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Impact statement 

The epithelial-to-mesenchymal transition (EMT) is a multi-stage cellular program central 

to metastasis and therapeutic resistance. Despite a well-documented link between EMT 

and worse clinical outcomes, there remains a need to understand precisely how different 

EMT states are influenced by both intrinsic genomic alterations and tumour 

microenvironment (TME) cues.  

 

Spatial transcriptomics has recently emerged as a powerful technology that can 

transform our understanding of how the TME influences key cellular programs, such as 

EMT. However, many approaches used to analyse spatial transcriptomics ignore 

important aspects of spatial data and struggle to capture the spatial relationships of cell 

states that lie along a continuum, highlighting the need for more flexible and robust 

analytical frameworks to be developed. 

 

In this work, I have developed and applied novel geostatistical and machine learning 

methods, including the SpottedPy Python package, to comprehensively profile and 

quantify EMT across multiple biological scales. I reveal how distinct EMT states, 

including epithelial, hybrid, and mesenchymal phenotypes, respond differentially to TME 

cells such as CAFs and macrophages, and other TME processes such as hypoxia and 

angiogenesis. 

 

Additionally, I introduce a new approach to quantify cell plasticity. By integrating genomic 

events and TME information within graph neural networks and geographically weighted 

regression models, I quantify the strength of the TME effect on epithelial to 

mesenchymal plasticity (EMP) and highlight its dominant role in EMP. I uncover 

heterogeneous spatial relationships between EMT states and show how intermediate 

phenotypes express varying degrees of plasticity. 

 

Given the importance of EMT to cancer development, these methodologies offer 

valuable tools for researchers investigating the spatial dynamics of EMT. Not only do 

they provide a framework for quantitatively assessing EMT across tumours, but they 

can also be adapted to study other forms of cell plasticity. By deepening our 

understanding of how cancer cells traverse the EMT continuum, this work opens new 
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possibilities for therapeutic interventions aimed at curbing metastasis and overcoming 

drug resistance through the precise manipulation of microenvironmental factors. 

 

The research output presented in this thesis has been disseminated to the scientific 

community through the following publications: 

 Withnell, E. & Secrier, M. SpottedPy quantifies relationships between spatial 

transcriptomic hotspots and uncovers environmental cues of epithelial-

mesenchymal plasticity in breast cancer. Genome Biology 25, 289 (2024). 

 Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and 

microenvironmental heterogeneity shaping epithelial-to-mesenchymal 

trajectories in cancer. Nat Commun 14, 1-20 (2023). 

Additionally, whilst not described in this thesis, the methods used to assess spatial 

relationships at scale have also been made available to the scientific community in the 

follow manuscripts: 

 Pan, S., Withnell, E. & Secrier, M. Classifying Epithelial-Mesenchymal Transition 

States in Single Cell Cancer Data Using Large Language Models. bioRxiv (2024). 

 Cenk, C., Withnell, E., Pan, S., Chu, T., Labbadia, J. & Secrier, M. Balancing 

tumour proliferation and sustained cell cycle arrest through proteostasis 

remodelling drives immune niche compartmentalisation in breast cancer. bioRxiv 

(2024). 

The cell plasticity prediction framework is in the process of being submitted for 

publication. 
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Abstract 
 

The epithelial-to-mesenchymal transition (EMT) is an important cellular process 

involved in tumour progression, metastasis, and therapy resistance. However, the 

influence of the tumour microenvironment (TME) and genomic factors on EMT, and 

the discrete states within this transition, remains incompletely understood. In this 

thesis, I develop geostatistical and machine learning methods to analyse spatial 

transcriptomic data, to understand the spatial relationships of cancer cells undergoing 

EMT. 

I present a novel Python package, SpottedPy, which can identify spatial hotspots of 

gene signatures and cell types and assess their spatial interactions with other 

hotspots. Using this approach, I identified EMT niches associated with angiogenic and 

hypoxic regions, surrounded by CAFs and macrophages. EMT hybrid and 

mesenchymal hotspots followed transformation gradients, becoming increasingly 

immunosuppressed. Importantly, SpottedPy is a flexible package, which enables users 

to explore spatial relationships at different scales, from immediate neighbours to larger 

tissue modules, allowing for new insights into the tumour microenvironment. 

Building on these spatial insights, I develop a graph neural network and geographically 

weighted regression framework to quantify the relative contributions of intrinsic 

genomic changes and extrinsic microenvironmental signals on cell plasticity 

programmes. The approach strengthens the evidence that targeting the TME is more 

important for targeting EMT as opposed to targeting genomic factors. It highlights the 

importance of the TME in inducing both subtle, short-term changes and stable, long-

term phenotypic change, whereas genomic alterations primarily contribute to more 

stable, long-term changes. I showed that the mesenchymal phenotype is more 

deterministic, while hybrid states are less predictable and thus potentially more plastic. 

Additionally, I found that relationships between EMT states and particular TME 

populations do vary across different tissue regions, notably with myoepithelial cells. 

Overall, my work provides an in-depth molecular and spatial characterisation of EMP, 

while highlighting novel methodological approaches for capturing and measuring cell 

plasticity. These insights could help inform therapeutic approaches that target the 

genetic and microenvironmental factors linked to cancer cell plasticity. 
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1 Chapter 1:  Introduction 
 

1.1 The epithelial-to-mesenchymal transition and its varied roles in 
normal development and cancer  

The epithelial-to-mesenchymal transition (EMT) is a multi-stage cellular process in 

which cells lose their epithelial features and acquire mesenchymal properties, 

involving the disruption of cell-cell adhesion and cellular polarity1. EMT is linked to 

gene expression changes and post-translational regulation that enables the cells to 

gain mesenchymal traits. During EMT, epithelial markers are downregulated, notably 

E-cadherin, and mesenchymal markers are upregulated, with vimentin, N-cadherin 

and fibronectin amongst the most well characterised. A mesenchymal cell typically 

gains migratory abilities due to the presence of actin stress fibres, and cell-matrix 

adhesion remodelling2 (Figure 1). The reverse process, the mesenchymal-to-

epithelial transition (MET), can also occur where cells regain their epithelial traits3.  

EMT was first identified by researchers studying embryogenesis in the late 1960s and 

is now widely observed in embryonic development and wound healing4. During animal 

development, cells are required to migrate large distances, which EMT enables. In 

most cases, the cell then reverses back to an epithelial state, through MET5. 

Researchers noticed parallels between embryonic development and tumour 

progression, observing that morphological changes in carcinoma cells resembled 

EMT6. Studies in the 1990s provided the first experimental evidence for this link, by 

showing that EMT inducers such as leukocyte medium, including transforming growth 

factor (TGFBeta)7 and  fibroblast growth factor (FGF)8, increase the invasiveness of 

cancer cell lines. Further studies also showed that Ras-transformed mammary 

epithelial cells induced a mesenchymal-like phenotype9, indicating that EMT could be 

a mechanism driving tumour progression.  By the early 2000s, molecular studies 

identified key transcription factors such as Snail10, Slug8, Twist11, and Zeb1/Zeb212 as 

master regulators of EMT in cancer, drawing direct mechanistic parallels with key 

transcription factors in embryonic processes.  
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Figure 1 The key molecular and morphological changes during transitions between the EMT states. 
Figure adapted from Yang et al. (2020)1. 

 

The development of transgenic mouse models further confirmed EMT roles in tumour 

metastasis13. Mouse models were developed, such as the MMTV-PyMT model of 

breast cancer, which can mimic the stages of breast cancer that patients can progress 

through, including metastatic phases14. Several research groups showed that cells 

involved in metastasis in these models displayed EMT markers15,16. Later, lineage-

tracing experiments allowed for more targeted tracking of metastatic cells by 

identifying individual cells and tracking their individual expression of markers17. For 

example, it is possible to identify the cells that express epithelial markers and track 

which cells then adopt mesenchymal-like phenotypes18.  An influential paper by Li et 

al. tracked EMT in lung metastasis of breast cancer and identified key EMT markers 
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in metastasis-initiating cells19.  The introduction of single-cell technologies has further 

allowed larger scale characterisation of gene expression changes to define EMT more 

broadly across the genome in mouse models, rather than focusing on a few key 

markers20.  

As growing evidence was accumulating linking EMT to metastatic properties of cancer 

cells, it was of growing importance to understand whether EMT was necessary for 

metastasis, or a correlated feature. In a landmark paper by Zheng et al, it was shown 

key EMT-TFs knockouts did not affect tumour progression or metastasis in a 

pancreatic cancer model21. However, it did affect chemosensitivity, which suggests 

why patients with more mesenchymal tumours have poorer outcomes22.  However,  it 

has since been shown that it is necessary depending on model system, tumour tissue 

and disease progression being studied23. It is important to note, most knock out studies 

have focused on a handful of EMT markers, predominantly E-cadherin, vimentin, N-

cadherin, Snai1, Zeb1 and fibronectin, and there is an emphasis in the field to include 

a larger range of gene markers in future studies1. Just focusing on these handful of 

markers may oversimplify the complexity of EMT. Many of the EMT transcription 

factors used in the knockouts can function in overlapping ways complicating the 

assessment of individual EMT-TFs impact on EMT24. Many tumours exhibit context-

dependent EMT signatures (Figure 2) involving a wide range of transcription factors, 

extracellular matrix components, signalling molecules and metabolic reprogramming 

that contribute to EMT-associated phenotypes25. It is therefore difficult to determine 

whether EMT is dispensable in a given experimental system or if there is enough 

redundancy in the system that means other factors can compensate for its loss.  
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Figure 2 The various paths that epithelial tumour cells can transition through when undergoing EMT. 
Multiple stable states exist which can be vastly different to states within this transition found in other 
cancer types, model systems and under different EMT inducers. Figure adapted from Haerinck et al. 
(2023)26 

In addition to metastasis, EMT has been linked to chemoresistance in several 

experimental contexts, including cell line experiments, mouse models, and patient 

studies. For example, cells undergoing EMT in response to TGF-β signalling in breast 

cancer cell lines become chemoresistant to drugs such as etoposide and paclitaxel27. 

EMT has been shown to increase the expression of drug efflux pumps such as ABC 

transporters, which in turn increase chemoresistance28. TGF-β stimulation in ovarian 

cancer cell lines including HO8910 and SKOV3 increases resistance to cisplatin 

treatment, a platinum-based chemotherapy commonly used to treat ovarian cancer29. 

Alongside cell line experiments, in mouse models including breast, prostate and lung 

cancer, EMT has been linked to a range of chemoresistance30,31. Additionally, similar 

results have been observed at the patient level using bulk transcriptomics32,33. For 

example, in NSCLC patients, a higher expression of EMT markers in tumour samples 

was correlated with resistance to platinum-based chemotherapy34. Furthermore, 

studies in ovarian cancer patients treated with cisplatin have also shown that the 

presence of EMT markers in tumour biopsies is associated with worse treatment 

outcomes35.  

1.2 EMT states and links with cell plasticity 
Historically, EMT has been considered a binary process, with an epithelial state 

displaying the marker E-cadherin, and a mesenchymal state consisting of the loss of 

E-cadherin marker and the gain of vimentin9. However, this has been challenged in 
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recent years, with multiple states being observed along an EMT axis36. The states in 

between a fully epithelial and mesenchymal state are known as hybrid (hEMT) or 

partial EMT states (pEMT) (Figure 1). These states have been linked to different 

properties37. The hybrid state has been associated with increased invasive and 

migration properties22. This is likely due to the advantage of having both the 

mesenchymal invasive properties, in addition to useful epithelial cell characteristics 

such as adhesion to neighbouring cells. Fully developed mesenchymal cells are less 

likely to revert to an epithelial state which is necessary if the cell is to form a distinct 

colony38. The number of EMT states is unknown currently, with researchers debating 

as to whether it should be treated in a continuous or discrete phenotype39. Brown et 

al. (2022) identified six stable states in breast cancer, and showed that all states had 

variations in migration and invasion traits, with intermediate states EM2 and EM3 

scoring the highest in mouse models.   

Attempts have been made to develop mathematical models to quantify EMT dynamics 

between different states. One study used Markov models to understand how 

microstates and macrostates shape EMT transitions, emphasising the non-linear 

effects of intermediate states40. These findings concluded that destabilising 

intermediate states could be a potential therapeutic strategy to mitigate metastasis. 

Other attempts have used ordinary differential equations, such as through population 

growth models, to model the intrinsic growth rates for epithelial and mesenchymal cells 

and understand how EMT states related to EMT heterogeneity41. Using these models, 

the analysis highlighted the importance of considering both intrinsic cell plasticity and 

population-level interactions to gain a full understanding of EMT states and tumour 

heterogeneity. The findings demonstrate that epithelial and mesenchymal 

subpopulations were able to influence each other’s growth through either cooperative 

or suppressive effects. Importantly, the models with the best fit accounted for cell-state 

transitions and population density-dependent growth. 

There is great diversity in definitions for EMT, predominantly due to the varying 

phenotypic manifestations across model systems. EMT is highly context dependent, 

with different gene programs depending on factors such as the model system 

analysed, stimuli used to promote EMT or the tissue in the body26. For example Puram 

et al. showed that partial EMT signatures are different between tumours42, and Peixoto 
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et al. showed that only around 10-30% of differentially expressed genes are shared in 

EMT responses in cell line microarray data43. Cook et al. presented similar findings, 

and showed that on average only 22% of genes are shared between EMT inducers in 

cell line studies39. In 2020, a group effort led by ‘the EMT International Association’ 

defined key terms in the field and key areas of research to focus on in the future1. The 

main recommendation on the criteria to define EMT was that “EMT cannot be 

assessed on the basis of one or a small number of molecular markers”1. In addition, 

they suggested defining EMT status based on changes in cellular properties. They 

recommend EMT to be explored beyond a traditional cell and cancer biology 

approach, with a focus on collaborations with systems biologists, biophysicists and 

mathematical modellers. Key unanswered questions also highlighted in the report 

included the functional implications of EMT heterogeneity and understanding the 

dynamic switch between E/M states in response to distinct cues from the 

microenvironment. 

Recently, there has been a shift in focus towards reframing epithelial-mesenchymal 

transition as epithelial-mesenchymal plasticity (EMP), emphasising its dynamic and 

reversible nature, rather than viewing it solely as a unidirectional transition26. This 

builds on the view of understanding cell states in terms of the Waddington landscape, 

where cell states are represented as valleys in a multidimensional landscape, and 

transitions between states are depicted as movements across this terrain26 (Figure 

3). In this framework, cell can shift between epithelial, mesenchymal, and hybrid states 

in response to intrinsic and extrinsic cues, with certain states easier to transition into 

other states than others based on intrinsic properties of the state.  
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Figure 3 The Waddington landscape. The Waddington landscape represents the ease that cells 
transition between different cell states or types. a. Overview of The Waddington’s landscape depicting 
a pluripotent cell taking different paths. b. Some cell state transitions are easier to traverse when the 
barriers between states are lower, representing a shallower hill in Waddington’s landscape, whereas 
other transitions are more difficult to reach, representing a steeper hill. Figure adapted from Qin et. al 
(2024)44. 

1.3 Capturing EMT  

Traditionally, EMT has been identified by examining the expression of a handful of 

well-established markers, for example, the downregulation of epithelial markers (e.g., 

E-cadherin) and the upregulation of mesenchymal markers (e.g., vimentin, N-

cadherin)45,46. While these marker-based methods are straightforward, they tend to 

oversimplify the complex and continuum of cell states associated with EMT. Unlike 

discrete cell types, EMT states exist along a spectrum, necessitating methods that can 

capture this gradual progression26. scRNA-seq has enabled more sophisticated 

methods to capture the full spectrum of cell states. For example, scoring scRNA-seq 

using enrichment-based approaches, such as gene set enrichment analysis (GSEA) 

to score gene sets, provide quantitative measures of state transitions47. Additionally, 

extracting distinct gene modules present in the data through dimensionality reduction, 

such as non-negative Matrix Factorization (NMF), as used in ProjectR, and principal 

component analysis (PCA) are often used to assess cell states48,49. Other approaches 

involve clustering cells based on scores from continuous signatures, such as Gaussian 

mixture models50. Pseudotime approaches using tools like Monocle and Slingshot 

have also emerged as important tools to order cells along dynamic trajectories within 

scRNA-seq data, revealing the temporal progression of EMT over time51,52.  
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Recent tools have expanded on these methods further. For example, CELLSTATES, 

built on the clustering approach, and developed an approach to capture cell states at 

the statistically maximum resolution53. This method partitioned cells based on 

statistically indistinguishable gene expression states, accounting for biological noise 

present in the data. SeaCells is another approach, that works by grouping cells into 

meta-cells that share similar gene expression profiles while minimizing information 

loss using archetypal analysis54.  

It is important to note that transcriptomic scoring of EMT can be confounded by CAF 

signatures as they express many of the same markers that cancer cells undergoing 

EMT express55. Approaches, such as using scRNA-seq whole transcriptome reference 

mapping are important to ensure the targeting of specific tumour-related EMT 

signatures. 

Despite these advances, no single metric or method for defining a cell state or cell 

type is universally accepted, highlighting the need for unified definitions and standards 

in the field53. 

1.4 EMT and epigenetics 
There is growing evidence to suggest that TME can influence the EMT state of a 

cancer cell through epigenetic reprogramming, in addition to the transient effect of 

influencing gene expression through signalling pathways56. Signals such as cytokines, 

hypoxia, and ECM interactions can act through a non-genetic, reversible route via 

chromatin remodelling, DNA methylation, and non-coding RNAs56. For example, 

hypoxia-induced histone modifications such as trimethylation of histone H3 at lysine 4 

(H3K4me3) have been identified at promoters of EMT transcription factors such as 

TWIST157.  TGF-β has been shown to induce EMT epigenetically by the demethylation 

of H3K27me3 in the Snail1 promoter58. Aside from histone modifications, DNA 

methyltransferases catalyse the transfer of methyl groups to cytosine residues, 

primarily at CpG dinucleotides59. This can then lead to the transcriptional repression 

of epithelial genes59. Non-coding RNAs including microRNAs such as the miR-200 

family acts on key EMT genes, such as ZEB1 and ZEB259. Additionally, the non-coding 

RNAs MALAT1 and HOTAIR have been shown to promote EMT by recruiting 

chromatin modifiers60,61. These epigenetic mechanisms enable cells to transition 

between epithelial and mesenchymal states dynamically, enhancing the plastic nature 
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of the programme. Importantly, it also allows the mesenchymal cancer cells to revert 

back to an epithelial phenotype through the mesenchymal-epithelial transition 

(MET)59, enhancing colonisation at metastatic sites.   

The lineage specification of the tumour cell can significantly influence the propensity 

for EMP. Epithelial subtypes, while similar in function, differ in morphology, 

transcriptional and chromatin landscapes, what can all influence EMP to different 

extents26. There is growing evidence that cancer cells can acquire traits by reactivating 

dormant developmental programs26,62 and EMP can be viewed as cells re-traversing 

developmental paths26. Lineage-specification of the tumour cell can occur at the 

chromatin-level or the functional loss of certain lineage-specific transcription factors 

genes, such as GATA3, ELF5, FOXA1, or KLF4 which can drive EMP26. For example, 

the loss of GATA3, necessary for luminal epithelial cell commitment63, can induce EMT 

in breast cancer.  

1.5 Genetic constraints on EMT 
Although EMT is not strongly believed to be genetically determined, as it is considered 

a reversible, process, accumulating evidence suggests that genetic alterations can 

contribute to EMT. These genetic mechanisms can range from mutations to copy 

number variations and chromosomal rearrangements and can act on the key EMT 

transcription factors sites. For example, loss of p53, a well-known mutation that 

promotes metastasis, can trigger an epigenetic signalling cascade acting on SNAI1, 

an important EMT transcription factor64.  ZEB1 amplification can drive EMP in prostate 

cancer65. Loss of chromosome 8p has been linked to increased invasiveness in breast 

cancer66 and loss of chromosome 9p and chromosome 14q have been shown to play 

an important role in metastatic clear-cell renal carcinoma67.  Additionally, amplification 

of chromosome 11q1 has been shown to increase the expression of the actin-related 

protein 2/3 complex, increasing motility and invasion of cancer cells68. 

Chromosomal rearrangements can also act on key EMT regions of the genome. For 

example, TWIST1 is located in a well-documented unstable region of the genome that 

often undergoes rearrangements69. Gene fusions such as TMPRSS2–ERG has been 

linked to increased EMT70. These genomic mechanisms can also promote a hybrid 

EMT phenotype. For example, hybrid EMT states have been reported to be due to 

FAT1 loss, which alters the chromatin state of cells, stabilising both epithelial and 
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mesenchymal traits71. KRAS mutations have also been shown to promote both 

epithelial and mesenchymal gene expression72. 

1.6 EMT and the tumour microenvironment 
There is growing evidence building to suggest that a large number of interactions 

between tumour cells and the microenvironment occur during EMT73,74. The TME 

consists of the surrounding cells, including immune cells and fibroblasts, the 

extracellular matrix, signalling molecules, and blood vessels that interact with the 

tumour. It plays a central role in the growth and invasion of the cancer cells75. A key 

component of EMT in both wound healing and cancer is the remodelling of the 

microenvironment. In turn, the microenvironment properties, such as the cytokines, 

ECM, hypoxia and growth factors can also influence the EMT states of the cancer 

cells. The TME is therefore a likely contributor to the stability and regulation of EMT 

states74.  

The relationship of regions of the tumour undergoing EMT and different components 

of the TME have been explored in different experimental systems39. Key evidence 

highlighting the significance of the TME emerged from studies demonstrating the 

crucial role of TGF-β in promoting EMT in cell lines76. This is a cytokine predominantly 

produced by immune cells and CAFs, key players within the TME77. Various 

experiments culturing cancer cells with cells found within the TME have been shown 

to promote EMT. For example, co-culturing cancer cell lines with fibroblasts78,79 and 

macrophages80,81 with cancer cells have promoted EMT. CAFs can also induce EMT 

through their roles remodelling the ECM, increasing the stiffness of the matrix82,83. 

which through mechano-transduction pathways can promote EMT. The links with the 

TME have been further validated in xenograft models, experimental systems in which 

human tissue is implanted into immunocompromised mice. These models have 

confirmed certain relationships observed in cell lines. For example, breast cancer 

xenografts injected with CAF signalling molecules had increased expression of EMT 

markers and promoted tumour progression84. Pastushenko et al. reported shifts in the 

composition of stromal cells as tumour cells transitioned to more mesenchymal states 

in a genetic mouse model of skin squamous cell carcinoma. Cells in close contact with 

EMT tumour cells showed significantly higher densities of CD45+ immune cells, 

particularly monocytes and CD68+ macrophages, as well as increased numbers of 

endothelial and lymphatic cells. Importantly to note this study identified EMT cells 
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using a specific set of markers, EpCAM, CD106 (VCAM1), and CD51 (ITGAV), and 

therefore may miss the complexities of different states. 

Despite this knowledge, the relationship between regions of the tumour undergoing 

EMT and different components of the TME is not well established in human tissue 

samples.  

1.7 EMT and druggable targets 

A major goal is translating EMT research into the clinic, due to the strong links with 

metastasis and chemoresistance85. While most approaches remain experimental, 

some have entered clinical trials.  

The majority of drugs entering clinical trials are STAT3 inhibitors, targeting a 

transcription factor in the signalling pathway of EMT86. DSP-0337, Danvatirsen and 

OPB-111077 are some of the inhibitors targeting STAT3 that are in phase I or phase 

II clinical trials87,88. As EMT is tightly controlled at the transcription factor level, 

targeting the key transcription factors such as Snail, Twist, Slug, Zeb1, and Zeb2 

would have been the more intuitive target. However, as these can have overlapping 

functions, targeting them individually have not been successful in suppressing EMT89.  

Drugs to target key EMT inducers, such as TGF-β and TNF-α have also been 

developed, most notably using small molecule inhibitors. Avadomide, a small molecule 

inhibitor had success in human phase I study, and it is now in phase II study for 

advanced melanoma90. Monoclonal antibodies have also been developed to target 

these inducers, such as NIS-793 which is an anti-TGF-β monoclonal antibody91. Small 

interfering RNA (siRNA) targeting EMT transcription factors have also been a focus, 

and siRNAs targeting hypoxia and TGF- β  signalling pathways have been tested in 

preclinical settings92. Epigenetic modulation has had recent focus, with DNA 

methyltransferase (DNMT) inhibitors having had success at halting EMT progression 

in preclinical settings93. 

As the TME plays an important role governing EMT, targeting the different TME 

components involved in EMT, is an emerging approach. Targeting the TME has had 

overwhelming success for other key aspects of cancer progression. For example, 

cancer immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric 

antigen receptor (CAR) T-cell therapies have prolonged survival in a subset of cancer 

types94,95. CD8+ cytotoxic T-cells are critical in providing antitumour immunity,  and 
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tumour cells can often avoid attack by producing immunosuppressive factors, which 

ICIs can target95. Gaining a deeper understanding of how EMT states interact with the 

TME will therefore be important in advancing this approach. TME components, such 

as CAFs, can be targeted by a compound that inhibits the secretion of cytokines that 

promote their activation, such as TGF-β inhibitors or PDGF receptor inhibitors96. The 

extracellular matrix (ECM) can be targeted by degradation enzymes97. 

Immunotherapies, are also being explored to target EMT, particularly to target the EMT 

states that are linked to immunosuppressive features98. 

A key challenge includes the risk that anti-EMT therapies could lead to an increase in 

the mesenchymal-epithelial transition and encourage disseminated tumour cells to 

colonise5. Additionally,  EMT patient heterogeneity is currently poorly characterised, 

and therefore, it is currently unknown whether anti-EMT therapy would benefit those 

with early stage or late stage better, and those with or without certain cell 

populations99. Other challenges in EMT therapeutic developments include the 

development of screening tools to identify anti-EMT compounds99. 2D in vitro studies 

have been the most popular as they offer a high-throughput approach, but are limited 

by the fact that they cannot model the TME effect on EMT. Therefore, 3D methods, 

such as tumour-on-a-chip technology, are currently being developed to more 

successfully capture the TME85. An increased understanding of which TME cells are 

associated with different EMT states in patient tissue can greatly aid in the creation of 

a synthetic TME for screening purposes. 

1.8 Spatial biology  
Multiple studies have shown that intra- tumour heterogeneity, the distinct tumour cell 

populations within the same tumour, can accelerate cancer progression 100,101,102. It is 

therefore vital to study spatial structures in cancer to further understand intra-tumour 

heterogeneity and improve therapeutic response and survival rates103. For example, 

patients can have significantly different responses to immune checkpoint inhibitors 

depending on the cancer lesion within the patient104.  Additionally, spatial patterns of 

immune cells can also hold prognostic value. A recent study analysing the networks of 

over 1,000 LUAD and LUSC tumours constructed from H&E images showed that the 

spatial patterns of tumour-infiltrating lymphocytes (TILs) on H&E images were different 

between subtypes and prognostically relevant105. Multiple additional studies that 
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model tissue as cellular graphs have also identified clinically relevant features106,107. 

Determining the spatial context of EMT is therefore critical for advancing our 

understanding of how phenotypes develop, progress, and respond to treatment.   

Spatial transcriptomics is a recent technique that enables us to profile gene expression 

across a tissue and is an important technique to assess tumour heterogeneity108. 

Visium, a spatial transcriptomic platform released by 10X Genomics in 2019, enables 

the whole transcriptome profiling of ~1,000 tissue spots (55 μm spot diameter with 100 

μm centre-to-centre distance) with over 10,000 transcripts per spot109. Recent 

developments on this approach have resulted in a newer technique in 2023, Visium 

HD, which offers higher resolution imaging with smaller tissue spot sizes. Visium HD 

has much smaller, continuous spots (around 2µm) compared to the larger, spaced-out 

spots of the original Visium. Xenium, also developed by 10X Genomics, represents an 

approach offering sub-cellular resolution, but profiles a targeted set of transcripts 

rather than the whole transcriptome110. It is currently a very active research area, and 

multiple other companies are promising improvements on resolution and throughput 

in the next few years21. Due to the high complexity of these datasets, tailored 

computational methods are important for inferring conclusions111. A large range of 

methods, including spatial transcriptomic-specific normalisation112, cellular 

deconvolution113 114, and spatially varying gene identification115 116, have been 

developed in recent years to address the novel questions emerging from spatial 

transcriptomics.  

Spatial transcriptomics offers a promising avenue to confirm some of the widely 

established EMT spatial relationships in human tissue. Several studies have shown 

that EMT is a spatially located gene signature. For example, Takiet et al. (2021) 

showed that epithelial cells at the tumour edge were  significantly enriched in pathways 

related to EMT in primary and metastatic head and neck cancer117. Additionally, they 

showed that pEMT cancer cells located at the leading edge of head and neck tumours 

were shown to cause invasion by interacting with cancer-associated fibroblasts. EMT-

related genes were the most easily predicted in a study that attempted to predict 

spatial transcriptomics in breast cancer tissue, hinting at the relevance of the spatial 

context for EMT. Barkley et al. (2022) showed cells undergoing EMT correlated with 

fibroblasts and endothelial cells, whilst being negatively correlated with other 

malignant cells118. This study only looked at a few key EMT markers and cell type 



31 
 

markers, but it suggests the relationship between EMT and microenvironment cells 

warrants further investigation. Additionally, EMT, hypoxia and inflammation were found 

as the key explanatory variables for regional variations in pancreatic cancer spatial 

transcriptomic data119.  Macrophages have also been linked to EMT in specific niches 

within breast cancer spatial transcriptomics slides120. 

1.9 Statistical and machine learning methods to analyse spatial data 
Spatial transcriptomic technologies such as Visium measure expression from multiple 

cells within a single spot, and therefore cellular deconvolution to estimate the cellular 

composition of spatial transcriptomic spots is usually a necessary first step in analysis. 

Methods like RCTD121, Stereoscope122, and Cell2Location123 have been developed to 

infer single-cell contributions to these spatial profiles. They use a range of techniques 

from non-negative matrix factorisation to probabilistic modelling approaches.  

A lot of method development has focused on analysing areas within the tissue 

characterised by specific cellular compositions, referred to as spatial niches. These 

distinct cellular interactions drive phenotypic behaviours such as differentiation, 

migration, and response to external stimuli. These spatial niches could include 

invasive tumour margins, immune-infiltrated regions, or hypoxic zones. To study 

spatial niches, spatial clustering methods, such as SpaGCN124, BayesSpace125, and 

Giotto126, are widely used, and have been proven to identify functional regions in 

tissues. These tools cluster spatial spots based on gene expression profiles and their 

physical location, identifying distinct regions. Additionally, niche methods can cluster 

at the cell type label level, such as CellCharter127. 

Many niche methods are therefore focused on detecting niches at the gene expression 

or cell type level. However, methods to understand the niches of tumour regions 

enriched for specific gene signatures are less well developed. In the case of EMT, this 

would be understanding the different cell types associated with regions enriched for 

different EMT states. Additionally, understanding how these relationships change after 

altering the parameters used for niche detection are less well established. For 

instance, adjusting the number of neighbouring cells or spots considered when 

defining niches, or analysing gene signatures and cell types as broader spatial regions 

rather than at an individual level, could influence niche characterisation. Moreover, 

current approaches lack analytical methods to define and compare shorter and longer-
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range interactions between specific areas or cell populations of interest. They also do 

not have extensive functionality to determine the differential spatial relationships given 

two gene signatures of interest. For example, “which cells are significantly closer to 

high hypoxic regions compared to low hypoxic regions?” 

Another focus of method development involves identifying spatially variable genes 

(SVGs), which involves genes whose expression levels vary significantly across 

different spatial regions of a tissue, reflecting genes involved in cell-cell interactions, 

microenvironmental heterogeneity, or tissue-specific functions. Popular methods 

include SpatialDE128, which uses Gaussian process regression, and SPARK, which 

uses a flexible non-parametric approach129.   

Graph-based abstraction of the gene expression datasets has been an emerging way 

of representing spatial transcriptomic data for downstream analysis130. It has been 

used for cellular deconvolution techniques 131, inferring gene interactions132 and 

neighbourhood modelling133. Modelling cells as graphs has been around since the 

early 2000s within cancer pathology, where it was shown that the graph metrics can 

distinguish healthy and unhealthy inflamed cells with high accuracy134.  Recent 

interesting research in the field shows that graph neural networks can model tissue-

level emergent phenotypes such as immune cell dispersion in colorectal tumours135.   

GNNs are particularly suited for representing cellular neighbourhoods as graph 

structures, where nodes represent cells or spots, and edges capture their spatial 

relationships. While traditional statistical and machine learning approaches treat 

observations as independent, GNNs use the graph structure to model the spatial 

dependencies and interactions between neighbouring cells136. Using an iterative 

message-passing framework, GNNs can capture information from each node to 

aggregate information from its local neighbourhood, enabling the model to learn 

hierarchical representations. With additional layers it is possible to capture both local, 

and global tissue organisation137. Graph convolutional layers, where a node’s feature 

representation is updated based on its own attributes and those of its neighbours, 

weighted by a learnable transformation function, is the most common approach138. 

Graph Attention Networks (GATs) are another approach, which use an attention 

mechanism that assigns different importance weights to neighbouring nodes instead 

of treating all neighbours equally139. This allows GATs to learn coefficients that focus 
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on the most important interactions, ensuring that the model captures the 

heterogeneous effects of the cells140.  

1.10  Key challenges of spatial data 
It is important that when analysing spatial transcriptomics data, approaches account 

for the unique statistical properties of spatial data. A key property is spatial 

autocorrelation (Figure 4) where nearby observations are more likely to be similar 

than distant ones141. This violates the assumption of independence fundamental to 

many standard statistical models. Therefore, the use of spatially explicit models such 

as spatial autoregressive models or geostatistical kriging methods are required to 

account for these dependencies. 

Another aspect of spatial analysis is the modifiable areal unit problem (MAUP), which 

arises when outcomes depend on the scale or boundaries of spatial aggregation141, 

(Figure 4). MAUP occurs in two forms: the scale effect, where the level of spatial 

resolution alters the analysis (e.g., patterns detected at a fine scale may be masked 

at a coarser scale), and the zoning effect, where different ways of defining spatial 

boundaries or domains lead to different results. Therefore, relationships identified as 

spatially heterogeneous at one scale may appear locally homogeneous at another. 

Detecting spatially variable genes or clustering spatial domains can be highly 

dependent on scale and taking this into account is important to ensure biologically 

meaningful insights rather than artifacts of data aggregation. Multi-resolution 

frameworks are important to help reduce these effects. This has been widely explored 

in geo-statistics, but the effect within spatial biology is much less explored142–144. 

Spatial heterogeneity, also referred to as spatial non-stationarity, is another key aspect 

of spatial analysis141. It reflects the variability in relationships between variables across 

different spatial regions (Figure 4). In statistical terms, this means that the parameters 

of a model may vary spatially, violating assumptions of stationarity often required in 

standard statistical models. Techniques such as geographically weighted regression 

(GWR) or spatially varying coefficient models can be applied to explicitly model these 

spatially dependent relationships145. This is particularly important in biological contexts 

where the effects of microenvironmental influences, such as immune infiltration or 

stromal cell interactions, are not uniform but context dependent. 
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Many research studies in the field ignore the statistical considerations required for the 

accurate analysis of spatial data, and therefore risk losing valuable spatial context. 

This concern was highlighted in a recent review by Comber et al. (2024)145, where it 

was noted that numerous spatial transcriptomic studies either cluster data without 

incorporating spatial information or propose novel approaches to address issues like 

spatial autocorrelation without referencing widely used geostatistical methods. For 

example, the SpatialDE method for spatially variable genes does not mention Moran's 

I, a widely used metric in geostatistics128. This highlights not only a lack of appropriate 

application of spatial statistics but also potential duplication of research efforts. 

 

Figure 4 Key statistical properties of spatial data. From left to right, spatial autocorrelation, the 
modifiable aerial unit problem and spatial heterogeneity. Adapted from Comber et al. (2024)146. 

1.11 EMT in Breast Cancer 
Breast cancer is the most commonly diagnosed cancer in women147 and is a leading 

cause of cancer-related deaths, with over 2.3 million new cases diagnosed annually148. 

Survival rates vary widely depending on tumour subtype, stage at diagnosis, and 

access to medical care. Due to the advances in treatment, the five-year survival rate 

for localised breast cancer is over 90%, however there is a significant drop for 

metastatic disease, due to limited treatment options available148. 

 

Due to its prevalence, it provides a widely studied system with well-established clinical 

subtypes147. The predominant subtypes include hormone receptor positive 
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(ER+/PR+), HER2-enriched, and triple-negative breast cancer (TNBC)147.  

Additionally, there are extensive breast cancer datasets available for analysis, 

including bulk transcriptomics, such as from TCGA149 and METABRIC150, large scale 

scRNA-seq datasets and spatial transcriptomics datasets109. Given its extensive 

characterisation and the availability of diverse datasets, breast cancer serves as a 

valuable model for investigating EMT. 

 

Additionally, in many breast cancers, well-known markers such as E-cadherin, 

vimentin, and GATA3 have been linked to disease progression and response to 

therapy151,152. Moreover, breast tumours often display spatial heterogeneity, with 

localised regions of hypoxia, immune cell infiltration, and stromal remodelling, factors 

known to influence EMT120.   Therefore EMT-related spatial observations in this cancer 

type are likely to be clinically relevant. EMT has been well characterised in breast 

cancer cell lines, with the commonly used EMT inducers such as TGF-B and IL6 

displaying similar effects as in other cancers, such as promoting invasiveness27,153. 

This also likely highlights the strong connection between EMT and immune cells or 

fibroblasts in the TME, as these stromal components actively secrete EMT-inducing 

factors. In breast cancer mouse models, EMT-like populations emerge within distinct 

spatial niches, particularly at the invasive front, where tumour-stroma interactions are 

most pronounced154. Recent studies have explored EMT in breast cancer using spatial 

transcriptomics, revealing interactions with CAFs, tumour-associated macrophages 

and hypoxia, though these efforts have been constrained by a limited number of slides 

and a small set of EMT markers118,120. Distinct EMT-related states have been detected 

in breast cancer, but their spatial relationships are poorly characterised155.  

 

1.12 Knowledge gaps and aims of the thesis 

Despite the considerable progress in characterising EMT and identifying intermediate 

EMT states, there remains many unanswered questions. Firstly, there is a need for the 

development of appropriate methods that would enable a statistically rigorous 

approach to understand the relationships of EMT. For example, developing a method 

to detect statistically significant regions enriched for specific EMT states, and 

assessing the spatial relationships of these states. Whilst many methods detect spatial 
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niches, there are fewer methods designed to flexibly analyse continuous signatures, 

such as EMT, and compare the results using different spatial units. Additionally, there 

are a lack of methods that can differentially compare these relationships to other 

signatures, such as epithelial regions. Moreover, current approaches investigating 

EMT spatially focus on a limited set of marker genes, likely overlooking the complexity 

and heterogeneity of EMT. Additionally, they do not investigate different EMT states. 

Whilst many studies have focused on model systems to characterise the spatial 

relationships of EMT in breast cancer, studies are lacking investigating these 

relationships in human tissue samples, particularly statistically principled approaches 

to characterise EMT states and spatial relationships.  

Another important question is how these diverse EMT states are influenced by both 

intrinsic genomic factors (e.g., copy number variants, mutations) and extrinsic 

microenvironmental cues (e.g., stromal cells, immune cells). Although recent studies 

have highlighted the importance of spatial context, showing that tumour cells undergo 

EMT in discrete niches, there is a lack of integrated methodologies that consider a full 

range of TME components, and model these variables together with genomic factors. 

With the wide range of models already developed in geostatistics, ecology and spatial 

machine learning fields to understand spatial processes on a much larger scale, I 

believe there is a gap in translating the advances in these fields in spatial biology.  

1.13  Aims 
 

1. Identify genomic and TME signals that impact EMT (Chapter 2) 

i. Understand genomic influences of EMT in bulk transcriptomics 

ii. Identify EMT-TME relationships in a subset of breast spatial 

transcriptomic data 

2. Analyse the TME relationships at different biological scales to further 

understand the relationship with EMT in breast cancer (Chapter 3) 

i. Develop a pipeline to accurately capture EMT signals in spatial 

transcriptomic data using a statistically principled approach 

ii. Locate spatial clusters (hotspots) enriched for different EMT states and 

different cellular components within the TME 
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iii. Quantify the relationships between these hotspots across different 

spatial scales 

iv. Compare these relationships to relationships identified using 

neighbourhood enrichment  

v. Develop the pipeline into a Python package for reusability  

3. Quantify the relative influence of intrinsic (genetic) and extrinsic (TME) factors 

on EMP in breast cancer (Chapter 4) 

i. Determine which EMT phenotypes are the least predictable by intrinsic 

and extrinsic factors and assess the coefficients of the models to 

understand the ranking of the most important genetic and 

microenvironmental factors 

ii. Compare the performance of the different models tested (graph neural 

networks compared to spatial regression models)  

iii. Assess spatial heterogeneity in EMT-TME interactions by applying 

geographically weighted regression (GWR) to capture intra-tumour 

variability in EMT-TME relationships 
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2 Chapter 2: Spatial heterogeneity of EMT 
 

Despite extensive research on EMT, several key questions remain unanswered. One 

of the key open questions is understanding the role of hybrid EMT states, including 

their relationship to the TME. Additionally, much of our knowledge is based on model 

systems, such as cell lines and animal models. While some animal models preserve 

an intact TME, they come with significant limitations, including species-specific 

differences in immune responses, stromal composition, and tumour evolution. These 

models can therefore fail to fully capture the genetic and spatial heterogeneity seen in 

human tumours, leaving a gap in our understanding of EMT in its native context. 

Addressing these gaps is important for identifying therapeutic opportunities and 

improving the ability to predict tumour progression more accurately. 

In this chapter, I begin by introducing the literature (Section 2.1) and methods (Section 

2.2) before using spatial transcriptomics, specifically ST2K (first generation) and 

Visium, to investigate the relationships among cells undergoing EMT with other cells 

in the TME (Section 2.3). Notably, when this research was initiated, EMT had not yet 

been examined using spatial transcriptomics, and analysis using the Visium platform 

was in its infancy. By integrating these approaches, I build a foundation for the 

subsequent chapters, where more advanced spatial analyses further clarify the 

relationship between EMT states with the TME.  

This chapter is based on material from Tagliazucchi et al. Nature Communications 

(2023), where I conducted all the spatial analyses.   

2.1 Introduction 

Spatial transcriptomics has significantly deepened our understanding of cancer by 

revealing the spatial heterogeneity within tumours, as highlighted and reviewed in 

Chapter 1. 

A seminal study by Ståhl et al. (2016) pioneered the field by using spatially barcoded 

arrays to map whole-transcriptome data directly onto tissue sections, enabling 

histology to be linked with molecular analysis. Since then, various landmark papers 

have identified unique cellular niches linked with therapeutic outcomes156–158. For 

example, Berglund et al. (2018)159 mapped prostate cancer transcriptomes and 
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uncovered discrete cellular niches with unique gene expression profiles, highlighting 

the important influence of the tumour microenvironment on prostate progression. 

Technological advancements, exemplified by the second-generation ST2K platform 

and higher-resolution methods like 10x Genomics’ Visium, have enabled even more 

precise mapping of cell interactions. In a landmark study of HER2-positive breast 

cancer, Andersson et al. (2021) used ST2K combined with cellular deconvolution to 

generate high-resolution maps of cell type distributions and interactions in 36 tissue 

sections from eight HER2-positive breast cancer patients158. The analysis revealed 

that the breast tumours are highly heterogeneous, with distinct spatial domains 

corresponding to in situ and invasive cancer regions, immune infiltrates, and stromal 

compartments.  

In this chapter, I build on the growing use of spatial transcriptomics in cancer research 

to explore the EMT continuum, its spatial organisation, and its interactions within the 

tumour microenvironment. By detecting EMT states in spatial transcriptomics, I begin 

to uncover the spatial relationships of the EMT continuum.  

2.2 Methods 

2.2.1 Spatial transcriptomics preprocessing 

Three breast cancer patient samples were downloaded from 10x genomics 

(https://support.10xgenomics.com/spatial-gene-expression/datasets). Patient 1 was 

AJCC Stage Group I, ER positive, PR positive and HER2 negative. Patient 2 was 

AJCC Stage Group IIA, ER positive, PR negative and Her2 positive. Patient 3 did not 

have molecular details described. The analysis was conducted using data processed 

through the Space Ranger Visium pipeline. Normalisation was performed using the 

SCTransform R package, which applies a regularised negative binomial regression 

method. EcoTyper was used to estimate the proportions of different cell types and 

states for each spatial transcriptomic spot. The identified cell types included B cells, 

CD4⁺ T cells, CD8⁺ T cells, dendritic cells, endothelial cells, epithelial cells, fibroblasts, 

mast cells, monocytes/macrophages, NK cells, plasma cells, and neutrophils. 

ST2K (ST second generation, 2000 spots/array) datasets (9 patients with 3–5 repeats 

each) were downloaded from https://github.com/almaan/her2st. All samples had been 

stained positive for HER2. The same pre-processing steps were employed as in 

Andersson et al.158. Briefly, this consisted of using SCTransform for normalisation and 
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Non-Negative Matrix Factorisation (NMF) for dimensionality reduction. The factors that 

contained consistent patterns across the tissue replicates were retained for analysis. 

The Stereoscope122 (v.0.2) R package was used for cell-type deconvolution. The 

deconvolution data was downloaded from https://github.com/almaan/her2st. The 

major class consists of myeloid cells, T cells, B cells, epithelial cells, plasma cells, 

endothelial cells, CAFs, and perivascular-like cells (PVL cells). The minor tier contains 

finer partitioning of the major cell types, e.g., macrophages and CD8+ T cells. Further 

description of the deconvolution method is described by the authors122. 

The Seurat160 R package was used for storing, manipulating and visualising the spatial 

transcriptomic data. 

2.2.2 Spatial gene module scores 

An EMT score was computed for each spatial transcriptomic spot by adapting the 

method previously used to score TCGA samples, this time leveraging scRNA-seq data 

from solely breast cancer cell lines. The EMT trajectory derived from single-cell data 

was mapped onto each spot, with the k-NN algorithm identifying the most similar 

single-cell samples. The mean of their pseudotime values was used to determine the 

EMT score. This process was performed across multiple breast cancer cell lines, and 

the average pseudotime across all lines was used to calculate the final EMT score. 

To categorise EMT states, the pseudotime values were divided into three intervals 

corresponding to epithelial-like, hybrid-like, and mesenchymal-like states. The 

SpatialFeaturePlot function from the Seurat R package was used to visualize these 

scores. For correlation analysis, only spots containing epithelial cells were considered. 

The STUtility161  R package was used to compute the 12 nearest neighbours for each 

epithelial spot, and cell type proportions were aggregated across these neighbouring 

spots. 

2.2.3 Cluster identification from spatial transcriptomics data 

The spatial transcriptomic dataset was filtered to retain only epithelial, hybrid, and 

mesenchymal genes. Clustering was performed using the FindClusters function in 

Seurat, which grouped spatial spots based on gene expression. This was achieved by 

computing k-NN and constructing a shared nearest neighbour graph. The EMT scores 

were averaged within each cluster. The results were then binned into three categories: 
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low, medium, and high EMT states, corresponding to epithelial (EPI), hybrid EMT 

(hEMT), and mesenchymal (MES) states. The cell type enrichment scores calculated 

per region were plotted using the enriched-region.py Python file 

from https://github.com/almaan/her2st. 

2.2.4 Inference of interaction networks 

Graph-based analysis of the Visium spatial transcriptomic slides was performed using 

the ScanPy162 and SquidPy116 Python packages, which enabled graph visualization 

and computation of graph metrics. The STUtility158 package was modified to construct 

spatial graphs from the ST2K spatial slides. 

Deconvolved spot results were used to assign node labels, while edges were 

established based on spot neighbourhood relationships. Further network analysis and 

querying were conducted using NetworkX163. 

2.3 Results 

2.3.1 Tumour cell extrinsic hallmarks of EMT 

To investigate associations with the TME, I analysed spatial transcriptomics data from 

three breast cancer slides generated using the 10x Genomics Visium platform, along 

with multi-region profiling of eight breast tumours using ST2K, as described by 

Andersson et al.158. This allowed me to explore the spatial heterogeneity of EMT and 

its links with other phenotypes within the tumour tissue.  I used clustering to locate the 

areas within the breast cancer tissue that have homogeneous patterns of expression 

(see Methods) (Figure 5). I investigated the tumour microenvironment composition 

within these clusters in relation to EMT states. 
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Figure 5 Spatial transcriptomic clustering. a The clusters of homogeneous expression profiles within the spatial 
transcriptomic spots shown for Patient 1. Each distinct cluster is represented by a unique colour, and each spot is 
coloured according to the cluster. b Expression clusters visualised using UMAP dimensionality reduction. Each dot 
represents a spot from the spatial transcriptomics slide and is coloured according to the cluster it was assigned to. 

My analysis revealed extensive variation in EMT transformation across the tissue, with 

occasional clustering of EMT states within epithelial pockets (Figure 6). The most 

noticeable spatial pattern emerged in fibroblasts, which surrounded neoplastic 

epithelial areas in proportion to increasing EMT state, showing the strongest 

association with highly transformed tumour regions. Additionally, I identified links 

between the MES state and infiltration by CD8⁺/CD4⁺ T cells, monocytes, and 

macrophages (Figure 6c, f, i). I also found that transformed (hEMT/MES) regions 

were associated with dendritic cells and polymorphonuclear leukocytes (PMNs). 
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Figure 6 Spatial Patterns of EMT a- b EMT scores and the fraction of fibroblasts are visualised across within 
individual spots profiled across the tissue in a selected breast cancer slide, derived from spatial transcriptomics 
data from Patient 1 of the Visium dataset. The colour gradient reflects the expression of markers of the specific cell 
state (for EMT) or the fraction of cell types (for fibroblasts). c Enrichment and depletion of cell types in each EMT-
based cluster from Patient 1. The plots represent the difference between the average cell type proportion value per 
region, compared to a permuted spot value (calculated 10,000 times). The plot marker size corresponds to the 
absolute enrichment score, and the colour represents the enrichment sign. PMN polymorphonuclear neutrophils, 
PC plasma cells, NK natural killer, macrophages. d–f The same annotations as above for a breast cancer sample 
from Patient 2 of the Visium dataset. g–i The same annotations as above for a breast cancer sample from Patient 
3 of the Visium dataset  

 

Expanding the analysis to a larger multi-region spatial transcriptomics dataset from 

multiple patients profiled using ST2K, I found that hEMT regions uniquely associated 
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with both MSC/iCAF-like and myCAF-like cells, while EPI states were linked only to 

MSC/iCAF-like cells, and MES states were predominantly associated with myCAF-like 

cells (Figure 7). Thus, the heterogeneity of hEMT-CAF associations may be explained 

by different subtypes of CAFs present in the context of hEMT and MES samples. 

Interestingly, natural killer (NK) cells were the only cell type exclusively associated with 

hEMT regions, hinting that NK cell activation strategies could be particularly effective 

against tumour cells in this hybrid state. Other cell types, such as endothelial cells, 

showed more variable associations across samples, and their spatial patterns aligned 

less consistently with those seen in bulk tissue analyses. 

 

Figure 7 Spatial relationship of EMT in ST2K slides. Enrichment and depletion of cell types in EMT-based 

clusters derived from multi-region spatial transcriptomics slides from the ST2K cohort. CAF cancer-associated 

fibroblasts, myCAF myofibroblast CAF, DC dendritic cells, PVC perivascular cells, NKT natural killer T cells.  

Beyond cell type enrichment, I inferred cell-cell interactions within the spatially profiled 

slides by analysing signal co-localisation. My findings indicate that fully mesenchymal 

tumour cells interact more frequently with fibroblasts, CD8⁺, and CD4⁺ T cells, whereas 

epithelial and hybrid EMT states showed no substantial differences in their interactions 

with immune cells (Figure 8a, Figure 9a). This reinforces the idea that transformed 

tumour cells interact with an immunogenic environment, which may, however, be 

suppressed by CAFs. 
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Figure 8 Spatial interactions of EMT in Visium. a Fraction of interactions established between tumour cells in 

the three EMT macro-states and fibroblasts or T cells in the Visium dataset. b Fraction of interactions established 

among cancer cells in different EMT macro-states in the Visium dataset.  

I also examined how tumour cells interact with each other (Figure 8b, Figure 9b). 

Interestingly, cancer cells at the extremes of EMT transformation (either epithelial or 

fully mesenchymal) were more likely to interact with cells in the same state. In contrast, 

hEMT cells did not exhibit a preference for interacting with cells of any EMT state, 

suggesting that this hybrid phenotype may be more dynamic or more accessible from 

any other state, consistent with predictions from our HMM model. Notably, these 

patterns were highly similar across both Visium and ST2K datasets. 
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Figure 9 Spatial interactions of EMT in ST2K slides.  a Fraction of interactions established between cells in 

the three EMT macro-states and fibroblasts or T cells in the ST2K dataset. b Fraction of interactions established 

among cancer cells in different EMT macro-states in the ST2K dataset. 

Overall, these findings highlight a heterogeneous landscape of cell states and 

interactions, with both recurrent patterns and considerable spatial and patient-to-

patient variability in EMT and TME composition. This suggests that local spatial effects 

play a key role in EMT progression. However, these associations may be partially 

masked by the fact that my analysis focuses on early-stage tumours, where the 

transition from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) is 

being examined. Stronger patterns may emerge in more advanced cancers, where 

hEMT or MES phenotypes are more prevalent, something not fully captured in this 

dataset. 

Despite the large spatial variability, the continuum of EMT transformation is clear in 

spatially profiled slides, and stresses the importance of examining local effects to 

better understand tumour progression and responses to treatment. 

2.4 Discussion 
 

In this chapter, I present findings that reveal distinct EMT trajectories in cancer, defined 

by three macro-states. Fibroblasts and cytotoxic T cells often surrounded more 

mesenchymal neoplastic areas, and more frequent interactions with these cells were 

observed in this context. There was evidence for initial immune recognition as 

suggested by the co-localisation of MES with CD8/CD4+ T cell signals and hEMT with 

NK cell signals, which could be due to higher neoantigen presentation and subsequent 

exhaustion of T cells164.  
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Cells with hybrid EMT features have been shown to give rise to daughter cells that are 

either mesenchymal or epithelial and are more prone to migrate165, which could 

explain some of the heterogeneity observed for this state. Additionally, the hEMT state 

is likely composed of multiple distinct subpopulations, as highlighted by Pastushenko 

et al.20, Goetz et al.40 and Brown et al.166.   

The spatial analysis is limited by the small sample size, and larger spatial datasets will 

be required to further understand the more complex relationships established, 

particularly for intermediate EMT stages which are more heterogeneous than for the 

fully mesenchymal states. I analysed ST2K slides for the majority of patients, in 

addition to three Visium 10X genomics slides. At the time of the analysis, ST2K spatial 

transcriptomics was the more established platform, with Visium 10x Genomics 

analysis in its infancy. However, Visium 10x Genomics provides higher spatial 

resolution, with each spot measuring 55 µm in diameter and capturing the 

transcriptomic profile of approximately 1-10 cells per spot. In contrast, ST2K has larger 

spots, typically 100-150 µm, which means that each spot contains a larger number of 

cells per spot, reducing spatial resolution.  

I was also limited in the ability to capture a broad spectrum along the EMT 

transformation as the data are only sourced from early-stage cancers. Additionally, 

CAFs can express similar mesenchymal markers that are also found in tumour cells 

undergoing EMT which can confound EMT analysis. Whilst I only focused on scoring 

tumour cells with EMT signatures to help ensure that signals were not mixed, 

deconvolving the spatial transcriptomic using a reference single-cell dataset labelled 

with EMT states would more accurately ensure CAF signals are not being captured. 

The spatial analysis highlights the requirement for new methods to identify localised, 

context-specific effects within the tissue which may not generalise throughout the 

tumour. Additionally, techniques to identify spatial clustering of EMT signatures and 

their interactions with other domains of TME components will be important to 

understand the statistically significant relationships. Ensuring that these interactions 

are assessed across multiple spatial scales will provide a more comprehensive 

understanding of the relationships.  

Despite these limitations, our analyses do serve as a proof of concept for the ability to 

survey EMT spatially and highlights the complex microenvironmental mechanisms that 
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shape EMT transformation during cancer.  Intra- and inter-tumour heterogeneity are 

likely to create complex EMT-TME landscapes that require more extensive datasets 

and method development to fully understand. In Chapter 3 I address some of these 

limitations, including the need for more robust method development to capture spatial 

relationships in a statistically principled manner. Additionally, the limitations around the 

sample size, number of EMT states, method to distinguish EMT tumour cells from 

CAFs are addressed. I will further explore these relationships in a spatial single-cell 

resolved manner in Chapter 4.  
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3 Chapter 3: Multiscale spatial analysis of EMT and 
the TME 

 

As discussed in Chapter 2, I identified several significant spatial relationships between 

cells undergoing EMT and their interactions with the TME. In this chapter, I will address 

some of the limitations I highlighted in Chapter 2 and investigate these relationships 

further. 

Existing methods to interpret spatial transcriptomics focus on static units of 

measurement, such as fixed spot neighbourhoods or pre-defined non-spatially aware 

clustering methods, without systematically probing how modifying these units might 

alter the biological inferences drawn. Additionally, they often require discrete labels 

(such as cell type labels) as opposed to continuous labels (such as signature score 

values) for clustering. To address these challenges, I developed SpottedPy, drawing 

on geostatistical principles, to map biologically meaningful hotspots and assess spatial 

interactions.  

In this chapter I expand the spatial analysis on a larger dataset of Visium breast cancer 

slides. I also improve the method for detecting EMT in tumour spots, to avoid potential 

confounding of the EMT signal with CAFs, by using Gaussian mixture modelling to 

assign states in scRNA-seq prior to deconvolution. Moreover, I expand on the number 

of intermediate EMT states investigated. I begin with a literature review of current 

methods, highlighting their limitations and how these gaps motivated the development 

of SpottedPy (Section 3.1), before describing the methodology (Section 3.2).  I then 

provide an overview of the approach (Section 3.3.1), and show how SpottedPy can be 

used to investigate key cancer hallmarks (Section 3.3.2). I subsequently assess the 

relationship of EMT with different cell types in the TME (Section 3.3.4), before 

assessing the intra- and inter-patient heterogeneity. I investigate how the relationships 

change when increasing the size of the hotspots (Section 3.3.6), analyse the results 

in other cancer types (Section 3.3.8) and investigate the EMT states (Section 3.3.10). 

Finally, I discuss these results and the methodological approach in detail (Section 3.4). 

This chapter is based on material from Withnell and Secrier. Genome Biology 

(2024)167. I have also used SpottedPy to explore gene signatures from a large 
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language model developed to predict EMT states, the results of which can be seen 

further described in Pan et al. BioRxiv (2024)168 . I have also used SpottedPy to 

spatially characterise quiescence in breast cancer, and the results are described in 

detail in Celik et al. BioRxiv (2024)169. 

3.1 Introduction 
Numerous studies have highlighted the important role of spatial transcriptomics for 

identifying tissue domains with distinct cell composition170, investigating key cancer 

hallmarks171, revealing immunosuppressive hubs120,172, uncovering tumour ecotypes 

with divergent clinical outcomes173 or the impact of specific drugs on inhibiting tumour 

progression174. However, isolating tissue regions specific to a biological question and 

examining interactions among cell populations at an appropriate scale remain 

significant challenges in these datasets. To identify biologically meaningful tissue 

subregions with spatial transcriptomics, several analytical strategies rely on 

unsupervised clustering of gene expression, including SpaGCN124 and 

BayesSpace125. Other methods, such as NeST175 or GASTON176, go a step further by 

incorporating nested structures or topographical metrics to reveal hierarchically 

organized co-expression hotspots that mirror tissue histology.  

 

Given that similar cells often group together130,177, detecting statistically robust spatial 

cell clusters is important for validating the accuracy of cell states, especially given the 

inherent challenges of cell deconvolution methods in accurately identifying them. 

CellCharter127 builds on this idea through Gaussian mixture models to identify stable 

clusters, thereby defining spatial niches that exhibit distinct shapes and cell plasticity. 

In addition, more targeted clustering approaches using user-defined signatures or cell 

types, implemented in Voyager178 and Monkeybread179, help refine the interpretation 

of cell types inferred from spatial transcriptomic deconvolution. Nevertheless, spatial 

clustering of continuous signatures and flexibly exploring spatial units across multiple 

scales remains a challenge. 

 

Methods for evaluating the spatial proximity of different clusters typically rely on co-

enrichment in the immediate neighbourhood, as highlighted by approaches available 

in packages such as Squidpy116. However, there is a shortage of methods that quantify 

differential spatial relationships among specific cell types or signatures (e.g., hypoxia) 
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and assess their spatial significance. Moreover, current strategies fall short in defining 

and comparing both short- and long-range interactions between specific regions or 

cell populations of interest. Because the spatial scale of certain cancer-related 

processes, such as hypoxia, remains uncertain, relying solely on neighbourhood-

centric approaches may obscure more complex spatial interactions. In geostatistics, 

this issue is known as the modifiable areal unit problem (MAUP), where observed data 

patterns shift depending on the size and shape of the spatial analysis units143. While 

a growing number of methods address multi-scale analysis 116,120,126,180,181, the 

impact of varying spatial units has received limited attention in spatial biology130. 

Geostatistical and ecological concepts have increasingly been applied in 

histopathology to characterise and quantify the spatial organisation of tissue 

features182. For instance, Ripley’s K, a widely used geostatistical tool for detecting 

random versus clustered point distributions, has been used to investigate the spatial 

interactions of various TME components, such as the distribution of immune cells in 

ovarian cancer183. Spatial autocorrelation metrics like Global Moran’s I have been 

implemented to assess the overall clustering of different features within histopathology 

datasets184. In addition, hotspot analysis, widely used in areas like crime detection and 

epidemiology, has been used to identify immune-rich regions and to stratify patients 

based on breast cancer histology185, although advanced methods to analyse hotspot 

relationships remain limited. Despite the increasing use of these techniques in 

histopathology, they are underutilised in spatial transcriptomics. Recently, Voyager 

was developed to provide key geostatistical tools in a format readily applicable to 

spatial transcriptomic data178. In this chapter, I build upon these geostatistical 

methodologies, such as those implemented in Voyager, presenting an analytical 

approach designed to investigate spatial relationships at multiple scales in 10X Visium 

transcriptomic datasets. 

 

3.2 Methods 

3.2.1 Spatial transcriptomic datasets 

I combined the three datasets of breasts cancer 10X Genomics Visium spatial 

transcriptomic datasets into a common anndata Python format for analysis. Breast 

cancer Visium slides were obtained from Barkley et al.118 (slides 0-2), from 10x 
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Genomics (slides 3-5)109 and Wu et al.173 (slides 6-12). Pre-processing and 

normalisation were conducted using the ScanPy (Single-Cell Analysis in Python) 

package162. I analysed a total of 32,845 spatially profiled spots, and retained spots if 

they exhibited at least 100 genes with at least 1 count in a cell, had more than 250 

counts per spot and less than 20% of total counts for a cell which are mitochondrial. 

Pre-processed BCC slides were obtained from Gania et al.186, PDAC slides obtained 

from Ma et al.187 and CRC slides obtained from Valdeolivas et al.188 I used the 

deconvolution results provided in each of the source studies. 

3.2.2 Spatial data deconvolution 

Due to the imperfect near-single cell resolution of current spatial transcriptomic 

methods, it is important to use a method to deconvolve each spot to infer the cellular 

populations enriched in each spot. I carried out cellular deconvolution using 

Cell2location123. Cell2location decomposes the spatial count matrix into a predefined 

set of reference cell signatures by modelling the spatial matrix as a negative binomial 

distribution, given an unobserved gene expression level rate and gene- and batch-

specific over-dispersion. A scRNA-seq breast cancer dataset containing 100,064 cells 

from 26 patients and 21 cell types from Wu et al173 was chosen to perform the 

deconvolution.  Cell types in the chosen breast dataset consisted of cancer epithelial 

cells (basal, cycling, Her2, LumA, LumB), naïve and memory B cells, myCAF-like and 

iCAF-like cancer-associated fibroblasts, perivascular-like cells (PVL), including 

immature, cycling and differentiated, cycling T-cells, cycling myeloid cells, dendritic 

cells (DCs), endothelial cells expressing ACKR1, CXCL12 or RGS5, endothelial 

lymphatic LYVE1-expressing cells, luminal progenitors and mature luminal cells, 

macrophages, monocytes, myoepithelial cells, natural killer (NK) cells, natural killer T 

(NKT) cells, plasmablasts, CD4+ T cells, and CD8+ T cells. I identified EMT states 

within the scRNA-seq cancer epithelial cells by scoring the cells with EPI and EMT 

signatures189,190, and using Gaussian mixture modelling to assign the cells to a cluster. 

The optimal number of components (clusters) was determined by assessing the 

silhouette scores across a range of component numbers and selected the model with 

the highest score. This approach ensured an optimal balance between cluster 

separation and internal cohesion, resulting in a robust method of identifying EMT 

states. 
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The scRNA regression model was trained with 500 epochs, and the spatial 

transcriptomic model trained with 20,000 epochs. To delineate the tumour cells within 

the spatial transcriptomics dataset, I used the STARCH Python package designed to 

infer copy number alterations (CNAs)191. STARCH identifies tumour clones (setting 

K=2 clones) and non-tumour spots. It confirms identification of normal spots by 

clustering the first principal component into two clusters using K-means. Changing the 

value of K alters the number of identified tumour clones, but the number of cells 

labelled as tumour cells remains the same. This approach is based on the principle 

that the direction of maximum variance in the expression data typically reflects the 

division between non-cancerous and cancerous spots. 

3.2.3 EMT state and hallmark signature scoring 

To identify distinct EMT states, I employed data from Brown et al166, consisting of 

seven RNA-seq sequenced cell clones, derived from SUM149PT inflammatory breast 

cancer cell line with 3 repeats spanning the EMT spectrum from epithelial-like (EPI), 

quasi-mesenchymal (M1), fully mesenchymal (M2) and three distinct intermediates 

(EM1, EM2, EM3) . I used these data to derive a weighted gene signature to represent 

the EMT states. I captured EMT gene patterns from this data using non-negative 

matrix factorisation (NMF) by applying the CoGAPs workflow192.  I used ProjectR’s 

implementation of lmfit R function to map the captured EMT patterns onto the spatial 

transcriptomic spots49. This transfer learning approach assumes that if datasets share 

common latent spaces, a feature mapping exists between them and can measure the 

extent of relationships between the datasets. The final states were captured with 20 

patterns and 10,000 training iterations. The number of patterns were chosen based on 

capturing the discrete states with the highest accuracy. The EM1 state was not 

distinguishable from the EPI state, so I merged the two states. Thus, overall I obtained 

scores for one epithelial, two intermediate, a quasi-mesenchymal and a fully 

mesenchymal state for each spot.  

Hypoxia and angiogenesis were defined based on signatures deposited at MSigDB193. 

The proliferative signature was compiled from Nielsen at al194.  The 

immunosuppression signature was compiled from Wu et al173 and Cui et al195. The 

checkpoint blockade response signature was compiled from Johnson et al196 and Liu 

et al197. The exhaustion signature comprised classical exhaustion markers: CTLA4, 
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PDCD1,TIGIT, LAG3, HAVCR2, EOEMT, TBX21, BTLA, CD274, PTGER4, CD244 

and CD160198 . All these signatures were scored using scanpy.tl.score_genes function. 

EMT hotspots and coldspots were identified in the BCC, CRC and PDAC slides using 

the EMT hallmark signature193.   

3.2.4 Graph construction 

The SquidPy116 (Spatial Single-Cell Analysis in Python) package was used for graph 

construction using sq.gr.spatial_neighbors and slide visualisation of the Visium spatial 

slides. NetworkX163 was used for further analysis of the networks derived from the 

spatial transcriptomic spots.  The deconvolved spot results were used to assign node 

labels. Edges were assigned based on the spot neighbours.  

3.2.5 Neighbourhood enrichment analysis 

I calculated neighbours for each spot by summing the deconvolution results in a ring 

surrounding the spot of interest, and normalising by the number of spots assigned as 

a neighbour, using the adjacency matrix of the graph to calculate the interacting cells.  

Two methods were developed to assess neighbourhood enrichment. Inner outer 

correlation (with the function sp.calculate_inner_outer_correlations) was calculated by 

correlating signatures across a central spot of interest and the direct neighbourhood 

of spots surrounding it (a ring encompassing six Visium spots), after filtering for tumour 

spots only. To perform the sensitivity analysis, I increased the number of rings 

surrounding a spatial transcriptomic spot (setting rings_range parameter in 

sp.calculate_inner_outer_correlations function) to consider as spot neighbours and 

compared the change in correlation coefficient. The first ring consists of 6 spots, and 

the second ring includes 18 spots (combined from the 1st and 2nd rings). Subsequent 

rings follow this pattern. The number of rings selected for sensitivity analysis reflects 

a balance between spatial coverage and resolution. Using a smaller number of rings 

(e.g., 1, 2, 3) allows the analysis to focus on the immediate microenvironment around 

the central spot, providing high resolution. As more rings are added, the spatial 

coverage increases, capturing broader interactions but potentially diluting local-

specific signals. Correlations were calculated using Pearson's correlation coefficient.  

An all-in-one correlation (sp.calculate_neighbourhood_correlation function) was 

calculated by correlating phenotypes with cells within a spot, and then incrementally 
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increasing the number of rings to correlate across progressively larger spatial units. 

The functions sp.correlation_heatmap_neighbourhood and sp.plot_overall_change 

plot the neighbourhood results. 

3.2.6 Hotspot analysis 

Hotspots were calculated using The Getis-Ord G* statistic as implemented using the 

PySAL package199, using 10 as neighbourhood size parameter by default and a p-

value of 0.05, unless otherwise stated.  

The Getis-Ord G* equation is defined as follows: 

 

Where   is the spatial weight between location   and  ,    is the mean of the variable 

of interest across all locations,    is the standard deviation of the variable of interest 

across all locations and   is the total number of locations. 

A high positive value at location   suggests a hotspot for the attribute, while a negative 

value indicates a coldspot. The significance of  is determined by comparing the 

observed  to a distribution of  values generated under the assumption of spatial 

randomness. This distribution is obtained by permuting the attribute values across 

locations and recalculating  for each permutation. The p-value for a hotspot (when 

 is positive) or a coldspot (when  is negative) is then derived from this distribution. 

This approach provides a non-parametric method to evaluate the significance of 

spatial clusters, offering a robust measure against potential spatial randomness in the 

data. The significance of is determined by comparing the observed  to a 

distribution of  values generated under the assumption of spatial randomness. This 

distribution is obtained by permuting the attribute values across locations and 

recalculating  for each permutation. The p-value for a hotspot (when   is positive) 

or a coldspot (when  is negative) is then derived from this distribution. This approach 

provides a method to evaluate the significance of spatial clusters, offering a robust 

measure against potential spatial randomness in the data.  
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Hotspots can be identified by calling sp.create_hotspots function, and specifying in the 

filter_columns parameter what region within the spatial slide to calculate the hotspot 

from e.g. tumour cells. The neighbourhood_parameter can be altered here 

(default=10). relative_to_batch parameter ensures that hotspots are calculated 

separately for each slide, otherwise, they are calculated across multiple slides. 

Importantly, if multiple slides are used (highly recommended for statistical power), 

these should be labelled using .obs[‘batch’] within the anndata object. Additionally, the 

library ID in the .uns data slot should be labelled with the .obs[‘batch’] value. Hotspots 

can be plotted using sp.plot_hotspots. 

Hotspots and coldspots for EMT states and cell proliferation were calculated after 

filtering for tumour cells as labelled by STARCH. All other hotspots (deconvolved cell 

proportion data and angiogenic and hypoxia signatures) were calculated using all the 

spots within the spatial transcriptomic slide.  

3.2.7 Distance metrics 

After calculating the hotspots and coldspots, I then assessed the distances from 

hotspots of interest (EPI and EMT) to other cells types and signature hotspots and 

coldspots. I used the shortest path approach to calculate distances between hotspots 

as follows: 

● Let  represent the set of coordinates of spots in the hypoxia hotspot. 

● Let  represent the set of coordinates of spots in the mesenchymal 

tumour hotspot. 

● Let  represent the set of coordinates of spots in the epithelial tumour 

hotspot. 

For a spot  in  and a spot  in , the shortest path to any point   in   was 

determined: 

 

 

Where 𝑑(𝑚, ℎ) represents the Euclidean distances from a spot 𝑚 in 𝑀. After obtaining 

the minimum distances for each spot in 𝑀 and 𝐸 I calculated the median (with the 

additional functionality to choose min or mean) to provide a summary statistic that 
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reflects the general proximity of each hotspot (𝑀 and 𝐸) to 𝐻. The function 

sp.calculateDistances calculates this.  

To then infer the impact of cellular hotspots on distance to EMT compared to EPI 

hotspots, I employed Generalised Estimating Equations (GEE). This model enables 

me to estimate population-average effects involving repeated measurements across 

multiple spatial transcriptomic slides. The model estimates the coefficient (𝛽௠௘௦) for 

the transition from reference hotspots ( ) to primary hotspot variables ( ). A positive 

𝛽௠௘௦ would indicate that mesenchymal hotspots are, on average, located further from 

hypoxic areas compared to epithelial hotspots, while a negative value suggests a 

closer proximity. sp.plot_custom_scatter, setting compare_distance_metric to min, 

mean or median to compare the summary statistics for each hotspot across each slide. 

Setting it to None calculates the statistical significance of all distances from each 

hotspot. 

The centroid approach is calculated as follows. The centroid  of a set of spots  

with coordinates  is the arithmetic mean of the coordinates. This point represents 

the centre of the mass of the points in the set .  

For set  : 

 

 

Similar calculations are employed for  and . I then calculated the Euclidian distance 

between the centroids. 

3.2.8 Tumour perimeter calculation 

Any spot was considered part of the tumour perimeter if it had more than one 

neighbouring spots (nodes in the graph) that were not classified as tumour spots. A 

spot 𝑠  𝜖 𝑆 is considered part of the tumour perimeter, 𝑃, if:  

 

Where 𝑆 denotes the set of all spots, 𝑇 denotes the set of tumour spots 𝑁(𝑠) 

represents the neighbouring spots of spot 𝑠. This approach helped me to delineate the 

boundary of the tumour accurately by focusing on the transitional area where tumour 
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and non-tumour spots meet (called using sp.calculate_tumour_perimeter). To quantify 

the number of tumour hotspots, I calculated the number of connected components 

within the graph that were labelled as hotspots. This calculation was crucial for 

understanding the distribution and clustering of tumour cells.  

3.2.9 Sensitivity analysis 

The sensitivity analysis to evaluate the impact of varying hotspot sizes on the spatial 

relationships was achieved by incrementally adjusting the neighbourhood parameter 

for the Getis-Ord statistic, which directly influenced the size of identified hotspots 

(sp.sensitivity_calcs). As I expanded the neighbourhood parameter, I compared the 

distances between the newly defined hotspots and other existing hotspots of interest.  

To assess the robustness of the spatial relationships between cell types and gene 

signatures, I systematically introduced Gaussian noise into the cell type proportion 

data and gene signature matrix. Gaussian noise, characterised by a mean of zero and 

varying standard deviations, was added to mimic experimental and technical 

variability. This approach allows me to evaluate the stability of detected EMT hotspots 

under different noise conditions. I defined a range of sigma values to represent varying 

levels of noise intensity. To further test the robustness of the spatial relationships, I 

randomly shuffled the cell proportion data and gene signature values and assessed 

how this affected downstream analysis.  

3.2.10 Statistical analysis 

Groups were compared using a two-sided Student’s t test. Multiple testing correction 

was performed where appropriate using the Bonferroni method. Graphs were 

generated using the seaborn and Matplotlib Python packages. 

3.3 Results 

3.3.1 Overview of SpottedPy methodology 

Building on the EMT-TME results identified in Chapter 2, I have more robustly 

characterised the relationships across different spatial scales; from direct cell-cell 

interactions to immediate neighbourhoods to across larger modules (Figure 10).  
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Figure 10 SpottedPy provides a multi-scale approach to analyse spatial transcriptomic 

relationships. Overview of spatial scales captured in the SpottedPy workflow, from direct cellular 

contacts to broader cellular hotspots. Figure created with BioRender.com. 

Whilst neighbourhood enrichment is widely employed in the field116,126,118, the analysis 

of continuous expression signatures and the influence of neighbourhood size on 

spatial relationships are comparatively underexplored. Additionally, the 

characterisation of the relationships of hotspots (spatial clusters) has yet to be 

addressed. This necessitated novel method development and therefore I developed 

SpottedPy, a Python package to allow me to probe the relationship across multiple 

scales in a statistically principled manner (Figure 11).  
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Figure 11 SpottedPy workflow overview. Visium spatial transcriptomic data is loaded as a pre-

processed AnnData object where there is the option to select the region of interest (ROI) within the slide 

e.g., AnnData.obs column labelled with tumour cells. The default spatial analytics include: (i) 

Neighbourhood enrichment: inner outer correlation, which correlates cell prevalence or signatures in 

individual spots with their immediate neighbourhood, (ii) Neighbourhood enrichment: all in one 

correlation, which correlates cell prevalence of signatures within a spot or spatial unit (iii) Shortest path 

to hotspot, which calculates the minimum distance between each spot within a selected hotspot and 

the nearest spot in other hotspots, (iv) Statistical analysis of distances, which compares distances from 

a reference hotspot to another hotspot of interest, and assesses the statistical significance of the 

relationships. Scale analysis allows me to compare relationships defined at different scales in both 

approaches, either by increasing the number of rings included for neighbourhood enrichment or 

increasing the hotspot size. The outputs for the different modules include various plots to highlight the 

relationships. Figure created with BioRender.com. 

The approach includes: 
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 Neighbourhood enrichment analysis: I develop functions to examine 

correlations between cell states, populations or processes within individual spatial 

transcriptomics spots and their immediate neighbourhood (Figure 11i-ii). Here, a 

“neighbourhood” is defined as a ring composed of six Visium spots surrounding a 

central spot, calculated by modelling the spots as a network. This method allows 

me to test how a signature affects its direct neighbourhood (inner-outer correlation) 

or to assess all spots within that neighbourhood collectively (all-in-one correlation). 

 

 Hotspot identification: I have implemented the Getis-Ord G* statistic to identify 

spatial clusters of continuous gene signatures across spatial transcriptomic slides 

(Figure 11). Users can selectively focus on particular regions of the slide when 

generating hotspots. By comparing regions of high or low expression or cell-type 

signatures against a null distribution, this analysis identifies the statistically 

significant “hotspots” or “coldspots.” Hotspots indicate areas with a concentrated 

presence of a specific cell type or signature (unlikely due to chance), while 

coldspots mark areas where the target cells or signatures are notably scarce. I also 

offer functionality to test whether specific gene signatures are enriched in hotspots 

or coldspots. 

 

 Distance statistics: I provide functionality that measures and interprets the 

distances between detected clusters (e.g. tumour and immune hotspots). The main 

approach computes the shortest path to a hotspot, defined as the minimum 

distance from any point within a defined hotspot to the nearest point in another 

(Figure 11iii). Importantly, SpottedPy allows the user to compare distance 

distributions to key hotspots, for example, finding the hotspots that are significantly 

closer to mesenchymal hotspots than epithelial hotspots (or other areas that can 

be considered as a reference) (Figure 11iv). SpottedPy assigns statistical 

significance to these proximity measures, assessing whether observed distances 

are unlikely to result from random chance. To analyse relationships across multiple 

slides, I employ generalized estimating equations, allowing users to test the 

minimum, mean, or median distance from each hotspot or consider every distance 

from each spot within a hotspot. 
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 Scale/sensitivity analysis: I provide functionality to investigate how cell-cell 

relationships evolve within the tissue by varying the size of the neighbourhood or 

hotspot of interest. In the neighbourhood enrichment approach, this involves 

adjusting the number of concentric rings around the central spot. For the hotspot 

approach, SpottedPy recalculates the Getis-Ord G* statistic with different 

neighbourhood sizes, revealing clusters at multiple spatial scales. By examining 

how hotspot distances change with neighbourhood size, the package sheds light 

on how spatial relationships change or remain consistent at various scales. In 

addition, SpottedPy enables users to explore how cluster relationships respond to 

changes in the significance threshold for hotspot detection with the Getis-Ord G* 

statistic. 

 

3.3.2 Spatial transcriptomic slide annotation overview 

 

I used the SpottedPy functionality to gain deeper insights into the interactions between 

tumour cells undergoing EMT and the TME across 12 breast cancer 10x Genomics 

Visium slides.  These slides were integrated from Wu et al18, Barkley et al24 and the 

10x Genomics website25. To infer individual cell types within the slides, I deconvolved 

the slides using the Cell2location method123 and a scRNA-seq reference of annotated 

breast cancer cell population profiles from 123,561 cells13. In the scRNA-seq dataset, 

I scored tumour cells with predefined epithelial (EPI) and epithelial-to-mesenchymal 

transition (EMT) signatures (see Methods) and employed Gaussian mixture modelling 

to assign a state to each tumour cell (Figure 12)189,190.   
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Figure 12 EMT state identification in the breast cancer scRNA-seq reference data prior to 

deconvolution.  Adapted from Wu et al.173. 

To precisely capture the tumour cells within the spatial transcriptomic data, where 

expression can vary widely, I used the STARCH copy number inference tool191.  I 

validated these results by comparing them with publicly available, pathologist-

annotated slides200,201 (Figure 13).  

 

 

Figure 13 Validation of tumour cell identification. a Tumour cells as estimated by STARCH for 

slide 5, and the reference for the pathologist annotation confirming tumour cell estimation is provided. 

b Similar to (a) but for Slide 3. 

 Furthermore, to explore the heterogeneity of stable EMT states during the 

development and progression of breast cancer, I used the discrete EMT states recently 

defined by Brown et al166, consisting of an epithelial phenotype, two intermediate 
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(hybrid) states (EM2 and EM3), a late intermediate quasi-mesenchymal state (M1) and 

a fully mesenchymal state (M2). A summary of my spatial slide annotation workflow is 

provided in Figure 14. 

 

Figure 14 Preprocessing workflow prior to applying SpottedPy. Adapted from Stein-O’Brien et al49 

and Khavari et al202. EMT states were annotated both using cellular deconvolution and EMT pattern 

transfer using ProjectR. SpottedPy was applied to these various methods of detecting EMT and results 

compared. 

3.3.3 Using SpottedPy to analyse the relationship of EMT and 

associated tumour hallmarks 

I first focused on understanding the relationship of EMT tumour hotspots with two 

hallmarks of cancer known to be associated with EMT: hypoxia and angiogenesis. 

Hypoxia, characterised by low oxygen levels, has long been recognised as a key driver 

of tumourigenic processes203. Under hypoxic conditions, tumour cells stabilise 

hypoxia-inducible factors (HIFs), particularly HIF-1α, which promotes angiogenesis204, 

the formation of new blood vessels from existing vasculature, to re-establish oxygen 

supply. Hypoxia has been shown to induce EMT and confer therapy resistance205, 

highlighting the importance of understanding how these relationships develop spatially 

within the tissue. Such insights could facilitate the design of localised treatments that 

disrupt these interactions in breast cancer. 

Using SpottedPy, I delineated tumour regions in each spatial transcriptomics slide and 

subsequently identified EMT hotspots within these areas, using the EMT state 
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assigned through Cell2location (Figure 15a). To confirm and further explore the 

emergence of other cancer hallmarks emerging in the context of EMT, I defined 

hotspots for proliferative, hypoxic, and angiogenic gene signatures in the same slides 

(Figure 15a). Visual inspection shows that angiogenic and hypoxic hotspots frequently 

accompany EMT hotspots (Figure 15a). Quantifying hotspot distances with SpottedPy 

confirms that EMT hotspots generally lie closer to angiogenic and hypoxic hotspots 

compared with EPI hotspots, proliferative hotspots, or the overall tumour population  

(Figure 15b-c). By contrast, proliferative hotspots are significantly nearer to EPI 

hotspots (p<0.001, Figure 15c).  

To determine the positioning of EMT and EPI areas within the tumour, I used 

SpottedPy to estimate the tumour perimeter (Figure 15d) and calculated distances to 

it. EMT hotspots reside closer to the perimeter than EPI hotspots, indicating a state 

with significant interaction with the surrounding microenvironment (Figure 15e). As 

expected, angiogenesis hotspots appeared nearest the tumour boundary, followed by 

hypoxia hotspots (Figure 15f). The localised presence of angiogenesis near the 

perimeter aligns with its role in delivering nutrients and oxygen to expanding 

tumours206. Hypoxic regions developing just beyond these angiogenic zones reflect 

the fact that tumours often outgrow their vasculature, resulting in areas lacking 

sufficient oxygen203. I found that hypoxic coldspots occur closest to the perimeter 

(Figure 15f), where oxygen availability is higher. 
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Figure 15 The spatial interplay between EMT progression and cancer hallmarks. a A spatial 

transcriptomics slide (slide 0) highlighting from left to right: tumour spots, proliferation hotspots, EPI 

hotspots, EMT hotspots, hypoxic hotspots, and angiogenic hotspots identifed by SpottedPy. The black 

square indicates a representative area where the close proximity of EMT, angiogenic, and hypoxic 

hotspots is depicted. b Distances from angiogenic (left) and hypoxic (right) hotspots to EMT hotspots, 

EPI hotspots, proliferative hotspots, and the average tumour cell, respectively, averaged across all 12 

samples (*** p< 0.001). c Differences in proximity between EMT hotspots/EPI hotspots and hypoxic, 

proliferative, and angiogenic regions, summarized across the 12 slides. The dashed line represents no 

difference in relative distance to EMT hotspots or EPI hotspots. The dots situated above the dashed 

line indicate hallmarks that are significantly closer to EMT hotspots. The colors indicate the p-value 

ranges obtained from the Student’s t-test for differences in distance to EMT hot/cold areas. d Spatial 

plot depicting the tumour perimeter in red and the tumour cells in blue. e Distance from the tumour 

perimeter to EMT hotspots and EPI hotspots, respectively (*** pௗ< ௗ0.001). f Distances from selected 

hotspots to the tumour perimeter, ordered by increasing proximity, across the 12 cases. The dashed 

line represents no significant difference. The colors depict p-value ranges obtained from Student’s t-

tests for differences in distance to the tumour perimeter. 

In contrast, proliferative hotspots are observed farthest from the tumour edge and are 

spatially distinct from EMT hotspots. This pattern corroborates studies suggesting a 

proliferative epithelial core and a peripheral EMT population that enables cell migration 

and intravasation207,208. These spatial relationships were consistently observed across 

all examined breast cancer slides (Figure 16). 
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Figure 16 Bubble plot depicting distances between cancer hallmark signatures and TME classes and 

EMT/EPI hotspots for each slide (row). Blue depicts hallmarks that are significantly closer to EPI 

hotspots and red represents hallmarks that are significantly closer to EMT hotspots (Student’s t test 

p<0.05), , adjusted for multiple testing using the Bonferroni correction. White indicates a non-

significant relationship. Tissue annotations, if available, are included on the right-hand side for each 

sample, coloured by batch. IDC= Invasive Ductal Carcinoma. ILC= Invasive Lobular Carcinoma. 

3.3.4 EMT hotspots exhibit immunosuppression and are shielded by 

myCAFs and macrophages 

After validating SpottedPy’s ability to capture expected spatial hallmarks of EMT in 

breast cancer tissue, I expanded the analysis to examine how tumour cells 

undergoing EMT interact with various immune and stromal cell types in the tumour 

microenvironment. In addition to the EMT hotspots, I identified hotspots for 41 

different TME cell types, encompassing lymphocyte, myeloid, and fibroblast 

populations, based on the cell types as defined by Wu et al.⁷ (Figure 17a-c). Visual 

inspection of these hotspots revealed that myofibroblastic CAF (myCAF) hotspots 

often co-localise with EMT hotspots (Figure 17a-c). 
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Figure 17 The spatial interplay between EMT progression and the TME. a Spatial transcriptomics 

plots highlighting tumour cell spots (left), the EMT gradient through these tumour spots (middle), and 

EMT hotspots identified by SpottedPy (right) in slide 5. b Spatial localisation of macrophage-enriched 

spots (left) and SpottedPy-defIned LAM2 APOE+macrophage hotspots (right) in slide 5. 

Quantifying hotspot distances with SpottedPy confirmed that tumour EMT hotspots did 

indeed lie significantly closer to myCAF hotspots (Figure 18).  

 

Figure 18 Distance between EMT hotspots and diferent TME cell hotspots, ranked by proximity. 

Smaller, darker bubbles represent shorter distances to EMT hotspots. Results are averaged over 12 

slides. 

The relationship is particularly highlighted when we look at the cellular niches that are 

significantly closer to EMT hotspots compared to EPI hotspots, revealing a 

predominance of various CAF subtypes (Figure 19). These observations align with 

existing literature, as myCAFs are known to secrete TGF-β, a well-recognised EMT 
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inducer209, and have been linked to ECM deposition and the suppression of antitumour 

immunity210,211,212,213. 

 

Figure 19 Distances from various cells in the TME to EMT/EPI hotspots. The dashed line 

represents no difference in proximity to either EMT hotspots or EPI hotspots. The dots situated to the 

left of the dashed line indicate cell populations that are signifcantly closer to EMT hotspots, ordered by 

decreasing proximity. The colors indicate the p-value ranges obtained from the GEE fit for differences 

in distance to EMT hot/ EPI hot areas. Results are across 12 slides. 

In addition, monocytes and tumour-associated macrophages (TAMs), such as LAM2 

APOE+ macrophages and SIGLEC1+ macrophages, showed a marked likelihood to 

cluster closer to EMT hotspots compared with EPI hotspots. Monocytes and the TAMs 

derived from them are understood to modulate the environment of tumour cells 

undergoing EMT, often by promoting immunosuppression in the TME and thereby 

facilitating tumour progression and metastasis214. By contrast, Natural Killer (NK) cells, 

NK T cells, and CD8+ T cells, immune cells capable of directly killing transformed cells, 
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were among the least closely associated with EMT hotspots, suggesting a possible 

mechanism of immune evasion in EMT tumour cells215. The T-cell subset most closely 

aligned with EMT hotspots relative to EPI hotspots was the LAG3+ CD8+ T-cell 

population, an exhausted population, and suggesting immune evasion in these EMT 

regions216. 

Given the close relationship between EMT hotspots and potential immunosuppressive 

factors, I next evaluated whether EMT hotspots are indeed immunosuppressed. I 

observed significantly heightened expression of immunosuppressive and exhaustion 

markers173,195 in EMT hotspots compared to EPI hotspots (Figure 20). Notably 

upregulated suppressive genes included FAP, which activates regulatory T cells 

(Tregs) and myeloid-derived suppressor cells (MDSCs)217,218; INHBA, which shifts 

macrophage polarisation to a pro-tumour state219; VCAN, linked to limiting T-cell 

proliferation220; and COL6A3, which is linked to increased macrophage recruitment221. 

Key immune checkpoints, B7-H3 (CD276), OX40 (TNFRSF4), and TIM3 (HAVCR2), 

were also significantly upregulated (p<0.05) in the tumour slides (Figure 20). In line 

with these findings, EMT hotspots exhibited elevated levels of immune exhaustion 

(Figure 20c-d), supporting the idea that prolonged immune activation in EMT hotspots 

results in immune cell exhaustion, which may be reversed by checkpoint blockade. To 

investigate this hypothesis, I examined an interferon-gamma signature previously 

associated with favourable responses to immunotherapy196,197 (Figure 20h-i). EMT 

hotspots showed notably increased expression of signature genes, including HLA-A 

and HLA-C, which are often linked to the activation of immune responses222, as well 

as HLA-F, known for its immunosuppressive properties223. Enhanced expression of 

interferon-gamma-associated genes, especially those involved in antigen presentation 

(e.g., HLA molecules), is generally considered a positive prognostic indicator in 

checkpoint blockade therapy224. Hence, although EMT hotspots exhibit considerable 

immunosuppression and T-cell exhaustion, they simultaneously retain aspects of 

immune activity that could be harnessed by targeted treatments, such as checkpoint 

inhibitors. 
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Figure 20.a.  Barplots showing signature scores of immune suppression scored within EMT hotspots 

and EPI hotspots. b. Differences in the average expression of genes in the immune suppression 

signature between EMT and EPI hotspots for each slide (row). Red depicts genes significantly 

upregulated in EMT hotspots and blue indicates genes significantly upregulated in EPI hotspots 

(Student’s t-test p<0.05, adjusted for multiple testing using the Bonferroni correction). White indicates 

a non-significant relationship. c. Similar to (a) but for immune exhaustion. d. Similar to (b) but focusing 

on the genes in the immune exhaustion signature. e. Similar to (a) but for checkpoint inhibitor response. 

f. Similar to (b) but focusing on the genes within the checkpoint inhibitor response signature 

At the cohort level, the association between EMT hotspots and the myCAF s5 

population persisted in individual tumours, suggesting a universal pattern of EMT 

transformation in breast cancer rather than a subtype-specific relationship (Figure 16). 

In contrast, substantial inter-patient heterogeneity emerged for multiple cell types, 

including macrophages, memory B-cells, naïve B-cells, iCAFs, NK cells, NKT cells, 

CD4+ T cells, and CD8+ T cells, often even within the same breast cancer subtype. 

However, distances to EMT hotspots were consistent across subgroups of cells 

(Figure 21), suggesting that, within individual patients, these cells share common 

response patterns irrespective of the broader heterogeneity observed across the 

patient cohort. 
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Figure 21 A dendrogram illustrating the hierarchical clustering of cells based on their proximity to EMT 

hotspots, as derived from the data shown in Figure 16. 

3.3.5 EMT hotspots display intra- and inter-patient heterogeneity  

I next sought to interrogate spatial relationships at a more granular level, and analysed 

the  association of EMT hotspots with other immune and stromal areas within the same 

slide and across the different patient samples (Figure 22a). While cell types displaying 

the strongest relationship with EMT hotspots when averaged (such as SIGLEC+ and 

LAM2 APOE+ macrophages, along with CAFs) showed fairly consistent patterns 

across slides, some degree of heterogeneity was still evident. For instance, in slide 4, 

although seven EMT hotspots were closer to LAM2 APOE+ macrophages than the 

median EPI hotspots, two were not (Figure 22a). Visual inspection of these particular 

EMT hotspots, compared with LAM2 APOE+ macrophage hotspots, further highlights 

this variability (Figure 13b). As anticipated, stronger associations with myCAFs and 

specific macrophage subtypes were common across most EMT hotspots (Figure 

22a). T-cells, although heterogeneous across patients, tended to cluster together, 

reinforcing the notion that these cells share similar responses. Notably, EMT hotspots 

that were closer to T-cells often showed elevated exhaustion marker expression 

(Figure 22a, right panel), suggesting ongoing immune activation. I also observed that 
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EMT hotspots consistently exhibited higher immunosuppressive scores than EPI 

hotspots (Figure 22a). Overall, the inter-patient heterogeneity seemed to supersede 

the intra-patient heterogeneity. 

SpottedPy provides functionalities for examining distance distributions both within 

individual slides (Figure 22c) and across multiple slides (Figure 22d). Visualising 

these distributions illustrate that, although LAM2 APOE+ macrophages are generally 

positioned nearer to EMT hotspots compared with EPI hotspots, there is heterogeneity 

within each slide and across different slides. Overall, these results showcase the range 

of hotspot analyses enabled by the SpottedPy package and the potential to uncover 

useful biological insights.  
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Figure 22 Inter- and intratumour heterogeneity of EMT hotspots. a Dendrogram highlighting the 

proximity of EMT and EPI hotspots to TME cell types. The dendrogram is clustered according to the 

distances from EMT/ EPI hotspots to regions enriched in immune/stromal cells. Red indicates that an 

EMT hotspot is closer to a cell type, while blue suggests that the EPI hotspots in that slide are on 

average closer. The x-axis displays individual EMT hotspots (label indicates hotspot number and slide 

number). To the right of the dendrogram, distances to the tumour perimeter, suppression, and 
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exhaustion signature scores are illustrated. Red indicates that the hotspot is significantly enriched in 

these signatures compared to the average EPI hotspot in the slide (p< 0.05), and blue indicates EPI 

hotspots are significantly enriched (p<0.05). Further to the right, individual genes associated with the 

exhaustion signature are shown, with red indicating the gene expression is higher in EMT hotspots 

(p<0.05) and blue indicating the gene expression is higher in EPI hotspots (p<0.05). b Slide 4 with 

individual EMT hotspots labelled (left) and LAM2 APOE+ macrophage hotspots highlighted (right). c 

Distance distributions for each EMT hotspot in slide 4 to LAM2 APOE+ macrophage hotspots. d 

Distance distributions of EMT hotspots to LAM2 APOE+ macrophages across all 12 slides in the cohort 

3.3.6 Sensitivity analysis of hotspots 

Determining how hotspot size, governed by the number of nearest neighbours 

parameter, influences spatial relationships is important for robust spatial analysis. I 

systematically expanded the hotspot dimensions (Figure 23a-b) to understand the 

stability and consistency of identified spatial associations. The results indicate that the 

spatial interplay among EMT hotspots, hypoxia, and angiogenesis, as well as their 

exclusivity with proliferative hotspots, remains as a resilient hallmark of the tumour 

microenvironment.  

 

Figure 23. Sensitivity analysis of hotspot relationships. a EMT hotspot generation using a hotspot 

neighborhood parameter of 2, 10, 50, 100, and 300, respectively. Increasingly larger neighborhoods are 

highlighted in diferent colors as indicated in the legend. b Hypoxia and epithelial hotspot generation 

using a hotspot neighborhood parameter of 2, 10, 50, 100, and 300, respectively 

These patterns remain notably stable across different hotspot sizes (Figure 24). Cell 

populations previously identified as being closest to EMT hotspots at a fixed parameter 

size (myCAFs, macrophages, and monocytes) also maintained this relationship when 
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the hotspot dimension changed. Conversely, relationships for cells situated farther 

away were less consistent, for example, CD8+ LAG3+ T-cells no longer retained their 

association at a hotspot size of 250, and naïve B-cells showed multiple shifts as the 

hotspot size increased (Figure 24).  

 

 

Figure 24. Sensitivity plots highlighting the distance from EMT hotspots (blue) and EPI hotspots (yellow) 

to regions enriched in various cancer hallmarks and TME components as the hotspot size increases. 

The distances to the average of all tumour cells are used as a reference (green). Distances are 

averaged over all 12 slides. 

These findings suggest that interactions with certain cells in the TME may be more 

pronounced and relevant at a smaller scale. I found that proliferative hotspots were 

the most consistently adjacent to EPI hotspots at various hotspot sizes. Adjusting the 



77 
 

p-value threshold for Getis-Ord Gi* cluster detection yielded similar patterns (Figure 

25). 

 

Figure 25. Sensitivity plots highlighting the distance from EMT hotspots (blue) and EPI hotspots 

(orange) to various TME components as the p-value parameter using to detect statistically significant 

hotspots increases. Distances are averaged over all 12 slides. 

To further assess the robustness of these spatial relationships, I introduced Gaussian 

noise and performed spot reshuffling, then examined whether the identified 

relationships persisted (see Methods). This approach demonstrated that SpottedPy 

reliably distinguishes genuine biological signals from random spatial fluctuations, 

tolerating low noise levels effectively (Figure 26).  
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Figure 26. Evaluating the impact of increased noise or spot shuffling on the association between 

angiogenic hotspots (left) and LAM2 APOE macrophage hotspots (right) and EMT/EPI hotspots.  

Although random noise generated through spot reshuffling can mimic certain aspects 

of structured data (Figure 27), the resulting hotspots were significantly smaller than 

those arising from genuine biological structure (Figure 28).  

 

Figure 27. Spatial plots of shuffled EMT signature (left) and hotspots produced from shuffled signature 

(right) for Slide 6 (top) and Slide 7 (bottom). 
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Figure 28. Frequency bar plots for neighbourhood size=10 hotspots (top) and neighbourhood size=20 

hotspots (bottom), highlighting the average number of hotspots across a slide (left), total number of 

spots assigned to a hotspot/slide (middle) and average number of spots/hotspot/slide (right) with 

increased amounts of noise added to the EMT signature, or spot shuffling. 

Crucially, the loss of specific associations among particular cell types when noise is 

introduced (Figure 26) helps to reduce false positives, even in instances where 

hotspots are identified225. 

3.3.7 Other distance metrics 

Importantly to note, there are other approaches that can be used to calculate hotspot 

distances. For instance, the “centroid to centroid” approach offers a straightforward 

approximation but is inherently simplistic. As illustrated in Figure 29, hotspot size 

exerts a major influence on its centroid, meaning that larger hotspots might falsely 

appear farther away when measuring centroid distances, despite actually being closer 

at the perimeter level. Consequently, centroid-based distance metrics can overlook 

local variations that can be captured by the shortest-path approach. Applying a 

centroid-based method to the breast cancer slides might therefore fail to detect more 

complex spatial patterns, such as those between EMT hotspots and macrophage- or 

monocyte-enriched areas. 
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Figure 29. Diagram highlighting key differences between the centroid distance approach and 

the shortest path distance approach. The shortest path approach captures more local variation and 

therefore detects a difference between the Tcell and B-cell hotspots shown in this example (distances 

shown for illustration purposes). The centroid-to-centroid approach however would be unable to 

capture this. 

3.3.8 Spatial EMT relationships in other cancer types 

I then explored whether the spatial associations identified for EMT hotspots in breast 

cancer also manifest in other cancers. I therefore examined publicly available data 

from basal cell carcinoma (BCC) 186, pancreatic ductal adenocarcinoma (PDAC) 187, 

and colorectal cancer (CRC)188.  

In BCC, angiogenic and hypoxic hotspots were located nearer to EMT hotspots 

(Figure 30a-b). Interestingly, proliferative hotspots were also found closer to EMT 

hotspots, implying significantly different relationships compared to breast cancer. 

POSTN+ fibroblasts showed significant proximity to EMT hotspots, while T-cells and 

NK cells displayed no pronounced spatial relationships with EMT, mirroring 

observations in breast cancer. 

I then investigated these relationships in one available PDAC slide (Figure 30c), 

where I found that angiogenesis and fibroblasts were spatially correlated with EMT 

hotspots in a manner similar to breast cancer. In contrast, immune cells were more 

often found adjacent to EMT coldspots, and there was no discernible link between 

EMT hotspots and hypoxia, diverging from breast cancer patterns. 
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In CRC, myofibroblasts, angiogenesis, and hypoxia showed comparable spatial 

relationships to those seen in breast cancer (Figure 30d-e). Regulatory T-cells, T-

helper cells, and NK cells were however closer to EMT hotspots, suggesting enhanced 

immune recognition in these regions relative to other cancer types. 

Although the sample size and cell-type granularity were limited, these observations 

imply that tissue-specific factors may govern how EMT interacts with immune and 

stromal cells in the TME. Further investigation is warranted to illuminate these 

differences. 
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Figure 30. EMT hotspot analysis in other cancer types. a Distances from various cells in the TME 

to EMT hot/cold regions in basal cell skin carcinoma. The dashed line represents no difference in 

proximity to either EMT hotspots or EMT coldspots. The dots situated to the right of the dashed line 

indicate cell populations that are significantly closer to EMT hotspots, ordered by decreasing proximity. 

The colours indicate the p-value ranges obtained from the GEE model fit. b Bubble plot depicting 

distances between cancer hallmark signatures and TME classes and EMT hotspots/coldspots for each 

BCC slide (row). Blue depicts hallmarks that are significantly closer to EMT coldspots and red 

represents hallmarks that are significantly closer to EMT hotspots (Student’s t test p<0.05), adjusted for 

multiple testing using the Bonferroni correction. White indicates a non-significant relationship. c Similar 

to (a) for one PDAC sample. d Similar to (a) for colorectal cancer slides. e Similar to (b) for the colorectal 

cancer slides. 
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3.3.9 Neighbourhood enrichment analysis 

The neighbourhood enrichment technique captures more localised, shorter-range 

relationships with the TME. Additionally, it can assess spatial relationships of 

phenotypes that would be considered scattered (states that do not occur spatially 

clustered and therefore might be overlooked by a hotspot-based approach). I 

experimented with two approaches, ensuring a robust analysis that is less sensitive to 

the MAUP (Figure 11bi-ii). I first assessed how the spatial relationships change by 

correlating phenotypes across a central tumour spot and the direct neighbourhood 

surrounding it (a ring encompassing six Visium spots). I then assessed how the 

phenotypes are linked within a spot and then expanding what is considered a spatial 

spot. Varying the method and the number of rings in both cases enables me to assess 

whether the observed hotspot relationships shift with the unit of analysis and indicates 

how large of an influence the EMT regions have on surrounding spots. 

My analysis highlights that angiogenesis, myCAFs, macrophages, and monocytes had 

the strongest correlations with EMT cells (p<0.001) across the 12 slides (Figure 31a). 

This result corroborates the spatial interactions previously identified using the hotspot 

approach. By contrast, naïve B-cells, T-cells, NK cells, and NKT cells showed weaker 

associations, consistent with the hotspot analyses. These spatial patterns remained 

stable across multiple neighbourhood sizes (Figure 31b). 

The methods show broadly similar trends, suggesting the cellular relationships 

observed occur both due to colocalisation in a spot as well as diffusing influence 

around the spot. 
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Figure 31. Neighbourhood enrichment analysis of EMT spatial dynamics. a Neighbourhood 

enrichment analysis results employing all in one correlation (top) and inner outer correlation (bottom) 

approaches. The squares display correlations between EMT levels within tumour cell spots and the 

abundance of various cell populations within the immediate TME (surrounding spots only). Red 

indicates a positive correlation, blue a negative correlation and white a non-significant correlation 

(Pearson p>0.05). 1 ring is used to define the neighbourhood. **** p<0.0001, ***p<0.001, **p<0.01, 

*p<0.05. b Line plots illustrating the impact of progressively expanding the number of concentric rings 

- from 1 to 10 - around a Visium spot on the correlation between the EMT signature and various cells in 

the TME. Each ring represents an incremental distance from the central spot and encompasses the 

surrounding spatial transcriptomic spots. 

3.3.10 EMT state fluctuations shape distinct immune niches within 

the same tumour 

Since EMT is not a binary switch but rather a spectrum of hybrid states, I sought to 

investigate the spatial distribution of tumour hotspots reflective of epithelial (EPI), early 

intermediate (EM2, EM3), late intermediate quasi-mesenchymal (M1), and fully 

mesenchymal (M2) states using the multi-scale framework. To identify these states, I 
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used Non-Negative Matrix Factorisation (NMF) via the CoGAPs workflow192 (Figure 

32a).  

 

Figure 32. EMT state capture in spatial transcriptomics slides. a NMF patterns captured from Brown et 

al166, consisting of seven RNA-seq sequenced cell clones, with three repeats spanning the EMT 

spectrum including epithelial-like (EPI), quasi-mesenchymal (M1), fully mesenchymal (M2) and three 

distinct intermediates (EM1, EM2, EM3). Each circle corresponds to one cell clone from the original 

dataset, and is coloured according to the assigned state. The pattern weights for each cell clone are 

plotted for each pattern. The patterns that were able to separate the cell clones are annotated. 

The corresponding hotspots occupied distinct spatial locations within the tissue 
(Figure 33). 
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Figure 33. Spatial plots highlighting the distribution of EMT state hotspots (EPI, EM2, EM3, M1 and 

M2). Every row corresponds to one Visium slide. 

Further visual inspection of these hotspots reveals a progressive shift in the tumour, 

as highlighted in Slide 4 (Figure 34). This transformation is characterised by a 

transition from EPI to the M1 state, with EM3 serving as an intermediate step. EM2 

appeared more volatile in this progression, whereas M2 predominantly co-localised 

with the EPI state. The experimental study by Brown et al166 had detected that M2 cell 

clones gained integrin β4 (a key epithelial marker) when cultured, which might have 

played a significant role in steering these cells towards adopting characteristics more 

akin to an epithelial phenotype. This would possibly explain the co-localization of these 

two states within the spatial transcriptomics slide. 
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Figure 34. Spatial plots highlighting the distribution of EMT state hotspots (EPI, EM2, EM3, M1 and 

M2). Every row corresponds to one Visium slide. 

To further investigate these states, I examined their correlations with one another and 

with the EMT hallmark signature (Figure 35a). The absence of positive correlations 

among EPI, EM2, EM3, M1, and M2 supports the notion that they represent distinct 

EMT states. The M1 state correlated strongly with the EMT hallmark signature, while 

the EPI state correlated negatively, as anticipated. Spatially, the EMT hallmark 

hotspots were nearest to the M1 hotspots and most distant from EPI hotspots (Figure 

35b), in line with the correlation findings and confirming the hypothesised identities of 

these states. 

 

 

Figure 35. a Correlation plot of EMT state scores across all spots and slides. Red indicates positive 

correlation; blue indicates negative correlation. Only significant correlations (p <0.05) are shown. White 

squares indicate non-significant correlations. b Bubble plot depicting the mean distance from individual 

EMT state hotspots to the EMT hallmark hotspots defined in the original analysis. Smaller bubbles 

represent shorter distances. 

I then examined how tumour cells occupying these discrete EMT states relate to 

immune and stromal components of the TME. The analysis found that the EPI state 

correlated negatively with TME cells (Figure 36a), implying a phenotype that is not 
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being substantially shaped by its surroundings. Interestingly, the M1 state exhibited 

robust associations with many TME populations, including strong links to myCAFs, 

macrophages, and monocytes. The EM3 state showed moderate but still notable 

correlations, while the EM2 state displayed the weakest. This reduction in observed 

cellular interactions in the EM3 and EM2 states is in line with the idea of these states 

representing intermediate, more plastic states preceding the apparently more stable 

M1 state. Of particular interest, M1 demonstrated proximity to NK cells, a departure 

from the broader EMT hallmark signature. This suggests that, although M1 may 

resemble the general EMT state in some respects, it likely represents a specialised 

phenotype capable of drawing in cytotoxic immune cells. 

 

Figure 36. a. Neighborhood enrichment analysis depicting the association between tumour cells 

occupying distinct EMT states and other cells in the immediate TME, summarized across all 12 slides. 

Red indicates a signifcant positive correlation (Pearson, p <0.05) , blue a signifcant negative correlation 

(p<0.05), and white a non-signifcant correlation (p>0.05). **** p < 0.0001, *** p< 0.001, **p<0.01, 

*p<0.05. b. Scaled immune suppression  and immunotherapy response signature [65] scores calculated 

using Gene Set Enrichment Analysis (GSEA) for each EMT state hotspot and proliferative hotspot, 

summarized across the 12 samples. 

Moreover, the quasi-mesenchymal M1 state was enriched for markers associated with 

immunosuppression and positive response to checkpoint inhibitors (Figure 36b), most 

notably with OX40 (TNFRSF4), TIM3 (HAVCR2), HLA-DRA, CXCL9, and CXCL10 

(Figure 37a-b). The intermediate states (EM2, EM3) appeared partially committed to 

this suppressive phenotype, showing weaker yet progressively stronger associations 

leading towards M1. By contrast, M2 had a unique signature, exhibiting mixed positive 

and negative relationships within these gene sets. When I compared these findings to 

the proliferative signature, I found that proliferative hotspots mirrored the EPI state, 

suggesting that they represent a tumour phenotype not linked to immunosuppression. 
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Figure 37. a. Enrichment and depletion of expression for genes in the immune suppression signature 

within EMT state hotspots for each slide (column). Red depicts genes signifcantly upregulated in EMT 

state hotspots compared to the average of all tumour cells and blue represents genes signifcantly 

downregulated in the EMT state hotspot (Student’s t-test p<0.05). White indicates a non-signifcant 

relationship. P-values were adjusted for multiple testing using the Bonferroni correction. b Similar to (a), 

focusing on genes in the checkpoint inhibitor response signature 

Overall, the results in this Chapter highlight the changing landscape of tumour-TME 

interactions during EMT progression in breast cancer, highlighting both intratumour 

heterogeneity as well as universal interactions that could be exploited for therapy. 

3.4 Discussion 
In this chapter, I introduce SpottedPy, a Python package for identifying tumour 

hotspots in spatial transcriptomics slides and examining their interactions with TME at 

multiple scales. I demonstrate that the Getis-Ord G* statistic can be applied 

successfully to identify cellular hotspots, yielding biologically meaningful insights into 

the spatial organisation of tumour tissue within its immune and stromal context. 

Although several recent studies have used variations of hotspot analysis on spatial 

transcriptomic data226,227,178, these methods generally do not provide a way to assess 

the confidence level in identifying specific clusters or hotspots. By contrast, my 

approach assigns a p-value to each hotspot, allowing users to adjust stringency to suit 

their analytical needs. Furthermore, unlike most existing tools, SpottedPy conducts in-
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depth distance analysis between hotspots. I also extend previous hotspot-based 

strategies by offering a statistically principled assessment of spatial relationships, with 

the added ability to anchor hotspot detection to specific regions, such as tumour 

versus non-tumour areas, to investigate TME dynamics more precisely. By calculating 

and statistically comparing distances, SpottedPy generates an interpretable and 

intuitive measure of spatial relationships. This approach also enables differential 

spatial analysis against a reference region, a capability generally absent from other 

packages. Moreover, by exploring how hotspot size affects spatial patterns and 

contrasting these findings with relationships identified through neighbourhood-based 

methods, SpottedPy integrates multiple layers of spatial evidence, and scale, into a 

single analytical framework. 

By applying SpottedPy to examine tumour plasticity phenotypes in breast cancer, I 

uncover pronounced differences between tumour areas undergoing EMT and more 

epithelial regions of the tumour. My findings reveal robust spatial correlations of EMT 

with key cancer hallmarks, particularly hypoxia and angiogenesis, consistent with the 

work of He et al120 in spatial transcriptomics of breast cancer, which detected these 

signatures overlapping in certain niches. As tumour cells undergo EMT in response to 

hypoxic stimuli, they can gain a survival advantage in nutrient-deprived conditions and 

migrate towards better-oxygenated regions, potentially following angiogenic 

gradients228,205,208. 

I also observe a strong association between EMT and myCAFs across all analysed 

slides. This aligns with previous bulk and spatial transcriptomic findings in which CAFs 

appear linked to tumour cells undergoing EMT48, and corroborates evidence showing 

CAFs can induce EMT in endometrial cancer cells⁷² and hepatocellular carcinoma78. 

It is worth noting that CAFs share certain genetic markers with EMT signatures, 

making the two difficult to distinguish, particularly in bulk tumour datasets229. In this 

work, I address that challenge by using whole transcriptome data labelled with EMT 

states for deconvolution and copy number aberration detection, thereby increasing the 

confidence of detecting EMT in tumour cells. However, these strategies do not 

guarantee perfect discrimination between CAFs and EMT tumour cells; future 

research with single-cell-resolved spatial transcriptomic platforms will help clarify this 

relationship further and I will address this in Chapter 4. 
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Beyond the observed relationship with myCAFs, my analyses show strong 

associations of EMT with macrophages and monocytes across a range of spatial 

scales. In particular, SIGLEC+ macrophages, LAM2 APOE+ macrophages, and 

EGR1+ macrophages, populations akin to M2-like, tumour-promoting 

macrophages173, are situated closer to EMT hotspots. These macrophages secrete 

TGF-β, TNF-α, IL-6, and IL-8, well-established inducers of EMT230,231. This relationship 

has previously been noted in bulk transcriptomics⁷⁷, in spatial studies of murine skin 

carcinoma232, and within certain breast cancer niches120. Although CAFs and 

macrophages are broadly linked to EMT in most slides, I do find instances in individual 

slides where some EMT hotspots do not reflect these relationships, indicating the 

possible influence of local factors beyond my current analyses. 

I found heterogeneity in the interaction of EMT hotspots with other immune cells such 

as NK, NKT, and T cells. While T-cells have been reported to induce EMT in breast 

cancer233,234 and this relationship has been observed in bulk transcriptomics235 and 

smaller scale spatial analyses48,236, there is also evidence of T-cell exclusion tied to 

the relationship of EMT with macrophages and CAFs, fostering an immune-

suppressed nice,213,237. My analyses highlight that EMT hotspots do feature notable 

enrichment for immunosuppressive and checkpoint-therapy-associated signatures, 

consistent with previous work positing EMT as an important factor in immunotherapy 

strategies85,120. 

I also show that EMT hotspots form in discrete locations that are spatially separate 

from proliferative signatures. This aligns with Jia et al.⁵¹, who used a more focused 

spatial transcriptomic dataset, Tsai et al.⁸⁵, who demonstrated that a departure from a 

mesenchymal-like state is a prerequisite for tumour cell proliferation in mouse models, 

as well as Chen et al.⁸⁶, who identified similar trends in scRNA-seq data. Such spatial 

characterisations at various scales were largely unexplored. 

I observed that hybrid EMT states exhibit more heterogeneous and weaker 

associations with the TME in comparison to the quasi-mesenchymal M1 state. This 

may reflect the intrinsic plasticity of these transitional states36,238, complicating the 

ability to delineate clear relationships, but might also suggest a directed trajectory 

towards an M1 state. Conversely, the M2 state had more similar distribution and TME 

associations to the EPI state, which may be due to the activation of integrin β4 (a key 
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epithelial marker) when cultured, a limitation mentioned in the original study which 

potentially steered the state towards a more epithelial phenotype166.  

Overall, my findings point to a highly dynamic and plastic nature of tumour cells as 

they engage with a complex TME. The interactions likely extend beyond a linear 

framework. Hypoxia, a known inducer of both angiogenesis and EMT239, may initiate 

a cascade that not only intensifies these processes but also draws 

immunosuppressive cells like macrophages240,241, further reinforcing angiogenesis 

and forming a self-sustaining loop. These results provide a further understanding of 

the cellular interactions and environmental factors that support tumour progression 

and metastasis, highlighting opportunities for targeted interventions that disrupt this 

cycle to achieve therapeutic benefit. 

The consistency of spatial associations across different hotspot sizes and 

neighbourhood scales adds confidence to the robustness of these observations. The 

neighbourhood ring approach predominantly detects TME cells that have infiltrated the 

tumour, capturing immediate tumour–immune interactions. By contrast, the hotspot 

approach offers a wider perspective, incorporating longer-range spatial influences. 

Statistically defining cellular hotspots enhances the reliability of observations, 

particularly considering the inherent inaccuracies that can arise from identifying cell 

states using deconvolution algorithms applied to non-single cell transcriptomic 

datasets such as those from the Visium platform. 

To my knowledge, there is no direct alternative to the SpottedPy method, given its 

unique capacity to focus on user-defined continuous signatures within discrete spatial 

clusters at muliple scales, conduct differential spatial relationships against a reference 

region, and employ downstream analyses. 

Overall, this chapter confirms expected spatial effects of EMT progression in tumours, 

demonstrating that SpottedPy can capture complex associations between tumour cells 

and their microenvironment. Such insights can help unveil local effects of the TME and 

linked tumour cell vulnerabilities that could ultimately be exploited for therapeutic 

benefit. While the analyses presented here primarily illustrate insights into breast 

cancer tissue organisation, I note that SpottedPy can be applied to discern spatial 

relationships in other cancer types as well as other diseases and even within healthy 

tissue. For example in Pan et al. (2024)168, I applied SpottedPy to characterise the 
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spatial relationships of gene signatures from a large language model developed to 

predict EMT states. In Celik et al. (2024)169 I have also used SpottedPy to spatially 

characterise quiescence in breast cancer. SpottedPy has been developed on spatial 

transcriptomics data from the 10x Visium platform; however, it can be easily extended 

to other spatially-resolved platforms.  
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4 Chapter 4: Spatial predictive modelling of 

epithelial to mesenchymal plasticity in cancer 

In earlier chapters and in many spatial transcriptomic studies, associations between 

the environment and cell types are often descriptive. These studies mainly focus on 

identifying recurring niches or calculating the proximity of specific cells to other cell 

states. However, a standardised, quantitative metric to measure the influence of the 

spatial environment on a cell type or biological process of interest has not been widely 

used. Such a metric could provide a statistically robust framework to assess the 

significance of environmental factors on cellular states or behaviours. It could also 

allow for direct comparisons with other variables, such as genomic features, to rank 

their relative contributions and importance. In this chapter, I develop a framework for 

quantifying spatial effects and comparing them to other cell intrinsic variables. This 

helps us to further understand epithelial to mesenchymal plasticity and offers a method 

of assessing other plastic programmes. 

I will first review the literature on cell plasticity and spatial modelling and highlight the 

aims of the work (Section 4.1). I will then explain the preparation of the Xenium dataset 

used and the modelling approach (Section 4.2). Given the methods I will describe the 

results of the GNN approach (Section 4.3.2) before highlighting the results from the 

geostatistical approach (Section 4.3.3). I will discuss the results from this chapter in 

Section 4.4. 

4.1 Introduction and Literature Review 

4.1.1 Cell Plasticity  

Plasticity is the ability of a cell to change its properties without it being directly due to 

its alterations in the genome44. Evolutionarily, it is an important cell trait, as it allows 

cells to survive under environmental stress, playing vital roles in processes such as 

wound healing242. However, it is often aberrantly activated in cancer, with growing 

evidence to suggest that it is a driving force in hard-to-treat cancers243. The ability of 

the cancer cell to change state means that drugs targeted for a specific cancer state 

can become redundant as the cell can change out of the original state243. In epithelial 
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to mesenchymal plasticity (EMP), epithelial cells can for example transition to a 

mesenchymal state where they evade therapy. Plasticity allows the cancer cells to 

adapt to the every-changing cancer microenvironment, for example nutrient scarcity, 

which otherwise would lead to cell death244.  

Cancer cell plasticity is an emerging field, with a lack of a widespread consensus on 

the definition of cell plasticity245. Definitions range from including cell type change to 

cell state change44. A cell type refers to a stable functional unit within an organism with 

established biological functions, whereas a cell state is considered a more dynamic 

and transient change. Most definitions emphasise that a key part of cell plasticity is 

the ability of a cell to change its cell type due to external stimuli. Some definitions 

stress that plasticity should be a quantifiable metric, measuring how easy a cell can 

change from its steady-state identity44. A recent study understanding plasticity in lung 

cancer defined plasticity “as the potential of a cell to manifest diverse future fates246”. 

The epigenetic nature of a cell and the degree of epigenetic priming was key to this 

definition of cell plasticity. 

Cell state changes can also be referred to as phenotypic plasticity247. Here, a cell’s 

phenotype is defined as the features of a cell that treatments would target, for example 

uncontrolled growth or immune evasion247. It is important to note the distinction of 

phenotypic plasticity from phenotypic noise, another mechanism that can cause cells 

to change state that is not directly linked to alterations in the cell’s genome248. 

Phenotypic noise is a difference in phenotype that occurs, despite a shared genotype 

and environment, from stochastic changes in transcripts. It is believed to be a more 

transient change, but has been shown to affect cell phenotypes249–251. This is 

suggested to be an important evolutionary trait of cell types as it can ensure variability 

that may confer selective advantages under different conditions248. This timescale 

differs to methods such as chromatin modification, which would be considered a more 

long-term method for plasticity as it can propagate through subclones248.  

Importantly, phenotypic plasticity and phenotypic noise can be enhanced through 

genetic changes. This can occur through a mutation increasing a cell’s ability to exhibit 

phenotypic noise, or increasing its likelihood to shift in response to an environmental 

variable, such as within chromatin modifier genes allowing for more epigenetic 
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changes252. This interplay between intrinsic (genetic and stochastic) and extrinsic 

(environmental) factors highlights how complex it can be to define cell plasticity. 

At a more fundamental level, these factors driving plasticity work by altering nucleotide 

sequences, epigenetic modifications, 3D DNA structure modifications, alongside 

regulatory mechanisms such as altering transcriptional machinery253. These can be 

experimentally measured to understand plasticity.  Additionally, common approaches 

to assess plasticity can work on readouts of cell phenotypes using either RNA 

transcripts or high throughput imaging248. A wide range of experimental approaches 

have been developed to understand plasticity. These include assessing plasticity using 

immortalised cell lines, iPSC cell lines, organoids, model organisms, mammalian 

models and biopsies44. There is a trade-off between achieving greater experimental 

flexibility, as seen with systems like cell lines, which often sacrifice the accuracy of the 

TME representation, and maintaining the biological relevance of the TME, as in 

biopsies, which come at the cost of reduced experimental flexibility. 

Recently, a high-throughput screen of organoid cultures was conducted to explore 

colorectal cancer cell plasticity. Colorectal cancer patient-derived organoids, with 

different mutational profiles, were co-cultured with and without CAFs and 

macrophages247. This approach showed that CAFs can enable CRC cell plasticity and 

induce a slow-cycling revival stem cell fate. This in turn helps cancer cells be protected 

from chemotherapy. However, it was limited by only including a subset of TME 

components. A growing number of approaches have focused on genetically 

engineering mouse models to carry out lineage tracing, and understand how 

phenotypes link to mutations within a more complex TME254. 

Often these experimental approaches are combined with an approach to quantify cell 

plasticity. The most common approach, although not yet widely established, correlates 

cell states with phylogenetic trees. A recent approach, PATH (phylogenetic analysis of 

trait heritability),  draws on methods used in evolutionary biology to determine the 

extent of phenotype heritability by correlating the genetic distance using a 

phylogenetic tree with phenotype changes255. However, due to potential spatial 

confounders (in many cancers similar cancer clones exist in a similar spatial location256 

) this could inaccurately attribute a state to genetic heritability, whereas in fact the 

clones were located within the same part of the TME which caused the state change. 
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The spatial localisation of clones is cancer specific and it has been shown that other 

cancers do not have spatially located clones, for example colorectal cancer247. Other 

similar approaches include EffectivePlasticity metric which is also based on 

phylogenetic relationships to measure the distribution of transitions between cell 

states254 and  hidden markov models257. 

Additional approaches use chromatin measures to quantify plasticity246. For example, 

predictive models have been developed to link chromatin states to specific 

transcriptional phenotypes. Analysing the uncertainty in the prediction can then be 

used to infer high plasticity, with low uncertainty linked to low plasticity. This is as the 

model learns the relationship between the chromatin-derived features (e.g., ATAC-seq 

peaks) and the specific gene expression programs that define distinct cell states. 

Chromatin features mapping strongly to a single transcriptional phenotype, suggest 

low plasticity or a committed cell state whereas chromatin features that are difficult to 

predict suggest that they are compatible with multiple transcriptional states, indicating 

high plasticity. However, it is important to note that cells can undergo plasticity through 

methods beyond chromatin, such as transcriptional regulation by transcription factors 

and post-transcriptional modifications (e.g., RNA editing, alternative splicing), and so 

this approach likely picks up a narrow program of plasticity.  

Overall, cell plasticity is a process that can act at the genetic, epigenetic, and 

environmental level to enable phenotypic adaptability. Currently definitions lack the 

specificity required to enable more straightforward communication of ideas about the 

different aspects of plasticity. For example, breaking down plasticity into capturing 

short term and longer term changes. I envisage that as the field matures, more precise 

definitions will follow. 

4.1.2  Cancer as an ecological model 

The relationship between environment, genotype, and phenotype is fundamental to 

understanding biological systems, extending beyond just cell plasticity. This 

relationship can be observed in many contexts: from immune cell adaptation to human 

responses to stressors like diet or climate and to species evolution. I can therefore 

leverage methods and concepts used in other areas which have extensively studied 
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similar relationships to enable us to model cell plasticity, and account for 

environmental factors. 

In ecology, modelling the environment is key to understand where species are located, 

and how they have adapted phenotypes for their niche. In recent years, increasing 

analogies have been drawn between cancer cells and ecological niches, comparing 

the TME to an ecosystem75,258. An ecosystem is a natural environment where 

organisms interact with other organisms in addition to non-living aspects of the 

environment, such as the climate, water and soil. In cancer, this can be seen as cancer 

cells interacting with other cancer cells (of the same or different phenotypes), with 

other cells such as immune cells, and with other non-cellular components of the TME 

such as angiogenesis, hypoxia, and chemokines75. Additional parallels can be found 

in cancer evolution, where interactions between cancer cells and the TME are thought 

to drive evolutionary processes that enable adaptation and survival under harsh 

conditions. This adaptability is driven by genetic variations, including oncogenic 

mutations and epigenetic reprogramming, allowing cancer cells to survive within the 

TME. 

Species distribution models and ecological niche models have emerged as a popular 

way of understanding the environment within ecology, and there are multiple different 

approaches developed using statistical and machine learning methods. Species 

distribution models (SDMs) focus on predicting species locations based on the 

environment (with variables such as temperature and soil type used), whereas 

ecological niche models (ENM) focus on understanding the underlying process and 

inference of the important variables259–262. These methods take into account important 

aspects of spatial processes, such as spatial autocorrelation, which traditional 

machine learning models do not. They also typically assume presence-absence data 

and therefore the parameters and distributions used are tailored to this259. This makes 

these models valuable as a source of inspiration but not directly applicable to our 

problem, which often involves continuous data (e.g., phenotype scores) or multiple 

discrete categories representing distinct cellular states. Nonetheless, I can adapt the 

concept of an ecological niche, viewing different TME components as the 

environmental variables that define the habitat of various cellular states. 
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The environment is also widely modelled by geo-scientists and economists, and a 

variety of spatial regression models have been developed to understand geographical 

phenomena145,263. These models are less statistically constrained compared to SDMs 

or ENMs, and can therefore be more easily adapted to other domains259. These 

models typically build on ordinary least squares regression (OLS), a very widely used 

technique to analyse the cause and effect relationship between a response variable 

and covariates. However, OLS is unsuitable for spatial data as it depends on the error 

terms in the model being independent. This is typically not the case with spatial data, 

due to spatial autocorrelation (observations tend to be closely related to neighbouring 

observations). This led to models, such as spatial autoregressive models (SAR) and 

spatial error models (SEM) that can account for spatially dependent variables by 

including a spatially lagged dependent variable as an explanatory variable (SAR) or 

by addressing spatial autocorrelation in the error term (SEM)264,265. These spatial 

regression models have been used to understand a range of geospatial patterns such 

as pollution and resource availability, and extreme weather events266–269. 

However, these models typically fail to account for spatial heterogeneity, where 

relationships between variables and outcomes vary across different locations. To 

address this limitation, geographically weighted regression (GWR) was developed to 

analyse how the influence of factors on a response variable changes across space270.  

A more recent development from GWR is multiscale geographically weighted 

regression (MGWR), where each variable can operate at its own spatial scale, 

recognising that spatial relationships often differ in scale271. Importantly though, this is 

a different aspect of spatial scale to the problem mentioned in Chapter 3, where scale 

referred to the level of aggregation. This approach calculates an optimal spatial scale 

(or bandwidth) for each variable by comparing models fitted across different spatial 

ranges using metrics such as the Akaike Information Criterion (AIC)271. Importantly, 

these methods allow for a quantification of heterogeneity of the spatial processes, 

rather than computing averages across the spatial landscape.  

4.1.3  GeoAI to further develop statistical ecological models 

Importantly, the methods described so far are fairly specific for each individual domain. 

The emerging field of geospatial artificial intelligence (GeoAI) aims to enhance the 

flexibility of existing geospatial statistical models, scale them to accommodate larger 
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datasets, and improve their predictive capabilities272,273. Due to the large feature space 

of spatial transcriptomic data, with unique levels of information available from gene 

expression to cell type information and to the importance of cell signalling networks 

thus driving the need to model connections between spatial variables, GeoAI 

approaches offer another useful framework for spatial modelling. GeoAI approaches 

include building in spatial autocorrelation and heterogeneity-aware methods to deep 

learning approaches, as well as spatial cross-validation approaches272. The positional 

encoder graph neural network is an example of a geostatistical adaptation on graph 

neural networks (GNNs). Here, the model is trained to predict local spatial 

autocorrelation of the output as an additional task, enabling the model to learn more 

generalisable features and predict with higher accuracy274. Developing deep learning 

methods for spatial data without incorporating the important geostatistical properties 

can lead to erroneous measures of accuracy of the model, and misidentify variables 

deemed important. However, unlike the geostatistical approaches, GeoAI variable 

importance is an active field of development272.  

4.1.4  Specialised methods for capturing spatial effect  

Current spatial transcriptomic methods also provide valuable tools for modelling the 

environment. GNNs have been a powerful approach to analyse spatial transcriptomic 

data from cell deconvolution to ligand receptor interaction analysis132,135. Spatial 

Interaction Modelling using Variational Inference (SIMVI) recently built on these ideas 

to identify cell intrinsic and spatially induced latent variables in spatial transcriptomic 

data275. While SIMVI offers robust statistical guarantees for the disentanglement of 

these variables, it lacks interpretability, making it difficult to attribute specific 

contributions to individual cell types or intrinsic factors such as copy number 

alterations. 

The understanding of how a cell changes state, whether driven by cell-intrinsic or cell-

extrinsic factors, is of high importance for understanding cell plasticity and therefore 

developing appropriate targeted therapies248. In this chapter, I will walk through our 

approaches inspired by geo-statistics and GeoAI to quantify and explain cell-intrinsic 

and cell-extrinsic variables involved in cell plasticity, using EMP as an example 

phenotype. 
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4.2 Methods 

4.2.1  Overview 

In this work, I investigate the EMP program as a framework to showcase our 

methodological approach for quantifying cell plasticity. Utilising a graph neural network 

(GNN) model, I assess the contributions of the extrinsic and intrinsic factors to cell 

phenotypes. Specifically, I approximate extrinsic effects through cell type interactions 

and intrinsic effects through copy number alterations. By interpreting the importance 

of nodes and edges in the GNN predictions, I gain insights into the model's learning 

process. 

I model EMP both as discrete states and as a continuous process, integrating 

geostatistical regression models to further understand EMP as a continuous 

phenomenon.  

4.2.2  Dataset processing 

 Xenium Breast Cancer Data download and processing 

A Xenium breast cancer dataset consisting of 167,780 cells and 307 genes and a 

matched Visium dataset consisting of 4992 spots and 18,085 genes was obtained from 

Janesick et al..110 The sample was Stage II-B, ERௗ+ௗ/PRௗ−ௗ/HER2ௗ+ formalin-fixed 

paraffin-embedded (FFPE) breast cancer tissue. To align to Visium data to the Xenium 

data SpatialData Python package was used276. SpatialData uses landmark points in 

the images to transform data into a common coordinate system. Cell annotations were 

used as calculated in Marconato et al.276. Additional subtype annotations as labelled 

by a pathologist (incl. whether the region is invasive vs. DCIS) were used as described 

in Janesick et al.110 

I used Scanpy for pre-processing, using default parameters162. Specifically, we filtered 

out genes that were in less than 5 cells, and ensured each cell had a minimum of 75 

counts. For Visium I ensured the mitochondrial fraction was less than 15%, the number 

of genes with larger than 500 and cells has a minimum gene fraction of 0.2. 

 SCEVAN clonal calculation 

To perform clonal estimation in cancer epithelial cells, I utilised the matched Visium 

dataset due to its ability to estimate copy number amplification, currently not possible 
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with Xenium data because of its limited gene coverage, which limits the detection of 

copy number alterations. Using SCEVAN277, I added further evidence for the tumour 

cells, which had been previously identified using Cell2location. Using SCEVAN, I 

identified subclones and estimated the chromosomal regions affected by alterations 

within each subclone. SCEVAN is a fast variational algorithm using multichannel 

segmentation. SCEVAN does not require user provided parameters as other methods 

such as inferCNV278 require, and instead automatically estimates the highly confident 

normal cells based on count data to use as a baseline.  

 Clonal PCA  

To reduce the dimensions of the sub-clonal alteration matrix returned by SCEVAN (8 

subclones and 160 altered regions) I ran principle component analysis (PCA) on the 

dataset. I obtained principal components capturing the main sources of variation within 

the dataset. This allowed us to derive principal components that encapsulate the key 

sources of variation within the data. 

 EMT annotation 

I used scanpy.score_genes to score that EMT hallmark gene signature279 on the 

Xenium dataset. I ensured a high correlation between the set of EMT genes found in 

Xenium and the Visium datasets to ensure the limited gene coverage found in Xenium 

did not impact the gene signature scoring. To obtain states of epithelial, hybrid and 

mesenchymal cancer epithelial cells I binned the EMT hallmarks score into four 

quartiles, representing an epithelial state, an epithelial-hybrid state, a mesenchymal-

hybrid state and a mesenchymal state.  

 EMT marker genes specific to EMT tumour cells  

I performed further quality control to ensure I was not mixing myCAF signatures (which 

display high enrichment of EMT genes) with the cancer epithelial cells labelled with a 

MES signature. I analysed key differentiating genes in a well annotated breast cancer 

atlas scRNA-seq dataset173. In this dataset, I filtered for only the subset of genes that 

were present in Xenium. I have previously annotated this dataset with EMT states. I 

used sc.tl.rank_genes_groups within the scanpy package to find the top marker genes 

between the labelled mesenchymal cancer epithelial cells and CAFs. I employed 

Cohen’s d score to quantify the effect size and discriminative power of each candidate 
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marker. Cohen’s d measures the standardised difference between the means of two 

groups, in this case, the expression levels in CAFs versus mesenchymal cancer cells 

and identified the number of genes required to accurately distinguish between the cell 

types. Using these genes I could then filter for mesenchymal cancer cells in the 

Xenium dataset that expressed the marker genes at an abnormally high level (higher 

than the 1st quartile range of LUM expression for CAFs). I had 138,780 cells after 

filtering.  

 MERFISH dataset processing 

A mouse motor cortex MERFISH dataset was downloaded from Zhang et al280. The 

data consists of 61 tissue slices and 280,000 cells. The cells were annotated using 

258 genes in the original study. A total of 23 cell subclasses were identified.  I used 

the coordinates and cell type annotations as provided by the authors  

4.2.3  GNN approach 

To construct the GNN prediction approach, I adapted the widely used Graph 

Convolutional Network (GCN) framework.  

𝑯(𝒍ା𝟏) = 𝛔 ቆ൫𝑫෩൯
ି

𝟏
𝟐𝑨෩൫𝑫෩൯

ି
𝟏
𝟐𝑯(𝒍)𝑾(𝒍)ቇ 

Where:  

 𝐻(௟) is the matrix of node feature representations at layer 𝑙, with 𝐻(଴) = 𝑋. 

 𝐻(௟ାଵ) is the matrix of node feature representations at layer 𝑙 + 1.   

 𝐴ሚ is the adjacency matrix with added self-loops, i.e., 𝐴ሚ = 𝐴 + 𝐼. 

 𝐷෩ is the degree matrix of 𝐴ሚ. 

 𝑊(௟) is the learnable weight matrix for layer 𝑙. 𝜎 is the activation function (e.g., ReLU). 

 

The datasets were loaded into a PyTorch Geometric dataset, where I adapted custom 

classes to include various features and configurations tailored to our experiments. 

These configurations included incorporating cell type and/or copy number information, 

as well as modifying the training paradigm to be either inductive or transductive. On 

the MERFISH dataset, I utilised a graph neural network (GNN) with three graph 

convolutional layers, a learning rate of 0.01, and trained the model for 200 epochs. A 
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dropout rate of 0.5 was applied to regularise the model and prevent overfitting. 

Similarly, for the Xenium breast cancer dataset, I trained a GNN with the same 

architectural configuration, three layers, a 0.01 learning rate, and 200 epochs, with a 

dropout rate of 0.5. I also used Graph Attention Networks (GAT) but found no 

difference in accuracy. The SquidPy (Spatial Single-Cell Analysis in Python) 

package116 was used for graph construction using sq.gr.spatial_neighbors and 

NetworkX163 was used for further graph manipulation.  

Mean squared error (MSE) loss was used for continuous training, while cross-entropy 

loss was used for classification tasks involving categorical labels. This enabled the 

implementation of both GNN regression and GNN classification models. I adjusted for 

spatial autocorrelation by calculating the Moran’s I statistic and propagating this 

backwards: 

𝐿ெ௢௥௔௡ =
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𝐿ெ௢௥௔௡: Moran's loss, quantifies spatial smoothness or autocorrelation.  

𝑊: Total sum of all spatial weights 

𝑤௜௝ : Spatial weight between locations 𝑖 and 𝑗, based on proximity.  

𝑥௜  : Feature values (e.g., gene expression, model outputs) at locations 𝑖 and 𝑗.  

 

To mitigate the issue of class imbalance in the training data, I applied weighted loss 

functions, ensuring balanced representation and learning across all classes: 

𝑤௜ =
1

𝑓௜
 

𝑤௜
normalized =

𝑤௜

∑ 𝑤௝
஼
௝ୀଵ

 

 

𝑓௜ represents the frequency of class 𝑖 in the training set. 𝑤௜ is the initial weight assigned 

to class 𝑖, and 𝑤௜
normalized is the weight after normalisation. The normalisation step 
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ensures that the sum of all weights ∑ 𝑤௜
normalized஼

௜ୀଵ  equals the number of classes 𝐶, 

maintaining balance in the loss function. 

Full-graph training was conducted to use the complete structural information present. 

When training I used the entire graph by masking out the other non-tumour cells before 

loss back-propagation. Therefore the masked out non-tumour cells were used for loss 

calculation but they did not influence the model as they were not used in the training. 

This improved model training compared to a more standard approach of using 

subgraphs. 

GNN training can be approached using either transductive or inductive learning. In 

transductive learning, node classification is performed within a single graph, where 

some nodes are masked during training and used for prediction. Inductive learning, by 

contrast, involves training on subsets of a graph or entirely separate graphs, aiming to 

generalise the learned representations to previously unseen graphs. I reported the 

results for both approaches. 

Spatial cross-validation was conducted using 10 spatial splits. When using the Xenium 

dataset, inductive training was conducted by dividing the slide into 10 spatial splits, 

while transductive training involved randomly masking nodes, keeping 10% of the 

nodes within in a test set (5,776 tumour nodes). For the MERFISH dataset, which 

included 61 slides, inductive training was performed by splitting the data based on 

individual samples, whereas transductive training again involved random node 

masking across the entire dataset. 

The models' performances were evaluated using F1 scores and ROC-AUC for 

classification, and mean squared error for regression. 

 GNN explanation 

GNNExplainer was used for edge explanation. The main goal of GNNExplainer is to 

find a subset of the graph that maximises the prediction probability for a given target. 

This helps in understanding which parts of the input graph are most relevant to the 

decision made by the GNN. GNNExplainer learns a mask over the edge features, and 

uses gradient-based optimisation to update the masks. The loss function combines 

the prediction loss (which ensures that the masked subgraph results in the same 

prediction as the original) and a regularisation term (which controls the complexity and 
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sparsity of the mask). I compared the explanations for each class to explanations 

generated from random shuffled nodes to obtain a p-value for each edge explanation.  

Nodes were explained using integrated gradients, an approach which assigns an 

importance score to each node in a graph by measuring how adjusting that input node 

feature from a baseline to its actual value changes the model's prediction:  

𝐺௜(௫) =  ൫𝑥௜ −  𝑥௜
′൯ ⋅ න

𝜕𝐹 ቀ𝑥′ +  𝛼൫𝑥 − 𝑥′൯ቁ

𝜕𝑥௜
𝑑𝛼

ଵ

ఈୀ଴

 

 

Where: 

 𝑖 is the feature 

 𝑥 is the input 

 𝑥′is the baseline 

 𝛼 is the interpolation constant to perturb features by 

The definite integral is not always numerically possible so a numerical approximation 

is calculated instead.   

4.2.4  Spatial regression modelling 

Prior to spatial regression I removed variables with high VIF and autocorrelation 

scores. I tested for additive effects using the spatial random forest spatialRF  R 

package281. I did not uncover significant additive effects. Unless otherwise states, I 

used models as implemented in the PySAL package199. 

I implemented spatial error modelling (SEM) to our datasets. SEM is an extension of 

linear regression that incorporates a spatially structured error term to model spatial 

autocorrelation in the residuals, thereby capturing spatial dependencies that would 

otherwise violate standard regression assumptions. 

The basic form of the Spatial Error Model (SEM) can be expressed as:  

𝑦 =  𝑋 β +  λ𝑊 ϵ +  ϵ 

Where: 

 𝑦: Represents EMT label for each observation 
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 𝑋: Contains the predictors for the regression model 

 𝛽: Coefficients that represent the effect of each predictor 

 𝑊: Spatial weights matrix (spatial relationships among observations) 

 𝜆: Spatial autoregressive coefficient for the error term (Captures the strength of 

the spatial dependence in the error terms) 

 ϵ: Independent and identically distributed error terms; assumes a normal 

distribution 

ϵ ∼ 𝑁(0, σଶ) 

I applied SEM to various subsets of the Xenium data, including between ductal 

carcinoma in situ (DCIS) and invasive regions, to assess how spatial interactions 

change within these regions. 

Geographically weighted regression (GWR) and multi-scale geographically weighted 

regression (mxGWR) were also used to further interrogate the spatial relationships. 

These fit local regression models for each point, and therefore answer different 

questions to a SEM model. SEM is important for understanding overall variable 

importance, and variance captured. However, it may not fit the most appropriate model 

for each spatial point, considering spatial heterogeneity. Comparing model fit of SEM 

and GWR models allows for an assessment of how much heterogeneity is present, 

and to visualise how relationships change over space. GWR and mxGWR were also 

compared for spatial fit. To evaluate model performance, R2 was used to measure the 

proportion of variance explained, providing an indication of how well each model 

predicts EMT. The Bayesian Information Criterion (BIC) was also used to assess 

model complexity and fit, with lower values indicating a better balance between 

goodness of fit and model complexity. 

GWR is a spatial analysis method that allows for the modelling of spatially varying 

relationships between dependent and independent variables by fitting a local 

regression model at each point in space. The GWR equation can be represented as: 

𝑦௜ = β଴(𝑢௜, 𝑣௜) + ෍ β௞(𝑢௜, 𝑣௜)𝑥௜௞

௣

௞ୀଵ

+ ϵ௜, 

Where: 
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 𝑦௜ is the EMT label at location 𝑖 

 𝛽଴(𝑢௜, 𝑣௜) is the intercept term specific to location 𝑢௜ , 𝑣௜ 

 𝛽௞(𝑢௜, 𝑣௜) are the local regression coefficients for the k -th explanatory variable 

at location (𝑢௜, 𝑣௜) 

  𝑥௜௞ are the explanatory variables at location 𝑖 

 𝜖௜ is the error term at location 𝑖 

 𝑝 is the number of explanatory variables 

 

mxGWR extends GWR by allowing each explanatory variable to have its own spatial 

bandwidth, which enables the modelling of multi-scale spatial relationships. The 

mxGWR model can be represented as: 

𝑦௜ = β଴(𝑢௜, 𝑣௜) + ෍ β௞(𝑢௜, 𝑣௜ , 𝑏௞)𝑥௜௞

௣

௞ୀଵ

+ ϵ௜ 

Where:  

 𝑏௞ Unique spatial bandwidth for the 𝑘-th variable, allowing the model to adapt 

to varying spatial scales 

 

GWR applies a single bandwidth across all variables, which may not capture multi-

scale spatial processes accurately. In contrast, mxGWR, allows different bandwidths 

for each explanatory variable, provides a more flexible and specific understanding of 

spatial heterogeneity. 

4.3 Results 
In this section, I first introduce the Xenium data used as the proof of concept for our 

spatial predictive modelling concept (4.3.1). I then further describe the GNN approach 

for prediction and highlight the results in a well-annotated mouse brain dataset and 

the Xenium breast cancer dataset (4.3.2). Finally, I demonstrate the additional insights 

gained from geostatistical regression methods on the Xenium breast cancer dataset 

(4.3.3).  
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4.3.1  Characterising the Xenium breast cancer dataset 

To analyse the intrinsic and extrinsic variables that shape EMT in breast cancer, I 

integrated annotations of the dataset from various sources. First I combined major and 

minor cell type annotations from a previously run cell annotation study276 ( 

Figure 38). The cell types included 9 major populations: B-cells, CAFs, cancer 

epithelial cells, endothelial cells, myeloid cells, normal epithelial cells, PVL cells, 

plasmablasts and T-cells. The minor cell classes included cancer LumA stem cells, 

macrophages, cancer basal cells, Cancer LumB cells, luminal progenitors, PVL 

immature cells, mature luminal cells, cancer Her2 stem cells, myoepithelial cells, 

myCAF-like cells, cancer cycling cells, monocytes, cycling myeloid cells, endothelial 

lymphatic LYVE1 cells, endothelial CXCL12 cells, natural killer (NK) cells, cycling T 

cells, endothelial ACKR1 cells, plasmablasts, NKT cells, CD8+ T cells, CD4+ T cells, 

dendritic cells (DCs), naive B cells, memory B cells, cycling PVL cells, and PVL 

differentiated cells. The cell type labels make up the extrinsic variables I am modelling. 

In addition, I integrated pathologist labels110, including ductal carcinoma in situ (DCIS) 

and invasive breast cancer subtypes, as shown in Figure 39.  

 

Figure 38. The major cell types annotated in the Xenium slide. 
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Figure 39. The pathologist labels describing the Xenium slide, including DCIS, invasive tumour 

and proliferative invasive regions.  

To approximate the intrinsic cell variables, I estimated the copy number changes 

present in each cancer cell using SCEVAN277. This tool divides the genomic regions 

into bins, smoothing out noise, and uses a non-tumour cell baseline to estimate the 

copy number changes. For accuracy, it identifies the copy number changes in clusters 

(subclones). I identified 8 subclones in total sharing similar genomic alterations 

(Figure 40a-c). These subclones display a range of copy number alterations. 

Alterations found across the subclones include the 17q22-24 amplification, a common 

site of amplification in breast cancer282, and 8q24.3 amplification which included the 

MYC oncogene, often amplified in aggressive breast cancer283. Deletions found across 

all subclones include chromosome 11q13.4-q25 which contains the CCND1 gene 

(cyclin D1) involved in cell cycle regulation284.  
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Figure 40. Copy number alterations present in Xenium slide. a. Genomic alterations present in each 

subclone. Heatmap represents a select number of regions. b. Subclone tree determined by the copy 

number alterations. c. Full heatmap highlighting genomic alterations present in each subclone.  

I reduced the dimensions of the copy number alterations matrix for the subclones using 

PCA. This allows us to have a smaller set of uncorrelated variables capturing different 

portions of the variance in the data to use in the downstream GNN or spatial regression 

analysis. Each PC captured different aspects of the variation in the copy number 

alterations, with PC1 to PC7 capturing over 99% of the variation (Figure 41). The PCs 

align with genomic patterns associated with breast cancer. PC1 relates to deletion of 

tumour suppressor genes like BRCA2 (13q13.1-q34) and amplification of oncogenes 

such as CCND1 (11q13.2-q13.4). PC2 highlights important regions for breast cancer 

(e.g., 1p and 3q285,286). PC3 and PC4 mainly included oncogene amplification, such 

as PIK3CA (3q26.1-q26.33). PC5 and PC6 include known oncogene amplifications 

(e.g., CCND1 at 11p) and significant tumour suppressor gene deletions. PC7 indicates 

co-occurring amplifications and deletions, involving regions with genes like BRCA1 

(17q12-q21.1). Supplementary Table 1 summarises the regions associated with each 

PC, and their associated amplification or deletion. The PCs manage to capture the 

trends observed in the subclone evolutionary tree, for example, it is apparent when 

visually inspecting the PCs, that PC1 captures chromosomal alterations found in 

subclone 4 to the highest extent, and then subclone 6 (Figure 42 - Figure 43). On the 

subclone tree, I see that 6 is a subclone descended from subclone 4 (Figure 40).  

 

 



112 
 

 

 

Figure 41. The feature loadings for each PC. The top loadings are plotted, each corresponding to 

different chromosomal regions and the variance explained for each PC (bottom centre).  

 

Figure 42. The subclones annotated in the Xenium slide. 
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Figure 43. PC1 plotted across the Xenium slide.  

I then assessed the EMT state of the cancer epithelial cells present in the Xenium 

data. To ensure that the reduced number of genes in Xenium did not compromise our 

downstream analysis, I compared the EMT signature scores derived from the reduced 

set of genes (20 genes that are overlapping in EMT signature and Xenium) with the 

scores from the full 195-gene EMT hallmark signature in the Visium data. I observed 

a strong correlation, confirming that the smaller gene panel still robustly captures the 

EMT signal (Figure 44). This is in line with other research that suggests that EMT 

hallmark gene signature can be captured more targeted gene panels287. I identified 

four EMT states by binning the signature enrichment score into four.  
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Figure 44. EMT hallmark correlation analysis. Correlation of full gene list for EMT hallmarks signature 

scores in Visium breast cancer dataset compared to the limited gene list of only genes present in 

Xenium scored in the Visium breast cancer dataset.  

Given the shared transcriptional program between myCAFs and EMT cancer epithelial 

cells229, I wanted to confirm that the cells labelled as EMT cancer epithelial cells were 

not mistakenly classified myCAFs. To do this I sought to identify uniquely expressed 

genes within these cells types that can be used as reliable markers. I began by 

identifying the top differentially expressed genes between myCAFs and cancer cells 

with a mesenchymal phenotype in the previously labelled scRNA-seq breast cancer 

dataset as described in Chapter 3 (Figure 45). I then incremently selected the top 10 

differentially expressed genes (Figure 46a), and evaluated how well these genes 

could differentiate CAFs from EMT tumour cells in the scRNA-seq dataset (Figure 

46b). Using Cohen’s d score as the metric, I found that the top differentially expressed 

gene, LUM, had a particularly strong discriminative power (Cohen’s d = –4.26), 

surpassing even the separation achieved by combining the other top 2–10 genes 

(Cohen’s d ranging from –3.45 to –3.62) (Figure 46b). I further confirmed the gene 

expression of LUM could differentiate the myCAFs and cancer epithelial cells by 

assessing the distribution across the cell type subsets, (Figure 47-Figure 48). I then 

investigated LUM expression in the Xenium data and found a small proportion of cells 

labelled as MES in our dataset with high LUM expression (Figure 49a). I removed 

these cells (Figure 49b).  
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Figure 45. Heatmap illustrating the top-ranked differentially expressed genes and their expression 

profiles across myCAFs and mesenchymal tumour cellsin the annotated scRNA-seq dataset. 

 

Figure 46. a. Top 20 differentially expressed genes distinguishing CAFs from MES tumour cells ranked 

by their z-score. b. Cohen’s d metric highlighting cluster separability between CAFs and MES tumour 

cells using increasing number of marker genes. 
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Figure 47. LUM expression across the major cell types in breast cancer scRNA-seq dataset. 

Values represents the log2 normalised gene expression of LUM. 

 

Figure 48. LUM expression across the minor cell types in the breast cancer scRNA-seq dataset. 

Values represents the log2 normalised gene expression of LUM. 
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Figure 49. LUM expression across the Xenium annotated cancer cells and CAFs. a LUM 

expression pre filtering Xenium cells. b LUM expression post filtering for the 1st quartile range for CAFs. 

Values represents the log2 normalised gene expression of LUM. 

Having defined the four states within the breast cancer Xenium dataset, I then 

assessed their distribution across subclones and molecular subtypes (Figure 50). I 

found that invasive regions had a higher proportion of MES cells, as expected due to 

the link between EMT and metastasis. Interestingly, the invasive proliferative regions 

contained a smaller proportion of MES cells, in line with our previous work and 

extensive other research288–290 suggesting that a proliferative state acts in opposition 

to a mesenchymal state. The DCIS has a lower proportion of MES cells. However, all 

regions did have all states present within them. This was the same with the subclones 

as well. Interestingly, the proportion of EMT states align with their evolutionary tree. 

For example, the subclones with the highest MES states are closer in origin (subclone 

7 and 1) and the subclones with the highest EPI states are also closer in origin 

(subclone 4 and 6). This hints at a genomic influence on EMT which I will explore in 

the modelling.   

 

Figure 50. EMT states identified in Xenium dataset. a EMT state proportions visualised within the 

Xenium dataset. b EMT state proportions across the subtypes within the Xenium dataset. c EMT state 

proportions across the subclones within the Xenium dataset. 
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Now, I have the fully annotated dataset (Figure 51 - Figure 52) that I can explore 

further in the next sections.  

 

Figure 51. EMT states and CD8+ T-cell distribution in the Xenium dataset. 

 

Figure 52. EMT states and myCAF cell distribution in the Xenium dataset. 

 

4.3.2  Modelling the TME and genomic influences on EMP using graph 

neural networks 

Rationale of GNN approach 
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To assess the spatial dependence of the TME on EMT I developed a graph neural 

network framework. If I cannot reliably predict EMT, then it suggests that the spatial 

positioning of cancer cells as they undergo EMT does not impact the transition, or I 

need to capture other levels of spatial information. I hypothesise that if the spatial 

component (TME) is more important for EMT compared to the intrinsic factors 

(genomic changes), it should be easier to predict the EMT status of the cells using this 

information compared to just the intrinsic information (here using copy number 

alterations as a proof of concept).  

A GNN can capture spatial relationships between cell types in a way that other 

machine learning models cannot. Unlike most spatial prediction models, which 

typically rely on distance as a feature, GNNs can model the connections between 

nodes (in this case, cell types) through edges, allowing for a better representation of 

spatial interactions. 

I can then use this framework for a more general framework of modelling which 

variables are most important for cell state changes. Following up from this, I can then 

suggest how “plastic” cell states are. I would hypothesise that states that cannot be 

easily predicted are flexible states exhibiting plastic potential. The states that have 

higher predictability are cell types likely have stable spatial relationships and specific 

roles in their microenvironment. This reflects biological constraints on their function. 

These may be the cells that are easier to treat, given their well-defined spatial 

relationships and may have stable therapeutic targets e.g. other immune cells. On the 

other hand, more plastic cells, which are harder to predict, have been shown to be 

more challenging to treat due to their dynamic and less constrained nature291–293 

These can be formulated as equations:  

Variables: 

 𝑆: Cell state (e.g. EMT) which can be binary or continuous 

 𝐼: Intrinsic variables e.g. copy number alterations 

 𝐸: Extrinsic variables from the TME 

 𝑆መ: The predicted cell state from the model 

Performance metrics:  
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 AUC: Calculates ability of the model to distinguish between classes by 

calculating the probability that the model ranks a randomly chosen positive 

instance higher than a randomly chosen negative one (used for classification 

tasks) 

 R2: Proportion of variance in cell state that is predictable from the independent 

variables (used for regression tasks) 

A cell state e.g. EMT can be modelled as a function of intrinsic variables, extrinsic 

variables and randomness: 

𝑆 =  𝑓(𝐼, 𝐸, 𝑅) 

 

i. State primarily linked to genomic and TME variables, potentially indicating 

genomic factors increasing cells responsive to the environment: 

𝑆 = 𝛼𝑓(𝐼) + 𝛽𝑓(𝐸) 

𝐴𝑈𝐶ூ 𝑜𝑟 𝑅ூ
ଶ  ≈  𝐴𝑈𝐶ா  𝑜𝑟 𝑅ா

ଶ 

ii. State primarily linked to extrinsic and not driven by intrinsic factors  

𝑆 = 𝑓(𝐸) 

𝐴𝑈𝐶ா  𝑜𝑟 𝑅ா
ଶ >  𝐴𝑈𝐶ூ 𝑜𝑟 𝑅ூ

ଶ 

 

iii. State primarily linked to intrinsic variables ie. genomic variables: 

𝑆 = 𝑓(𝐼) 

𝐴𝑈𝐶ூ 𝑜𝑟 𝑅ூ
ଶ >  𝐴𝑈𝐶ா 𝑜𝑟 𝑅ா

ଶ 

Validation of GNN method  

To illustrate the concept of capturing the spatial effect using the TME, I demonstrated 

the method using a MERFISH dataset from the mouse cortex280. This dataset includes 

both cell types that exhibit spatial dependencies (their distribution is influenced by 

tissue structure or interactions) and those that are more randomly distributed, lacking 

strong spatial organisation and therefore offers a useful test to check the method picks 

up the key differences in spatial dependencies (Figure 53). 
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Figure 53. A representation of the cell types present in mouse motor cortex MERFISH slides.  

The layered neuron cells, such as Layer 2/3 intratelencephalic neurons (L2/3 IT), 

Layer 4/5 IT neurons (L4/5 IT), Layer 5 extratelencephalic neurons (L5 ET), Layer 5 

IT neurons (L5 IT), Layer 5/6 near-projecting neurons (L5/6 NP), Layer 6 

corticothalamic neurons (L6 CT), and Layer 6b neurons (L6b), have distinct spatial 

organisations within the motor cortex, each with distinct roles in cortical processing. 

For example, L2/L3 IT cells are involved in integrating information across cortical 

layers and higher-order processing. In addition to the layered neurons, the vascular 

leptomeningeal cell type (VLMC) has a distinct spatial location at the border of the 

cortex (Figure 53).   

Additional cells within the dataset include the GABAergic neuron class, which was 

classified into five subclasses based on marker genes; Pvalb (Parvalbumin-

expressing) neurons, Sst (Somatostatin-expressing) neurons,Vip (Vasoactive 

Intestinal Peptide-expressing) neurons, Sncg (Synuclein-gamma-expressing) 

neurons, and Lamp5 (LAMP family member 5-expressing) neurons. In addition to the 

neuronal cell classes, the dataset includes several non-neuronal cell subclasses; 

astrocytes (Astro), endothelial cells (Endo), pericytes (Peri), smooth muscle cells 

(SMC), microglia (Micro), perivascular macrophages (PVM), oligodendrocytes (Oligo) 

and oligodendrocyte precursor cells (OPC). 

I hypothesised that using the GNN prediction approach, the spatially constrained cells 

should be significantly easier to predict than the other cell types. To test this, I trained 

the model using the MERFISH dataset and evaluated its performance on separate 
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mouse MERFISH slides, ensuring no data leakage, averaging the results over 10 

distinct train-test splits. For each experiment, I masked the cell type of interest and 

used it as the prediction label, while providing only the remaining cell types as input to 

the model. This process was repeated for each cell type to assess the model's 

predictive ability. 

The known spatially constrained cells with well-defined roles do have a higher 

prediction accuracy (Figure 54). L2/3 IT, L4/5 IT, L5 ET, L5 IT, L5/6NP, L6CT and 

VLMC cells have an AUC above 0.85. These results are consistent regardless of the 

train and test split, and align with our expectation that relative to the other cell types 

these should have higher predictability. Oligodendrocyte precursor cells (OPCs) and 

pericytes (peri) display the least predictive capabilities. OPCs are considered plastic 

cells, as they can differentiate into oligodendrocytes depending on where myelination 

is needed294. This plasticity means that OPCs are not tied to a fixed, predefined 

location; instead, they may migrate or change their function depending on the local 

demands for myelination, making their spatial distribution more dynamic and less 

predictable.  

Pericytes were amongst the least predictable cell types, and these are also plastic, 

changing their phenotype in response to many different environmental cues, such as 

injury, inflammation, or changes in blood flow295,296. Pericytes can differentiate into 

cells such as smooth muscle cells, fibroblasts and osteoblasts and are important in 

wound healing297. Astrocytes, and perivascular cells are also considered plastic cells, 

compared to cells such as VLMC and the layered neurons, and these had lower AUC 

values298–300.  

Plasticity in cells is inherently linked to more variability in their locations and functions, 

making them harder to predict accurately in spatial models. Therefore, the pattern of 

higher accuracy for more stable cell types and lower accuracy for more plastic ones 

aligns with expectations. 



123 
 

 

 

Figure 54. AUC range of predicted cell types in the mouse motor cortex MERFISH dataset.   The 

plot displays the average AUC scores across 10 different training splits, with error bars representing the 

standard deviation. Layered (spatially distributed) cell types highlighted in green.  

Using this model, I can analyse which cell types are most influential for each prediction 

(Figure 55). Overall, the results align with biological expectations. For example, L2/L3 

neurons had a significant relationship with VIP interneurons, Pvalb interneurons, 

microglia and endothelial cells. These are as I would expect; Pvalb and VIP neurons 

and microglia are known to regulate L2/L3 neurons, and endothelial cells are important 

for maintaining the blood-brain barrier which supports L2/L3 IT neurons301–303. L6 IT 

neurons had a significant relationship with L6 CT neurons, which share close spatial 

relationships, and Sst interneurons, which target the dendrites of L6 IT neurons304,305. 

L6 IT Car3 neurons had a close relationship with L6 CT neurons, which are spatially 

located in a shared local circuit306. Oligodendrocytes had a significant relationship with 

OPCs, which make sense as OPCs differentiate into oligodendrocytes307. PVM 

(perivascular macrophages) interacting with pericytes also make sense, are they 

share a similar niche; both associated with blood vessels308. VIP neurons and Lamp5 

neurons have been found to be enriched in the superficial (layer 1 to 3 layers), and 

therefore their relationship makes biological sense309.  
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Figure 55. Cell type significance for each cell type prediction using node explanations.  Coloured 

by p-value significance level. 

I next sought to understand the edge explanations (Figure 56). Edge explanations can 

identify the important node connections, highlighting the structural dependencies in 

the graph. Overall, I found that the edges make biological sense. I am also likely 

uncovering relationships that are unknown due to the unique method of assessing the 

spatial relationships, in a more unsupervised strategy compared to more directed 

methods such as niche detection and co-localisation approaches. 

VIP neurons had the greatest number of interactions with L2/3 IT neurons. This aligns 

with their spatial location in layer 2/3310. For SMCs, I found edges mainly involving 

VLMCs. This aligns with our biological understanding as they are both vascular-

associated cells, particular at the cortical borders306. Astrocytes had many significant 

relationships when predicting PVM interactions, which makes biological sense given 

their role in immune modulation; astrocytes release cytokines that directly regulate 

PVM activity311. 

Endothelial cells demonstrated a broad range of interactions, highlighting their multiple 

roles in vascular support and neurovascular coupling. Endothelial interactions were 

particularly significant with L4/5 IT and L5 IT neurons. This is consistent with the high 
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vascular density of Layer 4, which supports intense sensory input processing, and the 

high metabolic demands of the large projection neurons in Layer 5312. 

 

 

Figure 56. Heatmaps displaying the significant edges for the cell type prediction. Heatmap 

highlights the weighting for the significant edges. 

Prediction model to understand EMT states 

Having confirmed the model aligns with biological expectations, whilst potentially 

offering novel insights in the MERFISH dataset, I applied the method to the Xenium 

breast cancer dataset. The GNN approach was trained with either just the intrinsic 

information (copy number alterations), just the extrinsic information (the TME 

information) or both and the AUCs compared.  

Interestingly, both genomic factors and the TME predict EMT states to a similar overall 

extent (Figure 57). The mesenchymal state was the most predictable using the TME 

variables, suggesting that this is the most responsive to the environment, aligning with 

other research167,313,314. The fact that genomic factors also were important suggest 

potentially that the genomic factors influence the responsivity of the MES state to the 

environment. These alterations could be selected for in MES niches, allowing these 
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cells to survive. These genetic changes could provide stability to their otherwise plastic 

state, making MES cells more predictable when combining genomic and TME 

features. 

The hybrid states are more difficult to predict (Figure 57). This suggests that they are 

less locked into a state, and have heightened plastic potential. Genomic factors do not 

appear to be able to predict these hybrid states, suggestive of the idea that hybrid 

states are not primarily driven by intrinsic genetic alterations but rather by dynamic 

interactions with the TME not captured within the cell type information or stochastic 

fluctuations in cellular signalling and reliance on post-transcriptional or epigenetic 

mechanisms. This aligns with the hypothesis that hybrid states exist in a more transient 

and flexible state, balancing epithelial and mesenchymal characteristics, and are 

influenced by a broader range of non-genetic factors, such as local cytokine 

gradients315. 

 

Figure 57. AUC range of predicted cell types in Xenium breast cancer dataset.   The plot displays 

the average AUC scores across 10 different training splits, with error bars representing the standard 

deviation for the prediction model for each EMT state using just the CNV, just the TME and including 

both variables.  

I then assessed the most important cells for predicting the four states (Figure 58). 

Cycling T-cells and NKT cells found within the top cells for MES state suggest an 

immune active state. Additionally, PVL immature cells were important, and these cells 

are often found in regions of active angiogenesis and have immune suppressive 

properties316. Myoepithelial cells may promote ECM remodelling, a hallmark of MES 
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states317. Interestingly the MES state had the highest number of significant nodes 

relating to the sub-clonal, intrinsic, information, with PC4 (which includes PIK3CA 

oncogene amplification in regions 3q26.1-q26.33), PC6 which includes oncogene 

amplification e.g. CCND1 at 11p, and PC7 which includes amplifications and deletions 

including regions with gene like BRCA1 (17q12-q21.1).  

Hybrid MES cells appear to have more immune suppressive features, with myCAFs 

and macrophages forming the most important nodes. Both cell types are associated 

with promoting immune-suppressed environments316,318. Additionally, LYVE1+ 

endothelial lymphatic vessels were linked to this state, cells that have been associated 

with poor outcome in breast cancer, and strongly linked to increased metastasis319. A 

monoclonal antibody inhibiting LYVE+ has been shown to inhibit breast cancer tumour 

progression319. myCAFs, macrophages and endothelial cells have been characterised 

in other EMT spatial studies110,167. Hybrid EPI cells appear most dependent on cancer 

cycling cells, suggestive of a more proliferative state. Additionally, I detected a 

relationship with PVL Differentiated cells, which contribute to vascular structure and 

stability320. LYVE1+ endothelial lymphatic cells were also important for this state, as 

for hybrid MES states.  

I observed that memory B-cells are most strongly associated with the EPI state. These 

antigen presenting cells indicate an adaptive immune response321. CXCL12+ and 

ACKR1+ endothelial cells are associated with chemokine signalling, and were 

significant cells liked to the EPI state322,323. These differ from the LYVE+ and RGS5+ 

endothelial cells, the endothelial cells linked to the hybrid states, which are linked to 

metastasis facilitation, the invasive edge and hypoxia adaption319,324–326. PC2 and PC5 

were the more important genomic variables; PC2 is linked to preservation of critical 

regions (e.g., 1p and 3q), suggesting fewer genomic instabilities. PC5 also captures 

fewer genomic instabilities. These relationships suggest EPI states represent stable, 

well-differentiated epithelial cells interacting with immune and vascular systems to 

maintain homeostasis. 
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Figure 58. Cell type significance for each EMT state prediction (using the 4 state EMT model).  

Coloured by p-value significance level.  

I also compared these explanations to a simplified 2-state EMT model, categorising 

cells into two bins based on their EMT signature scores (Figure 59). I found that the 

MES state explanations overlapped with those of the MES and Hybrid-MES states in 

the four-state model, including key cell types such as cycling T-cells, LYVE1+ 

endothelial cells, luminal progenitors, and myCAFs. Similarly, the EPI state 

explanations aligned with those of the EPI state in our model, featuring endothelial 

CXCL12+ cells, memory B-cells, and iCAFs. These suggest the stability of overall cell 

type trends, reinforcing the accuracy of our GNN explanation approach. However, it 

also shows that our four-state model provides additional granularity into the EMT 

process, revealing intermediate phenotypes and their distinct interactions within the 

TME. 
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Figure 59. Cell type significance for each EMT state prediction (using the 2 state EMT model).  

Coloured by p-value significance level. 

I then assessed the significant edge relationships (Figure 60). For the EPI state, 

interactions predominantly occur between epithelial subtypes, such as Lum A and 

HER2. Lum A shows the highest number of significant edges, which aligns with 

expectations, as it is the most epithelial-like breast cancer subtype327. The strong 

within-epithelial interactions, particularly Lum A to Lum A, make sense biologically, as 

these cells are likely located in the tumour core, less exposed to the TME. However, 

some immune infiltration is observed, including interactions with DCs and 

macrophages. Additionally, ACKR1+ endothelial cells form significant interactions, 

aiding with immune recruitment. 

The hybrid EPI state, similar to the EPI state, predominantly involved interactions with 

epithelial cells. This suggests that hybrid EPI is closely related to the EPI state, 

potentially representing a transitional state still located within the tumour core. The low 

predictability of this state may indicate that it is a stochastic, intermediate state 

emerging from EPI. The hybrid MES state displays interactions with endothelial 

LYVE1+ cells, cancer cycling cells, PVL immature cells, and myoepithelial cells. These 

relationships highlight the hybrid state’s increasing exposure to the TME and its 

intermediate nature between epithelial and mesenchymal traits. 

The MES state has the largest number of significant edges, reflecting its proximity to 

the TME and its dependence on interactions with a broader range of cell types. This 

increased connectivity likely contributes to its higher predictability. Significant 
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interactions include those between RGS5+ endothelial cells and cancer epithelial as 

well as other endothelial cells. Additionally, mature luminal cells interact with cancer 

cells and CAFs, with myCAFs forming connections across a range of epithelial cancer 

cells. As expected, basal cancer epithelial cells exhibit the highest number of 

interactions, consistent with their invasive and mesenchymal-like characteristics327. 

These findings demonstrate how cell to cell interactions (edge explanations) uncover 

additional insights than solely focusing of individual cells (node importance). 

 

Figure 60. Cell type significance for each EMT state prediction using node explanations.  

Coloured by p-value significance level. 

The results described above are from training and testing based on separate spatial 

splits; a process called inductive graph learning, which can be compared to spatial 

cross-validation used in geostatistics and ecological modelling272. However, 

transductive learning is another common approach in graph learning, where nodes are 

masked randomly within a graph (Figure 61). Within our problem setting, this can help 

gain additional clues in how much information is contained in the TME and the 

subclones.  
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Figure 61. Different training splits used for the GNN prediction modelling task. a. Transductive 

training split involves randomly masking nodes (cells) across the dataset and predicting EMT state on 

the randomly masked nodes. Training and testing splits are coloured. b. Inductive training split involved 

spatially splitting the slide into train and test set. Training and testing splits are coloured. 

I compared these two methods and found a similar overall trend in AUCs amongst the 

four EMT states, and minimal changes in AUC score (Figure 62). Inductive training as 

would be expected, has a larger error bar, due to more variation within the test set, 

suggesting some slight changes with spatial folds. However, the overall concordance 

suggests that there are unified common trends our GNN model is picking up that can 

be applied to unseen spatial regions as the inductive method of training shows.  
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Figure 62. Comparison of inductive and transductive training split. AUC range of predicted cell 

types in Xenium breast cancer dataset.   The plot displays the average AUC scores across 10 different 

training splits, with error bars representing the standard deviation for the prediction model for each EMT 

state using the TME and CNV.   

Prediction model to understand EMT as a continuous process 

I also tested the GNN approach on a continuous EMT score. Interestingly, the TME 

was much more important than the CNVs in predicting the EMT continuous score 

(Figure 63). This could indicate that the continuous score captures more transient or 

short-term stimuli from the TME, which aligns with the idea that EMT can be modulated 

rapidly in response to environmental conditions. In contrast, clonal information, which 

reflects stable, inherited genetic changes, appears to have a stronger association with 

large, more permanent EMT transitions (e.g., shifting between fully epithelial and fully 

mesenchymal states). These transitions may require more profound cellular 

reprogramming, which aligns with the longer timescales of clonal evolution compared 

to the immediate, dynamic nature of TME interactions. 
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Figure 63. GNN regression performance using the different training splits and variables for 

prediction. a The average R2 scores across 10 different training splits, with error bars representing the 

standard deviation for the continuous EMT score prediction using just the CNV, just the TME and 

including both variables. b The average correlation scores across 10 different training splits, with error 

bars representing the standard deviation for the continuous EMT score prediction using just the CNV, 

just the TME and including both variables.   

4.3.3  Modelling the TME and genomic influences on EMP using spatial 

regression approaches 

Rationale of spatial regression 

While GNNs provide valuable insights into spatial structures by modelling the graph 

structure, enhancing our ability to capture spatial information for AUC comparisons 

and edge explanations, they have less statistical guarantees. For example, there are 

limitations in explicitly addressing confounding factors or statistically accounting for 

spatial effects and heterogeneity. Geostatistical models have been developed that can 

disentangle specific spatial influences and quantify spatial variability. For instance, 

spatial geostatistical regression methods can be employed to adjust for subtype-

specific information, such as basal or HER2+, enabling the identification of key cell 

types and their contributions within these stratified spatial contexts.  

Spatial error models (SEMs) 

Spatial error models are a type of spatial regression that incorporate a spatial error 

term to account for unobserved spatial heterogeneity89. This allows us to estimate 

coefficients that represent conditional dependencies while adjusting for spatial 

autocorrelation.  
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I observe the TME variables explaining a larger portion of the variance in the 

regression model compared to clonal information, as observed in a higher R2 value 

(Figure 64). This is similar to the trend observed in GNN regression. myCAFs emerge 

as the cell type with the greatest influence (Figure 65),  an effect that persists even 

after controlling for subtype-specific effects (Figure 66). Furthermore, as clonal 

information remains significant when the effects of the TME are regressed out, this 

suggests that the inheritance of EMT is likely an important factor, independent of 

spatial colocation of similar clonal alterations. The λ (spatial error) coefficient is 

significant in all SEMs, highlighting the importance of accounting for spatial effects as 

they are a fundamental aspect of the underlying process being modelled.  

 

Figure 64. R2 values for the SEM model using both extrinsic and intrinsic variables (TME and 

CNV), just extrinsic (TME) and just intrinsic (CNV). Error bars highlight standard deviation of the R2 

value after 10 spatial splits.  
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Figure 65. Spatial Error Model coefficient estimates using intrinsic and extrinsic variables, 

modelling across the whole slide. Red indicates a significant coefficient. Lambda is the spatial 

autoregressive coefficient for the error term (quantifies the degree of spatial dependence in the 

residuals). 

Additionally, by regressing out the effects of DCIS versus invasive states (Figure 66), 

I find that invasive regions, as expected, are significantly closer to MES regions. 

Importantly, the relationship between MES cells and myCAFs remains robust despite 

these adjustments, reinforcing the biological significance of this interaction. 
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Figure 66.  Spatial Error Model coefficient estimates combining intrinsic, extrinsic variables in 

addition to pathologist annotations of the regions within the tumour, modelling across the whole 

slide. Regions include proliferative invasive, invasive and DCIS (red font). Red coefficient indicates 

significance. Lambda is the spatial autoregressive coefficient for the error term (quantifies the degree 

of spatial dependence in the residuals). 

To further explore these relationships, I performed separate SEMs for ductal and 

invasive regions (Figure 67). I found some similar trends, for example with myCAFs 

being linked with a mesenchymal phenotype in both. However, importantly, these 

analyses reveal some distinct relationships. For example, monocytes and 

macrophages appear to be linked to EMT within the DCIS regions but not the invasive 

regions.  Interestingly, I find myoepithelial cells predominantly important in ductal 

regions, while their importance decreases significantly in invasive regions. 

Myoepithelial cells, which typically form a protective barrier in ductal regions and play 

a key role in maintaining epithelial integrity, are generally absent in invasive regions328. 

Their absence likely promotes tumour invasion and progression by reducing structural 

constraints and enabling epithelial cells to transition into more mesenchymal-like, 

migratory states329.  
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Figure 67. Spatial Error Model coefficient estimates using extrinsic variables, modelling across 

DCIS (a) and invasive regions (b) separately. Red indicates a significant coefficient. Lambda is the 

spatial autoregressive coefficient for the error term (quantifies the degree of spatial dependence in the 

residuals). 

It is important to note that whilst they can provide additional insights that GNNs cannot, 

when comparing the overall regression metrics, our GNN regression approach 

outperforms SEM (Figure 68). This is as expected given that GNNs excel at capturing 

complex spatial relationships and multi-scale interactions (0.16 R2 for SEM vs. 0.24 

for GNN). 

 

Figure 68. Comparison of GNN and SEM model fit on Xenium using R2 value. 

A comparison of Geographically Weighted Regression (GWR) and Multiscale 

GWR (msGWR) modelling 
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The example of the different weighting of myoepithelial cells depending on the region 

highlights spatial heterogeneity (also termed spatial nonstationary). Currently, the 

methods assessed so far assume that spatial relationships are uniform across 

locations. However, this is not how spatial relationships typically occur. Geographically 

weighted regression (GWR) is a technique that can assess the degree of spatial 

heterogeneity observed in the dataset330; for example, I can answer the question “do 

the TME cells have a different effect depending on the spatial location?”  

The key advantage lies in moving beyond global averages to assess local 

relationships, capturing spatially varying dynamics that are important for a more 

detailed analysis. Traditional GWR applies a single bandwidth (spatial scale) to all 

variables, assuming that all relationships operate over the same spatial extent. This 

assumption can oversimplify spatial processes, as different variables often interact at 

different spatial scales. Multiscale Geographically Weighted Regression (MSGWR), a 

recent advance over GWR, addresses this limitation and allows each explanatory 

variable to have its own bandwidth, capturing relationships at the spatial scale most 

appropriate for that variable271. A larger range suggests it has an influence over a 

larger region within the tissue and a smaller range suggests the cell influences a 

smaller region within the tissue. This therefore increases the level of information I gain 

from the model. Understanding the bandwidth scale of cell type influence could help 

us understand whether localised versus systemic therapeutic strategies are important. 

By assessing the R2 of regression with and without GWR and then with and without 

multi-scale variable bandwidths, I can understand what processes are present in the 

data. I find there is a large degree of spatial heterogeneity within the tissue (Figure 

69a-b), as GWR increases the variance captured (R2) and lowers the Bayesian 

Information Criterion (BIC) compared to SEM. Interestingly, a multiscale approach 

does not offer an increased R2 value, but it does lower the complexity of the model. 

This is reflected in the lower BIC value, which balances goodness of fit and model 

simplicity (fewer parameters) (Figure 69b). It is also reflected in the overall decreased 

number of parameters required for the model (Figure 69c). Therefore, shorter 

bandwidths for some variables can be equally informative, but this also can be 

captured in the large range too. However, the advantage is that msGWR can tell us 

the scale these cell operate at.  
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Figure 69. Metric comparisons for SEM, GWR and msGWR models fit on the DCIS regions within 

the Xenium slide. a. R2 values for each model. b. Bayesian information criterion (BIC) values for each 

model. c. Number of parameters for GWR and msGWR. SEM is not included as it does not model 

spatially varying relationships. 

This modelling approach confirms that myoepithelial cells have short range influence, 

as suggested in the SEM modelling approach, where they had a different effect 

depending on whether the tissue was in DCIS or invasive regions. It also highlighted 

that myCAFs display a longer-range influence on EMT  (Figure 70). myCAFs 

contribute to ECM deposition and remodelling and therefore their influence over a 

larger range may potentially causes widespread stiffening of the TME, promoting 

EMT331. The subtype (e.g LumB or Basal) of neighbouring tumour cells displays local 

effects (small bandwidth). This smaller bandwidth suggests that the influence of the 

subtype is more pronounced only in certain, confined regions (niche specific effects). 
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Figure 70. msGWR variable bandwidths (spatial length scale) in model used to predict EMT 

gradient in tumour cells. Bandwidth ranges relative to other variables in the msGWR model. A larger 

range suggests it has an influence over a larger region within the tissue and a smaller range suggests 

the cell influences a smaller region within the tissue. 

The msGWR approach allows us to precisely identify and visualise the spatial 

localisation of important variables, such as highlighting the heterogenous influence of 

myCAFs, across the tissue slide (Figure 71). This modelling approach uncovers 

significant relationships in specific regions that might otherwise be missed in global 

regression models like SEM. For example, while CD8+ T-cell interactions were 

insignificant in the global SEM analysis, msGWR reveals significant localised 

relationships within specific regions (Figure 72). 

 

Figure 71. myCAF cell coefficients for SEM, GWR and msGWR visualised across the Xenium 

slide (DCIS region). 
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Figure 72. CD8+ T-cell coefficients for GWR and msGWR visualised across the Xenium slide. 

Xenium (DCIS region) for reference show in left plot. 

4.4 Discussion 
Many spatial studies within cancer analyse intrinsic (genomic) or extrinsic (TME) 

variables independently but do not integrate them into a unified framework that 

quantifies their relative contributions, or disentangles their effects. This gap limits our 

understanding of how these factors interact to drive cellular plasticity, such as EMP. 

Additionally, current plasticity metrics do not seek to model the environment. I have 

developed an approach to weigh these variables and regress out their shared 

contributions, to approximate which factors are closely linked to observed phenotypic 

changes. By addressing this challenge, we can move closer to fully understanding the 

mechanisms underlying EMP and other cell plasticity phenomena. I can also use this 

approach to rank states to understand how stable each cancer state is. This is useful 

from a treatment perspective as unstable, less predictable states are harder to develop 

drugs for. Understanding how these states could transition to more stable states could 

be a promising therapeutic avenue.  

The MES state is the most predictable based on both the TME and genomic factors. 

This reflects its evolutionary adaptation and stability, indicating that it has been 

selectively shaped to thrive in the TME. As a result, the MES state is a more 

deterministic phenotype compared to others. The difference in predictability (AUC 

delta) between the MES and EPI states when using TME features highlights the 

plasticity of the EMT process. This delta could serve as a quantitative metric for 

plasticity potential, reflecting the extent to which cellular phenotypes adapt to TME 

pressures. It could suggest that CNVs are linked to an increased capacity for states to 

respond to environmental factors such as the TME. However, determining the direction 

of this relationship would require additional modelling or experimental validation 

through perturbation studies. 
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The EPI state, in contrast, appears to be less dependent on external pressures like 

the TME to maintain its phenotype. As a well-differentiated, proliferative state, it 

experiences less selective pressure from the environment. While CNVs may be 

present, they do not significantly alter the epithelial phenotype, allowing cells to retain 

their identity despite genomic variations. This aligns with the concept of the EPI state 

as a baseline, default state that is less adaptable or responsive to environmental 

changes190,315. 

Hybrid states, however, are the least predictable which suggests they are of a plastic 

nature. These states exist in a dynamic equilibrium, highly responsive to both intrinsic 

factors (e.g., stochastic gene expression, CNVs) and extrinsic cues (e.g., TME 

interactions). The observed dip in predictability across the EMT spectrum highlights 

the adaptive importance of plasticity. It suggests that retaining this variability in hybrid 

states is crucial for enabling cells to effectively respond to environmental challenges. 

The CNV information was considerably less influential in predicting EMT continuous 

change compared to spatial variables. This could be due to continuous score capturing 

more subtle, short-term phenotypic changes, which the TME likely can induce, 

whereas the intrinsic variables, in this case the copy number alterations, may dictate 

more long-term, stable changes in cellular states 

Using the AUC and R² metric provides an approach for evaluating whether the model 

effectively captures key spatial variables influencing cellular processes.  For instance, 

future analyses could compare the inclusion of additional spatial variables, such as 

markers of hypoxia, to assess their impact on model performance. While cell type-

level features may provide a baseline, they inherently have an upper limit in 

explanatory power. Capturing the full variables driving the EMT process likely requires 

modelling multiple layers within the tissue, such as chemokine gradients, matrix 

stiffness, and hypoxic gradients. I view this work as a step in building models capable 

of representing the diverse factors driving processes related to cell plasticity. Other 

metrics could additionally be used, for example entropy-based metrics in a similar 

manner as calculated by Burdziak et al246 would be useful for capturing additional 

information returned from the GNN approach. This metric would quantify the entropy 

of the probability distribution across predicted classes. A high entropy value would 
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indicate greater plasticity, with probabilities distributed across multiple classes, 

suggesting the cell is less committed and more flexible.  

As expected, GNNs outperform spatial regression models in prediction, and they offer 

valuable insights into the spatial interactions between cells, reflected in edge 

importance scores. While SEM offers more interpretable coefficients and robust 

statistical grounding, GNNs provide richer insights into complex spatial relationships. 

However, while GNNs can model larger spatial ranges, they are constrained by over-

smoothing issues, which may be mitigated by graph transformers, a promising 

direction for future modelling efforts332,333. Combining the strengths of all approaches 

into one model could enhance the modelling approach going forward, for example, 

heterogeneity-aware deep learning spatial models334,335. It would also be useful to 

draw on these frameworks using causal modelling approaches which help assign 

causal direction to these relationships336. In a recent extension of the SIMVI 

framework, a metric has been introduced that effectively disentangles intrinsic and 

spatial effects275. While this method does not fully achieve the goal of producing 

interpretable coefficients for intrinsic and extrinsic influences, it provides a metric for 

capturing their overall effects. Applying this metric to our dataset could offer additional 

insights into the balance between intrinsic and extrinsic factors driving EMP. 

I can confirm the relationship between myCAFs and EMT in a way that bulk 

transcriptomics and Visium cannot, due to their resolution limitations. Bulk 

transcriptomics averages gene expression across diverse cell types, masking cell-

type-specific mesenchymal contributions. While Visium provides spatial context, its 

near-single-cell resolution still allows shared mesenchymal programs across different 

cell types to confound the analysis. In contrast, our approach, using single-cell 

resolved spatial transcriptomics, enables precise disentanglement of these signals, 

overcoming these limitations. I further validated the CAF and mesenchymal tumour 

cell annotations  by identifying specific markers from a carefully annotated single-cell 

RNA sequencing dataset.  However, the annotations in this dataset were 

computationally derived. Consequently, while these markers provide an important 

additional layer of evidence, they do not represent definitive ground truth. Future 

studies should aim to validate these markers using scRNA-seq data from 

experimentally sorted cell types to confirm their specificity and accuracy. 
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Additionally, ligand-receptor analysis would help further understand the myCAF-EMT 

relationship, providing a more mechanistic understanding of the interaction, and in turn 

potentially providing therapeutic targets to disrupt this interaction.  

I identified four EMT states by binning the signature enrichment score into four groups. 

This straightforward binning approach was used as a proof of concept to validate the 

methodological framework and to provide a clear, interpretable means of 

distinguishing EMT states. Earlier work in this thesis involved a more sophisticated 

gaussian mixture modelling approach to define EMT states, and I envisage that future 

work, should use the more advanced GMM approach, to more accurately capture EMT 

states. 

By framing EMT as a spatial prediction problem, our approach can also identify cells 

located within a typical MES-supportive niche that have not transitioned to a MES 

state. These cells are of particular interest because they defy the predicted spatial 

relationships that suggest they should exhibit a MES phenotype. Understanding the 

properties of these resistant cells could provide critical insights into mechanisms that 

inhibit EMT.  

Future research should aim to validate these findings using additional Xenium 

datasets. While our study used a single Xenium dataset that captured a large spatial 

range within a tumour, including DCIS and invasive regions, this came at the expense 

of representing inter-patient heterogeneity. To ensure the robustness and 

generalisability of our conclusions, it is important to repeat these results across 

multiple independent datasets that encompass a diverse range of patient samples and 

tumour microenvironments. Additionally, confirming these relationships with 

experimental approaches would be highly important.  

Using copy number alterations is a proof of concept for capturing the intrinsic effects 

and I envisage improving the model with additional mutational information and other 

intrinsic effects. Single cell spatial genomic information would be important for better 

inferences of intrinsic factors. Currently, clonal information is approximated from spot 

profiles at the Visium resolution, which may overlook finer clonal details and be biased 

by genes that are colocalised on chromosomes within certain cell populations. To 

handle the high dimensionality and multicollinearity of the CNV data, I used PCA for 
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dimensionality reduction. This method transforms the data into a smaller set of 

uncorrelated features that retain most of the variation. The trade-off, however, is that 

each principal component represents a combination of many CNVs across different 

genes, making it difficult to trace back to specific gene-level gains or losses. 

Experimenting with alternative methods for dimension reduction of clonal information, 

e.g. non-negative matrix factorisation, where each factor can be non-negative for 

enhanced interpretability, would be important. Additionally, focusing on a targeted list 

of genes derived from thorough literature review might further enhance interpretability 

while mitigating issues arising from correlated features. 

Finally, it would be useful to rank different plastic and non-plastic processes to 

understand how they compare against each other. A useful comparison, for instance, 

would be to compare EMT to other cellular plasticity programmes, such as 

dedifferentiation, and compare to non-plastic processes like terminal differentiation, 

where cells commit to a fixed identity.  

Conclusions 

In this chapter, I have explored how to quantify and interpret the contributions of cell-

intrinsic and cell-extrinsic factors to cellular phenotypes, using epithelial-to-

mesenchymal plasticity as a case study. By drawing upon concepts from geostatistics, 

ecology, and GeoAI, I introduced a framework that moves beyond descriptive methods 

and enables a more integrated, quantitative understanding of the TME’s role in 

shaping cellular states. This approach highlights the importance of the local 

environment in driving subtle, short-term phenotypic shifts, as well as the influence of 

genomic alterations that contribute to more stable, long-term changes. By applying 

these models, I have gained insights into how certain states, such as the 

mesenchymal phenotype, are more deterministic, while hybrid states are less 

predictable and thus potentially more adaptable. This potentially opens avenues for 

identifying more effective therapeutic strategies.  
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Chrom.5 (q31.3-

q31.3)  (-) MIN -2 

MAX 0 

Chrom.8 (q13.2-

q21.13)  (+) MIN 

-2 MAX 0 

Chrom.10 

(q22.2-q23.2)  (-) 

MIN 0 MAX 1 

Chrom.11 

(q13.4-q23.1)  

(+) MIN -2 MAX 

0 

Chrom.17 (q12-

q21.1)  (-) MIN 0 

MAX 2 

Chrom.13 

(q13.1-q34)  (+) 

MIN -2 MAX 0 

Chrom.7 (p22.3-

p21.1)  (-) MIN 0 

MAX 1 

Chrom.18 (p11.32-

p11.22)  (-) MIN -1 

MAX 0 

Chrom.3 (q26.1-

q26.33)  (-) MIN 

0 MAX 1 

Chrom.2 (q37.1-

q37.3)  (-) MIN 0 

MAX 2 

Chrom.1 (q25.3-

q32.1)  (-) MIN -

1 MAX 0 

Chrom.8 (p23.3-

p21.2)  (-) MIN -

1 MAX 0 

Chrom.17 

(q25.3-q25.3)  (-) 

MIN 0 MAX 2 

Chrom.7 (p22.3-

p21.2)  (-) MIN 0 

MAX 1 

Chrom.3 (p25.3-

q12.1)  (-) MIN -2 

MAX 0 

Chrom.1 (q25.3-

q32.1)  (+) MIN -

1 MAX 0 

Chrom.18 

(q12.2-q21.33)  

(-) MIN 0 MAX 2 

Chrom.3 (q26.1-

q26.33)  (+) MIN 

0 MAX 1 

Chrom.8 (p23.3-

p21.1)  (-) MIN -

2 MAX 0 

Chrom.12 

(q24.23-q24.31)  

(-) MIN 0 MAX 1 

Chrom.12 

(p13.31-p13.2)  

(-) MIN -2 MAX 0 

Chrom.11 (q12.1-

q12.3)  (-) MIN -1 

MAX 0 

Chrom.6 (q23.2-

q24.1)  (-) MIN 0 

MAX 2 

Chrom.11 

(q13.4-q23.1)  

(+) MIN -2 MAX 

0 

Chrom.6 (p22.3-

p21.31)  (-) MIN 

0 MAX 2 

Chrom.17 

(p13.1-p11.2)  (-) 

MIN -1 MAX 0 

Chrom.12 (q12-

q13.12)  (-) MIN 

0 MAX 1 

Chrom.3 (q13.2-

q13.33)  (-) MIN 

-2 MAX 0 

Chrom.17 (q24.3-

q25.3)  (-) MIN -1 

MAX 0 

Chrom.18 

(p11.32-p11.22)  

(+) MIN -1 MAX 

0 

Chrom.3 (p25.3-

p24.1)  (-) MIN -

1 MAX 0 

Chrom.1 (q32.1-

q32.1)  (+) MIN 0 

MAX 1 

Chrom.8 (p23.3-

p11.22)  (-) MIN -

2 MAX 0 

Chrom.11 

(q12.1-q13.1)  

(+) MIN -2 MAX 

0 

Chrom.17 (q12-

q12)  (-) MIN -2 

MAX 0 

Chrom.8 (q21.11-

q21.2)  (-) MIN -1 

MAX 0 

Chrom.3 (p25.3-

q12.1)  (+) MIN -

2 MAX 0 

Chrom.10 

(q26.11-q26.2)  

(+) MIN 0 MAX 1 

Chrom.3 (q13.2-

q13.33)  (-) MIN 

-2 MAX 0 

Chrom.17 (q22-

q24.2)  (-) MIN 0 

MAX 2 

Chrom.6 (q23.3-

q24.2)  (-) MIN 0 

MAX 2 

Chrom.1 (q32.1-

q32.1)  (+) MIN 0 

MAX 1 

Chrom.6 (q23.2-

q24.1)  (+) MIN 0 

MAX 2 

Chrom.17 

(q24.3-q25.3)  

(+) MIN -1 MAX 

0 

Chrom.12 

(p13.31-p13.2)  

(+) MIN -2 MAX 

0 

Chrom.17 (q12-

q12)  (-) MIN -2 

MAX 0 

Chrom.3 (q26.1-

q26.33)  (+) MIN 

0 MAX 1 

Chrom.1 (p31.3-

p13.2)  (+) MIN -

2 MAX 0 

Chrom.9 

(q34.11-q34.3)  

(-) MIN 0 MAX 2 

Chrom.1 (p31.1-

p22.3)  (-) MIN -2 

MAX 0 

Chrom.11 

(q12.1-q12.3)  

(+) MIN -1 MAX 

0 

Chrom.17 

(p13.1-p11.2)  

(+) MIN -1 MAX 

0 

Chrom.2 (q34-

q35)  (+) MIN 0 

MAX 2 

Chrom.1 (q25.3-

q32.1)  (-) MIN -

1 MAX 0 

Chrom.13 

(q13.1-q22.2)  

(+) MIN -2 MAX 

0 

Chrom.16 

(q22.1-q22.1)  (-) 

MIN 0 MAX 1 

Chrom.1 (p13.3-p12)  

(-) MIN -2 MAX 0 

Chrom.1 (p13.3-

p12)  (+) MIN -2 

MAX 0 

Chrom.1 (q32.1-

q32.1)  (-) MIN 0 

MAX 1 

Chrom.5 (q31.3-

q33.3)  (-) MIN -

2 MAX 0 

Chrom.8 

(q21.11-q21.2)  

(-) MIN -1 MAX 0 

Chrom.19 

(p13.11-p13.11)  

(-) MIN 0 MAX 2 

Chrom.19 

(p13.3-p13.2)  (-) 

MIN 0 MAX 2 

Chrom.5 (q31.1-

q31.2)  (-) MIN 0 

MAX 1 

Chrom.8 

(q21.11-q21.2)  

Chrom.3 (q13.2-

q13.33)  (+) MIN 

-2 MAX 0 

Chrom.3 (p13-

q12.1)  (-) MIN -

2 MAX 0 

Chrom.6 (q23.2-

q24.1)  (+) MIN 0 

MAX 2 
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(+) MIN -1 MAX 

0 

Chrom.4 (p14-

p13)  (-) MIN 0 

MAX 1 

Chrom.15 

(q11.2-q15.1)  

(+) MIN -1 MAX 

0 

Chrom.3 (q26.1-

q26.33)  (+) MIN 0 

MAX 1 

Chrom.1 (p31.1-

p22.3)  (+) MIN -

2 MAX 0 

Chrom.17 (q12-

q12)  (+) MIN -2 

MAX 0 

Chrom.5 (q31.3-

q31.3)  (+) MIN -

2 MAX 0 

Chrom.11 

(q12.1-q12.3)  (-) 

MIN -1 MAX 0 

Chrom.1 

(p36.33-p36.21)  

(+) MIN -2 MAX 

0 

Chrom.16 

(q22.1-q22.2)  (-) 

MIN 0 MAX 1 

Chrom.1 (q25.3-

q32.1)  (-) MIN -1 

MAX 0 

Chrom.11 

(q13.4-q25)  (+) 

MIN -2 MAX 0 

Chrom.2 (q11.2-

q13)  (+) MIN -1 

MAX 0 

Chrom.14 (q12-

q12)  (-) MIN -1 

MAX 0 

Chrom.1 (p13.3-

p12)  (-) MIN -2 

MAX 0 

Chrom.1 

(p36.33-p36.11)  

(+) MIN -2 MAX 

0 

Chrom.15 

(q11.2-q14)  (+) 

MIN -1 MAX 0 

Chrom.3 (p21.31-

p21.31)  (-) MIN 0 

MAX 2 

Chrom.7 (q36.1-

q36.1)  (+) MIN -

2 MAX 0 

Chrom.13 

(q12.12-q12.3)  

(-) MIN 0 MAX 1 

Chrom.5 (q31.3-

q35.1)  (-) MIN -

2 MAX 0 

Chrom.1 (p31.1-

p22.3)  (-) MIN -

2 MAX 0 

Chrom.1 

(p36.33-p36.12)  

(+) MIN -2 MAX 

0 

Chrom.19 

(p13.3-p13.11)  

(-) MIN 0 MAX 2 

Chrom.5 (q31.3-

q33.1)  (+) MIN -2 

MAX 0 

Chrom.10 

(q22.2-q23.2)  (-) 

MIN 0 MAX 1 

Chrom.6 

(p21.32-p21.31)  

(-) MIN 0 MAX 1 

Chrom.3 (q21.3-

q22.1)  (+) MIN 0 

MAX 2 

Chrom.18 

(p11.32-p11.22)  

(-) MIN -1 MAX 0 

 

Supplementary Table 1: Chromosomal alterations linked to each principal component. Chromosome and 

chromosomal region are annotated for each principal component, along with the direction of alteration, where 

negative indicates a loss, and a positive sign indicates a gain. The rank of values are also indicated.    
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5 Chapter 5: Discussion 

5.1 Summary and conclusions 
When I began my PhD in 2020, spatial transcriptomics was still an emerging field. 

Methodological development was in its early stages, and many of the initial analytical 

approaches did not fully integrate the spatial dimension of the data. For instance, 

spatially aware clustering was not commonly performed, with clustering often applied 

in a way that overlooked spatial context. Additionally, EMT had not yet been 

characterised in human tissues using more than a handful of markers, and no studies 

had systematically analysed the spatial relationships with EMT states. Spatial 

transcriptomics provides a powerful approach to studying biological processes in ways 

that traditional model systems cannot, by capturing cellular interactions within intact 

human tissue and its native tumour microenvironment. While it is important to 

recognise the limitations of snapshot-based data in providing causal or mechanistic 

insights, spatial transcriptomics can complement model system findings, reinforcing 

and contextualising experimental observations. 

In this thesis, I focused on understanding how epithelial-to-mesenchymal plasticity 

interacts with the tumour microenvironment and how genomic alterations shape these 

relationships, primarily focusing on breast cancer spatial transcriptomic data. In the 

initial chapters, I described how EMT can be viewed not merely as a binary process 

but rather as a set of discrete states that allows tumour cells to flexibly transition 

between epithelial, hybrid, and mesenchymal states (Chapters 2 and 3). I then 

demonstrated that these states display unique spatial relationships with components 

of the TME. Notably, I found that cells undergoing EMT often colocalise with 

immunosuppressive niches containing myofibroblastic cancer-associated fibroblasts 

and macrophages (Chapters 3). 

A large focus has been on developing and applying new analytical tools. I developed 

the SpottedPy Python package (Chapter 3), to analyse spatial hotspots of tumour and 

microenvironmental features. I then used SpottedPy to assess relationships at multiple 

scales, from the immediate cellular neighbourhood to broader tissue-wide clusters, to 

understand both inter- and intra-tumour heterogeneity. 

The package is supported by user-friendly notebooks to promote reproducibility and 

to encourage the use on a wide-range of biological questions extending to other 
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diseases and spatial platforms. Applying SpottedPy to Visium breast cancer datasets 

highlighted associations between EMT hotspots, hypoxia and angiogenesis, as well 

as links with immunosuppressive stromal and immune cell populations (Chapters 3), 

substantiating the results from Chapter 2. By transferring EMT signatures representing 

distinct states onto spatial transcriptomic spots (Chapter 3), I highlighted the varied 

spatial relationships of different EMT states, providing insights into potential 

therapeutic vulnerabilities tied to each phenotype.  

Finally, in Chapter 4, I developed a predictive modelling approach to quantitatively 

assess the contributions of genomic and environmental variables on EMT using a 

single-cell-resolution spatial breast cancer dataset. This novel approach allows us to 

move beyond descriptive methods and enables a more integrated, quantitative 

understanding of the TME’s role in shaping cellular states. By drawing on geostatistical 

methods and graph neural networks, I compared how well each factor, copy number 

alterations or microenvironmental signals, could explain EMT states.  

Overall, the approach strengthens the evidence that targeting the TME is more 

important for targeting EMT as opposed to targeting the genomic factors. It highlights 

the importance of the TME in inducing both subtle, short-term changes and stable, 

long-term phenotypic change, whereas genomic alterations primarily contribute to 

more stable, long-term changes. I have shown that the mesenchymal phenotype is 

more deterministic, while hybrid states are less predictable and thus potentially more 

adaptable. I suggested that EMP hybrid states may be harder to therapeutically target 

due to their unpredictability.  

I highlighted how Geographically Weighted Regression can reveal the degree of  

spatial heterogeneity within tumours, and I found that relationships between EMT 

states and particular TME populations do vary across different tissue regions. I 

highlight how framing spatial relationships in this manner can help to further 

understand approaches to target EMP. For example, I show how EMT relationships 

change across DCIS and invasive regions within the tissue, most noticeably with 

myoepithelial cells, where they are significantly associated with EMT in DCIS, and in 

GWR modelling had localised effects. Therefore, this relationship would require more 

localised targeting. Furthermore, I highlight how it is possible to confirm the association 

between myCAFs and EMT in a way that is not possible with bulk transcriptomics and 
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Visium (near-single cell resolution), where common mesenchymal programs can 

confound the analysis.  

Collectively, these chapters examine EMT across multiple biological resolutions, from 

single-cell to spatially resolved data, and highlight that EMT is governed by heritable 

genetic events and local environmental cues. I demonstrate the value of combining 

geospatial statistics, GeoAI approaches, and transcriptomics to deepen our 

understanding of EMP and suggest potential therapeutic insights. 

5.2 Limitations + Future directions  

5.2.1 Tackling EMT challenges 

Whilst there are extensive studies linking EMT to metastasis and chemoresistance, it 

is still a controversial process337. This is as some lineage-tracing experiments did not 

find EMP to be an important part of dissemination, and epithelial features have been 

shown to be important for migration20,337,338. These findings lead to the focus on hybrid 

EMT states, which retain some epithelial traits, whilst also retaining the migratory traits 

of mesenchymal cells. I have shown that hybrid states have distinct TME interactions, 

hinting at potential therapeutic options to target these states. However, I also found 

that these states are the hardest to predict and are likely more transient and plastic.  

Importantly, part of the controversies stem from the difficulty of correctly defining EMP. 

As shown in this thesis, and other studies by Pastushenko et al.20, Goetz et al.40 and 

Brown et al.166, there are multiple hybrid EMT states that exist. The diversity of EMT 

intermediate states is only beginning to be uncovered, and a deeper understanding of 

their frequency and context is needed to clarify how these transitions occur. I used a 

range of approaches to characterise EMP and cell states, from gene signature scoring, 

NMF and gaussian mixture modelling. The gene signature method offers a 

straightforward approach whereas the gaussian mixture modelling providing a more 

complex, but more statistically sound approach. However, each method relies on 

different interpretations of the data and more statistically robust frameworks should be 

developed in the future. Building on frameworks such as those in CELLSTATES, a 

statistically principled method to capture states at the maximum likelihood could lead 

to better clarity53. In CELLSTATES, the authors show that given the known 

measurement noise structure of scRNA-seq data, this problem is mathematically well-
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defined and they derive its unique solution from first principles. This allows for a 

parameter-free approach, less subject to varying interpretations for state identification.     

Additionally, given the fact that many gene programs are redundant, and other levels 

of gene regulation extend beyond gene expression, identifying EMT at the 

morphological and protein level is important for more accurately identifying EMP. 

Enhancing the detection of EMT, for example by matched high resolution imaging with 

spatial transcriptomic data would enable phenotypic changes to be detected and 

linked with the transcriptomic changes. With the rise of spatial proteomics, which was 

named "Method of the Year" in 2024, this would allow us to confirm EMT at a protein 

level339. Whilst some studies have shown that gene expression and protein levels do 

correlate, other work has shown poor correlations with certain genes and proteins 

because of post-transcriptional regulation340. Therefore, combining these modalities 

offers additional confirmation and allows us to investigate how EMT genes correlate 

to actual protein expression in the cells.  

Recently, new developments have enabled even more modalities (DNA, chromatin 

accessibility, and histone modification) to be captured simultaneously on the same 

tissue section341. Given that EMT is governed by epigenetic mechanisms, this multi-

levelled approach, capturing the range of epigenetic mechanisms, could capture more 

accurate EMT states. While gene expression data provide snapshots of transcriptional 

activity, they often fail to distinguish between transient fluctuations and stable 

regulatory changes that define EMT plasticity342. In contrast, epigenetic modifications, 

such as chromatin accessibility, histone modifications, and DNA methylation, serve as 

more stable indicators of a cancer cell’s state, and therefore offers a more accurate 

approach to understand EMP. 

The difficulty in accurately detecting EMT also stems from the varying EMT 

programmes that occur in different contexts26, for example different tumour stages, 

and different tumour sites can have different EMT programmes. Whilst I have 

investigated a range of EMT signatures, it is important to deepen our understanding 

of the impact of using different EMT gene signatures on the downstream analysis. 

Recently, I have been involved in a collaboration developing a language model-based 

prediction model to detect common EMT programmes across tissue types168. We used 

a pre-trained single-cell large language model (LLM) to develop an EMT-language 
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model (EMT-LM), which was able to identify discrete EMT states within the EMT 

continuum within single-cell RNA-seq data. The model was able to classify EMT states 

with high accuracy (AUROC of 90%) across multiple cancer types. Further spatial 

analysis of these signatures would provide valuable insights into how different EMT 

programmes affect downstream spatial analysis results. In particular, it would 

important to conduct extensive benchmarking of the spatial relationships of EMT 

signatures using well-curated ground truth datasets that are both in situ and specific 

to the cancer type under investigation. 

5.2.2 Spatial transcriptomic methodological challenges  

There are various limitations within the spatial transcriptomic analysis. I have 

extensively studied spatial relationships in whole-transcriptome spatial data, but at a 

resolution of around 10 cells per spatial spot (Chapter 2 and Chapter 3), and I studied 

single-cell resolved spatial data but not at the whole transcriptome level (Chapter 4). 

Therefore, future work should validate these findings on single-cell spatial whole 

transcriptome emerging technologies. For example, Visium HD was released 

recently343, offering single cell whole transcriptome spatial analysis. It would therefore 

be valuable to repeat our analysis with a breast cancer Visium HD dataset. 

A key challenge in accurately identifying EMT in non-single cell resolved spatial 

transcriptomics is the overlap of mesenchymal markers between CAFs and tumour 

cells undergoing EMT. Throughout this thesis, I have taken steps to mitigate this issue 

to the best of my ability. For instance, when deconvolving the Visium dataset, I used 

scRNA sequencing data labelled with EMT states before deconvolution, rather than 

assigning EMT states to tumour cells after deconvolution. This approach allows for a 

more comprehensive gene expression profile to distinguish between the cells, 

improving the distinction between CAFs and tumour cells. Additionally, I validated 

these findings in the Xenium single-cell resolved data, which ensures that the gene 

expression signatures are attributed to individual cells. However, further validation 

using larger single-cell datasets will be crucial to strengthening these results. 

Furthermore, incorporating ligand-receptor signalling information into the evaluation of 

spatial effects on cell populations will be important to increase the confidence in the 

identified relationships. Ligand-receptor signalling can capture the functional crosstalk 
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between cell populations, and can better assess whether identified spatial clusters are 

biologically interconnected or merely spatially co-located without functional interaction. 

I inferred genomic variables (CNVs) from the transcriptomic data alone, which may 

introduce inaccuracies due to the reliance on expression data. For instance, if closely 

situated genes show correlated expression changes because of a shared regulatory 

process, rather than an actual copy number alteration, this would yield a false-positive 

CNV signal. Therefore, integrating matched spatial transcriptomic data with spatial 

genomic data would greatly enhance confidence in these inferred genomic 

relationships. I used PCA to transform the high-dimensional CNV data into a smaller 

set of uncorrelated features. While this retains the majority of variation in the data, 

each principal component represents a combination of many CNVs across different 

genes, making it difficult to trace back specific gains or losses at the gene level. This 

was chosen as the approach as the CNV data has a large number of correlated 

features, as many genes share similar gains/loss patterns with other genes as they 

are on a similar region of the chromosome. Correlated features leads to 

multicollinearity in regression, which can lead to unstable coefficients, reducing 

accurate interpretation of the coefficients. When individual CNVs are used as input 

features in a GNN, a highly correlated feature set also reduces the unique contribution 

of individual genes, making interpretation difficult. Future work could only model a very 

targeted list of genes based on extensive literature analysis to improve interpretability.   

The potential to integrate spatial datasets at scale would be important to truly 

understand the patient-patient heterogeneity. Additionally, combining the data with 

clinical data would be an important next step. Several datasets are currently being 

collected that could help us link molecular and spatial insights directly to patient 

outcomes. For example a recent industry-academic partnership is using spatial 

transcriptomics to profile 7,000 tumour samples with matched clinical data344. This 

would then enable us to link the EMT-TME interactions with outcome and treatment 

insights, with enhanced understanding of the patient-patient heterogeneity. 

From each patient, we typically have one, or at most two slides. However, given that 

tumour heterogeneity is a key defining property of tumours, capturing a larger spatial 

area of the tumour through both across the tumour and at multiple depths would be 

important. Such an approach could serve as a spatial normalisation procedure. For 
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example, for each patient being studied, a sub-selection of patients can be profiled at 

multiple sections across the tumour. The degree of heterogeneity within a patient 

observed could then direct the study design into whether more slides are needed per 

patient. 3D spatial transcriptomics, which profiles spatial transcriptomics at multiple 

depths would enable us to address how accurate a single 2D slice is at representing 

the spatial relationships. Morphological 3D characterisation of tissue has been well 

established through fluorescence microscopy166. However, the molecular 

characterisation in 3D of tissue is still in its infancy. A multi-plex, single-cell approach 

was recently undertaken to understand 3D spatial context of lung cancer167.  

Compared with 2D approaches, analysing 3D tissue revealed previously unidentified 

dendritic niches and identified the 3D extent of T-cell niches.  This suggests that a 3D 

approach could similarly identify novel spatial relationships between cells undergoing 

EMT. 

5.2.3 Spatial statistical modelling challenges 

From a spatial modelling perspective, I envisage that future approaches should 

incorporate causal inference techniques to help us to infer the direction of the EMT-

TME relationships identified. For instance, matching methods, which include 

propensity score matching, estimate causal relationships by forming comparable 

treatment and control datasets within the original dataset336. By creating treated and 

control groups that are balanced on the relevant observed covariates, matching 

methods can help approximate the conditions of a randomised experiment, even when 

the data are observational rather than experimental. This can then help to understand 

whether the treatment (for instance, the presence of certain immune cells) may be 

causing changes in EMT, rather than reflecting coincidental correlations. Structural 

Equation Models (SEM), and in particular the geo-additive SEM approach, the spatial 

variant, would allow us to estimate both direct and indirect causal pathways among 

multiple biological variables, while accounting for spatial confounding in both 

predictors and outcomes345. This could then help determine, for example, whether 

immune cells initiate the EMT process or accumulate in areas where EMT is already 

underway. These approaches are currently in the early stages of being adopted in 

spatial transcriptomic workflows346. 
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The existing methods in spatial transcriptomics currently capture gene expression and 

relationships at a single time point. However, methods that could simultaneously 

capture both the spatial and time dependence of RNA profiles would address a wider 

range of research questions. This would also help to add directionality to many 

relationships identified, increasing the likelihood of accurately identifying causal 

relationships. Additionally, it would allow us to understand how much information a 

single time point can capture, and how much information we lose by ignoring this 

concept. TEMPOmap is a recent approach for spatiotemporally resolved 

transcriptomics that could help address these questions347. 

In modelling tissue-level relationships, it is important to capture both short and long-

range interactions. Cells within a tissue do not just influence their immediate 

neighbours, but their secreted factors and signals can travel over longer distances, 

affecting the behaviour of remote cells. GNNs, as used in Chapter 4, are typically 

limited by the fact that they rely on message-passing schemes, which operate primarily 

in localised neighbourhoods and require many layers to capture global interactions. 

However, with too many layers, GNNs can suffer from the over-smoothing problem332, 

which is when after multiple layers of message passing, the node representations in a 

graph become very similar. Whilst in many other neural network based approaches 

adding more layers increases the accuracy of the task at hand, in a GNN this can 

reduce the model’s ability to distinguish among different nodes and therefore lowers 

accuracy in tasks such as node classification. Transformer-based models, which use 

attention-based methods, are well suited to this challenge because they use attention 

mechanisms that allow them to consider relationships across the full input space348. 

Therefore, they can capture longer range cellular signalling and model more complex 

cellular processes. Nicheformer is a recent technique that demonstrates how 

transformers can learn biologically relevant latent spaces from spatial transcriptomic 

data349. Alternative approaches to capture short and long range spatial relationships 

include multi-mesh approaches, which contains nodes with different spatial 

resolutions. This was recently shown to be highly successful at weather prediction350.  

5.2.4 Future methodological considerations 

In spatial transcriptomics analysis, as with many other types of biological data 

analysis, there is an inherent trade-off between methodological rigor and efficiency. 
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The process of selecting a single approach and set of parameters often stems from 

the need for clarity and ultimately, the ability to draw conclusions that progresses the 

field. However, this comes at the cost of overlooking the vast landscape of possible 

methodological choices, each of which could lead to slightly different, yet equally valid, 

interpretations of the data.  Parameter selection must happen at many different steps 

of analysis, from the type of spatial transcriptomic platform to use, the number and 

types of cells types to use for deconvolution, the method of choice for dimensionality 

reduction approaches to whether to analyse spatial neighbours or domains. 

A large focus of the thesis has been to ensure there is robust analysis of parameters. 

For example, I have highlighted the importance of considering the modifiable areal unit 

problem which exemplifies how shifting parameters can alter spatial interpretations, 

making it clear that no single choice is inherently correct,   and I have investigated 

different spatial platforms to analyse the spatial relationships. Future research should 

aim to standardise best practices for balancing rigor with efficiency, perhaps through 

presenting findings in more interactive formats, allowing readers to explore how 

parameter variations influence downstream results and biological interpretations. By 

focusing on transparency, we can move towards research that acknowledges 

methodological uncertainty while still enabling meaningful scientific progress. 

Also, extending from these more obvious choices, there are biological conceptual 

choices. Many biological processes exist on a continuum, and there are researchers 

that argue even the choice of communicating about genes and cell types using 

discrete concepts can overlook important biological complexities.  For example, there 

is research that suggests analysing and communicating about cell types instead 

through a hierarchical tree approach could help more accurately represent these 

biological units351. There is also research that suggests that gene function is limited by 

single ontologies and that genes should instead be treated as distributions over 

cellular contexts352.  However, often the more straight-forward concept of a gene and 

cell type is important for analysing and communicating about biological systems. In a 

similar manner, identifying spatial domains are useful to help us make sense of and 

communicate about complex tissue organisation, even though they may overlook 

important aspects of the tissue such as long-range cellular interactions. As artificial 

intelligence systems become more advanced, these predefined classifications may 
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become less essential, allowing for more abstract representations of biological 

structures and processes. 

Multi-scale tissue analysis helps us see how seemingly simple cell-to-cell interactions 

can add up to complex, unpredictable behaviours, which can also be referred to as 

emergent properties353,354. In cancer, such emergent properties can occur when 

tumour cells and various elements of the TME continuously signal and adapt to one 

another. These interactions can give rise to unexpected outcomes like immune 

evasion, metastasis, and therapy resistance. Spatial transcriptomics offers a powerful 

way to observe these interactions in situ, making it easier to appreciate how emergent 

phenomena unfold. Recognising these properties is important for determining where 

and how to target treatments most effectively. By focusing on tumour and TME 

hotspots and their interactions, I begun to see how multiple cell types and signals 

come together to drive larger-scale changes in tissue. Going forward, finding new 

ways to measure and quantify emergence, using mathematical, computational, or 

other approaches applied to spatial transcriptomics will be essential for understanding 

cancer as a dynamic ecosystem. 

5.3 Concluding remarks 
This thesis has explored how the TME and intrinsic genomic factors interplay with 

epithelial-mesenchymal plasticity, using spatial transcriptomic data as a key tool to 

investigate these relationships. I have identified stable EMT niches that are enriched 

in hypoxic and angiogenic regions and are closely associated with key 

microenvironmental players such as CAFs and macrophages and I have explored 

these relationships across multiple spatial scales. By drawing on geostatistical 

methods and graph neural networks I developed a new method to quantify the relative 

contributions of intrinsic genomic changes and extrinsic microenvironmental signals 

on cell plasticity programmes. The approach highlights the importance of the TME in 

inducing both subtle, short-term changes and stable, long-term phenotypic change, 

whereas genomic alterations primarily contribute to more stable, long-term changes. 

Overall, these findings highlight the dominant influence of the TME in shaping EMT. 
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