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Abstract

Since its conception in the middle of the twentieth century Markov chain Monte Carlo (MCMC) has grown into

a suite of methods that serve as the de facto algorithmic solutions to a particular set of scientific problems.

In this time a selection of variants of MCMC have effectively become canonical through their popularity and

use within software packages. These include the Random Walk Metropolis (RWM), the Metropolis Adjusted

Langevin Algorithm (MALA), and Hamiltonian Monte Carlo (HMC). It has become increasingly clear that

there are certain properties of probability distributions, such as high dimensionality, multimodality, and ill-

conditioning, in the face of which these canonical algorithms will perform poorly. In this thesis we explore

three methods: preconditioning, adaptivity, and variational approximation, that can enhance the performance

of the canonical kernels in order to overcome these obstacles.

Chapter 1 serves as a theoretical and conceptual introduction to these canonical kernels. Chapter 2

introduces the three methods which can be used to enhance the kernels described in chapter 1.

In chapter 3 we examine linear preconditioning. This is the practice of applying a linear transformation to

the target distribution to make it easier to sample from. Its success is measured by a quantity known as the

condition number, denoted κ. We assert verifiable conditions under which linear preconditioning will change

κ and make a given MCMC sampler more efficient. We identify a case in which a commonly used linear

preconditioner will cause sampler performance to worsen.

In chapter 4 we propose a novel way to combine a variational approximation to the target distribution

with an arbitrary underlying MCMC kernel in order to reduce the variance of the estimators we derive from

the MCMC chain. We call our method ‘the occlusion process’. We state the analytic form of the variance

of the estimators it produces. We prove that it inherits numerous beneficial properties from the underlying

MCMC kernel, such as a Law of Large Numbers, Geometric Ergodicity, and a Central Limit Theorem. We

demonstrate empirically the occlusion process’ decorrelation and variance reduction capabilities on two

target distributions. The first is a bimodal Gaussian mixture model in 1d and 100d. The second is the Ising

model on an arbitrary graph, for which we propose a novel variational distribution.



In chapter 5 we propose a linear preconditioner that is learned and used in an adaptive MCMC algo-

rithm. The preconditioner is conceived so that it can capture correlations between the directions of the

target distribution. It is structured so that the resulting adaptive MCMC algorithm operates at a per-iteration

computational complexity which is linear in the dimension of the state space. We show that our proposed

adaptive algorithm dominates the competing methods in terms of its efficiency per unit time when operating

on high-dimensional ill-conditioned target distributions.
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preconditioning. Each algorithm is started in equilibrium and targets N (0,Σπ) with Σπ as in 3.5.

• Figure 3.6.2: Boxplots of the medians of the ESSs across configurations of (n, d) with different pre-

conditioners on the Bayesian linear regression with a Hyperbolic prior. The leftmost boxplot in each

grouping corresponds to preconditioning with L = σ(XTX)1/2 (‘A’ in the legend), the middle boxplot

has L = Σ
−1/2
π (‘covariance’ in the legend), the rightmost has L = Id (‘none’ in the legend).

• Figure 3.4: Boxplots of the logarithms of the medians of the ESSs across combinations of (d, µ).

The ESSs are taken from RWM runs on a binomial regression target with the generalised g-prior.

‘covariance’ and ‘covarianceII’ correspond to runs preconditioned with L = Σ
−1/2
π where Σπ is esti-

mated over 104 and 105 runs respectively. ‘Fisher’ and ‘FisherII’ correspond to runs preconditioned

with L = Eπ[∇2U(β)]1/2 where Eπ[∇2U(β)] is estimated over 104 and 105 runs respectively. ‘mode’

refers to runs preconditioned with L = ∇2U(β∗)1/2 where β∗ is an estimate of the mode found us-

ing preconditioned gradient descent. ‘sq_root_Sigma_X’ corresponds to runs preconditioned with

L = (n−1XTX)1/2.

• Figure 4.1: Three versions of the state space X; the leftmost with the Markov chain {Xt} and the

middle with the samples {Yt} taken from the target restricted to the regions that the Markov chain

visits. We assume that we were only able to successfully sample Y2 and Y4, therefore the rightmost

picture shows the samples we will use for the occlusion estimator: X2 and X4 have been occluded by

Y2 and Y4.

• Figure 4.2: The top line is the estimator constructed using states of the Markov chain {Xt}. The

middle picture is a DAG representing the occlusion process: {Xt} is the Markov chain, ρ(Xt) denotes

the regions visited by the Markov chain, {Yt} are the samples from the target restricted to those

regions, and {St} indicate which of those samples we were able to successfully produce. The bottom

line is the occlusion estimator made up of the samples from the Markov chain, and the successfully

produced Yt’s.

• Figure 4.3: A DAG representing the process in which every state Xt in the Markov chain is replaced
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by a sample from πρ(Xt) in the estimator.

• Figure 4.4: The target density (P in the legend), the variational density (Q in the legend), and the

Radon-Nikodym derivative (dP/dQ in the legend) for the bimodal Gaussian example in d = 1.

• Figure 4.5: Results from the d = 1 case of sampling from (4.10) (left) and the d = 100 case (right).

The top row shows the first component of the RWM chains, the next row shows the first component of

{1{St = 0}Xt +1{St = 1}Yt}nt=1, the next row shows autocorrelation function plots of the first compo-

nent of the RWM chains, the bottom row shows autocorrelation function plots of the first component of

{1{St = 0}Xt + 1{St = 1}Yt}nt=1.

• Algorithm 4.2: Metropolis algorithm applied to the Ising model.

• Algorithm 4.3: Wolff algorithm applied to the Ising model.

• Figure 4.6: Left: (V,E), right: (Ṽ , Ẽ). The colours correspond to the Vi’s in the original (V,E) that get

collapsed to nodes in (Ṽ , Ẽ). Where there exist any edges between two Vi’s in (V,E), there is an edge

between the corresponding nodes in (Ṽ , Ẽ).

• Figure 4.7: Three graphs comparing the performance of the occlusion process with the Metropolis

and Wolff algorithms on the Ising model at a variety of temperatures, for a variety of graph sizes. In

every case the horizontal axes show the number of vertices N in the graphs. Bottom: the vertical axes

denote the algorithm’s estimates of the expected magnetisation. Top left: the vertical axes denote

the lag 1 autocorrelation coefficient of the magnetisation over the states produced by the algorithms.

Top right: the vertical axes show the number of samples from the πi’s in Algorithm 4.1 divided by the

number of states in the Markov chain n. We magnify the estimated magnetisation plot for ease of

comprehension, the top two plots then help to explain the phenomena in the bottom plot.

• Algorithm 2.1: Generic adaptive MCMC algorithm.

• Algorithm 5.1: Complete learning step for the proposed adaptive algorithm.

• Algorithm 5.2: Generic multiple chain adaptive algorithm.
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• Figure 5.3: sin2 distance between the preconditioners’ leading eigenvector and the leading eigenvector

of the target covariance over a single MCMC chain in d = 150 with an ill-conditioned Gaussian target.

• Figure 5.4: The median ESSs across the dimensions of each individual chain of the ‘eigen_identity’

and ‘eigen’ adaptive algorithms. The results are shown from variousm’s and dimensions on aN
(
(5, . . . , 5)

T
,Σπ

)
where Σπ is ill conditioned and dense.

• Figure 5.5: Two plots showing the raw and time-normalised log-transformed median ESSs across the

dimensions of the chains. The results are shown in various dimensions on a N
(
(5, . . . , 5)

T
,Σπ

)
where Σπ is ill conditioned and dense.

• Figure 5.6: Two plots showing the raw and time-normalised log-transformed median ESSs across

the dimensions of the chains. The results are shown in various dimensions on a Bayesian logistic

regression posterior with a g prior, whose potential is as defined in 5.3.

• Figure 7.1: Three graphs comparing the performance of the occlusion process with the Metropolis

and Wolff algorithms on the Ising model at a variety of temperatures, for a variety of graph sizes,

each generated using the stochastic block model with 2 communities. In every case the horizontal

axes show the number of vertices N in the graphs. Bottom: the vertical axes denote the algorithm’s

estimates of the expected magnetisation. Top left: the vertical axes denote the lag 1 autocorrelation

coefficient of the magnetisation over the states produced by the algorithms. Top right: the vertical

axes show the number of samples from the πi’s in Algorithm 4.1 divided by the number of states in the

Markov chain n. We magnify the estimated magnetisation plot for ease of comprehension, the top two

plots then help to explain the phenomena in the bottom plot.

• Figure 7.2: Three graphs comparing the performance of the occlusion process with the Metropolis

and Wolff algorithms on the Ising model at a variety of temperatures, for a variety of graph sizes,

each generated using the stochastic block model with 10 communities. In every case the horizontal

axes show the number of vertices N in the graphs. Bottom: the vertical axes denote the algorithm’s

estimates of the expected magnetisation. Top left: the vertical axes denote the lag 1 autocorrelation

coefficient of the magnetisation over the states produced by the algorithms. Top right: the vertical
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axes show the number of samples from the πi’s in Algorithm 4.1 divided by the number of states in the

Markov chain n. We magnify the estimated magnetisation plot for ease of comprehension, the top two

plots then help to explain the phenomena in the bottom plot.

• Figure 5.1: The action of H = Id − 2nnT on v. Let n ∈ Rd be a unit normal to a plane about which we

would like to reflect v ∈ Rd. Adding −nnT v to v projects it onto the plane and adding another −nnT v

sends it to its reflection.

• Figure 5.2: A visual explanation of why Qkei = vi for all i < k. By construction we have that Qkei =

H (Qk−1ek ↔ vk)Qk−1ei and so by the properties of Householder matrices if Qk−1ei is perpendicular

to both Qk−1ek and vk we have that Qkei = Qk−1ei which is just vi by inductive hypothesis. Clearly

Qk−1ei is perpendicular to Qk−1ek since the two vectors are just canonical basis vectors transformed

by a Householder matrix, which is orthogonal. This transformation is shown by the reflection of the

blue vectors to the green vectors through the dotted line in the figure. That Qk−1ei is perpendicular to

vk is evident because Qk−1ei = vi by inductive hypothesis, and the fact that vi is perpendicular to vk.

Impact Statement

The algorithms discussed, analysed, and developed in this work are in current use both in profit-seeking

ventures and in pure scientific research. Their primary role is in inference, the results of which are used to

inform decision. Therefore the analysis presented here will affect these decisions by informing practitioners

as to the efficiency and therefore the veracity of their inference procedures. The original algorithms which

we develop offer alternative inference procedures which may be preferable under the settings we describe

due to the increase in performance which they offer. More broadly we offer a tranche of knowledge that may

be developed subsequently within academic computational statistics.
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Chapter 1

Introduction

1.1 Probability measures in science

The use of probability measures is commonplace in the practice of modern-day science. This is because

non-determinism is an inevitable feature of our interactions with the natural world. Reality may itself be

non-deterministic and even if it weren’t our measurement devices are noisy and so introduce randomness

into the detection of natural phenomena. Randomness can result as a feature of the fact that our physical

theories are coarse-grainings of complicated underlying processes. Scientists also use probability measures

to represent their credences in theories, and in specific parameter values within these theories. Given

a coherent representation of credences in theories and parameter values, policy makers can then make

informed actions in the world. In any case, it is imperative that we build the appropriate tools to help

scientists learn about probability measures.

1.1.1 What to learn about probability measures

If we are to build tools to learn about probability measures, we must first ask what scientists want to know

about the measures. As it happens, many questions about probability measures often have answers which

naturally take the form of expectations with respect to those measures. For instance ‘What is our credence in
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theory T given data X?’ has the answer P (T |X ) = E [1 {‘T is the correct theory of the natural world’} |X ].

‘What is the probability of event A given theory T?’ has the answer P (A |T ) = E [1 {A} |T ]. ‘What is

the loss L (θ) due to parameter θ given data X and induced credences over theories T |X ?’ has the

answer ET [Eθ [L (θ) |T ] |X ]1. Our tools should then equip us to estimate expectations. In what follows

the probability measure which the expectations are taken with respect to will be referred to as the ‘target’

or ‘target distribution’. We will often abuse notation and refer to both a probability measure and its density

with respect to the Lebesgue measure by the same name. The notation in this chapter can be found to be

defined in section 7.1.1.

1.2 Classical sampling methods

1.2.1 Estimation guarantees from theory

One piece of theory that guarantees we can learn about expectations is a Strong Law of Large Numbers

(LLN). Specifically given a probability space (X,X , π), a collection of independent, identically distributed

random variables {Xt}nt=1 ∼ π⊗n indexed by n ∈ N\ {0}, and a function f ∈ L1 (π), we have that

f̂n :=
1

n

n∑
t=1

f (Xt)→ π (f) (1.1)

almost surely, as n → ∞ [Billingsley 1995, Theorem 6.1]. It is readily checked that f̂n is an unbiased

estimate of π (f) for all n ∈ N\ {0}. Therefore the ability to generate independent samples from π allows

one to estimate expectations with respect to it and the errors in our estimates are guaranteed to diminish.

A natural question to ask is then ‘how many samples should we generate, to achieve a given error in our

estimates?’. When f ∈ L2 (π) we can use the Central Limit Theorem (CLT) to help us answer. The CLT

states that
√
n
(
f̂n − π (f)

)
→ N

(
0, σ2

)
1In the sense that the answer is argminℓ Eθ,T

[
(L (θ)− ℓ)2 |X

]
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in distribution, as n→∞, where σ2 := Varπ (f) [Billingsley 1995, Theorem 27.1], and so the deviation in f̂n

about π (f) decays asymptotically at a rate of 1/
√
n. In fact, routine calculations give a variance of n−1σ2

for estimates f̂n for all n ∈ N\ {0}. What is crucial in the satisfaction of the conditions on which these results

hold is our ability to take independent samples from π.

The variance of f̂n decomposes into two terms: one depending solely on the number of samples, and

the other depending on f and π. Therefore we have two lines of attack to attempt to reduce the variance:

we can take more samples from π, or we can adjust f and π (taking into account any biasedness this might

cause). Therefore in Section 1.2.2.2 we will describe a method that will allow us to take samples from

π, and in Section 1.2.2.3 we describe a method to decrease σ2 by changing f and π that also preserves

unbiasedness. We do not pretend to be exhaustive in our presentation of these methods. What we offer we

merely do so to give the reader a notion of the considerations one must take when constructing unbiased

estimators using independent samples, and to define techniques that we use in the later chapters.

1.2.2 Monte Carlo methods: sampling and variance reduction

1.2.2.1 Simple Monte Carlo

The act of generating independent samples from π and forming the estimator f̂n 1.1 is called simple Monte

Carlo. Simple Monte Carlo is a popular method given the facility to produce independent samples from π.

For one thing, small perturbations in f can produce large changes in the analytic form of π (f), whereas

the simple Monte Carlo method and output remain roughly the same. For another, f̂n can be calculated in

an online fashion from f̂n−1 and Xn, hence the method is memory efficient and its estimates can be easily

transferred from one source of randomness to another.

A property of simple Monte Carlo which is highly desirable is the independence of the rate at which

Var
(
f̂n

)
decreases with n on the particular details of X or π. In particular it is independent of the dimension

of X. For sufficiently smooth functions f and in low enough dimensions, certain quadrature rules achieve

much better error rates, see [Art B. Owen 2023]. However these gains deteriorate rapidly with dimension,

and cannot hold for non-smooth functions.

Given these desirable properties, a method to generate independent samples from an arbitrary measure
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Algorithm 1.1 The rejection method. Inputs: sampleable proposal distribution ν, constant C. Outputs:
X ∼ π

while true

Sample X ∼ ν and U |X ∼ Uniform [0, Cν (X)].
if U ≤ π (X)

return X

π can be seen to be very valuable. We describe such a method below.

1.2.2.2 The rejection method

The rejection method works by converting one source of randomness into another. It monitors the stream of

random variables from the first source of randomness until a particular condition is satisfied. This condition

guarantees a sample from π. The first source of randomness is characterised by an easily sampleable

probability measure ν such that π ≪ ν. We call ν the proposal distribution. Then, given access to a constant

0 < C < ∞ such that ∥dπ/dν∥∞ ≤ C where dπ/dν is the Radon-Nikodym derivative between π and ν, the

method works as in algorithm 1.1. Often the algorithm is stated with U ∼ Uniform [0, 1] and the success

condition being CU ≤ dπ/dν, which can be seen to be equivalent to 1.1. We state it as above for the

purposes of exposition. If the densities of π and ν are only known in their unnormalised forms π̃ and ν̃, then

the densities in algorithm 1.1 can be replaced by their unnormalised counterparts. That π ≪ ν is necessary

for the proper working of the method is clear from the algorithm since, otherwise, there may be some regions

of supp (π) that cannot be accessed by the proposal distribution ν.

That the algorithm produces a sample from π relies on two crucial facts: for the first we must define the

restriction of a random variable to a measurable subset:

Definition 1. Say µ is a probability measure on the space (X,X ), and that X ∼ µ. For all A ∈ X such

that µ (A) > 0, we define the restriction of X to A as the random variable X |A defined by the probability

measure µ |A where µ |A (B) := µ (A ∩B) /µ (A).

The first fact is then:

Lemma 2. Let A,B ∈ X with B ⊆ A. If U ∼ Uniform {A} then U |B ∼ Uniform {B}.
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which follows from the definition of the restriction. The second fact is as follows:

Lemma 3. Let π be a probability measure on X and 0 < C < ∞. If (X1, U1) is sampled using X1 ∼ π

with U1 |X1 ∼ Uniform [0, Cπ (X1)] and (X2, U2) is sampled from Uniform {(x, u) : 0 ≤ u ≤ Cπ (x)} then

(X1, U1)
d
= (X2, U2).

Lemma 2 is relatively easy to grasp and is the basis for many elementary demonstrations of the Monte

Carlo method for estimating, say, the ratio of two volumes. Lemma 3 is more involved. One of the essential

pieces of information it conveys is that if (X,U) is sampled uniformly from the area underneath a (scaled)

density then X will be distributed according to that density. For a proof of lemma 3 see section 7.2.1.1. The

lemmas combine to guarantee the exactness of algorithm 1.1.

Proposition 4. Algorithm 1.1 outputs a sample from π.

Lemma 3 has that (X,U) is sampled from Uniform {(x, u) : 0 ≤ u ≤ Cν (x)}. The ‘If’ statement restricts

this uniform sample to the area under the density of π. Then Lemma 2 and 3 combine to yield the fact that

X ∼ π. Clearly whether the densities of ν or π in algorithm 1.1 are normalised is immaterial to the exactness

of the algorithm by the arbitrariness of the constant C in Lemma 3.

What the normalisation of the measures does affect however is the expected time to a sample from π.

The termination of algorithm 1.1 is conditional on a random event, which is independent between iterations.

Therefore the time to termination is geometrically distributed.

Proposition 5. The expected time to termination of the rejection method with constant C ≥ ∥dπ̃/dν̃∥∞ is C,

where π̃ and ν̃ are the unnormalised forms of the measures π and ν.

Therefore the user should attempt to find the closest upper bound to ∥dπ̃/dν̃∥∞ to use in the algorithm,

to minimise the expected time-complexity. Finding a proposal distribution ν such that π ≪ ν and for whom

∥dπ̃/dν̃∥∞ is finite and bounded away from 0 is not so easy if, say, the tail information of π is not known.

Even if we had such a ν that we could sample from, the constant C may be difficult to estimate, or it may

be so large as to render the probability of termination by some fixed time negligible. In general the rejection

method is ‘all-or-nothing’ in the sense that its success in a given iteration does not depend on any information

from the prior iterations.
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Extensions Adaptive rejection methods [Gilks and Wild 1992] have been conceived to iteratively improve ν

and thus C. In another case the squeeze method [Marsaglia 1977] reduces the per iteration time-complexity

by reducing the probability of an evaluation of the density of π. In any case, we now have a method to

generate exact samples from π, and thus we can decrease the variance of f̂n by adjusting the n-dependent

part.

1.2.2.3 Stratified sampling

We now describe a method that decreases the variance of f̂n by adjusting π and f in such a way that

does not introduce bias. Stratified sampling [Cochran 1977, Chapters 5 - 5A] is a technique from classical

statistics whereby we ‘stratify’ the state space into a partition {Xi : i ∈ [R]}. It assumes we can sample from

πi := π |Xi
for all i ∈ [R], and that we know the mass of each part under π. We choose the number of

samples ni to sample from πi for each part. Then, given
{
{Yij}ni

j=1

}R

i=1
with Yij ∼ πi for all j ∈ [ni] and

i ∈ [R], we form the estimator

f̂strat :=

R∑
i=1

π (Xi)

ni

ni∑
j=1

f (Yij)

It can be readily checked that f̂strat is unbiased. It has variance

Var
(
f̂strat

)
=

R∑
i=1

π (Xi)
2

ni
Varπi (f) (1.2)

The strategy from here on in is to choose the ni’s in order to achieve a reduced variance from that of the

simple Monte Carlo estimator 1.1. Before we describe the first strategy we introduce a mathematical object

that naturally occurs in the presence of a partition of the state space.

The resolution The resolution is an adjustment to f that makes it piecewise constant on the parts, but

retains its expectation under π. Specifically the resolution is defined as

−→π f (x) :=
R∑
i=1

1 {x ∈ Xi}πi (f)
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Its variance under π is

Varπ (−→π f) =
R∑
i=1

π (Xi) (πi (f)− π (f))2

which can be seen as a measure of the variation of f between the parts in the partition. We also define the

orthogonal counterpart to the resolution: ←−π f := f −−→π f . It has variance

Varπ (←−π f) =
R∑
i=1

π (Xi)Varπi
(f)

which can be seen as a measure of the variation of f within the parts in the partition. It has expectation

0 under π. We call it the orthogonal counterpart because Covπ (−→π f,←−π f) = 0. These functions are useful

because they appear naturally in the presence of a partition of the state space. For our present purposes,

they are useful because they define a decomposition of the variance of f̂n:

Varπ
(
f̂n

)
=

1

n
(Varπ (−→π f) + Varπ (←−π f)) (1.3)

due to the fact that Varπ (f) = Varπ (−→π f) + Varπ (←−π f). With this mathematical machinery to hand we can

describe and examine the first allocation strategy.

Proportional allocation Proportional allocation takes the number of samples from πi in proportion to the

π-mass of the associated part. Specifically, fixing nstrat ∈ N\ {0} it takes ni := π (Xi)nstrat where we ignore

effects due to rounding. The variance of the resulting estimator is n−1
stratVarπ (−→π f). From 1.3 we see that

Var
(
f̂strat

)
≤ Var

(
f̂n

)
if nstrat ≥ n. In fact we are able to state a quantitive relationship between the two

variances: Var
(
f̂strat

)
= (n/nstrat)

(
1− Corrπ (f,−→π f)2

)
Var

(
f̂n

)
, for proof see section 7.2.1.2. Proportional

allocation is not always the best strategy since if f were constant on one of the parts, we would only need to

sample once from that part to achieve unbiasedness. Any more samples would not reduce the variance of

f̂strat. This fact was recognised in [Neyman 1992] leading to the proposal of an optimal allocation strategy.

Optimal allocation In proportional allocation, the sample numbers only incorporated information about

the target weights π (Xi). However, there exist allocation strategies that take into account information from
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f that achieve a reduced variance as a result.

Proposition 6. The allocation strategy

ni =
nπ (Xi)

√
Varπi

(f)∑R
i=1 π (Xi)

√
Varπi (f)

minimises Var
(
f̂strat

)
subject to n1+ · · ·+nR = n and ni ≥ 0 for all i ∈ [R] (ignoring effects due to rounding).

For a proof see section 7.2.1.3. Since the strategy in Proposition 6 minimises the variance, it must

produce an estimator with lower variance compared with proportional allocation. For a treatment that incor-

porates the cost of sampling per part see [Owen 2013, Section 8.4].

In general we will not know Varπi
(f). There is also the problem of how to choose the strata: clearly

from 1.2 if f is constant across each part, we achieve an estimator with zero variance. Stratified sampling

assumes the ability to sample from πi for all i ∈ [R]. This is a difficult task even if one knew how to sample

from π. As a result of this we develop a method in chapter 4 that extends stratified sampling to the case that

one cannot sample from π or πi for all i ∈ [R]. Nor does it rely on the knowledge of the part weights π (Xi).

1.3 Iterative sampling methods

In many cases simple Monte Carlo is impossible to carry out, whether by rejection sampling or some other

technique. This is due to a lack of knowledge about π leading to an inability to sample directly. Distribu-

tions over high dimensional state spaces often have highly non-trivial geometry, making it difficult to specify

them with a low-dimensional parametrisation. Therefore these distributions are difficult to acquire holistic

knowledge about in a way that makes them sampleable. When encountering such challenges, it is common

to employ methods that do not directly and independently sample from π. Instead, these approaches con-

struct a sequence of approximating measures that converge to π and can be implemented algorithmically to

generate samples {Xt}nt=1 from these measures.

Using information from previous samples to inform new approximating measures allows us to iteratively

improve these approximations. However we incur dependencies between the samples so that {Xt}nt=1 is
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no longer sampled from π⊗n. A common form of dependence is Markoviannity. An idea to motivate this

structure is that using such a loose dependence will cause samples to look effectively independent so long

as they are sufficiently far away from each other on the Markov chain. However the number of Markovian

samples we will need to collect will then be at most a multiple of the number of independent samples we

would have collected in the simple Monte Carlo case. This type of dependency also has the benefit of

having a large body of theory to analyse stochastic processes that satisfy it. Markovian processes that

are constructed to sample approximately from measures π with the objective of estimating expectations are

called Markov chain Monte Carlo (MCMC) methods.

1.3.1 Estimation guarantees from theory

Let {Xt}∞t=1 be a Markov chain on X with initial state X0 ∼ π0 and kernel K : X × X → [0, 1] such that the

nth state in the chain has distribution π0K
n for all n ∈ N. We would like to ensure that averages over the

chain converge to expectations under π. In the same way as if the samples were independent and all from

π we achieve this via Laws of Large Numbers and Central Limit Theorems analogous to those introduced

in section 1.2.1 except here the averages are over Markov chains. However we must take the intermediary

step to guarantee that π0Kn tends to π in some formal sense. The way this convergence is commonly

defined is in total variation, for which we must define the total variation distance between two probability

measures:

Definition 7. For two probability measures π1 and π2 on X their total variation distance is defined as

∥π1 − π2∥TV := sup
A∈X
|π1 (A)− π2 (A)|

As suggested by its notational form, the total variation distance is really a norm on the signed measure

π1 − π2, which we can think of as the pointwise discrepancy between π1 and π2. Maximising over this

discrepancy gives us the worst possible discrepancy, which is what the total variation distance is.
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1.3.1.1 Ergodicity

We can now define the type of convergence of a Markov chain that is necessary for our aims:

Definition 8. Let π be a probability measure on X and let K : X × X → [0, 1] be the Markov kernel which

generates the chain {Xt}∞t=1 that has X0 ∼ π0 as its initial state. The chain is π-ergodic when

∥π0Kn − π∥TV → 0

as n→∞ for all initial distributions π0.

We often simply say that the chain is ergodic when it is obvious what the measure π is.

1.3.1.2 Convergence guarantees

We now define conditions under which the chain is π-ergodic and explain their salience one-by-one.

Theorem 9. [Meyn and R. Tweedie 1993, Theorem 13.3.3] Let {Xt}∞t=1 be the Markov chain initialised at

X0 ∼ π0 generated by the kernel K. Assume that the chain

1. is φ-irreducible, for some σ-finite measure φ,

2. has an invariant probability measure,

3. is Harris recurrent,

4. and is aperiodic.

Then there exists a unique invariant probability measure π such that the chain is π-ergodic.

The conditions can be altered and replaced in various ways, some of which cause the theorem statement

to change. We present those in the theorem here because, having explained them, the reader should be left

with a sense as to why they cause ergodicity. Furthermore, the chains introduced in the following chapters

are assumed to be ergodic unless otherwise stated.
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φ-irredubility

Definition. Let φ be a σ-finite measure on X . The Markov chain is φ-irreducible if for all A ∈ X such that

φ (A) > 0 and for all x ∈ X there exists an n ∈ N\ {0} possibly depending on x and A such that

δxK
n (A) > 0

This property is informative because it determines where the chain can go: namely the support of φ.

Clearly the restriction of φ to any non-null subset of its support also defines an irreducibility measure. What

is important, however, is an extension of φ which is maximal in some sense, since such a measure will have

the full descriptive power as to where the Markov chain can go:

Proposition 10. [Meyn and R. Tweedie 1993, Proposition 4.2.2] If the Markov chain is φ-irreducible then

there exists a probability measure ψ on X such that

1. the Markov chain is ψ-irreducible and

2. for any other measure φ′ the chain is φ′-irreducible if and only if ψ ≫ φ′.

In particular 2. implies that ψ ≫ φ. Therefore ψ is somehow maximally descriptive as to where the

Markov chain can go. Another crucial guarantee that φ-irreducibility ensures is the existence of so-called

‘small sets’ contained within every set A such that ψ (A) > 0 where ψ is the maximal irreducibility measure

[Meyn and R. Tweedie 1993, Theorem 5.2.2]. We won’t go into the technical details here, but essentially

one can construct a Markov chain that is identical to the original chain in some distributional sense that has

the chance to produce an independent sample whenever it enters one of these ‘small’ sets. See [Athreya

and Ney 1978; E. Nummelin 1978] for the original expositions of this technique. Therefore if we ensure

that these sets are visited infinitely often, the estimator produced by averaging over the Markov chain will

share some distributional properties (namely independence) with estimators produced by averaging over

independent samples, for which there exist asymptotic results such as LLNs and CLTs.

Invariant probability measure
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Definition 11. Let π be a probability measure on X . It is an invariant measure of the Markov chain if

πK = π.

It can be checked that if π is an invariant measure of the Markov chain then πKn = π for all n ∈ N.

Therefore if we track the distribution of the state of a Markov chain, if it becomes π it will remain π and thus

the chain will be stationary from that point onwards. This alone does not ensure the π-ergodicity of the chain.

Where the existence of an invariant measure becomes salient is if it is unique in the following sense: say for

each initial distribution π0 we have that the Markov chain converges setwise such that π0Kn (A) → νπ0 (A)

for all A ∈ X . Then

νπ0
(A) = lim

n→∞

∫
π0 (dx)K

n (x→ A)

= lim
n→∞

∫ ∫
π0 (dx)K

n−1 (x→ dw)K (w → A)

=

∫
νπ0 (dw)K (w → A)

where the third line comes from the fact that the setwise convergence of π0Kn implies convergence of

integrals of bounded measurable functions. Since K is a Markov kernel it is measurable in its first argument

and bounded. Therefore if νπ0
is converged to setwise, it is an invariant distribution, and if there is only one

invariant distribution it is independent of π0, which is what we want since we want the Markov chain to be

π-ergodic for an arbitrary π.

One property that ensures the existence of an invariant measure is reversibility.

Definition 12. A Markov chain generated by kernel K is π-reversible when for all A,B ∈ X we have∫
A

∫
B
π (dx)K (x→ dy) =

∫
B

∫
A
π (dx)K (x→ dy).

Proposition 13. A Markov chain which is π-reversible has π as an invariant measure.
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Proof. Let A be an arbitrary set in X . Then

πK (A) =

∫
X

∫
A

π (dx)K (x→ dy)

=

∫
A

∫
X

π (dx)K (x→ dy)

=

∫
A

π (dx) = π (A)

where the second line comes from π-reversibility.

If π and K (x→ .) have densities with respect to the Lebesgue measure one can verify π-reversibility

by checking that π (x)K (x→ y) = π (y)K (y → x) for all x, y ∈ X where we abuse notation to let π and

K (x→ .) be densities. Reversibility can therefore be checked locally. This may make it easier to establish

than π-invariance since for the latter we need to verify the equation π = πK which involves an integral even

when π and K have densities with respect to the Lebesgue measure.

Harris recurrence First we define recurrence:

Definition 14. A φ-irreducible chain is recurrent if for all x ∈ X

E [Time spent in A when the chain starts from x] =∞

for all sets A such that ψ (A) > 0 where ψ is the maximal measure introduced in Proposition 10.

and then the stronger notion of Harris recurrence:

Definition 15. A φ-irreducible chain is Harris recurrent if for all x ∈ X

P (The Markov chain enters A infinitely many times after starting from x) = 1

for all sets A such that ψ (A) > 0 where ψ is the maximal measure introduced in Proposition 10.

where we note that Harris recurrence implies recurrence. We introduce these notions simultaneously

because morally what the chain needs to be ergodic is recurrence, but Harris recurrence helps prevent
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edge cases such as non-zero probabilities of escaping to infinity being included. As [Chan and Geyer 1994]

note, [Esa Nummelin 1984] uses Harris recurrence to prove that the time for the Markov chain to enter one

of the ‘small’ sets we mention in 1.3.1.2 is almost surely finite for any choice of initial distribution.

Recurrence is essential because it guarantees that the Markov chain will visit the ‘small’ sets described

in the above section on φ-irreducibility infinitely often. It also guarantees the existence of a unique invariant

measure:

Theorem 16. [Meyn and R. Tweedie 1993, Theorem 10.0.1] If a φ-irreducible chain is recurrent then it

admits a unique (up to multiplication by a constant) invariant measure.

Aperiodicity First we must define what it means for the chain to be periodic:

Definition 17. A chain is periodic with period k ∈ N\ {0, 1} if there exist disjoint subsets D1, . . . , Dk ∈ X

such that δxK
(
D(i+1) mod k

)
= 1 where x ∈ Di for all i ∈ [n].

A chain is aperiodic if it is not periodic. One simple reason for the chain to be aperiodic is because if

it were periodic one can easily construct examples in which it never converges. For instance let the chain

generated by K be periodic with period k ∈ N\ {0, 1} and let π be any probability measure, let x ∈ Di for

some i ∈ {0, . . . , k − 1} and B ∈ X be such that B ∩Di = ∅ and π (B) > 0. Then whenever n mod k = i

∥δxKn − π∥TV = sup
A∈X
|δxKn (A)− π (A)|

≥ |δxKn (B)− π (B)| = |π (B)|

since the state distributed according to δxKn must be in Di. Therefore the chain cannot be ergodic. Aperi-

odicity can also ensure the existence of ‘small’ sets, see [Meyn and R. Tweedie 1993, Proposition 5.4.5].

1.3.1.3 Implications of ergodicity

Ergodicity assures us that the samples from the chain will eventually look like samples from π. We would like

to convert this property to one that will allow us to guarantee good estimation properties of the estimators
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that we form using the chain. Whilst ergodicity doesn’t explicitly give a rate of convergence, we can use the

following useful property:

Proposition 18. [Meyn and R. Tweedie 1993, Proposition 13.3.2] If π is an invariant measure for K then

∥π0Kn − π∥TV

is non-increasing in n for all initial measures π0.

So if we want better quality samples from π, all we need to do is wait. Our ultimate goal is to estimate

expectations of functions f with respect to π. Ergodicity implies that to do this we can simply initialise many

Markov chains, run them for long enough and average f over their final states. However, suppose we only

want to use a single Markov chain and average our function over its output. A Markov chain (LLN) allows us

to do this. The conditions for such a result are often similar to those necessary for ergodicity:

Proposition 19. [Meyn and R. Tweedie 1993, Theorem 17.0.1 i)] Let {Xt}∞t=1 be the Markov chain initialised

at X0 ∼ π0 generated by the kernel K. If {Xt}∞t=1 is φ-irreducible, π-invariant, and Harris recurrent and if

f ∈ L1 (π) then

lim
n→∞

1

n

n∑
t=1

f (Xt) = π (f)

almost surely.

As we saw in section 1.2.1 a CLT result is more informative than an LLN since it allows us to quantify the

error in our estimators. The usual route to establishing a CLT result for Markov chains is to prove that the

chain is geometrically ergodic, which is a stronger property than ergodicity:

Definition 20. The Markov chain generated by K is said to be geometrically ergodic when there exists a

λ > 0 such that for all initial states x ∈ X there exists a constant c (x) > 0 where

∥δxKn − π∥TV ≤ c (x) exp (−λn)

One may deduce numerous results such as LLNs and concentration inequalities from geometric ergod-

icity, but here we are primarily interested in establishing a CLT. When we are concerned with averaging a
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function f : X→ R over a geometrically ergodic Markov chain the only fact that we need to verify to establish

a CLT is that f ∈ L2+ε (π) for some ε > 0 [Chan and Geyer 1994, Theorem 2]. If the chain is reversible, we

only need to verify that f ∈ L2 (π) [G. Roberts and J. Rosenthal 1997, Corollary 2.1]. Where the error of the

estimator is concerned, the latter result has that

√
n

(
1

n

n∑
t=1

f (Xt)− π (f)
)
→ N (0,Var (K, f))

in distribution where

Var (K, f) := Varπ (f) + 2

∞∑
t=1

Covπ
(
f (X) ,Ktf (X)

)
(1.4)

Thus we can see the inefficiencies due to using Markovian samples rather than independent ones: if the

infinite sum in the definition of Var (K, f) is positive, the Markov chain estimators will have a higher variance

than the Monte Carlo estimators (holding the amount of samples fixed across the two cases). We will call

Covπ (f (X) ,Ktf (X)) and Corrπ (f (X) ,Ktf (X)) the lag t autocovariance and autocorrelation respectively

for all t ∈ N\ {0}. The form of Var (K, f) also tells us which chains will produce estimators of a high variance,

namely ones whose autocorrelations remain high at all lags. In fact we use Var (K, f) to define the practical

metrics by which we gauge the efficiency of the Markov chain.

1.3.1.4 Markov chain efficiency metrics

Let’s assume that f ∈ L2 (π) and that the chain is reversible. This then gives us a CLT result for both

the estimator produced by the Markov chain and the Monte Carlo estimator f̂n. We can then compare the

asymptotic variances defined in either CLT to give us a measure of efficiency of the Markov chain. This is

because we view the Monte Carlo estimator as the ‘gold standard’ in terms of its asymptotic variance, which

itself is due to the fact that Var (K, f) ≥ Varπ (f) under conditions which are mild and commonplace2. Under

these conditions we can define the effective sample size of the Markov chain:

2such as the positivity of the Markov kernel K.
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Definition 21. The effective sample size (ESS) of a Markov chain of length n ∈ N\ {0} is defined as

n
Varπ (f)

Var (K, f)

This is so called because it is roughly the amount of samples from the Monte Carlo estimator we would

need to take to get an equivalent variance as the Markov chain estimator. One can interpret it as the

amount of ‘gold standard’ samples the Markov chain yields. One should keep in mind that the estimator is

dependent on a particular function f , and so is not strictly a fully general measure of health of the Markov

chain. It should also be noted that the ESS depends on estimating expectations with respect to π which we

can only do well if the Markov chain is efficient. Therefore the ESS should always be taken with a pinch of

salt whenever we suspect that the Markov chain is not healthy, by whatever other means we have.

Another estimate of the efficiency of the Markov chain is the lag 1 autocorrelation. A large lag 1 au-

tocorrelation is taken to indicate an inefficient Markov chain. This is because we can make the approx-

imation Var (K, f) ≈ Varπ (f) + 2Covπ (f (X) ,Kf (X)). One reason we can make this approximation is

that in the case that Covπ (f (X) ,Kf (X)) ≥ 0 for all f ∈ L2 (π) we have that Covπ (f (X) ,Kf (X)) ≥

Covπ
(
f (X) ,K2f (X)

)
for all f ∈ L2 (π) (for a proof of this fact see section 7.2.1.4). Using [Haggstrom

and J. Rosenthal 2007, Lemma 16] then gives us that Covπ (f (X) ,Kf (X)) ≥ Covπ (f (X) ,Ktf (X)) for

all f ∈ L2 (π) and t ≥ 2. It seems logical that we can use the lag 1 autocorrelation as an indicator of chain

efficiency since if the chain doesn’t move much in a single step, then it’s probably not going to move much

over many steps, across many lengths of the chain. Therefore a large lag 1 autocorrelation can be taken as

a global measure of the ill-health of the chain (relative to a given estimand f ).

1.3.2 Markov chain Monte Carlo

Now that we’ve examined the conditions under which Markov chains achieve different forms of ergodicity,

and the quantities by which we can measure their efficiency, all that remains to do is to construct them.

Algorithms that produce samples using Markov chains so as to estimate expectations are called Markov

chain Monte Carlo (MCMC) algorithms. In this section we will focus on reversible chains since, as outlined

in section 1.3.1.2, their π-invariance is easier to verify.
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Algorithm 1.2 Framework for an algorithm in the MH family. Inputs: Easily sampleable proposal kernel Q
with oracle access to its density q, Initial state X0 ∼ π0, Oracle access to the unnormalised density π̃ of π
Outputs: A π-reversible Markov chain {Xt}nt=1.

For t ∈ [n]

Sample a proposal Yt ∼ Q (Xt−1 → .).
With probability

α (Xt−1 → Yt) := min

{
1,

π̃ (Yt) q (Yt → Xt−1)

π̃ (Xt−1) q (Xt−1 → Yt)

}
set Xt = Yt.
Otherwise set Xt = Xt−1.

1.3.2.1 The Metropolis-Hastings family

As with many other iterative methods the history of MCMC methods develops in tandem with the history of

the modern computer. The first instance of MCMC is [Metropolis et al. 1953] wherein the authors propose

an algorithm to be run on the MANIAC computer at Los Alamos National Laboratory in order to simulate the

behaviour of hard disks on a two dimensional torus. [Hastings 1970] unified the methods of [Metropolis et al.

1953] and [Barker 1965] and extended their application to uncountable state spaces. It is from these two

papers ([Metropolis et al. 1953] and [Hastings 1970]) that the family of Metropolis-Hastings (MH) algorithms

gets its name. Algorithms in this family are constructed as follows: given a Markov kernel Q : X×X → [0, 1]

which we call the proposal kernel and oracle access to its density q : X×X→ R+∪{0} iterate over the steps

in algorithm 1.2. Note that the unnormalised density π̃ is accessed via its ratio, and therefore the algorithm is

equivalent if we replace it with its normalised form. This is one of the aspects of the MH family that make it so

popular: that it can work with unnormalised target distributions. We will refer to the unnormalised density π̃

as the normalised density π where the two are interchangeable, so as to simplify the notation. The algorithm

in 1.2 dictates that the corresponding Markov kernel K of {Xt}nt=1 has the following form:

K (x→ A) :=

∫
A

q (x→ dy)α (x→ y) +

(
1−

∫
X

q (x→ dy)α (x→ y)

)
δx (A)

It is readily checked that K is π-reversible due to the particular form of α. In fact α can take other forms,

see [Barker 1965] for example, although [Peskun 1973] argues that using α as in algorithm 1.2 minimises
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Var (K, f) (for a fixed proposal distribution) where it exists. The MH family is then indexed by those proposal

distributions that preserve ergodicity. The choice of proposal is crucial to the success of the algorithm.

Optimising over the space of Markov kernels q (x→ .) is infeasible. To approximate this optimisation task

there exist a few canonical instances of proposal distributions q (x→ .) whose tuning parameters are then

optimised over. We will go over three instances here: random walk Metropolis, the Metropolis adjusted

Langevin Algorithm, and Hamiltonian Monte Carlo. We will define these in the case that X = Rd.

1.3.2.2 Random walk Metropolis

When q (x→ y) = N
(
y;x, σ2Id

)
algorithm 1.2 defines the random walk Metropolis (RWM) algorithm. Note

that q (x→ y) = q (y → x) and hence α does not require the evaluation of the proposal density. In particular

α dictates that proposals that have a higher π density will always be accepted.

The parameter σ2 ∈ R+ is called the step size. Current practice (see, for instance, [Michalis Titsias 2023,

Algorithm 1]) is to tune the step size based on the results of what is called the ‘optimal scaling’ literature, see

e.g. [Beskos et al. 2013; G. O. Roberts, A. Gelman, and Gilks 1997; Jeffrey S Rosenthal et al. 2011]. These

papers look at the behaviour of the RWM Markov chain in the so-called ‘diffusion limit’ which is where,

roughly speaking, the speed of the Markov chain is scaled proportional to d and the step size is scaled

proportional to d−1. The authors then observe that the first component of the resulting process as d → ∞

behaves like a diffusion process. They find that the quantity

ᾱ :=

∫
X

∫
X

π (dx) q (x→ dy)α (x→ y)

can be optimised over to maximise the speed of this diffusion process, and that ᾱ = 0.234 achieves approx-

imate optimality. It must be noted that these results are achieved under the assumption that the dimensions

of π are independent, or can be made independent under an affine tranformation. In recent works, setting

σ2 ∝ d−1 has been motivated in the non-asymptotic setting [Andrieu, A. Lee, et al. 2024]. In general a step

size which is too large will produce many rejection events and a step size which is too small will produce

many acceptance events. In both of these cases the autocorrelation in the chain will be large, causing an

inflated variance in 1.4.

32



RWM is a zeroth order algorithm, which means that it does not use the gradient information of π. This

effectively puts a cap on the speed with which the algorithm moves which can be a problem for heavy tailed

targets, where the Markov chain must make long excursions into the tails so as to properly represent the

target mass. The Markov chain can also display diffusive-like behaviour when in the tails of a heavy tailed

distribution:

Example 22. Say the target measure π has density π (x) ∝
(
1 + a ∥x∥22

)−b

for a, b ∈ R+. Then the ratio

term inside α (x→ y) in algorithm 1.2 is

(
1 + a ∥x∥22

1 + a ∥x+ σξ∥22

)b

where ξ ∼ N (0, Id). Let {xn}n≥1 be any sequence such that limn→∞ ∥xn∥2 =∞ and {ξn}n≥1 be a random

sequence with ξn ∼ N (0, Id) independently, for all n ≥ 1. Then the ratio term tends to one almost surely

with respect to the randomness of the sequence of ξ’s.

1.3.2.3 The Metropolis adjusted Langevin Algorithm

The Metropolis adjusted Langevin Algorithm (MALA) [Gareth O. Roberts and Richard L. Tweedie 1996] is

based on the overdamped Langevin diffusion which is a stochastic differential equation (SDE) conceived

in statistical physics to describe the kinematics of a physical system under the influence of a deterministic

force and stochastic fluctuations.

dXt = −∇U (Xt) dt+
√
2dBt (1.5)

where Bt ∈ Rd is the d-dimensional Brownian motion and U : X → R is a differentiable potential function

defining the force ∇U on the state of the system Xt. Theorem 1 of [Y.-A. Ma, T. Chen, and Fox 2015] has

that π (x) ∝ exp (−U (x)) is the density of the unique stationary distribution of 1.5 and so setting U = − log π

and simulating from it will eventually give us samples from π. If we ignore the Brownian motion equation 1.5

describes the deterministic continuous time dynamics of a gradient descent process on U . Therefore we

can interpret the process as a noisy form of gradient descent, where we reach areas of high π density with

the drift term and we explore those areas with the Brownian motion.
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Exact simulation of a continuous time SDE on a digital computer is usually infeasible. Therefore we need

to discretise the Langevin diffusion in order to simulate it. The Euler-Maruyama discretisation gives us a

way to do this. It is a generalisation of Euler’s method to the stochastic setting. Given times tn ≤ tn+1, if we

initialise the Langevin diffusion at Xtn and solve for time Xtn+1 we get

Xtn+1 = Xtn −
∫ tn+1

tn

∇U (s) ds+
√
2

∫ tn+1

tn

dBs

by definition. The Euler-Maruyama discretisation therefore makes the following approximation to the entire

solution of 1.5:

Xtn+1
≈ X̃n+1 where X̃n+1 = X̃n − (tn+1 − tn)∇U

(
X̃n

)
+
√
2
√
tn+1 − tnξ, with X̃0 = Xt0

for all n ∈ {0, . . . , N − 1} where ξ ∼ N (0, Id), Xt0 is the initial state of the Langevin diffusion, and

t0 < t1 < · · · < tN for N ∈ N\ {0}. Making the approximation over subsequent time intervals of equal length

means that we can replace tn+1 − tn with a generic step size σ2 ∈ R+. The Euler-Maruyama converges

strongly to the solutions of 1.5 in the sense that limσ2↘0 E
[∥∥∥XtN − X̃N

∥∥∥] = 0. In fact, under conditions

on the smoothness and growth rate of ∇U , one can establish upper bounds on E
[∥∥∥XtN − X̃N

∥∥∥] which

are polynomial in σ2, see [Kloeden and Platen 1992, Theorem 10.2.2]. What is important here is that

E
[∥∥∥XtN − X̃N

∥∥∥] is non-zero for non-zero step size, which makes the approximation inexact. Therefore we

cannot guarantee that π is the distribution of X̃N as N →∞. To rectify this the MALA wraps single steps of

the Euler-Maruyama discretisation in accept-reject steps which ensure π-reversibility. It assumes the form

of algorithm 1.2 with

Yt = Xt−1 − σ2∇U (Xt−1) +
√
2σ2ξ (1.6)

where ξ ∼ N (0, Id) and U ∝ − log π giving q (x→ y) = N
(
y;x− σ2∇U (x) , 2σ2Id

)
. Note here that the

target density appears in the term ∇U ≡ ∇ (− log π) which is unchanged whether π is normalised or not.

Note also that q (x→ y) ̸= q (y → x) and so α (x→ y) depends on the density of the proposal. Just like

the Euler-Maruyama discretisation, MALA relies on the smoothness of ∇U for its proper functioning. The

inclusion of the ∇U term can cause the acceptance probability to be unstable.
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Example 23. Say d = 1 and ∇U (X) = X3 with X0 = O
(
σ−2

)
and σ < 1. This dictates that U (X) = 4−1X4

such that π (X0) ∝ exp
(
−O

(
σ−8

))
. Then Y1 = O

(
σ−4

)
, ∇U (Y1) = O

(
σ−12

)
, and π (Y0) = exp

(
−O

(
σ16
))

.

The form of the MALA proposal 1.6 dictates that

q (Y1 → X0)

q (X0 → Y1)
= exp

(
− 1

4σ2

(∥∥x− y − σ2∇U (y)
∥∥2 − ∥∥y − x− σ2∇U (x)

∥∥2))
= exp

(
− 1

4σ2

(∥∥O (σ−2
)
−O

(
σ−4

)
−O

(
σ−12

)∥∥2 − ∥∥O (σ−4
)
−O

(
σ−2

)
−O

(
σ−4

)∥∥2))
= exp

(
− 1

4σ2

(
O
(
σ−24

)
−O

(
σ−8

)))
= exp

(
−O

(
σ−22

))
and we have that π (Y1) /π (X0) = exp

(
−O

(
σ16
))

. This means that α (X0 → Y1) will be close to zero for

the vast majority of draws of Y1 and that’s if we ignore any numerical instability that might occur in the

calculations.

There is also evidence that MALA is less robust to poor tuning of the step size than RWM when the

scales of π are heterogeneous across the directions of the state space, see [Livingstone and Zanella 2022]

for details. When the acceptance probability in 1.2 is fixed at 1, MALA becomes the Langevin Monte Carlo

(LMC) algorithm.

1.3.2.4 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [Duane et al. 1987; Neal 2011] necessitates the extension of the state

space to include a momentum variable p ∈ Rd. Like MALA, each proposal is the forward simulation of a

dynamical process that models the state of a physical system. Taking x ∈ Rd to be the position of a particle

with mass m ∈ R+, Newton’s second law of motion dictates that the position of the particle is associated to

the potential U in which it moves in the following way: −∇U (x) = mẍ. Defining the momentum p := mẋ

gives the Hamiltonian dynamics
dp

dt
= −∇U (x) ,

dx

dt
= m−1p (1.7)
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under the Hamiltonian H (x, p) := U (x) + (2m)
−1 ∥p∥22. The Boltzmann-Gibbs distribution defined by this

Hamiltonian is π (x, p) ∝ exp
(
−U (x)− (2m)

−1 ∥p∥22
)

which, when marginalised over p, yields π (x) ∝

exp (−U (x)). Theorem 1 of [Y.-A. Ma, T. Chen, and Fox 2015] also applies to the dynamics described

by equation 1.7 although in this case there is no stochastic component to the motion described, and hence

π (x, p) is merely an invariant distribution and not unique. As we know from section 1.3.1.2 this is not enough

to guarantee ergodicity. In any case, as with MALA, integrating 1.7 exactly is infeasible, and so we must

again consider a discretisation scheme.

The discretisation scheme used in HMC is the leapfrog scheme [Leimkuhler and Reich 2005]. This is

defined using the following recursion: given an initial point (X0, P0), a number of iterations N , a step size σ

Pn+ 1
2
= Pn −

σ

2
∇U (Xn)

Xn+1 = Xn +
σ

m
Pn+ 1

2

Pn+1 = Pn+ 1
2
− σ

2
∇U (Xn+1) (1.8)

for n ∈ {0, . . . , N − 1}. This iterator has a number of desirable properties. The local truncation error,

defined as the leading term in the local error (X (t1)−X1, P (t1)− P1)
T where (X (t1) , P (t1))

T is the

true solution of the dynamics in 1.7, is order σ3 whereas for a straightforward Euler discretisation of 1.7

the local truncation error is order σ2. If we regard 1.8 as three separate transformations (Xn, Pn) 7→(
Xn, Pn+ 1

2

)
,
(
Xn, Pn+ 1

2

)
7→
(
Xn+1, Pn+ 1

2

)
, (Xn+1, Pn+1) 7→

(
Xn+1, Pn+ 1

2

)
each transformation involves

an affine, volume preserving (i.e. determinant = ±1) transformation of a subset of the full state. Hence

the full transition described in 1.8 is volume preserving, and so the transformation T (X0, P0) := (XN , PN )

described by the full trajectory of the integrator is volume preserving. Thus if (X0, P0) ∼ ν then (XN , PN ) ∼

ν
(
T −1 (XN , PN )

)
with no volume correction. Note also that if N = 1 and P0 =

√
mξ where ξ ∼ N (0, Id),

rephrasing 1.8 solely in terms of the X coordinates gives

X1 = X0 −
1

2

σ2

m
∇U (X0) +

√
σ2

m
ξ

which is just the MALA proposal with step size m−1σ2 (up to a rescaling by
√
2).

36



Since the momentum marginal of the Boltzmann-Gibbs distribution π (x, p) ∝ exp
(
−U (x)− (2m)

−1 ∥p∥22
)

is just a Gaussian, each step of HMC starts with a momentum resampling step P0 =
√
mξ where ξ ∼

N (0, Id). We then achieve a new point according to the leapfrog integrator, using N steps and a step

size of σ2, giving (XN , PN ). Now, crucially, we negate the momentum component to ensure reversibility

with respect to the Lebesgue measure, yielding (XN ,−PN ). That the leapfrog integrator is reversible and

volume-preserving gives us that q ((x, p)→ (x′, p′)) = q ((x′, p′)→ (x, p)) and hence we have

α ((x, p)→ (x′, p′)) = min
{
1, exp

(
−U (x′)− (2m)

−1 ∥p′∥22 + U (x) + (2m)
−1 ∥p∥22

)}

Now all we need is to ensure φ-irreducibility. Having done this, the fact that the method fits into the MH

framework in 1.2 ensures π-reversibility which gives ergodicity. However, ensuring φ-irreducibility is non-

trivial. Nominally, what we need to ensure is that there exists a momentum draw for each point in the position

space that, under the leapfrog dynamics, will transport the position component to an arbitrary set B ∈ X

which is non-null under φ. One phenomenon which can break irreducibility is when the step size, trajectory

length, and target are such that the leapfrog integrator always returns to the same position and momentum,

for a given initial position and momentum, see [Livingstone, Betancourt, et al. 2019, Supplementary Material]

for an example of this. One way to ensure this never happens is to randomise the trajectory length, as

proposed in [Bou-Rabee and Sanz-Serna 2017], such that having N = 1 always has a positive probability.

We can then note that the N = 1 case is equivalent to the MALA proposal 1.6, and the full MALA algorithm

is irreducible with respect to the Lebesgue measure under mild and checkable conditions [G. O. Roberts

and R. L. Tweedie 1996]. See also [Durmus, E. Moulines, and Saksman 2019] for a proof of irreducibility

with a fixed N ≥ 1 trajectory length. When the acceptance probability in 1.2 is fixed at 1, HMC becomes the

unadjusted HMC algorithm.
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Chapter 2

Developments to canonical MCMC:

preconditioning, variational

approximation, and adaptivity

Over the course of their use in the past century, it has become increasingly clear that the canonical Markov

kernels described in the previous chapter will fail to work properly on certain classes of target probability dis-

tributions. These classes include distributions in high dimension and distributions which are ill-conditioned,

whether this is due to anisotropy, multimodality, or some other exotic geometry.

In this chapter we introduce three techniques which are used to enhance the canonical kernels of chapter

1. In section 2.1 we introduce preconditioning, which can be thought of as making an invertible transforma-

tion to the target distribution in order to make it easier to sample from. In section 2.2 we introduce variational

approximations, which are distributional approximations to the target. When we have a variational approxi-

mation to the target distribution, we can use it to enhance the performance of a canonical MCMC sampler.

Finally in section 2.3 we introduce adaptive MCMC. Adaptive MCMC is a method which runs alongside and

influences an MCMC sampler. It uses the previous states in the sampler to approximate a good precondi-

tioning transformation, which it uses in the subsequent Markov chain step.
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For the notation included in this chapter, see section 7.1.2.

2.1 Preconditioning

2.1.1 Introduction to preconditioning

The creation of electronic computers in the first half of the twentieth century gave us two abilities. The first

ability was to mathematically encode the process of solving problems. We gained this ability because we

were no longer purely solving problems with equipment we did not understand i.e. the human brain, but with

computers that we had built. These computers were sufficiently primitive that we could then understand and

formalise their operation. The second ability was to rapidly solve problems at multiple different scales. This

gave us reliable data as to how the computing machinery, whose influence on the solution was now known

precisely, would perform on a variety of problems and how it would scale with the problem size.

Given the first ability we could then theorise about the capability of particular computational resources

at solving problems, and given the second ability we could verify the theory we had produced as a result of

the first. One important quantity that is often naturally conceived in this process of theorising is a condition

number. It aims to encode exactly the capability of our computational resources at solving a problem.

Another way of viewing it is as encoding the difficulty of a problem given computational resources. It does

this by assigning harder problems higher condition numbers. The term ‘condition number’ was coined in

[TURING 1948] although similar quantities are defined in [Von Neumann and Goldstine 1947; Wittmeyer

1936]. If it is sufficiently descriptive we can use it to evaluate new computational methods that have been

devised to make the problem easier to solve. These are often called ‘preconditioning’ methods because

their success or failure can be explained by their effects on the condition number.

The problems considered in this thesis are sampling problems. We will see that a condition number is

defined for sampling problems, and so is preconditioning. Our primary aim is to evaluate preconditioning

methods that can be described using linear transformations on sampling problems whose condition number

is finite. We restrict ourselves to the X = Rd setting. Linear transformations are the most common form of

preconditioning in sampling. That the condition number is finite allows us to describe precisely the effect of
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these transformations.

2.1.2 The condition number and preconditioning for the problem of sampling

2.1.2.1 Assumptions on the target distribution

In this section and in chapter 3 we assume that the potential of every target distribution we consider will

satisfy the following properties:

Assumption 24. Let U ∈ C2 be the potential of the target distribution π.

1. We assume that U is m-strongly convex i.e. there exists a constant m > 0 such that mId ⪯ ∇2U (x)

for all x ∈ Rd.

2. We assume that U is M -smooth i.e. there exists a constant M > 0 such that ∇2U (x) ⪯ MId for all

x ∈ Rd.

Clearly if U is both m-strongly convex and M -smooth then M ≥ m. These properties are a very common

setting in the field of optimisation where U serves as the objective function instead of the potential of the

target distribution [Boyd and Vandenberghe 2004; Bubeck 2015]. These properties necessarily hold if we

wish to define the condition number for sampling problems, as we shall see. In the foregoing we will assume

that, when invoked, the constants m and M are the tightest values they can be i.e. that m is the largest m

satisfying assumption 24 1. and that M is the smallest M satisfying assumption 24 2.

2.1.2.2 Features of distributions with m-strongly convex and M -smooth potentials and the algo-

rithms that sample from them

m-strong convexity This property is shared by the potentials of numerous common distributions such as

the Gaussian, and the univariate Weibull with parameter β > 21. More generally, Bayesian posteriors with

Gaussian priors whose log-likelihoods are concave in their parameter have strongly convex potentials, where

1which is defined to have density hβ (x) := βxβ−1 exp
(
−xβ

)
1 {x ∈ (0,∞)} with respect to the Lebesgue measure on R, see

[Saumard and Wellner 2014, Example 2.18].
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the constant m is just the inverse of the maximum eigenvalue of the prior covariance. Distributions with m-

strongly convex potentials have properties that can be beneficial in statistical contexts, such as unimodality,

and the fact that strong convexity is conserved under the marginalisation [Saumard and Wellner 2014]. A

potential U which is m-strongly convex can be seen to satisfy the following relation:

U (x)− U (y) ≥ ∇U (y)
T
(x− y) + m

2
∥x− y∥22 (2.1)

for all x, y ∈ Rd (in fact this is equivalent to m-strong convexity). Choosing y to be the mode x∗ ∈ Rd we

can see that U (x) − U (x∗) ≥ (m/2) ∥x− x∗∥22 and so distributions with m-strongly convex potentials have

subgaussian tails

Another equivalent definition of the m-strong convexity of U is the following ‘monotonicity’ property: that

(∇U (x)−∇U (y))
T
(x− y) ≥ m ∥x− y∥22. Setting y to be the mode x∗ ∈ Rd and x ̸= x∗ we see that

(−∇U (x))
T (x∗ − x)
∥x∗ − x∥2

≥ m ∥x∗ − x∥2 (2.2)

Therefore the size of −∇U (x) in the direction from x to the mode is guaranteed to increase when x moves

further away from the mode, at a rate dictated by the strong convexity constant m. This means that algo-

rithms such as MALA 1.3.2.3 and HMC 1.3.2.4 that use ∇U move quicker in the tails, when they move at all.

This allows them to move from regions of low probability to high probability quickly, which helps them mix.

An instance of this behaviour can seen in the fact that the m-strong convexity of U implies a lower bound of

m on the spectral gap of the overdamped Langevin diffusion 1.5 [Bakry, Gentil, Ledoux, et al. 2014].

M -smoothness The Gaussian and hyperbolic distributions both have M -smooth potentials. Bayesian

posteriors with Gaussian priors whose likelihoods are M -smooth in their potentials have smooth poten-

tials whose constants are M + λ−1
min-smooth where λmin is the minimum eigenvalue of the prior covariance.

Distributions with M -smooth potentials have beneficial statistical properties, although they are less simple

than those possessed by distributions with m-smooth potentials. For instance, if Y ∼ π where π has an

M -smooth potential U then ∇U (Y ) is subgaussian with constant L [Negrea 2022]. An M -smooth potential
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satisfies a kind of reverse inequality to 2.1:

U (x)− U (y) ≤ ∇U (y)
T
(x− y) + M

2
∥x− y∥22 (2.3)

for all x, y ∈ Rd. Setting y = x∗ again and we see that the density whose potential is U can be minorised

by scaled Gaussian density. We can use 2.3 to lower bound the average acceptance rate of RWM due to

the fact that π (y) /π (x) = exp (U (x)− U (y)) can be controlled, see [Andrieu, A. Lee, et al. 2024, Corollary

40] for details. We also have that M -smooth potentials satisfy a ‘monotonicity’ property, which is like the

reverse of 2.2:

(−∇U (x))
T (x∗ − x)
∥x∗ − x∥2

≤M ∥x∗ − x∥2

and so algorithms which use −∇U (x) to guide their proposals, like MALA 1.3.2.3 and HMC 1.3.2.4, make

small steps toward the mode when close to it. This is desirable since we want to spend large amounts

of time in regions of high probability under the target. In general the discretisations of dynamics whose

continuous time processes are defined using a smooth ∇U , such as the overdamped Langevin 1.5 and the

Hamiltonian dynamics 1.7, will have controllable errors, see [Kloeden and Platen 1992, Theorem 10.2.2] for

instance.

2.1.2.3 The condition number

When the potential U of the target distribution satisfies 24 we define the condition number of the target

distribution as

κ :=
M

m
(2.4)

which we can define equivalently as κ = supx∈Rd

∥∥∇2U (x)
∥∥
2
supx∈Rd

∥∥∥∇2U (x)
−1
∥∥∥
2
. The condition number

is bounded below by 1. As discussed in section 2.1.1, we would like for it to describe how difficult it is for

our sampling algorithms to sample from the target by assigning harder sampling problems higher condition

numbers.

The significance of κ in the context of sampling problems is demonstrated by its ubiquity in bounds on

quantities which govern the performance of MCMC algorithms, such as the relaxation time 7.1 and the ε-
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Relaxation time ε-mixing time

Õ
(
κd

1
2

)♡
[Wu, Schmidler, and Y. Chen 2022]

Upper bound O (κd)
♢[Andrieu, A. Lee, et al. 2024] Õ

(
κd log 1

ε

)♢[Andrieu, A. Lee, et al. 2024]

Õ
(
κd

2
3 log 1

ε

)♠
[Y. Chen, Dwivedi, et al. 2020]

Lower bound Ω
(

κd
log d

)♡
[Y. T. Lee, Shen, and Tian 2021] Ω

(
κd

log2 d

)♡
[Y. T. Lee, Shen, and Tian 2021]

Table 2.1: Recently published bounds on the relaxation time and ε-mixing time of various MCMC samplers.
The Õ denotes that the bound excludes poly-logarithmic terms. Superscript ♢ denotes a bound for RWM,
superscript ♡ for MALA, and superscript ♠ for HMC. The bound in [Y. Chen, Dwivedi, et al. 2020] holds
under the addition assumptions that ∇2U is LH -Lipschitz with L2/3 = O (M), that κ = O

(
d2/3

)
, and that the

chain is started from a β = O
(
exp

(
d2/3

))
warm start. See 7.1 for a definition of the relaxation time and 7.2

for a definition of the mixing time.

mixing time 7.2. These two quantities provide some measure of the number of steps to run the MCMC

algorithm, since the ε-mixing time tells us how long we should wait for the chain to equilibrate from its initial

distribution, and the relaxation time tells us the average time-scale in equilibrium we would need to wait to

form good quality estimators. The two quantities are related since, for instance, a small relaxation time will

imply a small ε-mixing time if the chain is positive (i.e. the spectrum of the Markov operator is contained in

[0, 1]) and is well initialised, using e.g. a β-warm start 7.3. See table 2.1 for a selection of bounds on these

quantities. Each is polynomial in the dimension and the condition number. The selection is not exhaustive,

we merely present it to emphasise the ubiquity of the condition number.

2.1.2.4 Preconditioning

Let’s say that the condition number we’ve defined describes sufficiently well the difficulty of the problems

we’re trying to solve given the algorithms we’re using to solve them. Then we can evaluate adjustments

to the problems or algorithms by looking at their effect on the condition number. Adjustments which cause

the condition number to go down should then make the problem easier, which is often felt practically by

a decrease in time complexity of the algorithms. We call these adjustments ‘preconditioning’. Here we

focus on adjustments that can be fully described by linear transformations. The matrices that encode these

transformations are called ‘preconditioners’ or ‘preconditioning matrices’ and the practice of using these

preconditioners is called ‘linear preconditioning’.
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Formally, linear preconditioning is the use of an invertible matrix L ∈ Rd×d to take a target distri-

bution π whose potential is m-strongly convex and M -smooth and transform it into π̃ (x̃) = L#π (x̃) =

π
(
L−1x̃

)
|detL|−1 such that the condition number of π̃ will be lower than that of π. The corresponding po-

tential of π̃ will be Ũ (x̃) = U
(
L−1x̃

)
. Given the monotonicity of the bounds in table 2.1 on κ, the aim is

that the reduction in the condition number will come with a reduction in the time complexity of our sampling

algorithm. Since the potential of π is m-strongly convex and M -smooth, the condition number of π̃ will exist,

be finite, and be defined by

κ̃ = sup
x∈Rd

∥∥L−T∇2U (x)L−1
∥∥
2
sup
x∈Rd

∥∥∥L∇2U (x)
−1
LT
∥∥∥
2

(2.5)

by a linear change of variables procedure. In our examination of how the condition number changes under a

given preconditioner assuming that L is symmetric will aid in notational simplicity, which we can do without

a loss of generality:

Proposition 25. Fix a preconditioner L ∈ Rd×d and a target distribution π. Construct a new preconditioner

L† = V DV T where V ∈ O (d) consists of the right singular vectors of L and D ∈ Rd×d is a diagonal matrix

containing the singular values of L. Then the condition number κ̃ after preconditioning with L and L† is the

same.

For a proof see section 7.2.2.1.

2.1.2.5 Traditional formulation of preconditioning

Often linear preconditioning is encountered as a modification to the proposal distribution of a canonical

MCMC algorithm and not as a transformation to the target distribution. For instance, as it is usually encoun-

tered, preconditioned MALA 1.6 has proposal

Yt = Xt−1 − σ2A∇xU (Xt−1) +
√
2σ2A

1
2 ξ (2.6)
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where ξ ∼ N (0, Id) and A ∈ Rd×d is a positive definite matrix which we call the traditional preconditioner.

This is equivalent to making a proposal

Y ′
t = X ′

t−1 − σ2∇x′U ′ (X ′
t−1

)
+
√
2σ2ξ (2.7)

where ξ ∼ N (0, Id), U ′ (x′) := U
(
A

1
2x′
)

, and we make the linear transformation x′ = A− 1
2x to go from

the unprimed to the primed variables. We can use this fact to show that the Markov chains generated

using proposal 2.6 with target π ∝ exp (−U) are isomorphic in the sense of [L. T. Johnson and Geyer 2012,

Appendix A] to the Markov chains generated using proposal 2.7 with target π′ ∝ exp (−U ′). In fact, the

isomorphism holds for most canonical MCMC samplers.

Proposition 26. Let {Xt}∞t=1 be the Markov chain generated by a canonical MCMC sampler with traditional

preconditioner A ∈ Rd×d targeting π ∝ exp (−U). Let {X ′
t}∞t=1 be the Markov chain generated by a canonical

MCMC sampler with traditional preconditioner Id targeting π′ ∝ exp (−U ′) where U ′ (x′) := U
(
A

1
2x′
)

. Then

the two Markov chains are isomorphic in the sense of [L. T. Johnson and Geyer 2012, Appendix A]. By

‘canonical MCMC sampler’ we mean any of the following: RWM, MALA, HMC, LMC, unadjusted HMC.

For a proof see section 7.2.2.2. Isomorphic Markov chains share convergence and stability properties

modulo an appropriate transformation, and thus they are basically the same in terms of performance. For

instance if a Markov chain is geometrically ergodic with constant λ, all isomorphic chains are also geomet-

rically ergodic with the same constant. This justifies our formulation of preconditioning as a transformation

to the target distribution, since it is basically equivalent to the traditional notion of preconditioning.

2.2 Variational approximation

2.2.1 Introduction to variational approximations

MCMC algorithms are tools that practitioners are forced to consider using when the target distribution is

sufficiently complex. In these circumstances, variational approximations offer an alternative to MCMC. Vari-

ational approximations are distributional surrogates for the target distribution. They are constructed to have
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properties that allow us to easily estimate expectations that are formed with respect to them. This restriction

means that the space of possible approximations will not be the entire space of probability distributions. In

fact, the space of possible approximations will be defined by a space of possible parametrisations which is

searched over to find the best possible approximation. Concretely this necessitates the introduction of a pa-

rameter θ which lives in a parameter space Θ that defines the space of possible distributions over which we

search for an approximation. This search is usually conducted by attempting to find θ∗ := argminθ∈Θd (νθ, π)

where d : P (X )×P (X )→ [0,∞) is a discrepancy on the space of probability measures on X . This discrep-

ancy is usually the reverse Kullback-Leibler (KL) divergence. The whole process of positing Θ and searching

for θ∗ is called variational inference (VI), see [Blei, Kucukelbir, and McAuliffe 2017] for an introductory text

and [Ganguly and Earp 2021] for an introduction with applications to machine learning. In the search for a

variational approximation there is usually a trade-off between the expressivity of {νθ}θ∈Θ and the ease with

which we can search through Θ to find θ∗.

Often, in the MCMC setting, the target we are trying to approximate is a Bayesian posterior whose

density can be written π (x |y ) where y ∈ Y is the data. We abuse notation in denoting π (. |y ) : X → [0, 1]

as its associated probability measure. In this case, elementary calculations reveal the following relation:

KL (νθ ∥π (. |y ) ) + Eνθ

[
log

π (X, y)

νθ (X)

]
= log π (y) (2.8)

where νθ (x) is the density of the variational approximation at x ∈ X, π (x, y) is the joint density of the

parameters and the data, and π (y) is the marginal density of the data. The second quantity in the sum on

the left hand side has acquired a name: the Evidence Lower BOund (ELBO):

ELBO (θ) := Eνθ

[
log

π (X, y)

νθ (X)

]

and that it lower bounds the logarithm of the evidence (i.e. the marginal data density) is evident from 2.8 and

the positivity of the KL. The relation 2.8 also reveals that argminθ∈ΘKL (νθ ∥π (. |y ) ) = argmaxθ∈ΘELBO (θ)

and for this reason, many VI methods use maximising the ELBO as a surrogate for learning the optimal

variational parameter. Decomposing the ELBO into Eνθ
[log π (X, y)]+Eνθ

[− log νθ (X)] reveals that it serves
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as a regularised objective: in maximising it we want to simultaneously maximise the joint log-density and

the entropy H (νθ) := Eνθ
[− log νθ (X)] of the variational distribution. Maximising the joint log-density is

natural to the objectives of VI, whilst maximising the entropy helps maintain the spread of the variational

approximation, and ensures it does not collapse to a Dirac mass. A final fact to note is that the ELBO is not

convex in θ.

Many common families of distributions have a natural parametrisation. Therefore these families provide

for us ready-built parameter spaces over which we can conduct our search. We can also use the product

operation to combine distributions so as to form new multivariate distributions to match the dimension of the

state space of the target. An example of this approach is the Coordinate Ascent Variational Inference (CAVI)

[Bishop 2006]. It imposes a basic structure on the variational approximation: that it can be decomposed

along its dimensions. Say X = Rd and assume that the parameter space decomposes as follows: Θ =⊗d
i=1 Θi. Then CAVI begins by imposing that the density of the approximation is written as

νθ (x) =

d∏
i=1

ν
(i)
θi

(xi) (2.9)

with ν
(i)
θ : R → [0,∞) being the density of a univariate random variable and θi ∈ Θi for all i ∈ [d]. Given

this form, each step of CAVI consists of maximising the ELBO over Θi for a given i ∈ [d]. After updating the

variable at index i, the ith variational marginal density will have the following form:

ν
(i)
θi

(xi) ∝ exp

(
E
ν
−(i)
θ−i

[log π (Xi, X−i, y) |Xi = xi ]

)
(2.10)

where ν
−(i)
θ−i

is the measure νθ after having marginalised out the variable at the ith index. For a proof

see section 7.2.2.3. Note that this update will not necessarily preserve the parametric family of ν(i)θi
: see

[Blei, Kucukelbir, and McAuliffe 2017, Section 3 Appendix C] for examples that do. The complete CAVI

procedure then consists in choosing the parametric families of the ν
(i)
θi

’s and updating using 2.10 for all

i ∈ [d] repeatedly until the ELBO converges. If the updates dictated by 2.10 can be carried out exactly,

then the ELBO is guaranteed to converge, since it is upper bounded and maximised coordinate-wise by

2.10. However, under the decomposition assumption in 2.9 on the variational distribution, the ELBO is
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still non-convex, and so convergence may be to a local maximum. [Bhattacharya, Pati, and Y. Yang 2023]

provide exponential convergence under the assumption that Θ is decomposed into the product of 2 spaces,

and under control on a specifically derived formulation of correlation of the target measure. [Arnese and

Lacker 2024] provide conditions under which CAVI converges to the global maximum of the ELBO, under

the assumption of the log-concavity and smoothness of the target measure. [Lavenant and Zanella 2024]

provide tight rates of convergence in the case that the index i is chosen at random each step, also under

log-concavity and smoothness assumptions.

The structure imposed by 2.9 makes the CAVI updates mathematically nice, and has the possibility of

informing the dimension and structure of the parameter space Θ. However, it also precludes the possibility

of dependence between any two dimensions of the variational approximation. We’ll see in section 3.5 that

this independence assumption can lead to pathological examples, even for the simplest target distributions.

We note that, as we’ve formulated it, CAVI needn’t necessarily assume that v(i)θi
is univariate for all i ∈ [d],

see e.g. the case analysed in [Bhattacharya, Pati, and Y. Yang 2023].

2.2.1.1 Transport based approaches

Often a member of a parametric family of distributions can be viewed as a transformation from a ‘source’

random variable. Take, for instance, the distributionN (µ,Σ) on Rd which we will attempt to ‘target’. Defining

our source distribution to be a standard normal, then if ξ is distributed according to the source, µ+Σ1/2ξ will

be distributed according to the target. Therefore, if we wanted to sample from the target, we would simply

sample from the source, and perform an appropriate transformation, which in this case is affine. Computing

expectations with respect to the target can then be done using Monte Carlo.

Transport based approaches attempt to use this framework to approximate a target distribution π: given

a source distribution ν on a state space Z that is sufficiently easy to sample from, we attempt to find a

diffeomorphic transformation T : Z → X such that T#ν ≈ π. Then if we want to evaluate Eπ [f (X)] we can

use ET#ν [f (X)] = Eν [f (T (Z))] as an approximation. Instead of parametrising a variational distribution,

we parametrise the transformation using Tθ for θ ∈ Θ and leave the source measure fixed. The construction

and parametrisation of the transformation is made so as to render {Tθ#ν}θ∈Θ as expressive as possible,

whilst ensuring the tractability of the learning procedure. As we stated before, the reverse KL is typically used
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to define this procedure, which now consists of finding argminθ∈ΘKL (Tθ#ν ∥π ). Elementary calculations

on this objective give

KL (Tθ#ν ∥π ) = const.− Eν [log π (Tθ (Z)) + log |det JTθ
(Z)|] (2.11)

where the constant is with respect to θ. Often the KL is estimated using Monte Carlo:

KL (Tθ#ν ∥π ) ≈
1

K

K∑
k=1

log

(
Tθ#ν (Xk)

π (Xk)

)
, Xk ∼ Tθ#ν, k ∈ [K] (2.12)

=
1

K

K∑
k=1

log ν
(
T−1
θ (Xk)

)
+ log

∣∣∣det JT−1
θ

(Xk)
∣∣∣+ const.

Therefore the transformation needs to be constructed such that we are able to evaluate ∇θ log |det JTθ
(Z)|

or ∇θ log
∣∣∣det JT−1

θ
(Xk)

∣∣∣, whether we can calculate the expectation in 2.11 exactly or whether we need to

use 2.12 to estimate the objective. When we move to the MCMC setting, we will also need to be able to

calculate the density of Tθ#ν, which will require evaluations of |det JTθ
(x)|−1.

This transformation methodology for VI is undertaken in the fields of measure transport [Kim et al. 2013;

Parno and Y. M. Marzouk 2018] and normalising flows [Brofos et al. 2022; M. Hoffman, Sountsov, et al. 2019;

Kanwar 2024; Rezende and Mohamed 2015]. The discriminating factor between these two fields is the type

of transformation. The motivating structure in the field of measure transport is the Knothe-Rosenblatt map,

which is a transformation of the form

T (z) =



T1 (z1)

T2 (z1, z2)

...

Ti (z1, . . . , zi)

...

Td (z1, . . . , zd)


(2.13)

that is constructible (using explicit information about π) [Villani 2009, Chapter 1], unique given the source
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and target measure ν and π, and is the limiting solution to a particular formulation of the optimal transport

problem [Bonnotte 2013; Carlier, Galichon, and Santambrogio 2010]. Using maps in the form 2.13 has a few

practical benefits. One can easily express the determinant of the Jacobian as det JT (z) =
∏d

i=1 ∂iTi (z).

Inversion of T consists of d inversions of one dimensional maps. Monotonicity of T is guaranteed when

∂iTi (z) > 0 for all i ∈ [d], for all z ∈ Z. If T#ν = π then the conditional distributions π (. |x1, . . . , xi ) are

naturally generated by Ti for all i ∈ [d], see [Baptista et al. 2024, Theorem 2.4] for details. Having settled

on the generic form 2.13 it remains to construct the maps Ti for i ∈ [d]. This is usually done by selecting a

basis of parametrisable functions constructed in a way as to aid in the learning process. For instance [Kim

et al. 2013; Parno and Y. M. Marzouk 2018] use polynomials, and [Spantini, Baptista, and Y. Marzouk 2022,

Appendix A] use maps with elements of the form Ti (z1, . . . , zi) = ui (z1, . . . , zi−1) + u
(i)
i (zi) for whom the

condition ∂iTi (z) > 0 is guaranteed by the monotonicity of u(i)i for all i ∈ [d].

As we mentioned before, the main characteristic that separates normalising flows from measure trans-

port is the form of the transformation. Whilst normalising flows are also constructed to have the nice com-

putational properties (easily invertible, triangular, easy to calculate the Jacobian) of the transformations in

measure transport, they typically incorporate neural networks and are comprised of compositions of many

maps. Many normalising flow methods are devised outside the context of MCMC, and incorporated in meth-

ods following their conception, as we shall see in the next section. This is not so with measure transport:

usually these techniques are conceived in conjunction with MCMC methods.

2.2.2 Variational approximations within sampling

After having derived an adequate variational approximation it may seem like our job is done since we can

sample from it, and therefore compute expectations with respect to it. Indeed, this is the attitude taken by

many. However, in practicality, we will often run into instances in which our variational approximation is good

but not perfect, or perhaps lacks some key feature of the target distribution, such as correlations in the case

of CAVI. Therefore we have fast but imperfect access to the target distribution. In MCMC the situation is

the other way around: if we have an MCMC algorithm such that the Markov chain it produces satisfies the

assumptions of Theorem 9, then we have ergodicity, and the estimators we derive from the chain will abide
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by LLNs for appropriate functions f , see section 1.3.1.3 for details. Therefore, absent other guarantees, we

know that if we wait long enough, we will get as good an approximation to Eπ [f (X)] as we want, and we

have slow but perfect access to the target distribution.

The prospect of fast, perfect access to the target distribution then motivates the fusion of VI and MCMC. If

we have a variational approximation to π, how are we to create these methods? The first way is to embed the

variational approximation into a Monte Carlo method. If we have a good variational approximation νθ such

that we could control ∥dπ/dνθ∥∞ then we could use νθ as the proposal distribution in a rejection sampler

1.2.2.2 and be assured of the expected time to achieve a sample, see 5. A variant of this solution constitutes

our contribution to the methods which fuse VI and MCMC, see chapter 4 for the details. See also the Neural-

Importance Sampler [Müller et al. 2019] and the Boltzmann Generator [Noé et al. 2019] for this idea in the

context of Importance Sampling.

If the VI method renders us with a variational approximation in the form Tθ#ν then we can run an MCMC

method on the target T−1
θ #π which, if the VI method worked well, should be approximately equal to ν. Given

approximate samples from T−1
θ #π, we can then transform them using Tθ to get approximate samples from

π. If ν is a standard Gaussian distribution and T−1
θ #π is exactly equal to ν then the MCMC method will

work well for numerous different reasons. By [Andrieu, A. Lee, et al. 2024, Corollary 39] we can control the

average acceptance rate of RWM from below. The Langevin diffusion will have spectral gap of exactly one,

and will be separable along the dimensions of the target and therefore simulable in parallel. The condition

number 2.4 is also optimal at exactly one. Suffice it to say that if T−1
θ #π is a standard Gaussian, the situation

is ideal, and if T−1
θ #π is a close approximation to a standard Gaussian, the situation is close to ideal. This

particular way of fusing VI with MCMC is instantiated in [M. Hoffman, Sountsov, et al. 2019; Parno and Y. M.

Marzouk 2018]. In the language of section 2.1.2.4, Tθ is a nonlinear preconditioner. One final thing to note

is that, given that we’re using exact methods such as MCMC, we have access to approximate samples from

the target π. Therefore we needn’t necessarily use the reverse KL, as outlined in section 2.2.1, and we can

instead approximate the forward KL, which is in the form of an expectation with respect to π. This is in fact

the method proposed in [Parno and Y. M. Marzouk 2018].
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Algorithm 2.1 Generic adaptive MCMC algorithm
inputs: Markov kernels {KL : X×X → [0, 1]}L∈Rd×d , learning mechanisms{
A : Xt × Rd×d → Rd×d

}
t∈N\{0}, initial state X0 ∈ X, initial preconditioner L0 ∈ Rd×d, chain length

n ∈ N\ {0}
outputs: A process {Xt}nt=1

For t ∈ [n] do

1. Sample Xt ∼ KLt−1
(Xt−1 → .)

2. Update the preconditioner: Lt = A (X0, . . . , Xt, Lt−1)

2.3 Adaptivity

In chapter 3 we will examine the ways in which a fixed linear preconditioner L ∈ Rd×d affects the performance

of MCMC algorithms. In the course of our examinations will see examples of preconditioners that are

stated in terms of expectations with respect to the target. These expectations include the covariance and

the ‘Fisher’ matrix introduced in [Michalis Titsias 2023] which is simply Eπ

[
∇2 (− log π (X))

]
. Absent any

methods to estimate these matrices before the start of the MCMC process, practitioners who wish to use

them to precondition will often estimate them using information from the chain. Then with each new estimate

we can build a preconditioner which we can use in the next step of the MCMC. This procedure is referred

to as ‘adaptive MCMC’. See [Andrieu and É. Moulines 2006; Andrieu and Thoms 2008; Laitinen and Vihola

2024; Gareth O. Roberts and Jeffrey S. Rosenthal 2007] for theory of the generic practice of adaptive

MCMC, [Haario, Saksman, and Tamminen 2001; Michalis Titsias 2023; Vihola 2012; Wallin and Bolin 2018]

for examples of particular adaptive MCMC algorithms. We can view the kernel KL : X × X → [0, 1] of

the MCMC algorithm as having the preconditioner L as a parameter. Each adaptive algorithm will also

incorporate a learning function at time n that takes the history of the chain {Xt}nt=1 (and possibly some

extra information, such as the proposals), and the most recent estimate of the expectation Ln−1 and output

the next estimate of the expectation Ln. This new estimate will then serve as the preconditioner which

parametrises the next Markov kernel that generates the subsequent state in the chain. See 2.1 for a generic

representation of the process. The final aim is to average f : X → R over {Xt}nt=1 to gain an estimate for

Eπ [f (X)] as we would do with the output of a non-adaptive method.

The Markov kernel KLt−1
is usually the kernel of a canonical MCMC algorithm which has been precondi-
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tioned, in the sense that the Markov chain generated by a π-invariant KL is isomorphic to the Markov chain

generated by a L#π-invariant KId , see section 2.1.2.5 for a more detailed exposition of this fact.

2.3.1 The structure of learning mechanisms

The learning mechanism A (X0, . . . , Xt, Lt−1) usually falls into one of two categories, depending on the form

of the ideal preconditioner. In the first category, the ideal preconditioner takes the form L = g (Eπ [f (X)])

where f : X→ Rd×d and g : Rd×d → Rd×d. For instance, in the case of preconditioning with the covariance

of the target distribution 3.2.2, we will have that f (x) := (x− π (x)) (x− π (x))T and g (A) := A−1/2. Precon-

ditioning with the diagonals of the covariance of the target 3.5 has f (x) := diag
(
(x− π (x)) (x− π (x))T

)
and g (A) := A−1/22. In the case of preconditioning with the Fisher matrix as in [Michalis Titsias 2023] 3.2.1,

we will have that f (x) := ∇ log π (x)∇ log π (x)
T and g (A) := A1/2. In this case we can use the Markov

chain to form the following estimator of the expectation: f̂n := (n− t0)−1∑n
t=t0

f (Xt) where t0 ∈ N\ {0} is

the time at which we start adapting, and is sometimes chosen as the end of the burn-in. This estimator can

be updated online as follows:

f̂n = f̂n−1 +
1

n− t0

(
f (Xn)− f̂n−1

)
(2.14)

The final ingredient for the learning mechanism is then to somehow go from g
(
f̂n−1

)
to g

(
f̂n

)
. In the

cases where g involves a matrix square root, and f involves an outer product, this can be achieved with a

rank-1 Cholesky update. The form of 2.14 dictates that the extended state
(
Xt, f̂t

)
is Markovian, which is a

very helpful fact in establishing theoretical results about the adaptive algorithm. See [Haario, Saksman, and

Tamminen 2001; Michalis Titsias 2023] for instances within this category.

In the second category, the ideal preconditioner takes the form of an optimal variational parameter,

see section 2.2.1 for an introduction to Variational Inference. For instance, argminΣ>0KL (π ∥N (0,Σ)) =

Covπ (X) (where this quantity exists) and we are back to preconditioning with the covariance. The forward

KL is expressed as an expectation with respect to the target. This property is shared by many optimisation

objectives in adaptive MCMC, see [Brofos et al. 2022; Hirt, M. Titsias, and P. Dellaportas 2021; Song, Zhao,

and Ermon 2018], and its presence makes sense since these preconditioners are learned to be optimal

2or perhaps f (x) := (x− π (x)) (x− π (x))T and g (A) := diag (A)−1/2 since the diag operator commutes with expectations.
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in the equilibrium regime of the Markov chain. One can then use the samples from the chain to estimate

gradients of the objective with respect to the parameter to be used in a gradient-descent type scheme which

is run in parallel with the Markov chain:

θt+1 = θt − γtĝ (θt;X0, . . . , Xt)

where ĝ : Θ×Xt+1 → Θ is an estimate of the gradient of the objective and γt > 0 is a learning rate. When ĝ

depends only on θt and Xt we have that (Xt, θt) is Markovian.

2.3.2 Adaptive MCMC theory

There have been many efforts in the past 25 years to analyse adaptive MCMC algorithms formally. The

extent of this analysis has been to establish conditions under which the adaptive mechanism maintains

‘good properties’ of existing non-adaptive algorithms, where by ‘good properties’ we mean the existence of

an LLN , a CLT, preservation of ergodicity, or any other such results.

2.3.2.1 Positive theory

[Haario, Saksman, and Tamminen 2001] give a strong LLN for the chain generated with their adaptive mech-

anism detailed in section 2.3.3. However this LLN is for bounded functions, and targets supported on a com-

pact set. [Saksman and Vihola 2010] extend the results of [Haario, Saksman, and Tamminen 2001] to non-

compact supports and unbounded functions by requiring that π is super-exponentially light-tailed. [Atchadé

2010] give conditions on the convergence and stability of the Markov operators KLt
and their invariant distri-

butions, for all t ∈ N\ {0}, under which a LLN holds. [Andrieu and É. Moulines 2006] give a decomposition of

the summand in the Markov chain estimator resulting in 3 terms which are easier to handle theoretically. One

term constitutes the summand of a telescoping sum, and one is a zero mean Martingale. The last describes

the innovations due to the learning step and must be controlled. [Laitinen and Vihola 2024] use this decom-

position to describe conditions under which the Markov chain estimator satisfies weak and strong LLNs and

a CLT. One notable condition is that of simultaneous geometric ergodicity, which assumes that each KL is

geometrically ergodic 1.3.1.3 with a constant that is independent of the initial state, for all preconditioners
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L in the parameter space. [Gareth O. Roberts and Jeffrey S. Rosenthal 2007] assert conditions that have

come to be known as ‘diminishing adaptation’ and ‘containment’ under which they guarantee ergodicity and

a weak LLN using coupling arguments. Diminishing adaptation simply requires that the differences between

kernels with subsequent adaptive parameters given by supx∈X

∥∥KLt+1 (x→ .)−KLt (x→ .)
∥∥
TV

converges

to zero in probability. Containment requires that the sequence of ε-mixing times of the Markov kernels at

each subsequent adaptive parameter is bounded in probability.

2.3.2.2 Counterexamples

The works mentioned above posit conditions under which adaptive MCMC satisfy the basic desiderata for

sampling algorithms. However there also exist instructive counterexamples in the literature: pathological

cases in which adaptation actively harms the sampling algorithm. [Andrieu and É. Moulines 2006] offer a

simple example on the state space X = {1, 2} in which naively allowing the parameters of the transition

matrix depend on the latest state Xi alters the invariant distribution of the process, even though it retains

Markoviannity and time-homogeneity. Abstractly, if Kθ(Xi) is no longer π-invariant then, even if Xi ∼ π we

would have

E [f (Xi+1)] = Eπ [E [f (Xi+1) |Xi ]]

=

∫
X×X

π (dx)Kθ(x) (x→ dx′) f (x′) ̸= Eπ [f (X)]

[Andrieu and Thoms 2008] use the same example to discuss the proposed solution to the problem in [An-

drieu and É. Moulines 2006] that relies on allowing the adaptive parameter to depend on the next-to-last

state Xi−1 instead of the last state. Let’s say that now Kθ(Xi−1) is π-invariant and that Xi ∼ π. Then for all

functions f : X→ R which are measurable with respect to the law of the process

E [f (Xi+1)] = E [E [f (Xi+1) |Xi ]]

= Eπ [E [f (Xi+1) |X ]]
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where the expectations are with respect to the randomness in the process up to time i + 1 and, since

E [f (Xi+1) |. ] is a measurable function with respect to the process, we have the final equality. Continuing:

E [f (Xi+1)] = Eπ [E [f (Xi+1) |X ]]

= Eπ [E [E [f (Xi+1) |Xi−1, X ] |X ]] (2.15)

Now, even though Eπ [E [f (Xi+1) |Xi−1, X ]] = Eπ [f (X)] due to the π-invariance of Kθ(Xi−1), we do not

have E [f (Xi+1)] = Eπ [f (X)] because the outer two expectations in 2.15 do not commute.

The proposed solution is to gradually allow the adaptive parameter to become less and less dependent

on the states in the chain. This is naturally achieved by allowing the parameter to converge in some sense.

For instance, the convergence may be that of Diminishing Adaptation discussed in the previous paragraph.

[Andrieu and Thoms 2008] discuss a simple case in which allowing the adaptive parameters to converge

deterministically to a set of values which render the resulting Markov kernel non-ergodic but still π-invariant

would break ergodicity.

[Atchadé 2010] offer a simple, seemingly sensible adaptive accept-reject algorithm on a finite state

space, in which the proposal variance increases upon acceptance and decreases upon rejection. The

resulting Markov chain has an equilibrium distribution which does not equal that of the kernel with any fixed

proposal. Therefore, even if the kernel with any particular proposal is π-invariant, the overall process is not.

[Gareth O. Roberts and Jeffrey S. Rosenthal 2007] extend this to a finite but arbitrarily large state space

with a target that has a communication barrier i.e. a state over which the Markov chain will have to ‘jump

over’ to pass. Therefore the variance of the proposal kernel needs to be inflated adaptively to a point at

which the Markov chain is able to do this. [Gareth O. Roberts and Jeffrey S. Rosenthal 2007] show that if

the proposal cannot do this, the Markov process will get stuck and no longer be ergodic. If the proposal can

do this, then [Gareth O. Roberts and Jeffrey S. Rosenthal 2007] show that this does not break the ergodicity

of the process, so long as the probability with which the proposal variance changes goes to zero with time.
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2.3.3 Two example algorithms and their computational complexity

In [Haario, Saksman, and Tamminen 2001] the authors attempt to learn L = Covπ (X)
−1/2. To define the

Markov kernel KLt−1
on the state space X they use

Xt := 1 {Ut−1 ≤ α (Xt−1 → Yt−1)}Yt + 1 {Ut−1 > α (Xt−1 → Yt−1)}Xt−1 (2.16)

with Ut−1 ∼ Uniform [0, 1] and Yt−1 ∼ N
(
Xt−1,

(
Lt−1L

T
t−1

)−1
)

. The acceptance probability α is as defined

in 1.2, with the proposal densities cancelling out as is usual in a random walk MCMC method. To define the

learning mechanism they choose an initial time t0 ∈ [n] at which they begin. They maintain an estimate of

the covariance of the target as follows:

Ct :=


C0 t ≤ t0

sdCov (X0, . . . , Xt) + sdεId t > t0

where Cov (X0, . . . , Xt) is the empirical covariance between the states of the Markov chain, C0 ∈ Rd×d is

an initial positive definite estimate, sd > 0 is a step-size, ε > 0 is a small constant to ensure the positive

definiteness of estimates Ct. Then the actual preconditioner can be formed as Lt = C
−1/2
t . The authors

use the following recursion:

Ct =
t

t+ 1
Ct−1 +

sd
t+ 1

(
tX̄t−1X̄

T
t−1 − (t+ 1) X̄tX̄

T
t +XtX

T
t + εId

)
(2.17)

for all t ≥ t0 + 1 to update their estimate of the covariance, where X̄t := (t+ 1)
−1∑t

k=0Xk. Since X̄t

can be updated using X̄t−1 and Xt, we have that
(
Xt, X̄t, Ct

)
is Markovian. Note that to sample from

N
(
Xt−1,

(
Lt−1L

T
t−1

)−1
)

we do not need C
−1/2
t−1 although we do need to calculate C

1/2
t−1 for some notion

of the square root. This can be achieved using three rank-1 updates to C
1/2
t−2, each of which has O

(
d2
)

computational complexity.

[Michalis Titsias 2023] learns L = Eπ

[
∇2U (X)

]1/2. The proposed method also uses 2.16 to construct
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the Markov kernel on X, except here we have that

Yt−1 ∼ N

Xt−1 +
σ2

2

(
Lt−1L

T
t−1

H
(
Lt−1LT

t−1

))−1

∇ log π (Xt−1) , σ
2

(
Lt−1L

T
t−1

H
(
Lt−1LT

t−1

))−1


where H (A) is the harmonic mean of the eigenvalues of a positive definite matrix A ∈ Rd×d, and the

acceptance probability α is as defined in 1.2. This is the usual MALA kernel 1.6, preconditioned with

Lt−1, which has been regularised by the harmonic mean of its eigenvalues. The quantity σ2 > 0 now

serves as a step-size. As detailed in [Michalis Titsias 2023, Section 4.1] the matrix LLT is learned to be

the covariance of the increment of the score across the chain, which has been Rao-Blackwellised in the

randomness determining the accept-reject mechanism:

LtL
T
t := Cov (E [∇ log π (X1)−∇ log π (X0)] , . . . ,E [∇ log π (Xt)−∇ log π (Xt−1)]) (2.18)

= Cov
(√

α (X0 → Y0) (∇ log π (Y0)−∇ log π (X0)) , . . . ,
√
α (Xt−1 → Yt−1) (∇ log π (Yt−1)−∇ log π (Xt−1))

)

where the expectations in the first line are with respect to the randomness determining whether the proposals

are accepted. Even though the intention was to learn LLT = Eπ

[
∇2U (X)

]
, [Michalis Titsias 2023] argues

that the strategy in 2.18 is superior because the score increment is ‘more centred [than the score] and close

to zero’ when the chain is transient. The Rao-Blackwellisation aims to reduce the variance of the resulting

estimator. Due to the fact that the learning mechanism must take place in the square root of LLT , and due to

the fact that the square root must be inverted to propose new states, an iteration takes O
(
d2
)

computational

complexity (assuming that the intermediate operations such as the calculation of the score are also O
(
d2
)
)

similarly to [Haario, Saksman, and Tamminen 2001].
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Chapter 3

Quantifying the effectiveness of linear

preconditioning in MCMC

In this chapter we will quantify the effects of linear preconditioners on the condition number κ as defined

in section 2.1.2.3. First we show that well-conditioned distributions exist for which κ can be arbitrarily large

and yet no linear preconditioner can reduce it. We then impose two sets of extra assumptions under which

a linear preconditioner can significantly reduce κ. For the random walk Metropolis we further provide upper

and lower bounds on the spectral gap with tight 1/κ dependence. This allows us to give conditions under

which linear preconditioning can provably increase the gap. We then study popular preconditioners such as

the covariance, its diagonal approximation, the Hessian at the mode, and the QR decomposition. We show

conditions under which each of these reduce κ to near its minimum. We also show that the diagonal ap-

proach can in fact increase the condition number. This is of interest as diagonal preconditioning is the default

choice in well-known software packages. We conclude with a numerical study comparing preconditioners in

different models.

The notation in this chapter can be found to be defined in section 7.1.3.
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3.1 Unpreconditionable distributions

Methods to adaptively seek a preconditioner are implemented in the MCMC samplers provided by the major

software packages. For instance the HMC sampler in the popular statistical modeling platform Stan [Car-

penter et al. 2017] offers the ability to infer the target covariance Σπ ∈ Rd×d giving an estimator Σ̂π ∈ Rd×d

to use as the inverse mass matrix. Proposition 26 has that this is equivalent to linear preconditioning with

L = Σ̂
− 1

2
π . Since computational effort is required to infer Σ̂π the idea is that preconditioning with L = Σ̂

− 1
2

π is

better than doing nothing. Even within the class of models whose potentials satisfy assumption 24 this will

not always be the case

Proposition 27. There exist distributions whose potentials satisfy definition 24 for which any non-orthogonal

linear preconditioner will cause the condition number to increase.

On such distribution has density of the form π (x, y) ∝ exp (−U (x, y)) where

U (x, y) =
m−M

2
(cosx+ cos y) +

M +m

2

(
x2

2
+
y2

2

)
(3.1)

for x, y ∈ R. For such a target the condition number after preconditioning κ̃ is bounded below by κ
(
LLT

)
κ1.

The Hessian of U is in the form diag {f (x) , f (y)} where f ranges freely in [m,M ]. The lower bound

κ
(
LLT

)
κ highlights that any preconditioning causes the target to be more ill-conditioned by an amount

exactly proportional to κ
(
LLT

)
. The full proof of Proposition 27 can be found in 7.2.3.1.

The issue for the potential 3.1 is that every eigenvalue of ∇2U can assume both the value of m and M

at given points in Rd. In the following two sections we characterise effective linear preconditioners for two

broad classes of models. We do this by establishing upper bounds on the condition number after linear

preconditioning under model appropriate assumptions.

Throughout the rest of this chapter λi (x) denotes the ith largest eigenvalue of ∇2U (x) and vi (x) the

corresponding normalised eigenvector. Since the Hessian is everywhere symmetric its eigenvectors are

orthogonal for a fixed x ∈ Rd. Since L can be assumed to be symmetric we can then denote its ith

eigenvalue as σi with associated eigenvector vi.
1Here κ (.) : Rd×d → R+ is a function on the positive definite matrices which outputs κ (A) := λmax (A) /λmin (A) where λmax (A)

and λmax (A) are the maximum and minimum eigenvalues of A respectively.
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3.2 Linear preconditioning for additive Hessians

We call a Hessian additive if it has the form

∇2U (x) = A+B (x) (3.2)

where A,B (x) ∈ Rd×d are symmetric. Even though all Hessians assume this form, we will see that those

most amenable to linear preconditioning are those for which B (x) varies little across the state space. Ex-

amples of models whose potentials have Hessians in this form include: Gaussians (B (x) ≡ 0), strongly

log-concave mixtures of Gaussians [Dalalyan 2017, Section 6.1], and Bayesian Huberised regressions with

strongly log-concave priors [Rosset and Zhu 2004]. The results in this section are presented in generality,

but the assumptions under which they hold are particularly appropriate for models with an additive Hessian.

We first present a general result under the following assumptions on the eigenstructure of ∇2U and L.

Assumption 28. There exists an ε > 0 such that

(1 + ε)
−1 ≤ λi (x)

σ2
i

≤ 1 + ε

for all i ∈ [d] and x ∈ Rd.

Assumption 29. There exists a δ > 0 such that vi (x)
T
vi ≥ 1−

(
1−
√
1− δ

)2
for all i ∈ [d] and x ∈ Rd.

Theorem 30. Let π have a potential U satisfying assumption 24. For a given preconditioner L ∈ Rd×d for

which assumptions 28 and 29 hold, the condition number after preconditioning satisfies

κ̃ ≤ (1 + ε)
2

1 + δ

√√√√ d∑
i=1

σ2
i

d∑
i=1

σ−2
i

4

Proof can be found in section 7.2.3.2. Assumption 28 states that the eigenvalues of ∇2U (x) do not

change much over Rd. Assumption 29 implies that vi (x)
T
vi ≥ 1− δ for i ∈ [d] , x, y ∈ Rd and vi (x)

T
vj ≤ δ

for i ∈ [d] , x, y ∈ Rd where i ̸= j (see section 7.2.3.3 for details). In the Gaussian case ε = δ = 0 when

L = Σ
− 1

2
π and the bound becomes κ̃ ≤ 1 as expected.
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Remark 31. In the case of the additive Hessian, the eigenvalue stability inequality [Tao 2012, (1.63)] implies

that λi (A)− ∥B (x)∥2 ≤ λi (A+B (x)) ≤ λi (A) + ∥B (x)∥2 for all i ∈ [d]. Therefore choosing L = A
1
2 gives

us that

1− ∥B (x)∥2
λd (x)

≤ λi (x)

σ2
i

≤ 1 +
∥B (x)∥2
λd (x)

for all i ∈ [d]. So if ∥B (x)∥2 is small, L = A
1
2 will yield a smaller ε. If ∥B (x)∥2 is large, but B (x) does not

exhibit large variations we can simply restate the Hessian as ∇2U (x) = Ã + B̃ (x) where Ã := A + B (x∗)

and B̃ (x) := B (x)−B (x∗) where x∗ ∈ Rd is some point in the state space, and use L = Ã
1
2 .

Remark 32. Note that the quantity
√∑

i σ
2
i

∑
i σ

−2
i =

√
Tr (LLT )Tr

(
(LLT )

−1
)

is upper bounded by d
√
κ (LLT ).

It can be viewed as an alternative ‘condition number’ of LLT , similar to that proposed in [Langmore et al.

2020].

The fact that
√∑

i σ
2
i

∑
i σ

−2
i multiplies δ shows that when sampling from highly anisotropic distributions

the penalty for misaligned eigenvectors of LLT relative to ∇2U is larger. As an example, take π = N (0,Σπ)

where Σπ ∈ R2×2 has eigendecomposition Σπ = QπDπQ
T
π with Dπ = diag {λ1, λ2}. We assume that Σπ

is not a multiple of the identity. Construct the preconditioner L = QπGD
− 1

2
π GTQT

π with correct eigenvalues

(ε = 0 in assumption 28) but whose eigenvectors have been perturbed by an orthogonal matrix G from

those of Σπ by the angle arccos (1− δ). It can be shown that the coefficient of δ4 in κ̃ is (1/4) × (l − 2)
2

where l := λ1λ
−1
2 + λ−1

1 λ2. So the more anisotropic Σπ is the more we are punished for having misaligned

eigenvectors, as stated in the remark above. Figure 3.1 illustrates this fact.

Each plot contains two contours: a blue one representing N (0,Σπ) and an orange one representing

N
(
0,
(
LLT

)−1
)

. In both cases G perturbs the eigenvectors by π/4, the angle between the semi-major axes

of the contours is shown in the red arrows. In the first case we have (λ1, λ2) = (2, 1), in the second we have

(λ1, λ2) = (50, 1) engendering a far smaller ‘overlap’ than in the first. The fact that κ̃ = O
(
δ4
)

also shows

that the δ dependency in Theorem 30 is tight.

Assumptions 28 and 29 require knowledge of each individual eigenvalue and eigenvector of ∇2U across

the entire state space, which may not always be available. We next provide more easily verifiable assump-

tions under which a similar result holds. This is achieved using results from matrix perturbation theory. The

eigenvalues of ∇2U can be controlled using only knowledge of the spectral norm by Weyl’s inequality (see
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Figure 3.1: Two pairs of contour plots, each representing N (0,Σπ)(blue) and N
(
0,
(
LLT

)−1
)

(orange). The
angle between the semi-major axes (red) is the same in either case, but the preconditioner in the right hand
plot is worse due to the anisotropy of N (0,Σπ).

assumption 33). Similarly, using the Davis-Kahan theorem (e.g. [Yu, Wang, and Samworth 2015]) eigen-

vectors can be controlled by the spectral norm provided that an ‘eigengap’ condition holds (see assumption

34). We therefore provide a second result under assumptions 33 and 34 below.

Assumption 33. There exists an ε > 0 such that
∥∥∇2U (x)− LLT

∥∥
2
≤ σ2

dε for all x ∈ Rd.

Assumption 34. That γ > 0 where

γ := inf
i,j∈[d],|i−j|=1

∣∣σ2
i − σ2

j

∣∣
is the eigengap of LLT .

Theorem 35. Let π have potential U satisfying assumption 24. For a given preconditioner L ∈ Rd for which

assumptions 33 and 34 hold, the condition number after preconditioning satisfies

κ̃ ≤ (1 + ε)
2

1 + δ

√√√√ d∑
i=1

σ2
i

d∑
i=1

σ−1
i

4

where δ := 1−
(
1− 2γ−1σ−2

d ε
)2

.

For a proof see section 7.2.3.4. Based on this result, it might be tempting to arbitrarily increase the

eigengap γ or the least eigenvalue σd of L. Note, however, that this may also cause ε to increase.
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Remark 36. Section 7.2.3.5 shows that assumption 33 implies 28. Similarly assumption 33 and 34 com-

bined imply assumption 29 [Yu, Wang, and Samworth 2015, Corollary 1]. If the norm
∥∥∇2U (x)− LLT

∥∥
2

is

difficult to compute the Frobenius norm can be used to form the upper bound since
∥∥∇2U (x)− LLT

∥∥
2
≤∥∥∇2U (x)− LLT

∥∥
F

.

Remark 37. In the case of the additive Hessian an application of the triangle inequality gives

∥∥A+B (x)− LLT
∥∥
2
≤ min

{∥∥A− LLT
∥∥
2
+ ∥B (x)∥2 ,

∥∥B (x)− LLT
∥∥
2
+ ∥A∥2

}
for all x ∈ Rd. Therefore assumption 33 suggests choosing L = A

1
2 if A is ‘larger’ than B (x) across the state

space and L = B (x∗)
1
2 for some x∗ ∈ Rd if B (x) is ‘larger’, but does not exhibit large variations across Rd.

The eigengap assumption 34 is always satisfiable as we are free to choose L. It may not, however, be

desirable. We therefore present a final bound on κ̃ that requires only assumption 33.

Theorem 38. Let π have potential U satisfying assumption 24. For a given preconditioner L ∈ Rd×d for

which assumption 33 holds, the condition number after preconditioning satisfies

κ̃ ≤ (1 + ε)

(
1 +

σ2
1

m
ε

)

For a proof see section 7.2.3.6. In the next two subsections we consider some popular choice of linear

preconditioner that can be shown to reduce the condition number when the Hessian of the potential of π is

of additive form, as described above.

3.2.1 The Fisher matrix

[Michalis Titsias 2023] suggests using L ∝ I 1
2 where I := Eπ

[
∇U (x)∇U (x)

T
]

is called the Fisher matrix.

This choice of preconditioner maximises the expected squared jump distance of the LMC. Integration by

parts shows that I can also be written Eπ

[
∇2U (x)

]
, which highlights its relationship with ∇2U . Proposition

39 shows that if a choice of L satisfying assumption 33 exists, then the alternative choice of preconditioner

I 1
2 will also be valid.
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Proposition 39. Let π have potential U ∈ C2 and assume there exists a preconditioner L ∈ Rd×d satisfying

assumption 33 for some ε > 0. Then
∥∥∇2U (x)− I

∥∥
2
≤ 2σ2

dε for all x ∈ Rd where σ2
d is the least eigenvalue

of LLT .

For a proof see section 7.2.3.7.

Corollary 40. Consider π with a potential satisfying assumption 24 and an L ∈ Rd×d satisfying assumption

33 for some ε > 0. Then choosing the preconditioner I 1
2 gives

κ̃ ≤ (1 + 2ε)

(
1 +

σ2
1

m
2ε

)

where σ2
1 is the greatest eigenvalue of LLT .

The proof is a direct application of Theorem 38.

3.2.2 The target covariance

Preconditioning with an estimate of the target covariance is a popular strategy. To give some intuition for why

this strategy is sensible we study the spectral gap of the Ornstein-Uhlenbeck (O-U) process, and show how

this changes under preconditioning. The preconditioned O-U process is an instance of the preconditioned

Langevin diffusion on a N (0,Σπ) target which is driven by the SDE:

dXt = −
1

2

(
LLT

)−1
Σ−1

π Xtdt+ L−1dBt

where (Bt)t≥0 is a Brownian motion. Since our practical goal is to simulate this process on a computer,

we must take care when interpreting results about its continuous time formulation. We therefore subject

ourselves to the condition
∣∣det (−L−1L−TΣ−1

π

)∣∣ = 1, which precludes the choice L′ := s−1L for increasingly

large s > 0, which would arbitrarily increase the rate of convergence of the continuous time process but

destabilise the discretised process for any fixed numerical integrator step size. The result below is well

known, but can be found, for instance, by modifying results in [Negrea 2022].
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Proposition 41. The preconditioner L = Σ
− 1

2
π maximises the spectral gap of the preconditioned O-U pro-

cess subject to
∣∣det (−L−1L−TΣ−1

π

)∣∣ = 1.

Here we provide results on how localised the Hessian of the potential is around Σ−1
π in order to apply

assumption 33 with L = Σ
− 1

2
π .

Proposition 42. Let π be a distribution with potential U ∈ C2, covariance Σπ ∈ Rd×d, mode x∗ ∈ Rd,

and expectation µπ ∈ Rd. Assume that there exist positive definite matrices ∆+,∆− ∈ Rd×d such that

∆− ⪯ ∇2U (x) ⪯ ∆+ for all x ∈ Rd and that 1− (x∗ − µπ)
T
∆+ (x∗ − µπ) > 0. Then P− ⪯ Σ−1

π ⪯ P+ where

P+ = c−1
(
Id + (1− tr (D+))

−1
D+

)
∆+

P− = c
(
Id + (1− tr (D−))

−1
D−
)
∆−

with D± = ∆± (x∗ − µπ) (x
∗ − µπ)

T and c :=
√
det∆− det∆−1

+ ≤ 1, and in addition

∥∥∇2U (x)− Σ−1
π

∥∥
2
≤ max {∥∆+ − P−∥2 , ∥P+ −∆−∥2}

for all x ∈ Rd.

For a proof see section 7.2.3.8. Proposition 42 allows us to localise the covariance in terms of the

parameters of the target distribution.

One of the intuitions that can be gained from this section is that Hessians which exhibit small variations

across the state space are preconditionable. In this scenario we would have ∆+ ≈ ∆− and hence that c ≈ 1.

Proposition 42 then suggests that so long as the distance between the mean and the mode is not too great,∥∥∇2U (x)− Σ−1
π

∥∥
2

is small. In summary, if π is preconditionable, and if the mean is close to the mode, then

preconditioning with L = Σ
− 1

2
π is sensible.

Recall that a potential with additive Hessian satisfies ∇2U (x) = A + B (x) where A,B (x) ∈ Rd×d are

symmetric. In this case ∆− and ∆+ will be generated by variations in B (x). Therefore, given proposition 42,

a tighter localisation of B (x) gives a tighter localisation of ∇2U (x) around the inverse covariance, leading

to the following result.
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Corollary 43. Let π be a distribution with potential U ∈ C2, covariance Σπ ∈ Rd×d, mode x∗ ∈ Rd, and

expectation µπ ∈ Rd. If the Hessian of U is of the form ∇2U (x) = A+B (x) with ∥B (x)∥2 ≤ ε and εId ≺ A

for some ε > 0, then if 1− (x∗ − µπ)
T
(A+ εId) (x

∗ − µπ) > 0 it follows that

∥∥∇2U (x)− Σ−1
π

∥∥
2
≤
(
c−1 + 1

)
ε+

(
c−1 − 1

)
∥A∥2 +max

{∥∥∥P̃−
∥∥∥
2
,
∥∥∥P̃+

∥∥∥
2

}

where

P̃+ = c−1
(
1− tr

(
D̃+

))−1

D̃+ (A+ εId)

P̃+ = c
(
1− tr

(
D̃−
))−1

D̃− (A− εId)

with D̃± = (A± εId) (x∗ − µπ) (x
∗ − µπ)

T and c :=
√

det (A− εId) det (A+ εId)
−1 ≤ 1.

A proof can be found in 7.2.3.9. In 3.6.2 we look at the difference in performance between the precondi-

tioners L = A
1
2 , L = Σ

− 1
2

π , and L = Id.

3.3 Linear preconditioning for multiplicative Hessians

A multiplicative Hessian has the form

∇2U (x) = XTΛ (x)X (3.3)

where X ∈ Rn×d for n ≥ d is a matrix whose rows are usually the rows of some dataset and Λ (x) ∈ Rn×n.

An example of a model with a multiplicative Hessian is as follows

π (θ) ∝ exp

(
−

n∑
k=1

lyk

(
xTk θ

)
− λ

2
(θ − µ)T XTΛX (θ − µ)

)
(3.4)

where {(yk, xk)}nk=1 are observations with yk ∈ R and xk ∈ Rd for k ∈ [n], X is a matrix with element in row

i and column j equal to the jth element of xi, and Λ ∈ Rn×n is positive definite. Here lyk
denotes some

loss associated with observation k. In the case that lyk
is a negative log-likelihood, equation 3.4 therefore

describes the posterior associated with a typical generalised linear model using the generalised g-prior of
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[Hanson, Branscum, and W. O. Johnson 2014].

Without further assumptions we have the following:

Proposition 44. A distribution π whose potential U has a multiplicative Hessian satisfies

supx∈Rd λn−d+1 (Λ (x))

infx∈Rd λd (Λ (x))κ (XTX)
≤ κ ≤ κ

(
XTX

) supx∈Rd λ1 (Λ (x))

infx∈Rd λd (Λ (x))

The proof in section 7.2.3.10 relies on an extension of Ostrowski’s theorem to rectangular matrices

[Higham and Cheng 1998, Theorem 3.2]. In many cases Λ (x) will be diagonal and each eigenvalue

λi (Λ (x)) will range between the same possible values c and C (this is the case for binary logistic regression

using the g-prior, for example). In this instance a more precise statement about κ can straightforwardly be

made.

Assumption 45. The Hessian of the potential of π is of multiplicative form with Λ (x) diagonal, and there

exists c, C > 0 such that supx∈Rd λi (Λ (x)) = C and infx∈Rd λi (Λ (x)) = c for all i ∈ [n].

Proposition 46. A distribution π for which assumption 45 holds has a condition number

κ =
C

c
κ
(
XTX

)
The choice L =

(
XTX

) 1
2 A natural choice of preconditioner here is L =

(
XTX

) 1
2 . Indeed L =

(
XTX

) 1
2 is

proportional to the preconditioner suggested by [Dalalyan 2017, Section 6.2]. For this we have the following.

Proposition 47. Consider a distribution π whose potential has a multiplicative Hessian. Then precondition-

ing with L =
(
XTX

) 1
2 gives

supx∈Rd λn−d+1 (Λ (x))

infx∈Rd λd (Λ (x))
≤ κ̃ ≤ supx∈Rd λ1 (Λ (x))

infx∈Rd λd (Λ (x))

For a proof see section 7.2.3.11. Under assumption 45 the upper and lower bounds of proposition 47

are equal giving:

Corollary 48. Consider a distribution π for which assumption 45 holds. Choosing L =
(
XTX

) 1
2 gives

κ̃ = C/c.
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Hence the condition number is reduced under preconditioning with L =
(
XTX

) 1
2 . The level of reduction

will be determined by κ
(
XTX

)
, which characterises how far from orthogonal XTX is. In the context of

regression or classification problems κ
(
XTX

)
will be smallest under an orthogonal design and larger when

there is more collinearity among features of when different features have different variances.

The QR decomposition A popular strategy for regression and classification models in whichX is a design

matrix is to perform a (reduced) QR decomposition, setting X = QR where Q ∈ Rn×d is orthogonal and

R ∈ Rd×d is upper triangular2. In this case the preconditioner is L = R, from which is follows by setting

X = Q in proposition 44 that

κ̃ ≤ supx∈Rd λ1 (Λ (x))

infx∈Rd λd (Λ (x))

The QR strategy therefore gives the same upper bound as the choice
(
XTX

) 1
2 of the previous section.

The Hessian at the mode Another natural choice of preconditioner is L = ∇2U (x∗) =
(
XTΛ (x)X

) 1
2 for

some x∗ ∈ Rd. For instance x∗ could be the mode of π. Here we have the following

Proposition 49. Consider a distribution π whose potential has a multiplicative Hessian. Then choosing

L =
(
XTΛ (x∗)X

) 1
2 gives

κ̃ ≤
supx∈Rd λ1

(
Λ (x∗)−

1
2 Λ (x) Λ (x∗)−

1
2

)
infx∈Rd λd

(
Λ (x∗)−

1
2 Λ (x) Λ (x∗)−

1
2

) ≤ ( supx∈Rd λ1 (Λ (x))

infx∈Rd λd (Λ (x))

)2

A proof of the proposition can be found in 7.2.3.12. Note that the first upper bound is simply the condition

number of π̃, a measure whose potential has Hessian Λ (x), after preconditioning with L = Λ(x∗)
1
2 . There-

fore if π̃ is preconditionable with L = Λ(x∗)
1
2 then π is preconditionable with L =

(
XTΛ (x∗)X

) 1
2 . Therefore

the strategy of using L =
(
XTΛ (x∗)X

) 1
2 may be preferable to the previous two options in the setting where

Λ (x) still has some variation between eigenvalues, but when it does not change much between different

values of x, meaning it is an almost constant matrix. In that case Λ (x∗)−
1
2 Λ (x) Λ (x∗)−

1
2 should be close

to the identity, and so the condition number after preconditioning with the Hessian at the mode will be ≈ 1,
2This can be found e.g. in https://mc-stan.org/docs/stan-users-guide/regression.html under the section titled ‘The QR Reparame-

terization’.
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whereas supx∈Rd λ1 (Λ (x)) / infx∈Rd λd (Λ (x)) might still be much larger than 1. We compare the Hessian

at the mode to the choice L =
(
XTX

) 1
2 empirically in 3.6.3.

3.4 Tight condition number dependence of the spectral gap of RWM

[Andrieu, A. Lee, et al. 2024] give upper and lower bounds on the spectral gap of the RWM that are tight

in the dimension, but only the lower bound is explicit in its dependence on the condition number. Here we

show that if some additional conditions are imposed on U akin to an additive Hessian structure then the

dependence on κ can also be made explicit in the upper bound.

Assumption 50. The potential of π satisfies assumption 24 and there is an ε > 0 such that
∥∥∇2U (x)−∇2U (y)

∥∥
2
≤

mε for all x, y ∈ Rd.

Remark 51. Assumption 50 will hold when∇2U (x) = A+B (x) with ∥B (x)∥2 suitably small, since supx ∥B (x)∥x <

mε/2 =⇒
∥∥∇2U (x)−∇2U (y)

∥∥
2
≤ 2 supx ∥B (x)∥x ≤ mε as required. Assumption 50 is therefore simply

one way to formalize the notion of ‘additive’ Hessian structure.

Theorem 52. Let π have potential U ∈ C2 satisfying assumption 24 with condition number κ = M/m ≥ 1.

If π also satisfies assumption 50 then the spectral gap γκ of RWM with proposal variance σ2Id such that

σ2 := ξ/ (Md) for any ξ > 0 satisfies

Cξ exp (−2ξ) 1
κ

1

d
≤ γκ ≤ (1 + 2ε)

ξ

2

1

κ

1

d

where C = 1.92× 10−4.

For a proof see 7.2.3.13. Both bounds presented above are O
(
κ−1

)
, which implies that the relaxation

time 1/γκ is precisely linear in κ. The lower bound is as originally presented by [Andrieu, A. Lee, et al.

2024, Theorem 1], and the choice σ2 = ξ/ (Md) is as recommended in that work to ensure tight O
(
d−1

)
dependence. As the authors remark, the constant C can be made a few orders of magnitude larger.

Theorem 52 can be combined with the condition number results of sections 3.2 and 3.3 to guarantee

under the assumptions stated there that the spectral gap increases under appropriate linear preconditioning,
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as shown in the corollary below

Corollary 53. Let π has potential U ∈ C2 satisfying assumption 24 with condition number κ = M/m ≥ 1.

Assume that π also satisfies 50 with constant ε′ > 0. Using a preconditioner L ∈ Rd×d satisfying assumption

33 with constant ε > 0 ensures that the spectral gap γκ of RWM with proposal variance σ2Id such that

σ2 := ξ/ (Md) for any ξ > 0 increases under preconditioning whenever

κ ≥ 1

2
C−1 exp (2ξ) (1 + 2ε′) (1 + ε)

(
1 +

σ1 (L)
2

m
ε

)

where C = 1.972× 10−4, and σ1 (L) is the greatest singular value of L.

Corollary 53 uses Theorem 52 along with Theorem 38, which provides an upper bound on the condition

number after preconditioning in the additive Hessian setting. This bound leads to a lower bound on the

relaxation time, which can be compared with the upper bound from Theorem 52 before preconditioning.

This comparison establishes that preconditioning ensures an improvement in relaxation time, provided the

initial condition number κ is sufficiently large. A proof can be found in section 7.2.3.14. Note that a similar

result could be stated by applying the bounds of Theorem 30 or Theorem 35 in the place of Theorem 38,

which would then modify the necessary lower bound on κ in the above.

3.5 Counterproductive diagonal preconditioning

The appeal of diagonal preconditioning is motivated by the promise of reducing the condition number inO (d)

computational cost. Therefore choosing L = diag
(
Σ̂π

)− 1
2

for some estimate Σ̂π of the target covariance has

become a common practice since it is viewed as computationally cheap, and it is assumed that it will offer an

improvement on no preconditioning at all. The developers of Stan [Carpenter et al. 2017] for instance, offer

the option of diagonal preconditioning with the target covariance as using a diagonal mass matrix. Such an

option is also offered in the TensorFlow Probability library [Abadi et al. 2016].

In fact, we show here that there are examples of distributions for which diagonal preconditioning in this

manner can actually increase the condition number, and therefore be explicitly worse than performing no

preconditioning at all. This phenomenon can be observed even when the target is Gaussian. Noting that

71



κ̃ =

∥∥∥∥diag
(
Σ̂π

) 1
2

Σ−1
π diag

(
Σ̂π

) 1
2

∥∥∥∥
2

∥∥∥∥diag
(
Σ̂π

) 1
2

Σ−1
π diag

(
Σ̂π

) 1
2

∥∥∥∥
2

=
∥∥C−1

π

∥∥
2
∥Cπ∥2 where Cπ ∈ Rd×d is

the correlation matrix associated with Σπ, it suffices to find a Σπ for which κ̃ = κ (Cπ) > κ (Σπ) = κ. The

matrix below is such an example.

Σπ =



21.5 5.7 18.7 4.5 6.9

⋆ 2.0 4.9 1.2 2.1

⋆ ⋆ 16.3 3.9 5.7

⋆ ⋆ ⋆ 1.4 1.4

⋆ ⋆ ⋆ ⋆ 2.9


=⇒ κ ≈ 4.4× 103, κ̃ ≈ 8.1× 103 (3.5)

In the above we have truncated the entries to a single decimal place: see section 7.2.3.15 for the full matrix.

The condition number increases by a substantial amount, even though we have perfect knowledge of the

target covariance. See section 3.6.1 for an empirical analysis of the random walk Metropolis on a N (0,Σπ)

target (with Σπ as above) after diagonal and dense preconditioning.

In a practical scenario we would have to expend computational effort to construct diag
(
Σ̂π

)− 1
2

and so

for a target such as the one described here, this effort would be wasted as it actually reduces sample quality.

In general we can conjecture that targets with covariance matrices whose associated correlations are far

from being diagonally dominant will be least amenable to diagonal preconditioning.

3.6 Preconditioning experiments

3.6.1 Counterproductive diagonal preconditioning

This experiment illustrates the phenomenon described in section 3.5: namely that there exist Gaussian tar-

gets in the form N (0,Σπ) such that preconditioning with L = diag(Σπ)
−1/2 increases the condition number.

We compare the performance of three RWM algorithms: one with no preconditioning, one with dense

preconditioning (L = Σ
−1/2
π ), and one with diagonal preconditioning (L = diag(Σπ)

−1/2). Each chain targets

N (0,Σπ) with Σπ as in 3.5 and is initialised at equilibrium. Proposals take the standard RWM form X ′ =

X + σL−1ξ with ξ ∼ N (0, I5) and σ = 2.38/
√
d as recommended by [Gareth O. Roberts and Jeffrey S.
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Figure 3.2: logESS of 100 runs at 10,000 iterations per run of RWM with dense, diagonal, and zero precon-
ditioning. Each algorithm is started in equilibrium and targets N (0,Σπ) with Σπ as in 3.5.

Rosenthal 2001]. We run each chain from each algorithm 100 times at 10,000 iterations per chain. For

each chain we compute the ESS (see 21 for a definition of this quantity) in each dimension using the

effectiveSize function from the coda package [Plummer et al. 2024].

As can be seen in Figure 3.2 the ESS’s of the RWM chain with no preconditioning are clearly larger in

dimensions 2, 4, and 5 from the diagonally preconditioned chain. This is despite the diagonal preconditioner

being formed with perfect knowledge of the target covariance. As is expected the dense preconditioner

performs the best since the target effectively becomes a standard Gaussian.
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3.6.2 Preconditioning the additive Hessian

One probabilistic model with additive Hessian structure is a Bayesian regression with hyperbolic prior. It is

well known that the Laplace prior β 7→ 2−1λ exp(−λ∥β∥1) for β ∈ Rd and λ > 0 imposes the same sparsity

in the maximum a posteriori estimates as would regularisation with the LASSO [Tibshirani 1996] since it

concentrates sharply around β = 0. More generally, priors with exponential tails can be motivated by results

concerning the contraction of regression parameter posteriors around their true values. As demonstrated in

the discussion following Theorem 8 in [Castillo, Schmidt-Hieber, and Vaart 2015], heavy-tailed priors such

as the Laplace distribution achieve good rates of contraction. Simply using a Laplace prior would violate

the M -smoothness assumption due to the behaviour at β = 0. The hyperbolic prior, however, is a smooth

distribution with exponential tails, and so we will use this as a prior for the regression parameters β ∈ Rd.

We assume that Y = Xβ + ϵ where ϵ ∼ N (0, σ2In) for σ2 > 0 known and n > d. We also assume that the

columns of X ∈ Rn×d are standardised to have variance 1. Because of this it is reasonable to use the same

scale in each dimension of the prior. The resulting posterior has a potential of the form

U(β) =
1

2σ2
∥Y −Xβ∥2 + λ

d∑
i=1

√
1 + β2

i , (3.6)

which implies

∇2U(β) =
1

σ2
XTX + λD(β), (3.7)

where D(β) = diag{(1 + β2
i )

−3/2 : i ∈ [d]}. The Hessian is therefore additive with A = σ−2XTX and

B(β) = λD(β).

Equations (3.6)-(3.7) show that the posterior is a well-conditioned distribution, meaning that U satisfies

Assumption 24 with m = σ−2σd(X
TX) and M = σ−2∥XTX∥ + λ. Preconditioning with L = (σ−2XTX)1/2

gives κ̃ = 1+σd(X
TX)−1λσ2 ≤ κ. In this case the distance between LLT and the Hessian can be bounded

using ∥∇2U(β)− LLT ∥ ≤ λ, so we can also apply the results of Section 3.2.2 to justify the use of the target

covariance by setting ϵ = λ in Corollary 43. These results imply that when λ is small then preconditioning

with either L = (σ−2XTX)1/2 or L = Σ
−1/2
π should improve the efficiency of the sampler, so long as the

distance between the mean and the mode is not too large.
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In the following experiment we run MALA chains on target distributions with L = (σ−2XTX)1/2, L =

Σ
−1/2
π , and L = Id. We set d ∈ {2, 5, 10, 20, 100} and n = {1, 5, 20} × d for each value of d. At each

combination of n and d we run 15 chains for each preconditioner. Each chain is composed by initialising

at β = (XTX)−1XTY and taking 104 samples to equilibrate. We initialise the step size at d−1/6 and adapt

it along the course of the chain seeking an optimal acceptance rate of 0.574 according to the results of

[Gareth O. Roberts and Jeffrey S. Rosenthal 2001]. We then continue the chain with preconditioning and a

fixed step size of d−1/6 for a further 104 samples, over which we measure the ESS of each dimension. To

construct L = Σ
−1/2
π we simply use the empirical covariance of the first 104 samples.

For the model parameters we set λ =
√
n/d using the lower bound of [Castillo, Schmidt-Hieber, and

Vaart 2015]. Every element of X is an independent standard normal random variable, and Y is generated

by sampling β0 from the prior and setting Y = Xβ0 + ϵ with ϵ ∼ N (0, Id), meaning σ = 1.

The boxplots in Figure 3.6.2 show the median ESSs for each run. The figure demonstrates that in the

n/d ∈ {5, 20} cases preconditioning with L = Σ
−1/2
π is just as good as preconditioning with L = A1/2 where

A = σ−1XTX. For n/d = 1 the results are mixed: for instance in the (d, n) = (100, 100) configuration the

first 104 iterations of the MALA chain mixed poorly, offering a poor estimate of Σπ. The performance suffered

heavily if no preconditioner was applied.

3.6.3 Preconditioning the multiplicative Hessian

To study preconditioning under the multiplicative Hessian structure we consider a Bayesian binomial regres-

sion with a generalised g-prior [Sabanés Bové and Held 2010, Section 2.1][Held and Sauter 2017, Section

2.2]. The generalised g-prior is an extension of the classical g-prior to generalised linear models that have

dispersion parameters of the form ϕi := ϕw−1
i for i ∈ [n] and known weights wi ∈ R+. It is motivated by

constructing an ‘imaginary sample’ of responses y0 = h(0)1n ∈ Rn from a generalised linear model with

inverse link function h(.) and design matrix X ∈ Rn×d. Assigning the parameter vector β ∈ Rd a flat prior, it

is observed that as n→∞ the posterior distribution of β in this construction tends to Nd(0, gϕc(X
TWX)−1)

where W = diag{wi : i ∈ [n]}, g and ϕ are hyperparameters, and c is a model-specific constant. See

[Sabanés Bové and Held 2010, Section 2.1] for a more thorough exposition.
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Figure 3.3: Boxplots of the medians of the ESSs across configurations of (n, d) with different preconditioners
on the Bayesian linear regression with a Hyperbolic prior. The leftmost boxplot in each grouping corresponds
to preconditioning with L = σ(XTX)1/2 (‘A’ in the legend), the middle boxplot has L = Σ

−1/2
π (‘covariance’

in the legend), the rightmost has L = Id (‘none’ in the legend).

We follow the advice given by [Sabanés Bové and Held 2010, Section 2.1] and [Held and Sauter 2017,

Section 2.2] by setting wi = mi for all i ∈ [n]. Using a logistic link gives a posterior with potential

U(β) =

n∑
i=1

(
wi

(
(1− Yi)XT

i β + log(1 + exp(−XT
i β))

))
+ (gϕc)−1βTXTWXβ (3.8)

with Hessian ∇2U(β) = XTΛ(β)X, where

Λ(β) :=Wdiag{exp(XT
i β)(1 + exp(XT

i β))
−2 + (gϕc)−1 : i ∈ [n]}

The potential U therefore satisfies Assumption 24 withM = (0.25+(gϕc)−1)wmax∥XTX∥ andm = (gϕc)−1wminσd(X
TX),

where wmax := maxi wi and wmin := mini wi. We choose g and ϕ such that (gϕc)−1 = λn−1, where λ = 0.01.

We examine the effectiveness of preconditioning with L ∈ {Σ−1/2
π , I1/2,∇2U(β∗)1/2, Id, (n−1XTX)1/2}

where Σπ is the covariance of the posterior, I is the ‘Fisher matrix’ of [Michalis Titsias 2023], β∗ is the

mode, and L = (n−1XTX)1/2 is the preconditioner used in [Dalalyan 2017, Section 6.2]. When L ∈
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{Id, (n−1XTX)1/2,∇2U(β∗)1/2} the condition numbers are given by

L = Id ⇒ κ̃ = κ =
n
4 + λ

λ

wmax

wmin
κ(XTX)

L = (n−1XTX)
1
2 ⇒ κ̃ =

n
4 + λ

λ

wmax

wmin

L = ∇2U(β∗)
1
2 ⇒ κ̃ =

n
4 + λ

λ

nmaxi p
∗
i (1− p∗i ) + λ

nmini p∗i (1− p∗i ) + λ

where p∗i := (1 + exp(−XT
i β

∗))−1. This suggests that L = ∇2U(β∗)1/2 offers an increase in efficiency over

L = (n−1XTX)1/2 for wmax/wmin large.

3.6.3.1 Experimental setup and results

We run RWM chains with the preconditioners described above for d ∈ {2, 5, 10, 20} and n = 5d. We generate

the design matrix X ∈ Rn×d with X = G + M where Gij ∼ N (0, 1) independently and Mij = µ for all

i ∈ [n], j ∈ [d]. We set µ ∈ {0, 5, 50, 200} to arbitrarily worsen the conditioning of the model, as it can be

shown that

κ(XTX) ≥
∑n

k=1(Gk1 + µ)2

1
2

∑n
k=1(Gk1 −Gk2)2

.

We setwi = i2 for i ∈ [n] and generate the responses using Yi = Si/wi with Si ∼ Bin(wi, (1+exp(−XT
i β0))

−1)

for β0 ∼ N (0, Id). We use gradient descent on U which we precondition with L = (n−1XTX)1/2 to find the

mode β∗.

We approximate Σπ and I in two different ways. We either construct them using ergodic averages gener-

ated by unpreconditioned RWM for 104 iterations, or we run an L = ∇2U(β∗)1/2 preconditioned RWM for 105

iterations, from which we calculate the same ergodic averages. At each combination of d and µ we run 15

chains for each preconditioner. Each chain is composed by initialising at β ∼ N (0, (n−1XTX)−1) and taking

104 samples to equilibrate. In each of these initial chains we initialise the step size at 2.38/d1/2 and adapt

it along the course of the trajectory seeking an optimal acceptance rate of 0.234 according to the results of

[Gareth O. Roberts and Jeffrey S. Rosenthal 2001]. We then continue the chain with preconditioning and a

fixed step size of 2.38/d1/2 for a further 104 samples, over which we measure the ESS of each dimension.

The median ESSs in the µ ∈ {0, 200} cases are plotted in Figure 3.4.
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Figure 3.4: Boxplots of the logarithms of the medians of the ESSs across combinations of (d, µ). The
ESSs are taken from RWM runs on a binomial regression target with the generalised g-prior. ‘covariance’
and ‘covarianceII’ correspond to runs preconditioned with L = Σ

−1/2
π where Σπ is estimated over 104 and

105 runs respectively. ‘Fisher’ and ‘FisherII’ correspond to runs preconditioned with L = Eπ[∇2U(β)]1/2

where Eπ[∇2U(β)] is estimated over 104 and 105 runs respectively. ‘mode’ refers to runs preconditioned
with L = ∇2U(β∗)1/2 where β∗ is an estimate of the mode found using preconditioned gradient descent.
‘sq_root_Sigma_X’ corresponds to runs preconditioned with L = (n−1XTX)1/2.
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The preconditioning strategies are detailed in the figure caption. ‘covariance’ and ‘covarianceII’ refer

to the runs preconditioned with L = Σ
−1/2
π where the covariance is estimated over 104 and 105 samples

respectively. The same is the case for ‘Fisher’ and ‘FisherII’. ‘sq_root_Sigma_X’ refers to the runs made

with L = (n−1XTX)1/2. ‘mode’ refers to preconditioning with L = ∇2U(β∗)1/2.

As predicted, preconditioning with the Hessian at the mode does offer a benefit over preconditioning with

L = (n−1XTX)1/2. Preconditioning with the covariance when it is estimated over a larger, better quality

sample (‘covarianceII’) is one of the best performing strategies, whereas preconditioning with the covariance

estimated over the smaller sample (‘covariance’) suffers with dimension and ill-conditioning of the model.

This is clearly due to the reduction in quality of the covariance estimate. This disparity in performance is

contrasted with the difference between the ‘Fisher’ and ‘FisherII’ cases, which is very slight.

3.7 Summary and Extensions

3.7.1 Summary

In all this chapter should serve as an introduction to, and analysis of, linear preconditioning in the context of

sampling. In section 2.1.2.1 we give assumptions on the target distribution that are taken to hold throughout

the subsequent sections. These are them-strong convexity andM -smoothness of the potential of the target.

In section 2.1.2.2 we outline statistical features of distributions that satisfy these assumptions. We also give

practical algorithmic implications that arise as a result of them. These assumptions are important for our

purposes because they ensure the existence and finiteness of the condition number κ = M/m. In section

2.1.2.3 and table 2.1 we present a selection of bounds on relaxation and ε-mixing time that all depend on

the condition number. This motivates our study of the way in which preconditioning affects it.

Section 2.1.2.4 contains the main original contributions of the chapter. We define linear preconditioning

as a linear pushforward of the target distribution. In section 2.1.2.5 we justify this definition using proposition

26 which states that our definition and the ‘traditional’ definition are the same in that they produce isomorphic

Markov chains, which share important convergence and stability properties. In section 3.1 proposition 27 we

prove the existence of distributions that can only be made harder to sample from upon linear preconditioning.
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This lends intuition as to the kind of assumptions, additional to assumption 24, that must be made to ensure

effective preconditioning.

In section 3.2 we provide sets of assumptions, each providing the conditions under which we can control

the condition number after preconditioning. These assumptions are most easily verified for distributions

whose potentials have additive Hessians, which we define here 3.2. Assumptions 28 and 29 explicitly control

the eigenstructure of the Hessian, and imply Theorem 30 which provides control on the the condition number

after preconditioning in terms of the variations of the eigenvalues and vectors of the Hessian. Remark

32 provides the intuition that the alignment between the linear preconditioner and the target is crucial, in

the case that the target is ill-conditioned. Assumptions 33 and 34 localise the Hessian about LLT where

L ∈ Rd×d is the preconditioner, and together they lead to Theorem 35 which also controls the condition

number after preconditioning. They provide a relaxation of 28 and 29 in that they do not require explicit

knowledge of the spectral information of the Hessian, and that assumption 33 implies assumption 28. We

further relax matters by dropping assumption 35 to give Theorem 38. We then look at two preconditioners:

L = Σ
− 1

2
π (used in Stan, for instance) and L = Eπ

[
∇U (X)∇U (X)

T
] 1

2

(suggested in [Michalis Titsias

2023]), and examine the ways in which they allow us to satisfy the assumptions referred to above. In section

3.6.2 we test the preconditioners L = Σ̂
− 1

2
π and L = A where A ∈ Rd×d with the MALA on a Bayesian

regression with hyperbolic prior [Castillo, Schmidt-Hieber, and Vaart 2015] whose potential has a Hessian

in the additive form ∇2U (x) = A + B (x) 3.2. The preconditioners fare similarly well, apart from when the

target covariance Σπ is difficult to estimate such that the preconditioner L = Σ̂
− 1

2
π performs poorly.

Section 3.3 examines linear preconditioning in the case that the target distribution has a potential whose

Hessian is multiplicative such that∇2U (x) = XTΛ (x)X where X ∈ Rn×d and Λ (x) ∈ Rn×n. This particular

structure of Hessian is found in the posterior distributions of the parameters of GLMs which have generalised

g-priors [Held and Sauter 2017; Sabanés Bové and Held 2010]. The form of the Hessian suggest natural

preconditioners, such as L =
(
XTX

) 1
2 [Dalalyan 2017] and L = ∇2U (x∗)

1
2 . We provide bounds on the

condition number after preconditioning with these in propositions 47 and 49. In section 3.6.3 we compare

the performance these two preconditioners, along with L = Σ̂
− 1

2
π and L = Eπ

[
∇U (X)∇U (X)

T
] 1

2

, with

RWM on a Bayesian binomial regression with generalised g-prior.

One of the places the condition number features is in bounds on the spectral gap (see table 2.1). In the
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case of RWM, [Andrieu, A. Lee, et al. 2024, Theorem 1] lacks explicitness in the condition number in the

upper bound that they posit. In section 3.4 we give use assumption 50 to get an upper and lower bound on

the spectral gap of RWM in Theorem 52 that match in terms of their dependence on the condition number.

We then use Theorem 38 to state conditions under which this spectral gap increases upon preconditioning.

Practitioners often use diagonal preconditioners to save on compute time. In section 3.5 we provide an

example of a Gaussian distribution where preconditioning with the well-used preconditioner L = diag (Σπ)
− 1

2

can cause the condition number to increase. This fact is demonstrated numerically in section 3.5 where

using the L = diag (Σπ)
− 1

2 preconditioner decreases the ESS compared with using L = Id.

3.7.2 Extensions

3.7.2.1 The probabilistic perspective

In general the Hessian ∇2U (x) of the potential of π may be a random variable. For instance, in a Bayesian

regression setting the Hessian will be additive 3.2 with ∇2U (x) = kXTX + Λ(x) where k > 0, X ∈ Rn×d

is the design matrix and Λ (x) ∈ Rd×d is the Hessian of the potential of the prior distribution. An example of

this can be seen in section 3.6.2. Equally, in the setting of a Bayesian GLM with a g-prior the Hessian will

be multiplicative 3.3 with X ∈ Rn×d as the design matrix again, as we see in section 3.6.3. Similarly the

preconditioner L may be a random variable: the Fisher matrix 3.2.1 and the target covariance 3.2.2 must be

estimated, and the preconditioner for the QR decomposition 3.3 and Hessian at the mode 3.3 cases depend

on the design matrix.

This allows us to use the machinery we developed to prove the results in sections 3.2 and 3.3 in a

probabilistic setting. For instance, we may be able to say that
∥∥∇2U (x)− LLT

∥∥
2
≤ σ2

dεprob holds with

high probability (with respect to, say, n and d). We can then use the proof techniques to make statements

about say the concentration about a given location of the condition number after preconditioning with L,

which is now also a random variable. This engenders a change in perspective to the one explored in the

material presented above since we are now examining the behaviour of the typical preconditioned MCMC

algorithm whereas in the above material we are looking at a specific instance of preconditioning. Both of

these perspectives are useful at different points in the scientific process.
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3.7.2.2 Alternative condition numbers and refinements

Alternative, problem specific condition numbers have been defined by various parties. For instance where

Σπ is the covariance of π with spectrum σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
d [Langmore et al. 2020] suggest using

(
d∑

i=1

(
σ1
σi

)4
) 1

4

as a condition number. Under specifications on the step size of the algorithm, such a quantity is shown to

be proportional to the number of leapfrog steps needed to achieve a stable acceptance rate in HMC.

The condition number as defined in 2.4 encodes the difficulty of sampling from π, but it does not capture

additional information we might have about π which might ameliorate the sampling efficiency. For instance,

if we knew that there existed positive definite A−, A+ ∈ Rd×d such that

A− ⪯ ∇2U (x) ⪯ A+

then we could precondition with L = A
1
2
− achieving κ̃ = λ1

(
A−1

− A+

)
over κ = λ1 (A+) /λd (A−). Therefore

defining the condition number as λ1
(
A−1

− A+

)
encodes the difficulty of sampling given all the information at

hand. See, for instance, [Safaryan, Hanzely, and Richtárik 2021, Section 2.3], [Saumard and Wellner 2014,

Definition 2.9] or [Hillion, O. Johnson, and Saumard 2019, Definition 1] for similarly motivated definitions

3.7.2.3 Nonlinear preconditioning

A natural extension is to broaden the class of preconditioners to include nonlinear transformations. At

present nonlinear preconditioning can be seen in the form of normalizing flows [Gabrié, Rotskoff, and

Vanden-Eijnden 2022; M. Hoffman, Sountsov, et al. 2019] and measure transport [Parno and Y. M. Marzouk

2018]. Less computationally intensive transformations are considered by [L. T. Johnson and Geyer 2012]

and [J. Yang, Łatuszyński, and Gareth O. Roberts 2024] in order to sample from heavy-tailed distributions.

We note that to identify a transformation g : Rd → Rd such that the pushforward of π under g has
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condition number 1 is to solve the equation

U(x) + log |det J(g(x))| = 1

2
∥g(x)∥2

where J(g(x)) is the Jacobian of g at x ∈ Rd. This is an instance of the Monge-Ampère equation, which is

well studied in optimal transport [Peyré and Cuturi 2019]. Solvers of the Monge-Ampère exist in the literature,

see [Benamou, Collino, and Mirebeau 2016; Benamou, Froese, and Oberman 2014]. Contextualising the

existing analysis of the Monge-Ampère and its solvers within MCMC is a potentially fruitful line of inquiry.

There exist classes of algorithms that are equivalent to transforming existing sampling algorithms under

nonlinear transformations. These include the Riemannian manifold algorithms of [Girolami and Calderhead

2011] (see also [Lan et al. 2015; Livingstone 2021; Patterson and Teh 2013]) and the algorithms derived

from mirror descent [Nemirovskij and Yudin 1983] such as those see in [Chewi et al. 2020; Hsieh et al. 2018;

K. S. Zhang et al. 2020]. That the algorithms derived from mirror descent are equivalent to a nonlinearly

preconditioned sampling scheme is evident in their construction. For the Riemannian manifold samplers,

one can show, for instance, that the Langevin diffusion

dYt =
1

2
∇ log π̃(Yt)dt+ dBt

under diffeomorphism f(Y ) = X transforms into the following SDE

dXt =
1

2
G(Xt)

−1∇ log π(Xt)dt+ Γ(Xt)dt+G(Xt)
− 1

2 dBt

Γi(Xt) =
1

2

d∑
j=1

∂

∂xj

(
G(Xt)

−1
ij

) (3.9)

with G(x)−1 = J(g(x))−1J(g(x))−T where g is the inverse of f and π(x) = π̃(y)|det J(f(y))−1|, see [K. S.

Zhang et al. 2020] for a formal statement and proof. [Livingstone and Girolami 2014; Xifara et al. 2014] show

that the SDE in 3.9 is the Langevin diffusion on the Riemannian manifold with metricG(x) ∈ Rd×d, and there-

fore the same diffusion underlying the Riemannian manifold MALA algorithm of [Girolami and Calderhead

2011] is equivalent to an instance of nonlinear preconditioning. One can make a similar equivalence in the
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case of Riemannian manifold HMC, whereby we make a nonlinear transformation to the momentum variable

used in 1.7, see [M. Hoffman, Sountsov, et al. 2019] for an explanation.

These equivalences provide motivation for further study. For instance if one can identify a g such that

the metric J(g(x))−1J(g(x))−T matches that used by [Girolami and Calderhead 2011] one can bypass the

computationally costly operations inherent in the Riemannian manifold methods. One can also evaluate

the benefits of using Riemannian schemes with arbitrary metrics by evaluating the change in the condition

number under transformations which achieve those metrics.

3.7.2.4 Beyond well-conditioned distributions

The condition number as defined in 2.4 is restrictive in the class of models it applies to, namely distributions

satisfying Assumption 24. Where Π satisfies M -smoothness and a Poincaré inequality : for all f ∈ L1(Π)

Varπ(f) ≤ CPIEπ[∥∇f∥2]

with constant CPI ≥ 0[S. Zhang et al. 2023, Footnote, Page 3] define it as κ := CPIM . They are motivated by

its presence in the mixing time bounds they derive for the unadjusted Langevin sampler. An application of the

Brascamp-Lieb inequality shows that CPI = m−1 in the case that Π also has an m-strongly convex potential.

[Y. Chen and Gatmiry 2023] also derive mixing time bounds under a more general constraint than m-strong

convexity. One could alternatively use the quantities involved in their constraints and therefore the mixing

time bounds to redefine the condition number. [Altmeyer 2022] constructs a surrogate posterior whose

potential satisfies Assumption 24 and coincides with the potential of the target posterior on a region in which

the target concentrates. Under assumptions, they provide polynomial time mixing bounds for unadjusted

Langevin Monte Carlo using the fact that the chain will stay in the aforementioned region for exponentially

long with high probability. The ability to identify such behaviour allows one to quantify the conditioning of a

posterior whose potential violates Assumption 24.
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Chapter 4

The occlusion process: improving

sampler performance with parallel

computation and variational

approximation

Autocorrelations in MCMC chains increase the variance of the estimators they produce. We propose the

occlusion process to mitigate this problem. It is a process that sits upon an existing MCMC sampler, and

occasionally replaces its samples with ones that are decorrelated from the chain. We show that this process

inherits many desirable properties from the underlying MCMC sampler, such as a Law of Large Numbers,

convergence in a normed function space, and geometric ergodicity, to name a few. We show how to simulate

the occlusion process at no additional time-complexity to the underlying MCMC chain. This requires a

threaded computer, and a variational approximation to the target distribution. We demonstrate empirically

the occlusion process’ decorrelation and variance reduction capabilities on two target distributions. The first

is a bimodal Gaussian mixture model in 1d and 100d. The second is the Ising model on an arbitrary graph,
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for which we propose a novel variational distribution.

The notation in this chapter can be found to be defined in section 7.1.4.

4.1 The occlusion process

As [Grenioux et al. 2023] remark in their assessment of normalising flows in MCMC, one thing that handicaps

the methods that implement MCMC on the T−1
θ #π targets described in section 2.2.2 when compared with

the Monte Carlo methods that use VI, is the autocorrelations that exist between the samples in the MCMC

chain. It is well known that autocorrelations in the chain result in increased variance in the ensuing estimator.

Our proposed algorithm, the occlusion process, combines MCMC with a variational approximation to the

target with the aim of achieving consistent estimators with reduced variance by decorrelating the samples in

the estimator.

Specifically, the occlusion process takes as input a partition of the state space into disjoint regions and is

constructed upon an existing MCMC sampler. It monitors the Markov chain produced by the sampler along

with the region it is in and, where possible, it produces a sample from π restricted to the region. Upon this

event it will use the sample instead of the state from the Markov chain in the estimator, hence occluding the

Markov chain state from view.

Compare the variance of a functional averaged over the run of a positive Markov chain in a given region,

and the variance of that functional averaged over independent draws from π restricted to that region. It is

clear that the latter will be smaller than the former. This is the way in which the occlusion process aims to

reduce variance.

The process is designed to exploit parallel computation to boost its performance. Given a variational

distribution and a threaded computer, the process is straightforward to implement, and its running time is

the same as the MCMC sampler it is constructed on by design.

Figures 4.1 and 4.2 offer pictorial representations of the process: in Figure 4.1 we see three versions of

the state space X partitioned into {X1,X2,X3,X4}. The leftmost picture shows the beginning of an MCMC

chain visiting regions 4, 3, 1, and 2 in that order. The occlusion process monitors the Markov chain, and at-

tempts to produce samples Y1, Y2, Y3, and Y4 from the target distribution restricted to the regions the Markov
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Figure 4.1: Three versions of the state space X; the leftmost with the Markov chain {Xt} and the middle with
the samples {Yt} taken from the target restricted to the regions that the Markov chain visits. We assume
that we were only able to successfully sample Y2 and Y4, therefore the rightmost picture shows the samples
we will use for the occlusion estimator: X2 and X4 have been occluded by Y2 and Y4.

chain has just visited. These samples are shown in the middle picture. Since we are in the context of MCMC,

the target distribution will be such that we will not be able to successfully produce all of these samples within

some bounded time horizon. Let’s say we were only able to produce Y2 and Y4 in a reasonable amount of

time. The rightmost picture then shows which samples will be used in the estimator: X1, Y2, X3, and Y4.

Samples Y2 and Y4 have therefore occluded samples X2 and X4.

Figure 4.2 has, from top to bottom, the estimator which uses the Markov chain samples, a DAG demon-

strating the occlusion process, and the estimator after the occlusions. It relates to the example process

depicted in Figure 4.1. The figure contains two additional pieces of information to Figure 4.1: we denote

by ρ(Xt) the region that Xt is in, and St is an indicator which indicates the successful production of a

sample Yt from the target, restricted to Xρ(Xt). It demonstrates the following properties of the occlusion

process: that {St}⊥{Xt} |{ρ(Xt)} , {St}⊥{Yt} |{ρ(Xt)} , and {Yt}⊥{Xt} |{ρ(Xt)} . In addition we have that

Yt⊥Yt′ |{ρ(Xt)} and St⊥St′ |{ρ(Xt)} for all t ̸= t′. The figure shows that the occlusion process can be

viewed as a hidden Markov model. Note also that at no point do we assume that the chain is regenerative,

we simply need it to be invariant to the target distribution π.

The method most similar to the method we devise here is stratified sampling with proportional allocation,

see 1.2.2.3 for details. The occlusion process is similar to stratified sampling because the aforementioned
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Markov chain estimator: 1
n ( f(X1) + f(X2) + f(X3) + f(X4) + ...

X1 X2 X3 X4
...

ρ(X1) = 4 ρ(X2) = 3 ρ(X3) = 1 ρ(X4) = 2Occlusion process:

Y1 Y2 Y3 Y4S1 = 0 S2 = 1 S3 = 0 S4 = 1

Occlusion estimator: 1
n ( f(X1) + f(Y2) + f(X3) + f(Y4) + ...

Figure 4.2: The top line is the estimator constructed using states of the Markov chain {Xt}. The middle
picture is a DAG representing the occlusion process: {Xt} is the Markov chain, ρ(Xt) denotes the regions
visited by the Markov chain, {Yt} are the samples from the target restricted to those regions, and {St}
indicate which of those samples we were able to successfully produce. The bottom line is the occlusion
estimator made up of the samples from the Markov chain, and the successfully produced Yt’s.

partition acts as a stratification, and the proportional allocation comes from the fact that the number of

samples used in the estimator from π restricted to a particular region will be proportional to the length of

time the Markov chain spends in that region. What separates our method from stratified sampling is that

the conditions for stratified sampling are far more restrictive. Namely, stratified sampling assumes we can

sample from π restricted to every region and it assumes that we know the mass of every region under π.

Stratified sampling with proportional allocation produces lower variance estimators than plain Monte Carlo

1.2.2.3. One might expect to extend this result to our less restrictive context, although interestingly, we find

a counterexample.

Parallel computing allows users to perform more computational operations in a fixed length of time.

MCMC is a prima facie serial operation, and hence exploiting parallel threads is an attractive prospect since

we are able to do additional computations alongside the Markov chain, which may need to be run for a

long time to reach equilibrium. These additional computations may take the form of other Markov chains

[M. Hoffman, Radul, and Sountsov 2021; Surjanovic et al. 2023]. In our case we devote the additional

computing capacity to the rejection samplers mentioned above.
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4.1.1 Related work

It should be noted that the occlusion process shares some similarities with the Kick-Kac samplers conceived

in [Douc et al. 2023]. These samplers partition X into two measurable regions {X1,X2}, and they attempt to

take independent samples from π restricted to X1. Absent this ability, they instead use a Markov chain which

is invariant to π restricted to X1. Kac’s theorem [Kac 1947] dictates that if we average a functional over a

π-invariant Markov chain, beginning at one of these independent samples and ending when it re-enters X1,

we get an unbiased estimator of the expectation of the functional with respect to π.

Whilst the setup is very similar to that of the occlusion process, we note the following differences. Firstly

the Kick-Kac samplers use two regions, each with a different purpose. The occlusion process uses any

number of regions, and they are all treated in the same way. Secondly, to produce samples from π restricted

to X1, the Kick-Kac samplers must either wait for an independent sample, or use a Markov chain which

is invariant to it. Therefore the process either has to wait for what is possibly a long time, or introduce

autocorrelations. When the occlusion process achieves a sample Yt from π restricted to a region, it is

guaranteed to be independent from all other random variables given ρ(Xt) (see Figure 4.2). The process

itself is not fully dependent on these samples, and so can continue regardless of the probability of their

production. Thirdly the Kick-Kac samplers rely on regenerations to build their estimators and so they have

a random time complexity, whereas the occlusion process does not rely on such conditions and the time

complexity is specified before the start of the algorithm.

4.1.2 The process

In the MCMC setting, we will not know how to sample from π nor will we know the weights π(Xi) beforehand,

but we can sample from a π-invariant Markov chain. We can still sample from the πi’s, but the computational

cost may be random. Specifically, we assume access to a π-invariant Markov chain {Xt}nt=1 with X1 ∼ π.

We define the Markov chain estimator

f̂ :=
1

n

n∑
t=1

f(Xt) (4.1)

We also assume that we can sample from each πi during the running of the Markov chain, but the number

of samples will depend on our specific resources such as the number of threads we have access to.
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X1 X2 X3 X4
...

ρ(X1) = 4 ρ(X2) = 3 ρ(X3) = 4 ρ(X4) = 2Ideal process:

Y41 ∼ π4 Y31 ∼ π3 Y42 ∼ π4 Y21 ∼ π2
Ideal estimator: 1

n ( f(Y41) + f(Y31) + f(Y42) + f(Y21) + ...

Figure 4.3: A DAG representing the process in which every state Xt in the Markov chain is replaced by a
sample from πρ(Xt) in the estimator.

4.1.2.1 The fully occluded estimator

We first introduce the occluded estimator in the instance in which every sample from the Markov chain is

occluded by a sample from πi. This is, in some sense, an ‘ideal’ form of the final estimator, since we would

use it if we were able to get sufficiently many samples from πi. We make the conservative assumption that

we only use a single sample from πi for each sample in the Markov chain (in the corresponding region). The

estimator is then

f̂ideal :=
1

n

R∑
i=1

Ni∑
j=1

f(Yij) (4.2)

where Yij ∼ πi for all j ∈ [Ni] and Ni =
∑n

t=1 1{Xt ∈ Xi} is just the time the Markov chain spends in

the ith region, for all i ∈ [R]. We assume that Yks ⊥ Yk′s′ |{Ni}Ri=1 for all possible pairs (k, s) and (k′, s′).

Therefore the samples Yij are independent of each other given how many of them we need to collect. We

also assume that Yks ⊥ {Xt}nt=1|{Ni}Ri=1 for all pairs (k, s) and so the samples Yij are independent of the

Markov chain, given how long it spends in each region.

Estimates of the weights π(Xi) are naturally included via the Ni’s. The estimator is defined equivalently

to the stratified sampling with proportional allocation estimator except that the Ni’s are selected using a

Markov chain.

Figure 4.3 shows the process in the form of a DAG and the ensuing estimator, along with some sample

regions into which the Markov chain states fall.

Before stating proposition 54 we first recall the definition of the resolution −→π f : X→ R and its orthogonal
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counterpart ←−π f : X → R. The resolution is simply a piecewise constant function over the regions, whose

values are determined as the expectations of f with respect to π restricted to the regions:

−→π f (x) :=
R∑
i=1

1 {x ∈ Xi}πi (f)

for all x ∈ X. The orthogonal counterpart is defined as ←−π f (x) := f (x) − −→π f (x), so called because

Covπ (−→π f,←−π f) = 0.

Proposition 54. The estimator f̂ideal in (4.2) is unbiased. It has variance

Var(f̂ideal) =
1

n
Varπ(←−π f) + Var

(
1

n

n∑
t=1

−→π f(Xt)

)
(4.3)

Hence Var(f̂ideal) is just Var(f̂strat) where the number of samples is dictated by the proportional alloca-

tion strategy detailed in 1.2.2.3, plus a penalty paid for the Markovianity, albeit through the resolution −→π f .

Proof of Proposition 54 can be found in section 7.2.4.1. In the stratified sampling with proportional allocation

case we had that the variance of the estimator was smaller than the variance of the Monte Carlo estima-

tor. Interestingly, this is not the case when we compare Var(f̂ideal) with the variance of the Markov chain

estimator.

Fact 55. There exist distributions π, partitions {Xi : i ∈ [R]}, functions f ∈ L2(π), and π-invariant Markov

chains {Xt}nt=1 such that Var(f̂ideal) > Var(f̂) for some n ∈ N\{0}.

The fact is obtained by using the trivial partition {X} which dictates that −→π f = π(f) and hence that

Var(n−1
∑n

t=1
−→π f(Xt)) = 0 and Varπ(←−π f) = Varπ(f). In this case Var(f̂ideal) is simply the variance of the

MC estimator. However, there exist scenarios in which the variance of the Markov chain estimator is less

than the variance of the MC estimator, for instance, let K be the operator associated with the Markov chain

and f ∈ L2(π) be such that ⟨f,Kf⟩π < 0. Then for n = 2 we have that

Var(n−1
n∑

t=1

f(Xt)) =
1

2
Varπ(f(X)) +

1

4
Covπ(f(X),Kf(X))

=
1

2
Varπ(f(X)) +

1

4
⟨f,Kf⟩π −

1

4
Eπ[f(X)]2 <

1

2
Varπ(f(X))

(4.4)
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See [Neal and Jeffrey S. Rosenthal 2025, Corollary 1] or [Liu, Petros Dellaportas, and M. K. Titsias 2024,

Theorem 2] for asymptotic instances of the above phenomenon. It is unknown to the authors whether Fact

55 can be extended to partitions with multiple regions:

Question 56. Does there exist a distribution π, a partition {Xi : i ∈ [R]} with R > 1, a function f ∈ L2(π),

and a π-invariant Markov chain {Xt}nt=1 such that Var(f̂ideal) > Var(f̂) for some n ∈ N\{0}?

[Neal and Jeffrey S. Rosenthal 2025, Corollary 1] uses antithetic Markov chains to produce estimators

with lower variances than MC estimators. An antithetic Markov chain is one whose kernel is completely

negative (apart from an eigenvalue at 1). The witness (4.4) to Fact 55 also exploits the existence of a

negative part of K ’s spectrum.

Regardless of the sign of the Markov kernel, we are able to establish the following:

Lemma 57. Let K be the Markov operator associated with the chain {Xt}nt=1. We have that

Var

(
n−1

n∑
t=1

−→π f(Xt)

)
≤ Var

(
f̂
)

for all n ∈ N\{0}.

Proof of Lemma 57 can be found in section 7.2.4.2. Clearly then if Varπ(←−π f) is sufficiently small, i.e.

if f ≈ −→π f , we would have that Var(f̂ideal) ≤ Var(f̂). This mirrors the case in stratified sampling with

proportional allocation where we achieve an optimal variance when f = −→π f . Interestingly, we also have

that Var(f̂ideal) ≤ Var(f̂) when f ≡ ←−π f + π(f) and the Markov chain is positive:

Proposition 58. The following conditions are individually sufficient for Var(f̂ideal) ≤ Var(f̂):

1. f(x) = −→π f(x) for all x ∈ X.

2. f(x) =←−π f(x) + π(f) for all x ∈ X and that the spectrum of K is positive.

For a proof, see Section 7.2.4.3. Condition 1. is equivalent to f being piecewise constant over the

regions. We state a natural case in which the function requirement of condition 2. holds below:
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Example 59. Let f be an odd function, with f(−x) = −f(x) for all x ∈ X, and let π be even, such that

π(A) = π(−A) for all A ∈ X . Then if the regions satisfy Xi = −Xi for all i ∈ [R], we have −→π f ≡ π(f) ≡ 0

and hence that f ≡ ←−π f + π(f).

4.1.2.2 The occluded estimator

Since we might not have enough samples from each πi we construct the actual estimator using samples

from the Markov chain, and occlude a sample from the chain with a sample from πi whenever one is drawn.

We extend the state space X of the Markov chain to include an indicator variable s ∈ {0, 1} which indicates

a sample from πi and the space of the sample from πi. We define α : [R] → [0, 1] such that α(i) is the

probability of a sample from πi for all i ∈ [R]. For all (x, s, y) ∈ X× {0, 1} × X the occlusion process is then

constructed using the Markov kernel Kocc((x, s, y)→ .) : X × {0, 1} × X → R+ with

Kocc((x, s, y)→ (dx′, s′, dy′)) := K(x→ dx′)A (s′ |x′ )πρ(x′)(dy
′) (4.5)

where we define

A (s |x ) := α(ρ(x))1{s = 1}+ (1− α(ρ(x)))1{s = 0}.

We use the estimator

f̂occ :=
1

n

n∑
t=1

focc(Xt, St, Yt) (4.6)

where focc(Xt, St, Yt) := 1{St = 0}f(Xt) + 1{St = 1}f(Yt), and so by construction Xt is occluded by Yt

whenever we obtain a successful sample from πρ(Xt). Even though the process described above generates

Yt for all t ∈ [n], in actuality we will only need to generate Yt when St = 1 since it is only then that Yt

is included in the estimator. Note that if α ≡ 1 we have that f̂occ is just f̂ideal in (4.2). For a pictorial

representation, see Figure (4.2).

Since K is π-invariant we have that Kocc is πocc-invariant where we define

πocc(dx, s, dy) := π(dx)

(
α(ρ(x))1{s = 1}+ (1− α(ρ(x)))1{s = 0}

)
πρ(x)(dy) (4.7)
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for all dx ∈ X , s ∈ {0, 1}, dy ∈ X . Hence the marginal processes of the occlusion process obey the

following laws in equilibrium:

• The marginal law of {Xt} in equilibrium is π.

• The marginal law of {St} in equilibrium is defined by the probability mass function ᾱ1{s = 1} + (1 −

ᾱ)1{s = 0} where

ᾱ :=

R∑
i=1

α(i)π(Xi)

• The marginal law of {Yt} in equilibrium is π.

• Therefore defining Zt := 1{St = 0}Xt + 1{St = 1}Yt such that focc(Xt, St, Yt) ≡ f(Zt) we have that

the marginal law of {Zt} in equilibrium is π.

Note that πocc(focc) = π (f) and Varπocc(focc) = Varπ(f). For the bias and variance of f̂occ we have the

following:

Proposition 60. When evaluated on the process {(Xt, St, Yt)}nt=1 with (X1, S1, Y1) ∼ πocc, f̂occ (4.6) is

unbiased and has variance

Var(f̂occ) = Var(f̂ideal) +
1

n
2

n−1∑
k=1

n− k
n

Ck (4.8)

where

Ck := Covπ(fa(X),Kkfa(X))− Covπ(−→π fa(X),Kk−→π fa(X))

with fa(x) := (1− α(ρ(x))) f(x) for all x ∈ X and Var(f̂ideal) is as defined in (4.3).

Proof of the above proposition can be found in section 7.2.4.4. Hence when α ≡ 0 we have Var(f̂occ) =

Var(f̂) as expected, and when α ≡ 1 we have Var(f̂occ) = Var(f̂ideal). In this latter α ≡ 1 case we would

have Var(f̂occ) ≤ Var(f̂) when f satisfies either condition 1. or 2. from Proposition 58. These conditions

may seem improbable, but in section 4.1.5.2 we see a practical instantiation of condition 2. in the form

outlined in Example 59 where the function f is odd and the target measure π is even. See Figure 4.7 for

the concomitant reductions of variance, and Section 4.1.5.2 for a justification of why in this case, we satisfy

condition 2.
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4.1.3 Inherited theoretical properties of the occlusion process

4.1.3.1 Basic properties

Since the occlusion process {(Xt, St, Yt)}nt=1 is derived from an underlying Markov chain {Xt}nt=1, we would

like the process to inherit the ‘good’ properties of the Markov chain when they exist. For example we have

the following inheritances:

Proposition 61. If K is π-reversible then Kocc is πocc-reversible.

A proof of Proposition 61 can be found in section 7.2.4.5

Proposition 62. If f is in L2(π) then focc is in L2(πocc).

Proof can be found in section 7.2.4.6.

4.1.3.2 Law of large numbers

The first non-basic result that the occlusion process inherits from the Markov chain is a Law of Large Num-

bers (LLN). Since no quantitative rates are involved in LLNs we can not directly compare LLNs on the Markov

chain with LLNs on the occlusion process but the inheritance result stands nonetheless.

Theorem 63. The following are equivalent:

1. For all probability measures µ on X and measurable functions g : X→ R such that g ∈ L1(π) we have

that

lim
n→∞

n−1
n∑

t=1

g(Xt) = π(g)

almost surely with X1 ∼ µ.

2. For all probability measures µocc on X ×2{0,1}×X and for all measurable functions gocc : X×{0, 1}×X

such that gocc ∈ L1(πocc) we have that

lim
n→∞

n−1
n∑

t=1

gocc(Xt, St, Yt) = πocc(gocc)

almost surely with (X1, S1, Y1) ∼ µocc.
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The proof in section 7.2.4.7 uses [Douc et al. 2023, Proposition 3.5].

4.1.3.3 Convergence in a normed function space

One way to measure the efficiency of an MCMC algorithm with kernel K is to compare Kt to its equilibrium

distribution via their action on measurable functions. The outputs of these actions are themselves functions,

so to compare we need to use a norm defined on the appropriate function space.

Definition 64. A Markov chain with kernel K converges to a distribution π in a normed function space

(F, ∥.∥) with rate function r : N\{0} → R+ when

∥Ktf − π(f)∥ ≤ Cfr(t)

for all f ∈ F and t ∈ N\{0}, where Cf > 0 is a constant that depends on f and r(t)↘ 0.

Often we have that Cf = C∥f − π(f)∥ with C > 0. For the occlusion process {(Xt, St, Yt)}nt=1 to inherit

convergence in a normed space of {Xt}nt=1 we need some way to relate the normed spaces that K acts

on to the normed spaces that Kocc acts on. Given a normed function space (F, ∥.∥) of functions on X, let

Focc be the vector space of measurable functions of the form g(x, s, y) = 1{s = 0}f(x) + 1{s = 1}f(y) on

X×{0, 1}×X into R where f ∈ (F, ∥.∥). These are the functions that Kocc will act on to produce the occlusion

process. We define the class of normed spaces

C∥.∥ := {(G, ∥.∥G) : G ⊆ Focc, ∥g∥G = ∥g∥ when g is a function of its first argument only}

For instance, if ∥.∥ is the sup norm on functions from X → R then C∥.∥will contain the normed spaces with

the sup norm on functions from Focc. Equipped with this definition, we have the following inheritance

Theorem 65. Say the Markov chain {Xt}nt=1 converges to π in the normed function space (F, ∥.∥) with rate

function r(t) and constant Cf . Then for all normed function spaces (G, ∥.∥G) ∈ C∥.∥ and for all functions

g(x, s, y) = 1{s = 0}f(x) + 1{s = 1}f(y) ∈ (G, ∥.∥G) we have that

∥Kt
occg − πocc(g)∥G ≤ Cfαr(t)
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where

fα(x) := (1− α(ρ(x))) f(x) + α(ρ(x))−→π f(x)

Kocc is as defined in (4.5), and πocc is as defined in (4.7)

The proof relies on the fact that for a given function g ∈ (G, ∥.∥G) with (G, ∥.∥G) ∈ C∥.∥ we have Kt
occg =

Ktfα, see section 7.2.4.8. Because of this fact, we also inherit lower bounds on the convergence of the

occlusion process:

Proposition 66. Say the convergence of the Markov chain {Xt}nt=1 to π in the normed function space

(F, ∥.∥) is lower bounded as follows:

∥Ktf − π(f)∥ ≥ C†
fr

†(t)

for some C†
f > 0 and r† : N\{0} → R+ and for all f ∈ (F, ∥.∥). Then for all normed function spaces

(G, ∥.∥G) ∈ C∥.∥ and for all functions g(x, s, y) = 1{s = 0}f(x) + 1{s = 1}f(y) ∈ (G, ∥.∥G) we have that

∥Kt
occg − πocc(g)∥G ≥ C†

fα
r†(t)

where

fα(x) := (1− α(ρ(x))) f(x) + α(ρ(x))−→π f(x)

Kocc is as defined in (4.5), and πocc is as defined in (4.7)

If Cfα ≤ Cf or C†
fα
≤ C†

f we could have better convergence of the occlusion process as compared with

the base Markov chain it sits upon. The following example shows such a case.

Example 67. Say (F, ∥.∥) is the space of bounded continuous functions with the sup norm, and that {Xt}nt=1

converges to π in (F, ∥.∥) with rate function r(t) and constant Cf := C∥f − π(f)∥ with C > 0. Then the

occlusion process {(Xt, St, Yt)}nt=1 converges to πocc in all spaces (G, ∥.∥G) in C∥.∥ with rate function r(t) and

constant Cfα := C∥fα − π(fα)∥. Note that Cfα ≤ Cf . For a proof of this fact see 7.2.4.9. The same is

true for any similarly defined constants C†
fα

and C†
f in lower bounds on convergence, for exactly the same

reasons.
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4.1.3.4 Convergence in a normed measure space

Another way to examine the efficiency of an MCMC algorithm with kernel K is to establish bounds on the

distance between µKt and π in some normed measure space.

Definition 68. A Markov chain with kernel K converges to a distribution π in a normed measure space

(M, ∥.∥) with rate function r(t) : N\{0} → R+ when

∥µKt − π∥ ≤ Cµr(t)

for all measures µ ∈ (M, ∥.∥) and t ∈ N\{0}, where Cµ > 0 is a constant that depends on µ and r(t)↘ 0.

For the above definition to work, we need that measures in (M, ∥.∥) have the same state space asK. The

role of the norm in the above definition is to provide the distance between µKt and π. So given a distance,

we could equivalently state the convergence result without a norm. One class of distances we could use is

the class of integral probability metrics (IPMs). It is defined using a function space F as follows:

Definition 69. The integral probability metric DF defined by a function space F between measures P and Q

is defined as

DF(P,Q) := sup
f∈F
|P (f)−Q(f)|

Examples of IPMs include the Wasserstein-1 distance and the total variation distance. As in the previous

section, we define C := {G : for all g ∈ G we have g(x, s, y) = 1{s = 0}f(x) + 1{s = 1}f(y) with f ∈ F} as

the class of function spaces whose members the occlusion process admits in its estimator. Equipped with

these definitions we have the following inheritance result:

Theorem 70. Say the Markov chain {Xt}nt=1 starting at X1 ∼ µ converges to π in the integral probability

metric defined over F with rate function r(t) and constant Cµ. Then the occlusion process {(Xt, St, Yt)}nt=1

with X1 ∼ µ converges to πocc (4.7) in the integral probability metrics defined over the members of C with

rate function r(t) and constant Cµ as soon as

fα(x) := (1− α(ρ(x))) f(x) + α(ρ(x))−→π f(x)
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is in F.

A proof of the above is found in section 7.2.4.10.

Example 71. Take F = {f : X→ [0, 1]}. Then DF is the total variation distance. That fα is in F is clear since

it is the convex combination of two functions in F. Therefore if {Xt}nt=1 converges to π in DF the above result

holds and we get convergence in total variation of the occlusion process with the same rate.

That the occlusion process inherits convergence in IPMs is an example of a wider class of inheritance

results: we include it here as an example. For a more general result on the inheritance of convergence in

normed measure spaces see section 7.3.1 in appendix B.

4.1.3.5 Geometric ergodicity

Geometric ergodicity is a particular kind of convergence in a normed measure space, where µ is a point

mass, the rate function is geometric, and the norm is the total variation norm. See 20 for a definition.

When a functional f : X → R is averaged over a geometrically ergodic chain, it only takes a small amount

of additional work to establish a CLT. For instance [Chan and Geyer 1994, Theorem 2] show that when

f ∈ L2+ε (π) is averaged over a geometrically ergodic chain, for some ε > 0, we are guaranteed a CLT.

[G. Roberts and J. Rosenthal 1997, Corollary 2.1] show that the same is true for f ∈ L2 (π) when the chain

is π-reversible.

Theorem 72. When the chain {Xt}nt=1 generated by K is geometrically ergodic, the occlusion process

{(Xt, St, Yt)}nt=1 generated by Kocc (4.5) is geometrically ergodic.

This result is also a corollary of Theorem 70, however it also stands on its own, see section 7.2.4.11 for

the proof.

Corollary 73. When the chain generated by K is geometrically ergodic and π-reversible and when f ∈

L2(π), f̂occ admits the following CLT:

√
n
(
f̂occ − π (f)

)
d→ N(0, σ2

occ) as n→∞
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where

σ2
occ := lim

n→∞
nVar(f̂occ) = Varπocc(focc) + 2

∞∑
k=1

Covπocc(focc,K
kfocc) <∞

Proof of the above can be found in section 7.2.4.12. It would be desirable for the occlusion process to

inherit a CLT type result from a CLT in the Markov chain {Xt}nt=1. However to establish such a result would

be to establish necessary conditions for a Markov chain CLT which don’t currently exist in the literature.

Proposition 74. When the chain generated by K is geometrically ergodic and π-reversible, and when

f ∈ L2(π) we have that

lim
n→∞

nVar(f̂occ) = Varπocc(focc) + 2
∞∑
k=1

Covπocc(focc,K
kfocc)

= Varπ(f) + 2

∞∑
k=1

(
Covπ(

−→
P f(X),Kk−→π f(X)) + Ck

)
<∞

where

Ck := Covπ(fa(X),Kkfa(X))− Covπ(−→π fa(X),Kk−→π fa(X))

with fa(x) := (1− α(ρ(x))) f(x) for all x ∈ X.

Proof of the above proposition may be found in Section 7.2.4.13.

4.1.4 Efficient simulation of the occlusion process

We now describe exactly how one can simulate the occlusion process generated by the kernel in (4.5). We

show that given access to a multi-threaded computer and a variational approximation Q we can calculate

f̂occ (4.6) at no additional computational cost to calculating f̂ . However due to this requirement, we cede

control over the values of the α(i)’s.

4.1.4.1 Sampling from the πi’s and defining the regions

If we are using MCMC to approximate samples from π, sampling from π restricted to the regions X1,X2, ...

will be a non-trivial task.
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The trick we employ is to choose our sampling mechanism, then define the regions such that the samples

from π restricted to them is somehow guaranteed. Say we have access to Q: an easy to sample from

distributional approximation to π. Let Y be the result of the following sampling mechanism: given an arbitrary

constant C > 0 and oracle access to the unnormalised Radon-Nikodym derivative dπ̃/dQ̃ between π and Q

1. Sample Y ∼ Q and U ∼ Unif[0, 1] independently of each other.

2. If

U ≤ 1

C

dπ̃

dQ̃
(Y ) and

1

C

dπ̃

dQ̃
(Y ) ≤ 1

output Y , otherwise go to step 1.

Then if we call XC the region {y ∈ X : 1
C dπ̃/dQ̃(y) ≤ 1} we have that Y sampled according to the mechanism

above is distributed according to π restricted to XC , see section 7.2.4.14 for proof. This mechanism has its

roots in [Tierney 1994, Section 2.3.4] and it is also used in [Douc et al. 2023].

To form the partition of X we do as follows: take 0 =: C0 < C1 < C2 < · · · < CR−1 < CR := ∞ and

define Xi := {x : dπ̃/dQ̃(x) ∈ [Ci−1, Ci)}. Then to collect samples from the πi’s we simply execute step

1 of the above mechanism, check which Xi Y is in using the Radon-Nikodym derivative, and then use the

appropriate Ci in step 2. The particular πi sampled from will therefore be random and if Y falls in XR it is

automatically rejected. The probability of a sample from πi in a single iteration is then

πY∼Q

(
U ≤ 1

Ci

dπ̃

dQ̃
(Y ) ∩ Y ∈ Xi

)
=
Zπ

ZQ

1

Ci
π(Xi) (4.9)

where Zπ and ZQ are the normalising constants of π̃ and Q̃ respectively.

4.1.4.2 Implementation and computational cost

Strategy for a general target π In general we dedicate a single thread of compute to sampling the Markov

chain {Xt}nt=1, and the rest of the available threads to sampling from the πi’s. A straightforward way to do

this is by having these final threads work in an embarrassingly parallel fashion, repeatedly iterating through

the steps detailed in section 4.1.4.1. We stop all the threads upon some condition e.g. {Xt} has reached a

given length. The fact that the threads work in an embarrassingly parallel fashion minimises communication

101



costs, and therefore maximises the amount of compute going into sampling from the πi’s. It also minimises

the amount of programmer time since in general it is far easier to implement embarrassingly parallel code

than code in which the threads communicate.

At the end of the procedure we then have the Markov chain {Xt}nt=1, the list of regions it visits {ρ(Xt)}nt=1,

and {Yij}Ni
j=1 for all i ∈ [R] where Ni is the number of samples from πi. We may possibly have Ni = 0 for

some i, and we may even have N1 + · · ·+NR > n. We then use some procedure to assign Yij ’s to the Xt’s

we wish to occlude, which defines the α(ρ(x)) term in (4.5).

Define Ti as the amount of time the Markov chain spends in region i and Ii ⊆ {Xt}nt=1 the set of states

in that region. In our numerical experiments for each i ∈ [R] we assign min{Ni, Ti} samples from {Yij}Ni
j=1

to occlude a uniformly sampled size min{Ni, Ti} subset of Ii. Therefore α(i) := E[min{1, Ni/Ti}] for all

i ∈ [R] where the expectation is over the randomness of the entire process. This is equivalent in distribution

to occluding at each step of the process with probability min{1, Ni/Ti} although it is more efficient since it

uses as many samples from {Yij}Ni
j=1 as possible, for each i ∈ [R].

See Algorithm 4.1 for pseudocode of the whole procedure.

Approaches tailored to particular targets π The nature of the sampling problem may offer more efficient

alternatives to the general purpose strategy detailed above. Sampling from K(x → .) may be slow. For

instance π may be a Bayesian posterior distribution whose likelihood evaluations necessitate the solution

of a system of differential equations, see [J. Ma 2020]. Or perhaps K(x → .) is the kernel of a Metropolis-

Hastings algorithm whose proposal distribution takes a while to sample from e.g. preconditioned Hamiltonian

Monte Carlo in high dimension. In this regime, in the time it takes K to move from a given Xt to Xt+1 we

could concentrate the parallel computational resources to sampling from πρ(Xt). This however incurs some

communication costs between threads.

In another scenario, it may be that the regions are defined naturally given the state space. For example

it may be that X can be written as the disjoint union of R connected sets. Then we could have a variational

distribution Qi for each region Xi.
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Algorithm 4.1 Embarrassingly parallel occlusion process
inputs: Chain length n, Initial state X0, 1+Crej computational threads, Variational distribution Q, Constants
0 =: C0 < C1 < · · · < CR−1 < CR :=∞.
outputs: A π-invariant Markov chain {Xt}nt=1, the regions it visits {ρ (Xt)}nt=1, sets of samples{
{Yij}Ni

j=1

}R

i=1
with Yij ∼ πi for all j ∈ [Ni] and i ∈ [R].

Markov chain
In thread 1:

for t ∈ n do

Sample Xt ∼ K (Xt−1 → .) and store Xt along with its region ρ (Xt).

Rejection samplers
In threads j ∈ {2, . . . , Crej} concurrently:

for j ∈
{
2, . . . , Crej

}
do

1. Sample Y ∼ Q and U ∼ Uniform [0, 1] independently.

2. Determine the constant to use in the rejection sampler Cρ(Y ) and determine

the region i := ρ (Y ) that Y is in.

3. If UCi ≤ dπ̃/dQ̃ (Y ) then append the sample to {Yij}Ni

j=1 (such that

Ni ← Ni + 1), otherwise go to step 1.

Postprocessing

inputs: A π-invariant Markov chain {Xt}nt=1, the regions it visits {ρ (Xt)}nt=1, sets of samples
{
{Yij}Ni

j=1

}R

i=1
with Yij ∼ πi for all j ∈ [Ni] and i ∈ [R].
outputs: The occlusion estimator f̂occ defined in 4.6
Initialise the indicator sequence {St}nt=1 ← {0}

n
t=1 and the sequence {Yt}nt=1 ← {NaN}nt=1

for i ∈ [R] do

1. Get the set of times the Markov chain {Xt}nt=1 was in region i:
Ti := {t : Xt ∈ Xi, t ∈ [n]} and the amount of time Ti := |Ti|.

2. If Ni ≥ Ti set St ← 1 and Yt ← Yit for all t ∈ Ti.
3. Else:

(a) Sample a subset T ′
i ⊆ Ti uniformly from the subsets of size Ni in Ti.

(b) Set St ← 1 and Yt ← Yit for all t ∈ T ′
i .

Output

f̂occ =
1

n

n∑
t=1

focc (Xt, St, Yt)

where focc (Xt, St, Yt) := 1 {St = 0} f (Xt) + 1 {St = 1} f (Yt)
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4.1.4.3 Choice of regions

The way that the regions {Xi : i ∈ [R]} influence the statistical properties of the occlusion process is via the

probabilities of taking sucessful rejection samples α(i) for i ∈ [R] and the amount of time the Markov chain

{Xt}nt=1 spends in each region. As stated at the end of section 4.1.2.2, if the regions are such that α ≡ 1 i.e.

each πi is easy to sample from, we would have Var(f̂occ) = Var(f̂ideal). In the opposite scenario, if the regions

are such that α ≡ 0 i.e. each πi is impossibly hard to sample from, we would have Var(f̂occ) = Var(f̂).

It is difficult to tell from the form of (4.8) how exactly Var(f̂occ) will vary with each individual α(i), but as

stated below Lemma 57 we should choose the regions to have f = −→π f since such a condition ensures that

Var(f̂occ) = Var(f̂ideal) ≤ Var(f̂).

With the general strategy explained in section 4.1.4.2 we assume that we use Crej ∈ N\{0} threads

for the rejection sampling component, and that each thread can propose a single rejection sample per

step in the Markov chain {Xt}tn=1. Therefore we have nCrej rejection sample attempts in total and hence

α(i) = E[min{1, Ni/Ti}] where

Ni ∼ Binomial
(
nCrej,

Zπ

ZQ

1

Ci
π(Xi)

)
and each Ti will have expectation nπ(Xi) for all i ∈ [R]. Therefore each α(i) will depend on the length of the

Markov chain n.

4.1.5 Numerical experiments

4.1.5.1 Bimodal Gaussian mixture

As a first demonstration of the behaviour of the occlusion process we look at sampling from a bimodal

Gaussian mixture

π(dx) := (1− p)×N (x; 0, Id)dx+ p×N (x;m,σ2Id)dx (4.10)

for p ∈ [0, 1], m ∈ Rd, and σ2 > 0. Say we are given a variational distribution Q that approximates well the

first component of the mixture. If we used such a distribution to do inference, then our estimates would be

biased by the fact that the distribution ignores the second component. For a σ2 which is sufficiently small

the Radon-Nikodym derivative dπ/dQ(x) will have a large upper bound. This would be prohibitive against
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Figure 4.4: The target density (P in the legend), the variational density (Q in the legend), and the Radon-
Nikodym derivative (dP/dQ in the legend) for the bimodal Gaussian example in d = 1.

doing vanilla rejection sampling with Q as the proposal distribution. Therefore to resolve these issues, we

use the occlusion process so as to take advantage of the variational distribution and the unbiasedness of

an underlying Markov chain targeting π.

Experiment setup We perform two experiments, one with d = 1 and the other with d = 100. The mean

m of the second component has all its elements set to zero, apart from its first which we set to 2.5. We set

σ2 = 0.05 and p = 0.1. We set the variational distribution to be the Laplace approximation where we find the

mode using gradient descent on the negative log-density of the target. In every case this resulted in Q being

a standard normal. For a plot of the target density, variational density, and the Radon-Nikodym derivative

in d = 1 see Figure 4.4. Note that the Radon-Nikodym derivative is mostly flat apart from around x = 2.5

where it becomes large.

We use R = 2 regions, defining the first region as {x : dπ/dQ(x) ≤ 1} and the second region as the

complement of the first. From Figure 4.4 we can see that the first region encompasses most of the state

space, apart from a small area around the mean of the second component of the target. The number of total

threads we use is 7, and we employ them in the fashion according to Section 4.1.4.2, thereby having Crej = 6

threads for the rejection samplers, and one thread for the underlying Markov chain. For this underlying chain

we use RWM, for which we set the step size to 2.38/
√
d as recommended in [Gareth O. Roberts and Jeffrey

S. Rosenthal 2001]. In each case we run the sampler for 20 seconds.
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Experiment results In Figure 4.5 we show the results of the two experiments, with the d = 1 results on

the left and the d = 100 results on the right. The top row shows the first component of the RWM chains

{Xt}nt=1, the row below shows the first component of the occluded chain {1{St = 0}Xt + 1{St = 1}Yt}nt=1.

In the titles of these plots is the proportion of total states in the chain that were occluded: in the notation of

Section 4.1.4.2 this is (N1 + · · · + NR)/n. The bottom four plots show the autocorrelation functions of the

two processes. The top row has the autocorrelation function of the first component of the RWM chain, and

the bottom row has the autocorrelation function of the first component of the occluded chain.

The main impression given by the figure is that the addition of the occlusions has the effect of decorrelat-

ing the process. This is evinced in the traceplots most clearly in the d = 100 case, where the RWM chain is

clearly displaying the highly autocorrelated behaviour of a diffusion, whereas the states in the occluded pro-

cess are decorrelated from each other. This is further evinced by the autocorrelation function plots, where in

every case at every lag the autocorrelation of the RWM chain is greater than that of the occlusion process.

Again this is markedly so in the d = 100 case.

We note that although the use of occlusion decorrelates the underlying process, in this case it does not

debias it. See, for instance, the d = 100 plots on the right hand side, where the RWM chain should spend

10% of its time in the second component of the target whereas the traceplots (and inspection of the output)

shows that it spends 0%. Therefore the occluded chain also spends no time in the second component, due

to the fact that by definition it only ever visits regions that the RWM also visits.

4.1.5.2 The Ising model

The Ising model describes the behaviour of magnetic spins in σi ∈ {−1, 1} at nodes in a graph (V,E).

Classically the graph in question is a regular cubic lattice although the model has been generalised to

arbitrary graphs [Bresler 2015; Delgado 2015; Mosseri 2015]. We assume that no external magnetic field

is present, and that the graph is finite with |V | = N vertices. A single state σ ∈ {−1, 1}N describes the

spin configuration over all vertices, and its potential energy can be written as U(σ) = −∑N
i=1

∑
j∈Si

Jijσiσj ,

where Si is the set of i’s neighbours, and Jij ∈ R describes the interaction strength between vertices i and
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Figure 4.5: Results from the d = 1 case of sampling from (4.10) (left) and the d = 100 case (right). The
top row shows the first component of the RWM chains, the next row shows the first component of {1{St =
0}Xt+1{St = 1}Yt}nt=1, the next row shows autocorrelation function plots of the first component of the RWM
chains, the bottom row shows autocorrelation function plots of the first component of {1{St = 0}Xt+1{St =
1}Yt}nt=1.
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j. Here π is the distribution over spin configurations and is defined with

π(A) :=
∑
σ∈A

exp(−βU(σ))

Z(β)
(4.11)

for all subsetsA ⊆ {−1, 1}N , where β ∈ [0,∞] is the inverse temperature and Z(β) :=
∑

σ∈{−1,1}N exp(−βU(σ))

is the so called ‘partition function’ i.e. the normalising constant. We assume that Jij > 0 for all i, j ∈ [N ]

and hence that the system is ferromagnetic. For such a model neighbouring spins align since doing so

decreases the potential energy of the system. We also assume that Jij = 1 for all (i, j) ∈ E. Note that for

all A ⊆ {−1, 1}N we have that π(A) = π(−A). Therefore any sampler on π should spend an equal amount

of time in A and −A in the large sample limit.

If the temperature β−1 is very low, the strength of alignment between neighbouring spins is very high.

Therefore in this regime, if the graph is sufficiently well connected, the sampling algorithm should spend

most of its time in configurations where a large proportion of the spins are aligned. It should spend about

half the time with the overwhelming majority of the spins aligned in the positive direction, and half of the time

with the overwhelming majority of the spins aligned in the negative direction.

If the temperature is very high, the strength of alignment is greatly reduced. Even if the the graph is

well-connected a sample from the model at high temperature will have a significant proportion of both −1

and 1 spins.

A quantity of interest in the Ising model is the average magnetisation. It is defined as

M := Eπ

[
1

N

N∑
i=1

σi

]
(4.12)

and describes the average spin across the entire graph measured in a typical configuration. Since the

expression in the expectation is an odd function of σ and π is even, we are able to exactly calculate that

M = 0 for all graphs, at all temperatures. This allows us to objectively measure the output of our sampling

algorithms, and of the occlusion process.
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Algorithm 4.2 Metropolis algorithm applied to the Ising model

inputs: Chain length n, Initial state σ(0) ∈ {−1, 1}N , matrix of interaction strengths J ∈ RN×N , inverse
temperature β ∈ [0,∞].
outputs: A π-invariant Markov chain

{
σ(t)

}n
t=1

, where π is as in 4.11.

for t ∈ [n] do

1. Sample a vertex I ∼ Uniform [N ].

2. Let σ
(t)
prop be σ(t−1) with a sign change in the Ith vertex.

3. With probability

α
(
σ(t−1) → σ(t)

prop

)
:= min

{
1, exp

(
−βU

(
σ(t)
prop

)
+ βU

(
σ(t−1)

))}
set σ(t) = σ

(t)
prop otherwise set σ(t) = σ(t−1).

Sampling from the Ising model: the Metropolis algorithm The state space has 2N configurations ren-

dering Z(β) very difficult to calculate for large N . For this reason practitioners use MCMC methods to

sample from the Ising model. One such method is the Metropolis algorithm [Metropolis et al. 1953]. Origi-

nally conceived to sample from the two-dimensional hard-disk model, the Metropolis algorithm can also be

applied to the Ising model. It selects a vertex at random and proposes switching the sign of the spin at that

vertex. The switch is accepted with the usual Metropolis acceptance probability. For an exact description of

the process see Algorithm 4.2.

Say we apply the Metropolis algorithm to the low temperature setting: when it has reached equilibrium

it will likely be in a region of the state space with most of the spins aligned. After this point most of the

proposal spin flips are rejected because they are in conflict with the spins of their neighbours. Therefore the

chain will spend the vast majority of time in this region of the state space, instead of only half the time. Also

any estimate we derive from the chain will have a high variance due to the size of the autocorrelations.

In the high temperature regime the strength of alignment between neighbouring spin sites will only be

weak. Therefore the probability of accepting the individual spin flips proposed by the Metropolis algorithm

will be higher and the Markov chain generated will exhibit lower autocorrelations than in the low temperature

regime.
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Algorithm 4.3 Wolff algorithm applied to the Ising model.

inputs: Chain length n, Initial state σ(0) ∈ {−1, 1}N , matrix of interaction strengths J ∈ RN×N , inverse
temperature β ∈ [0,∞], aligned neighbour function AN
outputs: A π-invariant Markov chain

{
σ(t)

}n
t=1

, where π is as in 4.11

for t ∈ [n] do

1. Sample a vertex I ∼ Uniform [N ].

2. Initialise the cluster C = {I}, a set of visited vertices V = {I}, a set of

aligned neighbours which have not been previously visited N = AN ({I}) \V,
and a boolean `neighbours' that is true if N is nonempty and false

otherwise.

3. while `neighbours' do

for j ∈ N do

With probability 1− exp (−2βJ) append j to C and append j to V.
Set N = AN (C) \V and if N = ∅ set `neighbours' to false

4. Set σ(t) = σ(t−1) and flip all the signs of the spins at the vertices in the

cluster C in σ(t).

Sampling from the Ising model: the Wolff algorithm In order to remedy this problem algorithms have

been conceived that switch the signs of spins at a cluster of vertices in the graph in a single step of the

Markov chain. This is how the Wolff algorithm works [Wolff 1989]. Specifically we select a vertex at random

as the starting vertex in a cluster. We then add its neighbours that have a similar sign to the cluster each

with probability 1− exp(−2βJ). We add their aligned neighbours (so long as they have not been considered

before) in a similar fashion, and their neighbours, etc. etc. until there are no unvisited aligned neighbours to

consider. Once we have built a cluster in this way, we deterministically flip all of the spins inside the cluster. In

order to formally describe the algorithm in 4.3, we define the aligned neighbour function AN : P(V )→ P(V )

which takes a subset of vertices of all the same sign spin, and outputs all those neighbours of the subset

which are aligned.

In an above paragraph we explained why the Metropolis algorithm would work poorly in the low tem-

perature setting. Let’s say we use the Wolff algorithm instead. After reaching equilibrium, if the graph is

sufficiently connected, most of the spins will be aligned. The value of the β parameter will dictate that the

cluster inclusion probability 1 − exp(−2βJ) will be high. The number of aligned visitors will also be high.

Therefore the Wolff algorithm will build large clusters whose spins it will flip deterministically, allowing it to
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traverse large distances in the state space in a single step.

In the high temperature regime the strength of alignment between spins is weaker. Hence in equilibrium

the size of aligned clusters will generally be smaller, and so the individual moves generated by the Wolff

algorithm will involve a smaller amount of spin flips. Therefore in the high temperature regime we expect the

Wolff algorithm to exhibit higher autocorrelation than in the low temperature regime.

An efficiently simulable variational approximation to the Ising model In order to simulate the occlusion

process described in Algorithm 4.1 we need access to a variational approximation to the Ising model which

we can easily sample from. To do this we form a partition of V =
⋃k

i=1 Vi such that k is small, and define a

new graph (Ṽ , Ẽ) where |Ṽ | = k and (i′, j′) ∈ Ẽ when there exists an edge in the original graph (i, j) ∈ E

such that i ∈ Vi′ and j ∈ Vj′ . The node clusters Vi therefore form the nodes in Ṽ . See Figure 4.6 for an

example of two graphs: (V,E) and (Ṽ , Ẽ).

We extend the state space to include µ ∈ {−(1 − ϵ), 1 − ϵ}k for a given ϵ > 0 such that each µi serves

as the mean of the spins in Vi. We let µ behave according to the dynamics of an Ising model on (Ṽ , Ẽ) and

sample the spins within the clusters Vi independently with mean µi. Therefore we dictate that

Ũ(µ) := −
k∑

i=1

∑
j:(i,j)∈Ẽ

J̃ijµiµj

where each J̃ij ∈ R possibly depends on the number of edges between subgraphs i and j. Since k is small

we can calculate the normalising constant

Z̃(β̃) :=
∑

µ∈{−(1−ϵ),1−ϵ}k

exp(−β̃Ũ(µ))

where β̃ ∈ [0,∞] is an inverse temperature hyperparameter. As mentioned before, we sample the spins

within each subgraph independently conditional on their means, which are given by µ. We choose a

Rademacher distribution such that

q(σ |µ ) :=
k∏

i=1

|Vi|∏
s=1

(
1 + µi

2

) 1+σ
(i)
s

2
(
1− µi

2

) 1−σ
(i)
s

2
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Figure 4.6: Left: (V,E), right: (Ṽ , Ẽ). The colours correspond to the Vi’s in the original (V,E) that get
collapsed to nodes in (Ṽ , Ẽ). Where there exist any edges between two Vi’s in (V,E), there is an edge
between the corresponding nodes in (Ṽ , Ẽ).

where σ(i)
s ∈ {−1, 1} is the sth spin in the ith cluster. Therefore the full variational distribution has density

q(σ) :=
∑

µ∈{−(1−ϵ),1−ϵ}k

q(σ |µ )Z̃(β̃)−1 exp(−β̃Ũ(µ))

To sample from Q we simply sample µ according to the Ising distribution defined by Ũ and then sample σ

conditionally on µ. To do this we need to take an exact sample of µ. For this we can simply calculate the

probabilities of all points in {−(1− ϵ), 1− ϵ}k since we have access to Z̃(β̃).

Experiment setup In order to test the occlusion process in a full range of settings, we record its

performance on the Ising model at low and high temperatures on graphs of different sizes and connectivities,

and we compare it with the Metropolis and the Wolff algorithm.

To generate the underlying graph we sample from an N -vertex stochastic block model [C. Lee and

Wilkinson 2019] with k communities, where the community sizes are sampled uniformly from size k partitions

of {1, ..., N}. For the matrix of edge probabilities A ∈ Rk×k we have Aii = 0.8 for all i ∈ [k] and Aij = 0.01

for all i ̸= j and i, j ∈ [k]. The left side of Figure 4.6 shows such a graph with k = 3 communities and N = 20

vertices.

As stated in the introduction of the model, we set Jij = J = 1 for all i, j ∈ [n]. We set β = 1 to
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emulate a low temperature setting, and β = 0.01 to emulate a high temperature setting. For the variational

approximation defined in Section 4.1.5.2 we define the clusters Vi as the communities of the underlying

graph. In practice we will not have access to the actual latent cluster structure of the graph, and therefore

some clustering algorithm must be used to find these. We set J̃ij to the number of connections between

clusters Vi and Vj for all i, j ∈ [k] and β̃ = 0.5 × β in all temperature settings. We set ϵ = 0.1 in the β = 1

low temperature setting and ϵ = 0.9 in the β = 0.01 high temperature setting.

For the number of regions we set R = 3. To choose the constants C1 < C2 which define the regions

(see Section 4.1.4.1) we run the Wolff algorithm for 20 seconds from a random σ(0) ∼ Uniform{−1, 1}N

initialisation. We set C1 to be the median from {dπ/dQ(σ(t))}t≥1 and C2 to be the maximum.

To initialise the Markov chains generated by the Metropolis and Wolff algorithms we use the final state

in a Markov chain generated by the Swendsen-Wang algorithm. In [Huber 1999, Theorems 1 and 2] one

can find conditions under which the Swendsen-Wang chain couples with probability ≥ 1/2 for a specified

chain length. We therefore use these results to run a Swendsen-Wang chain until the probability of being

uncoupled is ≤ 0.0001 for each model we choose to sample from.

For each pair (k,N) with k ∈ {2, 5, 10} and N ∈ {20, 50, 100} we run 15 replications of the Metropolis

and Wolff algorithms for 20 seconds each. Each time we use one of these algorithms, we also run the

occlusion process defined in Algorithm 4.1 so that we can compare their results. Specifically, we compare

their estimates of the expected magnetisation as defined in (4.12).

Experiment results In Figure 4.7 we show three graphs all from the same set of results which are gen-

erated according to the setup described above. Here we display the results in the k = 5 case. For the

k ∈ {2, 10} cases, refer to Appendix 7.3.2. Each graph has four subgraphs across the various temperatures

and algorithms we use to sample. The ‘normal’ in the legend refers to data from the non-occluded Markov

chain. The bottom graph compares the estimates of the expected magnetisation between the occluded pro-

cess and the Metropolis and Wolff algorithms. The true value of the expected magnetisation is 0. The top left

graph shows the lag 1 autocorrelation coefficient of the magnetisation over the course of the Markov chains.

The top right graph shows the number of occluded states as a proportion of the total number of states from

the Markov chain sampling algorithms. In the notation of Section 4.1.4.2 this is (N1 + · · ·+NR)/n.
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As expected the Wolff algorithm excels in the low temperature setting whereas the Metropolis algorithm

fares very poorly due to the fact that in each instance it never strays from its initial position. In the high

temperature setting the variance of the estimates from the Wolff algorithm are lower in general than those

from the Metropolis chain, but the difference is not as stark as in the low temperature setting. An explanation

as to why the Wolff algorithm does so well in the low temperature setting is offered by the graphs of the lag

1 autocorrelation coefficients (top right). One can clearly see that some of these coefficients are close to -1,

explaining why the variance of the resulting estimates is very low.

As concerns the performance of the occluded chain versus the Metropolis and Wolff samplers: we can

see that in the high temperature setting, in every case the variance of the occluded estimator is much lower

than those of the Markov chains. The fact that the lag 1 autocorrelation coefficients of the occluded process

are so close to zero, combined with the high proportions of occlusion events as seen in the top level of the

top right, explain this fact.

In the low temperature setting the story is more mixed. If we compare the performance of the occluded

estimator with the Metropolis algorithm, we can see that for N = 20 and 50 the occluded estimator offers a

reduction in variance. This is explained by the corresponding reduction in the lag 1 autocorrelation coeffi-

cients and the high occlusion proportions. However the low occlusion proportion in the N = 100 case means

that the occluded chain and the Metropolis chain are basically the same, and so the occluded estimator of-

fers no increase in performance. In this case the Markov chain does not move, and so the lag 1 estimator

breaks, as seen in the graph in the top left.

Comparing the occluded estimator with the Wolff algorithm in the low temperature regime shows that in

the N = 50 case using the occluded estimator actually decreases the performance by increasing the bias

and the variance. This is explained by the fact that the occlusion events tend to decorrelate subsequent

states in the process, whereas the Wolff algorithm produces anticorrelated states. Hence the decorrelations

are undesirable in this case. Again, as with the Metropolis algorithm, the number of occlusions in the

N = 100 case is very few, and there is negligible difference between the performance of the occlusion

process and the Wolff algorithm.

We would like to note that we have not tuned the parameters of the variational distribution for any of the

models presented here. Therefore for a better tuned variational distribution, we would expect the occlusion
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proportions to be higher, and so at least in the low temperature N = 100 case achieve a reduced lower

variance of the occluded estimator compared to the Metropolis algorithm.

Satisfaction of the theoretical conditions for variance reduction Here we claim that, in the high tem-

perature setting, we satisfy condition 2. from Proposition 58, such that the variance reductions seen in

Figure 4.7 verify the theory.

Clearly the measure defining the Ising model (4.11) is even in its arguments and the magnetisation (4.12)

is odd. That the regions satisfy Xi = −Xi follow from the fact that the Radon-Nikodym derivative is such that

dπ/dQ(σ) = dπ/dQ(−σ) for all σ ∈ {−1, 1}N . These three facts satisfy the conditions outlined in Example

59 such that f ≡ ←−π f+π(f). That the Markov kernel is positive when applied to the magnetisation functional

is evidenced by the lag-1 autocorrelation coefficients in the high temperature settings of Figure 4.7. The last

criterion for variance reduction we need is for µ̂occ = µ̂ideal. This is evidenced by the occlusion proportion

graphs in Figure 4.7, which imply that α ≡ 1 at high temperature.

Overall this suggests that in the high-temperature setting, condition 2. of Proposition 58 is satisfied,

and so the theory suggests that Var(f̂occ) ≤ Var(f̂). This is verified by the variance reductions seen at

high-temperature in Figure 4.7.

4.1.6 Discussion

4.1.6.1 Summary

We have introduced the occlusion process which sits on top of an existing Markov kernel K. It produces

unbiased estimates of expectations under the equilibrium distribution π of K. The occlusion process is

designed to reduce the variance of the estimates produced solely by K at no additional compute-time cost.

It uses a variational distribution Q to do this.

We define the process in the Markov kernel (4.5), showing that it is unbiased and stating its variance in

Proposition 60. In Section 4.1.3 we show that it inherits properties such as an LLN (Theorem 63), conver-

gence in a normed function space (Theorem 65), and geometric ergodicity (Theorem 72) from K. In Section

4.1.4 we explain how to simulate the occlusion process at no additional computational cost in terms of wall-
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Figure 4.7: Three graphs comparing the performance of the occlusion process with the Metropolis and Wolff
algorithms on the Ising model at a variety of temperatures, for a variety of graph sizes. In every case the
horizontal axes show the number of vertices N in the graphs. Bottom: the vertical axes denote the algo-
rithm’s estimates of the expected magnetisation. Top left: the vertical axes denote the lag 1 autocorrelation
coefficient of the magnetisation over the states produced by the algorithms. Top right: the vertical axes show
the number of samples from the πi’s in Algorithm 4.1 divided by the number of states in the Markov chain
n. We magnify the estimated magnetisation plot for ease of comprehension, the top two plots then help to
explain the phenomena in the bottom plot.
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clock time. In Section 4.1.5 we present two numerical experiments so as to inspect the empirical properties

of the occlusion process, and to compare its performance against the Markov chains generated by K. The

first experiment in Section 4.1.5.1 compares the ability of K with the occlusion process to sample from a

bimodal Gaussian mixture, for which we have a good approximation Q of one of the mixture components.

The results show that the occlusion process is able to effectively decorrelate subsequent steps in the Markov

chain generated by K. In Section 4.1.5.2 we define the Ising model on an arbitrary graph, and introduce

the Metropolis (Algorithm 4.2) and Wolff (Algorithm 4.3) algorithms which are used to form Markov chains

with which we form estimators for this model. Since the occlusion process uses a variational distribution Q

of the Ising model we propose one in Section 4.1.5.2. We run the Metropolis and Wolff at various temper-

atures on various graphs, and show that the occlusion process produces estimators of reduced variance,

apart from in the low temperature case with the Wolff algorithm. This is because, in such a setting the Wolff

algorithm produces states which are anticorrelated, whereas the occlusion process produces states which

are decorrelated. In Section 4.1.5.2 we argue that in the high temperature setting, we satisfy the conditions

for variance reduction, which explains the variance dominance in the experimental results.

4.1.6.2 Extensions

There are numerous interesting extensions to the work presented here. On the theoretical side, it would

be interesting if we could establish conditions under which the variance of the occluded estimator 4.6 is

dominated by the variance of the estimator produced by the Markov kernel K (where K is positive). In

the numerical experiments we clearly see variance dominance in multiple cases, so it would be useful

to theoretically establish this phenomenon. In general it would be interesting to find the minimum variance

unbiased estimator of an expectation µ under π given an array of samples {Xt}nt=1 from a π-invariant Markov

chain and R collections of samples {{Yij}Ni
j=1}Ri=1 with Yij ∼ πi for all j ∈ [Ni] and i ∈ [R]. For example: in

the embarrassingly parallel process outlined in Algorithm 4.1 the Yij samples occlude uniformly at random

the appropriateXt samples. Is there some allocation scheme that is less random, achieves a lower variance,

but is still provably unbiased? We might also not want to throw away the samples Xt from the Markov chain

upon occlusion. Is there some estimator then that uses all the samples from the Markov chain, as well as

the Yij samples, in an unbiased way?
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On the practical side of things there is a plethora of ways in which we could enhance the occlusion

process. One way is to learn the optimal tuning parameters of the variational distribution Q online as the

process runs. Another way is to use the samples from the πi’s to inform the Markov chain generated by K

as in the equi-energy sampler [Kou, Zhou, and Wong 2006]. We could also use enhanced versions of the

rejection samplers in Algorithm 4.1 such as the squeeze method [Marsaglia 1977].
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Chapter 5

High dimensional adaptive MCMC with

reduced computation complexity

We propose an adaptive MCMC method that learns a linear preconditioner which is dense in terms of its off-

diagonal elements but sparse in terms of its parametrisation. Due to this sparsity we achieve a computational

complexity of O (d) compared with O
(
d2
)

for existing preconditioners that can also capture correlations in

the target. Diagonal preconditioning also has O (d) computational complexity, but is known to fail in the

case that the target distribution is highly correlated, see section 3.5. Our preconditioner is constructed using

eigeninformation about the target covariance which we infer using online Principal Components Analysis

on the MCMC chain. It is composed of a diagonal matrix and a product of carefully chosen Householder

reflections. On various numerical tests we show that it outcompetes diagonal preconditioning in terms

of absolute performance, and that it outcompetes the traditional dense preconditioning in terms of time

normalised performance

The notation in this chapter can be found to be defined in section 7.1.5.
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5.1 Motivation

When applied to the problem of Bayesian inference, modern MCMC methods must adapt to accommodate

the forms of the data that shape the posterior. When the data is high-dimensional, in the sense that each

data point lives in a high-dimensional space, the parameter for which we construct the posterior is often also

high-dimensional. In the case of Generalised Linear Models, the dependency of the posterior distribution

on the data X ∈ Rn×d enters in the form Xθ where θ ∈ Rd. Therefore if the data is high dimensional in the

sense that d is large we will have to construct MCMC algorithms to operate within high dimensional spaces.

In chapter 3 we examined the effect of linear preconditioners on the condition number of the target

distribution. One of the preconditioners we focused on was constructed using the target covariance Σπ. We

showed that the O-U process preconditioned with Σπ had an optimal spectral gap. We also showed that

the Hessian of the potential of the target could be localised around Σ−1
π in such a way that we could use

the theory we developed to estimate the effect of using a covariance-based preconditioner on the condition

number. Therefore in this chapter we develop an adaptive algorithm which learns spectral information about

the target covariance, in order to use this information to construct a preconditioner.

In a high-dimensional context learning and using a fully dense preconditioner, such as the covariance,

in the manner of [Haario, Saksman, and Tamminen 2001] and 2.17 is infeasible due to the O
(
d2
)

computa-

tional complexity of both the learning update, and the way in which the preconditioner is used in the Markov

kernel. This is only partially solved by using the diagonals of the target covariance as we demonstrated in

3.5, since doing so is inadvisable on target distributions that have large correlations between many dimen-

sions. Therefore we seek to construct a preconditioner that is dense in terms of its off diagonal elements

but sparse in terms of its parametrisation in the hopes that both the learning step and the Markov kernel

sampling step in algorithm 2.1 can be executed in o
(
d2
)

computational complexity. This is a difficult problem

since the preconditioner construction must give a o
(
d2
)

complexity of, say, matrix-vector multiplication but

we can’t just arbitrarily constrain the parameterisation without also taking into account how it’s going to be

updated in the learning step.

The method we propose learns the m ∈ [d] eigenvectors of the target covariance associated with the top

m eigenvalues. It also learns the target scales along these directions, which are just the top m eigenvalues
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of the target covariance, along with some additional scale information. It uses all of this eigeninformation to

construct a preconditioner that aims to reduce ∥Σπ∥2 by isotropising the top m eigenvalues. The precondi-

tioner is constructed such that the matrix multiplication, matrix inversion, and matrix square root operations

are O
(
m2d

)
. That the learning step also incurs O

(
m2d

)
operations gives an O

(
m2d

)
total iteration com-

plexity of the adaptive algorithm.

5.2 Existing practices

One possible sparse parameterisation of a dense matrix is the ‘diagonal plus low rank’ form: D + v1v
T
1 +

· · · + vmv
T
m ∈ Rd×d where m ≪ d and D ∈ Rd×d is a diagonal matrix. This parametrisation takes (m+ 1) d

scalar parameters. With this form, matrix vector multiplication is O (md) and calculations using its inverse

are made much simpler using the Woodbury formula. We will often need to take the Cholesky factor of a

positive definite Σ ∈ Rd×d to sample from N (0,Σ). However, if Σ is in the diagonal plus low rank form we

have that
√
Dξ + V ζ ∼ N

(
0, D + V V T

)
where ξ ∼ N (0, Id), ζ ∼ N (0, Im) and V ∈ Rd×m has vi as its ith

column, for all i ∈ [m] [Miller, Foti, and Adams 2017; Ong, Nott, and Smith 2018].

The use of preconditioning matrices with this structure has history in numerical linear algebra, with a

prominent example being the Limited-Memory BFGS (L-BFGS) Quasi-Newton method for Optimisation; see

e.g. [Morales and Nocedal 2001] and [Helmberg 2024]. In sampling [Yichuan Zhang and Sutton 2011]

construct a diagonal plus low rank estimate of the inverse Hessian of the potential using L-BFGS. They

maintain the Cholesky factor of their estimate using a mechanism that takes O
(
m2d

)
. Their approach is

fundamentally different from ours since the Hessian of the potential varies across the state space whereas

we aim to estimate the eigeninformation from a single matrix (the target covariance) which is fixed across

the state space. Therefore in optimality our preconditioner is fixed whereas theirs varies. Since they use

the inverse Hessian of the target potential to provide the covariance matrix for their proposal distributions,

their method is specifically designed for cases where this potential is strictly convex. It is unclear how their

method would perform when this condition is violated, whereas the only assumption we require for our

method is for the target covariance to exist and be elementwise finite.

[Langmore et al. 2020] define a new condition number for HMC that uses the spectrum λ21 ≥ λ22 ≥ · · · ≥
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λ2d of the target covariance in the following way:

κHMC :=

(
d∑

i=1

(
λ1
λi

)4
)1/4

Under certain assumptions on the step-size, [Langmore et al. 2020] show that this condition number is

proportional to the number of leapfrog steps needed to achieve a stable acceptance rate. They note that

κHMC is inflated when the target covariance has a few large eigenvalues and many small ones. They then

learn argminKL
(
N
(
0, LLT

)
∥π
)

with L ∈ Rd×d restricted to be diagonal plus low rank. They do this is

the case that π = N
(
0, LπL

T
π

)
where Lπ ∈ Rd×d is a circulant matrix such that LπL

T
π has a few large

eigenvalues and many small. They found that their preconditioner did a better job at reducing κHMC when m

(the number of terms in the low rank expansion) exceeded the number of large eigenvalues in the circulant

matrix. Since they use the reverse KL, they can learn their preconditioner off-line i.e. with no information

from an MCMC algorithm.

In sampling the other notable work that exploits a sparsely parametrised preconditioner is [Wallin and

Bolin 2018]. The authors note that the sparsity structure of the precision matrix of the target can be detected

via partial correlation information. The authors use conditional dependence as a proxy for partial correlation

and pose a pre-processing routine to detect the presence of a conditional independence between the target

dimensions (but not necessarily a dependence). They then calculate the estimated sparsity structure of the

Cholesky factor of the precision, using a reordering of the dimensions to make the factor sparser if desired.

Then, given a sparsity structure they propose routines to calculate the Cholesky factor of (Σn+1)
−1 from

(Σn)
−1 and Xn where Σn is a chain based estimate of the target covariance and Xn is the latest state in the

chain. They conceive the adaptive algorithms paMHRW (precision adaptive Metropolis-Hastings Random

Walk) and paMALA (precision adaptive MALA) which are RWM and MALA with precision adaptive elements.

Define {Aj}dj=1 with Aj the set of estimated non-zero indices of the jth column of the Cholesky factor

of the target precision. Then one iteration of paMALA has O
(
d+

∑d
j=1 |Aj |2

)
computational complexity.

Therefore this complexity is O (d) at best and O
(
d3
)

at worst.
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5.3 An eigen-informed, sparsely parametrised preconditioner

We propose a preconditioner that is constructed using information from the target covariance Σπ ∈ Rd×d,

specifically the top m ∈ [d] eigenvalues and their associated eigenvectors. We show that this preconditioner

is beneficial in the sense that it reduces the operator norm of the target covariance as motivated in sec-

tion 5.1. We then construct a parametrisation for which matrix-vector multiplication is O
(
m2d

)
and matrix

inversion and Cholesky factorisation are easily computable.

A word on notation In chapter 3 a ‘preconditioner’ was a matrix L ∈ Rd×d that described the transforma-

tion Y = LX where X ∼ π, whose desired function was to make it easier to sample from L (Y ). That is still

the desired function here, but instead we call L−1 the ‘preconditioner’, where L is as introduced in chapter

3. One can think of the preconditioners in chapter 3 as preconditioning the target, and the preconditioners

here as preconditioning the algorithm, and we can switch between these ways of thinking with proposition

26. It is more fitting to talk about the algorithm-based formulation of the preconditioner here since we are

developing an algorithm.

5.3.1 The optimal preconditioner

When constructing a sparsely parametrised preconditioner, we need a parameter space from which we

can reconstruct a full preconditioner and in which we can plausibly learn. Fixing m ∈ [d] we choose the

spaces of m eigenvectors and m eigenvalues in which to learn, and from which we can fill in the rest of the

eigeninformation to construct the full preconditioner. Define
{
λ
(π)
i : i ∈ [d]

}
as the set of eigenvalues of the

target covariance (in descending order) and
{
v
(π)
i : i ∈ [d]

}
the corresponding normalised eigenvectors. We

attempt to learn the preconditioner L = QD ∈ Rd×d where D = diag
{√

λ
(π)
1 ,

√
λ
(π)
2 , . . . ,

√
λ
(π)
m , 1, . . . , 1

}
is

a diagonal matrix whose first m terms are the square roots of the top m eigenvalues of the target covariance.

The matrix Q ∈ O (d) has as its first m columns the associated ordered eigenvectors
{
v
(π)
1 , v

(π)
2 , . . . , v

(π)
m

}
and the remaining d −m columns are chosen arbitrarily to make Q orthogonal. This preconditioner makes

the MCMC algorithms it preconditions more efficient in the following sense:
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Proposition 75. Assume that the covariance Σπ := Covπ (X) of the target distribution exists and is element-

wise finite. Let π̃ ∈ P (X ) be the target distribution π after preconditioning with L = QD with corresponding

covariance Σπ̃. Then ∥Σπ̃∥2 = max
{
λ
(π)
m+1, 1

}
.

For a proof see section 7.2.5.1. If preconditioned with L = QD the target will become more isotropic in

general due to the fact that the scales along the directions
{
v
(π)
1 , v

(π)
2 , . . . , v

(π)
m

}
will all be 1 after precondi-

tioning.

5.3.2 Construction and computation with Householder matrices

Construction Even though we have stated the optimal preconditioner, we must still provide a parame-

terisation of the preconditioner that can be learned and used within a Markov step in o
(
d2
)

computational

complexity. Computations with the diagonal component D of the preconditioner are straightforward and

clearly o
(
d2
)
, and so we will focus on the construction of the orthogonal component Q here. Therefore

assume that we have m orthonormal vectors vi ∈ Rd for i ∈ [m] which will serve as our estimates of

the top m eigenvectors introduced in section 5.3.1. Given v, w ∈ Rd we define the Householder matrix

H (v ↔ w) ∈ O (d) with

H (v ↔ w) := Id − 2
(v − w) (v − w)T

∥v − w∥22
We construct the orthogonal component of our preconditioner as Q := Qm where we define Qm iteratively:

Q1 := H (e1 ↔ v1)

for k ∈ {2, . . . ,m} , Qk := H (Qk−1ek ↔ vk)Qk−1 (5.1)

where ei ∈ Rd is the ith canonical basis vector of Rd. Therefore Q1, . . . , Qm can be seen as a series of

Householder matrices which are notable for their ability to transform an arbitrary vector into another, and

vice versa. Specifically H (v ↔ w) is an orthogonal matrix with determinant −1 (because it is a reflection)

such that H (v ↔ w) v = w and H (v ↔ w)w = v. If u is perpendicular to both v and w then H (v ↔ w)u =

u because u is in the plane of reflection. See figure 5.1 for a visual representation of the action of a
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v

Hv

n

−nn⊤v

−nn⊤v

Figure 5.1: The action of H = Id− 2nnT on v. Let n ∈ Rd be a unit normal to a plane about which we would
like to reflect v ∈ Rd. Adding −nnT v to v projects it onto the plane and adding another −nnT v sends it to its
reflection.

Householder matrix. A given Householder matrix H ∈ O (d) will also have the nice properties that H = HT

and H2 = Id.

The idea behind the orthogonal component of the preconditioner is that it acts on ek in the following way:

Qmek = H (Qm−1em ↔ vm) . . . H (Qkek+1 ↔ vk+1)H (Qk−1ek ↔ vk)Qk−1ek

= H (Qm−1em ↔ vm) . . . H (Qkek+1 ↔ vk+1) vk

The remaining Householder matrices are constructed such thatH (Qm−1em ↔ vm) . . . H (Qkek+1 ↔ vk+1) vk =

vk.

Proposition 76. Fix m ≤ d. Given a set of m orthonormal vectors {v1, . . . , vm} in Rd which constructs

Q = Qm as in 5.1 we have that Qei = vi for all i ∈ [m].

For a proof, see section 7.2.5.2. The proposition implies that we have a way of building a Q ∈ O (d)
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ei

ek

vi = Qk−1ei

Qk−1ek

vk

Figure 5.2: A visual explanation of why Qkei = vi for all i < k. By construction we have that Qkei =
H (Qk−1ek ↔ vk)Qk−1ei and so by the properties of Householder matrices if Qk−1ei is perpendicular to
both Qk−1ek and vk we have that Qkei = Qk−1ei which is just vi by inductive hypothesis. Clearly Qk−1ei is
perpendicular toQk−1ek since the two vectors are just canonical basis vectors transformed by a Householder
matrix, which is orthogonal. This transformation is shown by the reflection of the blue vectors to the green
vectors through the dotted line in the figure. That Qk−1ei is perpendicular to vk is evident because Qk−1ei =
vi by inductive hypothesis, and the fact that vi is perpendicular to vk.

whose first columns are {v1, ..., vm}. In other words, we have a way of extending a set of m orthonormal

vectors to an orthonormal basis of Rd. Note that every matrix Qk for k ∈ [m] in the construction of Qm has

the property that Qke1 = v1, ..., Qkek = vk by construction. It is because of this fact that proposition 76 holds

true. That Qkek = vk is obviously true. That Qkei = vi for i < k is true is explained in figure 5.2. This means

that the first k columns of Qk are the first k columns of Qj for j ∈ {k + 1, ...,m}.

5.3.2.1 Computation

The full preconditioner is then L = QD with Q constructed as in the section above, and D a diagonal

matrix. Matrix-vector multiplication with a diagonal matrix is O (d) and Matrix-vector multiplication with a

Householder matrix is O (d). However each Qk contains Qk−1 for all k ∈ {2, . . . ,m} and so to calculate Qkv
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we must calculate Qk−1v and then eTkQk−1 (Qk−1v). For this reason, matrix vector multiplication with L is

O
(
m2d

)
.

In practice we find that simply constructing Qm, storing it as a matrix, and executing matrix-vector multi-

plication in the usual way is faster than the bespoke matrix-vector routines we wrote to exploit its construc-

tion. This is because in built matrix-vector multiplication routines are very well optimised. Therefore we use

normal matrix-vector multiplication in our numerical experiments in section 5.3.6. Clearly if the dimension is

high enough our bespoke O
(
m2d

)
matrix-vector multiplications will be faster than the in built routines (which

are O
(
d2
)
).

Calculating the inverse L−1 = D−1QT is particularly simple since Q is the composition of Householder

matrices, which are symmetric. Since we use MALA as the base MCMC kernel, this inverse needs cal-

culating at every accept-reject step. This is why our algorithm achieves a lower time per iteration than

those which use a dense preconditioner, even though we do dense matrix-vector multiplication. Sampling

from N
(
0, LLT

)
can be achieved by multiplying ξ ∼ N (0, Id) by L, and so has the same computational

complexity as matrix-vector multiplication.

5.3.3 Learning with online principal components analysis

5.3.3.1 Eigenvectors

Principal components analysis (PCA) is a method for learning the orthogonal directions across which data

vary the most. Given a dataset X ∈ Rn×d whose rows are identically distributed data points that have been

centred, and a number of directions m ∈ [d] we seek the optimal V ∗ which satisfies

argmax
{

tr
(
V TΣπV

)
: V ∈ Rd×m, V TV = Im

}
where the empirical covariance Σ̂ ∝ XTX is used to approximate Σπ. Say Σ̂ has eigendecomposition

Q̂D̂Q̂T where the diagonal elements of D̂ are in decreasing order. Then the maximum is achieved when

V ∗ contains the the first m columns of Q̂. Therefore PCA is equivalent to learning the eigenvectors asso-

ciated with the top m eigenvalues of the empirical covariance. Since PCA can be interpreted as a simple

127



dimensionality reduction subroutine, it can be used on data with any kind of dependency structure. However,

establishing guarantees for its output must take into account this dependency, which is achieved in [M. Chen

et al. 2018; Kumar and Sarkar 2023] for Markovian data. We choose Oja’s algorithm [Oja 1984] to use for

the learning step in our MCMC scheme because it is analysed in both [M. Chen et al. 2018] and [Kumar

and Sarkar 2023]. We find that the only other competing online PCA method, CCIPCA [Weng, Yilu Zhang,

and Hwang 2003], dominates the performance of Oja’s algorithm in the m = 1 case although it becomes

numerically unstable in the m > 1 case with Markovian data.

Oja’s algorithm is projected gradient descent on the objective tr
(
V TΣπV

)
. The gradient of this objective

is ΣπV and the projection is onto the set O (d,m) :=
{
V ∈ Rd×m, V TV = Im

}
. The gradient is estimated

using (Xt − µt) (Xt − µt)
T whereXt is the latest state in the Markov chain and µt ∈ Rd is a running estimate

of the mean of π. The full update abides by the following recursion:

Vt = ΠO(d,m)

(
Vt−1 + γt (Xt − µt) (Xt − µt)

T
Vt−1

)

where ΠO(d,m) describes a projection onto O (d,m) which we implement using a Gram-Schmidt orthog-

onalisation and γt > 0 is a learning rate. The authors of [Cardot and Degras 2018] recommend using

γt = ct−α where c ∈ (0,∞) and α ∈ (0.5, 1]. In all of our numerical examples we use c = 1 and α = 0.7.

After having made the update, the m columns serve as the eigenvectors from which we construct the or-

thogonal component of the preconditioner as described in section 5.3.2. For the computational complexity:

the product (Xt − µt)
T
V is O (md) and the projection with Gram-Schmidt is O

(
m2d

)
.

5.3.3.2 Eigenvalues

Let Q (V ) denote the orthogonal matrix constructed in section 5.3.2 where vi is just the ith column of V

for all i ∈ [m]. Then if V contained the eigenvectors corresponding to the top eigenvalues of the target
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covariance, then

Q (V )
T
ΣπQ (V ) =

V T

WT

(V Wπ

)
diag {λπi : i ∈ [d]}

V T

WT
π

(V W

)

=

Im 0

0 WTWπ

diag {λπi : i ∈ [d]}

Im 0

0 WT
π W


where W ∈ Rd×(d−m) is the remaining d−m columns of Q (V ), and the second equality holds because the

columns of V are mutually orthonormal, and the columns of W are orthogonal to the columns V which are

also orthogonal to the columns of Wπ. Therefore, from the final expression, applying Q (V )
T ‘uncovers’ the

top m eigenvalues of the target covariance so if we scale the output of our MCMC algorithm by Q (V )
T the

first m marginal variances that result will be the top m eigenvalues. This is how we propose to learn these

eigenvalues: defining µ̃t := Q (Vt)
T
µt as the transformation of our current estimate of the mean of π and

X̃t := Q (Vt)
T
Xt as the transformation of the current Markov chain state we set

Dt =

(
D2

t−1 + γt

(
diag

{(
X̃t − µ̃t

)2
i
: i ∈ [d]

}
−D2

t−1

))1/2

where γt > 0 is a learning rate. Then the final d−m diagonal elements of Dt can be set to 1 in accordance

with the description of the optimal preconditioner in section 5.3.1.

5.3.4 Implementation

The actual implementation has two additional adaptive steps apart from those described in section 5.3.3.

The first is a standard update to the adaptive mean µt. The second is the learning of an optimal global scale

parameter σ > 0 for the proposal distribution of the Markov kernel. This is motivated by the optimal scaling

literature [Beskos et al. 2013; G. O. Roberts, A. Gelman, and Gilks 1997; Jeffrey S Rosenthal et al. 2011],

a line of research which establishes that for suitable high-dimensional model problems, the convergence

behaviour of many MCMC algorithms can be described in terms of a limiting univariate Markov process

(often a diffusion), with the value of σ informing the ‘speed’ at which this limiting process traces out its path.

129



In this setting, σ is selected to optimise some property of the limiting process. Various results suggest that

the optimal value of σ can be characterised in terms of the average acceptance probability of the chain

at equilibrium, independently of the target distribution. Tuning σ to control the acceptance rate also has

motivations in non-asymptotic analysis, where one might instead care particularly about the worst-case

acceptance rate out of any state x; see e.g. [Andrieu, A. Lee, et al. 2024]. Therefore we implement a

learning step for σ > 0 based on matching an optimal acceptance rate α∗ ∈ (0, 1].

The exact implementation can be found in algorithm 5.1

The overall computational complexity of the learning step is bottlenecked by Gram-Schmidt and is hence

O
(
m2d

)
.

5.3.5 Implementation details

5.3.5.1 Adaptive variants

Along with the learning step described in algorithm 5.1, we also propose a variant in which step 5 (c) is

excluded. The purpose of doing this is that the final d−m diagonal elements of Dt will contain information

about the marginal scales of the target covariance (along the directions of the final d−m columns of Q (Vt)).

Therefore step 5 (c) is possibly throwing away this information, even though using this information may harm

the algorithm, as explained in 3.5. We call the variant that includes step 5 (c) ‘eigen_identity’ and the variant

that excludes it ‘eigen’.

5.3.5.2 Competing adaptive schemes

Before we describe the adaptive schemes against which we compare ours, we note that in every scheme

shown here we also initialise a global scale parameter at σ0 = 0.5× d−1/4 and adapt at each step according

to the rule shown in step 4. of algorithm 5.1. Given that we use MALA as our underlying Markov kernel,

we set α∗ := 0.574 in all circumstances according to [Gareth O. Roberts and Jeffrey S. Rosenthal 2001,

Theorem 3 ii)]. Each adaptive scheme (including ours) updates its adaptive parameters at every step in the

Markov chain.
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Algorithm 5.1 Complete learning step for the proposed adaptive algorithm
inputs: learning rate γt > 0, latest state from the Markov chain Xt ∈ Rd, latest acceptance probability αt ∈
[0, 1], optimal acceptance rate α∗ ∈ (0, 1], latest values of the adaptive parameters µt−1 ∈ X, Vt−1 ∈ O (d,m),
Dt−1 ∈ Rd×d, σt−1 > 0, mechanism for constructing the orthogonal component of the preconditioner Q :
O (d,m) → O (d), Gram-Schmidt projection operator ΠO(d,m) : Rd×m → O (m, d), learning rate coefficient
for Oja’s algorithm c ∈ (0,∞), general learning rate tuning parameter α ∈ (0.5, 1].
outputs: updated values of the adaptive parameters µt ∈ Rd, Vt ∈ Rd×m, Dt ∈ Rd×d

1. Set the general learning rate: γt = t−α

2. Learn the adaptive mean:
µt = µt−1 + γt (Xt − µt−1)

3. Learn the adaptive eigenvector information:

(a) Update the eigenvector matrix:

Ṽt = Vt−1 + γt (Xt − µt) (Xt − µt)
T
Vt−1

(b) Orthogonalise using Gram-Schmidt: Vt = ΠO(d,m)

(
Ṽt

)
4. Learn the adaptive global scale:

log σt = log σt−1 + γt (αt − α∗)

5. Learn the adaptive diagonal information

(a) Project the location information along the new eigenvectors Vt: µ̃t := Q (Vt)
T
µt, Q (Vt)

T
Xt

(b) Learn the marginal variances along the new eigenvectors Vt:

Dt =

(
D2

t−1 + γt

(
diag

{(
X̃t − µ̃t

)2
i
: i ∈ [d]

}
−Dt−1

))1/2

(c) Set (Dt)ii = 1 for i ∈ {m+ 1, . . . , d} in accordance with the form of the optimal preconditioner
5.3.1.
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The first adaptive algorithm we compare ours to is one where we do nothing. We initialise at L0 = Id

and do not perform any updates whatsoever. We call this adaptive scheme ‘none’ as it does nothing.

The second adaptive algorithm we compare ours to is the diagonal adaptive scheme. This scheme

initialises at L0 = Id and upon each new state produced by the Markov kernel, attempts to learn the marginal

standard deviations of the target, which are then used as the diagonal elements of Lt. Specifically, given a

new state Xt ∈ Rd and a learning rate γt > 0 we set

Lt =
(
L2
t−1 + γt

(
diag

{
(Xt − µt)

2
i : i ∈ [d]

}
− L2

t−1

))1/2
where µt ∈ Rd is a running estimate of the mean of π. This learning step is equivalent to that described

in algorithm 5.1 holding Vt such that Q (Vt) = Id and skipping step 5 (c). Matrix multiplication, inversion,

and square root are O (d) with this preconditioner, and so it provides the fastest per-iteration algorithm of all

those presented here (apart from ‘none’). We refer to this algorithm as ‘diagonal’.

The final adaptive algorithm we compare to is the dense adaptive scheme described in [Andrieu and

Thoms 2008, Algorithm 4]. This scheme initialises at L0 = Id and upon each new state produced by the

Markov kernel, attempts to learn the target covariance. The preconditioner Lt is then set to a matrix square

root of the estimate of the target covariance. Specifically, given a new state Xt ∈ Rd and a learning rate

γt > 0 we set

Lt =
(
Lt−1L

T
t−1 + γt

(
(Xt − µt) (Xt − µt)

T − Lt−1L
T
t−1

))1/2
(5.2)

Matrix multiplication and inversion are O
(
d2
)

with this preconditioner, and so it provides the slowest per-

iteration algorithm of all those presented here. We often found that the matrix inside the outer set of brackets

in 5.2 would become non-positive definite. Therefore we also needed to detect its minimal eigenvalue so as

to perturb it into positive definiteness. This operation takes O
(
d3
)
.

5.3.5.3 Multiple chains

For each adaptive scheme we run multiple chains whose information we average over and use in the learning

step. Mathematically this can be described by the following generic scheme in Algorithm 5.2.
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Algorithm 5.2 Generic multiple chain adaptive algorithm
inputs: Markov kernels {KL : X×X → [0, 1]}L∈Rd×d , learning increments

{
A : X× Rd×d → Rd×d

}
t∈N\{0},

number of chains k ∈ N\ {0}, initial state
(
X

(1)
0 , . . . , X

(k)
0

)
∈ Xk, initial preconditioner L0 ∈ Rd×d, chain

length n ∈ N\ {0}, learning rate {γt}t∈N\{0}.

outputs: A process
{(
X

(1)
t , . . . , X

(k)
t

)}n

t=1

For t ∈ [n] do

1. Sample
(
X

(1)
t , . . . , X

(k)
t

)
∼⊗k

i=1KLt−1

(
X

(i)
t−1 → .

)
2. Update the preconditioner: Lt = Lt + γt

1
k

∑k
i=1A

(
X

(i)
t , Lt

)

To give a concrete example: instead of using step 2. in algorithm 5.1 with a single chain, with multiple

chains step 2. would take the form

µt = µt−1 + γt
1

k

k∑
i=1

(
X

(i)
t − µt−1

)

Using multiple chains has been proposed in many different forms, see e.g. [Goodman and Weare 2010;

Jacob, O’Leary, and Atchadé 2020] for general methods and [Craiu, J. Rosenthal, and C. Yang 2009; Riou-

Durand et al. 2023; Schär, Habeck, and Rudolf 2024] for methods in adaptive MCMC and [Margossian and

Andrew Gelman 2024; Sountsov, Carroll, and M. D. Hoffman 2024] for a discussion of the generic benefits

of using many chains. The general idea is that MCMC methods are efficient for local exploration of target

distributions, but lack the ability to acquire and exploit global information. Therefore using many chains

allows global information to be gained and shared between chains, even though each individual chain is

localised.

5.3.5.4 Algorithmic setup

The Markov kernel alongside all the adaptive methods shown here is the MALA kernel preconditioned with

the matrix Lt.

For the ‘none’ adaptive scheme we have Lt−1 = Id, for the ‘diagonal’ adaptive scheme Lt−1 is a di-

agonal matrix containing the marginal standard deviations, for the ‘dense’ adaptive scheme Lt−1 is the
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Algorithm 5.3 Preconditioned MALA Markov kernel
inputs: previous state Xt−1 ∈ Rd, adaptive parameters Lt−1 ∈ Rd×d, σt−1 > 0, target density π : Rd →
[0,∞) (normalised or unnormalised)
outputs: subsequent state Xt ∈ Rd

1. Propose a new point:

Yt = Xt−1 +
σ2
t−1

2
Lt−1L

T
t−1∇x log π (Xt−1) + σt−1Lt−1ξ

where ξ ∼ N (0, Id).

2. Accept the proposed point with probability

α (Xt−1 → Yt) = min

1,
π (Yt)N

(
Xt−1;Yt +

σ2
t−1

2 Lt−1L
T
t−1∇x log π (Yt) , σ

2
t−1Lt−1L

T
t−1

)
π (Xt−1)N

(
Yt;Xt−1 +

σ2
t−1

2 Lt−1LT
t−1∇x log π (Xt−1) , σ2

t−1Lt−1LT
t−1

)


Cholesky factor of an estimate of the target covariance, for the ‘eigen’ and ‘eigen_identity’ schemes Lt−1 =

Q (Vt−1)Dt−1.

5.3.6 Numerical Experiments

Before introducing our numerical experiments we note that in every case we sum the ESSs for each chain

dimension across all k chains described in section 5.3.5.3.

5.3.6.1 Ill-conditioned Gaussian

Here we compare our proposed adaptive schemes with the schemes described in 5.3.5.2 on an ill-conditioned

Gaussian target with a dense covariance.

Experimental set-up The target has the form π = N
(
(5, . . . , 5)

T
,Σπ

)
where Σπ has K significant eigen-

values sampled from N (100, 0.01) and d −K smaller eigenvalues at 0.1. This gives the target a condition

number of ≈ 1000. The first eigenvector of Σπ is the all ones vector, and the rest of the eigenvectors are

determined using the svd function in R.
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Figure 5.3: sin2 distance between the preconditioners’ leading eigenvector and the leading eigenvector of
the target covariance over a single MCMC chain in d = 150 with an ill-conditioned Gaussian target.

We use a γt = (t+ 1)
−0.7 learning rate, and a value of c = 1 for Oja’s algorithm in the ‘eigen’ and

‘eigen_identity’ cases. We initialise the global scale at σ0 = 0.5d−1/4. We initialise all matrix valued adaptive

parameters (i.e. D0, L0, Q (V0)) at the identity.

Results First we demonstrate the adaptive algorithms’ ability to learn their adaptive parameters. In figure

5.3, we look at the sin2 distance between the eigenvector associated with the top eigenvalue of the adaptive

preconditioners, and the eigenvector associated with the top eigenvalue of the target covariance. Here we

use a d = 150 dimensional π = N
(
(5, . . . , 5)

T
,Σπ

)
target, but with a single K = 1 significant eigenvalue.

We do this because ifK > 1 the top eigenvectors of the preconditioners switch between the top eigenvectors

of the target covariance, making the results difficult to read. We observe a single run for 1000
√
d iterations

with k = 2 chains, where the ‘eigen’ and ‘eigen_identity’ algorithms learn m = 3 top eigenvectors.

What the plot contains but does not show is the sin2 distance between the top eigenvector of the ‘none’

preconditioner and the top eigenvector of the target. This is because it is hidden behind the ‘diagonal’

points: the sin2 distances for both of these preconditioners is fixed near 1 because they remain diagonal

for the entire MCMC chain. In the ‘dense’, ‘eigen’, and ‘eigen_identity’ cases the sin2 distances drop close

to zero over the course of the run. This shows that they are learning the top eigenvector of the target

covariance. Note that the ‘eigen_identity’ performs slightly worse than the ‘eigen’ algorithm: this is possibly

due to the fact that it ignores the additional marginal variance information, as explained in section 5.3.5.1

We now increase the number of significant eigenvalues in the target covariance to K = 3. The algo-
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Figure 5.4: The median ESSs across the dimensions of each individual chain of the ‘eigen_identity’
and ‘eigen’ adaptive algorithms. The results are shown from various m’s and dimensions on a
N
(
(5, . . . , 5)

T
,Σπ

)
where Σπ is ill conditioned and dense.

rithms are in dimension d ∈ {50, 100, 150} and we run the ‘eigen’ and ‘eigen_identity’ algorithms (i.e. our

proposed algorithms) with m ∈ {1, 2, 3, 4, 5, 6}. The idea is that these algorithms should increase in perfor-

mance when m increases from 1 to 3 and stabilise from 4 to 6. We collect the results from 15 chains for

each (d,m,adaptive scheme) combination. For each algorithmic run we use k = 2 chains, each started in

equilibrium and run for 1000
√
d iterations. In figure 5.4 we show the raw median ESSs for the ‘eigen’ and

‘eigen_identity’ schemes, across dimensions and across m values.

The broad takeaway from these plots is that increasing m (the number of eigenvectors we attempt to

learn) does genuinely improve absolute performance up to m = 3 as expected. This effect is seen most

strikingly in the ‘eigen’ case, pointing toward its superior ability to learn the eigenvectors shown in 5.3 (note

the different y-axes in each plot). As we note in 3.1, the worse the conditioning of the target, the worse we

will be punished for having misaligned eigenvectors between the target and the preconditioner 1. Once the

top three eigenvalues of the target are made to equal 1 by these preconditioners, the condition number will

still be at least 10 by the existence of the remaining d − 3 eigenvalues at 0.1. The ‘eigen’ scheme has the

ability to reduce this condition number, but the ‘eigen_identity’ scheme does not.

We note that the targets actually get easier to sample from as the dimension increases (in a non-time
1Strictly speaking this is about the alignment of the eigenvectors of the preconditioner and the eigenvectors of the Hessian of the

target potential. However, in this case the target is normal and so the Hessian is just the precision of the target, which has the same
eigenvectors as the covariance.
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normalised sense): this is an artifact of using the svd function to construct the target covariance. This is

corroborated by the raw ESS performances across the preconditioning schemes in figure 5.5. Therefore the

fact that the ‘eigen’ preconditioner is doing equally well across all dimensions suggests that it is achieving

minimality in the target condition number (with respect to its inherent construction) in all cases.

We now display the medians of the ESSs across the dimensions of the chains for all adaptive schemes.

We fix m = 3 in the ‘eigen’ and ‘eigen_identity’ cases since 5.4 suggests that doing so will achieve the best

time-normalised performance. We show both the absolute performance and the time-normalised perfor-

mance in figure 5.5.

The raw results show that ‘dense’ and ‘eigen’ are the most competitive adaptive schemes, owing to the

fact that they contain the most target information with which they can isotropise. Only the ‘eigen’ and ‘dense’

preconditioners have the ability to shrink the condition number of the target down past 10. Second is the

‘eigen_identity’ scheme that has the ability to shrink the target condition number from 1000 to 10. Third is

the diagonal scheme, whose effect on the condition number of the target is unknown, but certainly reduced

by the fact that Σπ is dense. Last is ‘none’ which does not alter the target.

The time-normalised results show that the effect of the per-iteration time-complexity outweighs the fact

that the target is getting easier to sample from with dimension. The ‘eigen’ strategy wins out due to its

competitive raw performance and its O
(
m2d

)
per-iteration time-complexity. Interestingly in the d = 150 case

the ‘dense’ strategy is doing slightly worse than the ‘diagonal’ strategy.

5.3.6.2 Bayesian logistic regression with synthetic data

Here we compare the adaptive algorithms on a Bayesian logistic regression posterior with a classical g prior

[Agliari and Parisetti 1988] with synthetic data.

Experimental set-up For this posterior, the likelihood is logistic and the prior is normal giving the following

potential:

U (β) ∝
n∑

i=1

(
(1− Yi)XT

i β + log
(
1 + exp

(
−XT

i β
)))

+
λ

2n
βTXTXβ (5.3)
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Figure 5.5: Two plots showing the raw and time-normalised log-transformed median ESSs across the di-
mensions of the chains. The results are shown in various dimensions on a N

(
(5, . . . , 5)

T
,Σπ

)
where Σπ is

ill conditioned and dense. The logarithms are base 10.
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where Yi are the response variables which we sample from Bernoulli
((

1 + exp
(
−XT

i β
))−1

)
for i ∈ [n],

Xi ∈ Rd are the rows of the data matrix X ∈ Rd×n, and λ > 0 is chosen to determine the strength of the

prior. The data matrix is of the form UDV T where U ∈ O (d) and V ∈ O (n) are sampled from the Haar

measure and D ∈ Rd×n is a diagonal matrix with 3 of the diagonal elements sampled from N
(
1, 10−6

)
and

the rest set to
√
1000. The Hessian of the potential is then ∇2U (β) = XTΛ (β)X where

Λ (β) := diag
{
exp

(
XT

i β
) (

1 + exp
(
XT

i β
))−2

+
λ

n
: i ∈ [n]

}

The diagonal elements of D are chosen in an attempt to make 3 of the eigenvalues of the target covariance

‘significant’ (in the sense that they are much larger than the rest). The condition number of the posterior is

κ = κ
(
XTX

) 1
4n+ λ

λ
≈ 1000

1
4n+ λ

λ

We set λ = 0.01 and n = d for all d ∈ {50, 100, 150, 200, 300}. For each algorithmic run we use k = 2 chains

and run for 1000
√
d iterations. For each combination of dimension and adaptive scheme we use 15 runs,

initialising at the mode which we find using preconditioned gradient descent on U .

For the adaptive schemes we use a learning rate of γt = (t+ 1)
−0.7 and c = 1 for Oja’s algorithm in ‘eigen’

and ‘eigen_identity’. We initialise the global scale at σ0 = 0.5d−1/4. We initialise all matrix valued adaptive

parameters (i.e. D0, L0, Q (V0)) at the identity. We use m = 3 for both the ‘eigen’ and ‘eigen_identity’

adaptive schemes.

Results In figure 5.6 we show the log-transformed medians of the raw ESSs and the log-transformed

medians of the time-normalised ESSs across the dimensions of each Markov chain.

The first thing to note is that the raw performance of the ‘dense’, ‘eigen’, and ‘eigen_identity’ algorithms

increases with dimension. The exact reason why this occurs is not fully clear although we suspect that it

is an artifact of the way in which we construct the data matrix X. As in the Gaussian example in section

5.3.6.1 the ‘eigen_identity’ scheme lags behind the ‘eigen’ scheme in terms of its performance. However in

this case the differences in performance are much less than in the Gaussian case. The ‘eigen_identity’ and

the ‘eigen’ scheme both remove the effect of the leading eigenvalue of XTX on the condition number by
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Figure 5.6: Two plots showing the raw and time-normalised log-transformed median ESSs across the di-
mensions of the chains. The results are shown in various dimensions on a Bayesian logistic regression
posterior with a g prior, whose potential is as defined in 5.3.
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setting it to 1. However in this case the remaining eigenvalues of XTX are at 1 as well, and so the influence

of κ
(
XTX

)
on the condition number cannot be further reduced by the ‘eigen’ scheme, meaning that it loses

its advantage over the ‘eigen_identity’ scheme.

The next thing to note is that the ‘diagonal’ scheme does not do much better than the ‘none’ scheme. This

indicates that the target covariance is dense, and has sufficiently many significant off diagonal elements. De-

spite the fact that the raw median ESSs are increasing for the ‘dense’, ‘eigen’, and ‘eigen_identity’ schemes,

the computational complexity of the ‘dense’ scheme causes its time-normalised performance to decay suffi-

ciently rapidly that it is dominated by the ‘eigen’ and ‘eigen_identity’ schemes in all dimensions higher than

100. In fact, in d = 300, the time-normalised performance of the ‘dense’ scheme is dominated by that of the

‘diagonal’ scheme.

5.3.7 Summary and extensions

5.3.7.1 Summary

In section 5 we introduce a sparsely parametrised preconditioner that uses the m top eigenvalues of the

target covariance, and their associated eigenvectors. We show that this preconditioner can be learned and

used over the course of an MCMC algorithm and is competitive when compared with standard existing

preconditioners, such as those which learn the full target covariance and those which learn the diagonal of

the target covariance. This is due to two properties: i) the way in which it is parametrised allows it to be

dense with respect to its off-diagonal elements and ii) its learning step and the operations which involve it in

the Markov kernel can be executed in O
(
m2d

)
time-complexity.

In section 5.3.1 we show that the optimal parametrisation that is constructed with the full knowledge

of the top m eigenvalues and vectors of the target covariance does indeed isotropise the target, in that it

reduces the 2-norm of its covariance. In section 5.3.2 we show how to construct the preconditioner using

Householder matrices in such a way as to allow computation in O
(
m2d

)
complexity. In 5.3.3 we introduce

the mechanism by which we propose to learn the top m eigenvalues and vectors of the target covariance

using a form of online PCA called ‘Oja’s algorithm’ [Oja 1984]. In 5.1 we detail the implementation of the full

learning mechanism of the preconditioner. In section 5.3.5.1 we introduce a variant of our preconditioner
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which extracts additional diagonal information.

In section 5.3.6.1 we test our adaptive schemes on a Gaussian target whose covariance is dense, and

has 3 eigenvalues which are significantly larger than the rest. Figure 5.3 demonstrates that our adaptive

schemes do in fact learn the top eigenvector. Figure 5.4 shows that our schemes improve with increasing

m until m ≥ 3, which matched our expectations. Figure 5.5 demonstrates that the time-normalised perfor-

mance of our schemes dominate those of their competitors in higher dimensions. Section 5.3.6.2 shows

the performance of the various adaptive schemes in sampling from a Bayesian logistic regression posterior

with a g prior, whose data has been synthesised in an attempt to make 3 of the eigenvalues of the target

covariance 1000 times greater than the rest. We again see that our adaptive schemes dominate the others

in high dimension because of their ability to isotropise the target coupled with the fact that they operate at

reduced per-iteration computational complexity.

5.3.7.2 Extensions

One obvious extension of the work here is to test our preconditioners on target distributions that are not

constructed so as to have the correct eigenstructure in their covariances. It would also be interesting to

see how our adaptive schemes fared outside the log-concave target case. [Langmore et al. 2020] define a

condition number for sampling with HMC. They remark that a target covariance with a few large eigenvalues

and many small ones renders a large condition number. This happens to be the case in which our precon-

ditioner is best suited. A natural extension would be then to test our preconditioner alongside HMC, instead

of MALA. We have left the selection of m (the number of top eigenvalues and eigenvectors of the target

covariance we wish to learn) unexamined. Is there a natural way in which this could be done? For instance:

we may initialise m at a large value and then gradually reduce it as we learn the eigenstructure of the target

covariance as the MCMC algorithm continues to sample. A simplified, m = 1 version of our scheme is used

within a larger adaptive scheme in [Riou-Durand et al. 2023, Section 3.2]. If we used our scheme instead,

would this benefit the performance of the larger adaptive scheme?

The introduction of different Markov kernels points towards the broader question of how the per sample

ESS affects the performance of adaptive MCMC algorithms. For instance there exist contexts in which the

per sample ESS of (unpreconditioned) HMC is higher than that of (unpreconditioned) RWM. What does this
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mean for adaptive MCMC schemes, especially those that learn every iteration?
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Chapter 6

Conclusion

We conclude by elaborating in broad terms on what we feel to be the overall contributions of the thesis. We

also offer a view of the natural research program that extends from the work contained here.

6.1 Overall contributions

In all we hope to have given the reader a sense of what is both required and beneficial when one wishes to

enhance canonical MCMC methods in the face of challenging target distributions, in light of new theory and

the new technologies provided by adjacent fields, such as Variational Inference.

• In chapter 1 we provide the theoretical groundwork necessary to understand when algorithms based

on Markov chains, such as MCMC, satisfy basic desiderata such as π-ergodicity 8. In section 1.3.2

we define the canonical MCMC algorithms of Random Walk Metropolis, Metropolis Adjusted Langevin

Algorithm, and Hamiltonian Monte Carlo, so that we can define their enhancements in chapter 2.

• In chapter 2 we looked at three methods for enhancing these canonical algorithms: preconditioning in

section 2.1, variational approximation in section 2.2, and adaptivity in section 2.3. In section 2.1 we

framed the analysis of preconditioning through the lens of the condition number 2.4 since it is those

target distributions whose condition number is finite that are most amenable to linear preconditioning:
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the technique studied in chapter 3. We introduce Variational Inference in section 2.2, noting its com-

plementary benefits with respect to MCMC at the start of section 2.2.2 i.e. that it is fast, but biased

whereas MCMC is slow but (asymptotically) unbiased. This suggests synthesising the two methods,

as we do in chapter 4. Preconditioners must be learned, often using information from an MCMC

algorithm. This is the practice of adaptivity, which we introduce in 2.3. After recounting some cau-

tionary tales in section 2.3.2.2 we present two existing adaptive algorithms in section 2.3.3, namely of

[Haario, Saksman, and Tamminen 2001] and [Michalis Titsias 2023], noting their exact computational

complexity, to be compared with the complexity of the scheme we construct in chapter 5.

• Chapter 3 offers the first rigourous examination of the effects of linear preconditioning on sampler per-

formance. Each new linear preconditioner proposed in the literature comes with its own justification,

which are often heuristic. We therefore provide a united framework under which to assess their effec-

tiveness by looking at how the condition number 2.4 changes after linear preconditioning. We examine

how popular preconditioners, such as those derived from the target covariance [Haario, Saksman,

and Tamminen 2001] and the ‘Fisher matrix’ of [Michalis Titsias 2023], fit within this framework, and

therefore serve their intended purpose of improving sampling efficiency. In section 3.4 we assert a

condition on the potential on the target, namely that the spectrum of its Hessian does not vary too

much, that allows us to achieve a tight dependence on the condition number of the spectral gap of

Random Walk Metropolis, building on the theory developed in [Andrieu, A. Lee, et al. 2024]. Often the

heuristic explanations for the success of preconditioners do not extend to rigourous justifications for

the benefits they seem to provide. This is shown in 3.5 where we find that a popular preconditioner

constructed solely from the marginal variances of the target will hinder algorithmic performance, in

certain cases.

• As we mentioned earlier in the conclusion, it is our contention that Variational Inference is a potentially

very powerful tool to use in conjunction with MCMC due to the complementary properties of the two

methods. In chapter 4 we provide one such solution. Given a Markov chain and a variational ap-

proximation to the target, use a single thread of compute to generate the Markov chain, and the other

threads to sample from the target restricted to pre-defined regions of the state space using a restricted
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rejection sampler. One then combines the resulting samples into an estimator, see the theoretical

construction in section 4.1.2.2 and implementation details in section 4.1.4. This construction is fully

general: one can use any Markov chain, and any variational approximation, and we prove in section

4.1.3 that the resulting process inherits many of the efficiencies of the underlying chain. The samples

used in the estimator we construct are decorrelated from one another due to the fact that they are from

both the Markov chain and from the target restricted to specific regions of the state space. We show

this fact empirically in section 4.1.5 on a bimodal Gaussian mixture target, and on the Ising model.

• Although lacking in theoretical guarantees, adaptive MCMC is one of the most established methods of

enhancing MCMC algorithms. One can realise the extraordinary gains in efficiency when the adaptive

procedure finds a good preconditioner, see, for example, the experiments in section 3.6. Adaptive

algorithms must be developed to suit the computational constraints inherent to targets in high dimen-

sions. In chapter 5 we provide an adaptive mechanism that learns the top m ∈ N eigenvalues of the

target covariance along with their associated eigenvectors, see section 5.3.3. We use this eigeninfor-

mation in a sparse parametrisation of a preconditioner that captures correlation and marginal variance

information about the target distribution, see section 5.3.2. This information can be learned and used

within a Markov kernel in O
(
m2d

)
computational operations per iteration (where d is the dimension of

the state space), see sections 5.3.2 and 5.3.3. If learned properly such a preconditioner isotropises

the target distribution, see proposition 75. We provide numerical experiments in section 5.3.6 to show

that the speed of our adaptive scheme combines with its ability to learn correlations in the target lead-

ing to an advantage over slower O
(
d2
)

schemes, such as in [Haario, Saksman, and Tamminen 2001],

and schemes that only incorporate marginal variance information.

6.2 Future research directions

There are many interesting ways in which the work presented here can be developed.

• Extending the analysis of preconditioners to the nonlinear case: Preconditioners are conceived

to ameliorate pathologies in the target distribution that are not adequately overcome by the sampling

146



algorithms we use. For instance, anisotropy in the target is addressed by linear preconditioning. How-

ever there exist pathologies such as heavy-tailedness and multimodality that are impossible to fix with

a linear transformation (applied either to the target distribution or the algorithm). Therefore the need

to use nonlinear transformations arises, see [Gabrié, Rotskoff, and Vanden-Eijnden 2022; Girolami

and Calderhead 2011; L. T. Johnson and Geyer 2012; Parno and Y. M. Marzouk 2018] for examples.

Can we hope to offer a unified framework under which we can assess the effectiveness of these pre-

conditioners, as we do for linear preconditioners in chapter 3? We showed in proposition 26 that a

given linear preconditioner can be viewed as a linear transformation to the target distribution, or to the

sampling algorithm. The same is not true for a given nonlinear preconditioner, see [B. J. Zhang, Y. M.

Marzouk, and Spiliopoulos 2024, Remark 3.3]. Therefore it is a design choice whether to precondition

the target or to precondition the sampler. What circumstances should lead one to be chosen over

another?

• Altering the definition of the condition number: It is clear that the condition number, as defined in

2.4, is a very harsh measure of the difficulty with which we can sample from a given target distribution.

For instance, a target can be perfectly well-conditioned (i.e. isotropic) within the vast amount of the

target mass, but if it loses strong log-concavity or smoothness in a single point in the tails the condition

number in 2.4 will describe it as impossible to sample from. We should therefore wish to define a

condition number which is finite under a much larger class of distributions than those that are strongly

log-concave and smooth. This should ideally be done by stating desiderata for an ideal condition

number (i.e. one that is sufficiently descriptive of the difficulty of the sampling problem, given the

computational resources we have to solve it). One can then construct a better condition number using

invented quantities, or quantities that exist in the theory of Markov processes, and assess whether it

satisfies these desiderata.

• Constructing preconditioners: A mode of analysis for general preconditioners, as proposed in the

first bullet, and an alternative definition of the condition number, as proposed in the second, could,

if successful, be used to construct new preconditioners. For an example, see [Cui, Tong, and Zahm

2024], who use an extension of a Poincaré inequality [Bobkov 1999] to construct a nonlinear precondi-
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tioner using a Stein kernel [Fathi 2019]. If one has difficulty learning and using linear preconditioners

in high dimension, as addressed by chapter 5, then one will certainly have difficulty learning and using

a nonlinear preconditioner. Therefore ample motivation exists to create computationally lightweight

nonlinear preconditioners.

• Further exploiting Variational Inference and MCMC: In our view the combination of Variational In-

ference and MCMC has not been explored to its fullest extent. For instance an MCMC chain can allow

one to calculate gradients of the forward Kullback-Leibler divergence, as opposed to the reverse, as is

usually done in Variational Inference. Therefore if a Markov kernel uses a variational approximation,

like is the case with the Occlusion Process in chapter 4, one can iteratively improve the variational

approximation and use it to enhance the Markov kernel, as is done with a preconditioner in adaptive

MCMC.
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Chapter 7

Appendices

7.1 Appendix A: Notation

7.1.1 Notation for chapter 1

• Say π : X → [0, 1] is a probability measure and n ∈ N\ {0}. Then π⊗n : Xn → [0, 1] is the n-fold

product of π defined such that π⊗n ((A1, . . . , An)) := π (A1) · · ·π (An) for all (A1, . . . , An) ∈ Xn.

• The support of a probability measure π : X → [0, 1], denoted supp (π), is defined as the smallest

closed subset S ∈ X such that π (S) = 1.

• We use N
(
µ, σ2

)
to denote the Gaussian distribution with mean µ ∈ R and variance σ2 > 0. We use

N (µ,Σ) to denote the Gaussian distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d for some

d ∈ N\ {0}. We denote by N
(
x;µ, σ2

)
and N (x;µ,Σ) their respective densities.

• We define ∥f∥∞ := supx∈dom(f) |f (x)| as the sup-norm for all f in an appropriate function space. We

denote the Euclidean norm by ∥.∥2 : Rd → [0,∞]. We also use ∥.∥2 : Rd×d → [0,∞] to mean the

induced operator norm defined by

∥A∥2 := sup
v∈Rd,∥v∥2=1

∥Av∥2
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for all A ∈ Rd×d.

• Given k ∈ N\ {0} we define [k] := {1, . . . , k}.

• For a Markov kernel K : X×X → [0, 1] we define its action on a measure ν : X → [0, 1] by

νK (A) :=

∫
X

ν (dx)K (x→ A)

for all A ∈ X . We define its action on a function f : X→ R by

Kf (x) :=

∫
X

K (x→ dx′) f (x′)

For all n ∈ N\ {0} we define the Markov kernel Kn : X×X → [0, 1] iteratively using

Kn (x→ A) =

∫
X

Kn−1 (x→ dx′)K (x′ → A)

for all x ∈ X and A ∈ X , with K1 := K.

• We define δx : X → [0, 1] as the Dirac measure at x ∈ X.

• For a measure π : X → [0, 1] we define Lk (π) for k ∈ (0,∞) as the set
{
f : X→ R : π

(
|f |k

)
<∞

}
and Lk

0 (π) as the set
{
f : X→ R : π

(
|f |k

)
<∞, π (f) = 0

}
. The space L2 (π) is naturally equipped

with an inner product ⟨., .⟩π : L2 (π)× L2 (π)→ R which is defined using

⟨f, g⟩π :=

∫
X

π (dx) f (x) g (x)

for all f, g ∈ L2 (π). This then defines a norm ∥.∥2 : L2 (π) → [0,∞) with ∥f∥2 :=
√
⟨f, f⟩π (we omit

the π dependency of the norm where obvious).

7.1.2 Notation for chapter 2

• We overload the diag function as follows: diag (A) is the diagonal matrix that shares its diagonal with

A ∈ Rd×d and diag {f (i) : i ∈ [d]} ∈ Rd×d is the diagonal matrix whose (i, i)th element is f (i).
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• We denote by GLd (R) the set of invertible d× d matrices over R.

• We use the ⪯ and ⪰ relations to define a partial ordering on the set of symmetric matrices in the

following way: A ⪯ B (resp. A ⪰ B) if and only if B − A (resp. A − B) is positive semidefinite. This

ordering is also known as the Loewner order. The relations ≺ and ≻ are defined similarly, replacing

the semidefiniteness condition with definiteness.

• We define ∥.∥2 : Rd×d → [0,∞] as the matrix 2-norm that returns the largest singular value of the

enclosed matrix.

• For two real-valued functions f (n) and g (n) we say f (n) = O (g (n)) if there exists a universal constant

K > 0 such that |f (n)| ≤ Kg (n) for all n sufficiently large.

• We say f (n) = Ω (g (n)) if there exists a universal constant K > 0 such that |f (n)| ≥ Kg (n) for all n

sufficiently large.

• We say f (n) = Õ (g (n)) if f (n) log−q (n) = O (g (n)) for some q ∈ N and define Ω̃ analogously.

• We denote by I the identity map on L2 (π) for some probability measure π. For a given operator

K : L2 (π)→ L2 (π) we define the Dirichlet form E (K, f) := ⟨(I −K) f, f⟩ for all f ∈ L2 (π) where the

inner product is that which is defined in L2 (π). When K is π-reversible we define its right spectral gap

(we we often refer to as simply its spectral gap) as

γ := inf
f∈L2

0(π),f ̸=0

E (K, f)
Varπ (f)

(7.1)

The relaxation time is simply the inverse of the spectral gap γ−1.

• Given a distance metric D on the space of probability measures and an initial measure ν0 the ε-mixing

time of K starting from ν0 is defined for all ε > 0 as

t (ϵ, ν0) := inf {n ∈ N : D (ν0K
n, π) ≤ ε} (7.2)

• We say that a given Markov chain initialised according to the probability measure ν0 has a β-warm
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start if there exists a constant β ∈ R such that

sup
A∈X

ν0 (A)

π (A)
≤ β (7.3)

.

• When T : X→ Y is a bimeasurable diffeomorphism we define the pushforward of a probability measure

π : X → [0, 1] through T as the probability measure π̃ : Y → [0, 1] defined with π̃ (A) := π
(
T−1 (A)

)
which has density

π̃ (y) := π
(
T−1 (y)

)
|det JT−1 (y)|

where JT−1 : Y → Rdim(X)×dim(Y) is the Jacobian of T−1.

• We define P (X ) as the set of probability measures on the σ-field X .

7.1.3 Notation for chapter 3

• For all n ∈ N\ {0} the we define O (n) as the set of n× n orthogonal matrices over the reals.

• For a function g ∈ C2
(
Rd
)

we define ∇yg (y) ∈ Rd and ∇2
yg (y) elementwise as

(∇yg (y))i :=
∂

∂yi
g (y)

(
∇2

yg (y)
)
ij
:=

∂2

∂yi∂yj
g (y)

for i, j ∈ [d]. We will often drop the y subscript where the variable we are differentiating with respect to

is obvious.

• For a given symmetric matrix A we let λi (A) be its ith largest eigenvalue. We define its spectral

condition number as

κ (A) :=
maxi∈[d] |λi (A)|
mini∈[d] |λi (A)|

• We define the Frobenius norm ∥.∥F : Rd×d → [0,∞) with ∥A∥F :=
√

tr (ATA) for all A ∈ Rd×d.
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7.1.4 Notation for chapter 4

• Say that the state space X is partitioned into {Xi : i ∈ [R]} for R ∈ N\ {0} such that π (Xi) > 0 for a

target measure π for all i ∈ [R]. We define πi to be π restricted to Xi for all i ∈ [R]. Given a function

f ∈ L2 (π) we define µi := πi (f) and σ2
i := Varπi

(f).

• Given a size R partition of X we define the function

ρ (x) :=

R∑
i=1

i1 {x ∈ Xi}

that simply outputs which part x ∈ X is in.

• Given three random variables X, Y , and Z we denote by X ⊥ Y |Z the independence of X and Y

given Z.

• For a set A we denote by P (A) its power set.

• For a measurable set A ∈ X we define −A := {−a : a ∈ A}.

• We denote by R+ the positive reals.

7.1.5 Notation for chapter 5

• For two real-valued functions f (n) and g (n) we say f (n) = o (g (n)) if for all constants K > 0 we have

|f (n)| ≤ Kg (n) for all n sufficiently large.

• When Y is a random variable, L (Y ) is the probability distribution that it is sampled from.

• For d,m ∈ N\ {0} we define the set O (d,m) :=
{
V ∈ Rd×m : V TV = Im

}
.

• For two vectors v, w ∈ Rd we define their sin2 distance to be 1−
(
vTw

)2.
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7.2 Appendix B: Proofs

7.2.1 Proofs from chapter 1

7.2.1.1 Proof of lemma 3

Let λX be the Lebesgue measure on X and λ be the Lebesgue measure on R. Then for all A×B ∈ X×B (R)

P ((X1, U1) ∈ A×B) =

∫
A

π (dx)P (U1 ∈ B |X1 = x )

=

∫
A

π (dx)
λ (B ∩ [0, Cπ (x)])

Cπ (x)

=

∫
A

λX (dx)
λ (B ∩ [0, Cπ (x)])

C

For (X2, U2) we first calculate the normalising constant of Uniform {(x, u) : 0 ≤ u ≤ Cπ (x)}:

∫
0≤u≤Cπ(x)

λX (dx)λ (du) =

∫
x∈X

(∫ Cπ(x)

0

λ (du)

)
λX (dx)

=

∫
x∈X

Cπ (x)λX (dx)

= C

Therefore we have that

P ((X2, U2) ∈ A×B) =

∫
0≤u≤Cπ(x)

1 {x ∈ A}1 {u ∈ B} λX (dx)λ (du)

C

=

∫
x∈X

λX (dx)1 {x ∈ A}
(∫ cπ(x)

0

1 {u ∈ B}λ (du)
)
C−1

=

∫
A

λX (dx)
λ (B ∩ [0, Cπ (x)])

C

as required.
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7.2.1.2 Proof of the relation between Var
(
f̂strat

)
and Var

(
f̂n

)
Firstly note that in the proportional allocation case we have Var

(
f̂strat

)
= n−1

stratVarπ (←−π f). Equally we

have that Var
(
f̂n

)
= n−1Varπ (f). Therefore the expression we wish to show becomes Varπ (←−π f) =(

1− Corrπ (f,−→π f)2
)

Varπ (f). First we evaluate the covariance between f and −→π f :

Covπ (f,−→π f) =
∫
X

π (dx) (f (x)− π (f)) (−→π f (x)− π (f))

=

R∑
i=1

(πi (f)− π (f))
∫
Xi

π (dx) (f (x)− π (f))

=

R∑
i=1

(πi (f)− π (f))2 π (Xi)

= Varπ (−→π f)

The right hand of the expression is then:

(
1− Corrπ (f,−→π f)2

)
Varπ (f) =

(
1− Covπ (f,−→π f)2

Varπ (f)Varπ (−→π f)

)
Varπ (f)

= Varπ (f)− Varπ (−→π f)

which is clearly equal to Varπ (←−π f) by 1.3.

7.2.1.3 Proof of proposition 6

Let γi := π (Xi)
√

Varπi
(f). The we need to minimise f (n1, . . . , nR) = Var

(
f̂strat

)
=
∑R

i=1 niγ
2
i subject to

the constraint that g (n1, . . . , nR) = n1 + · · ·+nR = n. Setting the gradient of the Lagrangian of this problem

to zero gives −γ2i n−2
i = λ for all i ∈ [R]. Multiplying each equation by ni and adding them all gives

λ = − 1

n

∑
i=1

γ2i
ni

Subbing this value of λ into each equation −γ2i n−2
i = λ gives the required values of ni for all i ∈ [R].
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7.2.1.4 Proof that Covπ (f (X) ,Kf (X)) ≥ Covπ

(
f (X) ,K2f (X)

)
Defining g0 := g − π (g) for all g ∈ L2 (π) we note that Covπ (f (X) ,Kf (X)) = ⟨f0, (Kf0)⟩π = ⟨f0,Kf0⟩π
where the final equality is due to the fact that π (Kf) = π (f) whenK is π-reversible. Similarly Covπ

(
f (X) ,K2f (X)

)
=〈

f0,K
2f0
〉
π
. Next we note that

⟨f0,Kf0⟩π −
〈
f0,K

2f0
〉
π
= ⟨f0, (Id−K)Kf0⟩π

= ⟨(Id−K) f0,Kf0⟩π

=
1

4

(
∥f0∥22 − ∥(Id− 2K) f0∥22

)

where we use the polarisation identity in the final line. That Covπ (f (X) ,Kf (X)) ≥ 0 dictates that the

numerical range of the Markov operator K on L2
0 (π) is contained entirely within [0, 1]. Therefore [Shapiro

2003] dictates that the spectrum of K is contained entirely in [0, 1]. This means that the spectrum of Id− 2K

is contained in [−1, 1], and therefore so is the spectrum of (Id− 2K)
2. Finally, we have that

∥(Id− 2K) f0∥22
∥f0∥22

=

〈
f0
∥f0∥2

, (Id− 2K)
2 f0
∥f0∥2

〉
≤
∥∥∥(Id− 2K)

2
∥∥∥ ≤ 1

7.2.2 Proofs from chapter 2

7.2.2.1 Proof of proposition 25

Let L† ∈ Rd×d be as in the proposition statement. It is invertible with inverse
(
L†)−1

= V D−1V T . If we

precondition with L = UDV T where U ∈ O (d) contains the left singular vectors of L, the first operator norm
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in 2.5 is

∥∥L−T∇2U (x)L−1
∥∥
2
=
∥∥UD−1V T∇2U (x)V D−1UT

∥∥
2

=
∥∥D−1V T∇2U (x)V D−1

∥∥
2

=
∥∥V D−1V T∇2U (x)V D−1V T

∥∥
2

=
∥∥∥(L†)−T ∇2U (x)

(
L†)−1

∥∥∥
2

and the second operator norm in 2.5 is

∥∥∥L∇2U (x)
−1
LT
∥∥∥
2
=
∥∥∥UDV T∇2U (x)

−1
V TDU

∥∥∥
2

=
∥∥∥DV T∇2U (x)

−1
V TD

∥∥∥
2

=
∥∥∥V DV T∇2U (x)

−1
V TDV

∥∥∥
2

=
∥∥∥L†∇2U (x)

−1 (
L†)T∥∥∥

2

7.2.2.2 Proof of proposition 26

We first define the notion of isomorphism between Markov chains.

Definition 77. [L. T. Johnson and Geyer 2012, Appendix A] Markov chains on state spaces (X,X ) and

(X′,X ′) are isomorphic if there is an invertible bimeasurable mapping h : X→ X′ such that the corresponding

initial distributions π0 and π′
0 and the transition probability kernels K and K ′ satisfy π0 = π′

0 ◦ h and

K (x→ A) = K ′ (h (x)→ h (A))

for all x ∈ X and A ∈ X .

An invertible mapping h is bimeasurable if h and h−1 are measurable. Now we prove a lemma guar-

anteeing isomorphism between generic accept-reject chains. Define the kernel K : X × X → [0, 1] of an
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accept-reject chain as follows:

K (x→ A) :=

∫
A

q (x→ dy)α (x→ y) +

(
1−

∫
X

q (x→ dy)α (x→ y)

)
δx (A)

where q : X × X → [0, 1] is a Markov kernel defining the ‘proposal’ and α : X × X → [0, 1] is an acceptance

probability, and we define K ′ : X′ ×X ′ → [0, 1] similarly using q′ : X′ ×X ′ → [0, 1] and α′ : X′ × X′ → [0, 1].

Lemma 78. Let T−1 : X → X′ be an invertible bimeasurable map with Jacobian J
(
T−1

)
(y) for all y ∈ X.

If q (x→ dy) =
∣∣det J (T−1

)
(y)
∣∣ q′ (T−1 (x)→ T−1 (dy)

)
and α (x→ y) = α′ (T−1 (x)→ T−1 (y)

)
for all

x, y ∈ X then the chains generated by K and K ′ are isomorphic.

Proof. We examine the first term in K (x→ A):

∫
A

q (x→ dy)α (x→ y) =

∫
A

∣∣det J (T−1
)
(y)
∣∣ q′ (T−1 (x)→ T−1 (y)

)
α′ (T−1 (x)→ T−1 (y)

)
for all x ∈ X and A ∈ X , and make the change of variables z = T−1 (y)

∫
A

q (x→ dy)α (x→ y) =

∫
A

∣∣det J (T−1
)
(y)
∣∣ |det J (T ) (z)| q′

(
T−1 (x)→ dz

)
α′ (T−1 (x)→ z

)
=

∫
T−1(A)

q′
(
T−1 (x)→ dz

)
α′ (T−1 (x)→ z

)
This statement is true for all A ∈ X and hence it is true for A = X. Noting that δx (A) = 1 {x ∈ A} =

1
{
T−1 (x) ∈ T−1 (A)

}
= δT−1(x)

(
T−1 (A)

)
and T−1 (X) = X′ gives

K (x→ A) :=

∫
A

q (x→ dy)α (x→ y) +

(
1−

∫
X

q (x→ dy)α (x→ y)

)
δx (A)

=

∫
T−1(A)

q′
(
T−1 (x)→ dz

)
α′ (T−1 (x)→ z

)
+

(
1−

∫
X′
q′
(
T−1 (x)→ dz

)
α′ (T−1 (x)→ z

))
δT−1(x)

(
T−1 (A)

)
= K ′ (T−1 (x)→ T−1 (A)

)
and so the Markov chains generated by K and K ′ are isomorphic.

We’re dealing with linear transformations, and so we verify the conditions from the lemma above with
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T = A
1
2 . For Metropolised Markov chains the acceptance probability usually depends on the proposal

distribution, and so we first verify the condition from the lemma for the proposal. Handily, in the case

of the unadjusted Markov chains such as LMC and unadjusted HMC, the proposal distribution matches

the Metropolised Markov chains, and the acceptance probability is identically 1. This means proving the

condition for the proposal distributions immediately gives an isomorphism in the case of the unadjusted

chains.

RWM In the case of RWM the proposal distribution with traditional preconditioner A ∈ Rd×d is given by

Y = X +
√
σ2A

1
2 ξ with ξ ∼ N (0, Id) and so has proposal density

q (x→ y) = (2π)
− d

2 det (A)
− 1

2 exp

(
− 1

2σ2
(y − x)T A−1 (y − x)

)
= det

(
A− 1

2

)
(2π)

− d
2 exp

(
− 1

2σ2

∥∥∥A− 1
2 y −A− 1

2x
∥∥∥2
2

)
= det

(
A− 1

2

)
q′
(
A− 1

2x→ A− 1
2 y
)

for all x, y ∈ Rd, where q′ : Rd × Rd → Rd is the proposal density of the RWM proposal with traditional

preconditioner Id. The acceptance probability of RWM with traditional preconditioner A ∈ Rd×d is given

by α (x→ y) = min {1, π (y) /π (x)} = min {1, exp (−U (y) + U (x))}. Here we have U (x) = U ′
(
A− 1

2x
)

by

definition of the potential U ′ and so α (x→ y) = α′
(
A− 1

2x→ A− 1
2 y
)

since the normalising constants of the

π′ terms cancel out. Therefore the conditions of Lemma 78 hold and we have our isomorphism for RWM.

MALA and LMC For MALA the proposal distribution with traditional preconditioner A ∈ Rd×d is given by

Y = X − σ2A∇xU (X) +
√
2σ2A

1
2 ξ with ξ ∼ N (0, Id). Therefore the proposal density is

q (x→ y) = (2π)
− d

2 det (A)
− 1

2 exp

(
− 1

4σ2

(
y − x+ σ2A∇xU (x)

)T
A−1

(
y − x+ σ2A∇xU (x)

))
= det

(
A− 1

2

)
(2π)

− d
2 exp

(
− 1

4σ2

∥∥∥∥A− 1
2 y −A− 1

2x+ σ2
(
A

1
2

)T
∇xU (x)

∥∥∥∥)
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for all x, y ∈ Rd. Noting that
(
A

1
2

)T
∇x = ∇

A− 1
2 x

and U (x) = U ′
(
A− 1

2x
)

gives that q (x→ y) =

det
(
A− 1

2

)
q′
(
A− 1

2x→ A− 1
2 y
)

and so we have the isomorphism for LMC. For the acceptance probability we

have that q (y → x) /q (x→ y) = q′
(
A− 1

2 y → A− 1
2x
)
/q′
(
A− 1

2x→ A− 1
2 y
)

and π (y) /π (x) = π′
(
A− 1

2 y
)
/π′
(
A− 1

2x
)

as in the RWM case. This gives us that α (x→ y) = α′
(
A− 1

2x→ A− 1
2 y
)

and so we have an isomorphism

in the MALA case too.

HMC and Unadjusted HMC Hamiltonian dynamics are defined on R2d since we incorporate a momentum

coordinate p ∈ Rd. In this case linear transformations T−1 : R2d → R2d are defined by

T−1

x
p

 =

A− 1
2 0d×d

0d×d

(
A

1
2

)T

x
p


and so the determinant of the Jacobian is always 1. The reason for this particular form of T−1 is that the

momentum naturally lives in the cotangent spaces of the Riemannian manifold in which the position x ∈ Rd

resides. This is because the Hamiltonian flow is defined over the cotangent bundle, see [Betancourt 2018]

for more details. According to [Hirt, M. Titsias, and P. Dellaportas 2021] the map defined by undergoing N

leapfrog steps with step size σ2 > 0 and traditional preconditioner A ∈ Rd×d is

y = TN,x (ξ) = x− Nσ2

2
A∇xU (x) + L

√
σ2A

1
2 ξ − σ2AΞN,x (ξ) (7.4)

q =WN,x (ξ) =
(
A− 1

2

)T
ξ −
√
σ2

2
(∇xU (x) +∇xU ◦ TN,x (ξ))−

√
σ2

N−1∑
i=1

∇xU ◦ Ti,x (ξ)

where ξ ∼ N (0, Id) and ΞN,x (ξ) =
∑N−1

i=1 (L− i)∇xU ◦ Ti,x (ξ). Pre-multiplying the first equation by A− 1
2

and the second by
(
A

1
2

)T
gives

A− 1
2 y = A− 1

2 TN,x (ξ) = A− 1
2x− Nσ2

2

(
A

1
2

)T
∇xU (x) + L

√
σ2ξ − σ2

N−1∑
i=1

(L− i)
(
A

1
2

)T
∇xU ◦ Ti,x (ξ)

(
A

1
2

)T
q =

(
A

1
2

)T
WN,x (ξ) = ξ −

√
σ2

2

((
A

1
2

)T
∇xU (x) +

(
A

1
2

)T
∇xU ◦ TN,x (ξ)

)
−
√
σ2

N−1∑
i=1

(
A

1
2

)T
∇xU ◦ Ti,x (ξ)
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noting that
(
A

1
2

)T
∇x = ∇

A− 1
2 x

and U (x) = U ′
(
A− 1

2x
)

gives

A− 1
2 y = A− 1

2 TN,x (ξ) = A− 1
2x− Nσ2

2
∇

A− 1
2 x
U ′
(
A− 1

2x
)
+ L
√
σ2ξ − σ2

N−1∑
i=1

(L− i)∇
A− 1

2 x
U ′ ◦A− 1

2 Ti,x (ξ)

(
A

1
2

)T
q =

(
A

1
2

)T
WN,x (ξ) = ξ −

√
σ2

2

(
∇

A− 1
2 x
U ′
(
A− 1

2x
)
+∇

A− 1
2 x
U ′ ◦A− 1

2 TN,x (ξ)
)
−
√
σ2

N−1∑
i=1

∇
A− 1

2 x
U ′ ◦A− 1

2 Ti,x (ξ)

We can read off from the equations above that if A− 1
2 Ti,x (ξ) = T ′

i,A− 1
2 x

(ξ) for all i ∈ [N − 1], where T ′

is simply the map T with U replaced by U ′ and A replaced by Id, then A− 1
2 TN,x (ξ) = T ′

N,A− 1
2 x

(ξ) and(
A

1
2

)T
WN,x (ξ) = W ′

N,A− 1
2 x

(ξ), where W ′ is defined similarly to T ′. The case with N = 1 has been

handled, since this is just the MALA proposal. Therefore the statement is true for allN ∈ N\ {0} by induction.

A final fact to note is that the proposal density q ((x, p)→ (y, q)) is independent of p because the mo-

mentum is resampled before any leapfrog steps. We then have

q ((x, p)→ (y, q)) = q (x→ (y, q))

=

∫
Rd

1 {(y, q) = (TN,x (ξ) ,WN,x (ξ))}N (dξ; 0, Id)

=

∫
Rd

1

{(
A− 1

2 y,
(
A

1
2

)T
q

)
=

(
A− 1

2 TN,x (ξ) ,
(
A

1
2

)T
WN,x (ξ)

)}
N (dξ; 0, Id)

=

∫
Rd

1

{(
A− 1

2 y,
(
A

1
2

)T
q

)
=
(
T ′
N,A− 1

2 x
(ξ) ,W ′

N,A− 1
2 x

(ξ)
)}
N (dξ; 0, Id)

= q′
(
A− 1

2x→
(
A− 1

2 y,
(
A

1
2

)T
q

))
= q′

((
A− 1

2x,
(
A

1
2

)T
p

)
→
(
A− 1

2 y,
(
A

1
2

)T
q

))

where the final line comes from the independence of q′ from the initial momentum. Therefore the condition

on the proposal distribution from Lemma 78 holds, and the isomorphism holds of unadjusted HMC. The last
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thing we need to check is the condition from Lemma 78 on the acceptance probability. Here we have

α ((x, p)→ (y, q)) = min {1, exp (−H (y, q) +H (x, p))}

= min

{
1, exp

(
−U (y)− 1

2
qTAq + U (x) +

1

2
pTAp

)}
= min

{
1, exp

(
−U ′

(
A− 1

2 y
)
− 1

2

∥∥∥∥(A 1
2

)T
q

∥∥∥∥2
2

+ U ′
(
A− 1

2x
)
+

1

2

∥∥∥∥(A 1
2

)T
p

∥∥∥∥2
2

)}

= α′
((

A− 1
2x,
(
A

1
2

)T
p

)
→
(
A− 1

2 y,
(
A

1
2

)T
q

))

and so the isomorphism holds of HMC.

7.2.2.3 Proof of the form of the ELBO maximising marginal in CAVI ascent

We reproduce the proof from [Blei, Kucukelbir, and McAuliffe 2017]. Let’s say we are maximising the ELBO

with respect to the ith marginal variational component. Therefore we state the ELBO as a function solely of

θi:

ELBO (θi) = Eνθ
[log π (X, y)]− Eνθ

[log νθ (X)]

= Eνθ
[log π (X, y)]− E

ν
(i)
θi

[
log ν

(i)
θi

(Xi)
]
+ const.

= E
ν
(i)
θi

[
E
ν
−(i)
θ−i

[log π (Xi, X−i, y) |Xi ]

]
− E

ν
(i)
θi

[
log ν

(i)
θi

(Xi)
]
+ const.

where the second line uses the decomposition of the variational density, and the final line uses the law of

total expectation. The collection of the first two terms on the right hand side is the negative KL between ν(i)θi

and the ELBO maximising marginal, as stated in 2.10.
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7.2.3 Proofs from chapter 3

7.2.3.1 Proof of Proposition 27

The Hessian of the model with potential

U(x, y) =
m−M

2
(cosx+ cos y) +

M +m

2

(
x2

2
+
y2

2

)

is in the form ∇2U(x, y) = diag{f(x), f(y)} where f(x) := (1/2)(M −m) cosx+(1/2)(M +m) ∈ [m,M ]. As

detailed in Proposition 25, the condition number is ignorant as to whether the preconditioner L is symmetric

or not, so we assume it is. Therefore we can perform an eigendecomposition L = QDQT where D =

diag{λ1, λ2} is the matrix of eigenvalues (not necessarily ordered) and, since we are in two dimensions, Q

can be represented as the two dimensional Givens matrix

Q =

cos θ − sin θ

sin θ cos θ

 .

The matrix enclosed by the first operator norm in (2.5) has trace and determinant

Tr(x, y) := Tr(L−T∇2U(x, y)L−1) = c2(λ−2
1 f(x) + λ−2

2 f(y)) + s2(λ−2
2 f(x) + λ−2

1 f(y))

Det(x, y) := Det(L−T∇2U(x, y)L−1) = λ−2
1 λ−2

2 f(x)f(y)

where we have abbreviated c := cos θ, s := sin θ for notational simplicity. The matrix enclosed by the second

operator norm in (2.5) has trace and determinant

Tr∗(x∗, y∗) := Tr(L∇2U(x∗, y∗)−1LT ) = c2(λ21f(x
∗)−1 + λ22f(y

∗)−1) + s2(λ−2
2 f(x∗)−1 + λ−2

1 f(x∗)−1)

Det∗(x∗, y∗) := Det(L∇2U(x∗, y∗)−1LT ) = λ21λ
2
2f(x

∗)−1f(y∗)−1
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Using the fact that the operator norm of a positive definite matrix is simply the largest eigenvalue, we are

able to lower bound

κ̃ ≥ 1

2

(
Tr(x, y) +

√
Tr(x, y)2 − 4Det(x, y)

) 1

2

(
Tr∗(x∗, y∗) +

√
Tr∗(x∗, y∗)2 − 4Det∗(x∗, y∗)

)

Choosing (x, y) such that f(x) = f(y) =M and (x∗, y∗) such that f(x∗) = f(y∗) = m we have

κ̃ ≥ 1

2

(
(λ−2

1 + λ−2
2 )M +

∣∣λ−2
1 − λ−2

2

∣∣M) 1
2

(
(λ21 + λ22)m

−1 +
∣∣λ21 − λ22∣∣m−1

)
= max{λ−2

1 , λ−2
2 }max{λ21, λ22}

M

m

= κ(LLT )κ

Therefore κ̃ > κ for non-orthogonal L.

7.2.3.2 Proof of Theorem 30

Perform the eigendecomposition ∇2U(x) = OxDxO
T
x for Ox ∈ O(d) with columns vi(x) and Dx ∈ Rd×d

diagonal with elements λi(x). Perform the eigendecomposition L = V ΣV T where V has columns vi ∈ Rd

for i ∈ [d] and Σ := diag{σ1, ..., σd}. Defining Ex := V TOx−Id, Assumption 29 guarantees that the elements

of Ex are at most δ in absolute value. Inspecting the first term in the definition of κ̃, we have that

∥L−T∇2U(x)L−1∥ = ∥Σ−1(Ex + Id)Dx(Ex + Id)
TΣ−1∥

≤ ∥Σ−1ExDxETx Σ−1∥+ 2∥Σ−1ExDxΣ
−1∥+ ∥Σ−1DxΣ

−1∥

≤ ∥Σ−1ExDxETx Σ−1∥+ 2∥Σ−1ExDxΣ
−1∥+ (1 + ε)
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where the second line is due to the triangle inequality of the matrix 2-norm, the last line due to Assumption

28. Inspecting the norm in the second term in the above:

∥Σ−1ExDxΣ
−1∥2 = sup

∥v∥=1

d∑
k=1

(
d∑

s=1

λs(x)

σsσk
(Ex)ksvs

)2

≤ δ2 sup
∥v∥=1

d∑
k=1

(
d∑

s=1

λs(x)

σsσk
vs

)2

= δ2
d∑

k=1

1

σ2
k

sup
∥v∥=1

(
d∑

s=1

λs(x)

σs
vs

)2

≤ δ2(1 + ε)2
d∑

k=1

1

σ2
k

sup
∥v∥=1

(
d∑

s=1

σsvs

)2

= δ2(1 + ε)2
d∑

k=1

1

σ2
k

d∑
s=1

σ2
s

where the second line comes from Assumption 29 and the fourth line comes from Assumption 28. Looking

at the first term now:

∥Σ−1ExDxETx Σ−1∥ = ∥Σ−1ExD
1
2
x ∥2

= sup
∥v∥=1

d∑
k=1

(
d∑

s=1

√
λs(x)

σk
(Ex)ksvs

)2

≤ δ2
d∑

k=1

1

σ2
k

sup
∥v∥=1

(
d∑

s=1

√
λs(x)vs

)2

≤ δ2(1 + ε)

d∑
k=1

1

σ2
k

sup
∥v∥=1

(
d∑

s=1

σsvs

)2

= δ2(1 + ε)

d∑
k=1

1

σ2
k

d∑
s=1

σ2
s

where the third line comes from Assumption 29 and the fourth line comes from Assumption 28. Putting the

terms together yields

∥L−T∇2U(x)L−1∥ ≤ (1 + ε)

1 + δ

√√√√ d∑
i=1

σ2
i

d∑
i=1

σ−2
i

2
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Now we follow the same procedure for ∥L∇2U(x)LT ∥:

∥L∇2U(x)LT ∥ ≤ ∥ΣExD− 1
2

x ∥2 + 2∥ΣExD−1
x Σ∥+ ∥ΣD−1

x Σ∥

≤ ∥ΣExD− 1
2

x ∥2 + 2∥ΣExD−1
x Σ∥+ (1 + ε)

starting with the second term:

∥ΣExD−1
x Σ∥2 = sup

∥v∥=1

d∑
k=1

(
d∑

s=1

σsσk
λs(x)

(Ex)ksvs
)2

≤ δ2
d∑

k=1

σ2
k sup
∥v∥=1

(
d∑

s=1

σs
λs(x)

vs

)2

≤ δ2(1 + ε)2
d∑

k=1

σ2
k sup
∥v∥=1

(
d∑

s=1

1

σs
vs

)2

≤ δ2(1 + ε)2
d∑

k=1

σ2
k

d∑
s=1

1

σ2
s

and the first term:

∥ΣExD− 1
2

x ∥2 = sup
∥v∥=1

d∑
k=1

(
d∑

s=1

σk√
λs(x)

(Ex)ksvs
)2

≤ δ2
d∑

k=1

σ2
k sup
∥v∥=1

(
d∑

s=1

1√
λs(x)

vs

)2

≤ δ2(1 + ε)

d∑
k=1

σ2
k sup
∥v∥=1

(
d∑

s=1

1

σs
vs

)2

= δ2(1 + ε)

d∑
k=1

σ2
k

d∑
s=1

1

σ2
s

from which follows

κ̃ ≤ (1 + ε)2

1 + δ

√√√√ d∑
i=1

σ2
i

d∑
i=1

σ−2
i

4
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7.2.3.3 Implications from assumption 29

From the statement of Assumption 29 it is immediate that vi(x)T vi ≥ 1−δ. Note that the assumption implies

the following bound ∥vi(x) − vi∥ ≤
√
2
(
1−
√
1− δ

)
. For i, j ∈ [d] such that i ̸= j, the reverse triangle

inequality gives us that

∥vi(x)− vj∥ ≥ ∥vj − vi∥ − ∥vi − vi(x)∥

≥
√
2−
√
2
(
1−
√
1− δ

)

and so √
2(1− ⟨vi(x), vj⟩ ≥

√
2−
√
2
(
1−
√
1− δ

)
hence vi(x)T vj ≤ δ as required.

7.2.3.4 Proof of Theorem 35

Based on the intuition gained from Proposition 25 we can assume that L is symmetric, and so its left and

right singular vectors are simply its eigenvectors. Using [Yu, Wang, and Samworth 2015] with Σ̂ = ∇2U(x)

and Σ = LLT we have that ∥vi(x) − vi∥ ≤ 2
3
2 γ−1∥∇2U(x) − LLT ∥. Rearranging, the Assumption 33 gives

⟨vi(x), vi⟩ ≥ 1 − 4γ−2σ−4
d ε2. From 7.2.3.5, Assumption 33 gives us Assumption 28 with the same ε, and

hence we can apply Theorem 30 with δ = 1− (1− 2γ−1σ−2
d ε)2.

7.2.3.5 Proof that 33 implies 28

Weyl’s inequality implies that

λi(∇2U(x))

σ2
i

≤ λi(LL
T ) + λ1(∇2U(x)− LLT )

σ2
i

≤ 1 +
∥∇2U(x)− LLT ∥

σ2
i

and so ∥∇2U(x)− LLT ∥ ≤ σ2
dε implies Assumption 28 with the same ε.
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7.2.3.6 Proof of Theorem 38

Using Proposition 25 we assume that L is symmetric. For the first supremum in the definition of κ̃ note that

∥∇2U(x) − L2∥ = ∥LT (L−T∇2U(x)L−1 − Id)L∥. Using the fact that σi(BA) ≤ ∥B∥σi(A) and σi(AC) ≤

σi(A)∥C∥ for matrices A,B,C of appropriate sizes and all i ∈ [d] [Tao 2012, Exercise 1.3.24] we have

∥LT (L−T∇2U(x)L−1 − Id)L∥ ≥
σ1(L

T (L−T∇2U(x)L−1 − Id)LL
−1)

σ1(L−1)

= σd(L)∥LT (L−T∇2U(x)L−1 − Id)∥

≥ σd(L)
σ1(L

−TLT (L−T∇2U(x)L−1 − Id))

σ1(L−T )

= σd(L)
2∥L−T∇2U(x)L−1 − Id∥

Therefore we can bound ∥L−T∇2U(x)L−1 − Id∥ ≤ ε using Assumption 33. Using the reverse triangle

inequality ∥L−T∇2U(x)L−1 − Id∥ ≥ |∥L−T∇2U(x)L−1∥ − 1| we get ∥L−T∇2U(x)L−1∥ ≤ 1 + ε.

For the second supremum in the definition of κ̃ we use the same technique as the first supremum, first

noting that ∥∇2U(x)−1 −L−2∥ ≤ ∥∇2U(x)−1∥∥L−2∥∥∇2U(x)−L2∥ ≤ m−1ε. Employing the technique from

before:

∥∇2U(x)−1 − L−2∥ = ∥L−1(L∇2U(x)−1LT − Id)L
−T ∥

≥ σd(L−1)2∥L∇2U(x)−1LT − Id∥

and hence ∥L∇2U(x)−1LT−Id∥ ≤ σ1(L)2m−1ε. Using the reverse triangle inequality again gives ∥L∇2U(x)−1LT ∥ ≤

1 + σ1(L)
2m−1ε.
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7.2.3.7 Proof of proposition 39

The assumption 33 has that
∥∥∇2U (x)− LLT

∥∥
2
≤ σ2

dε for all x ∈ Rd. Therefore

∥∥∇2U (x)− I
∥∥
2
=
∥∥∇2U (x)− LLT + LLT − I

∥∥
2

≤ σ2
dε+

∥∥Eπ

[
∇2U (X)− LLT

]∥∥
2

≤ σ2
dε+ Eπ

[∥∥∇2U (X)− LLT
∥∥
2

]
≤ 2σ2

dε

where the penultimate line is due to Jensen’s inequality.

7.2.3.8 Proof of proposition 42

We assume WLOG that U(x∗) = 0. Taylor’s theorem with integral remainder has that

U(x) =

∫ 1

0

(1− t)(x− x∗)T∇2U(x∗ + t(x− x∗))(x− x∗)dt

(since U(x∗) = 0, ∇U(x∗) = 0) from which we can deduce

1

2
(x− x∗)T∆−(x− x∗) ≤ U(x) ≤ 1

2
(x− x∗)T∆+(x− x∗)

and hence

exp

(
−1

2
(x− x∗)T∆+(x− x∗)

)
≤ exp(−U(x)) ≤ exp

(
−1

2
(x− x∗)T∆−(x− x∗)

)

with

Z∆+

Z

1

Z∆+

exp

(
−1

2
(x− x∗)T∆+(x− x∗)

)
≤ 1

Z
exp(−U(x)) ≤ Z∆−

Z

1

Z∆−

exp

(
−1

2
(x− x∗)T∆−(x− x∗)

)
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where ZA :=
√
(2π)d detA−1. For an arbitrary v ∈ Rd we have that

vTΣπv =
1

Z

∫
(vT (x− µπ))

2 exp(−U(x))dx

≤ Z∆−

Z
EN (x∗,(∆−)−1)[(v

T (X − µπ))
2]

≤ Z∆−

Z

(
EN (x∗,(∆−)−1)[(v

T (X − x∗))2]− (vT (x∗ − µπ))
2
)

≤ Z∆−

Z∆+

(
vT (∆−)

−1v − vT (x∗ − µπ)(x
∗ − µπ)

T v
)

where the last inequality follows from the fact that Z∆+
≤ Z ≤ Z∆− . We can construct a similar lower bound

to give

c((∆+)
−1 − (x∗ − µπ)(x

∗ − µπ)
T ) ≤ Σπ ≤ c−1((∆−)

−1 − (x∗ − µπ)(x
∗ − µπ)

T )

defining c := (Z∆+/Z∆−) =
√
det∆− det∆−1

+ ≤ 1. This gives P− ≤ Σ−1
π ≤ P+ where

P+ := c−1
(
(∆+)

−1 − (x∗ − µπ)(x
∗ − µπ)

T
)−1

P− := c
(
(∆−)

−1 − (x∗ − µπ)(x
∗ − µπ)

T
)−1

and hence

P+ = c−1
(
∆+ +

(
1− (x∗ − µπ)

T∆+(x
∗ − µπ)

)−1
∆+(x

∗ − µπ)(x
∗ − µπ)

T∆+

)
P− = c

(
∆− +

(
1− (x∗ − µπ)

T∆−(x
∗ − µπ)

)−1
∆−(x

∗ − µπ)(x
∗ − µπ)

T∆−
)

using the Woodbury identity. The fact that (x∗ − µπ)
T∆±(x∗ − µπ) = Tr(D±) gives the result.

We have that ∥∇2U(x) − Σ−1
π ∥ := supv

∣∣vT∇2U(x)v − vTΣ−1
π v

∣∣. Say the quantity inside the absolute

value is positive. Then vT∇2U(x)v − vTΣ−1
π v ≤ vT∇2U(x)v − vTP−v. Now say the quantity is negative,
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giving us vTΣ−1
π v − vT∇2U(x)v ≤ vTP+v − vT∇2U(x)v. In sum this gives

∥∇2U(x)− Σ−1
π ∥ ≤ sup

v:∥v∥=1

max
{
vT∇2U(x)v − vTP−v, v

TP+v − vT∇2U(x)v
}

≤ sup
v:∥v∥=1

max
{
vT∆+v − vTP−v, v

TP+v − vT∆−v
}

≤ max {∥∆+ − P−∥, ∥P+ −∆−∥}

7.2.3.9 Proof of corollary 43

From proposition 42 we have that P− ≤ Σ−1
π ≤ P+where

P+ = c−1
(
A+ ϵId +

(
1− (x∗ − µπ)

T (A+ ϵId)(x
∗ − µπ)

)−1
(A+ ϵId)(x

∗ − µπ)(x
∗ − µπ)

T (A+ ϵId)
)

P− = c
(
A− ϵId +

(
1− (x∗ − µπ)

T (A− ϵId)(x∗ − µπ)
)−1

(A− ϵId)(x∗ − µπ)(x
∗ − µπ)

T (A− ϵId)
)

since ∆− = A− ϵId and ∆+ = A+ ϵId. The bounds stated at the end of the proposition give

∥∇2U(x)− Σ−1
π ∥ ≤ max {∥∆+ − P−∥, ∥P+ −∆−∥}

= max
{
∥(1− c)A+ (1 + c)ϵId − cP̃−∥, ∥(c−1 − 1)A+ (c−1 + 1)ϵId − c−1P̃+∥

}
≤ (c−1 − 1)∥A∥+ (c−1 + 1)ϵ+max

{
c∥P̃−∥, c−1∥P̃+∥

}

where in the final line we use the triangle inequality.

7.2.3.10 Proof of proposition 44

Applying the non-rectangular form of Ostrowski’s theorem [Higham and Cheng 1998, Theorem 3.2] gives for

any x ∈ Rd

λd(B
TB)λn−d+1(Λ(x)) ≤ λ1(BTΛ(x)B) ≤ λ1(BTB)λ1(Λ(x)),

and similarly

λd(B
TB)λn(Λ(x)) ≤ λd(BTΛ(x)B) ≤ λ1(BTB)λd(Λ(x))
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Since κ := supx∈Rd λ1(B
TΛ(x)B)/ infx∈Rd λd(B

TΛ(x)B) then applying the upper/lower bound to λ1(BTΛ(x)B)

and the lower/upper bound to λd(BTΛ(x)B) point-wise gives the upper/lower bound on κ as desired.

7.2.3.11 Proof of proposition 47

Setting X̃T = (XTX)−1/2XT and applying proposition 44 gives the result, noting that X̃T X̃ = Id.

7.2.3.12 Proof of proposition 49

First note that the preconditioned Hessian can be written

L−T∇2U(x)L−1 = (XTΛ(x∗)X)1/2XTΛ(x∗)1/2Λ(x∗)−1/2Λ(x)Λ(x∗)−1/2Λ(x∗)1/2X(XTΛ(x∗)X)1/2

Setting X̃T := (XTΛ(x∗)X)1/2XTΛ(x∗)1/2 and then applying the upper bound of Proposition 44 to the

matrix X̃TΛ(x∗)−1/2Λ(x)Λ(x∗)−1/2X̃ gives the first inequality. The second follows from applying the same

bound again to Λ(x∗)−1/2Λ(x)Λ(x∗)−1/2 and noting that

κ(Λ(x∗)) ≤ supx∈Rd λ1(Λ(x))

infx∈Rd λd(Λ(x))

7.2.3.13 Proof of Theorem 52

If we take σ2 = ξ/(Md), then [Andrieu, A. Lee, et al. 2024, Theorem 1] implies that the spectral gap γκ of

the RWM algorithm on a target with a m-strongly convex, M -smooth potential is bounded as follows:

Cξ exp(−2ξ) 1
κ

1

d
≤ γκ ≤

ξ

2

1

d

We will modify the proof of [Andrieu, A. Lee, et al. 2024, Lemma 47] so that the upper bound on γκ

subsequently depends on κ. The spectral gap of the RWM algorithm on a target π with kernel P is

defined as γk := inff∈L2
0(π)

(E(P, f)/Varπ(f)) where E is the Dirichlet form associated with π. Define

g(x) := ⟨vmax, x − Eπ[X]⟩ where vmax ∈ Rd is the eigenvector associated with the greatest eigenvalue of
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Eπ

(
∇2U(X)

)−1. The Cramér-Rao inequality gives that

Varπ(g(X)) ≥ vTmaxEπ

[
∇2U(X)

]−1
vmax

= λ1

(
Eπ

[
∇2U(X)

]−1
)
∥vmax∥2

= λd
(
Eπ

[
∇2U(X)

])−1 ∥vmax∥2

The second equality comes from the fact that Eπ

[
∇2U(X)

]−1 is positive definite, since it is the inverse of

the expectation of a matrix that is itself positive definite.

Say v ∈ Rd is the eigenvector associated with the smallest eigenvalue λd(y) of∇2U(y) for a given y ∈ Rd.

Then

λd
(
Eπ

[
∇2U(X)

])
= inf

∥v∥=1
vTEπ

[
∇2U(X)

]
v

≤ vTEπ

[
∇2U(X)

]
v

= Eπ

[
vT
(
∇2U(X)−∇2U(y) +∇2U(y)

)
v
]

≤ sup
x∈Rd

∥∇2U(x)−∇2U(y)∥+ λd(y)

≤ m(1 + 2ε)

where in the final line we use Assumption 50, and the fact that Assumption 50 implies

λd(y)

λd(x)
≤ 1+

for all x, y ∈ Rd (see ??) and hence λd(y) ≤ (1 + ε)λd(x) ≤ (1 + ε)m. Therefore Varπ(g(X)) ≥ m−1(1 +

2ε)−1∥vmax∥2. Upper bounding the Dirichlet form in the same way as [Andrieu, A. Lee, et al. 2024, Lemma

47]gives E(P, g) ≤ (1/2)σ2∥vmax∥2, and so

γk = inf
f∈L2

0(π)

E(P, f)
Varπ(f)

≤ E(P, g)
Varπ(g)

≤
1
2σ

2∥vmax∥2
m−1(1 + 2ε)−1∥vmax∥2

=
1

2
ξκ−1d−1(1 + 2ε)
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7.2.3.14 Proof of corollary 53

The lower bound for the spectral gap post-preconditioning is γκ̃ ≥ Cξ exp(−2ξ)κ̃−1d−1. The target satisfies

Assumption 33 so we can use Theorem 38 to modify the bound: γκ̃ ≥ Cξ exp(−2ξ)(1+ε)−1
(
1 +m−1σ1(L)

2ε
)−1

d−1.

So, applying the upper bound found in Theorem 52 to the spectral gap before preconditioning, we see that

a condition number κ such that

1

2
ξκ−1d−1(1 + 2ε′) ≤ Cξ exp(−2ξ)(1 + ε)−1

(
1 +

σ1(L)
2

m
ε

)−1

d−1

guarantees that γκ̃ ≥ γκ and so increases the spectral gap.

7.2.3.15 Full Σπ matrix from section 3.5

The full matrix from equation 3.5 in section 3.5 is as follows:

Σπ =



21.548973 5.678587 18.667787 4.463119 6.855300

⋆ 2.028958 4.863393 1.208146 2.109502

⋆ ⋆ 16.261735 3.926604 5.726388

⋆ ⋆ ⋆ 1.405213 1.409477

⋆ ⋆ ⋆ ⋆ 2.905902


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7.2.4 Proofs from chapter 4

7.2.4.1 Proof of proposition 54

To prove the unbiasedness we have that

E[f̂ideal] =
1

n
E

 R∑
i=1

E

 Ni∑
j=1

f(Yij)
∣∣{Ni}Ri=1


=

1

n
E

[
R∑
i=1

Niµi

]

=
1

n

R∑
i=1

E[Ni]µi =
1

n

R∑
i=1

nπ(Xi)µi

and the result follows. For the variance we use the law of total variance:

Var(f̂ideal) = E
[
Var

(
f̂ideal |{ρ(Xt)}nt=1

)]
+ Var

(
E
[
f̂ideal |{ρ(Xt)}nt=1

])
where ρ(Xt) is simply the region that Xt is in. Inspecting the second term on the right hand side:

E
[
f̂ideal |{ρ(Xt)}nt=1

]
=

1

n

R∑
i=1

Ni∑
j=1

E[f(Yij) |{ρ(Xt)}nt=1 ] =
1

n

R∑
i=1

µiNi

and so

Var
(
E
[
f̂ideal |{ρ(Xt)}nt=1

])
= Var

(
1

n

R∑
i=1

µiNi

)

=
1

n2

R∑
i,i′

µiµi′Cov (Ni, Ni′)

=
1

n2

R∑
i,i′

µiµi′

n∑
t,t′

Cov (1{Xt ∈ Xi},1{X ′
t ∈ Xi′})
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We have that

n∑
t,t′

Cov (1{Xt ∈ Xi},1{X ′
t ∈ Xi′}) =

nCovπ(1{X ∈ Xi},1{X ∈ Xi′}) + 2

n−1∑
k=1

(n− k)Covπ
(
Kk1{X ∈ Xi},1{X ∈ Xi′}

)
where K is the Markov operator of {Xt}nt=1. Since Covπ (1{X ∈ Xi},1{X ∈ Xi′}) = 1{i = i′}π(Xi) −

π(Xi)π(Xj) we have that

1

n2

R∑
i,i′

µiµi′Covπ (1{X ∈ Xi},1{X ∈ Xi′}) =
1

n

(
R∑
i=1

π(Xi)µ
2
i − µ2

)
=

1

n
Varπ(−→π f)

which gives that

Var
(
E
[
f̂ideal |{ρ(Xt)}nt=1

])
=

1

n
Varπ(−→π f) +

1

n
2

n−1∑
k=1

n− k
n

Covπ
(
Kk−→π f(X),−→π f(X)

)
= Var

(
1

n

n∑
t=1

−→π f(Xt)

)

after we absorb the sums involving i and i′ into Covπ
(
Kk1{X ∈ Xi},1{X ∈ Xi′}

)
. Finally we inspect the

first term on the right hand side:

E
[
Var

(
f̂ideal |{ρ(Xt)}nt=1

)]
= E

 1

n2

R∑
i=1

Ni∑
j=1

Var (f(Yij) |{ρ(Xt)}nt=1 )


= E

[
1

n2

R∑
i=1

Niσ
2
i

]

=
1

n2

R∑
i=1

E[Ni]σ
2
i =

1

n
Varπ(←−π f(X))

from which the full result follows.
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7.2.4.2 Proof of lemma 57

First note that E[f(Xt) |{ρ(Xt)}nt=1 ] = µρ(Xt) =
−→π f(Xt). Second, by the law of total variance we have that

Var

(
1

n

n∑
t=1

f(Xt)

)
= E

[
Var

(
1

n

n∑
t=1

f(Xt) |{ρ(Xt)}nt=1

)]
+ Var

(
E

[
1

n

n∑
t=1

f(Xt) |{ρ(Xt)}nt=1

])

= E

[
Var

(
1

n

n∑
t=1

f(Xt) |{ρ(Xt)}nt=1

)]
+ Var

(
1

n

n∑
t=1

E[f(Xt) |{ρ(Xt)}nt=1 ]

)

= E

[
Var

(
1

n

n∑
t=1

f(Xt) |{ρ(Xt)}nt=1

)]
+ Var

(
1

n

n∑
t=1

−→π f(Xt)

)

and the result follows.

7.2.4.3 Proof of proposition 58

That the condition 1. entails Var(f̂ideal) ≤ Var(n−1
∑n

t=1 f(Xt)) follows from Proposition 54, Lemma 57 and

the fact that f ≡ −→π f implies←−π f ≡ 0.

For condition 2. the fact that f ≡ ←−π f+π(f) means that−→π f ≡ π(f). Therefore Var(f̂ideal) = n−1Varπ(←−π f).

Compare this with Var(n−1
∑n

t=1 f(Xt)):

Var

(
n−1

n∑
t=1

f(Xt)

)
:=

1

n
Varπ(←−π f) +

1

n
2

n−1∑
k=1

n− k
n

Covπ(←−π f(X),Kk←−π f(X))

which clearly dominates Var(µ̂ideal) = n−1Varπ(←−π f) when K is positive.

7.2.4.4 Proof of proposition 60

For the unbiasedness of f̂occ we have the following:

E[f̂occ] =
1

n

n∑
t=1

E[1{St = 0}f(Xt)] + E[1{St = 1}f(Yt)]
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Inspecting the first term in the summand:

E[1{St = 0}f(Xt)] = E[E[1{St = 0}f(Xt) |{Xt}nt=1 ]]

= E[f(Xt)E[1{St = 0} |{Xt}nt=1 ]]

= E[(1− α(ρ(Xt)))f(Xt)]

=

R∑
i=1

π(Xi)(1− α(i))πi(f)

Inspecting the second term:

E[1{St = 1}f(Yt)] = E[E[1{St = 1}f(Yt) |{Xt}nt=1 ]]

= E[f(Yt)E[1{St = 1} |{Xt}nt=1 ]]

= E[α(ρ(Xt))f(Yt)]

=

R∑
i=1

π(Xi)α(i)πi(f)

Incorporating the summands into the sum gives the desired answer.

As for the variance, we make the following decomposition:

Var(f̂occ) = E
[
Var

(
f̂occ |{ρ(Xt)}nt=1

)]
+ Var

(
E
[
f̂occ |{ρ(Xt)}nt=1

])

Working with the expectation on the left of the sum:

E
[
f̂occ |{ρ(Xt)}nt=1

]
=

1

n

n∑
t=1

E [1{St = 0}f(Xt) |{ρ(Xt)}nt=1 ] + E [1{St = 1}f(Yt) |{ρ(Xt)}nt=1 ]

Inspecting the first term in the summand:

E [1{St = 0}f(Xt) |{ρ(Xt)}nt=1 ] = E [1{St = 0} |{ρ(Xt)}nt=1 ]E [f(Xt) |{ρ(Xt)}nt=1 ]

= (1− α(ρ(Xt)))µρ(Xt)
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where the first line comes from the conditional independence {St}⊥{Xt} |{ρ(Xt)} . Inspecting the second

term:

E [1{St = 1}f(Yt) |{ρ(Xt)}nt=1 ] = E [1{St = 1} |{ρ(Xt)}nt=1 ]E [f(Yt) |{ρ(Xt)}nt=1 ]

= α(ρ(Xt))µρ(Xt)

where the first line comes from the conditional independence {St}⊥{Yt} |{ρ(Xt)} . Combining the two terms

gives

E
[
f̂occ |{ρ(Xt)}nt=1

]
=

1

n

n∑
t=1

µρ(Xt) =
1

n

n∑
t=1

−→π f(Xt)

and hence

Var
(
E
[
f̂occ |{ρ(Xt)}nt=1

])
= Var

(
1

n

n∑
t=1

−→π f(Xt)

)

Now we work with the first term in the variance decomposition:

Var
(
f̂occ |{ρ(Xt)}nt=1

)
=

1

n2

n∑
t=1

Var (focc(Xt, St, Yt) |{ρ(Xt)}nt=1 )

+
1

n2

∑
t̸=t′

Cov (focc(Xt, St, Yt), focc(X
′
t, S

′
t, Y

′
t ) |{ρ(Xt)}nt=1 )

Inspecting the summand in the first sum:

Var (focc(Xt, St, Yt) |{ρ(Xt)}nt=1 ) = Var (1{St = 0}f(Xt) + 1{St = 1}f(Yt) |{ρ(Xt)}nt=1 )

= E
[
1{St = 0}f(Xt)

2 + 1{St = 1}f(Yt)2 |{ρ(Xt)}nt=1

]
− E [1{St = 0}f(Xt) + 1{St = 1}f(Yt) |{ρ(Xt)}nt=1 ]

2

= (1− α(ρ(Xt)))E[f(Xt)
2 |{ρ(Xt)}nt=1 ] + α(ρ(Xt))E[f(Yt)2 |{ρ(Xt)}nt=1 ]

− ((1− α(ρ(Xt)))µρ(Xt) + α(ρ(Xt))µρ(Xt))
2

= (1− α(ρ(Xt))) (σ
2
ρ(Xt)

+ µ2
ρ(Xt)

) + α(ρ(Xt))(σ
2
ρ(Xt)

+ µ2
ρ(Xt)

)− µ2
ρ(Xt)

= σ2
ρ(Xt)
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where the third equality comes from the conditional independences {St}⊥{Xt} |{ρ(Xt)} and {St}⊥{Yt} |{ρ(Xt)} .

Inspecting the summand in the second sum:

Cov (focc, f
′
occ |{ρ(Xt)}nt=1 ) = Cov (1{St = 0}f(Xt),1{S′

t = 0}f(X ′
t) |{ρ(Xt)}nt=1 )

= E [1{St = 0}f(Xt)1{S′
t = 0}f(X ′

t) |{ρ(Xt)}nt=1 ]

− E [1{St = 0}f(Xt) |{ρ(Xt)}nt=1 ]E [1{S′
t = 0}f(X ′

t) |{ρ(Xt)}nt=1 ]

= (1− α(ρ(Xt))) (1− α(ρ(X ′
t)))E [f(Xt)f(X

′
t) |{ρ(Xt)}nt=1 ]

− (1− α(ρ(Xt))) (1− α(ρ(X ′
t)))µρ(Xt)µρ(X′

t)

= (1− α(ρ(Xt))) (1− α(ρ(X ′
t)))Cov (f(Xt), f(X

′
t) |{ρ(Xt)}nt=1 )

= Cov (fa(Xt), fa(X
′
t) |{ρ(Xt)}nt=1 )

where we abbreviate focc := focc(Xt, St, Yt) and f ′occ := focc(X
′
t, S

′
t, Y

′
t )where the third equality comes from

the conditional independences {St}⊥{Xt} |{ρ(Xt)} and Si⊥Sj |{ρ(Xt)} for all i, j ∈ [n]. Using the law of

total covariance we have

E [Cov (fa(Xt), fa(X
′
t) |{ρ(Xt)}nt=1 )] = Cov (fa(Xt), fa(X

′
t))

− Cov (E [fa(Xt) |{ρ(Xt)}nt=1 ] ,E [fa(X
′
t) |{ρ(Xt)}nt=1 ])

= Cov (fa(Xt), fa(X
′
t))− Cov (−→π fa(Xt),

−→π fa(X ′
t))

Combining everything gives

E
[
Var

(
f̂occ |{ρ(Xt)}nt=1

)]
=

1

n
E[σ2

ρ(Xt)
] +

1

n2

∑
t̸=t′

Cov (fa(Xt), fa(X
′
t))− Cov (−→π fa(Xt),

−→π fa(X ′
t))

We have that E[σ2
ρ(Xt)

] = Varπ(←−π f(X)) which gives the desired expression, when combined with Var
(
E
[
f̂occ |{ρ(Xt)}nt=1

])
and the results of Proposition 54.

180



7.2.4.5 Proof of proposition 61

For πocc-reversibility we need that

πocc(dx, s, dy)Kocc((dx, s, dy)→ (dx′, s′, dy′)) = πocc(dx
′, s′, dy′)Kocc((dx

′, s′, dy′)→ (dx, s, dy))

for all dx, dx′, dy, dy′ ∈ X and s, s′ ∈ {0, 1}. For notational simplicity we define

A (s |x ) := α(ρ(x))1{s = 1}+ (1− α(ρ(x)))1{s = 0}

i.e. the probability mass function of s given x. We have

πocc(dx, s, dy)Kocc((dx, s, dy)→ (dx′, s′, dy′)) = π(dx)A (s |x )πρ(x)(dy)K(x→ dx′)A (s′ |x′ )πρ(x′)(dy
′)

= π(dx)K(x→ dx′)A (s′ |x′ )πρ(x′)(dy
′)A (s |x )πρ(x)(dy)

= π(dx′)K(x′ → dx)A (s′ |x′ )πρ(x′)(dy
′)A (s |x )πρ(x)(dy)

= π(dx′)A (s′ |x′ )πρ(x′)(dy
′)K(x′ → dx)A (s |x )πρ(x)(dy)

= πocc(dx
′, s′, dy′)Kocc((dx

′, s′, dy′)→ (dx, s, dy))

where the third equality comes from the π-reversibility of K.

7.2.4.6 Proof of proposition 62

We directly observe

∫
X

1∑
s=0

∫
X

focc(x, s, y)
2πocc(dx, s, dy) =

∫
X

∫
X

f(y)2 (1− α(ρ(x)))π(dx)πρ(x)(dy)

+

∫
X

∫
X

f(x)2α(ρ(x))π(dx)πρ(x)(dy)

=

R∑
i=1

π(Xi) (1− α(i))πi(f2) + π(Xi)α(i)πi(f
2)

= π(f2) <∞
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where the last line is due to the fact that f ∈ L2(π).

7.2.4.7 Proof of Theorem 63

1. ⇒ 2. Let K be the kernel of the Markov chain {Xt}nt=1. [Douc et al. 2023, Proposition 3.5] says the LLN

stated in statement 1. is equivalent to the fact that for all functions h : X → R if Kh ≡ h then h is constant.

Let hocc : X× {0, 1} × X→ R be such that Kocchocc ≡ hocc. Then for all (x, s, y) ∈ X× {0, 1} × X

∫
X

1∑
s′=0

∫
X

hocc(x
′, s′, y′)Kocc((x, s, y)→ (dx′, s′, dy′)) = hocc(x, s, y)

The fact that Kocc((x, s, y)→ (dx′, s′, dy′)) is independent of s and y means that hocc is a function of x only.

Therefore the above equation is equivalent to

∫
X

1∑
s′=0

∫
X

hocc(x
′)Kocc((x, s, y)→ (dx′, s′, dy′)) = hocc(x)

⇒ Khocc(x) = hocc(x)

and so hocc is constant by hypothesis. Therefore [Douc et al. 2023, Proposition 3.5] asserts an LLN for the

occlusion process.

2. ⇒ 1. Assuming statement 2. means that Kocchocc ≡ hocc implies hocc is a constant. Here we use the

fact that applying Kocc to a function of only its first variable is the same as applying K to it. Thus we have

that for any h : X→ R

Kh ≡ h⇒ Kocch ≡ h

⇒ h is constant

and we are done.
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7.2.4.8 Proof of Theorem 65

Let (G, ∥.∥G) ∈ C∥.∥ and let g(x, s, y) = 1{s = 0}f(x)+1{s = 1}f(y) ∈ (G, ∥.∥G) as in the theorem statement.

First note that πocc(g) = π(fα). Then we have that

Koccg(x, s, y) =

∫
X

1∑
s′=0

∫
X

(1{s′ = 0}f(x′) + 1{s′ = 1}f(y′))Kocc((x, s, y)→ (dx′, s′, dy′))

=

∫
X

∫
X

(1− α(ρ(x′))) f(x′)K(x→ dx′)πρ(x′)(dy
′)

+

∫
X

∫
X

α(ρ(x′))f(y′)K(x→ dx′)πρ(x′)(dy
′)

=

∫
X

(1− α(ρ(x′))) f(x′)K(x→ dx′) +
∫
X

α(ρ(x′))πρ(x′)(f)K(x→ dx′)

= Kfα(x)

Since Kocc = K when acting on functions who only depend on x we have that Kt
occg = Ktfα for t ∈ N\{0}.

Therefore

∥Kt
occg − πocc(g)∥G = ∥Ktfα − π(fα)∥

≤ Cfαr(t)

where the first line is due to the fact that ∥g∥G = ∥g∥ for all functions g solely of their first argument and the

second line is by hypothesis.
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7.2.4.9 Proof that Cfα ≤ Cf in example 67

Note that Cf := C∥f − π(f)∥ with C > 0 where ∥.∥ is the sup norm. Define f0 := f − π(f). Then

Cfα = C∥fα − π(fα)∥

= C sup
x∈X
|(1− α(ρ(x))) f(x) + α(ρ(x))−→π f(x)− π(f)|

= C sup
x∈X
|(1− α(ρ(x))) f0(x) + α(ρ(x))−→π f0(x)|

≤ C sup
x∈X

(1− α(ρ(x))) |f0(x)|+ α(ρ(x)) |−→π f0(x)|

≤ C∥f0∥

where the second equality comes from the fact that π(fα) = π(f), the third equality comes from the fact that

π(
−→
P f) = π(f), the first inequality comes from Jensen’s inequality, and the final inequality comes from the

fact that |f0(x)| and |−→π f0(x)| are upper bounded by ∥f0∥.

7.2.4.10 Proof of Theorem 70

Say that ν is the distribution of the first state (X1, S1, Y1) of the occlusion process, such that µ is the marginal

of its first component. Then the result follows from the fact that νKt
occ(g) = µKt(fα) and πocc(g) = π(fα) for

all g ∈ G and G ∈ C. These results are derived in 7.2.4.8. In particular, we have that

DG(νK
t
occ, πocc) = sup

g∈G

∣∣νKt
occ(g)− πocc(g)

∣∣
= sup

f∈F

∣∣µKt(fα)− π(fα)
∣∣

≤ Cµr(t)

where the second line comes from the fact that as f ranges over F, g ranges over a subset of G. The final

line is by hypothesis.
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7.2.4.11 Proof of Theorem 72

[Gallegos-Herrada, Ledvinka, and J. Rosenthal 2023, Theorem 1 viii)] has that the geometric ergodicity of

a Markov kernel K is equivalent to the existence of a π-almost everywhere measurable function V : X →

[1,∞], a small set S ∈ X and constants λ < 1 and b <∞ with

KV (x) ≤ λV (x) + b1{x ∈ S}

Defining Vocc(x, s, y) := V (x) and Socc := S × {0, 1} × X we prove that Vocc and Socc satisfy an inequality

such as the above with Kocc. Firstly

KoccVocc(x, s, y) =

∫
X

1∑
s′=0

∫
X

Kocc((x, s, y)→ (dx′, s′, dy′))Vocc(x
′, s′, y′)

=

∫
X

1∑
s′=0

∫
X

K(x→ dx′) ((1− α(ρ(x′)))1{s′ = 0}+ α(ρ(x′))1{s′ = 1})πρ(x′)(dy
′)V (x)

=

∫
X

∫
X

K(x→ dx′)V (x)πρ(x′)(dy
′)

=

∫
X

K(x→ dx′)V (x) = KV (x)

Hence KoccVocc(x, s, y) ≤ λV (x) + b1{x ∈ S}. Noting that V (x) ≡ Vocc(x, s, y) and 1{x ∈ S} ≡ 1{(x, s, y) ∈

Socc} along with the fact that Vocc is πocc-almost everywhere measurable gives the result.

7.2.4.12 Proof of corollary 73

Since K is geometrically ergodic and π-reversible Proposition 61 and Theorem 72 imply that Kocc is geomet-

rically ergodic and πocc-reversible. Similarly Proposition 62 has that focc ∈ L2(πocc). Therefore [G. Roberts

and J. Rosenthal 1997, Corollary 2.1] implies that f̂occ admits the CLT as in the statement of the corollary.

For the finiteness of the asymptotic variance, without loss of generality we work with f0 := focc − π (f)

since

lim
n→∞

nVar(n−1
n∑

t=1

focc(Xt, St, Yt)) = lim
n→∞

nVar(n−1
n∑

t=1

f0(Xt, St, Yt))
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Expanding the variance then gives

lim
n→∞

nVar(n−1
n∑

t=1

f0(Xt, St, Yt)) = ∥f0∥2πocc
+ 2 lim

n→∞

n−1∑
k=1

n− k
n
⟨f0,Kkf0⟩πocc

The sum in the limit is a Cesàro sum and so converges to
∑∞

k=1⟨f0,Kkf0⟩πocc if
∑∞

k=1 |⟨f0,Kkf0⟩πocc | < ∞.

Geometric ergodicity along with reversibility implies a spectral gap [Gallegos-Herrada, Ledvinka, and J.

Rosenthal 2023, Theorem 1 xxx)] which means that |⟨f0,Kkf0⟩πocc | ≤ λk∥f0∥2πocc
for some λ ∈ [0, 1). This

gives absolute convergence and hence the convergence of the Cesàro sum. Noting that ∥f0∥2πocc
= Varπocc(f)

and ⟨f0,Kkf0⟩πocc = Covπocc(focc,K
kfocc) completes the proof.

7.2.4.13 Proof of proposition 74

From Proposition 60 we have that

lim
n→∞

nVar(f̂occ) = lim
n→∞

nVar(f̂ideal) + 2 lim
n→∞

n−1∑
k=1

n− k
n

Ck (7.5)

where

Ck := Covπ(fa(X),Kkfa(X))− Covπ(−→π fa(X),Kk−→π fa(X))

and fa(x) := (1 − α(ρ(x)))f(x), so as long as the two limits on the right hand side of (7.5) converge the

proposition statement will hold: we will see that they do.

For the first limit, Proposition 54 dictates that

lim
n→∞

nVar(f̂ideal) = Varπ(←−π f) + lim
n→∞

Var

(
1

n

n∑
t=1

−→π f(Xt)

)

Geometric ergodicity and reversibility implies a spectral gap [Gallegos-Herrada, Ledvinka, and J. Rosenthal

2023, Theorem 1 xxx)], which itself implies that the above limit on the right hand side of the equation can be

expressed as

lim
n→∞

Var

(
1

n

n∑
t=1

−→π f(Xt)

)
= Varπ(−→π f) + 2

∞∑
k=1

Covπ(−→π f(X),Kk−→π f(X))
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Now to address the second limit on the right hand side of the equation (7.5). The expression inside the

limit is a Cesàro sum, and hence converges when
∑∞

k=1 |Ck| < ∞. The existence of a spectral gap for K

implies the existence of a λ ∈ [0, 1) such that

|Ck| = |⟨fa +−→π fa,Kk(fa −−→π fa)⟩|

≤ λk|⟨fa +−→π fa, fa −−→π fa⟩|

and hence the sum converges absolutely.

7.2.4.14 Proof that Y is sampled from π restricted to XC

We have that

P
(
Y ∈ A

∣∣∣∣U ≤ 1

C

dπ̃

dQ̃
(Y ) ∩ Y ∈ XC

)
=

EY,U

[
1{Y ∈ A}1{U ≤ 1

C
dπ̃
dQ̃

(Y )}1{Y ∈ XC}
]

EY,U

[
1{U ≤ 1

C
dπ̃
dQ̃

(Y )}1{Y ∈ XC}
]

=
EY

[
1{Y ∈ A}EU

[
1{U ≤ 1

C
dπ̃
dQ̃

(Y )}
]
1{Y ∈ XC}

]
EY

[
EU

[
1{U ≤ 1

C
dπ̃
dQ̃

(Y )}
]
1{Y ∈ XC}

]
=

EY

[
1{Y ∈ A} 1

C
dπ̃
dQ̃

(Y )1{Y ∈ XC}
]

EY

[
1
C

dπ̃
dQ̃

(Y )1{Y ∈ XC}
]

=
EY∼π [1{Y ∈ A}1{Y ∈ XC}]

EY∼π [1{Y ∈ XC}]
= PY∼π(Y ∈ A |Y ∈ XC )
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7.2.4.15 Proof of Theorem 80

First note that for all B = Bx ×Bs ×By ∈ X × 2{0,1} ×X we have

νKocc(B) =

∫
X

1∑
s=0

∫
X

ν(dx, s, dy)Kocc((x, s, y)→ B)

=

∫
X

1∑
s=0

∫
X

µ(dx)q(s, dy |x )Kocc((x, s, y)→ B)

=

∫
x∈X

µ(dx)Kocc((x, s, y)→ B)

=

∫
x∈X

µ(dx)

∫
x′∈Bx

K(x→ dx′) (α(ρ(x′))1{1 ∈ Bs}+ (1− α(ρ(x′)))1{0 ∈ Bs})πρ(x′)(By)

for µ ∈ (M, ∥.∥∗,M) where the second equality is by hypothesis and the third equality comes from the fact

that Kocc((x, s, y)→ B) is independent of s and y. Continuing, we have

νKocc(B) =

R∑
i=1

(α(i)1{1 ∈ Bs}+ (1− α(i))1{0 ∈ Bs})πi(By)

∫
x∈X

µ(dx)K(x→ Bx ∩ Xi)

=

R∑
i=1

(α(i)1{1 ∈ Bs}+ (1− α(i))1{0 ∈ Bs})πi(By)µK(Bx ∩ Xi)

By a similar argument we have that

νKt
occ(B) =

R∑
i=1

(α(i)1{1 ∈ Bs}+ (1− α(i))1{0 ∈ Bs})πi(By)µK
t(Bx ∩ Xi)

for all t ∈ N\{0}.

Dual norms are defined as suprema of a dual object as evaluated across the primal space. Therefore
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we need to inspect how νKt
occ acts on a function g in the normed function space (G, ∥.∥G) ∈ C∥.∥.

νKt
occ(g) =

R∑
i=1

∫
X

1∑
s=0

∫
X

g(x, s, y) (α(i)1{s = 1}+ (1− α(i))1{s = 0})πi(dy)µKt(dx)1{x ∈ Xi}

=

R∑
i=1

∫
X

∫
X

f(y)α(i)πi(dy)µK
t(dx)1{x ∈ Xi}+

∫
X

∫
X

f(x) (1− α(i))πi(dy)µKt(dx)1{x ∈ Xi}

=

R∑
i=1

α(i)µKt(πi(f)1{. ∈ Xi}) + (1− α(i))µKt(f1{. ∈ Xi})

= µKt

(
R∑
i=1

α(i)πi(f)1{. ∈ Xi}+ (1− α(i)) f1{. ∈ Xi}
)

= µKt(fα)

Equally, we have that πocc(g) = π(fα). Therefore the dual norm has the following form:

∥νKt
occ − πocc∥∗,N = sup

g∈(G,∥.∥G)

|(νKt
occ − πocc) (g)|
∥g∥G

= sup
f∈(F,∥.∥)

|(µKt − π) (fα)|
∥g∥G

Where the second equality comes from the fact that as f ranges over (F, ∥.∥), g ranges over (G, ∥.∥G). To

place an upper bound on the numerator within the supremum, we have that |(µKt − π) (fα)| = ∥µKt −

π∥M,∗d(fα, ker(µKt − π)) where d(f, S) := infh∈S ∥f − h∥ for all f ∈ (F, ∥.∥) and S ⊆ F [Hashimoto,

Nakamura, and Oharu 1986, Lemma 1.1]. Since 0 ∈ ker(µKt − π) we have that |(µKt − π) (fα)| ≤

∥µKt − π∥M,∗∥fα∥ and hence

∥νKt
occ − πocc∥∗,N ≤

(
sup

f∈(F,∥.∥)

∥fα∥
∥g∥G

)
∥µKt − π∥M,∗

≤
(

sup
f∈(F,∥.∥)

∥fα∥
∥g∥G

)
Cµr(t)

where the final inequality is by hypothesis.
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7.2.5 Proofs from chapter 5

7.2.5.1 Proof of proposition 75

Let L = QD ∈ Rd×d be the optimal preconditioner and Σπ ∈ Rd×d be the covariance of π. This covari-

ance eigendecomposes as Σπ = QπDπQ
T
π where Qπ = (Vπ Wπ) ∈ O (d) with Vπ ∈ Rd×m having columns{

v
(π)
i : i ∈ [m]

}
andDπ = diag

{
λ
(π)
i : i ∈ [d]

}
. Since Σπ̃ = (QD)

−1
Σπ (QD)

−T
= (QD)

−1
Σ

1/2
π

(
(QD)

−1
Σ

1/2
π

)T
where Σ

1/2
π := QπD

1/2
π we will work with (QD)

−1
Σ

1/2
π because the manipulations we do will simply be mir-

rored in
(
(QD)

−1
Σ

1/2
π

)T
. We have that

(QD)
−1

Σ1/2
π =

σ−1/2
π 0

0 Id−m


V T

π

WT

(Vπ Wπ

)
D1/2

π

where σπ := diag
{
λ
(π)
i : i ∈ [m]

}
and W ∈ Rd×(d−m) has orthonormal columns, which are all orthogonal to

the columns of Vπ. Continuing:

(QD)
−1

Σ1/2
π =

σ−1/2
π 0

0 Id−m


V T

π

WT

(Vπ Wπ

)
D1/2

π

=

σ−1/2
π 0

0 Id−m


V T

π Vπ V T
π Wπ

WTVπ WTWπ

D1/2
π

=

σ−1/2
π 0

0 Id−m


Im 0

0 WTWπ

D1/2
π

=

Im 0

0 WTWπ


σ−1/2

π 0

0 Id−m

D1/2
π

=

Im 0

0 WTWπ


Im 0

0 σ̃
1/2
π



where σ̃π := diag
{
λ
(π)
i : i ∈ {m+ 1, . . . , d}

}
, and the third equality comes from the fact that the columns

of Vπ are mutually orthogonal, and the columns of W are orthogonal to the columns Vπ which are also
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orthogonal to the columns ofWπ. Putting this all together, we have that ∥Σπ̃∥op =
∥∥∥(QD)

−1
Σπ (QD)

−T
∥∥∥

op
=

max
{
λ
(π)
m+1, 1

}
.

7.2.5.2 Proof of proposition 76

We proceed by induction on m.

Base Case, m = 1: Here the set of orthonormal vectors is {v1}. It is easily checked that Q1e1 = v1.

Assume the hypothesis for m = k.

Inductive Step, m = k + 1: Again, it is easily checked that Qk+1ek+1 = vk+1. Let n < k + 1. Then

Qk+1en =

(
Id − 2

(Qkek+1 − vk+1)(Qkek+1 − vk+1)
T

∥Qkek+1 − vk+1∥2
)
Qken

= Qken − 2
(Qkek+1 − vk+1)

TQken
∥Qkek+1 − vk+1∥2

(Qkek+1 − vk+1)

= vn − 2
eTk+1Q

T
kQken − vTk+1vn

∥Qkek+1 − vk+1∥2
(Qkek+1 − vk+1)

= vn

where Qken = vn is true by hypothesis, and eTk+1Q
T
kQken = 0 due to the fact that Qk ∈ O (d).

7.3 Appendix C: Miscellanea

7.3.1 Inherited convergence of the occlusion process in a generic normed mea-

sure space

As stated in Section 4.1.3.4 the inherited convergence of the occlusion process in IPMs was just an example

of a more general phenomenon. Here we detail a result which applies to a more general class of normed

measure spaces. Normed measure spaces are often dual to normed function spaces. Therefore the follow-

ing inheritance is stated relative to two normed function spaces: (F, ∥.∥) and (G, ∥.∥G) ∈ C∥.∥ where C∥.∥ is

defined as in Section 4.1.3.3.
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Theorem 79. Say the Markov chain {Xt}nt=1 converges to π in the normed measure space (M, ∥.∥∗,M) dual

to the normed function space (F, ∥.∥) with rate function r(t) and constant Cµ. Consider all normed measure

spaces (N, ∥.∥∗,N) dual to the normed function spaces (G, ∥.∥G) ∈ C∥.∥. Then for all measures ν ∈ (N, ∥.∥∗,N)

such that ν(dx, s, dy) = µ(dx)q(s, dy |x ) with µ ∈ (M, ∥.∥∗,M) for all (dx, s, dy) ∈ X × {0, 1} × X we have that

∥νKt
occ − πocc∥∗,N ≤

(
sup

f∈(F,∥.∥)

∥fα∥
∥g∥G

)
Cµr(t)

where

fα(x) := (1− α(ρ(x))) f(x) + α(ρ(x))−→π f(x)

and

g(x, s, y) := 1{s = 0}f(x) + 1{s = 1}f(y)

Theorem 80. Say the Markov chain {Xt}nt=1 converges to π in the normed measure space (M, ∥.∥∗,M) dual

to the normed function space (F, ∥.∥) with rate function r(t) and constant Cµ. Consider all normed measure

spaces (N, ∥.∥∗,N) dual to the normed function spaces (G, ∥.∥G) ∈ C∥.∥. Then for all measures ν ∈ (N, ∥.∥∗,N)

such that ν(dx, s, dy) = µ(dx)q(s, dy |x ) with µ ∈ (M, ∥.∥∗,M) for all (dx, s, dy) ∈ X × {0, 1} × X we have that

∥νKt
occ − πocc∥∗,N ≤

(
sup

f∈(F,∥.∥)

∥fα∥
∥g∥G

)
Cµr(t)

where

fα(x) := (1− α(ρ(x))) f(x) + α(ρ(x))−→π f(x)

and

g(x, s, y) := 1{s = 0}f(x) + 1{s = 1}f(y)

For a proof see section 7.2.4.15. Say X is Hausdorff and compact, and (F, ∥.∥) is the space of continuous

functions on X with the sup norm. Then (M, ∥.∥∗,M) is the space of regular countably additive measures with

∥µ∥∗,M := supf∈(F,∥.∥) ∥f∥−1|µ(f)|. So for a given (G, ∥.∥G) ∈ C∥.∥ we have that g ∈ (G, ∥.∥G) when there
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exists an f ∈ (F, ∥.∥) such that g(x, s, y) = 1{s = 0}f(x) + 1{s = 1}f(y). In this case

∥g∥G = sup
(x,s,y)∈X×{0,1}×X

|g(x, s, y)|

= sup
(x,s,y)∈X×{0,1}×X

|1{s = 0}f(x) + 1{s = 1}f(y)|

= max{sup
x∈X
|f(x)|, sup

y∈X
|f(y)|}

= sup
x∈X
|f(x)| = ∥f∥

where in the third equality we have split into the cases s = 0 and s = 1. To work out the new constant for the

convergence in (N, ∥.∥∗,N) of the occlusion process {(Xt, St, Yt)}nt=1 we have

sup
f∈(F,∥.∥)

∥fα∥
∥g∥G

= sup
f∈(F,∥.∥)

∥(1− α(ρ(.)))f + α(ρ(.))−→π f∥
∥f∥

≤ sup
f∈(F,∥.∥)

∥(1− α(ρ(.)))f∥+ ∥α(ρ(.))−→π f∥
∥f∥

≤ sup
f∈(F,∥.∥)

∥f∥+ ∥−→π f∥
∥f∥ ≤ 2

where the final inequality is due to the fact that ∥−→π f∥ ≤ ∥f∥.

7.3.2 Additional results for the Ising experiment in Section 4.1.5.2
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Figure 7.1: Three graphs comparing the performance of the occlusion process with the Metropolis and Wolff
algorithms on the Ising model at a variety of temperatures, for a variety of graph sizes, each generated
using the stochastic block model with 2 communities. In every case the horizontal axes show the number
of vertices N in the graphs. Bottom: the vertical axes denote the algorithm’s estimates of the expected
magnetisation. Top left: the vertical axes denote the lag 1 autocorrelation coefficient of the magnetisation
over the states produced by the algorithms. Top right: the vertical axes show the number of samples from
the πi’s in Algorithm 4.1 divided by the number of states in the Markov chain n. We magnify the estimated
magnetisation plot for ease of comprehension, the top two plots then help to explain the phenomena in the
bottom plot.
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Figure 7.2: Three graphs comparing the performance of the occlusion process with the Metropolis and Wolff
algorithms on the Ising model at a variety of temperatures, for a variety of graph sizes, each generated
using the stochastic block model with 10 communities. In every case the horizontal axes show the number
of vertices N in the graphs. Bottom: the vertical axes denote the algorithm’s estimates of the expected
magnetisation. Top left: the vertical axes denote the lag 1 autocorrelation coefficient of the magnetisation
over the states produced by the algorithms. Top right: the vertical axes show the number of samples from
the πi’s in Algorithm 4.1 divided by the number of states in the Markov chain n. We magnify the estimated
magnetisation plot for ease of comprehension, the top two plots then help to explain the phenomena in the
bottom plot.
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