

energy will be

Mj = Ej +
∑
j ̸=k

c

Rjk

. (2.54)

Here Ej is the site energy ignoring Coulomb energy, k are the indices of already

occupied sites and c = e2/4πκϵ0, where κ is the dielectric constant. The Mj

values are the effective single particle energy levels, considering Coulomb energy.

If, instead of adding an electron, an electron is transferred from site i below the

Fermi level to an unoccupied site above the Fermi level, site j, the change in
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system energy will be

Mj −Mi −
c

Rij

> 0. (2.55)

This inequality will hold for all states where i is below the Fermi level and j is

above. Efros and Shklovskii argued that Mj −Mi ≈ c
Rij

. If not, either (2.55)

is violated or it is trivially satisfied. By trivially it is meant that the Coulomb

energy is negligible and the whole analysis is unnecessary. The distance between

two states, separated by energy ϵ around the Fermi level, therefore satisfies

r ∝ 1/ϵ. (2.56)

Using (2.49) it therefore follows that

(∫ EF+ϵ

EF

N(E)dE

)−1/d

∝ 1/ϵ. (2.57)

In turn this leads to

N(EF + ϵ) ∝ |ϵ|d−1. (2.58)

This is true for d > 1. The dependence is logarithmic for d = 1. As anticipated,

N(EF ) = 0. Note that the Coulomb gap is a soft gap. The density of states is

finite at all values except the Fermi energy.

Mott’s original analysis can now be applied again, using this modified density

of states. The equivalent of (2.51) is now

Γr = λ0 exp

(
− 2r/ξ − c/(rkBT )

)
. (2.59)

Maximising this rate, in an analagous fashion to the previous variable range hop-
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ping analysis, results in an Efros-Shklovskii conductivity of

σES = σ0 exp
[
− (T0/T )

1
2

]
. (2.60)

Using percolation theory the same temperature dependence is found. Such an

analysis results in T0 = βde
2/4πκϵ0ξkB, where β2 ≈ 6 [69, 75]. Significantly, the

temperature dependence of Efros-Shklovskii hopping is independent of dimension.

Furthermore, in two and three dimensions, conductivity temperature dependences

can be used to straightforwardly differentiate between Mott variable range hop-

ping and Efros-Shklovskii hopping.

In [11] such temperature dependences were used to observe transitions from

Mott variable range hopping to Efros-Shklovskii hopping as both temperature

and carrier density were varied. Due to the sharpening of the Fermi surface, lower

temperatures favoured Efros-Shklovskii hopping. Likewise, as carrier density was

decreased Efros-Shklovskii hopping was again favoured. Significantly, the pre-

factors of the conductivity were quantised. In the MVRH regime σ0 = 2e2/h and

in the ES regime σ0 = e2h. It was suggested that the factor of two difference

could be due to spin, whereby in the ES regime the spin degeneracy is lost. The

conductivity pre-factor of phonon-assisted hopping is expected to be material

dependent and is certainly not predicted to take on a quantised value. The authors

suggested that this highly unexpected, and as yet unexplained, behaviour could

provide evidence of phononless hopping. Note that in a similar work, [12], the

pre-factor within the ES regime took on multiple quantised values. As carrier

density was increased the conductivity pre-factor, starting at e2/h, increased in

units of 2e2/h.

Finally, see [70] for a transition from nearest neighbour hopping to ES hopping

as temperature is decreased. As expected, the ES regime occurs at the lower tem-
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peratures when hops of distances greater than those between nearest neighbours

are favoured.

2.7 Many-Body Localisation

Many body localised systems are systems which fail to thermalise, that is they

fail to reach thermal equilibrium. Anderson himself, in his seminal 1958 paper [1],

noted that in a localised system there is no path to equilibrium. The concept of

temperature thus breaks down within a many-body localised system. They are

also characterised by having zero conductivity at finite temperature. In this sense,

they can be considered perfect insulators. Many-body localisation (MBL) can be

thought of as the many-body generalisation of the Anderson insulator. Instead

of having localisation in real space, one has localisation in the Fock space of the

many-body system [17]. See [76, 77] for reviews. This insulating state is funda-

mentally different to any other insulating state, due to it having zero conductivity

at finite temperature. The Mott insulator, for example, is a many-body insulator

but has finite conductivity at all finite temperatures. The implication, therefore,

is that it will thermalise at any finite temperature.

2.7.1 Eigenstate Thermalisation Hypothesis

What thermalisation means in a quantum system is not as obvious as in a clas-

sical system. In an isolated, ergodic and classical system one considers that the

system explores all possible available states. All states are regarded as having

equal occupation probability. Whether a state is accessible or not depends on a

small number of conserved quantities, such as energy and particle number. The

collection of these available states is known as the micro-canonical ensemble. The

time-averaged observable quantities of the system are thus the averages over this

ensemble. However if a quantum system, with Hamiltonian Ĥ, is prepared in an



2.7. MANY-BODY LOCALISATION 52

initial quantum state |ψ(0)⟩ =
∑

α cα |α⟩ its time evolution is deterministic,

|ψ(t)⟩ =
∑
α

cαe
−iEαt |α⟩ , (2.61)

where |α⟩ is an eigenstate of Ĥ with energy Eα. The probability of occupation

of an eigenstate |α⟩ is |cα|2 and is time invariant. To negate the effect of possi-

ble thermalisation time, one considers the infinite-time average of an observable

quantity with operator Â. This is equal to

lim
t→∞

1

t

∫ t

0

⟨ψ(t′)| Â |ψ(t′)⟩ dt′ =
∑
α

|cα|2 ⟨α| Â |α⟩ , (2.62)

as terms such as ei(Eβ−Eγ)t ⟨β| Â |γ⟩, where β ̸= γ, average to zero. The reasonable

assumption that the system is non-degenerate has been made. Thus such a quan-

tity is also time invariant. The observable quantities of the system are dependent

on the initial state of the system. This is apparently at odds with the classical

view of thermalisation, whereby, given a small number of conserved quantities,

the initial state has no bearing on the state of the system given sufficient time

has passed.

The eigenstate thermalisation hypothesis (ETH) aims to resolve this quandary.

The term is due to Srednicki [78], building on work by Deutsch [79]. The ETH

essentially states that individual eigenstates have observable values equal to the

microcanonical ensemble value. That is,

⟨α| Â |α⟩ = A(Eα), (2.63)

where A(E) is the microcanonical ensemble value of the observable A associated

with energy E. It is a requirement of the ETH that A(E) is a smoothly varying
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function of energy. Thus, provided that the initial state of the system is made up of

a linear superposition of energy eigenstates which are sufficiently close in energy,

observables of the system will evolve in time to their microcanonical expected

values. Note that the ETH also contains conditions related to the off-diagonal

matrix values, Aβγ = ⟨β| Â |γ⟩, which are necessary if one wishes to consider

fluctuations and times other than infinite time, [80]. In a many-body localised

system, eigenstates break the ETH. In such a system, local pertubations result

only in local effects.

2.7.2 BAA Result

Aside from considering the effect on the single-particle density of states and the

resultant hopping transport, the discussion regarding disorder and resultant local-

isation has so far neglected electron-electron interactions. Their inclusion greatly

complicates the study of the now many-body system. In 2006 Basko, Aleiner and

Altshuler (BAA) considered such a problem [17]. They showed that for a system

of weakly interacting electrons, in the absence of coupling to an external bath,

with disorder such that the single particle eigenstates are localised, there exists

a finite temperature, TMBL, below which the DC conductivity vanishes. More-

over, they also showed that there is finite temperature for which conduction is

finite, implying a finite temperature metal-insulator transition. They described

the system below TMBL as being Anderson localised in the many-body Fock space.

To justify this, they used perturbation theory to show that the probability of a

finite escape rate from a given many-body state is zero. Such a system does not

thermalise and is considered many-body localised. When coupling to an exter-

nal bath is added the conductivity becomes non-zero below TMBL. The presence

of phonons is thus a major obstacle in searching for experimental realisations of

many-body localisation in an electronic system.
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2.7.3 Experimental Manifestations

MBL has been reported in ultracold atomic systems, [18, 19]. In both of these

works, an optical trap was used to create a periodic lattice. A disordered potential

was superimposed on top of this lattice. Using another periodic lattice, of twice

the period of the first, the initial state of the many body system was prepared.

This was done so that, initially, the atoms occupied every other lattice site of the

first periodic lattice. After removing the second periodic lattice, the system was

then allowed to evolve. If the disorder was high enough, the system was shown to

fail to thermalise. This was done by demonstrating that after sufficient time, there

was still an imbalance in occupation of initially occupied and initially unoccupied

sites. When disorder was reduced, the imbalance was lost.

MBL is yet to be observed in an electronic system. As previously discussed,

the dominant obstacle is that of phonons, which act as an external bath. Ulti-

mately, they will thermalise the system and destroy the MBL phase. As cooling to

absolute zero is not possible, phonons can never be completely removed from an

experimental system. The phonon induced conductivity will thus be finite below

TMBL. However, according to [20], a qualitative signature of the metal-insulator

transition can still be identified. Specifically, under application of certain electric

fields, two electron temperatures will be stable. This manifests itself as an S-

shaped current-voltage characteristic which exhibits hysteretic and discontinous

jumps in current when voltage is swept across across the bistable region.

Following the analysis of [20] one can make a self consistent estimate of the

electron temperature, Tel, by using

kB(Tel − Tph) ≈ eELph(Tel), (2.64)
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and

Lph(Tel)
2 = D(Tel)τph(Tel). (2.65)

Here Tph is the phonon temperature and E is the applied electric field. D(Tel)

is the electron diffusion constant, τph(Tel) is the time taken for an electron to

emit a phonon and Lph(Tel) is the distance travelled in this time. These three

quantities are all functions of the electron temperature. The justification for (2.64)

is that the difference in electron and phonon temperatures must be balanced by

the energy gained from the field between phonon emissions; (2.65) simply states

that the mean square of diffusion length is proportional to diffusion time. Figure

2.6, reproduced from [20], shows plots of Lph against Tel, at constant Tph. The

dotted line is simply due to (2.64) and the continuous lines are possible variations

of Lph, given different electron-phonon coupling strengths. At the lowest values

of Tel, Lph is large due to variable range hopping dominating the transport. It

then decreases greatly, as hopping becomes between nearest neighbour sites. As

temperature further increases, Lph increases towards a metallic value. Following

this, it then decreases due to the higher number of phonon emission events. The

lower the phonon coupling strength, the higher the resultant local maximum in

Lph is. As can be seen in Fig. 2.6, for high electron-phonon coupling strengths,

there will only be one possible self-consistent value of Tel, which is very close in

value to Tph. However, as the coupling reduces, two further solutions become

possible. Only the larger of these two new solutions is stable. If the system finds

itself in this state, the electrons can be considered decoupled from the phonon

bath.

Another way of deriving the same effect involves an overheating model in which
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Figure 2.6: Self consistent Tel reproduced from [20]. The three blue lines are due
to three different electron-phonon coupling strengths.

the power dissipated by a sample when applying a DC bias is considered [21],

V 2

R(Tel)
=

ε(Tel)

τph(Tel)
− ε(Tph)

τph(Tph)
. (2.66)

Here V is the applied bias, R(Tel) is the resistance of the sample and ε(Tel) is

the temperature dependent part of the electron system energy. This is a phe-

nomenological equation which is motivated by the fact that the power is zero

when the electron system is in thermal equilibrium with the phonon bath and it

prevents the electron system being cooled below the phonon temperature. It can

be shown, [21, 22], that both ε and τph are power law dependent on Tel resulting

in,

V 2

R(Tel)
= ΓΩ(T β

el − T β
ph), (2.67)

where Γ is the electron-phonon coupling strength and Ω is the area of the sample.

Typically, β is expected to be close to five in two dimensions [22]. It has been

assumed that the non-linearity in a given sample’s current response is explained

purely by the increase in electron temperature. Note that a heat balance equation
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of the form (2.67) can also be derived due to contact cooling using the Wiede-

mann–Franz law, in this case β = 2. Given a temperature dependence of the

form

R(Tel) = R0 exp[(T0/Tel)
γ], (2.68)

the applied bias can be expressed as

V 2 = R0ΓΩ(T
β
el − T β

ph) exp[(T0/Tel)
γ]. (2.69)

While the right hand side of (2.69) is a monotonic function of Tel there will only

be one possible solution for Tel for any given bias. However when the right hand

side becomes non-monotonic in Tel, there will exist a range of bias values for

which there are three possible solutions for Tel. Whether or not this region exists

depends on Tph. To find the critical phonon temperature, T c
ph, below which there

exists a bistability, the derivitive with respect to Tel of the right hand side of

(2.69) is set to zero. The largest Tph value for which this is possible is T c
ph. For

particular values of β, γ and T0 it follows that

T c
ph = T0

(
1 +

β

γ

)−( 1
γ
+ 1

β
)

. (2.70)

Figure 2.7 depicts this analysis. In Fig. 2.7a the right hand side of (2.69) is plotted

against Tel for various values of Tph. The parameters used are γ = 1, T0 = 10 K,

β = 5 and R0ΓΩ = 1 V2K−5. When Tph > T c
ph there is only one solution for Tel

for any given bias. When Tph < T c
ph there are three. The unphysical branch which

has electron temperature decrease with an increase in bias voltage is not stable.

The Tph < T c
ph plot is also shown in 2.7b. Here the inaccessible region of electron

temperature is highlighted. Consider increasing the bias from zero. At a critical

bias, V ↑
c , the electron temperature will discontinuously and suddenly increase. Tel
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will jump from around to 1 K to around 3 K. Likewise, when decreasing the bias

back down to zero, the electron temperature will suddenly jump down in value at

V ↓
c . These critical voltages are marked in Fig. 2.7b. Note that the jumps occur

at different critical voltages and between different temperatures, depending on

sweep direction. Ultimately, if there exists a bistability, there exists a region of

experimentally inaccessible electron temperatures as well as hysteretic jumps in

electron temperature as bias is varied.

(a)
(b)

Figure 2.7: Solutions of the overheating model for γ = 1, T0 = 10 K, β = 5 and
R0ΓΩ = 1 V2K−5. a) Applied bias against electron temperature for three phonon
temperatures. Below the critical phonon temperature there exists a bias region in
which there are three electron temperature solutions. Only two are stable. The
unstable branch is dotted. b) The inaccessible values of electron temperature are
highlighted on a plot of bias against electron temperature. The critical bias values
are shown.

Figure 2.8a shows how T c
ph varies with γ and β, using (2.70). The ratio of T c

ph

to T0 is higher for Arrhenius resistivity dependences, compared to variable range

hopping and Efros-Shklovski hopping. Thus for a given T0, the bistability is more

experimentally accessible if conduction is Arrhenius. Figure 2.8b emphasises the

point that if the electron system is on the lower temperature solution branch,
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it is very close in temperature to the phonon bath. In this case the electron

system and phonons are considered coupled. The higher temperature branch is

at much higher temperature than that of the phonons, here the electrons are

considered decoupled from the phonons. The specific heat of the electron system

is assumed to be larger when decoupled from the phonon system, due to the

associated increase in electron temperature.

(a)
(b)

Figure 2.8: a) Critical phonon temperature against β for different values of γ,
using (2.70) b) Electron temperature against applied bias. How electron temper-
ature will exhibit jumps is evident. Unstable branches are dotted. Parameters
are the same as in Fig. 2.7, γ = 1, T0 = 10 K, β = 5 and R0ΓΩ = 1 V2K−5.

Note that, due to the electron temperature being pinned to the phonon tem-

perature within the sample contacts, there will be a non-uniform distribution of

electron temperature throughout the sample; electron temperature will be larger

further from the sample contacts. As a result of the exponential dependence

of sample resistivity on electron temperature, it is possible for the regions clos-

est to the contacts to dominate sample resistance. This can negatively impact

measurements which are designed to probe electron-phonon decoupling. Working

with large samples, in which the regions of low electron temperature are small
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compared to sample size, can help negate the impact of contact cooling.

Just as the electron temperature undergoes hysteretic jumps as applied bias

is swept, so does current. This is to be expected given that the resistance,

R(Tel), is a function of electron temperature. This can be explicitly seen by

using I = V/R(Tel) to numerically produce current-voltage characteristics. First,

(2.69) is used to produce bias values for given Tel values. The associated cur-

rent values are then produced by dividing these bias values by R(Tel), given by

(2.68). Figure 2.9 depicts such characteristics for various phonon temperatures.

The parameters used are γ = 1, T0 = 10 K, β = 5 and R0ΓΩ = 1 V2K−5. Figure

2.9a shows characteristics for phonon temperatures both above and below T c
ph.

Above this critical temperature the current is a well-behaved singe-valued func-

tion of bias voltage. At the critical temperature there exists a voltage for which

the derivative of current with respect to voltage diverges. Below the critical tem-

perature there exists a region of bias voltages for which there are three possible

current values. The highest and lowest values are stable; the branch of negative

differential resistance is not stable. Figure 2.9b shows only characteristics below

the critical phonon temperature. Arrows indicate the jumps in current that would

be experimentally observed when sweeping the bias voltage. When increasing the

bias, the jumps will be from low to high values of current and vice versa when

decreasing the bias. Note that the critical voltage, V ↓
c , at which the current jumps

down is largely independent of phonon temperature, whereas the critical voltage

at which the current jumps up, V ↑
c , is heavily dependent on phonon temperature.

As discussed, when the electron system is in the high current state its tempera-

ture is much greater than that of the phonon system. It thus makes sense that

the transition when leaving this state should be largely independent of phonon

temperature. However, when the system is in the low current state, the electron

temperature is very close to the phonon temperature. Thus it also makes sense
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(a) (b)

Figure 2.9: Current-voltage characteristics in the overheating model, γ = 1, T0 =
10 K, β = 5 and R0ΓΩ = 1 V2K−5. a) Three different phonon temperatures.
Unstable branches are dotted. b) Critical voltages are shown. In this case, unlike
a), all values of Tph are less than T c

ph.

that the transition out of this state should depend on phonon temperature. This

point is emphasised in Fig. 2.10 where critical bias voltages are plotted against

phonon temperature. The parameters used here are the same as in Fig. 2.9.

An example of such behaviour can be seen in [81]. Here superconducting

indium oxide films were induced into an insulating state using high magnetic fields.

Under such conditions the samples displayed large, hysteretic jumps in current as

bias voltage was swept. Unlike the down jump critical voltage, the up jump

critical voltage was dependent on lattice temperature. The overheating model,

(2.67), was successfully applied. The authors also utilised the same material to

present evidence of a possible finite temperature insulator [82]. Similar current

jumps can be seen in [83–85].
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Figure 2.10: Critical voltages against Tph/T
c
ph, γ = 1, T0 = 10 K, β = 5 and

R0ΓΩ = 1 V2K−5.

2.8 The Hall Effect

The Hall effect, discovered in 1879 [86], involves the generation of a Hall voltage

under application of a magnetic field. The Hall voltage, Vxy, is perpendicular to

both current, I, and applied magnetic field. The effect is commonly used to char-

acterise samples, in particular to determine carrier densities. In two dimensions,

it can be shown that the Hall resistance, Rxy = Vxy/I, is given by

Rxy =
B

ne
, (2.71)

where B is the magnetic field perpendicular to the plane of transport and n is the

two dimensional carrier density. A simple derivation involves the Drude model,

itself discussed in section 2.2, whereby all electrons move with mean drift velocity

v, so that the current is envW . Here W is the width of the sample, assuming

a simple Hall bar geometry. The classical Lorentz force on each electron is Bev.

The set up is demonstrated in Fig. 2.11. The argument goes that an equal and

opposite force is required to cancel the Lorentz force, which is perpendicular to



2.8. THE HALL EFFECT 63

current flow. An electric field of Bv in this direction, and thus a Hall voltage

of BvW , will do just this. Dividing the Hall voltage by the current, the Hall

resistance of (2.71) follows. One can then simply measure this resistance to find

the carrier density. Typically one measures the Hall resistance as a function of

field, with the slope being equal to the Hall coefficient,

RH =
1

ne
. (2.72)

The carrier density is then,

n =
1

eRH

, (2.73)

while the mobility, µ = σ/ne, is

µ = σRH . (2.74)

Figure 2.11: Schematic depicting the Hall effect.

2.8.1 Hopping and the Hall Effect

An accepted model describing the Hall effect in which the transport mechanism

is that of hopping does not exist. It is common for proposed models to assume

that hopping is a phase-coherent process. Such models consider the interfer-

ence between the various different paths, between localised sites. The change
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in phase acquired by a path due to the magnetic vector potential is central to

these models. It was Holstein who first introduced such ideas [87]. In [88], these

ideas were built on and a percolation approach was considered. In the case of

three dimensional Mott variable range hopping, meaning that conductivity has

the form σ = σ0 exp
[
−(T0/T )

1/4
]
, a Hall mobility of the same form was derived.

However the value of T0 was shown to be less than that of the conductivity, by

approximately a factor of three. In [89] a similar theoretical relationship between

the Hall mobility and conductivity was found. In this instance, Efros-Shklovski

hopping was considered, meaning σ = σ0 exp
[
−(T0/T )

1/2
]
. Here the value of T0

associated with the Hall mobility was altered by a factor of 0.09, when compared

to the conductivity T0. Also in this work, experimental results were compared

to the derived theory. A Ge/Si quantum dot array which demonstrated Efros-

Shklovski hopping was used. The experimental ratio of the two characteristic

temperatures was found to be T µ
0 /T

σ
0 = 0.31. Further experimental work, involv-

ing Efros-Shklovski hopping hosted in reduced graphene oxide, found a ratio of

0.49 [90]. In contrast, the Hall constant, RH = Rxy/B, is predicted to exhibit a

non-monotonic dependence on temperature in the Mott variable range hopping

regime in [91]. At high temperatures, RH ∼
√
T , while for low temperatures,

RH ∼ T exp(T0/T ). Experimental temperature dependences of RH were also con-

sidered and compared to the theory in [91]. However, the material used was doped

bulk ZnO. This meant that in addition to conduction via hopping, the transport

also included conduction within the conduction band. The case for the so-called

double sign anomaly has been argued by others. In this case, electrons can have

a positive Hall constant when hopping and holes can have negative [92].

It is important to note that all of the aforementioned works make the assump-

tion that hopping is a phase coherent process. The evidence in support of this

is, however, limited. See [93] for potential evidence in the Mott variable range
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hopping regime hosted in PbTe antidots. Specifically, Altshuler-Aronov-Spivak

(AAS) oscillations are claimed. It is therefore argued that phase is retained over

a considerable distance.

It can instead be assumed that hopping is an incoherent process. If this is done,

in the case of transport being via both hopping and activation to a mobility edge,

a compensated Hall effect is predicted. Carriers in extended states experience

a Lorentz force, while the magnetic field has negligible impact directly on the

localised carriers. This leads to a reduced Hall voltage, relative to purely extended

state transport, in order to compensate for the effect of the Hall voltage itself on

the localised carriers. A detailed discussion and experimental comparison is given

in [94]. The case of purely hopping transport is, however, not considered.

2.8.2 Integer Quantum Hall Effect

At higher magnetic fields, the classical treatment of the Hall effect presented at

the beginning of this section is no longer applicable and a quantum mechanical

treatment is necessary. The striking result is that the reciprocal of the Hall

resistance is quantised in units of e2/h. Furthermore, the longitudinal resistance

along the edge of the sample, Rxx, drops to zero. This is shown in Fig. 2.12. As

shall be discussed, disorder is crucial to the existence of the quantum Hall effect.

The first observation of the effect is presented in [24].

A derivation of the quantum Hall effect is now given. Aside from the magnetic

field, the electrons are initially considered as being in free space. Disorder, which

will prove crucial, will be added later. Spin is also initially ignored. Electron-

electron interactions will not be considered, but are discussed in appendix D,

which covers the fractional quantum Hall effect. The single particle Hamiltonian

is,

Ĥ =
1

2m
(p̂+ eA)2, (2.75)
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Figure 2.12: The integer quantum Hall effect.

where p̂ is the two-dimensional single particle momentum operator and A is the

magnetic vector potential. Electrons are constrained to the x-y plane, meaning

that the perpendicular magnetic field, B, is (0, 0, B). The Landau gauge is used,

meaning that

A = (0, Bx, 0). (2.76)

The Schrödinger equation in the position basis is therefore,

1

2m

[
− h̄2

∂2

∂x2
+ (−ih̄ ∂

∂y
+ eBx)2

]
ψ(x, y) = Eψ(x, y) (2.77)

where ψ(x, y) is the single electron wavefunction. Using a trial wavefunction

ψ(x, y) = exp(ikyy)ϕ(x) this can be written as

[
− h̄2

2m

∂2

∂x2
+
e2B2

2m
(
h̄ky
eB

+ x)2
]
ϕ(x) = Eϕ(x). (2.78)

This is just the Schrödinger equation for a one-dimensional simple harmonic os-

cillator centred on x = −h̄ky/eB with angular frequency ωB = eB/m. Letting

fky ,n(x) be the nth lowest energy wavefucntion of such a one dimensional oscilla-

tor, the wavefunctions and associated energies of the original Schrödinger equation
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(2.77) are

ψky ,n(x, y) = exp(ikyy)fky ,n(x) (2.79)

and

Eky ,n = h̄ωB(n+
1

2
) (2.80)

respectively. Note that the energies do not depend on ky. States which have

the same n are said to be in the same Landau level and, ignoring edge effects

for now, all have the same energy. Landau levels are separated by the cyclotron

energy, Ec = h̄eB/m. By considering a two-dimensional sample of length Lx

in the x direction and Ly in the y direction, the capacity of each Landau level

can be found. A state with a given ky will have its wavefunction centred on

x = −h̄ky/eB. Hence the upper and lower bounds on ky are ±eBLx/2h̄, else

states will be centred outside of the sample. The possible values of ky are evenly

spaced with separation of 2π/Ly. Thus the number of states in a given Landau

level is simply (eBLx/h̄)/(2π/Ly) = eBA/h. This is the magnetic flux through

the rectangle divided by the magnetic flux quanta.

Spin is now considered. This involves adding a Zeeman energy term to the

Hamiltonian. Each Landau level is simply split into two Landau levels, each with

the same number of states as the original. The number of states in a given Landau

level stays the same. The energy difference between two spin-split Landau levels

is the Zeeman energy, Ez.

The filling factor, ν, is defined as the number of electrons in the system divided

by the capacity of a single Landau level. Thus

ν =
nh

eB
, (2.81)

where n is the number of electrons per unit area. When ν is an integer, exactly ν
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Landau levels are fully occupied.

Edge effects are now considered. Recall that a state with wavevector ky will

have its wavefunction centred on x = −h̄ky/eB. The states centred on x values

near the edge of the sample have their energies increased as their effective one

dimensional potential is tightened as a result of their proximity to the edge. This

removes the degeneracy within a given Landau level and there will be an unusual

dispersion relation in ky, as shown in the schematic of Fig. 2.13a. The associated

velocity dependence, given by vy =
1
h̄

∂E(ky)

∂ky
, is shown in Fig. 2.13b. Note that one

could replace ky with ±x in both of these schematics, depending on the sign of B,

where x is the central point of each wave function in the x direction. There is a

clear chirality to the system. The wavefunctions on opposite sides of the sample

have velocities in opposing directions. This is only possible due to the lack of

time-reversal symmetry, as discussed in section 2.3.

(a) (b)

Figure 2.13: a) Schematic of a dispersion relation of a single Landau level, ignoring
disorder but including edge effects. b) Velocity in the y direction, given the
dispersion relation of a). In both a) and b), ky is interchangeable with x.

The states considered so far have all been extended states. They are plane

wave states in the y direction and extend along the length of the sample. With

disorder added to the system, many of these states will become localised around
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local maxima or minima of the random potential. The extended states at the

edges of the sample, known as edge states, will in the main remain extended due

to the local potential associated with the sample edge dominating the disorder

potential. The large number of these localised states will, crucially, pin the Fermi

level between Landau levels meaning that almost regardless of filling factor the

Fermi level should be within the edge states. The density of states of the quantum

Hall system is shown in Fig. 2.14. The Zeeman energy and cyclotron energy

splittings are shown. Edge states are not shown.

Figure 2.14: Landau level density of states. Cyclotron energy, Ec, and Zeeman
energy, Ez, are labelled. The Fermi level, EF , for different filling factors, ν, is also
shown. Edge states are not shown.

Consider a current flowing along the sample edge in the y direction. If the

Fermi level is between two Landau levels, meaning it is within the extended edge

states, the voltage along the edge of the sample will be zero. Scattering between

edge states is irrelevant as any scattering will be into another chiral edge state

moving in the same direction. There is thus no voltage drop between two voltage

probes along the sample edge. Conduction is ballistic along the edges of the
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sample. This explains the longitudinal resistance falling to zero when the Fermi

level is between Landau levels.

Consider next the Hall voltage, Vxy. As the edge states on either side of the

sample are chiral, one side must be at a higher chemical potential than the other.

The chemical potentials on either side are denoted µL and µR. Only then is a

net flow of current possible, as otherwise the current contribution from one side

will cancel the other. Still assuming that the Fermi level is between two Landau

levels, and thus within the extended edge states, the current at zero temperature

is given by

I =
∑
LL

∫
evy(ky)g(ky)dky (2.82)

where the sum is over filled Landau levels and the integral over all states below the

local chemical potential. Figure 2.15 displays a schematic of two Landau levels

where the states contributing to the current integral are represented by filled black

circles. The density of states in ky space, per unit length, is denoted by g(ky) and

is equal to 1/2π. Using this and the fact that vy =
1
h̄

∂E(ky)

∂ky
, (2.82) can be rewritten

as

I =
e

h̄

∑
LL

∫
∂E(ky)

∂ky

1

2π
dky =

e

h

∑
LL

∫ µL

µR

dE =M
e2

h
Vxy (2.83)

where the Hall voltage, Vxy, is equal to (µL−µR)/e and M is the number of filled

Landau levels. Thus the Hall resistance, Vxy/I, is equal to

Rxy =
1

M

h

e2
(2.84)

when the chemical potential is between the M and M + 1 Landau levels. The

fact that localised states pin the Fermi level between Landau levels explains the

precise quantisation in Hall resistance. Remarkably, it is disorder that is necessary

for this precise quantisation. As either chemical potential or magnetic field are
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varied, very well defined jumps in Hall resistance will be observed as the number

of filled Landau levels changes.

Figure 2.15: Schematic to aid the calculation of current. Note that ky is inter-
changeable with x. Only two Landau levels are shown for simplicity. The chemical
potential differs on either side of the sample. Vxy is given by (µL − µR)/e. Note
that disordered states have been excluded for simplicity, but it is these states
that pin the Fermi level between Landau levels. The filled black circles represent
states that are below the local chemical potential and only they contribute to the
current integral at zero temperature.

Finally, for completeness, the first explanation of the effect is discussed [95].

Laughlin considered a Corbino ring geometry and used a pumping argument.

The gauge is chosen such that the obvious solutions are extended states that

wrap around the ring. Each eigenstate is centred on a particular radius. If a flux,

which is not related to the magnetic field the electrons are in, is varied through

the ring then the single particle eigenstates will shift radius and map onto one

another with period h/e. Thus for each filled Landau level, when the flux is varied

by h/e, it is as if one electron has moved between the outer and inner radius of

the ring. The direction depends on the sign of the change in flux. The variation

of the flux induces a voltage around the ring. If it takes time T and happens at a

constant rate the induced voltage is just h/Te. As each Landau level pumps one

electron across the ring, the current is equal to Me/T where M is the number of

filled Landau levels. Thus the Hall resistance is again given by (2.84). The same
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disorder argument ensures the Fermi level is always within extended edge states.

2.8.3 Breakdown of the Quantum Hall Effect

The breakdown of the quantum Hall effect is commonly defined as the onset of

a finite longitudinal resistance, Rxx, measured along the edge of a sample, due

to the applied current exceeding a critical value. This occurs while the filling

factor, ν, is an integer. At the same time, the Hall resistance, Rxy, deviates from

its quantised value of h/νe2. See [96–100] for experimental works. A review is

presented in [23]. The breakdown is typically reported as being sharp. In [97], the

longitudinal voltage is described as increasing by a factor of 104 when the current

is increased by less than 1%, at the critical current. Various models have been

proposed based on mechanisms such as intra-Landau level transitions [101] and

inter-Landau level transitions [102].

However, the sudden fall in two terminal resistance, when measuring in a

Corbino geometry, is also referred to as the breakdown of the quantum Hall effect

[97,103,104]. In such a geometry, conduction is via the bulk localised sites of the

disorder broadened Landau levels. Edge states are avoided. In fact, it is argued

in [104] that the breakdown is a bulk state phenomenon and a Corbino geometry

is necessary to study the effect. It is not a given that the breakdown described in

the standard Hall geometry, in which conduction is via ballistic edge states, has

the same physical reasoning as the effect described in the Corbino geometry. In

any case, the physical reasoning behind the breakdown of the quantum Hall effect

is disputed.

In [103], large jumps in current of four orders of magnitude, with ν = 4, were

observed as applied bias was varied, using a Corbino geometry. Hysteresis and

temperature dependence were not investigated, but the presented current-voltage

characteristics are reminiscent of those discussed in section 2.7.3. Phenomeno-
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logical descriptions involving electron overheating have been proposed, [105,106].

In these experimental works standard Hall bar geometries were used and plots

of diagonal conductivity, σxx, against Hall field, Ey, produced S-shaped curves

at the lowest measured temperatures. Here Ey was essentially used in place of

current. Fittings were made using a similar phenomenological heat balance model

to (2.67). In this case, the power per unit area was given by σxxE
2
y . This is a rea-

sonable assumption for a homogeneous material in which |Ey| >> |Ex|. However,

in the quantum Hall regime the conductivity is not homogeneous. There are both

ballistic edge states and bulk localised states. The suitability of applying such a

model to the values of Ey and σxx derived from resistance measurements using a

Hall bar geometry is not obvious. The authors of both works noted significant

issues when fitting to the heat balance model. Significantly, a systematic test of

the overheating model (2.67), in a quantum Hall system using a Corbino geometry

is absent from the literature. Such work will be presented in chapter 7.

The possibility of electron avalanche in the Corbino geometry was investigated

in [104]. This was done by analysing current noise. Specifically the Fano factor, F ,

was estimated. For a counting process this is defined as the ratio of the variance

of the quantity being counted to its mean. For a Poisson process in which there is

no correlation between events being counted, F = 1. When discussing transport

measurements, the quantity being counted is typically the number of electrons

entering a current drain. If the electrons can be described as bunching, then

F > 1. In a standard diffusive system F < 1 due to the Pauli exclusion principle.

In [104] the Fano factor was shown to become very large in the breakdown regime.

This was provided as evidence of electron avalanche. That is, electrons ionise each

other resulting in a cascade effect. If true, this would not be at odds with a heating

model but instead indicates what is happening at a microscopic level.



Chapter 3

Materials

In this chapter the two materials used in this work, GaAs/AlxGa1−xAs het-

erostructures and graphene, are introduced. Their basic properties are first pre-

sented before a discussion covering how disorder can be systematically introduced

into both systems is given.

3.1 GaAs/AlxGa1−xAs Heterostructures

A heterostructure is simply multiple layers of different semiconductors. The

boundary between two different layers is known as a heterojunction and these

interfaces are typically the areas of interest within the structure. The practice

of varying layer composition and depth is known as band structure engineering.

Here the aim is to control the band structure which will ultimately determine

where the electrons, or holes, will reside. The heterostructures in this work were

grown by molecular beam epitaxy (MBE) and were composed of multiple layers of

AlxGa1−xAs, with the molar fraction x varying from layer to layer. Upon cooling

samples down to cryogenic temperatures, a single two-dimensional electron gas

(2DEG) was formed. It was these 2DEGs that were investigated, typically after

manipulating the Fermi level below a mobility edge in some way.

74
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3.1.1 GaAs, AlAs and AlxGa1−xAs

Gallium arsenide is a direct band gap semiconductor with a band gap of 1.42 eV.

It has a crystal structure known as zinc blende. This means it has a face-centred

cubic (fcc) lattice with a two atom basis. Due to translational invariance one

atom, either gallium or arsenic, is at (0,0,0) while the other is at (1
4
,1
4
,1
4
). The

crystal structure is shown in Fig. 3.1, taken from [107]. The lattice constant, the

length of one side of the conventional fcc unit cell, is 5.65 Å.

Figure 3.1: The crystal structure of both GaAs and AlAs, known as zinc blende.
The conventional face-centred cubic unit cell is shown, which contains four prim-
itive unit cells. Taken from [107].

Aluminium arsenide, whilst also having a zinc blende crystal structure, is an

indirect band hap semiconductor. Its lattice constant is 5.66 Å, which is very

close to that of gallium arsenide. This lattice matching of the two compounds is

very useful when growing heterostructures as the strain at the various interfaces
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between layers is minimised.

AlxGa1−xAs is an alloy of gallium arsenide and aluminium arsenide. Arsenic

atoms sit on the same sites that they would have done in galium arsenide and

aluminium arsenide. Gallium and aluminium atoms are distributed randomly over

the sites they would have occupied in galium arsenide and aluminium arsenide

respectively. The fraction of aluminium atoms distributed over these sites is given

by x, while the fraction of gallium atoms is 1−x. If one were to label gallium and

aluminium atoms as being the same, one would again see a zinc blende crystal

structure.

Key properties of AlxGa1−xAs can be described as a function of the molar

fraction, x. The lattice constant, a, can be linearly interpolated between the

gallium arsenide lattice constant and the aluminium arsenide lattice constant. It

can be written in units of Å as,

a = 5.6533 + 0.0078x.

The band gap, Eg, can be expressed in units of eV as,

Eg =


1.424 + 1.247x, if x < 0.45

1.900 + 0.125x+ 0.143x2, if x > 0.45.

For x < 0.45, the band gap is direct and takes place at the Γ point in the Brillouin

zone, which is the centre point of the Brillouin zone. However, for x > 0.45 the

lowest energy point in the conduction band changes from Γ to X. The band gap

thus becomes indirect. This is depicted in Fig. 3.2, taken from [108].
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Figure 3.2: The valance band and conduction band energies of AlxGa1−xAs as a
function of x. For x < 0.45 the band gap is direct and is at the centre of the
Brilloin zone, the Γ point. However, for x > 0.45 the conduction band minimum
is at the X point in the Brilloin zone and the gap becomes indirect. Taken
from [108].

3.1.2 Molecular Beam Epitaxy

The heterostructures in this work were grown using molecular beam epitaxy, by

Dr. Chong Chen in the Cavendish Laboratory at the University of Cambridge.

MBE is a growth technique in which material is evaporated at ultra high vacuum,

typically considered as being 5 × 10−11 mbar or lower, onto a substrate. The

substrates used in this work were all gallium arsenide. At such low pressures the

mean free path is longer than the distance from the cell, where the material is

vaporised, to the substrate. This means that the growth material travels ballis-



3.1. GaAs/AlxGa1−xAs HETEROSTRUCTURES 78

tically, rather than diffusing. Growth is slow, it can be around one monolayer

per second, which allows for sharp heterojunctions and accurate control of layer

thicknesses [108].

3.1.3 The Two-Dimensional Electron Gas

Heterostructures were grown in order to form a two-dimensional electron gas

(2DEG) at a GaAs/Al0.33Ga0.67As interface, with the majority of the 2DEG resi-

dent in the GaAs side of the boundary. The interfaces were always 90 nm below

the surface of the wafer. At such depths, control of the 2DEG using a surface

gate is typically straightforward. Figure 3.3a shows a schematic of a typical wafer

structure while Fig. 3.3b shows the associated band structure, calculated numer-

ically using the Matlab programme Aquila [109]. To see how such a wafer results

in such a band structure first consider the divergence of the electric field,

∇ · E =
ρ

ϵ0
, (3.1)

where E is electric field and ρ is charge density. Both unoccupied dopant sites

and electrons in the conduction band contribute to ρ. Using E = −∇ϕ, where ϕ

is the electrostatic potential,

∂2ϕ

∂z2
= − ρ

ϵ0
. (3.2)

Here convention has been followed that the direction of growth is in the z direction

and it has been assumed that the only variation in ϕ is in this dimension. As the

electrostatic energy of an electron is−eϕ, (3.2) can be used to find the electrostatic

contribution to the band structure. To solve for the conduction band, all that must

be done is ensure that (3.2) is satisfied and that it jumps by the appropriate band

energy differences at each heterojunction, as can be seen in Fig. 3.2. Using (3.2), it

is seen that the curvature of the band structure at a given point is proportional to
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(a) (b)

Figure 3.3: a) Schematic of a GaAs/AlxGa1−xAs wafer grown by molecular beam
epitaxy. The two-dimensional electron gas will form at the interface between
the spacer layer (pink) and buffer layer (green). b) Conduction band simulation,
produced using the Matlab programme Aquila [109]. The top of the GaAs cap
corresponds to z = 0, while z increases moving down into the wafer. The red
conduction band changes gradient wherever there is a non zero charge density,
as a consequence of Poisson’s equation. It also exhibits abrupt changes when
the local material changes. The lowest energy subband wavefunction in shown in
yellow while its energy is shown as a horizontal green line. This energy is less
than the Fermi energy, shown in blue. All other subbands have energies higher
than the Fermi energy and thus will not be occupied at low temperatures.

the charge density at that point. Negative charge causes the band to have negative

curvature, while positive charge leads to positive curvature. Also note that (3.2)

is a second order differential equation. It requires two boundary conditions. A

typical boundary condition is that the electric field is zero deep into the substrate.

This means the band should be flat, meaning ∂ϕ/∂z = 0. To numerically solve

for ϕ, a simple initial value problem solver can be used. Deep in the substrate

ϕ is set to an arbitrary constant, which is free to be changed later, and ∂ϕ/∂z

is set equal to zero. Once can then integrate along z, using ρ to dictate how

much ∂ϕ/∂z should vary at each point in space and ultimately find ϕ(z). Then

the second boundary condition can be imposed. At a metal and semiconductor



3.1. GaAs/AlxGa1−xAs HETEROSTRUCTURES 80

junction, the difference in energy between the chemical potential of the metal and

the conduction band energy of the semiconductor is known as the Schottky barrier.

Assuming a metal has been deposited onto the surface of the wafer in order to

form a gate, discussed in section 4.6, one can simply use the Schottky barrier

as the second boundary condition. These values are well documented for GaAs.

The band structure is thus shifted in energy so that the difference between the

conduction band energy at the top of the wafer and the chemical potential equals

the required Schottky barrier. For GaAs this is typically around 0.7eV [108]. For

a given charge distribution, ρ(z), this band structure satisfies (3.2) and matches

the necessary boundary conditions. The one dimensional eigenstates, known as

subbands, and eigenenergies of this conduction band are then found. Given an

effective mass m∗, the energy of a state comprising of the ith subband and two-

dimensional wavevector k in the x− y plane is,

Ei(k) = ϵi +
h̄2|k|2

2m∗ , (3.3)

where ϵi is the energy of the ith subband. The probability the state will be occu-

pied is found using the Fermi-Dirac distribution. One could assume zero temper-

ature and all states below the chemical potential will be occupied whilst all above

will be unoccupied. This information and the spatial distribution of the subband

wave functions in z are used to modify the charge density, ρ(z). The electrostatic

potential, ϕ, is solved for again which will lead to a new band structure meaning

new eigenstates, new eigenenergies and thus a new charge density. This cyle of

solving the Poisson equation and then the Schrödinger equation is continued, until

ϕ and ρ are self-consistent. Once this is done, the band structure, the energies of

the subbands, their spatial distribution and how may electrons they contain are

known. If only one subband is occupied, as is the case with the example shown
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in Fig. 3.3b, the system simply comprises of a 2DEG in the x− y plane.

Each layer in turn from Fig. 3.3a is now briefly discussed. The bottom layer is

the substrate, this is simply the material that MBE growth takes place on. Above

this is a GaAs buffer layer. The purpose of this layer is to put distance between

the 2DEG and impurities in the substrate. Next is an Al0.33Ga0.67As spacer layer.

The 2DEG forms at the interface of the GaAs and Al0.33Ga0.67As layers. The

thickness of the 40 nm spacer layer is to put distance between the 2DEG and

the ions present as a result of doping in the doped layer. These ions result in

scattering and reduce the quality of the transport within the 2DEG. Without this

doped Al0.33Ga0.67As layer the 2DEG would not be occupied. Finally, there is a

GaAs cap to prevent oxidation of the Al0.33Ga0.67As layer.

Once the wafer is grown, further fabrication takes place in order to allow

one to probe the 2DEG. This processing is discussed in section 4.6, while the

measurements themselves are discussed in section 5.2.

3.2 Graphene Heterostructures

3.2.1 Monolayer Graphene

Monolayer graphene is a two-dimensional, zero band gap semi-metal and was first

experimentally observed in 2004 [110]. Graphene has extraordinary electronic and

mechanical properties. In particular, a Young’s modulus close to 1 TPa, a room

temperature mobility of 2 ×105 cm2V−1s−1 and a thermal conductivity close to

3000 WmK−1 have been demonstrated [111–114]. There is thus much expectation

with regard to graphene’s commercial and industrial potential, for example in

flexible electronics, transparent barrier films and energy storage [115].

Graphene is formed of carbon atoms in a honeycomb lattice. The lattice
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vectors, a1 and a2, can be expressed as,

a1 =
a

2
(3,

√
3), a2 =

a

2
(3,−

√
3),

where a is the distance between nearest-neighbour carbon atoms and is equal to

1.42 Å. The basis contains two carbon atoms. The reciprocal lattive vectors, b1

and b2, are

b1 =
2π

3a
(1,

√
3), b2 =

2π

3a
(1,−

√
3).

(a) (b)

Figure 3.4: a) The crystal structure of graphene. Lattice vectors are a1 and a2.
The basis contains two carbon atoms. Taken from [116]. b) The reciprocal lattice.
Reciprocal lattice vectors are b1 and b2. The first Brillouin zone is shown. Dirac
points are at K and K′. Taken from [116].

The crystal structure is shown in Fig. 3.4a while the reciprocal lattice and first

Brillouin zone are shown in Fig. 3.4b, taken from [116]. Using a tight binding

model, which allows jumps between nearest neighbour and next nearest neighbour

carbon atoms, the following dispersion relation is found,

E(k) = ±t
√
3 + f(k)− t′f(k), (3.4)
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where the plus and minus signs apply to the upper and lower bands respectively, t

is the nearest neighbour hopping energy, t' is the next nearest neighbour hopping

energy and

f(k) = 2cos(
√
3kya) + 4cos(

√
3

2
kya)cos(

3

2
kxa). (3.5)

Figure 3.5: The dispersion relation of graphene, using the tight binding model
and plotted in units of t. In this instance t = 2.7 eV and t′ = −0.2 eV. The
dispersion is linear around the Dirac points, shown in the blown up image. Taken
from [116].

The dispersion relation is shown in Fig. 3.5, taken from [116]. Around a Dirac

point, K, the dispersion relation is linear,

E(K+ q) ≈ νF |q|+O[(q/K)2], (3.6)

where νF = 3ta/2 is the Fermi velocity and is independent of energy and momen-

tum. This linear dispersion relation was predicted in 1947 by Wallace [117], who

analysed the band structure of graphite in general, as well as a single layer. This

was over half a century before such a single layer, now known as graphene, was
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experimentally observed.

3.2.2 Hexagonal Boron Nitride

Hexagonal boron nitride (h-BN) is a large band gap (5.9 eV) semiconductor.

Like graphene, it is atomically flat and also has a honeycomb lattice. Its lattice

constant is 2.50 Å, which is similar to that of graphene, 2.46Å. Given that it acts

an insulator, due to its large band gap, h-BN is an ideal material to encapsulate

graphene. The crystal structure is depicted in Fig. 3.6, taken from [118].

(a) (b)

Figure 3.6: a) Four sheets of h-BN are shown. The zoom-in shows three layers,
together with the lattice constant and inter-planar spacing. b) Stacking of hBN
sheets in the AAA configuration. Taken from [118]

In this work, graphene flakes were encapsulated in h-BN, before device fabri-

cation took place. This is described in section 4.7.

3.3 Probing Localised States

3.3.1 Gating

Two-dimensional electron gases within GaAs/Al1−xGaxAs heterostructures can

be depleted using a gate. The 2DEG and the gate metal act as two plates of a

parallel plate capacitor. The carrier density of such a device decreases linearly
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with negative gate voltage. One can reduce the density to such an extent that

the Fermi level falls below a mobility edge, as depicted in Fig. 2.4. In this case,

states at the Fermi level are localised and transport will take place via a strongly

temperature dependant mechanism such as hopping or activation to the extended

states above the mobility edge. See [14, 25–28] for examples of gated 2DEGs,

hosted in various materials, being used to carry out localisation studies in the

fashion described.

3.3.2 Disorder Broadened Landau Levels

High mobility GaAs/Al1−xGaxAs heterostructures exhibit the quantum Hall ef-

fect, as described in section 2.8.2. Using a standard Hall bar geometry, trans-

port takes place via ballistic edge states which are topologically protected from

backscattering events. However, one can design contacts which are not linked via

edge states. For example, contacts placed in the middle of a sample. The most

notable example is that of a Corbino ring. Such a device is circular, with one

contact along the circumference with the second contact in the centre. Transport

between contacts arranged in such a fashion avoids edge states and is instead via

the localised states that occupy the bulk of the material and reside in the band

tails of the disorder broadened Landau levels. When the filling factor, ν, is an

integer, the Fermi level lies within such a band tail. See Fig. 2.14. By apply-

ing the necessary perpendicular magnetic field to achieve an integer filling factor,

the Fermi level can therefore be manipulated to lie within localised states and

localised transport can thus be studied using a suitable geometry.

3.3.3 Focused Ion Beam Damage

In this work, monolayer graphene was damaged by a helium focused ion beam

(FIB). This method allowed for systematic addition of disorder. Both the dose
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and area that was to be disordered could be carefully controlled. Using a Carl Zeiss

Orion NanoFab FIB, 25 keV helium ions at a dose of 1 pCµm−2 were used. It was

assumed that the disorder was added in the form of carbon vacancies. The FIB

exposure was done after the graphene flake had been isolated from the environment

and encapsulated in h-BN. In this way, any carbon vacancies which formed as a

result of the damage would be prevented from bonding to any unwanted material,

such as water. Ultimately, as discussed in chapter 8, exposure to the FIB was

successful in creating an insulating flake in which the states at Fermi level were

localised.



Chapter 4

Device Fabrication

In this chapter the various processing techniques that have been utilised are pre-

sented. They are then discussed with respect to both GaAs/AlxGa1−xAs and

graphene devices. In general, each step typically involves a round of lithography

followed by either an etch, a deposition or both.

4.1 Chip Cleaning

Before any given fabrication process following wafer growth, the chip being pro-

cessed must be cleaned. This is to remove any unwanted material on the chip that

may interfere with fabrication. This is particularly important following cleaving

of the wafer as this typically leaves dust on the surface of the chip. Chips are

sonicated in acetone for five minutes. This is then repeated with isopropyl alcohol

(IPA). The acetone is to clean the chip, while the IPA is to prevent acetone streaks

being left behind on the chip. Chips are then dried with a nitrogen gun.

4.2 Lithography

Once a given chip has been cleaned it is ready for a round of lithography. This

is simply a means of transferring a pattern onto the chip. In this work, both

87
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photolithography and electron-beam lithography (EBL) were used. Typically,

EBL is used for smaller features due to the greater resolution of an electron beam

compared to UV light. In either case, resist is first spun onto the chip and then

baked. The resist is then exposed to either a UV laser beam or an electron beam,

depending on the type of lithography. If the resist is a positive resist, all exposed

areas will become soluble and hence removed once placed in the corresponding

developer. The chip is then ready for either an etch, deposition or both.

4.2.1 Photolithography for Etching

Figure 4.1 demonstrates a typical round of photolithography for an etching pro-

cess. First the chip is spin-coated with a positive photoresist, which becomes

soluble once it has been exposed to UV light. In this work the photoresist used

was S1805. Resist was spun at 4000 rpm for 30 seconds and baked at 115oC for 1

minute. Spinning is done to produce a uniform layer of resist. Baking is done to

remove residual solvent and harden the resist. These two steps produce a uniform

resist thickness of 500 nm. Samples were then exposed using a direct laser writer,

specifically a Heidelberg DWL 66+. The wavelength of the laser is 375 nm and

the limit of resolution is around 1 µm. A digital mask was first created using

computer-aided design (CAD) software. A mask used to create large van der

Pauw (VDP) devices is shown in Fig. 4.2. In the case of this mask, everywhere

but the shaded area will be exposed to the laser. Once the mask has been created

and laser parameters set, the sample is aligned and the pattern is written onto

the sample. This is depicted in Fig. 4.1a. Then the exposed, and now soluble,

resist is removed using a developer. In this work, Microposit Developer MF-319

was used. After being immersed in developer for a given period of time, the chip

is rinsed in deionised water and dried with a nitrogen gun. Chips were typically

developed for 15 seconds before being checked under a microscope. So as not to
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expose the resist whilst checking, a UV filter is used. Development is repeated

until the resist is fully developed. One must be careful not to overdevelop, the

unexposed resist will be slowly removed by the developer. Once development is

complete, an etch can be carried out. After etching, the resist can be cleaned off

with a suitable solvent, typically acetone.

Figure 4.1: Steps when using photolithography to carry out etching. a) A spin
coater is used to cover the chip in a uniform layer of photoresist. Parts of the chip
are then exposed to a UV light source. b) The exposed resist becomes soluble
and can be removed by c) developing. Finally, d) the etch is carried out and the
resist cleaned off.

4.2.2 Photolithography for Metal Deposition

When carrying out photolithography for a deposition, using a bilayer resist is

preferential, as demonstrated in Fig. 4.3. The procedure is much the same as

with a single layer of resist. However, before spin-coating with photoresist, the

sample is spin-coated with lift-off resist (LOR). Even without exposure to UV,

LOR is soluble in Microposit Developer MF-319. This creates an undercut in the

resist profile post development which, in turn, prevents the deposited metal from
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Figure 4.2: An example mask, used to create large van der Pauw devices. Every-
where but the shaded areas will be exposed. Thus, when developed, only these
areas will have resist left. Note the alignment crosses in the corners of the design.

forming a continuous film over the sample, as depicted in Fig. 4.3b. This greatly

increases the likelihood of a successful lift off.

In this work, LOR 10B was used as the lift off resist. Once the chip has been

cleaned, LOR 10B is spun at 4000 rpm for 30 seconds. It is then baked at 190oC

for 10 minutes. The process from here on in is as described in section 4.2.1. S1805

is spun and baked, the chip is exposed to the laser writer and development in MF-

319 is carried out. One has to be especially careful not to over-develop. If the

undercut becomes too great, the top layer of photoresist can collapse.

Once development is complete, the sample is now ready for a deposition. Once

this has been carried out, a suitable solvent must be used to clean off the resist

and metal on top of it. This is known as lift off. Acetone cannot be used to

carry out lift off if LOR has been used. It will cross-link the LOR which will thus

become very difficult to remove. Another solvent, Dimethylsulfoxide (DMSO),

was used in this work. Chips were heated in DMSO at 65oC for ten minutes. A

pipette was then used to create a gentle flow of solvent over the chip. Typically
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Figure 4.3: Steps when using photolithography to carry out a metal deposition.
a) A spin coater is used to cover the chip in a uniform layer of lift-off resist (LOR)
followed by photo-resist. Parts of the chip are then exposed to a UV light source.
b) The exposed resist becomes soluble and can be removed by developing. The
LOR is solvent in the developer, creating an undercut. c) Metal is then deposited.
Note how the undercut prevents the metal from forming a continuous film over
the sample. Finally, d) the resist is lifted off using a suitable solvent.

this resulted in the unwanted metal peeling back off the chip, leaving only metal

in the desired areas.

4.2.3 Electron-Beam Lithography for Etching

The principles of electon-beam lithography (EBL) are the same as photolithog-

raphy, only now the resist is exposed to an electon beam and not UV light. The

resolution that can be achieved with EBL can be as low as a few nanometres, much

less than the micrometre resolution of the direct laser writer. Thus this is the pre-

ferred lithographic method for devices that have features that need resolution of

a few microns or less.

Polymethyl methacrylate (PMMA) is a common postive EBL resist and was

used in this work. If etching, PMMA 950A2 was used. The name describes the
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average chain length, solvent type and PMMA concentration. With this resist,

the average polymer chain has a molecular weight of 950,000. The lower the

molecular weight of the chains, the less exposure they need to become soluble.

This particular resist has anisole as the solvent and the PMMA chains themselves

make up 2% of the solution by mass. As with S1805 photoresist, the solvent is

removed by baking. PMMA 950A2 was spun for 45 seconds at 2000 rpm. It was

then baked at 180oC for five minutes. This left a uniform resist profile of height

100nm.

As with the laser writer, CAD software was used to produce a mask. The EBL

exposure was carried out using an Elionix ELS-G100 system. It has an inbuilt

scanning electron microscope (SEM), allowing one to align the sample with the

necessary accuracy. It is important to assume that any area of the chip looked at

with the SEM will become fully exposed and thus lose resist post development.

The beam energy, beam current were first set and the beam focused. A beam

energy of 100 keV and beam current 1 nA were used. For GaAs/AlxGa1−xAs

samples, the dose was typically around 600 µC/cm2. However, proximity effect

correction (PEC) software was used and the dose would vary throughout the

sample area. This software takes into account the backscattering of electrons

from the chip back into the PMMA. Gallium arsenide causes a large amount of

backscattering. This must be considered when trying to achieve a uniform dose

throughout the exposed area. The PEC software uses Monte-Carlo simulations

to produce a map between position and local dose. For work involving a silicon

substrate, which has significantly fewer issues regarding backscattering, a beam

dose of 1000 µC/cm2 was used.

Once the exposure had been carried out, development took place. In this work,

a mixture of three parts isopropyl alcohol (IPA) to one part deionised water was

used as the developer. Samples were developed for 30 seconds before being rinsed
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in deionised water and checked optically. Further development was carried out if

necessary. As PMMA is solvent in acetone, this was used to remove PMMA from

samples once the etch was carried out.

4.2.4 Electron-Beam Lithography for Metal Deposition

Analagous to using LOR whilst carrying out photolithography, different PMMA

resists can be combined to form a bilayer resist for electron-beam lithography.

Specifically, resists of different average PMMA chain length should be used in

combination. This technique makes use of the way the electrons travel through

the resist during an EBL exposure. Rather than travelling straight through the

resist, in a direction perpendicular to its surface, the beam spreads out from the

point of incidence. This is due to scattering within the resist. The lower the

molecular weight of a given PMMA resist, the more sensitive to a given dose

it will be. Thus if a lower molecular weight PMMA is spun beneath a higher

molecular weight PMMA, an undercut will be created due to the fanning out

of the electron beam. This is depicted in Fig. 4.4. Here PMMA 495 is the

lower molecular weight resist, while PMMA 950 is the heavier. Their chains have

average molecular weights of 495,000 and 950,000 respectively.

In this work, PMMA 495A2 was spun onto the chip at 1000 rpm for 45 seconds.

It was then baked at 180oC for 3 minutes. This produced a 100nm uniform film

of resist. This was repeated until the height of the PMMA 495 was greater than

the thickness of the metal being deposited. Otherwise, the undercut would be

rendered useless. Finally, PMMA 950A2 was spun onto the chip at 2000 rpm for

45 seconds and baked at 180oC for 5 minutes, leaving a 100nm uniform film of

PMMA 950. The chip was then exposed and developed as described in section

4.2.3. Lift off was carried out using acetone.
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Figure 4.4: Steps when using electron beam lithography to carry out a metal
deposition. a) A spin coater is used to cover the chip in a uniform layer of PMMA
495 followed by PMMA 950. The bottom layer of resist, due its shorter PMMA
chains, takes less dose to become soluble. Parts of the chip are then exposed to
the elctron beam. b) The exposed resist becomes soluble and can be removed by
developing. More of the bottom layer is lost than the top, due to the difference
in repsonse to the electron beam. This leads to an undercut. c) Metal is then
deposited. Note how the undercut prevents the metal from forming a continuous
film over the sample. Finally, d) the resist is lifted off using acetone.

4.3 Etching

Once the desired etch pattern has been transferred onto the chip, via lithography,

the chip is ready to be etched. Both wet etching and dry etching were carried

out throughout this work. The wet etches involved simply immersing the chip

to be etched in an etchant, resulting in an isotropic etch. Conversely, dry etches

typically tend to be much more anisotropic. As shall be discussed, this can be

useful when attempting to etch small features.
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4.3.1 Wet Etching

Wet etches should only be used to define relatively large features. Specifically, the

etch depth should be less than the feature size. It should be assumed that a wet

etch will etch laterally a similar distance to the vertical etch depth. This may not

be the case if an etchant acts quicker along one crystal direction than the others.

However this was not the case in this work.

As shall be discussed in section 4.6.1, wet etching was used to define the mesas

of GaAs/AlxGa1−xAs devices. Here the etch depths were typically around 100 nm,

meaning a wet etch would blur the features of the mesas by roughly this distance.

This was acceptable in some situations, but not in all, as shall be discussed.

Wet etching was also used to open windows through layes of dielectric, to access

otherwise covered bonding pads. This shall be discussed in section 4.6.3.

4.3.2 Dry Etching

A shallow reactive ion etcher (SRIE), specifically a Surface Technology Systems

ICP, was used to carry out dry etching. This was used to etch both GaAs/AlxGa1−xAs

and graphene, see sections 4.6.1 and 4.7.3 respectively.

4.4 Metal Deposition

An Edwards Auto 306 thermal evaporator was used to deposit metal onto samples.

Such metal was used either to form ohmic contacts or to gate devices. Using

adhesive tape, samples were loaded onto a coppper plate which was hung face

down from the top of the evaporator. Metal, travelling from the bottom of the

evaporator, would uniformly coat the samples.

Metals were loaded into molybdenum boats. During evaporation current was

passed through the boats, heating the metal to such a point that evaporation
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took place. Molybdenum was chosen due to its high melting point, high thermal

conductivity and lack of contaminant production.

After loading the samples and metals to be evaporated, the evaporator cham-

ber was pumped down. A pressure below 1×10−6 mbar was considered sufficient.

Such low pressures were necessary for two reasons. Firstly, at such pressures the

mean free path of the evaporated metal is larger than the distance between source

and samples. Hence ballistic transport and uniform coverage of chips should be

achieved. Secondly, the low levels of background gases, such as oxygen and water,

will significantly decrease any contamination of the evaporated metal film.

It is common to want to coat the sides of devices features. For example, when

gating a device, it may be necessary for the gate metal to climb over the edge

of the device mesa. If the metal does not climb over the edge, there may be

no continuity between different parts of the gate metal and contact to the gate

will be impossible. In order to get around this, the copper loading plate was

rotated during evaporation and samples were placed off-centre. In this way, there

will always be a point during evaporation where there is an unobstructed path

between a given device feature and the metal being evaporated.

Once the chamber was sufficiently pumped down and the loading plate ro-

tating, thermal evaporation could take place. Current was passed through the

relevant source boat and increased until the metal to be evaporated melted. This

was observed using protective eye-wear. Then a shutter covering the source boat

was opened and evaporation took place. A quartz crystal monitor was used dur-

ing evaporation. The crystal’s resonant frequency varies as a function of mass

deposited over its surface, allowing the desired deposition rate to be maintained

as well as ensuring the correct amount of metal is deposited. A rate of 2-3 Ås−1

was typical. The copper loading plate, that the samples were mounted to, acted as

a heat sink. This ensured that the chips did not reach too high a temperature. In
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turn, this avoided resist defamation and damage to any undercuts, as introduced

in sections 4.2.2 and 4.2.4.

Gold, germanium and nickel were deposited to form ohmic contacts for GaAs

/AlxGa1−xAs heterostructures. See section 4.6.2 for further details. Gold, due

to its corrosion resistance, was deposited to form gates throughout this work.

However, gold typically has poor adhesion. A thin layer of either Titanium of

Chromium was thus deposited first. See sections 4.6.3 and 4.7.5.

4.5 Packaging

Once the fabrication of a given chip was complete, the chip had to be cleaved.

Typically it was cleaved into roughly 2 mm × 2 mm squares. These smaller

chips would fit on the chip carriers which were themselves loaded into cryogenic

measuring equipment. The device design shown in Fig. 4.2 should produce 12

chips of this size, arranged in a 4 × 3 array. Once secured to the chip carriers,

the chips had to be bonded to the contact pads of the chip carriers.

4.5.1 Cleaving

First, S1805 photo-resist was spin coated onto the chips at 4000 rpm for 30 sec-

onds. They were then baked at 115oC for 1 minute. This was to protect devices

from the wafer dust produced during scribing. Chip were scribed using a Karl

Suss RA120 scriber. They were secured to its stage by vacuum and aligned. The

stage was manually moved underneath the diamond tipped scribe and scribed

from edge to edge. Cleaving was then carried out along these scribes. Chips were

held on a glass slide, with a given scribe in line with the edge of the slide. Careful

but firm pressure was placed on the side of the chip overhanging the slide, causing

the chip to cleave along the scribe. Finally, the finished samples were immersed

in acetone and then IPA for five minutes to clean off the resist. After being dried
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with a nitrogen gun they were ready for packaging.

4.5.2 Bonding

GE varnish was used to secure chips to chip carriers. It was cured at 150oC. It was

important to only use a small amount of varnish, too much and the chip would

not lie flat. Not only could this cause issues with bonding, but any magnetic

field applied would not be in the wanted direction with respect to the chip. The

varnish also served to thermally anchor the chip to the chip carrier.

A wedge bonder was used to bond gold wire between contact pads of devices

and chip carriers. Device contact pads were typically designed to be around 100

µm × 100 µm, which was large enough to successfully bond to. Bonding was

done at 150oC using the inbuilt bonder stage heater. Extra care had to be taken

when bonding to metal on top of a dielectric. Typically, in such instances, the

adhesion between metal and sample was lower and caution was required in order

to not to tear the metal from the chip. Test pads were used in order to select

suitable bonder settings. The parameters to vary were the force at which the

bonder presses into the sample and the power of the ultrasonic mechanism which

forms the bonds. Typically, a lower force setting than usual was optimal when

bonding on top of a dielectric. Once bonded, devices were ready to be measured.

4.6 GaAs/AlxGa1−xAs

4.6.1 Mesa Definition

With GaAs/AlxGa1−xAs devices, the first step is typically to define a mesa. That

is, the 2DEG is restricted to only exist in certain areas. This is done by either

wet or dry etching of the wafer. A typical etch mask to define such a mesa is

shown in Fig. 4.2. Note the crosses in the corners of the design. These are needed
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to assist in aligning other designs when carrying out further processes, typically

depositions, after etching.

All of the wafers in this work have the GaAs/AlxGa1−xAs interface 90 nm from

the surface. This meant that when defining a mesa, etch depths were typically

100 nm. As discussed in section 4.3, wet etches are typically isotropic so not only

is 100 nm etched vertically, around 100 nm is etched laterally. For devices that

are much larger than this lengthscale, this is not an issue. As dry etches tend to

be much more anisotropic, they are favourable for devices of a similar lengthscale.

Wet Etching

Before wet etching, once lithography had taken place, the resist profile was mea-

sured using a profilometer, specifically a Bruker DektakXT. Under the preparation

conditions described in section 4.2.1, S1805 resist typically had a profile around

500 nm. By measuring again after a period of etching, it could then be determined

how far had been etched without removing the resist.

GaAs/AlxGa1−xAs chips were wet etched using a mixture of sulphuric acid,

hyrdogen peroxide and deionised water in a ratio of 1:8:120, by volume [119]. The

etch rate was ∼3 nm/s. The chips were then rinsed in deionised water and dried

with a nitrogen gun. After measuring the etch depth, once could etch more if

needed. Resist was then cleaned off by immersing in acetone and then IPA, each

for five minutes.

Dry Etching

Selective reactive ion etching (SRIE) was used to carry out dry etching. With this

technique, a plasma is generated using a large radio-frequency electromagnetic

field. It is the ions within the plasma that react with the sample surface and

carry out the etching. Because the plasma is directed towards the sample by

means of a DC bias, the etch is directional and lateral etching is greatly reduced
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when compared to wet etching. In this work, when etching GaAs/AlxGa1−xAs,

the plasma was generated using chlorine and nitrogen gas.

Dry etching was carried out when faced with the task of defining small features,

relative to the etch depth. This also meant that electron-beam lithography (EBL)

was used, as opposed to photolithography, meaning that the resist being used was

PMMA. The PMMA itself was also attacked by the chlorine plasma etch. This

meant it had to be ensured that samples were coated in sufficient resist. Once

etching was complete, resist was again cleaned off by immersing in acetone and

then IPA.

4.6.2 Ohmic Contacts

Once a mesa had been defined, it was typical to then fabricate ohmic contacts.

Such contacts allow the 2DEG to be electrically probed. Ideally their resistance

should be as low as possible and, as their name suggests, they should be ohmic.

Again, the necessary lithography was then carried out. Before carrying out

evaporation of the necessary ohmic metal, two further processes were carried out.

Firstly, samples underwent a two minute oxygen plasma ash to remove any resist

not fully removed when developing. A Diener plasma asher was used. Secondly,

samples were then immersed in 10% hydrochloric acid for ten seconds and then

rinsed in deionised water. This was to remove any oxides on the surface of the

chip that would interfere with the production of the contacts.

In this work, when forming contacts to GaAs/AlxGa1−xAs heterostructures,

a 400 mg slug of gold, germamium and nickel, in a ratio of 83:5:12 by weight,

was thermally evaporated. This produced a 150nm film of metal. Once lift-off

was complete, the samples were annealed. This is done so that the ohmic contact

material will diffuse down through the chip, at least as far as the GaAs/AlGaAs

interface where the 2DEG will form at low temperatures. An 80 s anneal at
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430oC produced acceptable ohmic contacts for samples with 2DEGs 90 nm below

the wafer surface. A Solaris rapid thermal processor was used to carry out anneals.

Because annealing was done at a relatively high temperature, ohmic contacts were

fabricated before samples were gated or coated in dielectric.

4.6.3 Gating

If required, metal was thermally evaporated onto chips in order to fabricate gates.

The gate metal can be thought of as one plate of parallel plate capacitor, while

the 2DEG acts as the second. Hence varying the potential difference between the

two, varies the carrier density of the 2DEG.

As with ohmic metal deposition, samples first underwent a plasma ash. A

hydrochloric acid dip was not required if the metal was to lie directly on top

of the wafer. Any oxides present would actually improve adhesion. However, if

depositing onto a dielectric such as silicon dioxide or aluminium oxide, such a dip

was carried out to roughen the oxide surface and improve adhesion.

In this work, samples were gated with gold due to its resistance to corrosion

and high electrical conductance. However, gold typically has poor adhesion. To

resolve this, a 20 nm layer of titanium was deposited first. Titanium has good

adhesion to gallium arsenide. Following this, 120 nm of gold was deposited. For

mesa depths of 100 nm, a 140 nm film of metal is enough to ensure gate continuity

across devices even if the metal has to climb the mesa.

In some instances, multiple overlapping gates were necessary. In such a sit-

uation an insulator must be deposited between gate metal evaporations. In this

work aluminium oxide was deposited via atomic layer deposition (ALD). This pro-

cess typically leads to a conformal coating, which helps to minimise the chance of

leakage between gates. A deposition of 30 nm was typically carried out. Such a

process will cover contact pads that have been fabricated prior to this fabrication
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step. In order to access them, the dielectric above them must be etched away.

This was done via photolithography and wet etching, using a buffered oxide etch

(BOE). The solution used was a mixture of ammonium flouride and hydroflouric

acid (HF) in a volume ratio of 7:1. HF will dissolve glass-wear so specialist beakers

made of polytetrafluoroethylene (PTFE) had to used. The etch rate of aluminium

oxide was 1 nm/s. Just like the wet etching of the mesa, etch progress could be

monitored using a profilometer.

4.7 Graphene

Although the fabrication of graphene and GaAs/AlxGa1−xAs devices did involve

similar techniques, such as etching and metal deposition, the overall processing

did differ considerably. This is primarily due to the fact that when processing with

GaAs/AlxGa1−xAs, the chip is essentially a large, blank canvas. Many devices can

be created simultaneously, by fabricating over the whole of a given chip. However,

with graphene, a graphene stack has to first be produced, which itself occupies

a fraction of the area of the chip it resides on. Given the differences between

different stacks, it is common to have to design a bespoke mask set for a given

stack. Typically these stacks are on the micron scale meaning electron-beam

lithography has to be used at every stage of fabrication.

4.7.1 Stacking

The first stage of fabricating graphene devices involved sandwiching graphene

flakes between hexagonal boron nitride (h-BN), which is atomically flat, has a

hexagonal honeycomb lattice and has a similar lattice constant to that of graphene.

It is also a large band gap (5.9 eV) semiconductor and thus acts as an insulator.

These properties make it an appropriate material to encapsulate graphene.

The graphene flakes themselves were prepared via mechanical exfoliation, us-
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ing adhesive tape. First, the tape was firmly pressed against a graphite crystal.

Another piece of tape was then placed over the first. The two were then peeled

apart and stuck back together. This was repeated multiple times. The tape was

then pressed firmly against a silicon wafer which had 290 nm of silicon dioxide

grown on it. To allow the graphene to relax and adhere well to the substrate,

the tape was left in place for an hour. Following this resting period, the tape was

peeled off and the wafer was ready to be examined under an optical microscope for

suitable graphene flakes. The graphene preferentially stuck to the silicon dioxide

over the tape due to the stronger van der Waals interactions with silicon dioxide.

The same process was undertaken with man-made h-BN crystals. Suitable

flakes of h-BN and graphene were then identified. Due to interference effects,

the colour of the h-BN flakes on 290 nm silicon dioxide was indicative of their

thickness. Likewise, the optical contrast of a given graphene flake was was used

to determine its thickness. Once suitable flakes were located, they were picked

up and stacked using polymethyl methacrylate (PMMA). The PMMA itself was

on top of a layer of polydimethylsiloxane (PDMS). Using a glass slide in a micro-

manipulator, the PMMA was used to pick up a wanted h-BN flake. This flake

could then be used to pick up a graphene flake. Both flakes could then be placed

down on top of another h-BN flake. The h-BN flakes were always larger than the

graphene flakes, so as to completely encapsulate them. In this way, graphene/h-

BN heterostructures could be produced.

4.7.2 Device Design

Once a stack was complete, device design could take place. The first step was

to transfer alignment marks onto the chip, surrounding the stack. After doing

this, designs based on optical images containing the alignment marks could be

produced. Electron-beam lithography was used to pattern crosses into PMMA.
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The profile of the PMMA had to be suitable for the first round of processing to

be carried out, as the same PMMA would be used for this process. Typically

the first process was a metal deposition, so a bilayer resist was used. Figure 4.5a

shows a stack coated in PMMA and surrounded by alignment crosses.

(a) (b)

Figure 4.5: Typical images used when designing a device mask set. a) Example of
a graphene/hexagonal boron nitride stack coated in PMMA and surrounded by
alignment marks produced by electron-beam lithography. b) The subsequent mask
set superimposed onto an image of the stack, surrounded by the alignment marks
used to create a coordinate system when carrying out each stage of lithography.

Computer aided design (CAD) software was used to design mask sets, specif-

ically Inkscape and KLayout. Figure 4.5b shows such a mask set superimposed

onto an image of a stack, with alignment marks surrounding it. These alignment

marks would then be used to define a coordinate system when carrying out each

lithography step to ensure patterns were written accurately.

4.7.3 Etching

All etching of graphene devices was carried out using selective reactive ion etch-

ing (SRIE). The technique is described in section 4.6.1. To etch boron nitride,

a sulphur hexaflouride plasma was used and to etch graphene an oxygen plasma

was used. Etching was carried out to both define device shapes and also to expose

the graphene in order to make electrical contact with it. When doing the latter,

the nature of the electrical contact had to be considered. By being exposed to
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the boron nitride etch, the exposed graphene would be damaged. Hence it was

not desirable to make contact with this area of graphene, but rather the graphene

untouched by the etch. For this reason, the graphene directly under the etched

boron nitride was also etched away. In this way, lateral contact could be made

to the unexposed graphene. The contact would essentially be one dimensional.

As will be discussed in section 4.7.4, it had to ensured that the deposited con-

tact metal coated the side wall of the etched space, in order to make this one

dimensional lateral contact.

The reactive ion etch also attacked the PMMA resist. Not only was it impor-

tant to have enough resist before the etch, it was important to be thorough when

removing the resist. Post etch, acetone by itself would no longer completely clean

samples. The Diener plasma asher, also used before depositing metal when using

photo-resist, was used until all resist residue was removed.

4.7.4 Contacts

Once the relevant layers had been etched away, contact metal was deposited by

thermal evaporation into the etched space. Contacts were formed by depositing

40 nm of gold, again chosen due to its high electrical conductivity and corrosion

resistance. However, 1 nm of chromium was deposited first due to its greater

adhesion to silicon dioxide. As discussed in section 4.7.3, contacts were made

laterally and the deposited metal thus had to coat the side walls of the etched

space. To do this, samples were rotated during evaporation and placed off centre

on the loading plate. In this way, there would always be an unobstructed path

between a given side wall and source metal at some point during evaporation.

This same technique was used to coat side walls of GaAs/AlxGa1−xAs mesas, as

discussed in section 4.4.
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4.7.5 Gating

Top Gates

Like with GaAs/AlxGa1−xAs heterostructures, gold metal deposited by thermal

evaporation was used to fabricate top gates. The process was the same as when

depositing contact metal. Due to its stonger adhesion to silicon dioxide a 1 nm

layer of chromium was deposited first. This was followed by 40nm of gold.

The resistance of gold to both the sulphur hexaflouride and oxygen plasma

etches, meant that a top gate could be used as part of an etch mask. In this way,

the top gate would necessarily completely cover the device being fabricated.

Back Gates

The silicon wafer that devices were fabricated on were heavily doped and thus

metallic. The silicon dioxide and boron nitride acted as dielectric. The wafer

itself acted as a back gate. Silver paint was used in place of GE varnish when

packaging chips. In this way, bonds could be made directly to the metallic chip

carrier to establish an electrical connection to the silicon back gate.



Chapter 5

Cryogenic Measurements

In this chapter the cryogenic equipment used to cool samples are introduced. Var-

ious cryostats were used, each having a different associated temperature range.

Following this, the various pieces of electrical measuring equipment and the dif-

ferent configurations they were used in are discussed.

5.1 Cryogenics

Throughout this work, temperature dependent transport measurements have been

at the centre of characterising the physical properties of a given system. The abil-

ity to accurately set and measure different temperatures has thus been essential.

Further to this, when probing behaviour in the localised regime, it is typically

required that the temperature, T, is less than the characteristic temperature as-

sociated with the dominant transport mechanism. For example, if measuring

activation to a mobility edge, it is preferable that T < T0, where kBT0 is the

difference between Fermi energy and mobility edge. This has often meant that

ultra low temperatures have been necessary, meaning temperatures below 1 K.

Three different systems were used to achieve cryogenic temperatures. The

first made use of a 4He cryostat and could achieve temperatures as low as 1.5
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K. The second made use of the same cryostat to cool to 1.5 K, but could then

be subsequently cooled to as low as 300 mK by pumping on 3He. The final, and

arguably most useful system, was a 3He/4He dilution refrigerator which had a

base temperature of 20 mK. Each system is now discussed in turn.

5.1.1 4He Cryostat

The 4He cryostat used in this work is a dry system and can achieve stable temper-

atures between room temperature and 1.5K. The system is a dry system meaning

that all cryogens are contained and do not need to be regularly replenished.

Cooling is broken down into multiple stages. The first two stages use 4He

pulse tubes to first cool to 30 K and then to 4 K. The 4 K stage in turn cools a

separate 4He circuit. Joule-Thomson expansion is then used to cool the helium

in this circuit to 1.5 K. The helium is pumped through an orifice, after which it

expands and cools. A needle valve is used to manually control the size of this

orifice. Via heat exchangers, this low pressure helium is in thermal contact with

the outer wall of the sample space. This in turn is in thermal contact with any

sample in the sample space via exchange gas, also 4He.

The probe contains a heater and thermometer. These are used together, as well

as a PID (Proportional Integral Derivative) controller, to set sample temperatures.

It is then assumed that the measured temperature is the same as the sample lattice

temperature. The electron temperature, due to electrical over-heating effects, may

well be different. Temperatures between 1.5 K and room temperature can be set.

5.1.2 3He Insert

Using the same cryostat as discussed in section 5.1.1, temperatures as low as 300

mK could be achieved. This was done using a specialist probe, which utilised the

cooling power due to pumping on 3He. When a liquid is pumped on, while it is
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in equilibrium with its own vapour, the liquid is cooled. The cooling power is a

result of the movement of molecules across the phase boundary from liquid to gas,

which is an endothermic process.

The 3He insert operation is similar to that of the standard probe described in

section 5.1.1. However, the sample is instead loaded into a sealed can which is

then pumped down using a turbo pump to a pressure of around 1 x 10−6 mbar. A

small amount of 4He exchange gas is then admitted to the can. The probe is then

loaded into the cryostat as normal and cooled to 1.5 K. Within the can is a roll of

activated charcoal which absorbs the 4He exchange gas inside the can, below 8 K.

This thermally decouples the sample from the sample space of the main cryostat.

The 3He system is a closed system and is weakly thermally coupled to the main

cryostat. Over a period of roughly an hour, the 3He is condensed and cooled to 1.5

K. The liquid 3He is thermally coupled to the sample. Once condensation of the

3He is complete, the 3He is pumped on using a sorption pump. The effectiveness

of this pump is temperature dependant. The hotter the pump, the less absorbent

it is and the less effective it will be. Below 10 K its behaviour is roughly invariant

and the liquid 3He will be cooled to 300 mK. At 30 K it effectively stops pumping

and the system will reach equilibrium at 1.5 K. Next to the pump is a heater,

meaning that the temperature of the sorb can be varied in order to vary the

temperature of the liquid 3He and thus the sample.

5.1.3 3He/4He Dilution Refrigerator

The final system to discuss is the dilution refrigerator. This system uses a mixture

of 3He and 4He to cool to temperatures as low as 20 mK. Such a mixture naturally

separates into two phases, one which is almost 100% 3He and one which is around

6% 3He. They are known as the concentrated and dilute phases respectively.

Analogous to molecules moving across a phase boundary from liquid to gas, 3He
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moving from the concentrated to dilute phase is an endothermic process and

removes heat from the environment. The crucial difference here is that if a liquid

is pumped on to cool it, like is done in pure 3He or 4He systems, eventually the

vapour pressure would become too low and it wouldn’t be possible to continue

pumping. Whereas with a dilution refrigerator, the dilute phase crucially stays at

around 6% 3He even as temperature tends to absolute zero. The phase boundary

crossing takes place in what is known as the mixing chamber and is the coldest

part of the fridge. Samples are placed in thermal contact with the mixing chamber.

To drive the 3He across the phase boundary, the dilute phase is pumped on. This

takes place in what is known as the still. As 3He has a higher vapour pressure

than 4He, effectively only 3He is pumped around the circuit. The mixing chamber

and still are shown in the schematic of Fig. 5.1.

Figure 5.1: Mixing chamber and still of a dilution refrigerator. In the mixing
chamber 3He moves across the phase boundary, which provides the cooling power
of the fridge, and is pumped around the circuit.

The sample is placed in a puck which is then loaded into the fridge via a load

lock. Again, wiring running up through the fridge connects the sample with coax-
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ial cable connections at the top of the fridge. The dilution refrigerator contains

a 12 T superconducting magnet. By the sample is a heater and thermometer.

Just like the other systems, this allowed for temperatures to be measured and

set. Samples could only be heated to 1.2 K. Above this there was a risk that the

helium would be boiled off and cooling power would be lost. Thus temperatures

between 20 mK and 1.2 K could be set.

None of the systems could access the whole temperature range of 300 K down

to 20 mK. This meant that samples had to be measured in different systems over

different cooldowns.

5.2 Electrical Measurements

All of the measurements made throughout this work were made in order to ascer-

tain a particular resistance or a current-voltage characteristic. In either case, a

voltage is applied in some way and the resultant current measured. If a four ter-

minal measurement is appropriate, a voltage is measured too. As is typical within

the field of quantum transport, resistances are used to infer physical properties

of the system in question. In this section the various techniques to do just this

and the motivations behind each technique shall be discussed. All equipment was

controlled using scripts utilising the PyVISA python module [120].

5.2.1 Alternating Current Measurement

A lock-in amplifier can be used to output a voltage at a given frequency. When

a signal is input back into the lock-in amplifier, it essentially performs a Fourier

transform. It does this in order to find the component of the input signal that has

the same frequency as the output. It is ultimately a noise reduction technique. A

reference frequency can also be input into other lock-in amplifiers, which can then

find the component of the same frequency from different inputs. A common set-
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up involves using two lock-in amplifiers, one measuring a current and the other a

voltage. The output is ideally a small excitation voltage, so as to probe the linear

response of a given sample. Typical two terminal and four terminal set-ups can

be seen in sections 5.2.3 and 5.2.4 respectively.

Issues can arise when making alternating current (AC) measurements of high

resistance samples. The effect of any capacitance or inductance within the mea-

surement circuit, known as parasitic impedance, must be considered. For example,

the capacitance of a coaxial cable. At a non-zero frequency the reactance, imag-

inary part of the impedance, becomes finite. Consider the case of this reactance

magnitude becoming comparable to the resistance of the device being measured.

The path to ground that the AC current can take via the capacitance of the coax-

ial cable, instead of going through the device, now cannot be ignored. Instead

of measuring just the device, the response of the capacitance which is in parallel

with the device is also being measured. It is required that r << 1/ωC where C is

this capacitance, ω is the applied angular frequency and r is the sample resistance.

If this is not the case, either the frequency must be reduced or another way of

measuring resistance must be found. See Fig. 5.2 for a simple circuit depicting

the issue.

Both Zurich MFLI and Signal Recovery 7265 lock-ins were used. The Zurich

MFLI had both voltage and current inputs, whereas the Signal Recovery lock-

ins were used in conjunction with a current pre-amplifier. The pre-amplifiers

converted the current input to a voltage output, which was in turn fed into the

appropriate lock-in. Typically a frequency of 33.33 Hz was used when measuring

low resistance samples. When dealing with highly resistive samples, a frequency

of 4 Hz was found to be the optimal frequency when considering both the effects

of noise and parasitic capacitance.
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Figure 5.2: Circuit demonstrating the problem of parasitic capacitance when mea-
suring high resistance samples. If the impedance magnitude of the path to ground
via the coaxial cable capacitance is no longer much greater than that of the path
through the device, one will begin to measure current due to this unwanted path.
This is thus an issue when making AC measurements of highly resistive devices.

5.2.2 Direct Current Measurement

To get around the issue of finite reactance within the measurement circuit, direct

current (DC) measurements can be made. The main issue with this technique

is the increased noise associated with such measurements, when compared to

using a lock-in amplifier. For example, any equipment reliant on mains power

will introduce noise at 50 Hz. Other electromagnetic sources of noise include

radio waves and wifi signals. Physical vibrations, most notably due to pulse tube

operation, also introduce noise.

When making a DC measurement it is instructive to measure a current-voltage

characteristic, otherwise known as an IV curve. Unlike an AC measurement in

which a small excitation voltage is applied to probe the ohmic, meaning linear, re-
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sistance, the non-ohmic regime of the material can be probed. Such measurements

are critical when investigating samples with significant electron overheating. In

such instances, the non-ohmic regime is of great importance. Furthermore, mea-

suring a current-voltage characteristic allows any potential DC offsets within the

circuit to be found. The ohmic resistance can be found by taking the linear part

of the characteristic, around zero applied bias.

DC measurements were made by applying a bias voltage over a range of values

and measuring the resultant currents. The voltages were applied using a Zurich

MFLI and currents measured using a Keithley 6514 electrometer which had a

noise floor around 1 × 10−13 A. All DC measurements were two terminal owing

to the small relative series resistances involved when choosing to make such a

measurement, as discussed in section 5.2.3.

5.2.3 Two Terminal Measurement

This measurement involves a voltage being applied between two contacts of a

device and measuring the resultant current. The main drawback of such a mea-

surement is that some of the applied voltage is dropped across both the wiring

of the circuit and, usually more significantly, the device contacts. Hence the re-

sistance given by simply dividing the applied voltage by the measured current

includes this series resistance. A typical set-up, using a lockin to both apply an

excitation voltage and measure the resultant current, is depicted in Fig. 5.3.

Such measurements were thus taken when the device resistance was much

larger than the parasitic series resistance. In some cases, it was the only option.

When measuring transport through localised states in the quantum Hall regime,

the relevant resistance was between contacts in the middle of the sample. No

other configuration, other than a two terminal measurement, could be used.
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Figure 5.3: A typical two terminal set-up using a lock-in amplifier to both apply
an excitation voltage and measure the resultant current.

5.2.4 Four Terminal Measurement

Such a measurement overcomes the issue of a parasitic series resistance. Again

a voltage is applied between two contacts and the current measured. However,

this time the voltage is also measured between two additional contacts, hence the

name. The resistance between these two contacts can be determined by dividing

the measured voltage by the measured current. There is no need to worry about

series resistance as a voltage measurement should, ideally, draw no current. Thus

the potential difference measured will be the same potential difference that is

found along the current path between the two contacts. A typical set-up in which

one lock-in applies an excitation voltage and measures the resultant current, while

another measures the voltage along the device, is depicted in Fig. 5.4. So that the

second lock-in has knowledge of the frequency and phase of the first, a reference
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signal is passed from the first to second.

Figure 5.4: A typical four terminal set-up in which one lock-in amplifier applies
an excitation voltage and measures the resultant current. The second lock-in
amplifier measures the voltage along the device, V1-V2. So that the second lock-
in has knowledge of the frequency and phase of the first, a reference signal is
passed from the first to second.

Often, for low resistance devices, it is not essential to measure the current.

An essentially constant current can be applied by placing a large resistor in series

with the device. Assuming this resistance is much larger than the device’s, the

current will be very close to the applied voltage divided by this resistance.



Chapter 6

Hall Effect in Localised GaAs

In this chapter, results regarding the Hall effect in two different localised trans-

port regimes are presented. Specifically, the Hall effect is measured when trans-

port takes either an Arrhenius form or is via Efros Shklovskii hopping. Thus

conductivity takes the form,

σ(T ) = σ0 exp

[
−
(
T0
T

)γ]
, (6.1)

where γ = 1 and γ = 1/2 for Arrhenius transport and Efros Shklovskii hopping,

respectively. The motivation for this work stems directly from the discussions of

the Hall effect in chapter 2. In section 2.6.1 it was asserted that convincing experi-

mental evidence of activation to a mobility edge does not exist in the literature; an

observation of Arrhenius Hall carrier density with the Fermi level below a mobility

edge has never been reported. Assuming the finite lifetime of states above the

mobility edge has no bearing on the Hall effect, one would expect to observe an

Arrhenius Hall carrier density if transport is via activation to a mobility edge. In

this work, using a 300 µm square van der Pauw device, such behaviour is reported

for the first time. Furthermore, and just as significantly, the mobility is shown
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to be independent of Fermi level in this regime. As shall be discussed, the Fermi

level is manipulated using a gate. This is arguably one of the most important

results presented in this thesis and is strong evidence of transport via activation

to a mobility edge. A temperature dependent Hall effect will also be presented in

the Efros Shklovskii transport regime. The temperature dependences will be com-

pared to current theories, previously discussed in section 2.8.1. However, as shall

be seen, the physical picture of the Hall effect in the hopping transport regime is

not clear, unlike that of the activated carrier density work.

In addition, the successful development of a gate defined 5 µm square van

der Pauw device is demonstrated. By carrying out a focusing type measurement,

the two gate system used to define the square is shown to work as intended. A

third gate was used to deplete the square and thus carry out localised transport

measurements. The motivation behind measuring these smaller devices, relative

to the 300 µm devices, was to investigate whether transport properties associ-

ated with an activated conductivity vary with sample size. If the Hall effect is

dependent on lifetime at the mobility edge, a sample size equal to or less than the

associated lengthscale should display different properties compared to a sample

size larger than this lengthscale. Given the difficulty in calculating the lifetime at

the mobility edge, it is unclear if 5 µm will be less than this lengthscale. However,

it is still worthwhile exploring a possible lengthscale dependence of the Hall effect.

The 300 µm and 5 µm devices allow for exactly this. Note also that if the phase

coherence length exceeds the sample size, universal conductance fluctuations will

be observed. See section 2.3 for a full discussion regarding the impact of sample

size, mean free path and phase coherence length on quantum coherence effects.

The 5 µm devices, close to depletion, suffered with issues related to contacting

the central square. This meant that it was not possible to probe as deep into

the band tail as was possible with the 300 µm devices. However, a temperature
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dependent carrier density was still observed.

6.1 Device Fabrication and Basic Characterisa-

tion

The material used in this work was an Al0.33Ga0.67As/GaAs heterostructure. The

2DEG resides at the Al0.33Ga0.67As/GaAs interface, 90nm below the wafer surface.

A schematic of the wafer is shown in Fig. 3.3a. The density of the silicon dopants

in the 40 nm doped layer is 1.2× 1018 cm−3. Square devices were made in order

to perform van der Pauw measurements [121]. Such a geometry was chosen due

to the reduction of longitudinal signal mixing when making Hall measurements,

compared to a standard Hall bar geometry. Gated devices with square side length

of 300 µm and 5 µm were fabricated. As shall be discussed, the fabrication of

the 5 µm devices was more involved than the 300 µm devices. In both cases, a

global top gate allowed application of a gate voltage, Vg, and thus manipulation

of the Fermi level below the mobility edge. Mesas, ohmic contacts and gates were

fabricated as described in section 4.6.

6.1.1 300 µm Samples

The square of the 300 µm samples was simply defined by a wet-etched mesa. An

image of such a device can be seen in Fig. 6.1. This device is suitable for four

terminal van der Pauw (VDP) measurements. A gate covers the square in order

to deplete the 2DEG and bring the transport into a localised regime.

To carry out basic device characterisation, longitudinal and Hall resistances

were measured as a function of magnetic field at Vg = 0. This was done at 1.5

K in a four-terminal set up, as depicted in Fig. 5.4, with a 50 µV excitation at

33.33 Hz. Longitudinal resistance against magnetic field is shown in Fig. 6.2a.
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Figure 6.1: 300 µm square device. The gate covers the square. The ohmic contacts
are seen in the corners of the device.

The Shubnikov-de Haas oscillations are well behaved, meaning that the minima

fall to zero, indicating the absence of parallel conduction. The Fourier transform

of this longitudinal resistance is shown in Fig. 6.2b. As the filling factor is given

by ν = hn/eB, the period of the Shubnikov-de Haas oscillations, when plotted

agsint the reciprocal of magnetic field, should be equal to e/nh if Landau levels

are sufficiently spin split. The dominant frequency of the oscillations will therefore

be nh/e. However, to produce a meaningful Fourier transform, many periods of

oscillation are needed. Using data which only covers the lowest filling factors

will not suffice. Therefore, data at low magnetic fields is typically used, in which

case the Landau levels are effectively not spin split. In the case of Fig. 6.2b,

data used was between 0.001 T - 0.7 T. The dominant frequency will therefore be

nh/2e. Thus by multiplying the frequencies of the Fourier transform by 2e/h, the

dependent variable of the Fourier transform plot can be carrier density and one

can easily determine the carrier density of the device. Note that before Fourier

transforming, the derivative of the resistance with respect to 1/B was taken so as

to remove the zero frequency component. The carrier density was thus found to
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be 1.45× 1011 cm−2.

(a) (b)

Figure 6.2: a) Longitudinal resistance of the 300 µm square against magnetic
field with Vg = 0. b) The associated Fourier transform, demonstrating a carrier
density of 1.45 × 1011 cm−2. Data between 0.001 T - 0.7 T was used to produce
the Fourier transform.

Hall resistance against magnetic field is shown in Fig. 6.3. The corresponding

carrier density found using the slope of this plot is 1.46×1011 cm−2, in agreement

with the carrier density from Shubnikov-de Haas oscillations. The basic charac-

terisation demonstrated in Fig. 6.2 and Fig. 6.3 shows that this device is well

behaved and suitable for localisation studies.

Figure 6.3: Hall resistance of the 300 µm square against magnetic field with
Vg = 0. The associated carrier density is 1.46× 1011 cm−2.
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6.1.2 5 µm Samples

Square devices of side length 5 µm were initially fabricated in a similar fashion

to the 300 µm devices previously discussed. The only major differences being

that electron-beam lithography was used and the mesa was defined via a dry

etch, as discussed in section 4.6. This was done in order to reduce lateral etching

which, unless a given etch is highly anisotropic, is unavoidable with wet etching.

This itself was necessary as the width of the mesa attached to the corners of the

squares was only 200 nm. With a wet etch of 90 nm, necessary to remove the

GaAs/Al0.33Ga0.67As interface, this mesa would have been laterally etched away.

The 5 µm devices, with squares defined by etching, were not able to be suc-

cessfully measured. The current paths into the squares were most likely depleted

due to their narrow width and associated edge effects. A more involved device

design was therefore created, which did produce working devices. This design,

instead of defining the square via an etched mesa, defined the square using gates.

Three gates in total were used. It was necessary for the gates to overlap each

other, so between each a 65nm layer of aluminium oxide was deposited via atomic

layer deposition (ALD). See section 4.6 for details regarding this technique. Given

there were three gates, there were two dielectric layers needed. The top-most gate

was used to deplete the square, in an analogous fashion to the single gate of the

300 µm devices, and shall be referred to as the plunger gate. The middle gate

defined the square and shall be referred to as the definer gate. Beneath both the

definer and plunger gates was a third gate. This gate was necessary to screen the

effects of the definer and plunger gates, in order to prevent pinching off at the

corners of the squares and thus allow contact to be made with the squares. This

gate shall be referred to as the enhancer gate. This gate was simply kept at 0 V.

Aside from the enhancer gate in the corners, only the plunger gate covered the
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square in its entirety.

(a) (b)

Figure 6.4: Gate defined van der Pauw square design. a) The mesa is yellow with
ohmic contacts orange. The enhancer gate is green, the definer gate is purple and
the plunger gate is pink. b) Close up of a) showing the three gates used to define
the central square.

The whole device design is shown in Fig. 6.4a. The mesa is shown in yellow.

Ohmic contacts are in orange. Only one ohmic contact in each corner of the device

was needed. The enhancer gate is in green with the definer gate in purple. The

plunger gate is in pink. Four gate bonding pads for each gate were fabricated, in

order to mitigate the issues related to bonding on top of a dielectric. A close up

of the square itself is shown in Fig. 6.4b.

A processed device is shown in Fig. 6.5. Shown here are the three gates

previously discussed. The difference in gate metal colour is due to the aluminium

oxide between the gates. It is not clear from this image, but only the plunger

gate covers the whole of the square, as depicted in Fig. 6.4b. The image also

contains numbers labelling the four corners, referred to later when discussing

various measurements.

Basic Hall effect characterisation of such a device can be seen in Fig. 6.6. In

Fig. 6.6a the Hall resistance is plotted against perpendicular magnetic field. A 50
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Figure 6.5: Gate defined van der Pauw square.

µV excitation, at 33.33 Hz, was applied between two diagonally opposite corners

of the square. Specifically corners 1 and 4 of Fig. 6.5. The resultant current

was measured. The Hall voltage between the other two corners was measured.

This was done with the enhancer gate at 0 V, the definer gate at -0.9 V and the

plunger gate at -0.6 V. A 16-bit DAC was used to apply these gate voltages. The

measuring set up is as depicted in Fig. 5.4. From the slope of the plot the carrier

denisty of the square, at this plunger gate voltage, is found to be 2.34 × 1010

cm−2. The same measurement was repeated at other plunger gate voltages. The

resultant plot of carrier denisty against plunger gate voltage is seen in Fig. 6.6b.

As expected, the plot is linear. The rate of change of carrier density with gate

voltage can simply be found from the slope of the plot. This value is expected

to depend simply on the capacitance between the 2DEG of the square and the

plunger gate. The rate of change is 2.26 × 1011 cm−2V−1. This agrees well with

the theoretical value expected for a 130 nm aluminium oxide layer and a 90 nm

layer of semiconductor material, which is 2.33× 1011 cm−2V−1.

Finally, with respect to device characterisation, the high mobility nature of

the wafer was used to confirm that the squares were being defined as intended.
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(a) (b)

Figure 6.6: a) Hall resistance of the 5 µm square against magnetic field with the
enhancer gate at 0 V, the definer gate at -0.9 V and the plunger gate at -0.6 V.
The associated carrier density is 2.34 × 1010 cm−2. b) Carrier density against
plunger gate voltage.

The mobility of the as grown wafer was 2.23× 106 cm2V−1s−1. Combined with a

carrier density of 1.57×1011 cm−2, the mean free path is therefore 15.3 µm. Thus

electrons can travel a significant distance ballistically within the 5 µm squares.

A measurement similar to a focusing measurement was therefore possible. An

excitation voltage of 50 µ V, at 33.33 Hz, was applied between two corners on the

same side of the square. Specifically corners 1 and 2 of Fig. 6.5. The voltage was

measured between the corners of the square along the opposite edge, corners 3

and 4. The enhancer and plunger gates were at 0 V with the definer gate voltage

at -0.9 V. The longitudinal voltage measured is plotted against perpendicular

magnetic field in Fig. 6.7. At zero magnetic field the voltage is negative. That is,

when the applied excitation is such that V1 − V2 > 0 then V3 − V4 < 0. Here Vi is

the potential at corner i. Only as field increases does the voltage become positive.

This is due to the ballistic nature of the transport. Upon entering the square,

electrons travel ballistically for an average distance equal to the mean free path

before significantly changing momentum. When entering the square, the average

angle the incoming electrons will have is assumed to be 45o with respect to the
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sides of the square. Thus, with zero magnetic field, when entering via corner 1

and travelling without deflection, the majority of electrons will come into contact

with corner 4 before corner 3. The chemical potential of corner 4 will therefore be

higher than that of corner 3. This is opposite to the usual case in which device

size is much larger than mean free path. However, when a field is applied the

paths of the electrons are curved by the Lorentz force. One of the maxima in Fig.

6.7 is associated with the field at which electrons entering the square from corner

1 are focused directly to corner 3. As the excitation voltage is AC, the field of

opposite sign is associated with electrons from corner 2 being focused directly to

corner 4. As the electrons are assumed to exit and leave with an average angle

of 45o, the focused paths which are bent by the Lorentz force can be thought of

as quarter circles. Thus once the cyclotron radius, r = h̄kF/Be, associated with

this focusing is known, the effective square edge can be given by
√
2r. The field

associated with the voltage maximum is 0.022 T. Thus with a carrier density of

1.57× 1011 cm−2 it follows that r = 2.98 µm and the effective square side length

is 4.2 µm. As this length is close to that of the lithographic length, the conclusion

of this analysis, essentially, is that the square is defined as intended.

Figure 6.7: Focusing style measurement demonstrating the effective square side
length to be 4.2 µm. An excitation voltage of 50 µV at 33.33 Hz was applied
between corners 1 and 2 of Fig. 6.5. The resultant voltage between corners 3 and
4 was measured as perpendicular magnetic field was swept.
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6.2 Localised Transport Measurements

Four terminal measurements of longitudinal resistivity and Hall resistance were

made as a function of temperature. Just as with the high mobility characterisa-

tion, the set-up was as depicted in Fig. 5.4. However this time a lower excitation

frequency was used, to reduce the impact of any parasitic capacitance. A 100

µV AC excitation was applied at 2 Hz. A 16-bit DAC was again used to vary

gate voltages and, in turn, manipulate the Fermi level below the mobility edge.

Naturally, devices became highly resistive. Resistances were measurable below

500 MΩ. At higher resistances, at 2 Hz, the parasitic capacitances of the coaxial

cables and cryostat wiring became an issue. The current noise floor was ∼ 10−13

A. Magnetic fields of ±0.5 T were applied when making Hall resistance measure-

ments. The measured Hall resistances were anti-symmetrised in order to remove

the mixing of the longitudinal signal. Longitudinal resistance measurements were

also made at ±0.5 T so as to compare with Hall resistances at the same field

magnitude. This is necessary as applied magnetic field will affect the nature of

the localised states and resultant transport.

6.2.1 300 µm Samples

Activated Carrier Density Results

Figure 6.8a displays resistivity, ρ, against the reciprocal of temperature, T−1, for

various gate voltages. On a semi-log plot, the data falls onto straight lines, indi-

cating that the transport is an Arrhenius process. That is to say, the conductivity

fits to (6.1) with γ = 1. At the lowest gate voltages, the fitted straight lines con-

verge to the same infinite temperature intercept, σ0 = 3e2/h. This is indicative

of a minimum metallic conductivity and is in keeping with the values previously

reported in the literature, [14,16,122]. In general, as Vg decreases, the Fermi level
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is pushed even further below the mobility edge. This increases the characteristic

temperature, T0, which varies between 43 K - 90K. A plot ofW = −d log ρ/d log T

against T for Vg = −0.213 V is shown in Fig. 6.8b. If conductivity is of the form

(6.1), W = γT γ
0 T

−γ and such a plot on a log-log scale should be a straight line

with slope equal to −γ. This is the case and the slope is −1.07 ± 0.15, again

indicating an Arrhenius transport mechanism.

(a)
(b)

Figure 6.8: a) Arrhenius resistivity of 300 µm device demonstrated by plotting
against T−1 on a semi-log scale. b) Plot of W = −d log ρ/d log T against T for
Vg = −0.213 V, again demonstrating Arrhenius behaviour.

So far, the Arrhenius behaviour presented is not original and, as discussed,

similar findings have been reported numerous times in the literature. Although the

convergence of the infinite temperature conductivity intercept, σ0, is particularly

interesting in the context of activation to a mobility edge, this too, as noted,

has been observed previously. What is novel, however, is the behaviour of the

Hall carrier density and Hall mobility. As shall be seen, their behaviour provide

clear evidence of activation to a mobility edge. Such observations have not been

reported in the literature.

The variation of Hall carrier density with the reciprocal of temperature, T−1,

is shown in Fig. 6.9a. The gate voltages are the same as in Fig. 6.8a. The carrier
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densities, on a semi-log plot, fall onto straight lines. They thus appear to take

an Arrhenius form, just like the conductivity. This observation, of an activated

carrier density above a mobility edge, has not been reported before. Furthermore

the mobility, shown in Fig. 6.9b, is gate independent. This is striking; the po-

sition of the Fermi level has no bearing on the mobility. This can be explained

if all transport takes place at the mobility edge. Note that the mobility has a

temperature dependence. In the context of transport via activation to a mobil-

ity edge, this may initially seem surprising. If σ and n are assumed to have the

same characteristic temperature, then µ = σ/ne is expected to be a temperature

independent constant. However, given that the very presence of a mobility edge

in two dimensions is due to finite temperature effects, it is not unreasonable to

claim that the states just above the mobility edge are highly temperature depen-

dent. This would allow for both the mobility to have a temperature dependence

and the inequality of carrier density characteristic temperature and conductivity

characteristic temperature. A significant claim of this thesis is that due to an Ar-

rhenius conductivity, Arrhenius carrier density and a gate independent mobility,

clear evidence of transport via activation to a mobility edge has been observed

for the first time.

The Arrhenius characteristic temperatures of the resistivity and carrier density

are plotted against gate voltage in Fig. 6.10a. These temperatures are the slopes

of the straight line fits in Fig. 6.8a and Fig. 6.9a. As the Fermi level is pushed

further below the mobility edge, these characteristic temperatures increase. In the

case of the carrier density, kBT0 is simply the energy separation between the Fermi

level and the mobility edge. The difference between the resistivity and carrier

density characteristic temperatures is also plotted and is seen to be approximately

constant. Given that µ = σ/ne, the difference is responsible for the temperature

dependence of the mobility. The mobility is determined by the extended states
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(a) (b)

Figure 6.9: a) Arrhenius Hall carrier density of 300 µm device demonstrated
by plotting against T−1 on a semi-log scale. b) Mobility against T−1, showing
mobility is gate independent and thus independent of Fermi level.

just above the mobility edge, as previously discussed. Therefore, the temperature

difference is the characteristic temperature of the extended state mobility. This

explains its lack of dependence on Fermi level. Significantly, Fig. 6.10a appears

to show a continuous transition between an activated carrier density, claimed for

the first time in this work, and the supposed activated mobility regime of previous

works in the literature. However, it is argued here that the transport is always

via activation to mobility edge; what varies between the two regimes is whether

carrier density or mobility dominates the resistivity temperature dependence. At

the lowest gate voltages, and therefore lowest Fermi levels, it is the carrier density

that dominates the resistivity temperature dependence. As Fermi level increases,

the carrier density characteristic temperature decreases until it is the mobility

that dominates the resistivity temperature dependence. In this later regime, it is

the temperature dependence of the extended states that has the most influence of

the resistivity temperature dependence and not the gap between Fermi level and

mobility edge. In both regimes, the transport is consistently via activation to a

mobility edge.
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The ratio of the localised density of states, N , to the the constant extended

density of states, Next = m∗/πh̄2, is plotted against Vg in Fig. 6.10b. The

localised density of states were determined using N = (Cg/kB)dVg/dT0, as first

demonstrated in [26]. Here T0 is the carrier density characteristic temperature and

Cg is the change in 2DEG density per unit gate voltage. The derivative, dVg/dT0,

was evaluated after first fitting to T0 against Vg. As the Fermi level is pushed

further into the band tail the density of states reduces, as expected. The value

of N/Next can be seen to vary between 0.05-0.2. Values in the literature typically

have N ≈ Next when making similar measurements of localised transport, as first

seen in [26]. It is possible that the lower values of N/Next accessed in this work

have allowed the Arrhenius carrier density and the previously discussed transition

to be observed.

(a) (b)

Figure 6.10: a) Arrhenius characteristic temperatures of the resistivity, carrier
density and the difference against gate voltage. The difference is effectively the
mobility characteristic temperature. It is strikingly constant and thus indepen-
dent of Fermi level. b) The ratio of the density of states, N , to the extended state
denisty of states, Next = m∗/πh̄2, against gate voltage. The ratio was calculated
using N = (Cg/kB)dVg/dT0 where T0 is the carrier density characteristic temper-
ature and Cg is the change in 2DEG density per unit gate voltage.
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The lifetime at the mobility edge, τedge, is expected to depend exponentially

on the separation between mobility edge and Fermi level. That is to say, τedge ∝

exp[−(Eµ − EF )/kBT ]. Here EF is the Fermi energy and Eµ is the mobility edge.

In this work, the mobility temperature dependence was found to be independent

of the Fermi level. Thus, edge lifetime does not appear to affect transport in

the extended states just above the mobility edge. It is therefore expected that

the elastic scattering lifetime is less than the edge lifetime; the edge lifetime is

irrelevant with respect to transport. This is seen to be true regardless of whether

carrier density or mobility dominate the resistivity temperature dependence.

Efros Shklovskii Hopping Results

At lower temperatures, the transport was observed to be via Efros-Shklovskii

hopping, as shown in Fig. 6.11. To achieve these lower temperatures, measure-

ments were made in a dilution refrigerator as opposed to the 1.5 K system used

to take the data in Fig. 6.8 and Fig. 6.9. Both of these cryogenic systems are

discussed in section 5.1. This means that the results are associated with different

cool-downs. Different cool-downs result in different 2DEG populations. The main

consequence of this is that gate voltages cannot necessarily be compared between

different cool-downs.

Figure 6.11a shows resistivity against T−1/2 for various gate voltages, on a

semi-log plot. The data falls onto straight lines indicating the conductivity has

the form of (6.1) with γ = 1/2. This is indicative of Efros-Shklovski hopping. The

characteristic temperature, T0, varies between 1.5 K - 8.8 K. Figure 6.11b shows

W plotted against T , for Vg = −0.19. The straight line of slope −0.49 ± 0.09 is

again indicative of Efros-Shklovski hopping.

Figure 6.12a shows the variation of the Hall constant, RH , with temperature.

The gate voltages are the same as in Fig. 6.11a. The temperature dependence
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(a) (b)

Figure 6.11: a) Efros-Shklovskii hopping resistivity demonstrated by plotting re-
sistivity against T−1/2 on a semi-log scale. b) Plot ofW = −d log ρ/d log T against
T for Vg = −0.19 V, again demonstrating Efros-Shklovskii hopping behaviour.

becomes more significant as Vg decreases. The corresponding Hall mobilities are

plotted against T−1/2 in Fig. 6.12b. Straight lines thus indicate the mobility has

the same general form as the conductivity. This is the case for the highest gate

voltages plotted. The temperature dependence of the Hall mobility for the lowest

gate voltages is not as clear. As discussed in section 2.8.1, there is no accepted

model explaining the Hall effect in the hopping transport regime. The results

presented here, it could be argued, support theoretical and experimental works

that propose a mobility of the same form as the conductivity but with a different

characteristic temperature. As shown in Fig. 6.12b, the ratio of mobility char-

acteristic temperature to conductivity characteristic temperature, T µ
0 /T

σ
0 , varies

between 0.41 - 0.73. As previously discussed, the corresponding values in Ge/Si

quantum dots and reduced graphene oxide are 0.31 and 0.49 respectively [89,90].

The theoretical prediction is a ratio of 0.09 [89]. The ratios reported here are thus

closer to other experimental values in the literature than to theoretical predictions.
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(a) (b)

Figure 6.12: a) Hall constant plotted against T 1/2. Lines used for clarity, to
indicate same data series. b) Hall mobility plotted against T 1/2. The ratios of
mobility characteristic temperature to conductivity characteristic temperature,
T µ
0 /T

σ
0 , are shown.

6.2.2 5 µm Samples

The 5 µm samples were studied in order to investigate potential effects related to

sample size. Prior to measuring the 300 µm samples it was hypothesised that the

unusual, yet consistent, results in the literature reporting an activated mobility

as opposed to an activated carrier density could be related to the finite lifetime

at the mobility edge. If the edge lifetime is smaller than the elastic scattering

time, τedge < τ , it is the former that determines the mobility which is thus given

by µ = eτedge/m
∗. In this case, it would be interesting to observe how transport

properties such as Hall mobility and Hall carrier density are affected when sample

size is similar to or less than the lengthscale associated with the edge lifetime.

Notwithstanding this reasoning, the 300 µm results presented in section 6.2.1

demonstrated transport via activation to a mobility edge in which the edge lifetime

is irrelevant. It was the elastic scattering time, τ , which determined the mobility.

Furthermore, the unusual results from the literature were shown to be potentially

explained by a transition in which carrier density and extended state mobility
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compete to dominate the resistivity temperature dependence. Regardless of this,

the investigation of sample size was still deemed worthwhile, hence the 5 µm

sample study.

Carrier density against the reciprocal of temperature, T−1, is shown in Fig.

6.13a. Straight lines indicate Arrhenius behaviour. Various data series associated

with different plunger gate voltages are plotted. Regardless of plunger gate volt-

age, the enhancer gate voltage was 0 V and the definer gate voltage was -0.9 V;

the enhancer and definer gate voltages were the same as in Fig. 6.7. Below 5 K

the carrier density appears activated with characteristic temperature increasing

as Vg, and thus Fermi level, is reduced. The characteristic temperature varies

between 1.2 K - 5.9 K.

(a) (b)

Figure 6.13: a) Carrier density against T−1. b) Ratio of the density of states, N ,
to the extended state denisty of states, Next = m∗/πh̄2, against gate voltage.

The ratio of the density of states, N , to the extended state density of states,

Next = m∗/πh̄2, is shown in Fig. 6.13b. The density of states were calculated in

the same way as described in section 6.2.1. Measurement issues, seemingly related

to the contacts to the central square, meant that lower gate voltages were unable

to be investigated. Thus it was not possible to probe further into the band tail.
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Below the displayed gate voltages it was not possible to pass a current though

the device. It is possible that this was due to the plunger gate pinching off the

contacts to the square regardless of the screening provided by the enhancer gate.

Because the device stopped conducting below the gate voltages shown, it was not

possible to achieve the values of N seen in Fig. 6.10b. Due to a temperature

dependent carrier density being observed, the initial results presented here are

promising. However, further work is required to allow one to probe further into

the band tail in these small devices.



Chapter 7

Electron-Phonon Decoupling in

GaAs

In this chapter the breakdown of the quantum Hall effect, in the context of elec-

tron overheating, is investigated. As discussed in section 2.8.3 there appears to

be a, perhaps trivial, issue of semantics in the literature regarding the breakdown

of the quantum Hall effect. This terminology is often used to refer to a sudden

increase in longitudinal resistance, using a standard Hall bar geometry, as applied

current increases past a critical point. This occurs in the quantum Hall regime

meaning the filling factor, ν, is an integer. The Hall resistance also deviates from

its quantised value of h/νe2. This is an edge state effect; for some reason, that is

yet to be agreed upon, the ballistic edge state transport is suddenly lost. How-

ever, the same terminology is also used in the case of a Corbino geometry. In

this instance the breakdown refers to a sudden increase in conductivity as applied

bias increases, again with integer filling factor. In such a geometry, the trans-

port is independent of edge states and the effect is instead associated with the

localised states of the disorder broadened Landau levels. In this work, it is this

later effect which is investigated. It will be argued that the same phenomenolog-
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ical heat-balance equation, which has been successfully used to explain electron

overheating and hysteretic current jumps in disordered thin films, can also be

applied to transport between the localised states of disorder broadened Landau

levels. In turn, it will argued that the breakdown of the quantum Hall effect, in

a Corbino geometry, is due to electron-phonon decoupling. See section 2.7.3 for a

discussion regarding electron overheating and hysteretic current jumps. Specifi-

cally, by measuring current-voltage characteristics, the model described by (2.67)

will be tested. Overheating explanations of the breakdown of the quantum Hall

effect have been attempted previously. However, as discussed in section 2.8.3,

standard Hall bar geometries were used and the explanations were not successful.

The work presented here is, to the author’s knowledge, the first that systemati-

cally tests an overheating model in a quantum Hall system using a Corbino type

geometry.

Typically, when investigating the integer quantum Hall effect, it is even filling

factors that are studied. That is, ν = 2i where i is an integer. In this way, the

energy gap to the next Landau level is given by the cyclotron energy, h̄eB/m∗,

and not the Zeeman energy. In GaAs two-dimensional electron gases the ratio of

the cyclotron energy to the Zeeman energy is ∼ 70 [123]. Having a larger energy

gap typically means that effects are more pronounced at finite temperature. In

this work, a breakdown was not observed at even filling factors. However, as shall

be shown, the corresponding temperature dependence of the resistance, R, took

on a power law form when ν = 2i. That is, R = AT−α with α > 0. Using the same

analysis discussed in section 2.7.3, such a temperature dependence is predicted not

to lead to current jumps as applied bias is swept. The lack of a breakdown, with

this temperature dependence, therefore strengthens the case for the applicability

of the overheating model. The majority of this chapter focuses on odd filling

factors, meaning ν = 2i+1. At such values of ν, breakdown was observed; current-
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voltage characteristics did show large hysteretic current jumps. The observed

transport was that of Efros-Shklovskii hopping with odd filling factor. This means

the gap to the next Landau level is irrelevant. Fittings to the overheating model

described by (2.67) will be presented. They will be shown to strongly support

both the model and therefore electron-phonon decoupling. Secondary current

jumps will also be discussed in the context of many-body localisation (MBL).

Figure 7.1 can be used to potentially explain why even filling factors dis-

played qualitatively different transport to that of the odd filling factors. As

discussed, they displayed power law resistances as opposed to Efros-Shklovskii

hopping. They also displayed higher resistances than their adjacent odd counter-

parts. This could be do to the Zeeman split disorder broadened Landau levels

overlapping. In this case, the density of states at the Fermi level will be greater

with odd filling factor compared to even filling factor, as depicted in Fig. 7.1.

A lower density of states is expected to lead to a lower conductivity and could

explain the different transport mechanism.

Figure 7.1: Landau level density of states depicted if spin split levels overlap.
This leads to a greater density of states for odd values of ν compared to even ν.
Fermi levels, EF , at different values of ν are labelled.
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7.1 Device Fabrication and Basic Characterisa-

tion

The material used in this work was an Al0.33Ga0.67As heterostructure, with the

2DEG residing at the GaAs/Al0.33Ga0.67As boundary, 90 nm below the wafer sur-

face. The wafer structure is shown in Fig. 3.3a. The density of the silicon dopants

in the 40 nm doped layer is 9× 1017 cm−3. The device used is shown in Fig. 7.2.

The mesa and ohmics were fabricated as detailed in section 4.6. Contacts were

arranged both in the centre and around the edges of the device. The structure al-

lowed for basic magnetotransport measurements, to confirm the suitability of the

wafer, as well as Corbino-esque measurements to probe the localised states of the

disorder broadened Landau levels. Specifically, with respect to basic characterisa-

tion, a four-terminal longitudinal resistance was measured in order to demonstrate

the well behaved nature of the Shubnikov-de Haas oscillations and determine the

carrier density.

Figure 7.2: Device to carry out both measurements of Shubnikov-de Haas oscil-
lations as well as measurements of transport within disorder broadened Landau
levels.

Longitudinal resistance against magnetic field is plotted in Fig. 7.3a. The
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minima of the Shubnikov-de Haas oscillations fall to zero, indicating the absence

of any parallel conduction. The set up was as depicted in Fig. 5.4, with a

constant current of 50 nA being applied at 33.33 Hz. The Fourier transform

of the longitudinal resistance, using data between magnetic fields of 0.001 T -

0.7 T, is shown in Fig. 7.3b. The carrier density, n, is shown to be 1.64 × 1011

cm−2. The magnetic field associated with filling factor ν is therefore given by

nh/eν = (6.80/ν) T.

(a) (b)

Figure 7.3: a) Longitudinal resistance against magnetic field demonstrating the
minima of the Shubnikov-de Haas oscillations going to zero and therefore a lack of
parallel conduction. b) The associated Fourier transform, demonstrating a carrier
density of 1.64 × 1011 cm−2. Data between 0.001 T - 0.7 T was used to produce
the Fourier transform.

7.2 Localised Transport

In the remainder of this chapter, measurements of the localised transport within

the disorder broadened Landau levels at different filling factors will be presented.

Fittings will be made to the heat-balance model, (2.67), to justify the claim that

electron-phonon decoupling explains the breakdown of the quantum Hall effect.

Critical temperatures will also be compared to theoretical values given by (2.70).

To avoid the ballistic edge states, the transport between a central contact and

an edge contact was measured. The measurements were necessarily two terminal.
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The parasitic contact resistances, ∼ 1 kΩ, were negligible compared to the overall

resistances. Current-voltage characteristics were measured using a Zurich MFLI

to apply a DC bias and a Keithley 6514 electrometer to measure current. The

current noise floor was ∼ 0.1 pA. In the linear regimes of the characteristics, close

to zero bias, the electron temperature, Tel, is considered equal to the lattice tem-

perature, Tph. The resistances, taken from the linear regimes, were then used to

produce resistivity temperature dependences. These dependences were then used

to determine both the mechanism of transport and the associated characteristic

temperature. A typical characteristic at low biases is shown in Fig. 7.4. This

was measured with ν = 5 at 110 mK. The polynomial fitting used to determine

the slope of the linear regime is also shown. The corresponding ohmic resistance

is 8.4 GΩ. Note the DC voltage offset. It is common for there to be a non-zero

current when applied bias is meant to be zero. This current is known as the input

bias current of the measuring instrument. This is another advantage of measuring

current-voltage characteristics; the offset can be taken into account by shifting the

point of zero DC bias.

Figure 7.4: Typical current-voltage characteristic measured with ν = 5 at 110
mK.
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7.2.1 Filling Factor Eight

As discussed in the introduction to this chapter, when studying the quantum Hall

effect it is the even filling factors that are typically studied. This is so that the

gap to the next Landau level will be the cyclotron energy gap, as opposed to

the Zeeman energy gap. In this work, even filling factors did not display jumps

in their current-voltage characteristics. However, this can be explained, in the

context of electron overheating, using the resistivity temperature dependences.

Such a dependence, with resistivities taken from the linear regime of current-

voltage characteristics, is shown in Fig. 7.5, for ν = 8. At lower even values

of ν (6, 4 and 2) the resistances were too large to be measured in the dilution

refrigerator, meaning they were larger than 100 GΩ. In Fig. 7.5, resistivity is

plotted against temperature on a log-log scale. The data falls onto a straight line;

the resistivity has a power law dependence on temperature. That is, ρ = AT−α

with A = 725 h/e2 and α = 5.52.

Figure 7.5: Resistivity plotted against temperature on a log-log scale at ν = 8.
The fitted line is a power law dependence which takes the form ρ = AT−α with
A = 725 h/e2 and α = 5.52

Such a temperature dependence, using the heat-balance model, will not lead
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to current jumps in the current-voltage characteristics. To show this, (2.67) is

applied in the case of such a dependence resulting in,

V 2 = AΓΩ(T β
el − T β

ph)T
−α
el . (7.1)

If a current jump is to exist, V 2 as a function of Tel should have a form similar to

the yellow trace in Fig. 7.6. In this case, as applied bias, V , is swept there will

be a discontinuity in Tel and a resultant jump in current. For V 2 to have such a

form, there must necessarily be at least two local extrema in the right hand side

of (7.1), as a function of Tel. It can be shown that with a power-law resistivity

temperature dependence, this will not be the case. To find the extrema of the

right hand side of 7.1, its derivitive with respect to Tel is set to zero resulting in,

(β − α)T β−α−1
el + αT β

phT
−α−1
el = 0. (7.2)

Rearranging (7.2) results in,

T β
ph = (1− β/α)T β

el. (7.3)

If β > α, (7.3) will never be satisfied due to the physical constraints that Tph > 0,

β > 0 and α > 0. If α > β, for a given value of Tph, there is only one value of

Tel for which (7.3) holds. Regardless, therefore, of the values of β and α, there

are never two local extrema in the right hand side of 7.1 as a function of Tel. The

general dependence of V 2 on Tel, in both cases, is shown in Fig. 7.6. The general

power law dependence, ρ = AT−α, will never lead to current jumps in the current-

voltage characteristics. In conclusion, the lack of current jumps while filling factor

is even, can be explained by the phenomenological heat-balance equation, (2.67),

and the measured power law resistivity temperature dependence. Because of this,
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odd filling factors are the focus of this chapter.

Figure 7.6: Demonstration that ρ = AT−α will never lead to current jumps in
current-voltage characteristics. The necessary form of V 2 against Tel is shown in
yellow. Here there exists a region of bias in which there are three possible electron
temperatures. This is not the case with a power law resistivity dependence, shown
in blue and red.

7.2.2 Filling Factor Five

Current voltage characteristics with ν = 5, meaning the perpendicular magnetic

field was 1.36 T, are displayed in Fig. 7.7a at various lattice temperatures, Tph . In

all of the characteristics shown, the bias was swept from negative to positive val-

ues. Primary current jumps of over three order of magnitude are present. There

is also clear hysteresis. The qualitative form of the characteristics is similar to

those measured in disordered thin films, which were ascribed to electron phonon

decoupling. They also appear similar to theoretically predicted current-voltage

characteristics, produced using (2.67). See section 2.7.3 and [21, 22, 81, 83]. The

dependence on Tph is much stronger at the currents below the jumps, as opposed

to above. That measurements can be made below the jumps is crucial in allowing

a systematic analysis of the heat-balance model described by (2.67). At lower
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values of ν, resistances were too large below the jumps, resulting in current being

drowned out by the ∼ 0.1 pA noise floor. Figure 7.7b shows current-voltage char-

acteristics taken by sweeping in both directions, at 65 mK. This plot is included

to demonstrate the clear hysteresis and emphasise the clean nature of the jumps.

(a) (b)

Figure 7.7: Current-voltage characteristics with ν = 5. a) Bias voltage was swept
from negative to positive values. Sweeps at different lattice temperatures are
shown. Secondary jumps are circled. b) Bias voltage swept in both directions at
65 mK.

The reasoning behind the secondary jumps, which are circled in Fig. 7.7a, is

unclear. They are reminiscent of the secondary jumps observed experimentally

in a quantum dot array [124]. Theoretical work, which used an array of metallic

islands to model the insulating side of a superconductor-insulator transition, pro-

duced qualitatively similar secondary jumps [125]. Alternatively, the secondary

jumps could be due to a non-uniform spatial distribution of electron temperature

which persists at currents above the primary jump. The secondary jumps, in

this instance, would be associated with the areas of lower electron temperature

being heated to the temperature of the hottest areas. This would be significant

with respect to many-body localisation. As discussed in section 2.7.3, one of the

proposed signatures of such a phase of matter is a bistability in electron temper-

ature [21]. Further work involving samples of different sizes could provide more



7.2. LOCALISED TRANSPORT 147

Figure 7.8: The primary critical jump voltages are plotted against lattice temper-
ature.

insight. Assuming a non-uniform temperature distribution, larger samples should

lead to even more areas that resist the overheating associated with the primary

jump, leading to either more secondary jumps, larger secondary jumps or both.

The critical voltages at which the primary downward current jumps occur, V ↓
c ,

are seemingly invariant with temperature. This is not true for the upward critical

voltages, V ↑
c . This is demonstrated in Fig. 7.8. This in keeping with the over-

heating model, (2.67). See Fig. 2.10 for a theoretical example of a critical voltage

dependence on Tph. In the low current state the electron system temperature is

very close to the lattice temperature and the electron system and the phonon sys-

tem are described as being coupled. The upward jump out of this state, therefore,

depends strongly on Tph. However, above the primary jump, the two systems are

considered decoupled. The electron system has been overheated. In this case, the

downward jump out of this state is almost independent of Tph.

Before fitting to the heat-balance equation, (2.67), it is necessary to determine

the resistivity temperature dependence. As previously discussed, it is assumed

that Tel = Tph in the linear regime of the characteristics, close to zero bias. In

this regime, the electron temperature and lattice temperature do not need to be

differentiated and temperature, T , can be considered. The temperature depen-
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dence of these linear regime resistivities is shown in Fig. 7.9a. Here resistivity is

plotted against T−1/2 on a semi-log plot. The straight line means a good fit to

ρ = ρ0 exp
[
(T0/T )

1/2
]
indicating Efros-Shklovskii hopping. From the slope and

intercept, T0 = 39 K and ρ0 = 0.022 h/e2. The same data and same fit is shown

in Fig. 7.9b. Here resistivity is plotted against T .

(a) (b)

Figure 7.9: Resistivity temperature dependence demonstrating Efros-Shklovskii
hopping at ν = 5. a) Resistivity against T−1/2 on a semi-log scale. The
straight line indicates Efros-Shklovskii hopping. The straight line fit to ρ =
ρ0 exp

[
(T0/T )

1/2
]
has parameters T0 = 39 K and ρ0 = 0.022 h/e2. b) the same

data as in a) plotted against T .

The characteristic temperature, T0 = 39 K, can be used to find the hopping

length [71],

rES =
ξ

4
(T0/T )

1/2 , (7.4)

where ξ is the localisation length given by

ξ = βde
2/4πκϵ0T0kB. (7.5)

Here β2 ≈ 6, as discussed in section 2.6.4. Thus ξ = 220 nm and rES = 1.3 µm at

65 mK, the lowest temperature measured at. The hopping distance can be taken

as the electron-phonon length as this distance is simply the spatial separation

between electron-phonon interaction events. To be able to apply the concept of
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Figure 7.10: Electron temperature against phonon temperature at different bias
voltages. Note the excluded regions of temperature associated with both the
primary jumps and the secondary jumps.

electron-phonon decoupling, the hopping distance must therefore be less than the

size of the sample. This is the case.

The resistivity temperature dependence can be used to find electron temper-

atures as a function of V/I in the non-linear regime of the characteristics. The

dependence is simply inverted, such that Tel is a function of R = V/I. That the

non-linear nature of the characteristics is purely due to electron overheating is a

central assumption of the heat-balance model. In Fig 7.10, the resultant values of

Tel are shown plotted against Tph, at different bias values. Below a critical lattice

temperature, T c
ph ≈ 200mK, and centred around 300 mK in electron temperature,

there exists a region of excluded electron temperatures. This region is associated

with the primary current jumps. When Tph < T c
ph, the electron system cannot

take on the electron temperatures within the excluded region. Other excluded

regions, associated with the secondary jumps, are also visible. At the highest

biases, Tel is close to being independent of Tph. Close to zero bias Tel ≈ Tph. At

such biases the characteristics are approximately linear.
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The values of Tel, found essentially as a function of bias voltage, V , and current,

I, can now be used to verify the heat balance model, (2.67). This can be rewritten

as

P = ΓΩ(T β
el − T β

ph), (7.6)

where P = IV is power dissipated by the sample. What follows is essentially

the main point of this chapter; the data fits well to (7.6) resulting in the current-

voltage characteristics being ascribed to electron-overheating. Crucially, the data

spans the current jumps, meaning that they are ascribed to overheating and, in

this case, electron-phonon decoupling.

Figure 7.11a shows power plotted against Tel, at numerous lattice tempera-

tures, Tph. At the highest values of Tel included in this plot it should hold that

T β
el ≫ T β

ph, assuming a value of β similar to those seen in the literature. Values

of 4, 5 and 6 have been reported [22, 81, 126, 127]. In this case P ≈ ΓΩT β
el and

power plotted against Tel should be a straight line with slope β. This can be seen

in Fig. 7.11a. A straight line of slope 6 is included for reference. Another way

of determining model suitability, which is not restricted to T β
el ≫ T β

ph, is to plot

power against T β
el−T

β
ph. Such a plot is seen in Fig. 7.11b, where multiple values of

β are tested. Note that each series is the same data, just plotted with a different

value of β. The data itself is the same as in Fig. 7.11a. If (7.6) is satisfied,

the data should fall onto a straight line of slope unity on a log-log scale. This is

indeed the case for β = 6, here the slope of the fitted straight line is 0.98± 0.01.

The value of ΓΩ is given by the intercept. As discussed in section 2.7.3, Γ is the ,

the phenomenological electron-phonon coupling constant and Ω is the area of the

sample. When β = 6 the value of Γ is equal to 0.14 Wm−2K−6.

This intercept can then be used to plot IV + ΓΩT β
ph against Tel. Such plots

are seen in Fig. 7.12. If the data fits to (7.6), the plot should be a straight line
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(a) (b)

Figure 7.11: a) Power against electron temperature on a log-log scale. When
Tel ≫ Tph, this should be a straight line of slope β. A line with slope 6 is also

shown for comparison. b) Power against T β
el − T β

ph. Each series is the same data,
just with a different β. If the overheating model of (7.6) is satisfied, this should
be a straight line of slope 1. When β = 6, the slope is 0.98. Note that the data
spans the current jumps.

with slope β. This is the case for β = 6, see Fig. 7.12c. The slope of the fitted

straight line is 5.95± 0.01.

The data in Fig. 7.11 and Fig. 7.12 spans the large current jumps seen in Fig.

7.7. This is quite striking; the success of the fittings with β = 6 is strong evidence

that the phenomenological heat-balance model is able to accurately explain the

highly non-linear current voltage characteristics. Most significantly, the model is

able to explain the large hysteretic current jumps. As a result, these jumps are

ascribed to electron-phonon decoupling.

Another method employed to verify the model is to compare the predicted

critical lattice temperatures, T c
ph, with the experimentally observed values. At

lattice temperatures below T c
ph, current jumps are observed. The predicted values

are given by (2.70). They depend on β, the characteristic temperature T0 and γ,

which depends on the transport mechanism. Applying (2.70) with the observed

parameters β = 6 and γ = 1/2 leads to T c
ph/T0 = 3.9 × 10−3. Current-voltage

characteristics were measured and the previous analysis was repeated at other
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(a) (b)

(c) (d)

Figure 7.12: IV + ΓΩT β
ph against Tel for β values of a) 4, b) 5, c) 6, d) 7. If the

data fits to (7.6) the data should fall onto a straight line with slope equal to β.
This is the case for c). The slope is 5.95 with β = 6. Note that the data spans
the current jumps.

magnetic fields, close to ν = 5. Transport was consistently via Efros-Shklovskii

hopping. Both T c
ph and T0 are plotted against ν in Fig. 7.13a. The value of

T0 can be seen to decrease away from integer filling factor, possibly due to an

increasing density of states either side of this point. This is depicted schematically

in Fig. 7.1. The ratio of the two temperatures, T c
ph/T0, alongside the theoretical

value of 3.9 × 10−3, is plotted against ν in Fig. 7.13b. The comparison of the

observed values with the predicted value is taken as further verification of the

phenomenological electron-phonon decoupling theory.

Finally, current-voltage characteristics can be generated numerically using
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(a) (b)

Figure 7.13: a) Both T c
ph and T0 plotted against ν. b) T c

ph/T0 plotted against ν.
Using (2.70) with γ = 1/2 and β = 6, the theoretical value is 3.9× 10−3.

(2.69) and compared with the observed characteristics. The parameters needed

are ρ0, γ, T0, β and Γ. As previously discussed, the values of ρ0, γ and T0 are taken

from fittings to the temperature dependence of the ohmic resistivities. The values

of β and Γ are taken from the power fittings. Such a numerical characteristic is

seen in Fig. 7.14. Here Tph = 0.9T c
ph. The downward critical voltage predicted in

this plot, V c
↓ = 10 mV, is in good agreement with the measured values shown in

Fig. 7.8.

Figure 7.14: Numerically calculated current-voltage characteristic with Tph =
0.9T c

ph. The downward critical voltage, V c
↓ = 10 mV, agrees with the measured

values seen in Fig. 7.8.
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7.2.3 Filling Factor Three

Current-voltage characteristics at ν = 3 are seen in Fig. 7.15. The bias is swept

from negative to positive values in Fig. 7.15a, with the opposite direction being

shown in Fig. 7.15b. Jumps of five orders of magnitude in current can be seen

as well as clear hysteresis. The bias values associated with downward jumps,

V c
↓ , are again seemingly independent of Tph, unlike the values of V c

↑ . Overall,

the characteristics are qualitatively similar to those of ν = 5 and those in the

literature which have been ascribed to electron-phonon decoupling [21,22,81,83].

Secondary jumps are also present. As is the case with the ν = 5 secondary jumps,

this warrants further investigation. If they can be shown to be due to a non-

uniform spatial temperature distribution, this would be highly significant with

respect to many-body localisation. In the low bias regime with Tph < T c
ph, the

current was generally below the current noise floor. This prevented the detailed

analysis which was possible for ν = 5.

(a) (b)

Figure 7.15: Current-voltage characteristics with ν = 3. a) Bias voltage was
swept from negative to positive values. Sweeps at different lattice temperatures
are shown. b) Bias voltage was swept from positive to negative values. The
asymmetry is due to the hysteretic nature of the characteristics.



Chapter 8

Localised Transport in Graphene

In this chapter, results regarding localised transport in focused ion beam (FIB)

damaged graphene are presented. The initial aim of this work was to investigate

the effect of electron-electron interactions on localised transport. This was to be

achieved using a graphene double layer device. Specifically, the device was com-

posed of a layer of monolayer graphene and a layer of trilayer graphene, separated

by a thin layer, 66 nm, of hexagonal boron nitride (h-BN). Electrical contacts were

fabricated in such a way so that the two layers were electrically isolated. Only

the monolayer graphene was FIB damaged. Both a top gate and back gate were

fabricated. How the carrier density of the pristine trilayer affected the transport

within the damaged monolayer was investigated. The screening layer was chosen

to be trilayer, as opposed to monolayer, due to its higher density of states and

increased screening ability. As shall be shown, no systematic dependence was

found between the trilayer carrier density and the transport within the damaged

monolayer. However, an unusual transition between Efros-Shklovskii hopping and

Arrhenius transport was observed within the damaged monolayer. Significantly,

the Efros-Shklovskii hopping regime was present at lower temperatures than the

Arrhenius regime. This is unusual; typically it is variable range hopping, includ-

155
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ing Efros-Shklovskii hopping, that is expected at the lowest temperatures. This

is due to larger hops becoming more favourable in order to allow carriers to hop

to sites of matching energy. One explanation for this atypical behaviour is that

the soft Coulomb gap, necessary for Efros-Shklovskii hopping, hardens. That is,

the density of states becomes equal to zero over a range of energies and not just

exactly at the Fermi level. This will be discussed in more detail.

8.1 Double Layer Transport in Two-Dimensional

Systems

Double layered structures, such as double quantum wells, have historically been

of interest due to the possibility of observing novel states as a result of interlayer

interactions. Notable examples include indirect excitons, so-named due to the

spatial separation of the fermionic components, charge density waves and coupled

Wigner crystals [128–131]. Such phenomena, typically, rely upon attractive inter-

layer interactions meaning one layer is commonly an electron layer and the other a

hole layer. However, exciton condensation has been observed in electron-electron

double layers and hole-hole double layers with large perpendicular magnetic fields.

Such systems are referred to as quantum Hall bilayers [129]. Regardless of carrier

types, the interactions between the layers can be probed by means of the Coulomb

drag technique. By applying a current, I, through one layer, an open-circuit volt-

age, Vdrag, is induced in the second layer. The drag resistance, Rdrag = Vdrag/I,

provides an insight into the nature of the interlayer interactions. See [132] for the

first experimental demonstration and [133–136] for more recent works.

GaAs/AlxGa1−xAs heterostructures were the first systems used to host such

double layers. Specifically, double quantum well heterostructures. When making

transport measurements of such structures, one has to be careful to ensure that
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the two layers remain electrically isolated; separate electrical contacts to each

layer are necessary. One way of achieving this is by using gates to deplete one

layer in the vicinity of the contacts used to contact the other layer. Such a device

requires both top gates and patterned back gates [135]. In recent years, double

layer structures in graphene have become more commonplace [137]. Work has also

been carried out in combined GaAs/AlxGa1−xAs and graphene systems [138].

In this work, unlike the high mobility systems discussed here, one layer hosted

localised transport. As shall be discussed, disorder was achieved using a focused-

ion beam (FIB). The relative ease of only damaging one layer was ultimately the

reason a graphene device was chosen over a GaAs/AlxGa1−xAs system.

8.2 Device Fabrication and Basic Characterisa-

tion

A schematic depicting the double layer structure is shown in Fig. 8.1. Three layers

of insulating hexagonal boron nitride (h-BN) sandwich the two graphene layers.

As discussed in section 4.7, the silicon substrate was heavily doped meaning it

was essentially metallic and acted as a back gate. The substrate itself had 290 nm

of silicon dioxide grown on it which, along with the h-BN, determined the back

gate’s capacitance. The bottom, middle and top layers of h-BN were 77 nm, 66

nm and 43nm thick respectively. Thicknesses were determined via atomic force

microscopy (AFM).

The stacking of the h-BN and graphene flakes was carried out as discussed

in section 4.7. The first three layers of the stack are shown in Fig. 8.2a. The

image shown was taken midway through the stacking process, before the final

graphene flake and final h-BN flake were added. Two flakes of h-BN are seen with

the monolayer graphene flake visible between them. For clarity the monolayer
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Figure 8.1: Graphene double layer schematic. Three layers of h-BN sandwich a
layer of damaged graphene and a layer of pristine trilayer graphene.

graphene flake has been outlined. The region around the graphene where the

h-BN flakes overlap is also labelled. Before adding the final graphene flake and

h-BN flake, the monolayer graphene was damaged. This was done using a Carl

Zeiss Orion NanoFab FIB, using helium ions, as discussd in section 3.3.3. 25 keV

ions at a dose of 1 pCµm−2 were used. The 10 µm × 6 µm damaged region can

clearly be seen in Fig. 8.2b. This is the same image as Fig. 8.2a, but with a

different lookup table (LUT) filter. With this filter the monolayer is harder to

see, but the damaged region is now visible.

(a) (b)

Figure 8.2: The damaged monolayer graphene flake between two layers of h-BN.
Both a) and b) are the same image with different lookup table filters. In a) the
monolayer graphene can be seen, whereas in b) the damaged region is visible.



8.2. DEVICE FABRICATION AND BASIC CHARACTERISATION 159

The final stack is shown in Fig. 8.3. The trilayer graphene flake and the final

h-BN flake have been outlined for clarity. The damaged region of the monolayer

is still visible. In order to create the wanted double layer device, it was essential

that the trilayer overlapped this damaged region.

Figure 8.3: The completed stack. The trilayer graphene flake, on top of the
monolayer, with h-BN in between can be seen.

Once the stack was complete, five rounds of electron beam lithography were

necessary to fabricate the device. The first two were necessary to make contact to

the two graphene layers. Each of these rounds involved an etch and a subsequent

metal deposition. As discussed in section 4.7, h-BN was dry etched with a sulphur

hexaflouride plasma and graphene with an oxygen plasma. Metal deposition of

1 nm of chromium followed by 30 nm of gold was then carried out. This was

done immediately after etching, without removing the resist, so that metal was

only deposited where the etch had taken place. When forming contacts to the

trilayer graphene the first layer of h-BN was etched away, followed by the trilayer.

Metal was then deposited into the etched space. As the trilayer within the etched

space had been removed, contact was made via the edge of the flake. Thus a one

dimensional contact to the trilayer was formed. It was crucial, therefore, that
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the sample was placed off-centre in the evaporator and rotated so as to allow

the evaporated metal to coat the side wall of the etched space. When making

contact to the monolayer, the top two layers of h-BN and both graphene layers

were etched away. Again, a one dimensional contact was formed following metal

deposition. As well as directly contacting the relevant layers, metal was also

deposited around the edges of the stack, so as to form lines which ran out to

bonding pads. Importantly this metal was deposited at the same time as the

aforementioned contact metal. Thus, due to the etching steps, it was anchored in

the stack. Both this anchoring and the 1 nm chromium adhesion layer ensured

the deposited metal stayed in place. This anchored metal can be seen in Fig.

8.4. This image was taken following the first two rounds of lithography. In the

centre of the stack, the 12 contacts to the two graphene layers can be seen. Those

labelled ’M’ contact the monolayer, while the other 6 contact the trilayer.

Figure 8.4: The six monolayer and six trilayer contacts can be seen in the centre
of the stack. Monolayer contacts are marked by an ‘M’. Contacts lines have been
anchored into the surrounding h-BN.

The third round of lithography was necessary to link the graphene contacts

and the anchored bonding pad lines. In this instance, no etching was necessary.

This was just a further metal deposition. The top gate was also deposited at the
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same time. The deposition was again 1 nm chromium followed by 30 nm gold.

Figure 8.5 shows the stack following this deposition. Contacts to the monolayer,

trilayer and gate are labelled ‘M’, ‘T’ and ‘G’ respectively.

Figure 8.5: The top gate and contact bridges are shown to have been added to
the stack. Contacts to the monolayer, trilayer and gate are labelled ‘M’, ‘T’ and
‘G’ respectively.

The final two lithography steps were two further etches. The penultimate etch

was used to electrically isolate the monolayer from the trilayer. Only the trilayer

was etched. This was necessary as when forming the monolayer contacts it was

likely that contact was made to the trilayer too. This was due to the edge of

the trilayer being exposed after etching down to the monolayer. The final etch

was used to define the Hall bar. Both graphene layers were etched away. Figure

8.6 shows the device just before the final etch, after development of the PMMA

resist. The six trilayer etches can be seen. They appear purple and successfully

isolated the monolayer from the trilayer. One of these trilayer etches is labelled.

The developed PMMA resist for the final Hall bar etch can also be seen. The

resist can be seen around the outside of the device. More importantly, it can be

seen to protect the paths from the contacts to the Hall bar itself. The gold top

gate essentially defined the Hall bar as it is resistant to the etch too. The trilayer
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etches make more sense when viewed in the context of the final device. As seen

in Fig. 8.6, each of the six trilayer etches prevents shorting of trilayer contact Tx

to monolayer contact Mx. The final result was a top gated and back gated Hall

bar of dimenions 1.5 µm × 9 µm.

Figure 8.6: The stack before the final etch to define the Hall bar. One of the six
trilayer etches to prevent shorting between the monolayer and trilayer is indicated.
Each one of these etches prevents shorting of trilayer contact Tx to monolayer
contact Mx.

Basic characterisation of the device can be seen in Fig. 8.7. The two terminal

resistance of the trilayer graphene against top gate voltage, Vt, at 1.5 K can be

seen in Fig. 8.7a. The charge neutrality point of the trilayer can be seen to be

at Vt = 1.6 V. The two terminal resistance of the damaged monolayer graphene

against back gate voltage, Vb, at 90 K can be seen in Fig. 8.7b. The reason for

the observed behaviour as the Fermi level is varied within the damaged monolayer

graphene is not obvious. Temperature dependences are necessary to determine

the mechanism of localised transport. Regardless, Fig. 8.7 shows that device

works as intended. Both layers are electrically isolated and each can be measured

independently of the other.
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(a) (b)

Figure 8.7: a) Trilayer resistance against top gate voltage at 1.5 K, with Vb =
0. The measurement was two terminal with contacts T1 and T4 being used,
depicted in Fig. 8.6. The charge neutrality point is at 1.6 V. b) The resistance
of the damaged monolayer against back gate voltage at 90 K with Vt = 0. The
measurement was two terminal with contacts M1 and M4 being used.

8.3 Localised Transport Measurements

8.3.1 Arrhenius To Efros-Shklovskii Transition

The resistivity temperature dependence of the damaged monolayer graphene with

Vt = 0 and Vb = 0 is shown in Fig. 8.8. Four terminal AC measurements

were made with an excitation voltage of 100 µV at 4 Hz. See Fig. 5.4 for a

schematic of the measurement set-up. In Fig. 8.8a the resistivity can be seen to

vary by over three orders of magnitude as temperature is varied between 2.5 K

and 90 K. It is clear that, post FIB damage, the monolayer graphene has been

dramatically altered. The disorder caused by helium ion implantation and carbon

vacancies in the graphene lattice has resulted in the material transitioning to an

insulator. Fig. 8.8b shows the same data, but with resistivity plotted against

T−1 on a semi-log scale. Below 10 K, meaning T−1 > 0.1 K−1, the data falls

onto a straight line. This indicates an Arrhenius temperature dependence. That

is, ρ = ρ0 exp(T0/T ). The straight line fit results in parameters of T0 = 15.6
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K and ρ0 = 2.3h/e2. The same data is also plotted against T−1/2 in Fig. 8.8c.

(a) (b)

(c) (d)

Figure 8.8: Monolayer resistivity temperature dependence with Vt = 0 and Vb = 0.
a) Resistivity against T . b) Resistivity against T−1, with Arrhenius behaviour
indicated. c) Resistivity against T−1/2, with Efros-Shklovskii hopping indicated.
d) W = −d log ρ/d log T is plotted against T on a log-log scale. A transition
between Arrhenius behaviour and Efros-Shklovskii hopping is evident.

Above 25 K, meaning T−1/2 < 0.2 K−1/2, the data falls onto a straight line. This

indicates Efros-Shklovskii hopping. The fitted resistivity temperature dependence

is ρ = ρ0 exp
[
(T0/T )

1/2
]
with T0 = 69.6 K and ρ0 = 0.65h/e2. The transition

between Arrhenius transport and Efros-Shklovskii hopping is illustrated clearly

in Fig. 8.8d. Here, W = −d log ρ/d log T is plotted against T on a log-log scale.

If ρ = ρ0 exp [(T0/T )
γ], the data should fall onto a straight line of slope −γ.

Below 20 K, γ = 0.92 whilst above 20 K, γ = 0.51. The conclusion, therefore, is
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that there is indeed a transition between Efros-Shklovskii hopping and Arrhenius

transport. What is significant is that the Efros-Shklovskii regime occurs at higher

temperatures than the Arrhenius regime.

A transition from an Arrhenius transport mechanism, be this nearest neigh-

bour hopping or activation to a mobility edge, to variable range hopping, be

this Mott or Efros-Shklovskii, is expected to occur with the Arrhenius trans-

port present at the higher temperatures. See section 2.6 for a discussion and

references therein. However, in this work, the opposite has been observed; the

results shown in Fig. 8.8 demonstrate an Arrhenius regime occuring at lower

temperatures than the Efros-Shklovskii regime. Furthermore, the fitted Arrhe-

nius and Efros-Shklovskii parameters from Fig. 8.8, result in the Arrhenius fit

having larger resistances, at all temperatures, than the Efros-Shklovskii fit. If the

Efros-Shklovskii hopping coexists with the Arrhenius transport mechanism, the

Efros-Shklovskii hopping will always dominate due to its lower resistivity. This

clearly is not the case.

8.3.2 Logarithmic Electron-Electron Interaction

A potential explanation for the unusual behaviour presented in section 8.3.1 is

that the nature of the Coulomb gap, which itself is necessary for Efros-Shklovskii

hopping, is altered. As discussed in section 2.6.4, in two dimensions a density of

states of the form N(EF + ϵ) ∝ |ϵ| results in standard Efros-Shklovskii hopping.

However, with an altered Coulomb interaction, it is conceivable that the form of

N(E) can be quite different. In disordered materials, large localisation lengths can

lead to large dielectric constants. This is due to the screening ability of electrons

which occupy states of large spatial extent [139]. If a material with large dielectric

constant is sandwiched between two materials of much lower dielectric constant,

the electric field will be strongly confined to the region of large dielectric constant.
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The electric field, within this region, will effectively appear two dimensional. The

solution to Gauss’s law in two dimensions is a logarithmic potential. The electron-

electron interaction will therefore be approximately logarithmic in distance,

V (r) ≈ V0 log
(r0
r

)
, (8.1)

where V0 is a characteristic energy and r0 characterises the length scale. Such

an interaction potential can be used to potentially explain ultra-low Arrhenius

resistivity temperature dependences. The explanation here is based on analysis

given in [74]. See also [140–142]. As discussed in section 2.6.4, if the electron-

electron interaction is to have an effect on the density of states, then the distance,

r, and energy, ϵ, separating two sites close to the Fermi level, must satisfy V (r) ≈

ϵ, meaning

V0 log
(r0
r

)
≈ ϵ. (8.2)

In two dimensions, the average distance between sites in an energy interval ϵ

around the Fermi level is

r ≈
(∫ EF+ϵ

EF

N(E)dE

)−1/2

, (8.3)

Substituting (8.3) into (8.2) leads to,

∫ EF+ϵ

EF

N(E)dE ∝ exp(2ϵ/V0). (8.4)

The density of states is approximately exponential in distance from the Fermi

level. This is quite different from the N(EF + ϵ) ∝ |ϵ| behaviour observed in two

dimensions with a standard Coulomb interaction.
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Using (8.2), the equivalent of (2.59) is

Γr = λ0 exp

(
− 2r

ξ
− V0 log(r0/r)

kBT

)
. (8.5)

This is the rate at which hops occur between sites separated by a distance r. As

in section 2.6.3, the conductivity is found by maximising this rate with respect

to r and assuming these hops dominate the conductivity. Given the exponential

nature of the rate, this is not an unreasonable argument. The optimal hopping

distance with the logarithmic electron-electron interaction is

rlog = ξ
V0

2kBT
. (8.6)

The associated conductivity is

σlog = σ0 exp

{
− V0
kBT

[
1 + log

(
2r0kBT

ξV0

)]}
. (8.7)

The conductivity is now close to an Arrhenius form, with a logarithmic correction

to the activation temperature. It is possible that this form of conductivity could

explain the unusual transition seen in Fig. 8.8. Instead of being due to nearest-

neigbour hopping or activation to a mobility edge, the Arrhenius behaviour could

be due to a divergence of the dielectric constant and the resultant logarithmic

electron-electron interaction. A similar transition has been observed in TiN thin

films on the insulating side of a disorder driven superconductor-insulator transi-

tion (SIT) [143]. Although the authors noted that the transition defies conven-

tional wisdom, no further comment was made. See also [140,144,145] for further

examples of ultra-low temperature Arrhenius behaviour.

As discussed, large localisation lengths are often proposed as the reason for low

temperature Arrhenius behaviour. However, such low temperature behaviour is
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typically observed close to a metal-insulator transition or even a superconductor-

insulator transition. It is natural to expect diverging localisation lengths in the

vicinity of such a transition. At the point of transition, the localisation length

is essentially infinite. Furthermore, and more significantly, the proposed large

localisation length theory only explains low temperature Arrhenius behaviour in

general; the theory does not explain the unusual transition from Efros-Shklovskii

hopping that has been observed in this work. It would appear, for the theory to

explain this specific transition, that localisation length should decrease as temper-

ature increases. However, analogous to both weak localisation and the existence

of a mobility edge in two dimensions, it is anticipated that an increase in tem-

perature should lead to an increase in localisation length. This is due to inelastic

scattering events increasing and quantum coherence therefore decreasing.

Ultimately, the reason for the transition is unclear. Its existence also brings

into question whether the low temperature Arrhenius behaviour can be ascribed

to a large localisation length and the resultant logarithmic electron-electron inter-

action. This itself is significant as it indicates a different mechanism of Arrhenius

transport that has not been proposed in the literature.

8.3.3 Top Gate Effect

Resistivity temperature dependences were repeated over a range of different top

gate voltages, Vt. This was done in order to investigate the effect of a varying

trilayer carrier density on the monolayer transport. The transition temperature

between Arrhenius and Efros-Shklovskii hopping was not altered by the top gate.

The only systematic effect of the top gate was to vary the parameters of the Efros-

Shklovskii hopping. In Fig. 8.9 the parameters of both the Arrhenius and Efros-

Shklovskii transport are shown against top gate voltage. In the Arrhenius regime,

in which ρ = ρAr
0 exp

(
T/TAr

0

)
, the values of TAr

0 and ρAr
0 have no systematic
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dependence on top gate voltage. This can be seen in Fig. 8.9a and Fig. 8.9b. In

the Efros-Shklovskii regime, in which ρ = ρES
0 exp

[
(T/TES

0 )1/2
]
, both TES

0 and

ρES
0 are dependent on top gate voltage. This is shown in Fig. 8.9c and Fig. 8.9d.

However, both parameters vary by only 10% over a 20 V range of the top gate.

This corresponds to a change in charge density within the trilayer of 9.8 × 1012

cm−2. Due to the change in screening capability of carriers at the Fermi level

in the trilayer, it was anticipated that there may be a significant effect as the

the charge neutrality point, seen in Fig. 8.7a at Vt = 1.6 V, is passed through.

However, this was not the case.

(a) (b)

(c) (d)

Figure 8.9: Monolayer resistivity fitting parameters taken from fittings shown in
Fig. 8.8, plotted against top gate voltage. a) Arrhenius characteristic tempera-
ture, TAr

0 . b) Arrhenius infinite temperature intercept, ρAr
0 . c) Efros-Shklovskii

hopping characteristic temperature, TES
0 . d) Efros-Shklovskii infinite temperature

intercept, ρES
0 .
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It is possible that the change in Efros-Shklovskii parameters is not due to the

change in trilayer carrier density. It could simply be the case that the Fermi level

is being altered within the monolayer itself. However it is also not clear why the

Arrhenius transport is unaffected.



Chapter 9

Conclusion

9.1 Summary of Results

Results related to three different systems have been presented in this thesis. In

all three the Fermi level was engineered to lie beneath a mobility edge. Transport

was thus via activation to this mobility edge or via hopping between localised

sites.

The first system was a gated GaAs/AlxGa1−xAs two-dimensional electron gas

(2DEG). Squares of length 300 µm, suitable for van der Pauw measurements, were

studied. The gate was used to deplete the 2DEG and push the Fermi level below

the mobility edge. Striking Hall carrier density temperature dependences were

observed. For the first time, in the context of electron transport in disordered

systems, an Arrhenius Hall carrier density was demonstrated alongside an Arrhe-

nius conductivity. This is the first evidence of its kind which supports a simple

activation to mobility edge picture. All other results in the literature display an

unexplained activated mobility and an apparent constant carrier density. Further-

more, in this thesis, the mobility is shown to be independent of gate voltage and

thus Fermi level. This is in keeping with all transport taking place at the mobil-
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ity edge. A transition from carrier density to mobility dominating the resistivity

temperature dependence has been demonstrated. It is argued that the unusual

results in the literature are all simply on one side of this transition. The ability to

observe the transition has been ascribed to how deep it has been possible to probe

in the band-tail. The ratio of the density of states to the extended state density

of states, N/Next, was as low as 0.05. Similar investigations in the literature only

exhibit N ≈ Next.

Using the same device, at lower temperatures, the Hall effect was investigated

while the transport mechanism was that of Efros-Shklovskii hopping. The physical

picture was less clear compared to the Arrhenius regime. Within the literature

there is no accepted model regarding the Hall effect in the hopping regime. The

results presented in this thesis do offer some support to theoretical works which

propose a Hall mobility of the same temperature dependence as the conductivity,

but with a modified characteristic temperature.

Promising initial results were seen using gate-defined 5 µm square devices.

The aim was to probe length scale dependence of the activated carrier density.

Two gates were used to define the square while the third was used to deplete it.

Measurements in the style of a focusing experiment were used to show that the

square was defined as intended. Temperature dependent carrier densities were

observed. However, contact issues prevented measurements being made as far

into the band tail as was possible with the 300 µm devices.

The second system investigated was again hosted in a GaAs/AlxGa1−xAs

2DEG. In this instance, disorder broadened Landau levels were studied. By using

a Corbino-eqsue geometry, edge states were avoided and transport was restricted

to localised states. By measuring current-voltage characteristics at different lat-

tice temperatures, an electron overheating model was shown to fit well to the

breakdown of the quantum Hall effect. The characteristics, which contained cur-
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rent jumps of over three orders of magnitude, were shown to be in good agreement

with the model. Furthermore, the critical lattice temperatures, below which the

hysteretic current jumps occurred, were in good agreement with the theoretical

values based on the low bias resistivity temperature dependences. This work

is the first in which the breakdown of the quantum Hall effect is successfully

compared to the discussed overheating model. The mechanism of transport was

Efros-Shklovskii hopping. This itself is notable as observing current jumps due to

overheating has been predicted as being difficult in such a regime [22]. Further-

more, this is the first instance of current jumps being reported in a system which

displays Efros-Shklovskii hopping.

The third system was a graphene double layer device. The first layer was

monolayer graphene, damaged using a helium focused ion beam (FIB). The sec-

ond was pristine trilayer graphene. The fabrication itself was novel as it involved

an FIB exposure midway through the stacking process. The initial aim was to in-

vestigate the effects of electron-electron interactions on localised transport. This

was to be done by varying the carrier density within the trilayer while observing

the behaviour of the transport within the damaged monolayer. No systematic

effect was found. Instead, however, an unusual transition from an Arrhenius

resistivity temperature dependence to an Efros-Shklovskii hopping regime was

observed. Crucially, the Arrhenius regime occurred at the lowest temperatures.

It is expected that variable range hopping, including Efros-Shklovskii hopping,

will occur at lower temperatures than standard Arrhenius transport mechanisms

such as nearest neighbour hopping and activation to a mobility edge. It is unlikely

that the Arrhenius regime is due to large localisation lengths and a large resul-

tant dielectric constant. This is a popular explanation for ultra-low temperature

Arrhenius behaviour. It is possible that the behaviour requires an explanation

not discussed in the literature.
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9.2 Future Work

With respect to the activated carrier density work, arguably the most pressing

unanswered issue is that of the mobility temperature dependence. That the mo-

bility is independent of Fermi level is striking and indicates that all transport is

taking place at the mobility edge. It also indicates that the edge lifetime is greater

than the elastic scattering time at the edge, the latter therefore being the relevant

lifetime with respect to determining mobility. However, why the mobility increases

with temperature is not clear. How mobility varies with magnetic field should be

measured. This will provide insight as to whether the temperature dependence

is related to weak localisation. Measuring magnetic field dependences will also

allow the determination of the phase coherence length. Due to the high resis-

tances and resultant small signals that must be measured, measurements at just a

single magnetic field value took a significant amount of time. Sweeping magnetic

field and making accurate measurements at such resistances will be challenging,

but still possible. To improve the 5 µm square work, the contacts which bridge

the high mobility material and depleted central square must be improved. This

should allow measurements to be made further into the band tail than is currently

possible with the current 5 µm devices.

Future work regarding the breakdown of the quantum Hall effect should at-

tempt to fit current jumps at even filling factors to the overheating model. Such

jumps, with ν = 4, can be seen in [103]. However, their temperature depen-

dence was not studied. In work presented in this thesis, power-law resistivity

temperature dependences at such filling factors meant that current jumps were

not present in current-voltage characteristics. For completeness, material display-

ing these jumps should be studied. Furthermore, the secondary jumps should be

further investigated. It has been suggested in this work that they could be due to
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a non-uniform spatial distribution of electron temperature. This would be highly

relevant to the study of many-body localisation. Measuring devices of different

sizes may provide further insight. Assuming a non-uniform temperature distribu-

tion, larger devices would be expected to have more areas that resist the initial

heating associated with the primary jump. It would therefore be expected that

larger devices exhibit either more secondary jumps, larger secondary jumps or

both. Finally, standard Corbino devices should be used. The devices in this work

were used as they allowed for parallel conduction to be tested via Shubnikov-de

Haas oscillations. However, this was purely for efficiency of measurements and to

prevent multiple devices having to be measured.

With regard to the graphene double layer work, the Arrhenius transport regime

requires further investigation. Currently, the transport mechanism is unknown.

How resistance varies with magnetic field should be studied. The Hall effect may

also be worthwhile measuring. More devices should be fabricated, each having a

different separation between the two layers. The separation should be less than

that in the device studied in this work, as the effect of interlayer interactions was

deemed negligible. This should allow for a study of electron-electron interactions

and their effect on localised transport. This study may also assist in the determi-

nation of the transport mechanism of the low temperature Arrhenius regime.



Appendix A

The Propagator

When considering enhanced backscattering in time reversal symmetric systems,

a central quantity to consider is the probability amplitude of an electron moving

from position r0 to rend in time t. This is known as the propagator,

A(r0, rend, t) = ⟨rend| e−iĤt |r0⟩ . (A.1)

Inserting identity operators,
∑

α |rα⟩ ⟨rα|, leads to

A(r0, rend, t) =
∑

α,β,...γ

⟨rend| e−iĤ∆ |rγ⟩ ⟨rγ| e−iĤ∆... |rβ⟩ ⟨rβ| e−iĤ∆ |rα⟩ ⟨rα| e−iĤ∆ |r0⟩ .

(A.2)

Here N identity operators have been inserted while also splitting up e−iĤt into

N + 1 operators e−iĤ∆, where ∆ = t
N+1

. Each term in the sum represents the

probability amplitude of the particle taking the path r0 → rα → rβ → ...→ rγ →

rend. By taking a large limit of N , the sum can be made to be over every possible

path the electron can take. To find the probability that the particle moves from

r0 to rend in time t, the probability amplitudes for each path are summed and

then the square of the magnitude is taken. When considering back scattering, an
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important quantity is the probability amplitude of a particle starting at r0 also

being at r0 after time t, A(r0, r0, t). The probability amplitude of one possible

path which contributes to A(r0, r0, t) is,

⟨r0| e−iĤ∆ |rN⟩ ⟨rN | e−iĤ∆... |r2⟩ ⟨r2| e−iĤ∆ |r1⟩ ⟨r1| e−iĤ∆ |r0⟩ .

The path here is r0 → r1 → r2 → ... → rN → r0. The time evolution operator

e−iĤ∆ can be expressed as
∑

n |n⟩ ⟨n| e−iEn∆ where the sum is over eigenstates of

Ĥ. The amplitude can thus be written as,

∑
n,m...
...k,l

e−i(En+Em+...+Ek+El)∆ ⟨r0|n⟩ ⟨n|rN⟩ ⟨rN |m⟩ ⟨m| ... |r2⟩ ⟨r2|k⟩ ⟨k|r1⟩ ⟨r1|l⟩ ⟨l|r0⟩ .

Replacing ⟨r|n⟩ with ψn(r) this can be expressed as

∑
n,m...
...k,l

e−i(En+Em+...+Ek+El)∆ψn(r0)ψ
∗
n(rN)ψm(rN)...ψk(r2)ψ

∗
k(r1)ψl(r1)ψ

∗
l (r0).

The probability amplitude of the same path but in the opposite direction is,

∑
n,m...
...k,l

e−i(En+Em+...+Ek+El)∆ψl(r0)ψ
∗
l (r1)ψk(r1)ψ

∗
k(r2)...ψ

∗
m(rN)ψ

∗
n(rN)ψn(r0).

Note that the dummy indices are free to be reordered, which has been done.

Recall from the discussion regarding time-reversal symmetry that if ψn(r) is the

wavefunction associated with an eigenstate of Ĥ then so is ψ∗
n(r), with both

having the same energy. Thus it can be seen that the probability amplitudes for

the two paths are equal. They will add coherently. Hence the overall probability

amplitude for the particle returning to its initial position is formed of pairs of

paths which have the same amplitude and, most importantly, same phase.



Appendix B

Landauer Formula

The Landauer formula relates the conductance, G, of a sample to the number

of transverse modes, M [39]. In an ideal one-dimensional system, M = 1, when

conductance is considered along the length of the ideal wire. In any given sample,

M is simply equal to the number of transverse subbands which have an energy

minimum below the Fermi level. Consider the conductance of such a sample in

the x direction. An applied voltage is taken into account by shifting the local

chemical potentials on either side of the sample. The difference in chemical po-

tential between the two contacts is simply eV , where V is the applied voltage.

This difference in local chemical potential results in one contact injecting more

electrons than the other. Initially it shall be assumed that all injected electrons

travel ballistically. The current due to a single, ballistic transverse mode is

I =
e

Lx

∑
vx. (B.1)

Here the sum is over all states within the energy gap between the local chemical

potentials on opposite sides of the sample. It is these states that are responsible

for the net current. Note that zero temperature has been assumed. The velocity
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component and sample dimensions in the x direction are vx and Lx respectively.

The velocity term can be rewritten as vx = (1/h̄)∂E/∂kx. The sum can also be

replaced by an integral over kx. This is done by using that the separation between

states in kx space is 2π/Lx and including a factor of 2 for spin. This results in

I = e

∫
1

h̄π

∂E

∂kx
dkx. (B.2)

Again the integration is over states within the energy gap between the chemical

potentials of the contacts. Integrating over these limits results in
∫
(∂E/∂kx)dkx =

eV . This leads to

I =
2e2

h
V. (B.3)

If, instead of assuming ballistic transport, the probability of transmission via any

given mode is T , the total current due to M modes will simply be,

I =
2e2

h
MTV. (B.4)

This results in the Landauer formula for the conductance

G =
2e2

h
MT. (B.5)



Appendix C

Hopping Conductivity and

Percolation Theory

Percolation theory can be used to derive the conductivity temperature dependence

in the variable range hopping regime. In this section argurments from [69] are

used. The analysis does not rely on any particular mechanism to facilitate the

hops and is thus applicable to any inelastic scattering mechanism. It is assumed

that states are localised at the Fermi level.

Let λij(Rij, Ei −Ej) be the intrinsic hopping rate between sites i and j which

have energies relative to the Fermi level of Ei and Ej respectively and are separated

by a distance Rij. The hopping rate from i to j is thus

Γij = ni(1− nj)λij, (C.1)

where ni is the Fermi function for site i. Therefore,

Γij =
1

1 + eEi/kBT

eEj/kBT

1 + eEj/kBT
λij. (C.2)

In equilibrium it is required that Γij = Γji, which leads to the detailed balance

180



181

equation

λije
Ej/kBT = λjie

Ei/kBT . (C.3)

Using this detailed balance it is asserted that,

λij =


λ0e

−2αRij−(Ej−Ei)/kBT for Ej > Ei

λ0e
−2αRij for Ei > Ej.

(C.4)

There are various ways of satisfying the detailed balance equation (C.3), but this

particular solution has been chosen for the following reasons. The Rij dependence

is related to the overlap of the localised states which themselves decay exponen-

tially with rate α = 1/ξ, where ξ is localisation length. It is then assumed that

kBT << |Ei − Ej|. Thus if the state i is occupied, state j is not and Ei > Ej a

temperature independent transition from i to j is expected. Using this reasoning,

C.4 follows. If it is assumed that kBT is much less than all energies involved it

holds that,

Γij = λ0 exp

(
−2αRij −

|Ei|+ |Ej|+ |Ei − Ej|
2kBT

)
. (C.5)

The system is now taken out of equilibrium by adding an electric field. The

intrinsic hopping changes such that,

λ [E(r)]ij = λij +∆(λij), (C.6)

where E(r) is the applied electric field. Let ∆µi be the change in chemical poten-

tial at site i. The change in Γij, using (C.1), is

∆(Γij) = Γ0
ij

[
∆(λij)

λij
+

∆(ni)

ni

− ∆(nj)

1− nj

]
, (C.7)

where Γ0
ij is the value of Γij in equilibrium. This leads to the net current between
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site i and j being,

e [∆(Γij)−∆(Γji)] = eΓ0
ij

[
∆(λij)

λij
− ∆(λji)

λji
+

∆(ni)

ni(1− ni)
− ∆(nj)

nj(1− nj)

]
(C.8)

Using (C.3),

∆(λij)

λij
− ∆(λji)

λji
=

∆(λjie
(Ei−Ej)/kBT )

λjie(Ei−Ej)/kBT
− ∆(λji)

λji
=

∆(e(Ei−Ej)/kBT )

e(Ei−Ej)/kBT
. (C.9)

By applying the electric field, Ei − Ej changes by eE ·Rij. Thus,

∆(λij)

λij
− ∆(λji)

λji
=
eE ·Rij

kBT
(C.10)

The change in local chemical potential is responsible for ∆(ni). It follows that,

∆(ni)

ni(1− ni)
− ∆(nj)

nj(1− nj)
=

1

kBT
[∆(µi)−∆(µj)] . (C.11)

Thus the current between site i and j can be expressed as,

Iij = e [∆(Γij)−∆(Γji)] =
e

kBT
Γ0
ij [eE ·Rij +∆(µi)−∆(µj)] . (C.12)

As eE ·Rij +∆(µi)−∆(µj) is just the potential difference between the two sites

multiplied by e, the effective conductance between the two sites is

Gij =
e2

kBT
Γ0
ij. (C.13)

Knowing the conductance between any given pair of sites, the conductance of the

sample as a whole is wanted. This is essentially a resistor network problem now.

The critical conductance, Gc, is defined as being the smallest conductance such

that when only resistors with Gij > Gc are considered, the network is still fully
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connected. This network is the critical network. It can be argued that as the

resistors vary in magnitude significantly, such a critical resistance will be close

to the resistance of the whole sample. The problem now becomes a percolation

problem. For a link between i and j to be part of this critical network it is required

that, using C.5,

2αRij +
|Ei|+ |Ej|+ |Ei − Ej|

2kBT
< log(λ0/Γc), (C.14)

where Γc = kBTGc/e
2. Setting

Rmax =
1

2α
log(λ0/Γc) (C.15)

and

Emax = kBT log(λ0/Γc), (C.16)

it follows that

Rij

Rmax

+
|Ei|+ |Ej|+ |Ei − Ej|

2Emax

< 1 (C.17)

Thus, for the link between i and j to be part of the critical network, it must

hold that Rij < Rmax, |Ei| < Emax and |Ej| < Emax. The total number of sites

matching the energy criteria, per unit volume is,

n = 2NEmax (C.18)

where N is the density of states per unit volume and is assumed constant. These

states are randomly distributed in space. In order for the critical network to span

the entire sample, it is required that Rmax is large enough so that nRd
max, where d

is dimension, is order unity. In this way each node of the critical network is con-

nected to approximately one other node and the network will be fully connected
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as required. Thus it follows that,

Rd
maxn ≈ 1 (C.19)

which results in

2NRd
maxEmax ≈ 1. (C.20)

This leads to

Rd
max ∝ 1

Emax

. (C.21)

Using (C.15) and (C.16), it follows that

[log(λ0/Γc)]
d ∝ 1

T log(λ0/Γc)
(C.22)

Hence, as Γc ∝ Gc,

Gc ∝ exp
[
− (T0/T )

1
d+1

]
. (C.23)

As the critical conductance is anticipated to be close to the conductance of the

sample as a whole, it follows that

σ ∝ exp
[
− (T0/T )

1
d+1

]
. (C.24)

This is the expected temperature dependence of variable range hopping.



Appendix D

The Fractional Quantum Hall

Effect

In 1982 a quantised Hall resistance of 3h/e2 and a local minimum of longitudi-

nal resistance was observed at filling fraction ν = 1/3 [146]. This was the first

observation of the fractional quantum Hall effect, which applies to interacting

electrons in a magnetic field. Laughlin [147] presented an ansatz for a many-body

ground state wavefunction applicable for filling factors ν = 1/m, where m is an

odd integer,

ψLaughlin
m (z1, z2, ...zN) ∝

∏
i<j

(zi − zj)
m
∏
k

exp

(
−|zk|2

4l2B

)
, (D.1)

where z = x + iy and lB =
√
h̄/eB. He claimed that it was consistent with the

experimental results. This wavefunction is very similar to the exact solution for

a system of non-interacting electrons in a magnetic field, the system discussed in

section 2.8.2,

ψIQHE
m (z1, z2, ...zN) ∝

∏
i<j

(zi − zj)
∏
k

exp

(
−|zk|2

4l2B

)
. (D.2)
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Note that this could have been derived in section 2.8.2, but Cartesian coordinates

were chosen. All that Laughlin did was raise each zi− zj term in the first product

to the power of m. Note that as m is odd the many-body wavefunction remains

antisymmetric, as is required for a system of fermions. As this is the only change,

it is easy to appreciate that its effect is to push electrons further away from each

other. The zeros in the wavefunction are emphasised. One way of interpreting

this new wave function is to consider the effective phase change as one electron

circles around another. The phase changes within the Laughlin wave function are

as if each electron has had m − 1 flux quanta added to it, this combined entity

is known as a composite fermion [148]. The effective magnetic field that each

composite fermion experiences is,

Beff = B − nh(m− 1)

e
, (D.3)

if it is asserted that the composite fermion flux opposes the actual magnetic field.

At filling factor ν = 1/m the effective filling factor of the composite fermions is,

νeff =
nh

Beff e
=

1
1
ν
− (m− 1)

= 1. (D.4)

The conclusion, therefore, is that at filling fraction 1/m, where m is odd, there is

a filled Landau level of composite fermions. Analogous arguments to those used

in section 2.8.2 can be used to show that this leads to a quantised Hall resistance

of mh/e2, as observed for m = 3 in [146].

To observe the fractional quantum Hall effect less disorder is necessary, com-

pared to the integer quantum Hall effect. Reduced disorder increases the signif-

icance of the electron-electron interactions and strengthens the fractional effect.

Many more fractions have been observed since the initial discovery of the 1/3
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state in [146]. Fractions do not have to be of the form 1/m. Commonly observed

fractions include 2/5 and 3/7, here one can consider forming composite fermion

Landau levels with filling factors 2 and 3 respectively.

At filling factor 1/2, one can consider forming composite fermions by adding

two flux quanta to each electon. If again it is asserted that this flux opposes the

magnetic field, the effective magnetic field becomes zero. Hence at filling factor

1/2 there exists a Fermi sea of composite fermions. It is expected, therefore, that

the longitudinal resistance of the system should be symmetric in field either side

of this filling fraction. This is experimentally observed.

Finally, note that there is much interest in the 5/2 fractional state. Inter-

estingly, this state has an even denominator and thus cannot be explained by

traditional composite fermion theory. It has been suggested that the quasiparti-

cles in this state form a p-wave superconductor and could thus host non-abelian

anyons [149, 150]. Anyons are particles that have fractional values of exchange

phase and can only exist in two dimensions. The non-abelian aspect means that

the state of the system is dependent on the order of braiding operations and that

each exchange leads to an observable change of state. States can thus be topo-

logically protected as one must physically exchange particles to change the state

of the system. This is of interest in the field of quantum computing, in order to

limit decoherence.
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[19] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S. Sarkar, A. J.

Daley, M. H. Fischer, E. Altman, I. Bloch, and U. Schneider. Signatures of

many-body localization in a controlled open quantum system. Phys. Rev.

X, 7(1):011034, 2017.

[20] D. M. Basko, I. L. Aleiner, and B. L. Altshuler. Possible experimental

manifestations of the many-body localization. Phys. Rev. B, 76(5):52203,

2007.

[21] B. L. Altshuler, V. E. Kravtsov, I. V. Lerner, and I. L. Aleiner. Jumps

in current-voltage characteristics in disordered films. Phys. Rev. Lett.,

102(17):176803, 2009.

[22] G. McArdle and I.V. Lerner. Electron-phonon decoupling in two dimensions.

Sci. Rep., 11(1):24293, 2021.

[23] G. Nachtwei. Breakdown of the quantum Hall effect. Physica E, 4(2):79,

1999.



BIBLIOGRAPHY 191

[24] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy

determination of the fine-structure constant based on quantized Hall resis-

tance. Phys. Rev. Lett., 45(6):494, 1980.

[25] Y. Gul, S. N. Holmes, C. Cho, B. Piot, M. Myronov, and M. Pep-

per. Two-dimensional localization in GeSn. J. Phys.: Condens. Matter,

34(48):485301, 2022.

[26] M. Pepper, S. Pollitt, and C J Adkins. The spatial extent of localized state

wavefunctions in silicon inversion layers. J. Phys. C: Solid State Phys.,

7(15), 1974.

[27] R. M. Hill. Variable range hopping. Phys. Stat. Sol. A, 34(2):601, 1976.

[28] M. Rudra, H.S. Tripathi, A. Dutta, and T.P. Sinha. Existence of nearest-

neighbor and variable range hopping in Pr2ZnMnO6 oxygen-intercalated

pseudocapacitor electrode. Mat. Chem. Phys., 258:123907, 2021.
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[81] M. Ovadia, B. Sacépé, and D. Shahar. Electron-phonon decoupling in dis-

ordered insulators. Phys. Rev. Lett., 102(17):176802, 2009.

[82] M. Ovadia, D. Kalok, I. Tamir, S. Mitra, B. Sacépé, and D. Shahar. Evidence
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