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Abstract—Capturing animal locomotion in the wild is far more challenging than in controlled laboratory settings. Wildlife
subjects move unpredictably, and issues like scaling, occlusion, lighting changes, and the lack of ground truth data make
motion capture difficult. Unlike human biomechanics, where machine learning thrives with annotated datasets, such
resources are scarce for wildlife. Multi-modal sensing offers a solution by combining the strengths of various sensors, such
as LiDAR and thermal cameras, to compensate for individual sensor limitations. Additionally, some sensors, like LiDAR,
can provide training data for monocular pose estimation models. We introduce M2S2, a Multi-Modal Sensor System
for capturing animal motion in the wild. M2S2 integrates RGB, depth, thermal, event, LiDAR, and acoustic sensors to
overcome challenges like synchronization and calibration. We showcase its application with data from cheetahs, offering
a new resource for advancing sensor fusion algorithms in wildlife motion capture.

Index Terms—Sensor systems, motion capture, pose estimation, sensor fusion

I. INTRODUCTION

Understanding animal motion in natural environments is essential
for insights into ecology, evolutionary biology, and neuroscience.
While controlled laboratory settings have been informative, the
complexity of outdoor environments poses significant sensing
challenges like occlusion and lighting variability. In human motion
capture, deep learning has addressed these challenges but requires
extensive ground truth data currently impractical for wildlife [1].

Multi-modal sensor data integration can overcome these obstacles
by leveraging the strengths of different modalities [2]. This approach
not only provides robust state estimation but also opens up new pos-
sibilities for generating ground truth data. However, a comprehensive
system for capturing synchronized multi-modal animal data in the
field is non-existent.

We present the M2S2 (Multi-Modal Sensor System), an open-
source platform that captures synchronized high-speed RGB, depth
camera, thermal, mmWave radar, event camera, acoustic, and LiDAR
data from animals. This system addresses the challenges of time
synchronization and extrinsic calibration of diverse sensors. We
demonstrate the system’s capabilities with data captured from cheetahs
during high-speed pursuits and low-light conditions, providing a
valuable resource for developing new fusion algorithms for wildlife
pose estimation.

All code and data are available on our GitHub page: M2S2 GitHub.
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Fig. 1. Example of Multi-modal sensor data captured by M2S2 of
cheetahs running in the wild.

II. LITERATURE REVIEW

A. Multi-modal Sensor Systems

Multi-modal sensing refers to the integration of multiple sensory
inputs, such as vision, audio, touch, and more, to gather a
comprehensive understanding of an environment or object. This
approach offers several advantages, including enhanced perception
and context awareness, improved robustness in noisy or dynamic
settings, and the ability to provide richer and more accurate
information for applications such as autonomous vehicles [2] and
pose estimation [3].

Multi-modal data is challenging to generate for two primary reasons.
The first is that time-synchronization of sensors with varying data
rates requires careful software design. The second reason is the
extrinsic calibration (estimating the pose between various sensors)
can be a challenge as it requires multiple calibration experiments
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(no single method works for all sensors). Nevertheless, we have
summarized a collection of notable multi-modal sensor systems in
Table 1. As can be seen, our proposed system is the first to cover
such a multitude of sensors for any application.

TABLE 1. Comparison of Existing Multi-Modal Systems. The letters
D, T, R, L, E and A stand for Depth, Thermal, Radar, LiDAR, Event and
Acoustic, respectively.

RGB D T R L E A
Lim et al. [4] ✓ ✓ ✓

Chen et al.∗ [5] ✓ ✓ ✓

Fang et al.∗ [6] ✓ ✓ ✓ ✓ ✓

Cheng et al.∗ [7] ✓ ✓ ✓ ✓ ✓

Sizhe et al. [8] ✓ ✓ ✓

Yang et al. [3] ✓ ✓ ✓ ✓

M2S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Systems marked with an ∗ do not provide information regarding extrinsic
calibration of the sensors used.

B. Animal Pose Datasets

Recent advancements have seen a proliferation of animal datasets aimed
at various research objectives. Collections of 2D pose datasets have been
developed for macaques [9], horses [10], and birds [11], along with large-
scale general pose datasets like AP-36K [12]. Despite these developments,
3D animal pose datasets remain scarce, primarily due to the challenges of
obtaining accurate ground truth, which often requires manual labeling from
multi-view videos [13]. Marker-less motion capture systems have emerged
as a promising solution for overcoming these challenges, particularly in
studies involving wild animals in natural environments. Unlike traditional
systems (e.g., optical markers and IMUs), which are intrusive and may
alter animal behavior, marker-less systems are non-intrusive and adaptable,
allowing for data collection in uncontrolled and dynamic settings [14],
[15]. Noteworthy contributions in 3D pose estimation include datasets for
monkeys [16], dogs [17], and various wild quadrupeds [18]. Among these,
only Patel et al. [19] incorporate RGB, depth, and thermal data, albeit in a
controlled setting.

III. SYSTEM DESIGN

A. Hardware Design

M2S2 combines the current state-of-the-art remote sensors into one modular
system. Each of the sensors have been selected for their complementary
strengths for pose estimation and are briefly described below with the specific
sensors selected depicted in Fig. 2.

1) High-speed RGB camera: RGB video for pose estimation is
advantageous due to its affordability as well as the density of its data. It has
limitations, including difficulties in low-light, glare, or occluded scenarios and
challenges in precise 3D pose estimation without additional sensors. It has
successfully been employed in animal pose inference using both multi-view
[20] and monocular camera data [21].

2) Depth camera: Depth cameras, utilizing structured light or time-of-
flight to emit infrared patterns, measure distortion to calculate depth [22].
They offer accurate 3D data for pose estimation but are limited by strong
ambient light and range. These technologies have been effectively used for
tracking animals in controlled environments, like mice in laboratories [19]
and domestic dogs, as demonstrated by the RGBD-Dog dataset provided by
Kearney et al. [23]. However, their application has not yet extended to wild
animals.

3) Thermal Camera: Advantages of thermal cameras are that they can
operate in complete darkness and are insensitive to visible light conditions,
making them suitable for nighttime and low-visibility scenarios which are
typical for wildlife. They capture thermal radiation which is less affected
by subject appearance [24]. However, they cannot capture color and fine
texture details, limiting pose estimation precision. Animal pose estimation
with thermal cameras is yet to be explored.

4) Event Camera: An event camera is a specialized type of camera that
captures changes in pixel intensity rather than traditional frames. Advantages
include high temporal resolution for fast motion tracking and low power
consumption. However, they have lower spatial resolution, limiting detailed
pose estimation, and require unique algorithms for data processing. Animal
pose estimation using event cameras has not been investigated but it has been
shown to generate extremely high-speed motion capture in humans [25].

5) LiDAR: LiDAR sensors offer precise 3D (metric) spatial information,
enabling accurate pose estimation even in different lighting conditions.
However, disadvantages include their relatively high cost, sparsity of point
cloud data and susceptibility to interference from weather conditions like
fog or rain, which can impact their reliability in adverse environments [2].
LiDAR has successfully been combined with RGB images for human pose
estimation [26] but has also not been explored for animal pose estimation.

6) mmWave Radar: FMCW (Frequency Modulated Continuous Wave)
mmWave radar emits continuous radio waves and measures reflections to
determine distance and velocity of objects, through the Doppler shift (the
output is a 3D cube with range, Doppler and angle as the 3-axes). It works
in various conditions, including darkness and adverse weather. Challenges
include complex signal processing and poor angular resolution. Human pose
estimation has been demonstrated with mmWave-only systems and with depth
cameras [3].

7) Audio: Audio’s potential to enhance motion capture is often
overlooked, yet it offers a unique dimension to perception. Existing research
shows promise, such as estimating upper torso motion of violin players [27] or
refining pose estimation in galloping horses [28]. Given its untapped potential
compared to other sensors, there is a pressing need to explore audio’s role
in enhancing motion capture accuracy.

Fig. 2. Front view of M2S2 showing all sensors. Note: frame-rates for
sensors were chosen to avoid memory overhead.

8) Mechanical Design: The system’s mechanical design, modeled
features a durable aluminum casing (365mm x 300mm) with 3D-printed
sensor mounts, a tripod for the microphone, and aluminum handles for
portability. All CAD files are available on our GitHub page.

B. Software Design
1) Architecture Overview: The platform integrates various sensors on

a compact platform with ROS2 [29] running on an Intel NUC Mini PC
(13th Gen, i7-1360P Processor, 16GB RAM) for effective data capture and
synchronization. Each sensor is managed by ROS2 nodes for control and
data logging, as shown in Fig. 3.

Sensor data is published to ROS2 topics and visualized using built-in
tools. Unlike typical ROS2 bag storage, our setup uses eCAL [30] for data
logging. eCAL’s advantages over RTPS DDS middleware are discussed in
Section III-B2.

2) eCAL RMW: eCAL RMW (eCAL ROS2 middleware wrapper) is
based on the open-source eCAL framework [30], enabling ROS2 components
to communicate using eCAL middleware. It replaces ROS2 RTPS DDS, which
can be resource-intensive and introduce latency [29]. eCAL RMW focuses on
simplicity and maximum performance, offering efficient data communication,
reduced storage and bandwidth costs, and low-latency data transfer.

It supports tools like eCAL recorder, monitor, and player, simplifying data
recording and playback. Various tests revealed eCAL consistently recorded
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Fig. 3. Overview of M2S2 Software Architecture

high-payload data without dropping frames, outperforming the the alternative
(ROS2 bags), which showed significant frame loss under increased sensor
loads (approx. 30% of frames were lost with a simple two sensor setup). eCAL
stores data in the accessible HDF5 format, ensuring seamless deserialization
and dataset integration.

3) Synchronization: Accurate synchronization is essential for compre-
hensive multi-modal animal datasets. While LiDAR, Intel RealSense, and
Ximea sensors support hardware synchronization, others (radar, event, thermal,
microphone) rely on software alignment. We evaluated synchronization using
a GPS-synchronized pulsing LED captured by RGB, depth, and event cameras,
achieving 30 ms alignment (mean 10.99 ms, std. 10.28 ms). This approach
suffices for many applications but may introduce errors for rapid maneuvers.
Future work should incorporate advanced hardware synchronization and select
sensors with built-in capabilities to enhance multi-modal data integration.

IV. CALIBRATION
Extrinsic calibration defines spatial relationships between sensors, crucial

for sensor fusion in systems like M2S2 [2]. Given that no single algorithm is
capable of calibrating all sensors in M2S2, a modular strategy with the Intel
RealSense camera as the reference (Fig. 4) was employed. Unlike microphone
arrays, the single parabolic microphone used (which has a beam width of
approximately 43◦ at 1 kHz) is not designed to capture spatial information;
therefore, spatial calibration with respect to the cameras is neither applicable
nor useful for our application.

Fig. 4. Calibration Overview for M2S2, with the Intel RealSense as
the reference frame.

A. Thermal Camera

For geometric calibration of thermal cameras, distinctive features visible in
the IR spectrum are required, achievable by leveraging the thermal conductivity
and emissivity of materials. Following the approach of ElSheikh et al. [24],
we utilized a laser-cut MDF checkerboard pattern overlaid onto an aluminum
surface, heated with halogen lamps for visibility in both RGB and IR cameras.
A mean reprojection error of 0.45 pixels was achieved.

B. LiDAR

Geometric LiDAR-camera calibration is commonly performed by extracting
the checkerboard edges from the camera images, and detecting the rectangular
checkerboard plane in the LiDAR data, according to the board dimensions
computed [31]. We used the MATLAB LiDAR Camera Calibrator app [32]
and achieved a mean translational error of 0.027 m and a mean rotational
error of 4.02◦.

C. Event Camera

Event cameras detect changes in pixel intensity, with pixels acting
independently. We used the E2Calib toolbox [33], which integrates event
data into constant time periods and reconstructs visible images. These images
were used in MATLAB Stereo Camera Calibration App [34] for extrinsic
calibration. A checkerboard calibration target, as recommended in [34], was
employed for this process, achieving a mean reprojection error of 0.33 pixels.

D. mmWave Radar

Radar-camera calibration was performed by determining points of corre-
spondence (using a metal corner reflector) between the radar and camera to
determine the rotation and translation of the radar as done in [35]. A RMSE
of 0.18 m for the Y position and 1.82 m for X position was obtained. The
large error is due to the comparatively poor angle resolution of the radar. 2
shows the radar parameters as configured for calibration.

TABLE 2. Radar Parameters

Radar Parameter Value
Maximum Range [m] 22.5
Range Resolution [m] 0.23

Maximum Velocity [m/s] ±20
Velocity Resolution [m/s] 1.5
Azimuth Resolution [°] 15
Elevation Resolution [°] 58

E. Ximea High-speed Camera

In addition we also performed extrinsic calibration from the Ximea to the
Realsense using the Matlab Stereo Camera calibrator app [34]. A checkerboard
calibration target, as recommended in [34], was employed for this process.
A mean reprojection error of 0.2 pixels was achieved.

V. MULTI-MODAL ANIMAL MOTION DATA

To validate the system we collected data of cheetahs during feedings
and lure-chasing exercises at a wildlife sanctuary (Cheetah Outreach, South
Africa). A supplementary video illustrating the system’s capabilities form
part of the supplementary material of the paper.

In Fig. 5 (left), we showcase integrating thermal imaging with LiDAR
technology for nighttime depth perception, enabling accurate 3D pose
estimation in low-light conditions. This fusion technique opens new avenues
for training neural networks to convert monocular 2D thermal images into 3D
pose estimations. Additionally (right), event cameras detect minute movements
often missed by RGB cameras. Through calibrated integration of event and
RGB cameras, we combine sparse event data with detailed RGB imagery,
enriching scene understanding and facilitating denser tracking.



0000000 VOL. 1, NO. 3, JULY 2017

Fig. 5. Left: Fusion of LiDAR point cloud and thermal data of a
cheetah observed at twilight. Right: Fusion of events and RGB images
during a cheetah run.

VI. CONCLUSIONS AND FUTURE WORK
We presented M2S2, a system capturing multi-modal, time-synchronized

sensor data from wildlife. We present the first multi-modal remote sensor data
captured from animals movingly freely in the wild. We believe this system
will enhance future 3D pose estimation of wildlife by creating novel data
for sensor fusion algorithms which could make wildlife conservation more
comprehensive.
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of insect locomotion with deep neural networks pre-trained on synthetic videos,”
Frontiers in Behavioral Neuroscience, vol. 15, p. 637806, 2021.

[15] E. Gambaretto and S. Corazza, “Markerless motion capture: The challenge
of accuracy in capturing animal motions through model-based approaches,” in
Videometrics, Range Imaging, and Applications X, vol. 7447. SPIE, 2009, pp.
115–121.

[16] P. C. Bala, B. R. Eisenreich, S. B. M. Yoo, B. Y. Hayden, H. S. Park, and
J. Zimmermann, “Automated markerless pose estimation in freely moving macaques
with openmonkeystudio,” Nature Communications, vol. 11, no. 1, p. 4560, 2020.

[17] B. Biggs, O. Boyne, J. Charles, A. Fitzgibbon, and R. Cipolla, “Who left the
dogs out? 3D animal reconstruction with expectation maximization in the loop,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XI. Springer, 2020, pp. 195–211.

[18] J. Xu, Y. Zhang, J. Peng, W. Ma, A. Jesslen, P. Ji, Q. Hu, J. Zhang, Q. Liu, J. Wang
et al., “Animal3d: A comprehensive dataset of 3D animal pose and shape,” arXiv
preprint arXiv:2308.11737, 2023.

[19] M. Patel, Y. Gu, L. C. Carstensen, M. E. Hasselmo, and M. Betke, “Animal pose
tracking: 3D multimodal dataset and token-based pose optimization,” International
Journal of Computer Vision, vol. 131, no. 2, pp. 514–530, 2023.

[20] D. Joska, L. Clark, N. Muramatsu, R. Jericevich, F. Nicolls, A. Mathis, M. W.
Mathis, and A. Patel, “Acinoset: A 3D pose estimation dataset and baseline models
for cheetahs in the wild,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 13 901–13 908.

[21] S. Zuffi, A. Kanazawa, T. Berger-Wolf, and M. J. Black, “Three-d safari: Learning to
estimate zebra pose, shape, and texture from images ”in the wild”,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5359–5368.

[22] A. Kadambi, A. Bhandari, and R. Raskar, “3D depth cameras in vision: Benefits and
limitations of the hardware: With an emphasis on the first- and second-generation
kinect models,” Computer Vision and Machine Learning with RGB-D Sensors, pp.
3–26, 2014.

[23] S. Kearney, W. Li, M. Parsons, K. I. Kim, and D. Cosker, “Rgbd-dog: Predicting
canine pose from RGBD sensors,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 8336–8345.

[24] A. ElSheikh, B. A. Abu-Nabah, M. O. Hamdan, and G.-Y. Tian, “Infrared camera
geometric calibration: A review and a precise thermal radiation checkerboard
target,” Sensors, vol. 23, no. 7, p. 3479, 2023.

[25] L. Xu, W. Xu, V. Golyanik, M. Habermann, L. Fang, and C. Theobalt, “Eventcap:
Monocular 3D capture of high-speed human motions using an event camera,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 4968–4978.

[26] A. Zanfir, M. Zanfir, A. Gorban, J. Ji, Y. Zhou, D. Anguelov, and C. Sminchisescu,
“Hum3dil: Semi-supervised multi-modal 3D human pose estimation for autonomous
driving,” in Conference on Robot Learning. PMLR, 2023, pp. 1114–1124.

[27] E. Shlizerman, L. Dery, H. Schoen, and I. Kemelmacher-Shlizerman, “Audio to
body dynamics,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 7574–7583.

[28] L. Ci, E. Hernlund, H. Kjellstrom, and S. Zuffi, “The sound of motion: Multimodal
horse motion estimation from video and audio,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2022.

[29] “ROS 2: Robot Operating System 2,” https://index.ros.org/doc/ros2/, 2023, accessed:
13-09-2023.

[30] “eCAL: Efficient Communication Abstraction Layer,” https://ecal.io/, 2023,
accessed: 13-09-2023.

[31] L. Zhou, Z. Li, and M. Kaess, “Automatic extrinsic calibration of a camera and a
3D lidar using line and plane correspondences,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 5562–5569.

[32] MathWorks, “Lidar camera calibrator app,” 2024, accessed: 2024-12-05. [Online].
Available: https://www.mathworks.com/help/lidar/ref/lidarcameracalibrator-app.
html

[33] M. Muglikar, M. Gehrig, D. Gehrig, and D. Scaramuzza, “How to calibrate your
event camera,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 1403–1409.
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