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Abstract

Computational psychiatry has suggested that humans within the autism spectrum disorder (ASD) inflexibly
update their expectations (i.e., Bayesian priors). Here, we leveraged high-yield rodent psychophysics (n = 75
mice), extensive behavioral modeling (including principled and heuristics), and (near) brain-wide single cell
extracellular recordings (over 53k units in 150 brain areas) to ask (1) whether mice with different genetic
perturbations associated with ASD show this same computational anomaly, and if so, (2) what
neurophysiological features are shared across genotypes in subserving this deficit. We demonstrate that mice
harboring mutations in Fmr1, Cntnap2, and Shank3B show a blunted update of priors during decision-making.
Neurally, the differentiating factor between animals flexibly and inflexibly updating their priors was a shift in the
weighting of prior encoding from sensory to frontal cortices. Further, in mouse models of ASD frontal areas
showed a preponderance of units coding for deviations from the animals’ long-run prior, and sensory responses
did not differentiate between expected and unexpected observations. These findings demonstrate that distinct
genetic instantiations of ASD may yield common neurophysiological and behavioral phenotypes.
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Main

Autism spectrum disorder (ASD) is a neurodevelopmental condition of unknown etiology. The disorder is
characterized by abundant heterogeneity, both at biological (e.g., genetics and neurochemistry’#) and behavioral
scales (e.g., anomalies across social, communicative, perceptual, and motor domains®”). This diversity hinders
our ability to understand and ultimately treat the condition.

To address the phenotypic heterogeneity, computational psychiatry®'” has recently cast ASD with the language
of probabilistic inference'® and suggested that individuals within the spectrum (1) have attenuated expectations'®
(2) inflexibly weight predictions relative to sensory observations? and/or (3) over-estimate the volatility of their
sensory environment and thus are less surprised by statistically unlikely events?'. Critically, each of these
computational accounts suggest that the learning of context-dependent statistical regularities (i.e., “contextual
priors®?") is abnormal (e.g., slow? ?*) in ASD. This convergence on a putative computational deficit in humans
with ASD supposes an opportunity to now account for biological heterogeneity.

We attempt to bridge the gap between the recent computational accounts of ASD and its neurobiological and
genetic instantiation. Namely, we hypothesized that if a single computation (e.g., aberrant prior updating) may
account for myriad of behavioral symptoms in ASD'®%*, then the distinct genetic makeups of the condition may
similarly (1) all express this computational deficit, and (2) share a common underlying neurophysiological profile
subserving the computational deficit. We test this hypothesis across three different monogenetic mouse models
of ASD (Fmr1?°, Cntnap2®, and Shank3B?’) by leveraging a standardized high-yield visual detection task
requiring the use of priors?®, behavioral modeling of online adaptation to changes in statistical regularities® *°,

and large-scale neurophysiological recordings with high-density silicon probes®’.

The results demonstrate that all tested genetic mouse models of ASD underutilized adaptive statistical
regularities during decision-making. These animals showed a blunted update of their priors® %* and were not
surprised by statistically unlikely events®'. Brain-wide extracellular recordings showed a neural convergence,
wherein the relative weighting of prior encoding at the unit- and population-level shifted from sensory to frontal
cortices in all mouse models of ASD. Likewise, we observed (1) a preponderance of units coding for deviations
from the animals’ long-run prior (prior mean) and (2) a lack of sensory-driven prediction errors in frontal cortices
of mouse models of ASD. Together, these results suggest that both global and local neural imbalances engender
the inflexible updating of Bayesian priors in ASD. Globally, there is a shift in prior encoding from sensory to
frontal areas. Locally, within frontal areas, there is a suppression of statistically surprising sensory observations
and an outsized influence of signals coding for the prior mean. More broadly, the results demonstrate a common
computational and neural anomaly across mouse models of ASD, suggesting that distinct genetic instantiations
of the disorder may converge onto common behavioral and neurophysiological phenotypes.
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Results
Reduced utilization of statistical regularities in mouse models of ASD

Wildtype mice (C57BL/6j, n = 15) and three genetic mouse models of ASD — Fmr1™” (n = 19), Cntnap2®°“*(n =
21), Shank3B™" (n = 20) — were first trained on a prior-independent, two-alternative forced-choice visual detection
task. We leveraged the standardized task and protocols from the International Brain Lab?® (Fig. 1A). Briefly, a
grating of varying contrast was presented with equal probability to the left or right of a head-fixed mice. The
animal then selected one of two choices (i.e., left or right) by turning a steering wheel coupled to the grating
location. If the mouse brought the grating to the center of its visual field, it was rewarded with sucrose. Instead,
if the animal moved the grating by an equivalent distance in the other direction (i.e., off-screen), it was penalized
by a timeout (Fig. 1B, see Methods for detail).

Mice of all genotypes learned this task (learned/total; C57BL6: 15/15; Fmr1: 17/19; Cntnap2: 19/21; Shank3:
18/20; x? test, p = 0.90). Further, provided that an animal became proficient at the task, it did so in an equal
number of sessions (Fig. 1C, mean + s.e.m.; C57BL: 12.9 £ 2.2; Fmr1: 16.8 £ 2.2; Cntnap2: 13.8 + 2.4; Shank3:
12.8 + 1.4) regardless of genotype (p = 0.52). At asymptotic behavior, psychometric performance on this prior-
independent task was equal across genotypes (Fig. 1D, overall means * s.e.m., bias: -1.97 £ 0.94; threshold:
14.6 + 1.13; lapses: 0.06 + 0.005; all p > 0.53), indicating that mouse models of ASD detect visual stimuli equally
well to their control counterparts.

Following proficiency on the visual detection task, we introduced a dynamic prior. Sessions started with an
unbiased block of trials (50:50 probability of stimuli being on the left or right) and then alternated between gratings
being more frequent on the left or right visual field (80:20 vs. 20:80 probability; Fig. 1E). Importantly, the change
in block (e.g., from leftward to rightward) was unsignaled and thus had to be inferred from the stream of stimulus
statistics and sensory experience. Moreover, 0% contrast trials were rewarded according to the prior, and thus
optimal performance on the task required that animals incorporate knowledge of the prior in making decisions.

To quantify the impact of this prior, we fit psychometric curves to responses during leftward and rightward biased
blocks (Eq. 1 in Methods, see Fig. S1 for example animals). Then, we subtract these curves (fitted rightward —
leftward psychometric curves; see? for a similar approach). As expected, the prior was most informative when
sensory evidence was weak, resulting in the largest difference between left- and right-prior blocks being at
contrast zero (peak at 0.33% contrast, no difference across genotypes, p = 0.28; Fig. 1F). Most strikingly, the
impact of the prior was greater in the control animals (differences in fraction “rightward” responses at contrast =
0, 0.27 £ 0.005) than the mouse models of ASD (Fig. 1F, Fmr1: 0.24 + 0.004; Cntnap2: 0.20 + 0.003; Shank3:
0.21 £ 0.005, one-way ANOVA, p = 0.05; excluding wildtype animals and comparing across mouse models of
ASD, p = 0.67). This conclusion was also corroborated via pupillometry demonstrating a surprise signal during
the presentation of statistically unlikely events (e.g., high contrast on the right during a leftward block) in wildtype
but not mouse models of ASD (see Fig. S2 for details).

Together, these results mimic findings from the human literature in demonstrating an attenuated use of priors®
24 and the lack of a surprise signal (at least insofar as indexed via pupillometry; see®?** for a similar approach)
during the presentation of statistically unlikely events?' in mouse models of ASD. Importantly, this was a
generalized finding, being true for all mouse models of ASD tested.
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Figure 1. Reduced utilization of statistical regularities in mouse models of ASD. A. Rendering of the standardized
behavioral apparatus allowing for the study of visually-guided decisions in rodents. B. Schematic of the task. C. Performance
of control (C57BL6) and mouse models of ASD (Fmr1, Cntnap2, Shank3) on “easy” trials (i.e., 50% and 100% contrast) as
a function of session number. Animals were considered trained when they performed at or above 80% (black dashed line)
on “easy” trials (moving average over 3 sessions). D. Psychometric functions describing the fraction of rightward choices
as a function of contrast and animal genotype. Negative contrasts denote stimuli on the left. Thin and transparent lines are
individual animals, while thicker and opaque lines are averages. These psychometric curves are derived by combining all
sessions after animals were considered proficient (average number of trials per animal = 1250.9). E. Schematic illustrating
the “biased” version of the task. The fist 90 trials are “unbiased” in that gratings appear with equal probability on the left and
right (50:50). Subsequently, blocks of varying length (range = 20-100 trials, decaying exponential such that the hazard rate
was approximately constant) show gratings predominantly on the left or right (80:20 vs. 20:80; respectively in purple and
gold). F. Change in the fraction of rightward responses as a function of block (rightward — leftward, fitted curves as in d),
contrast, and animal genotype (average n trials per animal = 5645.0). Vertical axis (y) in the rightmost panel is compressed
to show difference between wildtype animals (black) and mouse models of ASD (colored).
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Blunted accumulation of recent sensory history in mouse models of ASD

Next, we aimed at understanding the strategies employed by different animals to update their priors, and to
estimate the “subjective” (vs. “objective” or experimenter-imposed) prior utilized by animals on each trial. To do
so, we derived a set of models (principled and heuristic) and contrasted their performance in explaining animal
behavior.

We fit a total of 10 models, comprising of variations (e.g., assumptions over symmetry of the prior, see Methods)
over 4 broad classes. First, we simply fit psychometric curves (Fig. 2A, top row) for each of the three blocks
(50:50, 80:20, and 20:80). This effort does not postulate any particular strategy animals may have employed in
solving the task, but serves as a standard and adequate benchmark in accounting for responses. Second, we
build a Bayesian decision maker (see Methods), but directly provided this model with the true prior probability of
observing gratings on the left vs. right (omniscient model; Fig. 2A, second row), or allowed for a single fixed prior
(fixed model; Fig. 2A, third row). These variants establish model performance when not allowing the prior to
deviate from the experimentally-imposed prior, or for it to vary dynamically. Third, we use the same decision-
maker as above, but also employ multiple variants of a Bayesian online change point detection algorithm (c.p.
models® %, Fig. 2A, 4™ to 8" row) to estimate the prior. The algorithm is “online” in that it only uses observations
until the current trial (as opposed to the whole sequence) and is built iteratively, allowing the model to keep track
of the probability that the next stimuli will be presented on the left (vs. right) with simple operations. Importantly,
these models explicitly hypothesize that animals have an understanding of the task structure. For example, that
there are blocks of trials wherein stimuli presentation is biased. The exact parameters estimated may of course
deviate from those imposed experimentally. Lastly, we build a heuristic model (exponential weighting models,
“exp. models”, Fig. 2A, 9" and 10™) wherein animals do not know about block structures but track statistical
regularities by computing a weighted average (favoring the most recent stimuli) of their recent sensory past. In
a second variant of this exponential weighting model (Fig. 2A, 10" row, “exp. bias model”, in red), animals in
addition have a prior over counts (i.e., “pseudo-counts”) that may bias their weighted average and changes the
relative weighting between observed sensory history and observation-independent a-priori counts.

Model comparison (Fig. 2A, based on cross-validated log-likelihood) favored the biased exponential weighted
average model (“exp. bias” model, ANOVA, p = 1.46 x 10"®), and this was true across all genotypes (interaction
term, p = 0.88). This demonstrates that we can estimate an animals’ task strategies (i.e., psychometric fits did
not account best for responses, see Fig. 2B for fits from the preferred model). It also suggests that the animals
did keep track of the statistical regularity embedded in the sequence of grating presentations (i.e., fixed model
was not favored, see Fig. 2C for fits of the preferred model as a function of trial to and from block change), but
did so via heuristics as opposed to developing a full generative understanding of the task. Lastly, it suggests that
the different genotypes did not employ categorically different strategies, which allows for contrasting recovered
model parameters, as well as estimate “subjective” priors.

From the biased exponential weighted average model we may estimate a time (in fact, “trial”) constant over
which animals accumulate evidence in estimating the probability that the following stimuli will be presented on
the left (vs. right). We may also estimate a “pseudo-count” prior, putatively biasing the count and rendering its
update less dependent on observations. These are illustrated in Figure 2D and show that while the trial constant
was not different across the wildtype and mouse models of ASD (top; one-way ANOVA, p = 0.15; half-width ~ 5
trials), the hyper-priors (or “pseudo-counts”) exerted a greater influence (i.e., Beta distribution is sharper) in all
mouse models of ASD relative to the control (bottom; p = 0.04). This accounts for the reduced change in choices
across blocks in the mouse models of ASD (Fig. 1 and Fig. 2B and C). Further, when applying these parameters
to a sequence of trials we can see that the subjective priors (even for the control animal) are far from the extremes
imposed experimentally (0.2 to 0.8, Fig. 2E), and this effect is exacerbated in the mouse models of ASD (Fig.
2F, p < 0.003).
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Figure 2. Blunted accumulation of recent sensory history in mouse models of ASD. A. Difference in cross-validated
log likelihoods (i.e., “badness” of fit) relative to the best model (exp. bias, highlighted in red). Lower is better. Description of
each model in main text. See Figure S3 for parameter estimates from the c.p. free run model, demonstrating that while it
was a comparable fit to the exp. bias model for C57BL6 and Fmr1 animals, its resulting parameters suggest animals did
not infer the presence of experimental blocks. Color scheme for genotypes follows that of Figure 1. Error bars are £ 1 s.e.m.
across animals. B. Fraction of rightward choices as a function of block (80:20 leftward in purple, 50:50 unbiased in black;
20:80 rightward in gold) for 4 example animals; 1 per genotype. Circles are data and lines are fits from the exp. bias model.
C. Example fits of the exp. bias model (lines) when plotting data as a function of trials to and since block change (in this
case, from 80:20 to 20:80). As expected, change in behavior is most notable for O contrast trials (colored). The rest of
contrasts are grouped, the color gradient (from dark to light blue) following the spectrum from strong evidence for left targets
to right targets. D. Visualization of the average exponential decay (top) and beta hyper-priors (bottom) dictating the exp.
bias model for wildtype (black) and mouse models of ASD (colored). The hyper-priors being taller and narrower in ASD
result in a diminished change in the subjective prior with changing environmental statistics. E. lllustration of an experimental
sequence of trials; the experimentally-imposed probability that the stimuli will be on the left (black step functions), what an
optimal observer would be able to infer (gray), and the best estimates of subjective priors for the average control animal
(top; black jagged line), as well as the average Fmr1 (top; green), Cntnap2 (middle; yellow), and Shank3 (bottom; brown)
animal. F. Subjective prior before and after block changes in the wildtype (black) and mouse models of ASD (colored).
Estimates are baseline-corrected averages across animals and all transitions. Error bars represent £+ 1 s.e.m.
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A large-scale neurophysiological survey across various mouse models of ASD

Having established that multiple mouse models of ASD exhibited a computational anomaly akin to that shown
by humans?" 2% 2* on the autism spectrum (Fig. 1) and intimated a putative computational strategy (Fig. 2), we
were next interested in establishing its neural underpinning. Namely, the fact that multiple genotypes displayed
the same deficit affords us the opportunity to attempt distilling causal contributions to prior coding and updating,
as well as its putative dysfunction in models of ASD; i.e., what neural features are common across all mouse
models of ASD and different from the control?

Answering this question requires a neural survey on the scale of the whole brain®**=’. In turn, we used neuropixel
probes®' (323 insertions) to record from a total of 53,219 units across 150 brain regions (Fig. 3A, see Methods
and REF? for further detail, Fig. S4 for histology). To reliably compare neural features across genotypes we
need a population of units within a defined anatomical region for all animal types. Thus, we set a threshold of a
minimum of 40 units per area and genotype (2x the criteria from REF*®). This reduced the dataset to 39,393 units
across 36 brain regions (Fig. 3B, abbreviations follow the Allen Common Coordinate Framework; CCF*).

As expected, rasters and peri-stimulus time histograms demonstrated standard features of neural responses in
all genotypes. Namely, visual evoked responses occurred at earlier latencies and were more robust with
increasing contrast (Fig. 3C). These responses were distributed, often contra-lateral in the primary visual areas
(VISp, Fig. 3C, examples shown), and regularly bi-lateral and at larger latencies elsewhere (e.g., ACAd, Fig.
3D, see Steinmetz et al., 2019). Units across many regions (Steinmetz et al., 2019; IBL et al., 2023) appeared
to correlate with the choice of the animal (Fig. 3E, examples in CP, MOs, CA1, and TRS shown). Similarly,
responses to feedback (e.g., incorrect response) were also distributed and could be expressed as an increase
(Fig. 3F, first and third column) or decrease (third and fourth column) of firing rates (Fig. 3F. The C57BL6 and
Fmr1 examples also show responses seemingly driven by the lick response). For a full characterization of these
phenomena readers are referred to previous reports using very similar®® or identical®® protocols. Instead, here
we focus on coding of the subjective prior, as estimated by a biased exponential weighting of recent sensory
history, and on differentiating factors between wildtype mice and mouse models of ASD.

We computed spike counts within a window preceding trial onset (-300 to -50ms) and plotted these on a trial-by-
trial fashion, jointly with the experimentally-imposed prior and our behavioral estimate (Fig. 2, exp. bias model)
of this prior. This suggested the presence of a subset of units (Fig. 3G, 4 shown, 1 per genotype) whose pre-
stimulus firing rates co-varied with block. Interestingly, close inspection showed periods where pre-stimulus firing
rates changed as the subjective estimate of the prior changed, even when the experimentally imposed prior
remained constant (e.g., Fig. 3G, shank3 example in brown, periods highlighted in gray). This motivates a
quantitative detailing of neural responses to the subjective prior. We first take a big picture approach by
examining population-level encoding (Fig. 4), and then examine unit responses and neural tuning (Figs. 5 & 6).
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Figure 3. A large-scale neurophysiological survey across mouse models of ASD. A. Reconstruction of probe locations
for the different genotypes (C57BL6 in black; Fmr1 in green; Cntnap2 in yellow; Shank3 in brown). B. Number of units
recorded per area (y-axis; subset shown) and genotype. Bars are filled and opaque if all genotyped had at least 40 units in
that area, filled and transparent if the given genotype had 40+ units but others did not, and empty if less than 40. C. Raster
plot (top) and PSTH (bottom) to stimulus onset for example units in VISp. Raster is sorted by contrast (positive values
indicating gratings presented on the right; recordings on the left hemisphere; panel A). D. Similar to C but showing responses
in ACAd. E. Raster and PSTH to stimulus onset, but sorted as a function of choice. Areas are marked on the top left of
rasters. F. Similar to C-E, but sorted by aligned to feedback onset and sorted as a function of correct and incorrect
responses. G. Example spike counts (normalized; colored by genotype) before stimulus onset (-300 to -50ms) as a function
of trial number (x-axis). Also plotted are the experimentally-imposed prior, and the subjective estimate of the prior for the
given animal/session. In gray (rightmost panel) we highlight example periods where firing rate changes during changes in
the subjective prior and stable experimental prior.
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Population encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD

We examined low-dimensional population-level encoding via demixed principal component analysis (dPCA*).
This method is conceptually similar to PCA, but attempts to keep the learned components interpretable vis-a-vis
task features (e.g., decision or prior; Fig. 4A). In the current dataset, dPCA explained 86.1% of the variance
explainable by PCA (over the first 10 PCs). This analysis was performed on individually CCF-defined regions
(Fig. 3B; see Fig. 4A for example sessions), yet to derive a coarse-level picture and for statistical power, we
subsequently coalesced regions into ‘macro-areas’ (Fig. 4B, see Table S1 for detail and REF*' for a similar
approach).

This analysis demonstrated that information regarding the subjective prior (as derived from the exp. bias model
above) was present throughout the brain and spanning all levels of the neural hierarchy (Fig. 4C, see® for a
similar finding). The total variance explained by subjective prior subspaces was 28.3% + 0.4%, and this value
was not different across genotypes (one-way ANOVA, p = 0.29). The subjective prior accounted for about two-
thirds (68.0%) the variance explained by evoked visual responses (41.3% * 0.5%), and for three times as much
than decision subspaces (8.65% * 0.1%). When splitting by brain area, we did observe differences across
genotypes (ANOVA interaction term, p = 0.039), which was driven by (1) an increased population-level encoding
of the subjective prior in frontal areas (ACAd, ACAv, MOs) of mouse models of ASD (variance explained; Fmr1:
31.8% £ 1.95%; Cntnap2: 32.0% £ 3.13%; Shank3: 31.5% + 2.14%) relative to the wildtype (26.1% % 1.94%, all
p < 0.05; Fig. 4C), and (2) more prominent encoding of the prior in visual areas of the wildtype animal (34.3% *
3.40%) relative to mouse models of ASD (Fmr1: 28.7% + 1.79%; Cntnap2: 27.5% + 3.73%; Shank3: 24.6% *
1.75%, significant for wildtype vs. Shank3, p = 0.02, and showing trends for Cntnap2 and Fmr1, p = 0.10 and p
= 0.11 respectively).

These results suggest that while a multitude of neural regions may show responses reflecting the subjective prior
of animals® the differentiating factor between animals updating their priors stereotypically vs. only modestly
(mouse models of ASD) is a putative graded shift in the prior encoding from visual to frontal cortices. This
analysis, however, is only coarse-level and could be driven by co-variates (e.g., correlation between prior and
choice). Thus, we next examined unit properties with an encoding model disentangling the contributions of co-
variates.
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Figure 4. Population encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD.
A. Four example demixed PCA (dPCA) sessions, one per genotype. Analysis was conducted to separate quintiles of the
subjective prior and left vs. right decision. Top row shows a “condition-independent” subspace capturing the stimulus evoked
response (only left decision — solid lines — shown for clarity). Middle row show the decision subspace appropriately
separating left (solid line) and right (dashed line) choice. Bottom row shows the subjective prior subspace. Of note, the
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quintiles of the subjective prior are differentiated before the stimulus is presented (x-axis = 0). B. Categorization of brain
regions into ‘macro-areas’ for statistical power and coarse summary (HIP = hippocampal areas; MB = midbrain; FC = frontal
cortex; SM = somatosensory and motor; STR = striatum; TH = thalamus; VIS = visual areas; see Table S1 for further detail
on the categorization). C. Variance explained by the subjective prior subspace as a function of “macro-area” and mouse
genotype (C57BL6 in black; Fmr1 in green; Cntnap2 in yellow; Shank3 in brown). Error bars represent £ 1 s.e.m.

Unit encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD

Spike trains were fit to a Poisson generalized additive model (pGAM*?) including as predictors the timing and
contrast of gratings, choice (left or right), and feedback (correct or incorrect). We also include the choice and
feedback on the previous trial, as well as the first 10 PCs of video body-part tracking data, and the experimental
(20:80, 50:50, 80:20) and subjective (exp. bias model) prior (Fig. 5A, left column). The inclusion of both the
experimental prior and the immediately precedent choice/feedback ensures that units labeled as encoding for
the subjective prior do not simply reflect stimulus statistics or the immediately previous choices/feedback, but in
fact reflect a (weighted and biased) accumulated sensory history (i.e., the exp. bias model, see Behavioral
modeling section). Lastly, the model attempts to also account for elements of internal neural dynamics, by
allowing unit-to-unit couplings and spike-history (Fig. 5A, right column; see****® for a similar approach and Fig.
S5 for characterization of the stability of coupling filters as a function of block and genotype). Importantly, beyond
capturing arbitrary non-linearities and handling co-linear predictors*®, the specific pPGAM we fit*? infers marginal
confidence bounds for the contribution of each feature and thus allows identifying the minimal subset of factors
that significantly (p<0.001) impact neural responses without computationally costly (and often unstable) model
selection procedures. We achieve a goodness-of-fit (pseudo-R? = 0.0745) on par with state-of-the-art machine
learning techniques*” while reducing our encoding models by an order of magnitude (see Fig. S6 for further
model performance quantification).

We first briefly present the encoding of visual stimuli — as sanity check — before assessing the encoding of the
subjective prior. In this regard, we find units that encode grating presentations throughout the brain®* with the
primary visual cortex (VISp) showing the strongest difference (in mutual information) between contra-lateral
responses (arguably driven by the stimulus itself) and ipsi-lateral responses (arguably further driven by recurrent
neural dynamics; Fig. S7). Figure 5B shows the peri-stimulus time histogram (PSTH) for a few example units,
overlayed with the pGAM reconstruction and the estimated contribution of the visual stimulus kernel.
Interestingly, we can observe that while for a few units (e.g., first two examples in Fig. 5B) the entirety of their
response to grating presentation is (bottom-up) visually driven, for the majority of units (e.g., rest of first row and
second row, Fig. 5B) their early response is sensory driven whereas their later latency responses are less so
(putatively accounted for by the coupling filters). Some units showing increased firing after grating presentation
were, in fact, according to the pGAM, not driven by visual stimulus at all (Fig. 5B, bottom row). Fittingly, these
latter units showed a delayed evoked response relative to the “bottom-up” driven units. Overall, these results
broadly align with classic characterizations of the visual pathways*® *° and recent brain-wide surveys®*2¢, while
also demonstrating the utility of including in the encoding model both externally-driven predictors and internal
elements of neural dynamics.

The subjective prior was encoded in units throughout the brain (examples shown in Fig. 5C), in fractions
(averaged across genotypes) ranging from 0.14 (Triangular nucleus of septum) to 0.36 (Anterior cingulate area;
alpha set at 0.001 and thus well below these fractions; Fig. 5D). Separating by brain area and genotype, we
observed that akin to the population-level results, the subjective prior was more frequently coded in frontal areas
in mouse models of ASD relative to the control (coalescing ACAd, ACAv, and MOs; ¥° test = 30.67, p = 10°°;
when taking the areas independently, p < 3.5x10*for ACAv and MOs, and p = 0.10 for ACAd; all mouse models
of ASD > wildtype in each frontal area, with the exception of Shank3 in ACAd). Concurring with the population-
level results, the subjective prior was less frequently coded in the visual cortex in mouse models of ASD relative
to the control (p = 10®; independently, all mouse models of ASD < wildtype, all p < 2.0x10™*). We also estimated
the informativeness (see Methods) of each of these tuning functions (Fig. 5E, a continuous variable as opposed
to the binary tuned vs. not tuned). These results showed greater mutual information in mouse models of ASD
than the wildtype in each of the frontal areas (all p < 3.8 x 107%), and reduced mutual information relative to the
control in visual cortex (p = 3.04 x 10*; Fig. 5E). Other areas (most prominently CA3) showed differences in
frequency (p = 0.004) and informativeness (p = 8.14 x 107'°) of tuning in mouse model of ASD relative to the
control, but these differences were either (1) not consistent within neighboring regions/established circuits (e.g.,
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CA1 vs. CA3 or DG; Fig. 5D and E), (2) not true across measures (e.g., MG FT vs. MI; respectively, Fig. 5D and
E), or (3) not observed across all mouse models of ASD tested (e.g., LS or MOp).

a
visual stim. exponential poisson
(contrast) \ " link function noise |
choice \ LRSS
\\\\ / @é‘%
\\
feedback \\ spike
prev. choice _\| history spikes
=~ < < (T

prev. feedback //

V|

/ / coupling filters other neurons
/
movement PCs / X V‘ .
; /| il |
exp. prior '/
— 'y < :
subjective | — RN
prior _ I |

PSTH pGAM visual stim kernel

32 spikes/s | 25 spikesis
20 spikes/s
|10 spikes/s |10 spikes/s
8 spikes/s | 8 spikes/s

| 8 spikes/s smkes/sn {

s s '
-265 0 255 7265 0 265 255 0 265 —255 255 255 0
time (ms) time (ms) time (ms) time (ms) time 1ms)

| 20 spikes/s | 20 spikests

L

| 7 spikes/s

o

| 12 spikes/s 12 spikes/s | 8 spikes/s

L L

%
{1
L

c

tuning pGAM subjective prior kernel

A
~
M

R
aei
> >
QKZ(

L s
0 50 100 0 50 100 0 5 %0 6 0
subjective prior subjective prior subjective prior subjective prior subjective prior
(norm.) (norm.) (norm.) (norm.) (norm.)

b
3
8

AcAd |

ACAv |

MOs

VISp [

cat |

CA3

DG

—

ProS v

suB

|

LGd

MG

PO

CcP

s |

MB

MOp

MRN

PRT

SF

TRS

o

fraction tuned

mutual information (bits) 05

i

FC

VIS

TR

Figure 5. Unit encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD. A.
Schematic of the pGAM encoding model B. Example units showing the empirical PSTH (black, x-axis is time), the
reconstructed average from the pGAM (red), and the (exponentiated) visual stimulus kernel (blue). The latter is the
contribution to the observed response the encoding model ascribed (factorized) to visual stimulus presentation. C. Example
tuning function to the subjective prior. Follows the format from B, with the difference that the x-axis is not time anymore, but
the value taken by the subjective prior. The x-axis is normalized such that the lowest value taken during a recording (y-axis
in Figure 2B) takes a value of 0, and the maximum takes a value of 1. By definition, therefore, 0.5 corresponds to the
average subjective prior of the animal. D. Fraction of units significantly tuned (p<0.001) to the subjective prior as a function
of brain region (vertical) and genotype (C57BL6 in black; Fmr1 in green; Cntnap2 in yellow; Shank3 in brown). E. Follows
the convention from D, showing the informativeness of tuning functions (measured in mutual information). Error bars are +

1s.em.
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Outsized coding of deviations from long-run prior across mouse models of ASD

Next, we sought to move beyond the summary characterization of frequency (Fig. 5D) or informativeness (Fig.
5E) of neural responses vis-a-vis the subjective prior, and instead examine the underlying shape of these tuning
functions. We retained the top 10k tuning functions by mutual information with the subjective prior, and performed
K-means clustering® while allowing the number of clusters to vary from 2 to 10. We also projected the subjective
prior kernels (blue in Fig. 5C) onto a two-dimensional t-sne (Fig. 6A, t-Distributed Stochastic Neighbor
Embedding®") for visualization. The tuning functions were best described as pertaining to 4 clusters (Fig. 6A,
inset shows silhouette values quantifying separateness of clusters). Cluster 1 (Fig. 6B, 1% row) were units whose
responses monotonically decreased as the subjective prior increased from its lowest value (normalized value of
0, p(Left) low) to its highest value (p(Left) high). In other words, these are units that fired when the subjective
prior indicated a high likelihood that the next stimuli will be presented on the right. Cluster 2 (Fig. 6B, 2" row)
were the mirror image of Cluster 1, with neural responses monotonically increasing from p(Left) low (norm.
subjective prior ~ 0) to p(Left) high (norm. subjective prior ~ 1). Both these clusters code for the current value of
the subjective prior. In contrast, Cluster 3 (Fig. 6B, 3" row) was comprised of units whose firing rate was minimal
at a normalized subjective prior of 0.5, and fired more at both high and low values of the subjective prior. That
is, these units were driven by deviations from the prior mean, the long-run prior of each animal (norm. subjective
prior = 0.5). Lastly, Cluster 4 (Fig. 6B, 4™ row) was the inverse of Cluster 3, with units firing most readily when
the subjective prior took on intermediate values. Clusters 3 and 4 code for the absolute value of the difference
between the session-average subjective prior (prior mean) and the current trial subjective prior.

Units of all cluster types were present in each of the brain areas we recorded from (Fig. 6A). Thus, we examined
the fraction of each cluster type throughout the brain of wildtype and mouse models of ASD. Interestingly, these
were not equally distributed across all genotypes (x?test = 50.38, p < 10°). Instead, Cluster 3 was over-
represented in the Cntnap2 (p = 0.002) and Shank3 (p = 0.008) animals, and Cluster 4 was under-represented
in Fmr1 (p = 0. 04, Fig. 6C). Clusters were uniformly represented in the wildtype (p = 0. 21). Given that Clusters
1 and 2 (coding for subjective prior value), and Clusters 3 and 4 (coding for absolute difference from the long-
run prior) were mirror images of each other, we computed the relative fraction of these cluster types. This analysis
showed an approximate equal fraction of units increasing or decreasing their firing rate with the value of the
subjective prior (Fig. 6C, right, gray). Instead, Fmr1, Cntnap2, and Shank3 animals had, respectively, a 33%,
45%, and 46% increase in units increasing their firing rates as the subjective prior took on values further from
their long-run prior (Fig. 6C, right, colored). This was not true of the wildtype animals, with an equal number of
units increasing (Cluster 3) and decreasing (Cluster 4) their firing rate with deviations from their long-run prior.

When splitting across “macro-areas” (Table S$1), it remained true that across genotypes and areas a similar
fraction of units either increasing or decreasing their firing rate with the value of the subjective prior (Fig. 6D,
x*test, all p > 0.13). That is, across areas, wildtype and mouse models of ASD coded similarly for the
instantaneous value of their prior. Instead, the outsized population of units coding for deviations from the prior
mean in ASD (Fig. 6C) seemed to be driven by frontal cortex (x* test = 113.14, p < 10°°), and to a lesser extent
by the hippocampal formation (x? test = 17.40, p = 5.85 x 10**; Fig. 6E).

Together, the results demonstrate both global and local differences in unit coding of the prior across animals
flexibly and inflexibly updating their expectations. Globally, results suggest that relative to wildtype animals,
mouse models of ASD more heavily rely on frontal cortices, and less on visual cortices, to encode their priors.
Locally, the tuning functions in frontal cortex demonstrate a selective preponderance of units increasing their
firing rates with deviations from the long-run prior of the animals.
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Figure 6. Outsized coding of deviations from long-run prior across mouse models of ASD. A. Two-dimensional t-
Distributed Stochastic Neighbor Embedding (t-SNE) of tuning functions to the subjective prior as a function of brain area
(colors). Inset shows the average and s.e.m. silhouette values (i.e., relative distance of points to others within and across
clusters) as a function of number of clusters. A high silhouette value indicates that points within a cluster are well matched
to their own cluster, and poorly matched to other clusters. B. Examples (thin and transparent) and average (dark and
opaque) tuning functions to the subjective prior as a function of cluster (1 through 4). C. Left: Fraction of the units tuned to
the subjective prior that belong to each of the 4 clusters (shown in B) as a function of genotype (rows; C57BL6, Fmr1,
Cntnap2, and Shank3, respectively). Right: Fraction of units increasing their firing rate with decreasing (left: red) vs.
increasing (left: blue) value of the subjective prior (gray), and fraction of units increasing their firing rate with increasing (left:
green) vs. decreasing (left: purple) distance from the long-run prior (i.e., normalized subjective prior = 0.5). D. Fraction of
cluster 1/ cluster 2 (gray in C) as a function of genotype (colors) and macro-brain area. Acronyms follow convention from
Fig. 4. E. As D., showing the fraction of cluster 3 / cluster 4. The dashed line shows a fraction = 1.
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Lack of sensory-driven prediction errors in frontal cortex of mouse models of ASD

The updating of priors ought to be driven by the observation of statistically unlikely events (i.e., the accumulation
of these events ultimately results in an update of what is considered statistically likely). Thus, we examined how
the encoding of gratings was modulated by their statistical likelihood. To do so, we fit the pGAMs*? separately
for each experimental block (80:20 and 20:80) and compute mutual information (see Methods) at each contrast.
We observe that when most stimuli were presented on the left/right hemifield, the encoding of stimuli (as index
by mutual information) presented on the opposite side was strengthened (Fig. 7, all brain areas and genotypes
combined, p = 1.27 x 10™*; 20:80 > 80:20 for negative contrasts, and 20:80 < 80:20 for positive contrasts). This
is in line with the theoretical framework of predictive coding®2.

We observed abundant variability when separating across “macro-areas” (Table S1) and genotypes. For
instance, the Cntnap2 animals showed a somewhat widespread lack of prediction errors (e.g., HIP, MB, SM,
ANOVA interaction term, all p > 0.11) which was not evident in the other genetic models of ASD (see HIP, MB,
SMin Fmr1 & Shank3, all p < 0.05). Similarly, across a number of brain regions (e.g., TH, VIS) we observed the
presence of sensory-driven prediction errors in control animals, and not in a subset of the mouse models of ASD
(e.g., TH in Cntnap2 and VIS in Shank3). Most strikingly, it was only in frontal cortices where we observed a
differential coding of expected and unexpected stimuli in control animals (ANOVA interaction term, p < 0.001)
and the lack thereof across all mouse models of ASD (all p > 0.61; Fig. 7, first column). This lack of sensory-
driven prediction errors in frontal cortex of mouse models of ASD is also observable in grand-average PSTHs

(Fig. S8).
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Figure 7. Lack of sensory-driven prediction errors in frontal cortex of mouse models of ASD. Mutual information (MI,
y-axis) as a function grating contrast (y-axis; negative contrasts are gratings presented on the left hemifield), experimental
block (leftward bias block in purple, 80:20), macro-area (columns), and genotype (rows). Error bars are + 1 s.e.m.
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Discussion

We examine the behavioral, computational, and neural underpinnings of prior updating in wildtype and three
different monogenic mouse models of ASD (Fmr1, Cntnap2, and Shank3). Behaviorally, the results show that all
genotypes linked to ASD under-utilized the statistical regularities present in their environment (see® for a similar
finding in the Cntnap2 rat model). These animals were also less surprised — at least insofar as indexed by pupil
diameter — during the presentation of statistically unlikely events. Computationally, behavioral modeling
suggested that the mouse models of ASD and the wildtype animals used a similar task strategy. Namely, the
animals did not learn a “generative model” of the task, with, for instance, the location of targets changing within
blocks of a minimum length. Instead, they performed a weighted and biased average of recent sensory
observations. The animals inflexibly updating their expectations had a stronger (observation-independent) hyper-
prior over the predicted target locations (i.e., “pseudo-counts”). This leads to a blunted update of (observation-
dependent) priors. Neurally, we show both at the population and unit levels a widespread coding of the subjective
prior®’, with a shifting in the balance of this encoding from sensory to frontal cortices in ASD. We also observed
local changes with frontal cortices (ACAd, ACAv, and MOs). That is, while mouse models of ASD did not differ
from the wildtype regarding their coding of the instantaneous prior, they did show an outsized presence of units
coding for deviations from the animals’ long-run prior (see* for a similar distinction between “immediate” and
“second-order” priors and for evidence showing that the orbitofrontal cortex encodes the latter). Lastly, we
demonstrate that neural responses to unexpected observations — precisely those that should lead to an update
of our internal models — were augmented relative to expected stimuli in frontal cortices of wildtype animals, but
not in mouse models of ASD.

Overall, the results suggest an under-weighting of sensory observations vis-a-vis a-priori expectations in ASD —
both via global (i.e., over-weighting frontal vs. sensory cortices) and local (i.e., under-weighting of unexpected
stimuli in frontal cortices) mechanisms. This is largely consistent with theoretical accounts suggesting an over-
estimation of sensory volatility?' or inflexible predictions® in humans on the autism spectrum. However, our
results also suppose important aspects in which these theories ought to be revised.

The volatility accounts of ASD?' are largely rooted in a hierarchical predictive process (e.g., the hierarchical
Gaussian Filter®® *%) with successive levels coding for beliefs about (1) the stimulus, (2) the probabilistic nature
of the task (e.g., 80:20 vs. 20:80), and (3) the dynamics of this probabilistic association (i.e., volatility). However,
the behavioral modeling presented here suggests that, at least in the current context, animals do not build a
generative understanding of the task and thus do not have an explicit representation of volatility. It may be argued
that while mice are not capable of these “deep” hierarchical inferences, humans are, and thus this is a species
difference. However, modeling of human responses in a similar task*® suggests that humans also performed a
weighted and biased average of recent sensory observations, as opposed to full inversion of a generative model.
Similarly, simulations demonstrate that explicit inferences over volatility are not needed in explaining human
behavior in volatile environments. In fact, models positing an explicit representation of volatility perform worse
than models simply accounting for low-level uncertainty®’. Lastly, it is interesting to note that a contrast of BOLD
correlates of hierarchical predictive processes in neurotypical and autistic individuals showed strongest
differences at “intermediate” levels of this hierarchy, and not in the representation of volatility. This “intermediate”
level of the hierarchy reflects the probabilistic nature of the task (here, 80:20 vs. 20:80) and was linked to activity
in the anterior cingulate cortex' — very much in line with our findings indicating a key role for frontal cortices
(including the anterior cingulate) in engendering the inflexible update of priors in ASD.

The inflexible predictions account of autism?® suggests a “high and inflexible” weight attributed to prediction
errors in ASD. Our results demonstrate not the inflexible nature of these prediction errors, but their total absence
in frontal cortices in mouse models of the disorder. Further, we observed a preponderance of units coding for
deviations from the prior mean in mouse models of ASD. To the best of our knowledge, these units — not coding
for the immediate prior, but for its deviance from the prior mean — are not part of current neuroscience or
computational psychiatry theory, and ought to be incorporated into accounts of prior updating and its anomaly in
ASD. Fitting, the anterior cingulate — where we observe an abundance of these units — is well established as an
error monitoring node®® and is causally involved in engendering prediction errors in lower-level sensory areas
(e.g., primary visual cortex®® ). In future work it will be important to simultaneously record from
ACAd/ACAV/MOs and visual cortices to further understand the relation between units coding for deviations from
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the animals’ long-run prior, and prediction errors in both frontal and sensory cortices. Similarly, in future work it
will be interesting to discretize behavior into periods defined by different task strategies or internal states, and
examine how accumulation not only of sensory history, but also action history*”, may influence prior updating in
each of these periods (e.g., engaged or disengaged®') and across genotypes. Indeed, while here we focused on
sensory history as a mechanism to build expectations, it is possible that particularly when animals oscillate
between engaged and disengaged states, action history better accounts for perseverative states® .

In conclusion, here we uncover a common computational and neural anomaly across distinct genetic mouse
models of autism. The computational deficit mimics recent behavioral findings from human computational
psychiatry?" 224 and thus supposes an exciting translational opportunity to further understand the neurobiology
of ASD. These results demonstrate a degree of biological degeneracy® wherein different genetic perturbation
may lead to similar neurophysiological consequences, both at a brain-wide scale and within local populations in
frontal cortex.
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Online Methods
Animals

Experiments were performed in a total of 75 male and female mice of mixed genetic background (C57BL/6j),
between ~10 (headbar implantation and initial training) and ~29 weeks of age (max number of sessions across
all animals = 97). On average animals were 22.2 weeks old during neurophysiological recordings. In addition to
wildtype control animals (n = 15), three different monogenetic mouse models of ASD were used. Fmr1 KO?
(male are Fmr1”, female are Fmr1”", no sex difference, n = 19; JAX 003025) mice have a neomycin resistance
cassette replacing exon 5 of the fragile X mental retardation syndrome 1. Cntnap2e#"e°Z(n = 21; JAX 028635)
mice®® have a dysfunctional contactin associated protein-like 2 gene by replacement of the exon 1 on the
Cntnap2 gene. Shank3B*" (n = 20; JAX 017688) mice?’ have a neocasette replacing the PDZ domain (exons
13-16) on the Shank3 gene, resulting in altered expression of the synaptic scaffolding protein expressed in the
post-synaptic density of excitatory synapses. These animals were used as they are well-established models of
ASD (REF® ®: relevance to humans®), have previously been used in attempts to establish commonalities
across mouse models of ASD®¢%8, and are visually similar to wildtype animals sharing mixed genetic background.
The latter point is important given that behavioral training and testing were conducted by hypothesis-naive
experimenter (J.B.). Male and female mice of the same genotype were first analyzed separately to assess
potential sex-related differences in behaviors. Given no differences were observed, male and female mice of the
same genotype were grouped together for final analyses. All procedures performed in this study were approved
the Institutional Animal Care and Use Committee (IACUC) at New York University.

Surgeries

Each animal had two surgeries. A first one to secure a headbar on their skull allowing for head fixation, and a
second one to perform craniotomies allowing for neurophysiological probe insertions.

For headbar implants, mice (~10 weeks old) were initially anesthetized by placing them in an induction box at 3-
5% isoflorane. They were then fixed in a stereotaxic frame and maintained anesthetized at 1-1.5% isoflorane.
Under a microscope (M60, Leica), the dorsal surface of the skull was cleared of skin and periosteum, bregma
and lambda were marked, the lateral and middle tendons were removed using fine forceps, and the headbar
was placed and cemented on a levelled skull. A small amount of cyanoacrylate (VetBond; World Precision
Instruments) was applied to the edges of the skin wound to seal it off and avoid future infections. Finally, the
exposed skull was covered with clear UV-curing optical glue (Norland Optical Adhesives #81; Norland Products).

On the first day of neural recordings up to 4 micro-craniotomies were made, either with a dental drill or a biopsy
punch. A gold pin touching the brain was implanted for referencing. The induction procedures followed that of
the headbar implants, and craniotomies targeted -2.7mm ML/-3.5mm AP, -1.76mm ML/-2.00mm AP, -0.40mm
ML/-1.06mm AP, and -0.80mm ML/0.50mm AP (negative ML values indicating the left hemisphere, negative AP
values indicating posterior to Bregma). Craniotomies were covered with a low viscosity silicon sealant (Kwik-
Cast, World Precision Instruments) to prevent drying. Animals were given at least 4 hours of recovery before
neural recordings.

Behavioral procedures

Following headbar implantation, animals were given at least 3 days of recovery. Then, they were handled for at
least 15 minutes/day for 2 days. On the second day, the mouse was allowed to explore the behavioral rig for 10
minutes. The following three days (20, 40, and 60 minutes, respectively) the mice were head-fixed and passively
presented with full-contrast (100%) Gabors (vertical orientation, 1/10™ of a cycle per visual degree masked by a
Gaussian window of 7 degrees). The wheel used to make responses was locked. The gratings appeared on
either the left or right visual field (35 degrees eccentricity and 0 degrees elevation) for an average of 10 seconds.
The Gabor then moves to the center of the visual field (O degrees eccentricity) for 1 second. The animal is given
reward (3 micro-liters, 10% sucrose) 500ms after the presentation of the Gabor in the center.
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Active training began on the 4™ day of head-fixation. The wheel was unlocked and in closed-loop with the Gabor.
Gabors are presented given that the animal did not move the wheel (<2 degrees) during a quiescence period
(exponential distribution, 200-500ms range, 350ms average). Initially, Gabors of either 100% or 50% contrast
were presented (left or right, equal probability). A tone (100ms duration, 10ms ramp, 5kHz) was played at Gabor
onset. If the mouse moves the Gabor to the center of the screen within 60 seconds of presentation, it is rewarded
(3 micro-liters). If it moves the Gabor in the opposite direction by a similar displacement (35 degrees), the trial is
considered incorrect. If it does not respond within 60 seconds, the trial is timed-out. In either of the latter two
cases a noise burst is played for 500ms. At the onset of this active phase of training, the Gabor moves 8 visual
degrees per millimeter of movement at the wheel surface. If the mouse completes at least 200 correct trials
within a session (typically ~45mins) the gain of the wheel for all future sessions is halved, remaining at 4 visual
degrees/1 millimeter of movement at the surface of the wheel. Similarly, if a mouse completed 200 trials in the
previous session, the reward volume was lowered by 0.1 micro-liters until a floor of 1.5 micro-liters was reached.

Behavioral training on this unbiased version of the task (i.e., probability left vs. right visual stimuli = 50:50) had
six phases. First, only 100% and 50% Gabors were presented. If the animal performed above 80% correct, it
moved to phase 2, where 25% contrast Gabor was added to the set. Similarly, if the animal performed above
80% correct, it moved to phase 3. In this phase, 12.5% contrast Gabors were added to the mix. To progress to
phase 4, animals had to complete 200 trials within a session, regardless of performance. In phase 5 the 0%
contrast was added. If animals completed 200 trials within a session, regardless of performance, they advanced
to phase 6. In this last phase the 50% contrast was dropped. The mice were considered to be trained on this
unbiased visual detection task if they were on phase 6 and completed at least 200 trials performing above 80%
correct for 100% contrast trials for 3 consecutive sessions. Further, their psychometric estimates for the
combined last 3 days had to be; bias below 16, threshold below 19, and lapses below 0.2. If animals did not
learn this task within 40 sessions, they were considered untrainable. A small minority of animals were trained for
over 40 sessions due to long breaks (2+ weeks) in training at an early stage.

Animals who successfully trained on the unbiased version of the task, were moved to a “biased” version of the
task, wherein animals must use a dynamically updating prior in order to reach optimal performance. Namely,
each session started with 90 trials where the Gabors appeared with equal probability on the left and right visual
field. The side (and thus correct response) for 0% contrast Gabors was chosen randomly. After these initial 90
trials, stimuli were presented in blocks. In one block, Gabors are presented on the left with probability 80% (right,
20%). In the other block type, Gabors are presented on the left with a probability 20% (i.e., 20:80). In a given
session, there was an equal probability that the first biased block were “leftward” or “rightward”. Gabors of 0%
contrast are rewarded according to the prior. The number of trials for each biased block is drawn from an
exponential distribution with a mean of 60, a minimum of 20 and a maximum of 100 trials. This yields an almost
flat hazard rate (corrupted by the clipping of a maximum trial number). Importantly, the change in blocks is not
signaled. Animals performed 10-25 sessions of this biased task before being moved to physiology (no
requirement on performance, at difference from3®: 38),

Neural recordings

Neural recordings were performed with Neuropixels 1.0%' (Imec; Belgium) on the acquisition configuration (AP:
30kHz, gain = 500; LFP: 250Hz, gain = 250) recording from the bottom 384 sites of a 1-cm shank. Probes were
mounted on a steel rod which was in turn held by a micro-manipulator (UMP-4; Sensapex Inc.). Probes had a
soldered connection to short the external reference to ground, and this latter one was connected to a gold pin
fixed on the skull and in contact with the brain. Silicone artificial dura repair compound (Dura-Gel; Cambridge
NeuroTech) was placed over the craniotomies during recordings. Prior to insertion, probes were labeled for
subsequent histological reconstruction (see below). On most recording days, we inserted two probes. One per
craniotomy. The probes were lowered into position at approximately 10 um s™'. Electrodes were allowed to settle
for ~10 minutes before starting the recording. Data were acquired via a PXle (PXI-1000; National Instrument)
using SpikeGLX (Janelia Research Campus) and stored on a PC and cloud for subsequent analyses. At most,
over 4 consecutive days we performed 8 insertions in each animal; 2 per craniotomy (4 craniotomies), one
medially and one laterally at 15 degrees angle from vertical. In between recordings days we covered
craniotomies and exposed skull with silicon sealant (Kwik-Cast, World Precision Instruments).
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Probe labeling

For histological reconstruction, we labeled the probes with CM-Dil (Thermofisher V22888) immediately prior to
insertion. Neuropixels were secured onto a micromanipulator and lowered under a microscope (M60, Leica) onto
a coverslip or parafilm containing the dye (1uL). The tip of the probes were maintained in CM-Dil until the dye
dried out (~20 seconds).

Histology and probe reconstruction

We followed the procedures standardized by the International Brain Lab®. Namely, mice were given a terminal
dose of pentobarbital within the peritoneal cavity. Then, PBS followed by a 4% formaldehyde solution
(Thermofisher 28908) in 0.1M PB pH 7.4 were perfused through the left ventricle. The brain was subsequently
dissected and post-fixed in formaldehyde for a minimum of 24h at room temperature. The tissue was then
washed and stored for up to ~5 weeks in PBS at 4°C. The brains were then embedded in a 5% agarose gel
block and imaged via a serial section two-photon microscopy (whole brain coronal image stacks acquired at a
resolution of 4.4 x 4.4 x 25.0pum) under control of custom software (BakingTray). Image tiles were then assembled
into 2D planes (Stitchlt), down-sampled to 25um isotropic voxels, and registered to the adult mouse Allen
Common Coordinate Framework (CCF) using BrainRegister, an elastix-based registration pipeline with
parameters optimized for mouse brain registration. Next, we reconstructed the location of probes by manually
tracing the florescent dye on CCF-aligned coronal and sagittal images using a Python-based image viewer
(Lasagna; Campbell et al., 2020) equipped with a plugin tailored for this task. Lastly, we manually aligned
electrophysiological and anatomical landmarks along the probe trajectory using a custom tool (see*® and
associated protocols for further detail).

Spike sorting and curation

Data were spike sorted with Kilosort 2 (KS2%% 7°), and/or a custom python version of the algorithm. Entire
sessions were then inspected by constructing “drift maps” (channel x time, spikes as dots). If significant drift was
evident, the session was rejected. Data were then manually curated via visual inspection (e.g., waveforms, auto-
correlograms) with the Phy graphical user interface. Units were included in the analyzed dataset if (1) their
average firing rate was over 0.5 Hz, (2) the automated labeling of units by KS2 indicated the unit as “good” (i.e.,
single-cell), (3) during manual curation the unit was not labeled as “noise”, and (4) it had a presence ratio (1
minus the fraction of 1 minute bins in with no spikes) above 0.9. Throughout the report we refer to the clusters
satisfying these criteria as “units” given the possibility that a subset of these clusters were multi-unit, even if
labeled as single units by KS2.

Video recordings and pupil tracking during neurophysiology

We briefly describe the video analysis pipeline, which is fully detailed elsewhere’’. We recorded videos (CM3-
U3-13Y3M-CS, Point Grey) of the animals performing the task from 3 cameras/angles: top, right, and left (Fig.
S2A shows the left camera). In the current analysis, we used the left (60hz, 1280 x 1024) and right (150hz, 640
x 512) cameras, with the latter being flipped and spatially up-sampled to resemble the left camera. We detect 4
regions of interest (ROI) on each frame (Fig. S2A, inset, red rectangles), crop these, and apply a separate neural
network to each ROI to track features of interest. In addition to other body parts we tracked the top, bottom, left,
and right corners of the pupil via DeepLabCut. Pupil tracking was not reliable on a number of sessions, likely
due in big part to the fact that the camera positions were not optimized for pupil tracking but for simultaneous
paw and tongue tracking. Thus, we performed pupillometry analyses only on the subset of sessions (n = 58
sessions) with reliable pupil diameter estimation. In each session, we dropped frames with a likelihood < 0.9 and
smoothed the pupil diameter estimation. We then averaged pupil diameters across the left and right cameras,
and subsequently across animals within a given genotype. We consider pupil responses to differentiate 80:20
and 20:80 blocks if p < 0.05 for at least 10 consecutive samples (see’ 73).

Modeling and analyses

Behavioral analyses
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Training times (Fig. 1C) were determined as the number of sessions ¢ (typically 5 session per week) for an animal
to reach 80% correct on trials with contrast 100% or 50% (“easy trials”). To account for infrequent and sudden
drops in performance (likely driven by stress caused during head-fixation), the fraction of correct trials on “easy
trials” as a function of session was computed within a moving average of 3 sessions (window centered on session
t). Psychometric curves (Fig. 1D) were fit by a parametric error function (Eq. 1, see®) with four free parameters;
bias (1), threshold (o), and lapse rates for stimuli presented on the left and right (respectively, y and 1). These
functions fit the data well (R?: 0.99 + 9.18 x 10™*) and equally across genotypes (p = 0.91). For visualization (Fig.
1F), we construct an average psychometric curve by prior across all animals of a given genotype, and then these
are subtracted.

P=y+(1—y—/1)erf(c_”)/2 (Eq. 1)

g

Behavioral modeling

We build an ideal observer that has access to a noisy representation of the current stimulus (stimulus s, noisy
measurement x) and the unbiased history of category labels (C;.;) experienced up to the present moment. We
can assume an unbiased history of category labels given that animals are given feedback on each trial. The
observer does not have access to the entire sequence of stimuli presented in a session, but only until trial t.
Further, we aim to build an iterative formalism, which allows the observer to perform online inference in a
tractable manner (i.e., tracking sufficient statistics and performing a simple operation at each new observation).
The observer model can be decoupled into two components, a prior-tracking model computing an a-priori
probability of observing a given stimulus (e.g., left) given previous observations (C;.;_1), and a perceptual
decision-making model at trial t. We detail each of these in turn.

Prior Tracking.
Online change-point detection. The Bayesian change-point detection model estimates the posterior distribution
over the current run length (r¢, i.e., number of trials since the last change in block) and category probabilities

(i.e., left or right) given the data so far observed (category labels until trial t, C;..; see®® *°). The predicted
probability that the next trial presented will be on the left is,

P(Cey1 = L|Crp) = Xy, X, P(Ce1 = L, 11, &1 Crie) (Eq. 2)

where ¢, is the state of the previous block (¢, € S, with S;; = {0.2, 0.5, 0.8}). This predictive distribution over
future category may be decomposed as,

P(Cers = LICye) = T3, g, P (Cerr = L| 76,6, €)X P(r, &l Cr) (Eq. 3)

with Ct(r) being the category labels associated with the run length r;, and the second term of Eq. 3 being the run
length and block posterior. Via iterative expansion, we can write,

P(r, &, Ci) = Zrt_l th_l[P(Tt,ft|7”t—1,€t—1,ct(r)) X P(Ct|rt—1,ft—1; Ct(z) X P(rt—1,$t-1, C1:t-1)] (Eq. 4)

Of note, Eq. 4 is recursive (last term being the joint distribution from the previous iteration) and affords computing
P(r3,¢¢1C1.¢), given that,

P(r,8e.Ca:t)
P &l Cr) = FHELELD (Eq. 5)

The second term in Eq. 4 (and the first of Eq. 3) may be computed as,

P(Ct|rt—1'€t—1lct(r)1) = Znt_lp(ctlnt—l) X P(ﬂt—1|7”t—1»5t—1rct(r)1) (Eq. 6).
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In turn,

P(”t—1|rt—1:’ft—1:ct(f)1) & P(me_1|&p—q) X P(Cff)l Tt-1, 7Tt—1) (Eq. 7),

which are respectively the transition probability between blocks in the task (which is experimentally imposed)
and the sequence likelihood. By definition, the transition matrix between blocks is,

0 0 1\ & ,=02
P(mi_11$e-1) = % 0 % $-1 =05 (Eq. 8).
1 0 0/ $-1=08
And the sequence likelihood is,
) |c=1] | =R|
P (Ct_1 Tio1, rrt_l) X T, (1 —mp_q)le (Eq. 9).

Returning to Eq. 6, we thus have,

P(Ct|Tt—1:ft—1,Ct(r)1) & Y, P(Celme—q) X P(me_q1$e—1) X P(Ct(f)l Tt—1, 7Tt—1) (Eq. 10).

Finally, returning to Eq. 4, we are missing the first term. We can write,
p cy=p cx p Eq. 11
(re, §elre1, 81, G ) = $elres -1, §6-1, €7 ) X P(relre—1) (Ea. 11)

where the terms are respectively the previous-block update and the run-length update. Both of these are again
experimentally imposed, and defined as,

()] .
M\ _ VP(me—q = &lre—1,8-1,C, C,2)) if =0
P T4, 1—1,6¢—-1,Ce, Cr % ) = t-1 Eq. 12
(5t| t Te—1,$t-1, Ce, Cy 1) {5(ft_ft—1) Otherwise (Eq )
and,
H(T‘t_l + 1) lf T't = 0
P(relre—1) =41 —H(re—1 + 1) if = 11 +1 (Eq. 13).
0 Otherwise

H is the hazard function, the instantaneous probability on each trial that there is a change-point. Namely,

Hn) = engen® __ (Eq. 14).

Z:Lo/:n Plengtn(n/)

In the particular case of this experiment where block lengths are drawn from a truncated decaying exponential
with time constant 60 and minimum and maximum blocks respectively of 20 and 100 trials, we have,

Prengen (n) o €75 - [20 < n < 100] (Eq. 15).
This hazard rate is approximately constant, until n becomes large (~ 80 trials).
Exponential weighting. The exponential-averaging model postulates that animals do not explicitly know about
the task structure (e.g., possessing blocks wherein stimuli presentation is biased on one side). Instead, it
computes a smooth estimate of category probability by taking a weighted average of previously experienced

category labels, giving more weight to recently experienced labels:
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P(Ci1 = LICy) = aexpCt +(1- Texp )P(C = L) (Eq 16)

The time constant of memory decay for this model is,

-1
L reremm— ao) (Eq. 17).
We account for conservatism’ in a biased version of this exponential weighting model; the exponential weighted
average model with bias (exp. bias model, best model in main text). In the latter, the estimates from Eq. 16 are
biased by adding “pseudo-counts” to the observations of “left” and “right” in past trials. This is equivalent to
placing a Beta distribution hyper-prior with parameters @ and 8 on the estimated probability from Eq. 16 (see*
ExpBias model for detail).

Perceptual decision-making model.

The stimulus, s, on each trial is drawn from a set of contrasts {-1, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25,
1}, where negative values indicate stimuli presented on the left visual field. The observer does not have direct
access over these stimuli, but only to a noisy measurement, x. We assume,

x ~N(x; u(s),0%(s)) (Eq. 18)

where N defines a Gaussian distribution, and u and o2 are respectively means and variances that depend on
the stimuli presented, s. The ratio of posterior probabilities that a stimulus was presented on the left and right, or
the decision variable, is

P(L) zs<0p(x|,u(s), 0'2(5))

P(L) P(x|L) ]
1-P(L) Zs>op(x|ﬂ(s)'o-2(s))

d(x) =log [1—P(L) P(X|R)] = log [

(Eq. 19)

where P(L) is computed according to the prior-tracking model of choice (above) and we assume that a response
“Left” is made if d(x) > 0, and “Right” otherwise. Lastly, in the case the animals do not lapse, we can write.

P(Choice Left |s) = [[d(x) > 0] N(x; u(s),02(s))dx (Eq. 20).
Or if the observer has an unbiased non-zero lapse rate, we can write,
P(Choice Left |s, lapse) = % + (1= 2) [[d(x) > 0] N(x; u(s),a%(s))dx (Eq. 21)

where 1 is the probability that the mouse responds randomly.
Model fitting and comparison.

We fit 10 models (Fig. 2A) to the responses of each subject. The psychometric model is descriptive, not
attempting to explain internal representation. It has 4 free parameters (as in Eq. 1) and is fit separately to the
three different blocks (50:50, 80:20, 20:80), thus resulting in a total of 12 parameters. The omniscient and fixed
models possess the perceptual decision-making model but do not compute the prior, P(L). Instead, the
omniscient model has direct access to the true value (0.2, 0.5, or 0.8), and the fixed model uses a single P(L)
throughout the duration of the session. Next, the change-point (CP) models (5 in total, see below) employ
variants of the Bayes optimal online change-point detection model for estimating the prior, and the perceptual
decision-making model for making a choice. The CP model has a potential of 4 free parameters. The a-priori
block probabilities ¢, experimentally belong to the set S, ={0.2,0.5,0.8}. In model fitting we set S, =
{plow, 0.5, phigh}. Similarly, the run lengths are experimentally defined by a time constant = = 60 and a minimum
length i, = 20 (Eq. 15). In the change-point model the 4 parameters (plow, phigh, T, and r,,;,) are set to the
experimentally imposed values. In CP free sym, we set t and ry,,;,, to their experimental values, and plow and
phigh have to be symmetric (i.e., adding to 1). In CP free we allow plow and phigh to vary independently. CP
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free sym run is as CP free sym but also allows t and r,,;, to take on any value. CP free run is as the CP free
model but allows t and r,,;,, to take on any value. Finally, the exponential weighting models (2 in total, see
below), use the exponential averaging for estimating the prior, and the same perceptual decision making model
as the rest. In the no bias variant of the model (exp. no bias) the free parameter is a.,,, dictating the shape of
the time constant of memory decay. In the biased version of the model (exp. bias) there is additionally the
parameters a and g dictating the shape of the Beta distribution acting as pseudo-counts.

We fit the above-described models by minimizing the negative log likelihood of the data using Bayesian Adaptive
Direct Search (BADS"®), and taking the best result of 20 optimization runs with randomized starting points.
Further, we cross-validate log likelihoods (Fig. 2A) by splitting training and testing data according to odd and
even sessions.

Neural Analyses
Demixed PCA

We used demixed principal component analysis (dPCA*’) to examine interpretable neural manifolds. This
technique (see Kobak et al., 2016 for detail) requires convolved firing rates (as opposed to spike trains) and a
given set of experimental conditions (i.e., not a continuous value). Thus, we convolved spike trains (1ms bins)
with a causal Gaussian kernel (sd = 10ms), epoched each trial from 500ms prior to stimulus onset to 1500ms
after stimulus onset, and averaged according to choice (left or right) and subjective prior. The latter, being a
continuous variable, was binned in quintiles (5 levels of equal number of trials). The resulting matrix used in the
dPCA was N (units) x P (5 quintiles of the prior) x D (2 choices) x T (time). While the analyses is conducted on
individual CCF-defined regions, in the main text we amalgamate results across ‘macro-areas’ (Table S1) for
statistical power and deriving a coarse-level summary. We included in the analysis sessions with at least 10
simultaneous units within a given CCF-defined region®. Including sessions/areas with more than 10 units
simultaneously recorded results in a better estimate of the underlying latent dynamics but did not statistically
change the fraction of variance explained by the different subspaces.

Poisson generalized additive model (nGAM)

To estimate tuning functions and their statistical contribution to a unit’'s overall response, we fit a Poisson
generalized additive model (P-GAM*?). The P-GAM defines a non-linear mapping between spike counts of a unit
v: € Ny and a set of continuous covariates x;, as well as discrete events z,. In this case, the continuous
covariates included were both the experimentally imposed prior (e.g., 80:20 or 20:80 probability of a stimuli being
on the left) and the “subjective” prior estimated via behavioral model fitting (exp. bias model). Further, to account
for idiosyncratic body movements (Musall et al., 2019), we also included the first 10 principal components of
video recordings. These PCs accounted for 79.16% of the variance in video data. As discrete events, we included
visual contrasts ([-100%, -25%, -12.5%, -6.25%, 0%, 6.25%, 12.5%, 25%, and 100%)]) at stimulus onset, as well
choice and feedback (at their respective times), both for the current trial as well as for the previous one. The
previous choice and feedback were modeled as accounting for sustained responses (as opposed to evoked)
even prior to trial onset. Lastly, above and beyond the experimental variables, we also accounted for elements
of internal neural dynamics by including the concurrent firing of simultaneously recorded units in the same region,
y;. Together, a unit’s log-firing rate is modeled as a linear combination of arbitrary non-linear functions (B-splines)
of the covariates,

10gll=2jfj(xj)+2kfk*zk+ Yehe xy +C (Eq. 22)

where * is the convolution operator, and the spike counts are generated as Poisson random variables with the
rate specified by (Eq. 22). Input specific non-linearities f(-) were expressed in terms of flexible B-splines, f(:) =
B - b(-). Similarly, h; are smooth causal filters (also learned) capturing the directional coupling between units,
including an auto-regressive component which accounts for refractory periods of units. Covariates and spike
counts were discretized in 5ms bins. The estimated kernels (f and h) were associated with a smoothness
enforcing penalization term controlled by a scale parameter A,
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PEN(f,4;) = =5 B"S;B,  Sp=[b"-b""dx (Eq.23)

The larger As, the smoother the model. These penalization terms can be interpreted as Gaussian priors over
model parameters. The resulting log-likelihood of the model takes the form,

with y € RT being the spike counts of the unit, x € R/*T being the continuous task variables, z € RX*T being the
discrete task events, T being the time points, B being the collection of all B-spline coefficients, and being p(-)
the Poisson likelihood. Both parameters B and the hyperparameters 4 are learned from the data by an iterative
optimization procedure that switches between maximizing Eq. 24, and minimizing a cross-validation score as a
function of hyperparameters (see*’, for further details). We used 11 nodes (Bs) per fitted co-variable (19
experimental + a variable number of simultaneously recorded units), resulting in the average full encoding model
having 590.33 parameters. Most importantly, the probabilistic interpretation of the penalization terms allowed us
to compute a posterior distribution for the model parameters. In turn, this allows us to derive confidence intervals
with desirable frequentist coverage properties and implement a statistical test for inclusion of a minimal subset
of task variables explaining most of the variance. In other words, it allows fitting an encoding model and
performing implicit model selection within our large neurophysiological dataset (see Noel et al., 2022, 2023 for a
similar approach and additional model validations). The average reduced model had 61.25 parameters (10.3%
of the full model) with no detriment to its ability to account for spiking activity (all p > 0.36, Fig. S6).

The encoding model fit quality was assessed via pseudo-R? on subset of held-out test trials (20% of the total
trials). Pseudo-R? is a goodness-of-fit measure that is suitable for models with Poisson observation noise’®. The
score is computed as,

Ly)-L(Y)

21—
pseudo R =1 To)L(y)

(Eq. 25)

with L(y) being the likelihood of the true spike counts, L( ) being the likelihood of the pGAM prediction, and
L(y) being the likelihood of a Poisson null-model (mean rate). Pseudo-R? is 0 when the pGAM fits are no more
likely than the null model, 1 when it perfectly matches the data, and can be negative when overfitting occurs (for
test-set data, 0.5% of the recorded units). Empirically, the pseudo-R? is a stringent metric and ranges in values
that are substantially lower than the standard R? when both are applicable””. Our average score of 0.0745 is two
to four times better than standard GLM performance*’. The R? of trial-averaged firing rates to variables deemed
to significantly contribute to spike trains was on average 0.82. For analyses downstream of the pGAM, we include
units with a minimum pseudo-R? of 0.01, deem variables as significantly contributing to spike trains at alpha <
0.001, and include regions in the analysis if at least 40 units per area were properly fit, in each of the genotypes
(Fig. 5, Fig. 6C-E) or across genotypes (Fig. 6A, B). For Figure 7, we fit separate pGAMSs for each biased block
(80:20 and 20:80) and remove the experimental prior as a co-variate. This allowed us to estimate responses to
each contrast for each of the experimental priors.

We compute the mutual information between an experimental variable and the observed spiking activity, where
v, are the spike counts at time t, and y;|B, X; ~ Poisson(X;, B) where X, is the stimulus matrix at time t. We
know that 8| X ~ N(B, £). We select one stimulus dimension, xj = X.;, and discretize it into N values, x; €

{xj1 x}"}. We approximate the input distribution using a binomial p(x}‘) = pk, Where p;, is the empirically observed
frequency of the stimulus. For each time point we computed,

Ely|X] = Egix[E[y:1X, Bl (Eq. 26)
= Epx[exp (X:B)]
= e + 07 /2,

Where p, = X, and 6?=X,Z X! . We approximate the conditional entropy H[y|x}‘] as the entropy of a Poisson
variable with mean equal to %ZtE[yth], where the sum is taken over the T time points in which x;, = x}‘. We
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also approximate the entropy of spikes H[y] as the entropy of a Poisson with mean the average firing rate of
the unit. Mutual information was computed as,

I(x;,y) = Hly] = H[y¢|x;] (Eq. 27)
= H[y] - Zupi Hlye|xf].
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Supplementary Materials

Table S1. Categorization of areas and their acronyms.

HIP CA1 Field CA1
CA3 Field CA3
DG Dentate gyrus
POST Postsubiculum
ProS Prosubiculum
SUB Subiculum
MB MB Midbrain
MRN Midbrain reticular nucleus
SC Superior colliculus
SNr Substantia nigra reticular part
PRT Pretectal region
FC ACAd Anterior cingulate area dorsal part
ACAv Anterior cingulate area ventral part
MOs Secondary motor area
SM MOp Primary motor area
RSPd Retrosplenial area dorsal part
RSPv Retrosplenial area ventral part
STR CP Caudoputamen
LS Lateral septal complex
TRS Triangular nucleus of septum
SF Septofimbrial nucleus
TH LD Lateral dorsal nucleus of thalamus
LGd Dorsal part of the lateral geniculate complex
LP Lateral posterior nucleus of the thalamus
MG Medial geniculate complex
PO Posterior complex of the thalamus
PVT Paraventricular nucleus of the thalamus
TH Thalamus
SGN Suprageniculate nucleus
VIS VISa Anterior visual area
VISam Anteromedial visual area
VISp Primary visual area
Other P Pons
PRNr Pontine reticular nucleus
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Figure S1. Example psychometric fits during biased sessions.
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Figure S1. Example psychometric fits during biased sessions. Psychometric fits to the fraction of “rightward” responses
as a function of contrast (x-axis) and experimental block (colors; dark color indicated a left-biased block). Four example
animals (columns) are shown for each of the 4 genotypes (rows). Circles are the observed fraction of responses, and curves
are fits.
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Figure S2. Lack of surprise during the presentation of statistically unlikely events in mouse models of
ASD.
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Figure S2. Lack of surprise during the presentation of statistically unlikely events in mouse models of ASD. A.
Video recordings and schematic showing pupil tracking. B. Grand-average pupil diameter as a function of time since
stimulus presentation. C. Pupil diameter as a function of experimental block (80:20 in purple, 20:80 in gold), genotype (rows;
C57BL6, Fmr1, Cntnap2, and Shank3, respectively) and contrasts (columns). In control animals (C57BL6) we
observe that at -100% (p < 0.05, 1.79s post-stimulus onset), -25% (1.31s post-stimulus onset), and 100% (1.23s
post-stimulus onset) contrasts, the late latency (i.e., surprise-driven) pupil diameter was modulated by sensory
history. Importantly, dilation was greater when statistically unlikely events were presented (i.e., high contrast on
the right visual field under the left prior, or high contrast on the left visual field during the right prior) and did not
occur when sensory observations were uncertain (low contrast). The prior-dependent pupil dilation indicating
surprise was not present in any of the mouse models of ASD (second and third row, all p > 0.16), with exception
for a single contrast (-25%, p < 0.05, 1.46 post-stimulus onset) in the Shank3 animals (bottom row, second
column). Shaded area is + 1 s.e.m.
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Figure S3. Change-point detection model parameters.
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Figure S3. We fit the Bayesian change-point free run model — the most flexible of the change-point models — to the animals
behavioral responses. This model performs worse than the biased weighted average in general (i.e., when considering all
animals), and statistically for the Cntnap2 and Shank3 animals. It performs equally to the biased weighted average model
in C57BL6 and Fmr1 animals. Here, we estimate full posteriors of the c.p. free run model via Variational Bayesian Monte
Carlo (VBMC™). These, demonstrate that the posteriors were generally well-behaved (i.e., sufficiently narrow not to
encompass the full parameter-space), yet far from the true experimental values. In particular, it is worth noting that the time
constant and minimum run lengths estimated by animals were very concentrated near 0. In other words, animals did not
use a generative model wherein there was a representation of blocks. Instead, the model parameters attempted to exclude
this notion by making “blocks” as short as possible, effectively rendering this c.p. free run model akin to the heuristic models
detailed in the main text.
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Figure S4. Electrode track histology with CCF-atlas alignment overlaid.

Figure S4. Electrode track histology with CCF-atlas alignment overlaid. Sixty coronal histology slices are shown. The
dye is shown in red, tracking the electrode tracks. Allen Common Coordinate Framework (CCF) atlas is shown overlayed
in white. Tracing these tracks rendered the problem of localizing units from 3-dimensional (in the brain), to 1-dimensional
(along the track). Histology and physiology were then aligned (Falkner, 2020) the track to solve the 1-dimensional problem.
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Figure S5. Stability of coupling filters across experimental blocks.
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Figure S5. Stability of coupling filters across experimental blocks. A. We compute the Pearson correlation coefficient
(r) between coupling filters across a given pair of units estimated by the pGAM in leftward (80:20) and rightward-biased
(20:80) experimental blocks (over 640k pairs in total). These showed a strong degree of stability (r ~ .70) and no difference
across genotypes (One-way ANOVA, p = 0.79). When separating into macro-areas (panel B), we observed more remapping
of noise correlations in STR than the rest of areas (p < 0.05, panel C), but no systematic effect wherein all mouse models
of ASD differed from the control.
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Figure S6. Performance of the encoding model (pGAM).
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Figure S6. Performance of the encoding model (pGAM). We fit a coupled model (i.e., with neural responses of one unit
putatively impacting the firing of another) in order to account not solely for task driven responses, but also for internal neural
dynamics. Left panel: comparison of pseudo-R? for the coupled model (y-axis) and an uncoupled model (x-axis).
Transparent dots are sessions (colored according to genotype), and opaque dots are averaged across sessions. Error bars
are S.E.M. In all genotypes, the coupled model accounts better for spike trains (all p < 0.003). To assess performance of
the variable selection procedure, we contrast pseudo-R? of the models allowing for coupling, in full (x-axis, average of
590.33 parameters) and when reduced to the variables deemed to significantly accounting for spiking activity (y-axis,
average of 61.25 parameters, alpha set at 0.001). The full and reduced model accounted for an equal portion of the variance
(all p> 0.36), while the latter had a tenth the number of parameters/retained variables.
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Figure S7. Responses to contra- and ipsi-lateral high contrast gratings predicted by the pGAM
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Figure S7. Responses to contra- and ipsi-lateral high contrast gratings predicted by the pGAM. A. Evoked firing rates
to high contrast gratings in contra- (left, black) and ipsi- (right, red) lateral visual field as a function of brain region. As
previously demonstrated (Steinmetz et al., 2019) primary visual cortex (VISp) is particularly tuned to contra-lateral stimuli,
while the rest of regions respond fairly equally across hemi-fields. B. Difference in the mutual information between neural
responses evoked by contra- and ipsi-lateral grating presentation.
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Figure S8. Peri-Stimulus Time Histograms (PSTH) across frontal cortices as a function of sensory

history.
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Figure S8. Peri-Stimulus Time Histograms (PSTH) across frontal cortices as a function of sensory history. In control
animals (C57BL7, top row) neural responses were stronger to unexpected stimuli — for instance, a grating on the left
hemifield (negative contrasts) under a rightward-biased block (gold color). This effect, consistent with predictive coding, was
absent in Fmr1 (second row, green), Cntnap2 (third row, yellow), and Shank3 (brown) animals.
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