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Abstract 
 
Computational psychiatry has suggested that humans within the autism spectrum disorder (ASD) inflexibly 
update their expectations (i.e., Bayesian priors). Here, we leveraged high-yield rodent psychophysics (n = 75 
mice), extensive behavioral modeling (including principled and heuristics), and (near) brain-wide single cell 
extracellular recordings (over 53k units in 150 brain areas) to ask (1) whether mice with different genetic 
perturbations associated with ASD show this same computational anomaly, and if so, (2) what 
neurophysiological features are shared across genotypes in subserving this deficit. We demonstrate that mice 
harboring mutations in Fmr1, Cntnap2, and Shank3B show a blunted update of priors during decision-making. 
Neurally, the differentiating factor between animals flexibly and inflexibly updating their priors was a shift in the 
weighting of prior encoding from sensory to frontal cortices. Further, in mouse models of ASD frontal areas 
showed a preponderance of units coding for deviations from the animals’ long-run prior, and sensory responses 
did not differentiate between expected and unexpected observations. These findings demonstrate that distinct 
genetic instantiations of ASD may yield common neurophysiological and behavioral phenotypes.   
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Main 
 
Autism spectrum disorder (ASD) is a neurodevelopmental condition of unknown etiology. The disorder is 
characterized by abundant heterogeneity, both at biological (e.g., genetics and neurochemistry1-4) and behavioral 
scales (e.g., anomalies across social, communicative, perceptual, and motor domains5-7). This diversity hinders 
our ability to understand and ultimately treat the condition.  
 
To address the phenotypic heterogeneity, computational psychiatry8-17 has recently cast ASD with the language 
of probabilistic inference18 and suggested that individuals within the spectrum (1) have attenuated expectations19 
(2) inflexibly weight predictions relative to sensory observations20 and/or (3) over-estimate the volatility of their 
sensory environment and thus are less surprised by statistically unlikely events21. Critically, each of these 
computational accounts suggest that the learning of context-dependent statistical regularities (i.e., “contextual 
priors22”) is abnormal (e.g., slow23, 24) in ASD. This convergence on a putative computational deficit in humans 
with ASD supposes an opportunity to now account for biological heterogeneity. 
 
We attempt to bridge the gap between the recent computational accounts of ASD and its neurobiological and 
genetic instantiation. Namely, we hypothesized that if a single computation (e.g., aberrant prior updating) may 
account for myriad of behavioral symptoms in ASD19-24, then the distinct genetic makeups of the condition may 
similarly (1) all express this computational deficit, and (2) share a common underlying neurophysiological profile 
subserving the computational deficit. We test this hypothesis across three different monogenetic mouse models 
of ASD (Fmr125, Cntnap226, and Shank3B27) by leveraging a standardized high-yield visual detection task 
requiring the use of priors28, behavioral modeling of online adaptation to changes in statistical regularities29, 30, 
and large-scale neurophysiological recordings with high-density silicon probes31. 
 
The results demonstrate that all tested genetic mouse models of ASD underutilized adaptive statistical 
regularities during decision-making. These animals showed a blunted update of their priors23, 24 and were not 
surprised by statistically unlikely events21. Brain-wide extracellular recordings showed a neural convergence, 
wherein the relative weighting of prior encoding at the unit- and population-level shifted from sensory to frontal 
cortices in all mouse models of ASD. Likewise, we observed (1) a preponderance of units coding for deviations 
from the animals’ long-run prior (prior mean) and (2) a lack of sensory-driven prediction errors in frontal cortices 
of mouse models of ASD. Together, these results suggest that both global and local neural imbalances engender 
the inflexible updating of Bayesian priors in ASD. Globally, there is a shift in prior encoding from sensory to 
frontal areas. Locally, within frontal areas, there is a suppression of statistically surprising sensory observations 
and an outsized influence of signals coding for the prior mean. More broadly, the results demonstrate a common 
computational and neural anomaly across mouse models of ASD, suggesting that distinct genetic instantiations 
of the disorder may converge onto common behavioral and neurophysiological phenotypes.   
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Results 
 
Reduced utilization of statistical regularities in mouse models of ASD 
 
Wildtype mice (C57BL/6j, n = 15) and three genetic mouse models of ASD – Fmr1-/y (n = 19), Cntnap2lacZ/+(n = 
21), Shank3B+/- (n = 20) – were first trained on a prior-independent, two-alternative forced-choice visual detection 
task. We leveraged the standardized task and protocols from the International Brain Lab28 (Fig. 1A). Briefly, a 
grating of varying contrast was presented with equal probability to the left or right of a head-fixed mice. The 
animal then selected one of two choices (i.e., left or right) by turning a steering wheel coupled to the grating 
location. If the mouse brought the grating to the center of its visual field, it was rewarded with sucrose. Instead, 
if the animal moved the grating by an equivalent distance in the other direction (i.e., off-screen), it was penalized 
by a timeout (Fig. 1B, see Methods for detail). 
 
Mice of all genotypes learned this task (learned/total; C57BL6: 15/15; Fmr1: 17/19; Cntnap2: 19/21; Shank3: 
18/20; χ2 test, p = 0.90). Further, provided that an animal became proficient at the task, it did so in an equal 
number of sessions (Fig. 1C, mean ± s.e.m.; C57BL: 12.9 ± 2.2; Fmr1: 16.8 ± 2.2; Cntnap2: 13.8 ± 2.4; Shank3: 
12.8 ± 1.4) regardless of genotype (p = 0.52). At asymptotic behavior, psychometric performance on this prior-
independent task was equal across genotypes (Fig. 1D, overall means ± s.e.m., bias: -1.97 ± 0.94; threshold: 
14.6 ± 1.13; lapses: 0.06 ± 0.005; all p > 0.53), indicating that mouse models of ASD detect visual stimuli equally 
well to their control counterparts.  
 
Following proficiency on the visual detection task, we introduced a dynamic prior. Sessions started with an 
unbiased block of trials (50:50 probability of stimuli being on the left or right) and then alternated between gratings 
being more frequent on the left or right visual field (80:20 vs. 20:80 probability; Fig. 1E). Importantly, the change 
in block (e.g., from leftward to rightward) was unsignaled and thus had to be inferred from the stream of stimulus 
statistics and sensory experience. Moreover, 0% contrast trials were rewarded according to the prior, and thus 
optimal performance on the task required that animals incorporate knowledge of the prior in making decisions.  
 
To quantify the impact of this prior, we fit psychometric curves to responses during leftward and rightward biased 
blocks (Eq. 1 in Methods, see Fig. S1 for example animals). Then, we subtract these curves (fitted rightward – 
leftward psychometric curves; see28 for a similar approach). As expected, the prior was most informative when 
sensory evidence was weak, resulting in the largest difference between left- and right-prior blocks being at 
contrast zero (peak at 0.33% contrast, no difference across genotypes, p = 0.28; Fig. 1F). Most strikingly, the 
impact of the prior was greater in the control animals (differences in fraction “rightward” responses at contrast = 
0, 0.27 ± 0.005) than the mouse models of ASD (Fig. 1F, Fmr1: 0.24 ± 0.004; Cntnap2: 0.20 ± 0.003; Shank3: 
0.21 ± 0.005, one-way ANOVA, p = 0.05; excluding wildtype animals and comparing across mouse models of 
ASD, p = 0.67). This conclusion was also corroborated via pupillometry demonstrating a surprise signal during 
the presentation of statistically unlikely events (e.g., high contrast on the right during a leftward block) in wildtype 
but not mouse models of ASD (see Fig. S2 for details). 
 
Together, these results mimic findings from the human literature in demonstrating an attenuated use of priors23, 

24 and the lack of a surprise signal (at least insofar as indexed via pupillometry; see32-34 for a similar approach) 
during the presentation of statistically unlikely events21 in mouse models of ASD. Importantly, this was a 
generalized finding, being true for all mouse models of ASD tested. 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.08.593232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 
 

 
 
Figure 1. Reduced utilization of statistical regularities in mouse models of ASD. A. Rendering of the standardized 
behavioral apparatus allowing for the study of visually-guided decisions in rodents. B. Schematic of the task. C. Performance 
of control (C57BL6) and mouse models of ASD (Fmr1, Cntnap2, Shank3) on “easy” trials (i.e., 50% and 100% contrast) as 
a function of session number. Animals were considered trained when they performed at or above 80% (black dashed line) 
on “easy” trials (moving average over 3 sessions). D. Psychometric functions describing the fraction of rightward choices 
as a function of contrast and animal genotype. Negative contrasts denote stimuli on the left. Thin and transparent lines are 
individual animals, while thicker and opaque lines are averages. These psychometric curves are derived by combining all 
sessions after animals were considered proficient (average number of trials per animal = 1250.9). E. Schematic illustrating 
the “biased” version of the task. The fist 90 trials are “unbiased” in that gratings appear with equal probability on the left and 
right (50:50). Subsequently, blocks of varying length (range = 20-100 trials, decaying exponential such that the hazard rate 
was approximately constant) show gratings predominantly on the left or right (80:20 vs. 20:80; respectively in purple and 
gold). F. Change in the fraction of rightward responses as a function of block (rightward – leftward, fitted curves as in d), 
contrast, and animal genotype (average n trials per animal = 5645.0). Vertical axis (y) in the rightmost panel is compressed 
to show difference between wildtype animals (black) and mouse models of ASD (colored).  
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Blunted accumulation of recent sensory history in mouse models of ASD 
 
Next, we aimed at understanding the strategies employed by different animals to update their priors, and to 
estimate the “subjective” (vs. “objective” or experimenter-imposed) prior utilized by animals on each trial. To do 
so, we derived a set of models (principled and heuristic) and contrasted their performance in explaining animal 
behavior.  
 
We fit a total of 10 models, comprising of variations (e.g., assumptions over symmetry of the prior, see Methods) 
over 4 broad classes. First, we simply fit psychometric curves (Fig. 2A, top row) for each of the three blocks 
(50:50, 80:20, and 20:80). This effort does not postulate any particular strategy animals may have employed in 
solving the task, but serves as a standard and adequate benchmark in accounting for responses. Second, we 
build a Bayesian decision maker (see Methods), but directly provided this model with the true prior probability of 
observing gratings on the left vs. right (omniscient model; Fig. 2A, second row), or allowed for a single fixed prior 
(fixed model; Fig. 2A, third row). These variants establish model performance when not allowing the prior to 
deviate from the experimentally-imposed prior, or for it to vary dynamically. Third, we use the same decision-
maker as above, but also employ multiple variants of a Bayesian online change point detection algorithm (c.p. 
models29, 30, Fig. 2A, 4th to 8th row) to estimate the prior. The algorithm is “online” in that it only uses observations 
until the current trial (as opposed to the whole sequence) and is built iteratively, allowing the model to keep track 
of the probability that the next stimuli will be presented on the left (vs. right) with simple operations. Importantly, 
these models explicitly hypothesize that animals have an understanding of the task structure. For example, that 
there are blocks of trials wherein stimuli presentation is biased. The exact parameters estimated may of course 
deviate from those imposed experimentally. Lastly, we build a heuristic model (exponential weighting models, 
“exp. models”, Fig. 2A, 9th and 10th) wherein animals do not know about block structures but track statistical 
regularities by computing a weighted average (favoring the most recent stimuli) of their recent sensory past. In 
a second variant of this exponential weighting model (Fig. 2A, 10th row, “exp. bias model”, in red), animals in 
addition have a prior over counts (i.e., “pseudo-counts”) that may bias their weighted average and changes the 
relative weighting between observed sensory history and observation-independent a-priori counts.  
 
Model comparison (Fig. 2A, based on cross-validated log-likelihood) favored the biased exponential weighted 
average model (“exp. bias” model, ANOVA, p = 1.46 x 10-13), and this was true across all genotypes (interaction 
term, p = 0.88). This demonstrates that we can estimate an animals’ task strategies (i.e., psychometric fits did 
not account best for responses, see Fig. 2B for fits from the preferred model). It also suggests that the animals 
did keep track of the statistical regularity embedded in the sequence of grating presentations (i.e., fixed model 
was not favored, see Fig. 2C for fits of the preferred model as a function of trial to and from block change), but 
did so via heuristics as opposed to developing a full generative understanding of the task. Lastly, it suggests that 
the different genotypes did not employ categorically different strategies, which allows for contrasting recovered 
model parameters, as well as estimate “subjective” priors. 
 
From the biased exponential weighted average model we may estimate a time (in fact, “trial”) constant over 
which animals accumulate evidence in estimating the probability that the following stimuli will be presented on 
the left (vs. right). We may also estimate a “pseudo-count” prior, putatively biasing the count and rendering its 
update less dependent on observations. These are illustrated in Figure 2D and show that while the trial constant 
was not different across the wildtype and mouse models of ASD (top; one-way ANOVA, p = 0.15; half-width ~ 5 
trials), the hyper-priors (or “pseudo-counts”) exerted a greater influence (i.e., Beta distribution is sharper) in all 
mouse models of ASD relative to the control (bottom; p = 0.04). This accounts for the reduced change in choices 
across blocks in the mouse models of ASD (Fig. 1 and Fig. 2B and C). Further, when applying these parameters 
to a sequence of trials we can see that the subjective priors (even for the control animal) are far from the extremes 
imposed experimentally (0.2 to 0.8, Fig. 2E), and this effect is exacerbated in the mouse models of ASD (Fig. 
2F, p < 0.003). 
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Figure 2. Blunted accumulation of recent sensory history in mouse models of ASD. A. Difference in cross-validated 
log likelihoods (i.e., “badness” of fit) relative to the best model (exp. bias, highlighted in red). Lower is better. Description of 
each model in main text. See Figure S3 for parameter estimates from the c.p. free run model, demonstrating that while it 
was a comparable fit to the exp. bias model for C57BL6 and Fmr1 animals, its resulting parameters suggest animals did 
not infer the presence of experimental blocks. Color scheme for genotypes follows that of Figure 1. Error bars are ± 1 s.e.m. 
across animals. B. Fraction of rightward choices as a function of block (80:20 leftward in purple, 50:50 unbiased in black; 
20:80 rightward in gold) for 4 example animals; 1 per genotype. Circles are data and lines are fits from the exp. bias model. 
C. Example fits of the exp. bias model (lines) when plotting data as a function of trials to and since block change (in this 
case, from 80:20 to 20:80). As expected, change in behavior is most notable for 0 contrast trials (colored). The rest of 
contrasts are grouped, the color gradient (from dark to light blue) following the spectrum from strong evidence for left targets 
to right targets. D. Visualization of the average exponential decay (top) and beta hyper-priors (bottom) dictating the exp. 
bias model for wildtype (black) and mouse models of ASD (colored). The hyper-priors being taller and narrower in ASD 
result in a diminished change in the subjective prior with changing environmental statistics. E. Illustration of an experimental 
sequence of trials; the experimentally-imposed probability that the stimuli will be on the left (black step functions), what an 
optimal observer would be able to infer (gray), and the best estimates of subjective priors for the average control animal 
(top; black jagged line), as well as the average Fmr1 (top; green), Cntnap2 (middle; yellow), and Shank3 (bottom; brown) 
animal. F. Subjective prior before and after block changes in the wildtype (black) and mouse models of ASD (colored). 
Estimates are baseline-corrected averages across animals and all transitions. Error bars represent ± 1 s.e.m. 
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A large-scale neurophysiological survey across various mouse models of ASD 
 
Having established that multiple mouse models of ASD exhibited a computational anomaly akin to that shown 
by humans21, 23, 24 on the autism spectrum (Fig. 1) and intimated a putative computational strategy (Fig. 2), we 
were next interested in establishing its neural underpinning. Namely, the fact that multiple genotypes displayed 
the same deficit affords us the opportunity to attempt distilling causal contributions to prior coding and updating, 
as well as its putative dysfunction in models of ASD; i.e., what neural features are common across all mouse 
models of ASD and different from the control?     
 
Answering this question requires a neural survey on the scale of the whole brain35-37. In turn, we used neuropixel 
probes31 (323 insertions) to record from a total of 53,219 units across 150 brain regions (Fig. 3A, see Methods 
and REF38 for further detail, Fig. S4 for histology). To reliably compare neural features across genotypes we 
need a population of units within a defined anatomical region for all animal types. Thus, we set a threshold of a 
minimum of 40 units per area and genotype (2x the criteria from REF36). This reduced the dataset to 39,393 units 
across 36 brain regions (Fig. 3B, abbreviations follow the Allen Common Coordinate Framework; CCF39). 
 
As expected, rasters and peri-stimulus time histograms demonstrated standard features of neural responses in 
all genotypes. Namely, visual evoked responses occurred at earlier latencies and were more robust with 
increasing contrast (Fig. 3C). These responses were distributed, often contra-lateral in the primary visual areas 
(VISp, Fig. 3C, examples shown), and regularly bi-lateral and at larger latencies elsewhere (e.g., ACAd, Fig. 
3D, see Steinmetz et al., 2019). Units across many regions (Steinmetz et al., 2019; IBL et al., 2023) appeared 
to correlate with the choice of the animal (Fig. 3E, examples in CP, MOs, CA1, and TRS shown). Similarly, 
responses to feedback (e.g., incorrect response) were also distributed and could be expressed as an increase 
(Fig. 3F, first and third column) or decrease (third and fourth column) of firing rates (Fig. 3F. The C57BL6 and 
Fmr1 examples also show responses seemingly driven by the lick response). For a full characterization of these 
phenomena readers are referred to previous reports using very similar35 or identical36 protocols. Instead, here 
we focus on coding of the subjective prior, as estimated by a biased exponential weighting of recent sensory 
history, and on differentiating factors between wildtype mice and mouse models of ASD.  
 
We computed spike counts within a window preceding trial onset (-300 to -50ms) and plotted these on a trial-by-
trial fashion, jointly with the experimentally-imposed prior and our behavioral estimate (Fig. 2, exp. bias model) 
of this prior. This suggested the presence of a subset of units (Fig. 3G, 4 shown, 1 per genotype) whose pre-
stimulus firing rates co-varied with block. Interestingly, close inspection showed periods where pre-stimulus firing 
rates changed as the subjective estimate of the prior changed, even when the experimentally imposed prior 
remained constant (e.g., Fig. 3G, shank3 example in brown, periods highlighted in gray). This motivates a 
quantitative detailing of neural responses to the subjective prior. We first take a big picture approach by 
examining population-level encoding (Fig. 4), and then examine unit responses and neural tuning (Figs. 5 & 6).    
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.08.593232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 
 
Figure 3. A large-scale neurophysiological survey across mouse models of ASD. A. Reconstruction of probe locations 
for the different genotypes (C57BL6 in black; Fmr1 in green; Cntnap2 in yellow; Shank3 in brown). B. Number of units 
recorded per area (y-axis; subset shown) and genotype. Bars are filled and opaque if all genotyped had at least 40 units in 
that area, filled and transparent if the given genotype had 40+ units but others did not, and empty if less than 40. C. Raster 
plot (top) and PSTH (bottom) to stimulus onset for example units in VISp. Raster is sorted by contrast (positive values 
indicating gratings presented on the right; recordings on the left hemisphere; panel A). D. Similar to C but showing responses 
in ACAd. E. Raster and PSTH to stimulus onset, but sorted as a function of choice. Areas are marked on the top left of 
rasters. F. Similar to C-E, but sorted by aligned to feedback onset and sorted as a function of correct and incorrect 
responses. G. Example spike counts (normalized; colored by genotype) before stimulus onset (-300 to -50ms) as a function 
of trial number (x-axis). Also plotted are the experimentally-imposed prior, and the subjective estimate of the prior for the 
given animal/session. In gray (rightmost panel) we highlight example periods where firing rate changes during changes in 
the subjective prior and stable experimental prior.      
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Population encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD 
 
We examined low-dimensional population-level encoding via demixed principal component analysis (dPCA40). 
This method is conceptually similar to PCA, but attempts to keep the learned components interpretable vis-à-vis 
task features (e.g., decision or prior; Fig. 4A). In the current dataset, dPCA explained 86.1% of the variance 
explainable by PCA (over the first 10 PCs). This analysis was performed on individually CCF-defined regions 
(Fig. 3B; see Fig. 4A for example sessions), yet to derive a coarse-level picture and for statistical power, we 
subsequently coalesced regions into ‘macro-areas’ (Fig. 4B, see Table S1 for detail and REF41 for a similar 
approach). 
 
This analysis demonstrated that information regarding the subjective prior (as derived from the exp. bias model 
above) was present throughout the brain and spanning all levels of the neural hierarchy (Fig. 4C, see37 for a 
similar finding). The total variance explained by subjective prior subspaces was 28.3% ± 0.4%, and this value 
was not different across genotypes (one-way ANOVA, p = 0.29). The subjective prior accounted for about two-
thirds (68.0%) the variance explained by evoked visual responses (41.3% ± 0.5%), and for three times as much 
than decision subspaces (8.65% ± 0.1%). When splitting by brain area, we did observe differences across 
genotypes (ANOVA interaction term, p = 0.039), which was driven by (1) an increased population-level encoding 
of the subjective prior in frontal areas (ACAd, ACAv, MOs) of mouse models of ASD (variance explained; Fmr1: 
31.8% ± 1.95%; Cntnap2: 32.0% ± 3.13%; Shank3: 31.5% ± 2.14%) relative to the wildtype (26.1% ± 1.94%, all 
p < 0.05; Fig. 4C), and (2) more prominent encoding of the prior in visual areas of the wildtype animal (34.3% ± 
3.40%) relative to mouse models of ASD (Fmr1: 28.7% ± 1.79%; Cntnap2: 27.5% ± 3.73%; Shank3: 24.6% ± 
1.75%, significant for wildtype vs. Shank3, p = 0.02, and showing trends for Cntnap2 and Fmr1, p = 0.10 and p 
= 0.11 respectively). 
 
These results suggest that while a multitude of neural regions may show responses reflecting the subjective prior 
of animals37 the differentiating factor between animals updating their priors stereotypically vs. only modestly 
(mouse models of ASD) is a putative graded shift in the prior encoding from visual to frontal cortices. This 
analysis, however, is only coarse-level and could be driven by co-variates (e.g., correlation between prior and 
choice). Thus, we next examined unit properties with an encoding model disentangling the contributions of co-
variates.  
 

 
 
Figure 4. Population encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD.  
A. Four example demixed PCA (dPCA) sessions, one per genotype. Analysis was conducted to separate quintiles of the 
subjective prior and left vs. right decision. Top row shows a “condition-independent” subspace capturing the stimulus evoked 
response (only left decision – solid lines – shown for clarity). Middle row show the decision subspace appropriately 
separating left (solid line) and right (dashed line) choice. Bottom row shows the subjective prior subspace. Of note, the 
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quintiles of the subjective prior are differentiated before the stimulus is presented (x-axis = 0). B. Categorization of brain 
regions into ‘macro-areas’ for statistical power and coarse summary (HIP = hippocampal areas; MB = midbrain; FC = frontal 
cortex; SM = somatosensory and motor; STR = striatum; TH = thalamus; VIS = visual areas; see Table S1 for further detail 
on the categorization). C. Variance explained by the subjective prior subspace as a function of “macro-area” and mouse 
genotype (C57BL6 in black; Fmr1 in green; Cntnap2 in yellow; Shank3 in brown). Error bars represent ± 1 s.e.m.  
 
Unit encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD 
 
Spike trains were fit to a Poisson generalized additive model (pGAM42) including as predictors the timing and 
contrast of gratings, choice (left or right), and feedback (correct or incorrect). We also include the choice and 
feedback on the previous trial, as well as the first 10 PCs of video body-part tracking data, and the experimental 
(20:80, 50:50, 80:20) and subjective (exp. bias model) prior (Fig. 5A, left column). The inclusion of both the 
experimental prior and the immediately precedent choice/feedback ensures that units labeled as encoding for 
the subjective prior do not simply reflect stimulus statistics or the immediately previous choices/feedback, but in 
fact reflect a (weighted and biased) accumulated sensory history (i.e., the exp. bias model, see Behavioral 
modeling section). Lastly, the model attempts to also account for elements of internal neural dynamics, by 
allowing unit-to-unit couplings and spike-history (Fig. 5A, right column; see43-45 for a similar approach and Fig. 
S5 for characterization of the stability of coupling filters as a function of block and genotype). Importantly, beyond 
capturing arbitrary non-linearities and handling co-linear predictors46, the specific pGAM we fit42 infers marginal 
confidence bounds for the contribution of each feature and thus allows identifying the minimal subset of factors 
that significantly (p<0.001) impact neural responses without computationally costly (and often unstable) model 
selection procedures. We achieve a goodness-of-fit (pseudo-R2 = 0.0745) on par with state-of-the-art machine 
learning techniques47 while reducing our encoding models by an order of magnitude (see Fig. S6 for further 
model performance quantification). 
 
We first briefly present the encoding of visual stimuli – as sanity check – before assessing the encoding of the 
subjective prior. In this regard, we find units that encode grating presentations throughout the brain35, 36 with the 
primary visual cortex (VISp) showing the strongest difference (in mutual information) between contra-lateral 
responses (arguably driven by the stimulus itself) and ipsi-lateral responses (arguably further driven by recurrent 
neural dynamics; Fig. S7). Figure 5B shows the peri-stimulus time histogram (PSTH) for a few example units, 
overlayed with the pGAM reconstruction and the estimated contribution of the visual stimulus kernel. 
Interestingly, we can observe that while for a few units (e.g., first two examples in Fig. 5B) the entirety of their 
response to grating presentation is (bottom-up) visually driven, for the majority of units (e.g., rest of first row and 
second row, Fig. 5B) their early response is sensory driven whereas their later latency responses are less so 
(putatively accounted for by the coupling filters). Some units showing increased firing after grating presentation 
were, in fact, according to the pGAM, not driven by visual stimulus at all (Fig. 5B, bottom row). Fittingly, these 
latter units showed a delayed evoked response relative to the “bottom-up” driven units. Overall, these results 
broadly align with classic characterizations of the visual pathways48, 49 and recent brain-wide surveys35-36, while 
also demonstrating the utility of including in the encoding model both externally-driven predictors and internal 
elements of neural dynamics.  
 
The subjective prior was encoded in units throughout the brain (examples shown in Fig. 5C), in fractions 
(averaged across genotypes) ranging from 0.14 (Triangular nucleus of septum) to 0.36 (Anterior cingulate area; 
alpha set at 0.001 and thus well below these fractions; Fig. 5D). Separating by brain area and genotype, we 
observed that akin to the population-level results, the subjective prior was more frequently coded in frontal areas 
in mouse models of ASD relative to the control (coalescing ACAd, ACAv, and MOs; χ2 test = 30.67, p = 10-5; 
when taking the areas independently, p < 3.5x10-4 for ACAv and MOs, and p = 0.10 for ACAd; all mouse models 
of ASD > wildtype in each frontal area, with the exception of Shank3 in ACAd). Concurring with the population-
level results, the subjective prior was less frequently coded in the visual cortex in mouse models of ASD relative 
to the control (p = 10-5; independently, all mouse models of ASD < wildtype, all p < 2.0x10-4). We also estimated 
the informativeness (see Methods) of each of these tuning functions (Fig. 5E, a continuous variable as opposed 
to the binary tuned vs. not tuned). These results showed greater mutual information in mouse models of ASD 
than the wildtype in each of the frontal areas (all p < 3.8 x 10-3), and reduced mutual information relative to the 
control in visual cortex (p = 3.04 x 10-4; Fig. 5E). Other areas (most prominently CA3) showed differences in 
frequency (p = 0.004) and informativeness (p = 8.14 x 10-16) of tuning in mouse model of ASD relative to the 
control, but these differences were either (1) not consistent within neighboring regions/established circuits (e.g., 
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CA1 vs. CA3 or DG; Fig. 5D and E), (2) not true across measures (e.g., MG FT vs. MI; respectively, Fig. 5D and 
E), or (3) not observed across all mouse models of ASD tested (e.g., LS or MOp). 
 
 

 
 
 
Figure 5. Unit encoding of subjective prior shifts from visual and frontal cortices in mouse models of ASD. A. 
Schematic of the pGAM encoding model B. Example units showing the empirical PSTH (black, x-axis is time), the 
reconstructed average from the pGAM (red), and the (exponentiated) visual stimulus kernel (blue). The latter is the 
contribution to the observed response the encoding model ascribed (factorized) to visual stimulus presentation. C. Example 
tuning function to the subjective prior. Follows the format from B, with the difference that the x-axis is not time anymore, but 
the value taken by the subjective prior. The x-axis is normalized such that the lowest value taken during a recording (y-axis 
in Figure 2B) takes a value of 0, and the maximum takes a value of 1. By definition, therefore, 0.5 corresponds to the 
average subjective prior of the animal. D. Fraction of units significantly tuned (p<0.001) to the subjective prior as a function 
of brain region (vertical) and genotype (C57BL6 in black; Fmr1 in green; Cntnap2 in yellow; Shank3 in brown). E. Follows 
the convention from D, showing the informativeness of tuning functions (measured in mutual information). Error bars are ± 
1 s.e.m.  
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Outsized coding of deviations from long-run prior across mouse models of ASD 
 
Next, we sought to move beyond the summary characterization of frequency (Fig. 5D) or informativeness (Fig. 
5E) of neural responses vis-à-vis the subjective prior, and instead examine the underlying shape of these tuning 
functions. We retained the top 10k tuning functions by mutual information with the subjective prior, and performed 
K-means clustering50 while allowing the number of clusters to vary from 2 to 10. We also projected the subjective 
prior kernels (blue in Fig. 5C) onto a two-dimensional t-sne (Fig. 6A, t-Distributed Stochastic Neighbor 
Embedding51) for visualization. The tuning functions were best described as pertaining to 4 clusters (Fig. 6A, 
inset shows silhouette values quantifying separateness of clusters). Cluster 1 (Fig. 6B, 1st row) were units whose 
responses monotonically decreased as the subjective prior increased from its lowest value (normalized value of 
0, p(Left) low) to its highest value (p(Left) high). In other words, these are units that fired when the subjective 
prior indicated a high likelihood that the next stimuli will be presented on the right. Cluster 2 (Fig. 6B, 2nd row) 
were the mirror image of Cluster 1, with neural responses monotonically increasing from p(Left) low (norm. 
subjective prior ~ 0) to p(Left) high (norm. subjective prior ~ 1). Both these clusters code for the current value of 
the subjective prior. In contrast, Cluster 3 (Fig. 6B, 3rd row) was comprised of units whose firing rate was minimal 
at a normalized subjective prior of 0.5, and fired more at both high and low values of the subjective prior. That 
is, these units were driven by deviations from the prior mean, the long-run prior of each animal (norm. subjective 
prior = 0.5). Lastly, Cluster 4 (Fig. 6B, 4th row) was the inverse of Cluster 3, with units firing most readily when 
the subjective prior took on intermediate values. Clusters 3 and 4 code for the absolute value of the difference 
between the session-average subjective prior (prior mean) and the current trial subjective prior.  
 
Units of all cluster types were present in each of the brain areas we recorded from (Fig. 6A). Thus, we examined 
the fraction of each cluster type throughout the brain of wildtype and mouse models of ASD. Interestingly, these 
were not equally distributed across all genotypes (χ2 test = 50.38, p < 10-5). Instead, Cluster 3 was over-
represented in the Cntnap2 (p = 0.002) and Shank3 (p = 0.008) animals, and Cluster 4 was under-represented 
in Fmr1 (p = 0. 04, Fig. 6C). Clusters were uniformly represented in the wildtype (p = 0. 21). Given that Clusters 
1 and 2 (coding for subjective prior value), and Clusters 3 and 4 (coding for absolute difference from the long-
run prior) were mirror images of each other, we computed the relative fraction of these cluster types. This analysis 
showed an approximate equal fraction of units increasing or decreasing their firing rate with the value of the 
subjective prior (Fig. 6C, right, gray). Instead, Fmr1, Cntnap2, and Shank3 animals had, respectively, a 33%, 
45%, and 46% increase in units increasing their firing rates as the subjective prior took on values further from 
their long-run prior (Fig. 6C, right, colored). This was not true of the wildtype animals, with an equal number of 
units increasing (Cluster 3) and decreasing (Cluster 4) their firing rate with deviations from their long-run prior.  
 
When splitting across “macro-areas” (Table S1), it remained true that across genotypes and areas a similar 
fraction of units either increasing or decreasing their firing rate with the value of the subjective prior (Fig. 6D, 
χ2 test, all p > 0.13). That is, across areas, wildtype and mouse models of ASD coded similarly for the 
instantaneous value of their prior. Instead, the outsized population of units coding for deviations from the prior 
mean in ASD (Fig. 6C) seemed to be driven by frontal cortex (χ2 test = 113.14, p < 10-5), and to a lesser extent 
by the hippocampal formation (χ2 test = 17.40, p = 5.85 x 10-4; Fig. 6E).  
 
Together, the results demonstrate both global and local differences in unit coding of the prior across animals 
flexibly and inflexibly updating their expectations. Globally, results suggest that relative to wildtype animals, 
mouse models of ASD more heavily rely on frontal cortices, and less on visual cortices, to encode their priors. 
Locally, the tuning functions in frontal cortex demonstrate a selective preponderance of units increasing their 
firing rates with deviations from the long-run prior of the animals.  
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Figure 6. Outsized coding of deviations from long-run prior across mouse models of ASD. A. Two-dimensional t-
Distributed Stochastic Neighbor Embedding (t-SNE) of tuning functions to the subjective prior as a function of brain area 
(colors). Inset shows the average and s.e.m. silhouette values (i.e., relative distance of points to others within and across 
clusters) as a function of number of clusters. A high silhouette value indicates that points within a cluster are well matched 
to their own cluster, and poorly matched to other clusters.  B. Examples (thin and transparent) and average (dark and 
opaque) tuning functions to the subjective prior as a function of cluster (1 through 4). C. Left: Fraction of the units tuned to 
the subjective prior that belong to each of the 4 clusters (shown in B) as a function of genotype (rows; C57BL6, Fmr1, 
Cntnap2, and Shank3, respectively). Right: Fraction of units increasing their firing rate with decreasing (left: red) vs. 
increasing (left: blue) value of the subjective prior (gray), and fraction of units increasing their firing rate with increasing (left: 
green) vs. decreasing (left: purple) distance from the long-run prior (i.e., normalized subjective prior = 0.5). D. Fraction of 
cluster 1 / cluster 2 (gray in C) as a function of genotype (colors) and macro-brain area. Acronyms follow convention from 
Fig. 4. E. As D., showing the fraction of cluster 3 / cluster 4. The dashed line shows a fraction = 1.  
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Lack of sensory-driven prediction errors in frontal cortex of mouse models of ASD 
 
The updating of priors ought to be driven by the observation of statistically unlikely events (i.e., the accumulation 
of these events ultimately results in an update of what is considered statistically likely). Thus, we examined how 
the encoding of gratings was modulated by their statistical likelihood. To do so, we fit the pGAMs42 separately 
for each experimental block (80:20 and 20:80) and compute mutual information (see Methods) at each contrast. 
We observe that when most stimuli were presented on the left/right hemifield, the encoding of stimuli (as index 
by mutual information) presented on the opposite side was strengthened (Fig. 7, all brain areas and genotypes 
combined, p = 1.27 x 10-43; 20:80 > 80:20 for negative contrasts, and 20:80 < 80:20 for positive contrasts). This 
is in line with the theoretical framework of predictive coding52. 
 
We observed abundant variability when separating across “macro-areas” (Table S1) and genotypes. For 
instance, the Cntnap2 animals showed a somewhat widespread lack of prediction errors (e.g., HIP, MB, SM, 
ANOVA interaction term, all p > 0.11) which was not evident in the other genetic models of ASD (see HIP, MB, 
SM in Fmr1 & Shank3, all p < 0.05). Similarly, across a number of brain regions (e.g., TH, VIS) we observed the 
presence of sensory-driven prediction errors in control animals, and not in a subset of the mouse models of ASD 
(e.g., TH in Cntnap2 and VIS in Shank3). Most strikingly, it was only in frontal cortices where we observed a 
differential coding of expected and unexpected stimuli in control animals (ANOVA interaction term, p < 0.001) 
and the lack thereof across all mouse models of ASD (all p > 0.61; Fig. 7, first column). This lack of sensory-
driven prediction errors in frontal cortex of mouse models of ASD is also observable in grand-average PSTHs 
(Fig. S8). 
 

 
 
Figure 7. Lack of sensory-driven prediction errors in frontal cortex of mouse models of ASD. Mutual information (MI, 
y-axis) as a function grating contrast (y-axis; negative contrasts are gratings presented on the left hemifield), experimental 
block (leftward bias block in purple, 80:20), macro-area (columns), and genotype (rows). Error bars are ± 1 s.e.m.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.08.593232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Discussion 
 
We examine the behavioral, computational, and neural underpinnings of prior updating in wildtype and three 
different monogenic mouse models of ASD (Fmr1, Cntnap2, and Shank3). Behaviorally, the results show that all 
genotypes linked to ASD under-utilized the statistical regularities present in their environment (see53 for a similar 
finding in the Cntnap2 rat model). These animals were also less surprised – at least insofar as indexed by pupil 
diameter – during the presentation of statistically unlikely events. Computationally, behavioral modeling 
suggested that the mouse models of ASD and the wildtype animals used a similar task strategy. Namely, the 
animals did not learn a “generative model” of the task, with, for instance, the location of targets changing within 
blocks of a minimum length. Instead, they performed a weighted and biased average of recent sensory 
observations. The animals inflexibly updating their expectations had a stronger (observation-independent) hyper-
prior over the predicted target locations (i.e., “pseudo-counts”). This leads to a blunted update of (observation-
dependent) priors. Neurally, we show both at the population and unit levels a widespread coding of the subjective 
prior37, with a shifting in the balance of this encoding from sensory to frontal cortices in ASD. We also observed 
local changes with frontal cortices (ACAd, ACAv, and MOs). That is, while mouse models of ASD did not differ 
from the wildtype regarding their coding of the instantaneous prior, they did show an outsized presence of units 
coding for deviations from the animals’ long-run prior (see54 for a similar distinction between “immediate” and 
“second-order” priors and for evidence showing that the orbitofrontal cortex encodes the latter). Lastly, we 
demonstrate that neural responses to unexpected observations – precisely those that should lead to an update 
of our internal models – were augmented relative to expected stimuli in frontal cortices of wildtype animals, but 
not in mouse models of ASD.  
 
Overall, the results suggest an under-weighting of sensory observations vis-à-vis a-priori expectations in ASD – 
both via global (i.e., over-weighting frontal vs. sensory cortices) and local (i.e., under-weighting of unexpected 
stimuli in frontal cortices) mechanisms. This is largely consistent with theoretical accounts suggesting an over-
estimation of sensory volatility21 or inflexible predictions20 in humans on the autism spectrum. However, our 
results also suppose important aspects in which these theories ought to be revised. 
 
The volatility accounts of ASD21 are largely rooted in a hierarchical predictive process (e.g., the hierarchical 
Gaussian Filter55, 56) with successive levels coding for beliefs about (1) the stimulus, (2) the probabilistic nature 
of the task (e.g., 80:20 vs. 20:80), and (3) the dynamics of this probabilistic association (i.e., volatility). However, 
the behavioral modeling presented here suggests that, at least in the current context, animals do not build a 
generative understanding of the task and thus do not have an explicit representation of volatility. It may be argued 
that while mice are not capable of these “deep” hierarchical inferences, humans are, and thus this is a species 
difference. However, modeling of human responses in a similar task30 suggests that humans also performed a 
weighted and biased average of recent sensory observations, as opposed to full inversion of a generative model. 
Similarly, simulations demonstrate that explicit inferences over volatility are not needed in explaining human 
behavior in volatile environments. In fact, models positing an explicit representation of volatility perform worse 
than models simply accounting for low-level uncertainty57. Lastly, it is interesting to note that a contrast of BOLD 
correlates of hierarchical predictive processes in neurotypical and autistic individuals showed strongest 
differences at “intermediate” levels of this hierarchy, and not in the representation of volatility. This “intermediate” 
level of the hierarchy reflects the probabilistic nature of the task (here, 80:20 vs. 20:80) and was linked to activity 
in the anterior cingulate cortex15 – very much in line with our findings indicating a key role for frontal cortices 
(including the anterior cingulate) in engendering the inflexible update of priors in ASD.  
 
The inflexible predictions account of autism20 suggests a “high and inflexible” weight attributed to prediction 
errors in ASD. Our results demonstrate not the inflexible nature of these prediction errors, but their total absence 
in frontal cortices in mouse models of the disorder. Further, we observed a preponderance of units coding for 
deviations from the prior mean in mouse models of ASD. To the best of our knowledge, these units – not coding 
for the immediate prior, but for its deviance from the prior mean – are not part of current neuroscience or 
computational psychiatry theory, and ought to be incorporated into accounts of prior updating and its anomaly in 
ASD. Fitting, the anterior cingulate – where we observe an abundance of these units – is well established as an 
error monitoring node58 and is causally involved in engendering prediction errors in lower-level sensory areas 
(e.g., primary visual cortex59, 60). In future work it will be important to simultaneously record from 
ACAd/ACAv/MOs and visual cortices to further understand the relation between units coding for deviations from 
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the animals’ long-run prior, and prediction errors in both frontal and sensory cortices. Similarly, in future work it 
will be interesting to discretize behavior into periods defined by different task strategies or internal states, and 
examine how accumulation not only of sensory history, but also action history37, may influence prior updating in 
each of these periods (e.g., engaged or disengaged61) and across genotypes. Indeed, while here we focused on 
sensory history as a mechanism to build expectations, it is possible that particularly when animals oscillate 
between engaged and disengaged states, action history better accounts for perseverative states37. 
 
In conclusion, here we uncover a common computational and neural anomaly across distinct genetic mouse 
models of autism. The computational deficit mimics recent behavioral findings from human computational 
psychiatry21, 23, 24 and thus supposes an exciting translational opportunity to further understand the neurobiology 
of ASD. These results demonstrate a degree of biological degeneracy62 wherein different genetic perturbation 
may lead to similar neurophysiological consequences, both at a brain-wide scale and within local populations in 
frontal cortex. 
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Online Methods 
 
Animals 
 
Experiments were performed in a total of 75 male and female mice of mixed genetic background (C57BL/6j), 
between ~10 (headbar implantation and initial training) and ~29 weeks of age (max number of sessions across 
all animals = 97). On average animals were 22.2 weeks old during neurophysiological recordings. In addition to 
wildtype control animals (n = 15), three different monogenetic mouse models of ASD were used. Fmr1 KO25 
(male are Fmr1-/y, female are Fmr1-/-, no sex difference, n = 19; JAX 003025) mice have a neomycin resistance 
cassette replacing exon 5 of the fragile X mental retardation syndrome 1. Cntnap2tlacZ/tlacZ(n = 21; JAX 028635) 
mice26 have a dysfunctional contactin associated protein-like 2 gene by replacement of the exon 1 on the 
Cntnap2 gene. Shank3B+/- (n = 20; JAX 017688) mice27 have a neocasette replacing the PDZ domain (exons 
13-16) on the Shank3 gene, resulting in altered expression of the synaptic scaffolding protein expressed in the 
post-synaptic density of excitatory synapses. These animals were used as they are well-established models of 
ASD (REF63, 64; relevance to humans65), have previously been used in attempts to establish commonalities 
across mouse models of ASD66-68, and are visually similar to wildtype animals sharing mixed genetic background. 
The latter point is important given that behavioral training and testing were conducted by hypothesis-naïve 
experimenter (J.B.). Male and female mice of the same genotype were first analyzed separately to assess 
potential sex-related differences in behaviors. Given no differences were observed, male and female mice of the 
same genotype were grouped together for final analyses. All procedures performed in this study were approved 
the Institutional Animal Care and Use Committee (IACUC) at New York University. 
 
Surgeries 
 
Each animal had two surgeries. A first one to secure a headbar on their skull allowing for head fixation, and a 
second one to perform craniotomies allowing for neurophysiological probe insertions.  
 
For headbar implants, mice (~10 weeks old) were initially anesthetized by placing them in an induction box at 3-
5% isoflorane. They were then fixed in a stereotaxic frame and maintained anesthetized at 1-1.5% isoflorane. 
Under a microscope (M60, Leica), the dorsal surface of the skull was cleared of skin and periosteum, bregma 
and lambda were marked, the lateral and middle tendons were removed using fine forceps, and the headbar 
was placed and cemented on a levelled skull. A small amount of cyanoacrylate (VetBond; World Precision 
Instruments) was applied to the edges of the skin wound to seal it off and avoid future infections. Finally, the 
exposed skull was covered with clear UV-curing optical glue (Norland Optical Adhesives #81; Norland Products).  
 
On the first day of neural recordings up to 4 micro-craniotomies were made, either with a dental drill or a biopsy 
punch. A gold pin touching the brain was implanted for referencing. The induction procedures followed that of 
the headbar implants, and craniotomies targeted -2.7mm ML/-3.5mm AP, -1.76mm ML/-2.00mm AP, -0.40mm 
ML/-1.06mm AP, and -0.80mm ML/0.50mm AP (negative ML values indicating the left hemisphere, negative AP 
values indicating posterior to Bregma). Craniotomies were covered with a low viscosity silicon sealant (Kwik-
Cast, World Precision Instruments) to prevent drying. Animals were given at least 4 hours of recovery before 
neural recordings. 
 
Behavioral procedures 
 
Following headbar implantation, animals were given at least 3 days of recovery. Then, they were handled for at 
least 15 minutes/day for 2 days. On the second day, the mouse was allowed to explore the behavioral rig for 10 
minutes. The following three days (20, 40, and 60 minutes, respectively) the mice were head-fixed and passively 
presented with full-contrast (100%) Gabors (vertical orientation, 1/10th of a cycle per visual degree masked by a 
Gaussian window of 7 degrees). The wheel used to make responses was locked. The gratings appeared on 
either the left or right visual field (35 degrees eccentricity and 0 degrees elevation) for an average of 10 seconds. 
The Gabor then moves to the center of the visual field (0 degrees eccentricity) for 1 second. The animal is given 
reward (3 micro-liters, 10% sucrose) 500ms after the presentation of the Gabor in the center. 
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Active training began on the 4th day of head-fixation. The wheel was unlocked and in closed-loop with the Gabor. 
Gabors are presented given that the animal did not move the wheel (<2 degrees) during a quiescence period 
(exponential distribution, 200-500ms range, 350ms average). Initially, Gabors of either 100% or 50% contrast 
were presented (left or right, equal probability). A tone (100ms duration, 10ms ramp, 5kHz) was played at Gabor 
onset. If the mouse moves the Gabor to the center of the screen within 60 seconds of presentation,  it is rewarded 
(3 micro-liters). If it moves the Gabor in the opposite direction by a similar displacement (35 degrees), the trial is 
considered incorrect. If it does not respond within 60 seconds, the trial is timed-out. In either of the latter two 
cases a noise burst is played for 500ms. At the onset of this active phase of training, the Gabor moves 8 visual 
degrees per millimeter of movement at the wheel surface. If the mouse completes at least 200 correct trials 
within a session (typically ~45mins) the gain of the wheel for all future sessions is halved, remaining at 4 visual 
degrees/1 millimeter of movement at the surface of the wheel. Similarly, if a mouse completed 200 trials in the 
previous session, the reward volume was lowered by 0.1 micro-liters until a floor of 1.5 micro-liters was reached. 
 
Behavioral training on this unbiased version of the task (i.e., probability left vs. right visual stimuli = 50:50) had 
six phases. First, only 100% and 50% Gabors were presented. If the animal performed above 80% correct, it 
moved to phase 2, where 25% contrast Gabor was added to the set. Similarly, if the animal performed above 
80% correct, it moved to phase 3. In this phase, 12.5% contrast Gabors were added to the mix. To progress to 
phase 4, animals had to complete 200 trials within a session, regardless of performance. In phase 5 the 0% 
contrast was added. If animals completed 200 trials within a session, regardless of performance, they advanced 
to phase 6. In this last phase the 50% contrast was dropped. The mice were considered to be trained on this 
unbiased visual detection task if they were on phase 6 and completed at least 200 trials performing above 80% 
correct for 100% contrast trials for 3 consecutive sessions. Further, their psychometric estimates for the 
combined last 3 days had to be; bias below 16, threshold below 19, and lapses below 0.2. If animals did not 
learn this task within 40 sessions, they were considered untrainable. A small minority of animals were trained for 
over 40 sessions due to long breaks (2+ weeks) in training at an early stage. 
 
Animals who successfully trained on the unbiased version of the task, were moved to a “biased” version of the 
task, wherein animals must use a dynamically updating prior in order to reach optimal performance. Namely, 
each session started with 90 trials where the Gabors appeared with equal probability on the left and right visual 
field. The side (and thus correct response) for 0% contrast Gabors was chosen randomly. After these initial 90 
trials, stimuli were presented in blocks. In one block, Gabors are presented on the left with probability 80% (right, 
20%). In the other block type, Gabors are presented on the left with a probability 20% (i.e., 20:80). In a given 
session, there was an equal probability that the first biased block were “leftward” or “rightward”. Gabors of 0% 
contrast are rewarded according to the prior. The number of trials for each biased block is drawn from an 
exponential distribution with a mean of 60, a minimum of 20 and a maximum of 100 trials. This yields an almost 
flat hazard rate (corrupted by the clipping of a maximum trial number). Importantly, the change in blocks is not 
signaled. Animals performed 10-25 sessions of this biased task before being moved to physiology (no 
requirement on performance, at difference from36, 38). 
 
Neural recordings 
 
Neural recordings were performed with Neuropixels 1.031 (Imec; Belgium) on the acquisition configuration (AP: 
30kHz, gain = 500; LFP: 250Hz, gain = 250) recording from the bottom 384 sites of a 1-cm shank. Probes were 
mounted on a steel rod which was in turn held by a micro-manipulator (uMP-4; Sensapex Inc.). Probes had a 
soldered connection to short the external reference to ground, and this latter one was connected to a gold pin 
fixed on the skull and in contact with the brain. Silicone artificial dura repair compound (Dura-Gel; Cambridge 
NeuroTech) was placed over the craniotomies during recordings. Prior to insertion, probes were labeled for 
subsequent histological reconstruction (see below). On most recording days, we inserted two probes. One per 
craniotomy. The probes were lowered into position at approximately 10 µm s−1. Electrodes were allowed to settle 
for ~10 minutes before starting the recording. Data were acquired via a PXIe (PXI-1000; National Instrument) 
using SpikeGLX (Janelia Research Campus) and stored on a PC and cloud for subsequent analyses. At most, 
over 4 consecutive days we performed 8 insertions in each animal; 2 per craniotomy (4 craniotomies), one 
medially and one laterally at 15 degrees angle from vertical. In between recordings days we covered 
craniotomies and exposed skull with silicon sealant (Kwik-Cast, World Precision Instruments). 
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Probe labeling 
 
For histological reconstruction, we labeled the probes with CM-Dil (Thermofisher V22888) immediately prior to 
insertion. Neuropixels were secured onto a micromanipulator and lowered under a microscope (M60, Leica) onto 
a coverslip or parafilm containing the dye (1uL). The tip of the probes were maintained in CM-Dil until the dye 
dried out (~20 seconds).  
 
Histology and probe reconstruction 
 
We followed the procedures standardized by the International Brain Lab38. Namely, mice were given a terminal 
dose of pentobarbital within the peritoneal cavity. Then, PBS followed by a 4% formaldehyde solution 
(Thermofisher 28908) in 0.1M PB pH 7.4 were perfused through the left ventricle. The brain was subsequently 
dissected and post-fixed in formaldehyde for a minimum of 24h at room temperature. The tissue was then 
washed and stored for up to ~5 weeks in PBS at 4°C. The brains were then embedded in a 5% agarose gel 
block and imaged via a serial section two-photon microscopy (whole brain coronal image stacks acquired at a 
resolution of 4.4 x 4.4 x 25.0μm) under control of custom software (BakingTray). Image tiles were then assembled 
into 2D planes (StitchIt), down-sampled to 25μm isotropic voxels, and registered to the adult mouse Allen 
Common Coordinate Framework (CCF) using BrainRegister, an elastix-based registration pipeline with 
parameters optimized for mouse brain registration. Next, we reconstructed the location of probes by manually 
tracing the florescent dye on CCF-aligned coronal and sagittal images using a Python-based image viewer 
(Lasagna; Campbell et al., 2020) equipped with a plugin tailored for this task. Lastly, we manually aligned 
electrophysiological and anatomical landmarks along the probe trajectory using a custom tool (see38 and 
associated protocols for further detail). 
 
Spike sorting and curation 
 
Data were spike sorted with Kilosort 2 (KS269, 70), and/or a custom python version of the algorithm. Entire 
sessions were then inspected by constructing “drift maps” (channel x time, spikes as dots). If significant drift was 
evident, the session was rejected. Data were then manually curated via visual inspection (e.g., waveforms, auto-
correlograms) with the Phy graphical user interface. Units were included in the analyzed dataset if (1) their 
average firing rate was over 0.5 Hz, (2) the automated labeling of units by KS2 indicated the unit as “good” (i.e., 
single-cell), (3) during manual curation the unit was not labeled as “noise”, and (4) it had a presence ratio (1 
minus the fraction of 1 minute bins in with no spikes) above 0.9. Throughout the report we refer to the clusters 
satisfying these criteria as “units” given the possibility that a subset of these clusters were multi-unit, even if 
labeled as single units by KS2.  
 
Video recordings and pupil tracking during neurophysiology 
 
We briefly describe the video analysis pipeline, which is fully detailed elsewhere71. We recorded videos (CM3-
U3-13Y3M-CS, Point Grey) of the animals performing the task from 3 cameras/angles: top, right, and left (Fig. 
S2A shows the left camera). In the current analysis, we used the left (60hz, 1280 x 1024) and right (150hz, 640 
x 512) cameras, with the latter being flipped and spatially up-sampled to resemble the left camera. We detect 4 
regions of interest (ROI) on each frame (Fig. S2A, inset, red rectangles), crop these, and apply a separate neural 
network to each ROI to track features of interest. In addition to other body parts we tracked the top, bottom, left, 
and right corners of the pupil via DeepLabCut. Pupil tracking was not reliable on a number of sessions, likely 
due in big part to the fact that the camera positions were not optimized for pupil tracking but for simultaneous 
paw and tongue tracking. Thus, we performed pupillometry analyses only on the subset of sessions (n = 58 
sessions) with reliable pupil diameter estimation. In each session, we dropped frames with a likelihood < 0.9 and 
smoothed the pupil diameter estimation. We then averaged pupil diameters across the left and right cameras, 
and subsequently across animals within a given genotype. We consider pupil responses to differentiate 80:20 
and 20:80 blocks if p < 0.05 for at least 10 consecutive samples (see72, 73). 
 
Modeling and analyses 
 
 Behavioral analyses 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.08.593232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 
Training times (Fig. 1C) were determined as the number of sessions t (typically 5 session per week) for an animal 
to reach 80% correct on trials with contrast 100% or 50% (“easy trials”). To account for infrequent and sudden 
drops in performance (likely driven by stress caused during head-fixation), the fraction of correct trials on “easy 
trials” as a function of session was computed within a moving average of 3 sessions (window centered on session 
t). Psychometric curves (Fig. 1D) were fit by a parametric error function (Eq. 1, see36) with four free parameters; 
bias (𝜇), threshold (𝜎), and lapse rates for stimuli presented on the left and right (respectively, 𝛾 and 𝜆). These 
functions fit the data well (R2: 0.99 ± 9.18 x 10-4) and equally across genotypes (p = 0.91). For visualization (Fig. 
1F), we construct an average psychometric curve by prior across all animals of a given genotype, and then these 
are subtracted.  
 

𝑃 = 	𝛾 + (1 − 𝛾 − 𝜆) 𝑒𝑟𝑓 0!"	$
%
1 /2    (Eq. 1) 

 
 Behavioral modeling  
 
We build an ideal observer that has access to a noisy representation of the current stimulus (stimulus 𝑠, noisy 
measurement 𝑥) and the unbiased history of category labels (𝐶&:() experienced up to the present moment. We 
can assume an unbiased history of category labels given that animals are given feedback on each trial. The 
observer does not have access to the entire sequence of stimuli presented in a session, but only until trial 𝑡. 
Further, we aim to build an iterative formalism, which allows the observer to perform online inference in a 
tractable manner (i.e., tracking sufficient statistics and performing a simple operation at each new observation). 
The observer model can be decoupled into two components, a prior-tracking model computing an a-priori 
probability of observing a given stimulus (e.g., left) given previous observations (𝐶&:("&), and a perceptual 
decision-making model at trial 𝑡. We detail each of these in turn.   
 
Prior Tracking. 
 
Online change-point detection. The Bayesian change-point detection model estimates the posterior distribution 
over the current run length (𝑟(, i.e., number of trials since the last change in block) and category probabilities 
(i.e., left or right) given the data so far observed (category labels until trial 𝑡,	 𝐶&:(; see29, 30). The predicted 
probability that the next trial presented will be on the left is,  
 

𝑃(𝐶()& = 𝐿|𝐶&:() = 	∑ ∑ 𝑃(𝐶()& = 𝐿, 𝑟( , 𝜉(|𝐶&:()*!+!    (Eq. 2) 
 
where 𝜉( is the state of the previous block (𝜉( ∈ 𝑆𝜋, with 𝑆" = {0.2, 0.5, 0.8}). This predictive distribution over 
future category may be decomposed as,  

	
𝑃(𝐶()& = 𝐿|𝐶&:() = 	∑ ∑ 𝑃*!+! (𝐶()& = 𝐿 =	𝑟( , 𝜉( , 𝐶(

(+)1 × 	𝑃(𝑟( , 𝜉(|𝐶&:()	 	 (Eq. 3)	
 
with 	𝐶(

(+) being the category labels associated with the run length 𝑟(, and the second term of Eq. 3 being the run 
length and block posterior. Via iterative expansion, we can write, 
 
𝑃(𝑟( , 𝜉( , 𝐶&:() = 	∑ ∑ [	𝑃*!"#+!"# (𝑟( , 𝜉(|𝑟("&, 𝜉("&, 𝐶(

(+)) × 	𝑃 0𝐶(=𝑟("&, 𝜉("&, 𝐶("&
(+) 1 	× 	𝑃(𝑟("&, 𝜉("&, 𝐶&:("&)]		 (Eq. 4) 

 
Of note, Eq. 4 is recursive (last term being the joint distribution from the previous iteration) and affords computing 
𝑃(𝑟( , 𝜉(|𝐶&:(), given that, 
 

𝑃(𝑟( , 𝜉(|𝐶&:() = 	
.(+!,*!,0#:!)
.(	0#:!)

      (Eq. 5) 
 

The second term in Eq. 4 (and the first of Eq. 3) may be computed as, 
 

𝑃 0𝐶(=𝑟("&, 𝜉("&, 𝐶("&
(+) 1 = 	∑ 𝑃(𝐶(|𝜋("&1!"# ) 	× 	𝑃(𝜋("&|𝑟("&, 𝜉("&, 𝐶("&

(+) )	 	 (Eq. 6). 
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In turn,  
 

𝑃 0𝜋("&=𝑟("&, 𝜉("&, 𝐶("&
(+) 1 	∝ 𝑃(𝜋("&|𝜉("&) 	× 𝑃 0𝐶("&

(+) =𝑟("&, 𝜋("&1 (Eq. 7), 
 

which are respectively the transition probability between blocks in the task (which is experimentally imposed) 
and the sequence likelihood. By definition, the transition matrix between blocks is, 
 

𝑃(𝜋("&|𝜉("&) = C
0 0 1
&
2

0 &
2

1	 0 0
E
			𝜉("& = 0.2
		𝜉("& = 0.5
		𝜉("& = 0.8

  (Eq. 8).   

And the sequence likelihood is, 
 

𝑃 0𝐶("&
(+) =𝑟("&, 𝜋("&1 ∝	𝜋("&

30!"#
(&) 4	53

	(1 − 𝜋("&)
30!"#
(&) 4	63	  (Eq. 9). 

 
Returning to Eq. 6, we thus have,   
 

𝑃 0𝐶(=𝑟("&, 𝜉("&, 𝐶("&
(+) 1 ∝ ∑ 𝑃(𝐶(|𝜋("&1!"# ) 	× 𝑃(𝜋("&|𝜉("&) 	× 𝑃 0𝐶("&

(+) =𝑟("&, 𝜋("&1   (Eq. 10). 
 
Finally, returning to Eq. 4, we are missing the first term. We can write,  
 

𝑃(𝑟( , 𝜉(|𝑟("&, 𝜉("&, 𝐶(
(+)) = 	𝑃 0𝜉(|𝑟( , 𝑟("&, 𝜉("&, 𝐶(

(+)1 × 𝑃(𝑟(|𝑟("&)  (Eq. 11) 
 
where the terms are respectively the previous-block update and the run-length update. Both of these are again 
experimentally imposed, and defined as, 
 

𝑃 0𝜉(|𝑟( , 𝑟("&, 𝜉("&, 𝐶( , 𝐶("&
(+) 1 = 	 I 𝑃(𝜋("& = 𝜉(|𝑟("&, 𝜉("&, 𝐶( , 𝐶("&

(+) )					𝑖𝑓		𝑟( = 0	
𝛿(𝜉( − 𝜉("&)																																									𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (Eq. 12) 

 
and, 
 

𝑃(𝑟(|𝑟("&) = O
𝐻(𝑟("& + 1)																												𝑖𝑓		𝑟( = 0	

1 − 𝐻(𝑟("& + 1)														𝑖𝑓		𝑟( =		 𝑟("& + 1							
0																																												𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (Eq. 13). 

 
𝐻 is the hazard function, the instantaneous probability on each trial that there is a change-point. Namely,  
 

𝐻(𝑛) = 	 .()*+!,(7)
∑ .()*+!,(79)-
*./*

     (Eq. 14). 

 
In the particular case of this experiment where block lengths are drawn from a truncated decaying exponential 
with time constant 60 and minimum and maximum blocks respectively of 20 and 100 trials, we have,  
 

 𝑃:;7<(=(𝑛) ∝ 𝑒"
*
01 ∙ [20 ≤ 𝑛 ≤ 100]  (Eq. 15).  

 
This hazard rate is approximately constant, until 𝑛 becomes large (~ 80 trials).   
 
Exponential weighting. The exponential-averaging model postulates that animals do not explicitly know about 
the task structure (e.g., possessing blocks wherein stimuli presentation is biased on one side). Instead, it 
computes a smooth estimate of category probability by taking a weighted average of previously experienced 
category labels, giving more weight to recently experienced labels:   
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𝑃(𝐶()& = 𝐿|𝐶&:() = 	𝛼;>?𝐶( + (1 − 𝛼@AB	)𝑃(𝐶( = 𝐿)   (Eq. 16). 
 

The time constant of memory decay for this model is, 
 

𝜏 = "&	
CDE	(&"F)23)

   (Eq. 17). 
 
We account for conservatism74 in a biased version of this exponential weighting model; the exponential weighted 
average model with bias (exp. bias model, best model in main text). In the latter, the estimates from Eq. 16 are 
biased by adding “pseudo-counts” to the observations of “left” and “right” in past trials. This is equivalent to 
placing a Beta distribution hyper-prior with parameters 𝛼 and 𝛽 on the estimated probability from Eq. 16 (see30 
ExpBias model for detail).  
 
Perceptual decision-making model.  
 
The stimulus,	𝑠, on each trial is drawn from a set of contrasts {-1, -0.25, -0.125, -0.0625, 0, 0.0625, 0.125, 0.25, 
1}, where negative values indicate stimuli presented on the left visual field. The observer does not have direct 
access over these stimuli, but only to a noisy measurement, 𝑥. We assume,  
 

𝑥	~	Ν(𝑥; 	𝜇(𝑠), 𝜎2(𝑠))   (Eq. 18) 
 

where Ν defines a Gaussian distribution, and 𝜇 and 𝜎2 are respectively means and variances that depend on 
the stimuli presented, 𝑠. The ratio of posterior probabilities that a stimulus was presented on the left and right, or 
the decision variable, is  
 

𝑑(𝑥) = log	[ .(5)
&".(5)

	 .G𝑥H𝐿I
.G𝑥H𝑅I]	= log	[ .(5)

&".(5)
	
∑ ?J𝑥K𝜇(𝑠), 𝜎2(𝑠)L451

∑ ?J𝑥K𝜇(𝑠), 𝜎2(𝑠)L461
]    (Eq. 19) 

 
where 𝑃(𝐿) is computed according to the prior-tracking model of choice (above) and we assume that a response 
“Left” is made if d(x) > 0, and “Right” otherwise. Lastly, in the case the animals do not lapse, we can write. 
 

𝑃(𝐶ℎ𝑜𝑖𝑐𝑒	𝐿𝑒𝑓𝑡	|𝑠) = 	∫[𝑑(𝑥) > 0] Νc𝑥; 	𝜇(𝑠), 𝜎2(𝑠)d𝑑𝑥  (Eq. 20). 
 

Or if the observer has an unbiased non-zero lapse rate, we can write, 
 

𝑃(𝐶ℎ𝑜𝑖𝑐𝑒	𝐿𝑒𝑓𝑡	|𝑠, 𝑙𝑎𝑝𝑠𝑒) = M
2
+ (1 − 𝜆) ∫[𝑑(𝑥) > 0] Νc𝑥; 	𝜇(𝑠), 𝜎2(𝑠)d𝑑𝑥  (Eq. 21) 

 
where 𝜆 is the probability that the mouse responds randomly.  
 

Model fitting and comparison. 
 
We fit 10 models (Fig. 2A) to the responses of each subject. The psychometric model is descriptive, not 
attempting to explain internal representation. It has 4 free parameters (as in Eq. 1) and is fit separately to the 
three different blocks (50:50, 80:20, 20:80), thus resulting in a total of 12 parameters. The omniscient and fixed 
models possess the perceptual decision-making model but do not compute the prior, 𝑃(𝐿). Instead, the 
omniscient model has direct access to the true value (0.2, 0.5, or 0.8), and the fixed model uses a single 𝑃(𝐿) 
throughout the duration of the session. Next, the change-point (CP) models (5 in total, see below) employ 
variants of the Bayes optimal online change-point detection model for estimating the prior, and the perceptual 
decision-making model for making a choice. The CP model has a potential of 4 free parameters. The a-priori 
block probabilities 𝜉( experimentally belong to the set 𝑆1 = {0.2, 0.5, 0.8}. In model fitting we set 𝑆1 =
{𝑝𝑙𝑜𝑤, 0.5, 𝑝ℎ𝑖𝑔ℎ}. Similarly, the run lengths are experimentally defined by a time constant 𝜏 = 60 and a minimum 
length 𝑟NO7 = 20 (Eq. 15). In the change-point model the 4 parameters (𝑝𝑙𝑜𝑤, 𝑝ℎ𝑖𝑔ℎ, 𝜏, and 𝑟NO7) are set to the 
experimentally imposed values. In CP free sym, we set 𝜏 and 𝑟NO7 to their experimental values, and 𝑝𝑙𝑜𝑤 and 
𝑝ℎ𝑖𝑔ℎ have to be symmetric (i.e., adding to 1). In CP free we allow 𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ to vary independently. CP 
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free sym run is as CP free sym but also allows 𝜏 and 𝑟NO7 to take on any value. CP free run is as the CP free 
model but allows 𝜏 and 𝑟NO7 to take on any value. Finally, the exponential weighting models (2 in total, see 
below), use the exponential averaging for estimating the prior, and the same perceptual decision making model 
as the rest. In the no bias variant of the model (exp. no bias) the free parameter is 𝛼;>?, dictating the shape of 
the time constant of memory decay. In the biased version of the model (exp. bias) there is additionally the 
parameters 𝛼 and 𝛽 dictating the shape of the Beta distribution acting as pseudo-counts.  
 
We fit the above-described models by minimizing the negative log likelihood of the data using Bayesian Adaptive 
Direct Search (BADS75), and taking the best result of 20 optimization runs with randomized starting points. 
Further, we cross-validate log likelihoods (Fig. 2A) by splitting training and testing data according to odd and 
even sessions. 
 

Neural Analyses 
 

Demixed PCA 
 

We used demixed principal component analysis (dPCA40) to examine interpretable neural manifolds. This 
technique (see Kobak et al., 2016 for detail) requires convolved firing rates (as opposed to spike trains) and a 
given set of experimental conditions (i.e., not a continuous value). Thus, we convolved spike trains (1ms bins) 
with a causal Gaussian kernel (sd = 10ms), epoched each trial from 500ms prior to stimulus onset to 1500ms 
after stimulus onset, and averaged according to choice (left or right) and subjective prior. The latter, being a 
continuous variable, was binned in quintiles (5 levels of equal number of trials). The resulting matrix used in the 
dPCA was N (units) x P (5 quintiles of the prior) x D (2 choices) x T (time). While the analyses is conducted on 
individual CCF-defined regions, in the main text we amalgamate results across ‘macro-areas’ (Table S1) for 
statistical power and deriving a coarse-level summary. We included in the analysis sessions with at least 10 
simultaneous units within a given CCF-defined region39. Including sessions/areas with more than 10 units 
simultaneously recorded results in a better estimate of the underlying latent dynamics but did not statistically 
change the fraction of variance explained by the different subspaces. 
 

Poisson generalized additive model (pGAM) 
 
To estimate tuning functions and their statistical contribution to a unit’s overall response, we fit a Poisson 
generalized additive model (P-GAM42). The P-GAM defines a non-linear mapping between spike counts of a unit 
𝑦( ∈ ℕP and a set of continuous covariates 𝒙Q, as well as discrete events 𝒛R. In this case, the continuous 
covariates included were both the experimentally imposed prior (e.g., 80:20 or 20:80 probability of a stimuli being 
on the left) and the “subjective” prior estimated via behavioral model fitting (exp. bias model). Further, to account 
for idiosyncratic body movements (Musall et al., 2019), we also included the first 10 principal components of 
video recordings. These PCs accounted for 79.16% of the variance in video data. As discrete events, we included 
visual contrasts ([-100%, -25%, -12.5%, -6.25%, 0%, 6.25%, 12.5%, 25%, and 100%]) at stimulus onset, as well 
choice and feedback (at their respective times), both for the current trial as well as for the previous one. The 
previous choice and feedback were modeled as accounting for sustained responses (as opposed to evoked) 
even prior to trial onset. Lastly, above and beyond the experimental variables, we also accounted for elements 
of internal neural dynamics by including the concurrent firing of simultaneously recorded units in the same region, 
𝒚( . Together, a unit’s log-firing rate is modeled as a linear combination of arbitrary non-linear functions (B-splines) 
of the covariates, 
 

log 𝜇 = ∑ 𝑓Qc𝑥Qd + ∑ 𝑓R ∗ 𝑧RRQ +	∑ ℎ(	 ∗ 𝑦(( + 𝐶             (Eq. 22) 
 
where * is the convolution operator, and the spike counts are generated as Poisson random variables with the 
rate specified by (Eq. 22). Input specific non-linearities 𝑓(⋅) were expressed in terms of flexible B-splines, 𝑓(⋅) ≈
𝜷 ⋅ 𝒃(⋅). Similarly, ℎ(	are smooth causal filters (also learned) capturing the directional coupling between units, 
including an auto-regressive component which accounts for refractory periods of units. Covariates and spike 
counts were discretized in 5ms bins. The estimated kernels (𝑓	and ℎ) were associated with a smoothness 
enforcing penalization term controlled by a scale parameter 𝜆S,  
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𝑃𝐸𝑁c𝑓, 𝜆Sd = 	−
&
2
𝜆S𝜷T𝑆S𝜷, 							𝑆S = ∫ 𝑏99 ⋅ 𝑏99T 	d𝑥  (Eq. 23) 

 
The larger 𝜆S, the smoother the model. These penalization terms can be interpreted as Gaussian priors over 
model parameters. The resulting log-likelihood of the model takes the form, 

 
ℒ(𝐲) = log 𝑝(𝒚|𝒙, 𝒛, 𝜷) + ∑ 𝑃𝐸𝑁(𝑓, 𝜆S)S    (Eq. 24) 

 
with 𝒚 ∈ ℝ𝑻 being the spike counts of the unit, 𝒙 ∈ ℝV×T  being the continuous task variables, 𝒛 ∈ ℝX×T being the 
discrete task events, 𝑇 being the time points, 𝜷 being the collection of all B-spline coefficients, and being 𝑝(⋅) 
the Poisson likelihood. Both parameters 𝜷 and the hyperparameters 𝝀 are learned from the data by an iterative 
optimization procedure that switches between maximizing Eq. 24, and minimizing a cross-validation score as a 
function of hyperparameters (see42, for further details). We used 11 nodes (𝜷s) per fitted co-variable (19 
experimental + a variable number of simultaneously recorded units), resulting in the average full encoding model 
having 590.33 parameters. Most importantly, the probabilistic interpretation of the penalization terms allowed us 
to compute a posterior distribution for the model parameters. In turn, this allows us to derive confidence intervals 
with desirable frequentist coverage properties and implement a statistical test for inclusion of a minimal subset 
of task variables explaining most of the variance. In other words, it allows fitting an encoding model and 
performing implicit model selection within our large neurophysiological dataset (see Noel et al., 2022, 2023 for a 
similar approach and additional model validations). The average reduced model had 61.25 parameters (10.3% 
of the full model) with no detriment to its ability to account for spiking activity (all p > 0.36, Fig. S6).  
 
The encoding model fit quality was assessed via pseudo-R2 on subset of held-out test trials (20% of the total 
trials). Pseudo-R2 is a goodness-of-fit measure that is suitable for models with Poisson observation noise76. The 
score is computed as, 
 

pseudo	𝑅# = 1 − ℒ(𝒚)(ℒ(	𝒚*)
ℒ(𝒚)(ℒ(	𝒚+)

  (Eq. 25) 
 
with ℒ(𝒚) being the likelihood of the true spike counts, ℒ(	𝒚�) being the likelihood of the pGAM prediction, and 
ℒ(	𝒚�) being the likelihood of a Poisson null-model (mean rate). Pseudo-R2 is 0 when the pGAM fits are no more 
likely than the null model, 1 when it perfectly matches the data, and can be negative when overfitting occurs (for 
test-set data, 0.5% of the recorded units). Empirically, the pseudo-R2 is a stringent metric and ranges in values 
that are substantially lower than the standard R2 when both are applicable77. Our average score of 0.0745 is two 
to four times better than standard GLM performance47. The R2 of trial-averaged firing rates to variables deemed 
to significantly contribute to spike trains was on average 0.82. For analyses downstream of the pGAM, we include 
units with a minimum pseudo-R2 of 0.01, deem variables as significantly contributing to spike trains at alpha < 
0.001, and include regions in the analysis if at least 40 units per area were properly fit, in each of the genotypes 
(Fig. 5, Fig. 6C-E) or across genotypes (Fig. 6A, B). For Figure 7, we fit separate pGAMs for each biased block 
(80:20 and 20:80) and remove the experimental prior as a co-variate. This allowed us to estimate responses to 
each contrast for each of the experimental priors.  
 
We compute the mutual information between an experimental variable and the observed spiking activity, where  
𝑦( are the spike counts at time 𝑡, and 𝑦(|𝛽, 𝑋( ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋(, 𝛽) where 𝑋( is the stimulus matrix at time 𝑡. We 
know that 𝛽|	𝑋 ~ 𝒩(𝛽�,	Σ). We select one stimulus dimension, 𝑥Q =	𝑋:Q, and discretize it into N values, 𝑥Q ∈
{𝑥Q&…𝑥QY}. We approximate the input distribution using a binomial 𝑝(𝑥QR) = 𝑝R, where 𝑝R is the empirically observed 
frequency of the stimulus. For each time point we computed,    
 

𝐸[𝑦(|𝑋] = 𝐸Z|\[𝐸[𝑦(|𝑋, 𝛽]]   (Eq. 26) 
                                                                 =	𝐸Z|\[exp	(𝑋(𝛽)] 
           = 𝜇( + 𝜎(2/2, 
 
Where 𝜇( = 𝑋(𝛽� and 𝜎(2=𝑋(Σ	𝑋(T. We approximate the conditional entropy 𝐻[𝑦|𝑥QR] as the entropy of a Poisson 
variable with mean equal to &

T
Σ(𝐸[𝑦(|𝑋], where the sum is taken over the T time points in which 𝑥Q( = 𝑥QR .	We 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.08.593232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

also approximate the entropy of spikes 𝐻[𝑦] as the entropy of a Poisson with mean the average firing rate of 
the unit. Mutual information was computed as,        
 

𝐼c𝑥Q , 𝑦d = 𝐻[𝑦] – 𝐻�𝑦(�𝑥Q�  (Eq. 27) 
           = 𝐻[𝑦] – ΣR𝑝R 	𝐻�𝑦(�𝑥QR�. 
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Supplementary Materials 
 
Table S1. Categorization of areas and their acronyms.  
  
 

HIP CA1 Field CA1 
  CA3 Field CA3 
  DG Dentate gyrus 
  POST Postsubiculum 
  ProS Prosubiculum 
  SUB Subiculum 
MB MB Midbrain 
  MRN Midbrain reticular nucleus 
  SC Superior colliculus  
  SNr Substantia nigra reticular part 
  PRT Pretectal region 
FC ACAd Anterior cingulate area dorsal part 
  ACAv Anterior cingulate area ventral part 
  MOs Secondary motor area 
SM MOp Primary motor area 
  RSPd Retrosplenial area dorsal part 
  RSPv Retrosplenial area ventral part 
STR CP Caudoputamen 
  LS Lateral septal complex 
  TRS Triangular nucleus of septum 
  SF Septofimbrial nucleus 
TH LD Lateral dorsal nucleus of thalamus 
  LGd Dorsal part of the lateral geniculate complex 
  LP Lateral posterior nucleus of the thalamus 
  MG Medial geniculate complex 
  PO Posterior complex of the thalamus 
  PVT Paraventricular nucleus of the thalamus 
  TH Thalamus 
  SGN Suprageniculate nucleus 
VIS VISa Anterior visual area 
  VISam Anteromedial visual area 
  VISp Primary visual area 
Other P Pons 
  PRNr Pontine reticular nucleus 
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Figure S1. Example psychometric fits during biased sessions. 
 

 
 
Figure S1. Example psychometric fits during biased sessions. Psychometric fits to the fraction of “rightward” responses 
as a function of contrast (x-axis) and experimental block (colors; dark color indicated a left-biased block). Four example 
animals (columns) are shown for each of the 4 genotypes (rows). Circles are the observed fraction of responses, and curves 
are fits. 
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Figure S2. Lack of surprise during the presentation of statistically unlikely events in mouse models of 
ASD. 
 

 
 
Figure S2. Lack of surprise during the presentation of statistically unlikely events in mouse models of ASD. A. 
Video recordings and schematic showing pupil tracking. B. Grand-average pupil diameter as a function of time since 
stimulus presentation. C. Pupil diameter as a function of experimental block (80:20 in purple, 20:80 in gold), genotype (rows; 
C57BL6, Fmr1, Cntnap2, and Shank3, respectively) and contrasts (columns). In control animals (C57BL6) we 
observe that at -100% (p < 0.05, 1.79s post-stimulus onset), -25% (1.31s post-stimulus onset), and 100% (1.23s 
post-stimulus onset) contrasts, the late latency (i.e., surprise-driven) pupil diameter was modulated by sensory 
history. Importantly, dilation was greater when statistically unlikely events were presented (i.e., high contrast on 
the right visual field under the left prior, or high contrast on the left visual field during the right prior) and did not 
occur when sensory observations were uncertain (low contrast). The prior-dependent pupil dilation indicating 
surprise was not present in any of the mouse models of ASD (second and third row, all p > 0.16), with exception 
for a single contrast (-25%, p < 0.05, 1.46 post-stimulus onset) in the Shank3 animals (bottom row, second 
column). Shaded area is ± 1 s.e.m. 
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Figure S3. Change-point detection model parameters.  
 

 
 

Figure S3. We fit the Bayesian change-point free run model – the most flexible of the change-point models – to the animals 
behavioral responses. This model performs worse than the biased weighted average in general (i.e., when considering all 
animals), and statistically for the Cntnap2 and Shank3 animals. It performs equally to the biased weighted average model 
in C57BL6 and Fmr1 animals. Here, we estimate full posteriors of the c.p. free run model via Variational Bayesian Monte 
Carlo (VBMC78). These, demonstrate that the posteriors were generally well-behaved (i.e., sufficiently narrow not to 
encompass the full parameter-space), yet far from the true experimental values. In particular, it is worth noting that the time 
constant and minimum run lengths estimated by animals were very concentrated near 0. In other words, animals did not 
use a generative model wherein there was a representation of blocks. Instead, the model parameters attempted to exclude 
this notion by making “blocks” as short as possible, effectively rendering this c.p. free run model akin to the heuristic models 
detailed in the main text.  
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Figure S4. Electrode track histology with CCF-atlas alignment overlaid. 
 

 
 
Figure S4. Electrode track histology with CCF-atlas alignment overlaid. Sixty coronal histology slices are shown. The 
dye is shown in red, tracking the electrode tracks. Allen Common Coordinate Framework (CCF) atlas is shown overlayed 
in white. Tracing these tracks rendered the problem of localizing units from 3-dimensional (in the brain), to 1-dimensional 
(along the track). Histology and physiology were then aligned (Falkner, 2020) the track to solve the 1-dimensional problem.  
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Figure S5. Stability of coupling filters across experimental blocks.  
 

 

 
 

Figure S5. Stability of coupling filters across experimental blocks. A. We compute the Pearson correlation coefficient 
(r) between coupling filters across a given pair of units estimated by the pGAM in leftward (80:20) and rightward-biased 
(20:80) experimental blocks (over 640k pairs in total). These showed a strong degree of stability (r ~ .70) and no difference 
across genotypes (One-way ANOVA, p = 0.79). When separating into macro-areas (panel B), we observed more remapping 
of noise correlations in STR than the rest of areas (p < 0.05, panel C), but no systematic effect wherein all mouse models 
of ASD differed from the control.  
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Figure S6. Performance of the encoding model (pGAM).  
 
 

 
 
Figure S6. Performance of the encoding model (pGAM). We fit a coupled model (i.e., with neural responses of one unit 
putatively impacting the firing of another) in order to account not solely for task driven responses, but also for internal neural 
dynamics. Left panel: comparison of pseudo-R2 for the coupled model (y-axis) and an uncoupled model (x-axis). 
Transparent dots are sessions (colored according to genotype), and opaque dots are averaged across sessions. Error bars 
are S.E.M. In all genotypes, the coupled model accounts better for spike trains (all p < 0.003). To assess performance of 
the variable selection procedure, we contrast pseudo-R2 of the models allowing for coupling, in full (x-axis, average of 
590.33 parameters) and when reduced to the variables deemed to significantly accounting for spiking activity (y-axis, 
average of 61.25 parameters, alpha set at 0.001). The full and reduced model accounted for an equal portion of the variance 
(all p > 0.36), while the latter had a tenth the number of parameters/retained variables. 
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Figure S7. Responses to contra- and ipsi-lateral high contrast gratings predicted by the pGAM 
 

 

 
 
 
Figure S7. Responses to contra- and ipsi-lateral high contrast gratings predicted by the pGAM. A. Evoked firing rates 
to high contrast gratings in contra- (left, black) and ipsi- (right, red) lateral visual field as a function of brain region. As 
previously demonstrated (Steinmetz et al., 2019) primary visual cortex (VISp) is particularly tuned to contra-lateral stimuli, 
while the rest of regions respond fairly equally across hemi-fields. B. Difference in the mutual information between neural 
responses evoked by contra- and ipsi-lateral grating presentation.  
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Figure S8. Peri-Stimulus Time Histograms (PSTH) across frontal cortices as a function of sensory 
history. 
 
 

 
 
Figure S8. Peri-Stimulus Time Histograms (PSTH) across frontal cortices as a function of sensory history. In control 
animals (C57BL7, top row) neural responses were stronger to unexpected stimuli – for instance, a grating on the left 
hemifield (negative contrasts) under a rightward-biased block (gold color). This effect, consistent with predictive coding, was 
absent in Fmr1 (second row, green), Cntnap2 (third row, yellow), and Shank3 (brown) animals.  
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