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Toward Non-contact Muscle Activity Estimation
using FMCW Radar

Kukhokuhle Tsengwa, Stephen Paine, Fred Nicolls, Yumna Albertus and Amir Patel

Abstract— Surface electromyography
(sEMG) and ultrasound-based
sonomyography (SMG) are established
muscle activity monitoring techniques.
However, both modalities require contact
with the skin and are thus potentially

uncomfortable and time-consuming ——
to use. In this paper, we propose
a novel non-contact muscle activity
monitoring approach that measures

the muscle deformation signal using a
Frequency Modulated Continuous Wave
(FMCW) mmWave radar which we call
radiomyography (RMG). The RMG signal is
a specific sequence of phase samples in
the radar return, obtained through a series
of operations: range bin selection, DC
offset correction, arctangent demodulation
and phase unwrapping. We find that
the RMG signal highly correlates with
the sEMG signal across time, making
RMG a reliable method for monitoring
muscle activity. We also establish that
our signal contains some characteristic
features of the muscle deformation signal -
that are well known in biomechanics. RN
Our main contribution is the proposal, UL
development, and proof-of-concept . |
usage of a novel non-contact muscle T
activity monitoring approach. This opens
muscle activity monitoring up for use
in rehabilitation, high-intensity contact
sports analytics, performance arts, remote
health monitoring and wildlife healthcare
and research. To the best of the authors’
knowledge, our approach is the first to
measure the characteristic dimensional
changes of muscles in vivo and without
contact.
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Radiomyography (RMG) monitors the architectural changes on the surface of
the skin above a contracting muscle due to the muscle’s dimensional changes.
The RMG signal is a specific sequence of phase samples in the radar return,
obtained through a series of operations: range bin selection, DC offset correction,
arctangent demodulation and phase unwrapping.
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[. INTRODUCTION

USCLE activity monitoring is instrumental to clinicians

for neurological and orthopaedic rehabilitation [1] [2].
It is also vital as a tool for extracting the signals required
for the command of prostheses [1] [3] [4] [5]. Moreover,
monitoring muscle activity required for a particular movement
aids in the study of that movement, either to better understand
the movement or to inform efforts to replicate the movement
in robots [6].

Potential  difference [7], sound [8] [9] [10],
vibration [10] [11] and dimensional changes [3] [11]
are the known physical properties whose measurement allows
the traditional estimation of muscle activity. Electromyography
(EMG) is a muscle activity monitoring approach that measures
the potential difference across the cell membranes of muscle
cells [7]. Acoustic myography [9] and mechanomyography
(MMG) [2] [11] are the names given to the approaches
that measure the sound and vibration that occur during
muscle activity, respectively. Approaches that measure
the dimensional changes of muscles do not yet have an
adopted name. Dimensional changes, as measured through
ultrasound images, have been referred to as sonomyography
(SMG) [12] [13] [14]. However, this name says more about
the sensor used than the physical property measured.

EMG is the current state-of-the-art in muscle activity
monitoring. Electrical signals, known as action potentials,
from the brain travel through motor neurons and cause the
muscle fibers innervated by these neurons to be active [7].
Surface EMG (sEMG) thus monitors muscle activity by
measuring these electrical signals through surface electrodes
placed on the skin over the muscle of interest or through needle
electrodes inserted into the muscle [2] [7]. sEMG is thus a
contact based approach for the measurement of muscle activity.

The surface electrodes of sSEMG require contact with the
participant’s skin, making SEMG a potentially uncomfortable
method for the measurement of muscle activity. Prior to the
placement of these surface electrodes, the skin is shaved,
rubbed with ethyl alcohol or abrasive conductive paste,
washed with water and soap or stripped with adhesive tape
to reduce noise and impedance at the electrode-skin interface.
Because of tissues between the muscle and electrodes, the
SEMG signal may be contaminated by muscle activity from
other muscles near the muscle of interest. This is called
crosstalk [7]. Moreover, the setup procedure has been termed
time-consuming by sEMG experts and is listed as one of the
main barriers to the clinical employment of the technique [15].

The low amplitude of the sound produced during muscle
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activity similarly limits acoustic myography to being a contact
based approach. Microphones are often used to measure this
signal [10] [11]. Vibration and dimensional changes, however,
are properties that can potentially be measured without
contact. Indeed, a Laser Doppler Vibrometer (LDV) has been
used by Rohrbaugh et al. to measure the vibrations that
accompany muscle activity (the MMG signal), in a technique
known as Laser Doppler Myography (LDMi) [10] [11] [16].
Dimensional changes as measured through SMG would be
technically impractical to measure without contact because
of the large difference between the acoustic impedance of
air (0.4 x 10% kg'm~2-s7! [17]) and that of human skin
(1.99 x 105 kg-m~2.s~! [18]), which would lead to most of
the acoustic energy being reflected at the air—skin interface.

It has been shown in previous studies [4] [12] [13] [19]
that dimensional or architectural changes in a muscle during
its contraction correlate well with the muscle’s activity and
output force. These informative architectural parameters of
muscles include muscle thickness, shape, cross-sectional
area, muscle fiber pennation angle and the position of the
muscle’s surface under the skin. When a muscle contracts,
its sarcomeres (the basic contractile units of muscles)
necessarily change length [4] [7]. Because the volume of
muscles remains constant [20], it follows that muscle activity
leads to shape change or deformation of the muscle [4].
It has been demonstrated that this deformation correlates
with muscle activity [4] [12] [13] [19]. In most studies,
this muscle deformation signal has been measured and the
underlying muscle activity monitored by measuring either
muscle cross-sectional area, thickness [4] or muscle surface
position [12] across a sequence of ultrasound images of the
muscle. This approach is known as sonomyography (SMG).

There remains no non-contact muscle activity monitoring
approach that measures the characteristic muscle deformation
signal seen in the SMG literature. In this paper, we address
this gap.

Frequency Modulated Continuous Wave (FMCW) is a
specific type of modulation scheme used for active sensors.
It is often implemented using radio waves with wavelengths
in the millimetre range, a technique known as mmWave
FMCW radar. The relatively short wavelengths, compared
with traditional radars, allow mmWave radars to be compact
and low-cost [21]. Additionally, the high frequencies used
(60-64 GHz) allow for wide bandwidths (up to 4 GHz)
and thus fine range resolution. The FMCW radar signal
is transmitted as frequency modulated sweeps known as
chirps. This makes FMCW radars particularly suitable to
the monitoring of small motions by analysing the change in
phases across the consecutive chirps.

Owing to the properties above, FMCW radar has been
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widely and successfully used to measure human vital signs
such as heart and breathing rate without contact [22] [23].
With FMCW radar, heart and breathing rates have been
measured with a median accuracy of 99% [23]. The non-
contact measurement of these signals using FMCW radar is
made possible by the movement of the chest in response to
the beating of the heart and the inflation and deflation of the
lungs. The muscle activity monitoring approach presented in
this study was inspired by this prior work.

We propose a non-contact muscle activity monitoring
approach that measures the muscle deformation signal
using an off-the-shelf mmWave FMCW radar. Our muscle
activity monitoring approach measures the small motion
at the surface of the skin over the muscle of interest. Our
approach measures the same physical attribute measured by
sonomyography (SMG) and we have therefore dubbed it
radiomyography (RMG). From data collected during trials
to evaluate the performance of our system, we observed
effects and phenomena that are characteristic of muscles
and well known in biomechanics. These are the hysteresis
effect between normalised SEMG and normalised muscle
deformation signal (see Fig. 10), the exponential relationship
between SEMG and muscle deformation (see Fig. 8b) and
the higher rate of muscle deformation during the transition
from relaxed to contracted muscle state as compared with the
transition from a contracted to a relaxed muscle.

The remainder of the paper is organised as follows: Sec-
tion II introduces the theoretical underpinnings of Frequency
Modulated Continuous Wave (FMCW) radar on which our non-
contact RMG approach is based. Section III describes the Mus-
cle Activity Estimation Pipeline, detailing the signal processing
steps for extracting muscle activity from radar data. Section IV
outlines the experimental setup and methodology, providing the
context for the validation of RMG against traditional SEMG.
The results and their implications are discussed in Section V,
showcasing the correlation between RMG and sEMG signals.
The paper concludes with Section VI, summarising the main
findings and suggesting directions for future research.

Il. FREQUENCY MODULATED CONTINUOUS WAVE
(FMCW) RADAR THEORY

The recording of small motions without contact, as we
set out to do here, is enabled by the ability of FMCW
mmwave radar to encode small motions exhibited by its
target as phase information of the complex valued return data.
This section details how this is possible, providing context
and understanding for subsequent design choices and signal
processing.

As the name suggests, the frequency of the transmitted wave-
form in an FMCW radar is modulated. A sawtooth modulation
scheme, known as a chirp, is often used [21]. This means

that the frequency of the transmitted waveform, fr(t), varies
linearly with time according to:

frt) =t + fo m

where B is the bandwidth of the frequency sweep, T is the
time it takes to sweep the bandwidth and fj is the starting
frequency. This frequency variation across time is why the
transmitted signal is called a chirp.

Z

Transmitted

L —— Received ||
=)
=) Tr(t) = fr(t —ta)
>
Q
g | |
3
g Jr(t)
&3

|
0 tq T

Time [s]

Fig. 1: Frequency of a typical chirp transmitted by an FMCW
radar and the frequency of the chirp received by the radar time
tq after the chirp was trasmitted. The transmitted chirp reflected
off a target a distance Ry from the radar.

As seen in [24], a typical chirp transmitted by an FMCW
radar can be represented as

Sr(t) = Apel rfottmKi)tdo o <4 < T, 2)

where K = % is the slope of the transmitted frequency, ¢¢
is the initial phase and Ar is the amplitude of the transmitted

chirp.

This chirp is transmitted and reflects off a target at a nominal
distance of R from the radar. Fig. 1 shows the linearly varying
frequency of the transmitted chirp, fr(t), as well as that of the
reflected (or received) chirp, fr(t). Let z(¢) be the component
of the target’s displacement along the radar’s boresight. Then
the received chirp, Sg(t), after time ¢, becomes

Sr(t) = Sr(t — tg) = Ape? CTU—tOTTRETD o0 - (3)

where Ag is the amplitude of the received chirp and the
time delay, ¢4, is given by

o= At s(0) "
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Fig. 2: A flow diagram detailing each stage of the advanced signal processing techniques, from receiving the radar and camera

signals to outputting the muscle movement.

where c is the speed of electromagnetic radiation.

The amplitude of the received chirp, Ag, depends on
multiple factors such as the peak transmit power of the
transmitter, transmit antenna gain, receiver antenna gain, radar
cross section (RCS) of the target, the distance between the
target and the radar, etc. [21].

In the receiver stage, the signal Sg(¢) is amplified by
a low noise amplifier (LNA), before being mixed with the
original transmit chirp to create the baseband signal known
as the beat frequency, before passing through low-pass anti-
aliasing filter [21] [24]. A second intermediate frequency (IF)
amplification stage is then used before the signal gets digitised.
The beat frequency that is digitised, Sp(t), in (5) [24], can
be represented as an in-phase component (I) and a quadrature
component (Q):

Sp(t) = St(t) - Sp(t)* = Age @rKtatt2nfota) = (5)

*

where (-)* is the complex conjugate operator.

The term associated with ¢3 has been ignored since
tfl < tgqt [24]. Additionally, it has been assumed that during
the chirp duration, 7', the displacement of the target is
negligible and thus the target has no velocity during this
time [24]. If this assumption is not made (or is unreasonable),
then the frequencies in both Sg(¢) and Sp(t) should have a
Doppler frequency shift term added to them [21] [24].

Now let us assume that the radar transmits and receives a
total of M chirps, each with index ¢ € {1,2,3,..., M}. Also
suppose that each received chirp has N samples. Then any
received chirp can be generally described by

AmKRo g\ AnfoRo 4 dnfe (7))

Sp(iT +t) = Aped—=
= Aped Oyt R A e 0 (i)

" (6)
_ ARej(zwfbt+—4§’;° Anglill)
(27 fot @i
= Apel@rhottei)
where f. = fo + % is the center frequency, A, is the
center wavelength, f, = 2’371?0 is the beat frequency and

___ 47Rg 4z (iT)
Pi = "X, =+ SV

It is thus clear that the phase of each received chirp, (;,
encodes within it a sample of the small motion at time 7T,
2(i¢T). Just as importantly, we see that the small motion is
sampled at frequency % Because of the Nyquist-Shannon
sampling criterion, this frequency (or equivalently, period)
places an upper limit on how fast the target can move while
still being unambiguous with this approach. For the value
of the chirp duration and the number of transmitters used in
our experiments (see Table I), the small motion is sampled
at 200 Hz, which is more than required given the rate of
muscle contraction and relaxation of the participants in our
experiments.

A challenge that faces any approach that monitors a
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target’s small motion is the presence of larger motions
that corrupt the signal of interest. Consider that the target
exhibits not only the motion of interest, z(¢), but also some
other motion, p(t), then the recovered phase would be
v = 47;?‘) + 4”‘7;(:” + 47T’;\(jT). This unwanted motion is
called random body motion/movement (RBM) [25]. If RBM
is of sufficient magnitude (i.e., exhibits displacements larger
than how far the muscle displaces), then the signal of interest
can be completely masked.

Due to the corrupting effect of RBM, the current
implementation of our system can only monitor muscle
activity during isometric contractions. As the muscle lengthens
or shortens during eccentric or concentric contractions, the
moving body part would introduce RBM. Recommendations
for addressing RBM cancellation and thus addressing this
limitation are given in the conclusion.

The following section details how the preceding FMCW
radar theory informs our system design choices as well as how
it is used within our signal processing pipeline to extract the
muscle deformation signal from the radar data.

[1l. MUSCLE ACTIVITY ESTIMATION PIPELINE

Through the muscle activity estimation pipeline, we monitor
the architectural changes on the surface of the skin above a
contracting muscle due to the muscle’s dimensional changes.
This is achieved by extracting the radar phase signal that
encodes the small motion within the radar’s field of view
as discussed in the previous section. Fig. 2 depicts the
different stages in our signal processing pipeline. For a
pictorial description of each stage refer to Fig. 3. Each stage
is described below.

First, a Discrete Fourier Transform (DFT) was applied on
each of the M received chirps at baseband. The frequency axis
of this DFT can be interpreted as range and the magnitude
of the Fourier coefficients, Xy, , are a measure of how much
energy is received from that range. For this reason, this
operation is called the Range Fast Fourier Transform (Range
FFT).

At the beat frequency, the Range FFT coefficient has
magnitude | Xy, | = NAgr whereas at any other frequency the
Range FFT coefficient has magnitude | Xy, | = N*Apg, where
N is the number of samples per received chirp. We have that
N* < N (see the Appendix). Therefore, the magnitude of
the Range FFT coefficient at the beat frequency is maximal,
i.e., there will not be a Range FFT coefficient with magnitude
greater than this one at any other frequency. This is what
allows us to determine where the target is, i.e., Ry, accurate to
within the range resolution. Often, in practice, | Xy, | = NAgr
is not only maximal but is the maximum, which makes finding

Ry easier.

Finding the beat frequency for the target of interest, or
equivalently, its nominal distance from the radar, Ry, is what
we refer to as the range bin selection stage of our pipeline.
Once the beat frequency is known, we extract the Range FFT
coefficient at the beat frequency for all received chirps. We call
the sequence of all these coefficients the range bin signal, s.
From (20), the range bin signal is

s=(NAre!? )M, = (I + jQi)M,, (7

where I; and (Q; are the real and imaginary parts of the i
Range FFT coefficient, respectively.

Recall that at the receiver output, the complex-valued
baseband signal, Sp(t), in (5) comprises a real and an
imaginary part or an in-phase (I) and a quadrature (Q)
component, respectively. Ideally, the I and Q components are
sinusoids, with a phase offset of 90° between each other and
with equal amplitudes [21]. In reality, due to imperfections
in the receiver’s electronics, amplitude and phase imbalances
exist between the two channels [21] [26] [27]. Additionally,
the range bin signal often contains DC offsets due to coupling
effects and environmental interferences [28]. Both of these
negatively affect the ability to recover the phase signal and
thus must be corrected for.

Through experimenting with different algorithms, we found
that the DC offset correction algorithms [21] [29] were very
effective at improving phase signal retrieval whereas the 1Q
imbalance algorithms [21] [27] had no positive effect. The
DC offset correction algorithm we specifically implement here
subtracts the mean of the range bin signal from the range bin
signal. This is represented by the DC offset correction stage
in the pipeline.

At the arctangent demodulation stage, the phase signal is
obtained from the range bin signal by taking the arctangent of
the imaginary part, ();, over the real part, I;, for each sample
in the range bin signal [21]. At the output of this stage is the
phase signal

¢ = (pi)iL;. (8)

Because the phase samples, (;, in the range bin signal are
in the range [—m, 7| (we say the phase is wrapped), after
arctangent demodulation it is often necessary to unwrap the
phase. This is necessary because if, for example, x(iT) = %,
then ¢; = 458 4 > 7 for Ry # 0 (see (6)).

Phase unwrapping works by making the assumption that the
target does not exceed the maximum permissible velocity, Umax,

as determined by parameters set on the radar [29] (see Table I).
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Fig. 3: A detailed pictorial description of the operations within each of the stages of our muscle activity estimation pipeline.

From (6), recall that ¢; % + 4’”;7(”). Notice that if,
z(iT) 497 =

o((i+1)T) = o(iT)+ ¢, then ;y = 42fio 4 2720
;. Even though the small motion has changed by % over a
time duration of 27, the phases do not capture this motion.
Therefore, we conclude that over a time equal to two chirp
times, 27, the small motion should change less than % This
argument actually gives us an expression for the maximum
velocity, vy, the target can have before it becomes impossible
to encode its small motion in the phase. We have

Ae A Ac
Uy = 2 = 2% = L ©

2T 4T T
Given the values of the radar parameters used in our
experiments (see Table I), we have vy = 0.244 m/s =

244 mm/s. For context, the movement of the chest due to

normal respiration and heart beat exhibits maximum speeds
of 4.08 mm/s and 0.67 mm/s, respectively [30]. In our muscle
activity experiments (see Figure 6a), participants contract
and relax their muscles at frequencies less than respiration
(0.2-0.34 Hz) and heart beat (1-1.34 Hz) frequencies and with
amplitudes comparable to chest movements due to respiration
4-12 mm [30].

One interpretation of (9) is that the largest displacement the
. . . . . >\c
tgrget can have in a time equal to the chirp time, 7', is 5. So,
given

'_47TRO+
Pi = Mo

4 (iT)

N (10)

and
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4T R, 4 i+ 1T
pisy = 220 e DT) (a1
Ao Ae
we have
4 Az
Ap =it —p; = TV (12)
where
Arx=z((i+1)T) — x(iT) (13)

Therefore, if the largest value that Ax can attain is %,
then the largest value that Ay can be is 7. Because the target
can move towards and away from the radar, we also consider
that the displacement Az cannot be less than —%. This then

suggests that the smallest Ay can be is —m. We have

-7 < Qip1 — @i ST (14)

This result leads to the phase unwrapping algorithm
proposed in [29] and implemented in the last stage of our
pipeline. The algorithm works as follows: iterate over all the
wrapped phases. If the difference between two consecutive
phases satisfies (14), do nothing. If instead ;1 — ¢; > T,
then subtract 27 from ;1. Finally, if ¢;41 — ¢; < —m, then
add 27 to ©it1-

The output of our signal processing pipeline is therefore the
unwrapped phase signal, ¢, which encodes the small motion
exhibited by the target at the nominal distance Ry. In our
experimental setup, the radar faced the surface of the skin
above the muscle of interest. Assuming that the only motion
exhibited by the skin was due to the movement of the muscle
underneath it, the phase signal encodes the muscle deformation
signal which we use as a measure of muscle activity.

V. EXPERIMENTS

We hypothesise that the muscle activity signals recorded by
our system will show a high correlation with those captured by
the sSEMG sensor. Secondly, we hypothesise that our system
records the same muscle deformation signal recorded by SMG
but without contact. If the first hypothesis is accepted, then
this validates the efficacy of our system since sEMG is the
gold standard for muscle activity monitoring. The muscle
deformation signal, as extracted through SMG, has been
shown to be a promising alternative to SEMG with desirable
qualities such as participants’ preference to use this signal to
control icons on a screen [4]. To investigate these hypotheses,
we compute the biserial correlation between our muscle
deformation signal and the state of the muscle as inferred
from sEMG. We also study the mathematical relationship
between our signal and sEMG, comparing our results to

TABLE I: Values of the FMCW radar parameters used.

Parameter Value
Chirp Sweep Time (1) 1670.17 us
Number of ADC Samples per Chirp (V) 2048
Number of Chirps per Frame 255
Number of Frames 40
Frame Periodicity 1296 ms
Bandwidth (B) 2.45 GHz
Number of Transmitters used 3
Starting Frequency (fo) 60 GHz

relationships reported between SMG and sEMG.

To evaluate the performance of our radar based muscle
activity monitoring system, we recruited three participants
from which the required data was collected. All participants
were aged between 22 and 25 years. During each trial, two sets
of time-synchronised data were collected, one from the radar
and another from the SEMG sensor. Table I shows the values
of the FMCW radar parameters used to record the radar data.
Time-division —multiplexing multiple-input-multiple-output
(TDM-MIMO) was used [31]. The radar and SEMG sensor
were triggered using an external hardware trigger.

sEMG data was collected using the wireless TeleMyo
2400T G2 Telemetry System developed by Noraxon. The
system consisted of a transmitter which was connected to the
SsEMG’s surface electrodes via leads. The transmitter was then
wrapped around the waist of a participant and rested on the lap
(see Fig. 4). A receiver then received and sent the sSEMG data
to a PC via USB. The sEMG data was recorded at a sampling
frequency of 1.5 kHz. It was then bandpass filtered with 30 Hz
and 200 Hz for the lower and upper cutoff frequencies of the
bandpass filter, respectively. Finally, the data was rectified
and the envelope obtained through the computation of the
RMS with a moving mean with a window size of 100 samples.

Four trials, each roughly 1 minute (57.1 s) long, were
conducted on each participant. During a trial, a participant was
asked to isometrically contract and relax their vastus lateralis
muscle (the strongest and largest quadriceps muscle that runs
along the entire length of the lateral side of the thigh) randomly.
A pair of SEMG electrodes were placed over the vastus lateralis
and one SEMG ground electrode was placed over the patellar
tendon (see Fig. 4).

The muscle activity monitoring experimental setup consisted
of a Texas Instruments (TI) IWR6843ISK mmWave FMCW
radar [32] and the DCA1000EVM data capture board [33].
Both devices were enclosed within a 3D-printed enclosure
which was mounted on a 35cm long rectangular 3D-printed
rod. These two devices were connected to the MMWAVE-
ICBOOST [34], which received the synchronising signal. On
either side of the radar was a GoPro HERO 7 Black camera
(see Fig. 5) with frame rate and resolution set to 120 fps and
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Fig. 4: Each participant sat on top of a table that was placed
70 cm in front of the tripod while wearing shorts to expose
the QR code to the cameras.

1920 x 1080 pixels, respectively. We refer to these as camera 1
and 2 and the data from these cameras was used to corroborate
the vastus lateralis’ range estimation from the radar. Both
cameras were also mounted on the same rod, and the rod was
fixed to an adjustable-height tripod. It is important to note that
the cameras were completely unnecessary for the operation of
the proposed non-contact muscle activity monitoring system.

Radar

Camera 2 LY

Fig. 5: Our muscle activity monitoring experimental setup
consisted of the Texas Instruments (TT) IWR6843ISK mmWave
FMCW radar and the DCA1000EVM data capture board. Both
devices were enclosed within a 3D-printed enclosure which
was then mounted on a 35 cm long rectangular 3D-printed rod.
On either side of the radar was a GoPro HERO 7 Black camera.

A QR code was also placed on the skin over the vastus
lateralis muscle using paper glue. The skin was shaved with a
razor blade for each participant, enabling the QR code to be
placed onto the skin surface. The QR code was used together
with a calibrated stereo camera pair to estimate how far the
vastus lateralis muscle was from the radar using triangulation.
This range estimation was used to corroborate the vastus
lateralis’ range estimation from the radar. Recall that range
estimation is equivalent to range bin selection, which was one

of the stages in our muscle activity monitoring pipeline. It is
to be noted that the radar’s range estimation was sufficient and
that the QR code was not required at any stage of our pipeline.

Each participant sat on top of a table that was placed 70 cm
in front of the tripod while wearing shorts to expose the QR
code to the cameras, as presented in Fig. 4. It should be noted,
however, that the radar can penetrate through clothing. The
tripod’s height was adjusted such that the radar’s boresight
was pointing directly at the participant’s vastus lateralis muscle.

Ethical approval for this study was obtained from the Univer-
sity of Cape Town Faculty of Health Sciences Human Research
Ethics Committee (HREC REF: 379/2022).

V. RESULTS AND DISCUSSION

In section IV we hypothesised that the RMG and sEMG
signals are highly correlated. In this section, the biserial
correlation coefficient between the root mean square (RMS)
value of the RMG signal and the state of the muscle as
deduced from the sEMG signal will be used to measure
this correlation. To investigate our second hypothesis, which
proposes that the RMG signal is analogous to the SMG
signal, we will fit an exponential curve to the RMG vs. sSEMG
data and compare this fit to the existing SMG vs. sEMG
relationships reported in the literature.

The results presented here are from a total of 12 trials
across the three participants. Four trials were conducted for
each participant. Each trial was about 1 minute (57.15s) long.
Fig. 6 illustrates the sSEMG and radar phase signals recorded
from one such trial, specifically from participant one. We
observed that each time the participant contracts the vastus
lateralis, the radar phase signal increased. This implies that
contraction deforms the vastus lateralis muscle away from the
radar. Conversely, when the muscle was relaxed, the radar
phase decreased. This suggests that relaxation deformed the
muscle towards the radar.

The most noticeable feature of Fig. 6 is the high
correlation between the sEMG signal and the deformation
signal (as measured by the phase signal). Several other
studies [4] [12] [19] have demonstrated that muscle
deformation (as measured through ultrasound images)
correlates with muscle activity (as measured through sEMG)
and/or muscle force.

In order to quantify as well as establish the strength of
the correlation depicted in Fig. 6, we calculated the biserial
correlation coefficient, 1, between the RMS value of the radar
phase signal and the state of the muscle (relaxed or contracted)
as deduced from the ground truth SEMG signal. This coefficient
measures the correlation between a continuous variable, in our
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Fig. 6: During each trial, a participant was asked to isometri-
cally contract and relax their vastus lateralis muscle randomly.
Two sets of time-synchronised data were then collected. These
are (a) sSEMG and (b) radar data as presented here. The data
in this figure is generally typical across subjects. Observed
differences are in the time duration for which each participant
activates the muscle as well as the level of activation for each
participant (i.e., amplitude of each signal), which both should
be expected since participants contracted and relaxed randomly.

case the RMS of the radar phase, and a dichotomous variable,
the muscle’s state in our case. It is computed as

r ¢1rms - @Orms noni
b =
P On n2 "’

5)

where ¢1ms and @oms are the mean RMS of the radar phase
in the contracted state and relaxed muscle state, respectively.
Additionally, o,, is the standard deviation of all the RMS
values data, n;, no and n are the number of radar phase
RMS values in the contracted state, relaxed state and the total
number of radar phase RMS values in the data, respectively.

The RMS is a commonly used metric in the analysis of
muscle activity signals [10] [12]. As can be seen in Fig. 6,
the radar phase signal goes below 0 rad when the muscle is
in the relaxed state. In order to preserve the directionality of

Radar Phase RMS
w B (¢
o o o

— N
o o
T T
o o @e conmm o

Relaxed Contracted

Muscle State

Fig. 7: Showing the RMS value of the radar phase signal
against the state of the muscle. The data presented is from all
four trials of participant one. The plot depicts the correlation
between the RMS value of the radar phase signal and the state
of the muscle as deduced from the corresponding SEMG signal.

this signal during the computation of the RMS, the absolute
value of the minimum radar phase across all four trials was
added to all radar phase signals to bias them above 0 rad.

Using the data from all the four trials of participant one,
the biserial correlation coefficient was calculated to be 0.91
or 91%. This is a strong positive correlation suggesting the
deformation signal as measured by our system can be reliably
used to monitor or classify the muscle’s state. We therefore
claim that the hypothesis that the SMG signal is highly
correlated to SEMG is accepted. Fig. 7 shows the data used to
compute the reported correlation coefficient. The data consists
of 40 and 38 RMS values corresponding to the contracted and
relaxed states, respectively.

An exponential relationship between sEMG and SMG-
measured muscle deformation has been observed in the
literature [12] [35], and our data corroborates this relationship,
providing evidence that RMG is measuring a signal similar
to that of SMG. Particularly, this exponential relationship
was observed between deformation, as measured through
normalised radar phase, and normalised sEMG. The signals
are normalised by dividing each sample by the largest sample
in the signal. Fig. 8b presents a scatter plot of normalised
radar phase against normalised SEMG for the first contraction
in Fig. 6. The exponential relationship between the two
variables can be seen in this plot.

Also depicted in Fig. 8b is an exponential curve that best
fits the data. Following [12] and [35], the best fit line was
modelled as

V= A1 — e B%), (16)

where Y is the normalised muscle deformation, X is the
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Fig. 8: Illustrated in (a) is the normalised SEMG and corre-
sponding normalised radar phase from a single contraction-
relaxation cycle in Fig. 6. The relationship observed between
the two normalised signals is characteristic of muscles and, rep-
resented differently, it results in the hysteresis curve in Fig. 10.
A scatter plot of the normalised radar phase against normalised
SEMG during the contraction phase of (a) is presented in (b).
Also included in (b) is the exponential line that best fits the
data. The exponential relationship observed here is typical.

normalised SEMG, A is the asymptotic value of Y and B is
the exponent coefficient determining the curvature.

To solve for the model coefficients A and B, MATLAB’s
Isqnonlin() method from the Optimisation Toolbox was used
to fit (16) to the data. The problem was posed as a non-linear
least-squares curve fitting problem and solved using the
Levenberg—Marquardt algorithm [36]. For the data in Fig. 8b,
the values of A and B were found to be 0.91 and 3.68,
respectively. The equation of the depicted best fit line is
thus ¥ = 0.91(1 — e=358X). The model coefficients were
calculated for all 12 experiments. Fig. 9 presents the 12 values
of each coefficient across participants and experiments.

The plots shown in Fig. 8a can be considered in two stages,
the ON or contraction stage from roughly 2 s to 3 s and the
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Fig. 9: The relationship of normalised radar phase to nor-
malised SEMG during the contraction of a muscle has been
observed to be exponential, as depicted in Fig. 8b. Equation
(16) is often used to model the relationship and we do the
same here. In (a) is the value of coefficient A and in (b) is the
value of coefficient B for the data collected from all the trials
viewed per participant.

OFF or relaxation stage from roughly 5.5 s to 6 s. The ON
stage refers to the transitory period from a relaxed muscle state
to a contracted state and the OFF stage refers to the transitory
period from a contracted to a relaxed muscle state. In practice,
the start of the ON stage and the end of the OFF stage were
delineated by the time the signal goes above or below a lower
threshold value, respectively. The end of the ON stage and
the beginning of the OFF stage were delineated by the time
the signal goes above or below an upper threshold value,
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respectively. For the normalised signals, these can be selected
as percentages of the maximum signal value, i.e., values
between 0 and 1. What stands out in this figure is that muscle
deformation significantly lags behind the decreasing SEMG
during relaxation whereas it closely correlates with SEMG
during contraction. In this respect, our data also corroborates
existing literature [37] [38] about certain mechanical muscle
characteristics (e.g., force) depending not only on the level of
excitation but also on the prehistory of contraction.

Notice that a given percentage of muscle deformation
(normalised radar phase) corresponds to a lower percentage
SEMG during the OFF stage than during the ON stage. This
phenomenon is easily observable when the normalised SEMG
is plotted against the normalised radar phase for only the
ON and OFF stages. Fig. 10 depicts such a plot, drawn
from the data in Fig. 8a. The resultant curve is called a
hysteresis curve and was also observed in [12] and [39].
In [12], the hysteresis was between muscle deformation
and sEMG and is exactly as we observed here. In [39]
however, it was observed between muscle deformation and
force and it was stated that such hysteresis curves are well
known in biomechanics. The sEMG amplitude increased
during the ON stage and decreased during the OFF stage,
and therefore the hysteresis in Fig. 10 (and [12]) has a
clockwise direction while that in [39] has an anti-clockwise
direction. Existing literature has shown that there is extreme
variability in the manifestations of these hysteresis loops and
that their directions, in particular, can be different [38] [40].
Based on the observed exponential relationship between the
normalized radar phase and normalized sEMG, as well as the
hysteresis curve in Fig. 10, we accept our second hypothesis.
Specifically, this supports the claim that RMG is analogous to
SMG.

The final observation common across our study and the
studies in [12] and [39] was that the rate of muscle deformation
was typically higher during the ON stage compared with the
OFF stage. As in [12] however, this effect was not always
observed. It was almost exclusively observed in participant one.
In [12], this data artifact was attributed to the low frame rate
(8 Hz) of the ultrasound imaging system and the inability of
the participants to reduce torque smoothly. In our study, the
muscle deformation was sampled at the slow time frequency
of 200 Hz, which is more than 20 times that in [12] and thus the
sampling frequency cannot be a limiting factor in our system.
Instead, this limitation is probably due to participants 2 and 3
not relaxing the vastus lateralis smoothly.

VI. CONCLUSIONS AND LIMITATIONS

Based on the foregoing results and discussions, we argue the
radar phase signal we recover is the muscle deformation signal
recovered through SMG. The proposed system can be used to
relay information about human motions to computers, i.e., for

I
e
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o
.
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Normalised Radar Phase

Fig. 10: Presented here is the normalised SEMG data from
the illustrative trial and illustrative contraction-relaxation cy-
cle plotted against the corresponding normalised radar phase
from participant one. Only the ON and OFF stages of the
contraction-relaxation cycle are presented. The part of the cycle
when the contraction is held is not depicted. The hysteresis
curve observed here is characteristic and well known in biome-
chanics [12] [39].

human-computer-interaction, e.g., in AR/VR applications. In
addition to routine isometric contractions during neurological
and orthopaedic rehabilitation, AR/VR applications are another
avenue in which our system is immediately useful.

Our system is limited to monitoring muscle activity only
for isometric contractions. Another limitation of our approach
was that the recovered muscle deformation was prone to
drift. Meaning that after contraction, the radar phase did not
return back to 0 rad even though the muscle was relaxed (see
Fig. 6). This happens because after every contraction, the
muscle does not return to exactly the same position relative
to the radar-camera rig as it was before the contraction.
Though an effort was made by each participant to avoid
translation of the leg, the leg was not strapped in place.
The SMG approach is also prone to this drift problem as
demonstrated in [4], [13] and [19]. A limitation of not only
our implementation but the approach in general is that it
cannot be used to monitor the muscle activity of deep muscles.

In future, the proposed technique will inform the analysis
(e.g., of the gait) of humans during contact sporting activities
such as rugby, where contact approaches are impractical,
and thus provide athletes with information to improve their
performance, prevent and facilitate rehabilitation from injuries.
Similarly, our system will inform gait analysis of animals
in the wild, inform biomechanics research, diagnosis and
rehabilitation efforts.

For future work, we plan on extending our approach to
enable RBM cancellation and thus enable the monitoring of
muscles during eccentric and concentric contractions, as well
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as the tracking and monitoring of muscle activity for mobile
participants. Specifically, if the varying range of the target is
known, say from a calibrated stereo-camera pair (see Fig. 5),
then the radar phase signal can be computed with the beat
frequency, f5, updated using the range information.

APPENDIX

Range (Discrete) Fast Fourier Transform (Range FFT) for
Range Bin Selection

Mathematically, the Range (Discrete) Fast Fourier Transform
(Range FFT) is

N—-1
5k
Xy =Y wpe TN, (17)
n=0

where k is the frequency index, z,, = Sp(iT +n-Ts),n €
{0,1,2,..., N — 1} is the discretised received chirp, N is the

number of samples per received chirp and T, = fi is the
period at which the received chirp has been sampled.
Dividing and multiplying by T in (17) gives
N—1 -
Xp= Y ape /2Twmnle, (18)
n=0
If we let % = % fs = fr and substitute into (18) the
correct expression for z,,, we get
N—-1
X, = Z Aped2mfonTs o=j2m finTs gjgi
n=0
N-1 (19)
= Agpel¥i Z 27 (fo—fi)nTs
n=0
If fi = fp, then
Xy, = NAgel#i (20)
because S N !es2n(fu=fi)nT:  — N Therefore, at the

beat frequency, the Range FFT coefficient has magnitude
| Xy, | = NAg.

However, if fi # f, then we can let z = /27 (o=fK)Ts 5 ¢
C. Then by noticing that our sum is a geometric sum, we have

N-1 N-1
Z ef2mfo=finTs — Z =1tz N
n=0 n=0

2y

Letting | 0" ' e72r(fu=fi)nTs
triangle inequality on (21) gives
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