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Impact statement

The epithelial-to-mesenchymal transition (EMT) is a multi-stage cellular program central
to metastasis and therapeutic resistance. Despite a well-documented link between EMT
and worse clinical outcomes, there remains a need to understand precisely how different
EMT states are influenced by both intrinsic genomic alterations and tumour

microenvironment (TME) cues.

Spatial transcriptomics has recently emerged as a powerful technology that can
transform our understanding of how the TME influences key cellular programs, such as
EMT. However, many approaches used to analyse spatial transcriptomics ignore
important aspects of spatial data and struggle to capture the spatial relationships of cell
states that lie along a continuum, highlighting the need for more flexible and robust

analytical frameworks to be developed.

In this work, | have developed and applied novel geostatistical and machine learning
methods, including the SpottedPy Python package, to comprehensively profile and
quantify EMT across multiple biological scales. | reveal how distinct EMT states,
including epithelial, hybrid, and mesenchymal phenotypes, respond differentially to TME
cells such as CAFs and macrophages, and other TME processes such as hypoxia and

angiogenesis.

Additionally, | introduce a new approach to quantify cell plasticity. By integrating genomic
events and TME information within graph neural networks and geographically weighted
regression models, | quantify the strength of the TME effect on epithelial to
mesenchymal plasticity (EMP) and highlight its dominant role in EMP. | uncover
heterogeneous spatial relationships between EMT states and show how intermediate

phenotypes express varying degrees of plasticity.

Given the importance of EMT to cancer development, these methodologies offer
valuable tools for researchers investigating the spatial dynamics of EMT. Not only do
they provide a framework for quantitatively assessing EMT across tumours, but they
can also be adapted to study other forms of cell plasticity. By deepening our

understanding of how cancer cells traverse the EMT continuum, this work opens new
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possibilities for therapeutic interventions aimed at curbing metastasis and overcoming

drug resistance through the precise manipulation of microenvironmental factors.

The research output presented in this thesis has been disseminated to the scientific

community through the following publications:

Withnell, E. & Secrier, M. SpottedPy quantifies relationships between spatial
transcriptomic hotspots and uncovers environmental cues of epithelial-
mesenchymal plasticity in breast cancer. Genome Biology 25, 289 (2024).

Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and
microenvironmental  heterogeneity  shaping epithelial-to-mesenchymal

trajectories in cancer. Nat Commun 14, 1-20 (2023).

Additionally, whilst not described in this thesis, the methods used to assess spatial

relationships at scale have also been made available to the scientific community in the

follow manuscripts:

Pan, S., Withnell, E. & Secrier, M. Classifying Epithelial-Mesenchymal Transition
States in Single Cell Cancer Data Using Large Language Models. bioRxiv (2024).
Cenk, C., Withnell, E., Pan, S., Chu, T., Labbadia, J. & Secrier, M. Balancing
tumour proliferation and sustained cell cycle arrest through proteostasis
remodelling drives immune niche compartmentalisation in breast cancer. bioRxiv
(2024).

The cell plasticity prediction framework is in the process of being submitted for

publication.
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Abstract

The epithelial-to-mesenchymal transition (EMT) is an important cellular process
involved in tumour progression, metastasis, and therapy resistance. However, the
influence of the tumour microenvironment (TME) and genomic factors on EMT, and
the discrete states within this transition, remains incompletely understood. In this
thesis, | develop geostatistical and machine learning methods to analyse spatial
transcriptomic data, to understand the spatial relationships of cancer cells undergoing
EMT.

| present a novel Python package, SpottedPy, which can identify spatial hotspots of
gene signatures and cell types and assess their spatial interactions with other
hotspots. Using this approach, | identified EMT niches associated with angiogenic and
hypoxic regions, surrounded by CAFs and macrophages. EMT hybrid and
mesenchymal hotspots followed transformation gradients, becoming increasingly
immunosuppressed. Importantly, SpottedPy is a flexible package, which enables users
to explore spatial relationships at different scales, from immediate neighbours to larger

tissue modules, allowing for new insights into the tumour microenvironment.

Building on these spatial insights, | develop a graph neural network and geographically
weighted regression framework to quantify the relative contributions of intrinsic
genomic changes and extrinsic microenvironmental signals on cell plasticity
programmes. The approach strengthens the evidence that targeting the TME is more
important for targeting EMT as opposed to targeting genomic factors. It highlights the
importance of the TME in inducing both subtle, short-term changes and stable, long-
term phenotypic change, whereas genomic alterations primarily contribute to more
stable, long-term changes. | showed that the mesenchymal phenotype is more
deterministic, while hybrid states are less predictable and thus potentially more plastic.
Additionally, | found that relationships between EMT states and particular TME

populations do vary across different tissue regions, notably with myoepithelial cells.

Overall, my work provides an in-depth molecular and spatial characterisation of EMP,
while highlighting novel methodological approaches for capturing and measuring cell
plasticity. These insights could help inform therapeutic approaches that target the

genetic and microenvironmental factors linked to cancer cell plasticity.
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1 Chapter 1: Introduction

1.1 The epithelial-to-mesenchymal transition and its varied roles in
normal development and cancer

The epithelial-to-mesenchymal transition (EMT) is a multi-stage cellular process in
which cells lose their epithelial features and acquire mesenchymal properties,
involving the disruption of cell-cell adhesion and cellular polarity’. EMT is linked to
gene expression changes and post-translational regulation that enables the cells to
gain mesenchymal traits. During EMT, epithelial markers are downregulated, notably
E-cadherin, and mesenchymal markers are upregulated, with vimentin, N-cadherin
and fibronectin amongst the most well characterised. A mesenchymal cell typically
gains migratory abilities due to the presence of actin stress fibres, and cell-matrix
adhesion remodelling? (Figure 1). The reverse process, the mesenchymal-to-

epithelial transition (MET), can also occur where cells regain their epithelial traits3.

EMT was first identified by researchers studying embryogenesis in the late 1960s and
is now widely observed in embryonic development and wound healing®. During animal
development, cells are required to migrate large distances, which EMT enables. In
most cases, the cell then reverses back to an epithelial state, through METS.
Researchers noticed parallels between embryonic development and tumour
progression, observing that morphological changes in carcinoma cells resembled
EMTS®. Studies in the 1990s provided the first experimental evidence for this link, by
showing that EMT inducers such as leukocyte medium, including transforming growth
factor (TGFBeta)” and fibroblast growth factor (FGF)2, increase the invasiveness of
cancer cell lines. Further studies also showed that Ras-transformed mammary
epithelial cells induced a mesenchymal-like phenotype?, indicating that EMT could be
a mechanism driving tumour progression. By the early 2000s, molecular studies
identified key transcription factors such as Snail'?, Slug®, Twist'!, and Zeb1/Zeb2'? as
master regulators of EMT in cancer, drawing direct mechanistic parallels with key

transcription factors in embryonic processes.
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Figure 1 The key molecular and morphological changes during transitions between the EMT states.

Figure adapted from Yang et al. (2020)".

The development of transgenic mouse models further confirmed EMT roles in tumour

metastasis'®. Mouse models were developed, such as the MMTV-PyMT model of

breast cancer, which can mimic the stages of breast cancer that patients can progress

through, including metastatic phases’. Several research groups showed that cells

involved in metastasis in these models displayed EMT markers'>16, Later, lineage-

tracing experiments allowed for more targeted tracking of metastatic cells by

identifying individual cells and tracking their individual expression of markers'’. For

example, it is possible to identify the cells that express epithelial markers and track

which cells then adopt mesenchymal-like phenotypes®. An influential paper by Li et

al. tracked EMT in lung metastasis of breast cancer and identified key EMT markers
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in metastasis-initiating cells'®. The introduction of single-cell technologies has further
allowed larger scale characterisation of gene expression changes to define EMT more
broadly across the genome in mouse models, rather than focusing on a few key

markers?29.

As growing evidence was accumulating linking EMT to metastatic properties of cancer
cells, it was of growing importance to understand whether EMT was necessary for
metastasis, or a correlated feature. In a landmark paper by Zheng et al, it was shown
key EMT-TFs knockouts did not affect tumour progression or metastasis in a
pancreatic cancer model?'. However, it did affect chemosensitivity, which suggests
why patients with more mesenchymal tumours have poorer outcomes??. However, it
has since been shown that it is necessary depending on model system, tumour tissue
and disease progression being studied?3. It is important to note, most knock out studies
have focused on a handful of EMT markers, predominantly E-cadherin, vimentin, N-
cadherin, Snai1, Zeb1 and fibronectin, and there is an emphasis in the field to include
a larger range of gene markers in future studies’. Just focusing on these handful of
markers may oversimplify the complexity of EMT. Many of the EMT transcription
factors used in the knockouts can function in overlapping ways complicating the
assessment of individual EMT-TFs impact on EMT?*. Many tumours exhibit context-
dependent EMT signatures (Figure 2) involving a wide range of transcription factors,
extracellular matrix components, signalling molecules and metabolic reprogramming
that contribute to EMT-associated phenotypes®. It is therefore difficult to determine
whether EMT is dispensable in a given experimental system or if there is enough

redundancy in the system that means other factors can compensate for its loss.
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cancer types, model systems and under different EMT inducers. Figure adapted from Haerinck et al.
(2023)%6

In addition to metastasis, EMT has been linked to chemoresistance in several
experimental contexts, including cell line experiments, mouse models, and patient
studies. For example, cells undergoing EMT in response to TGF-f3 signalling in breast
cancer cell lines become chemoresistant to drugs such as etoposide and paclitaxel?’.
EMT has been shown to increase the expression of drug efflux pumps such as ABC
transporters, which in turn increase chemoresistance?®. TGF-f stimulation in ovarian
cancer cell lines including HO8910 and SKOV3 increases resistance to cisplatin
treatment, a platinum-based chemotherapy commonly used to treat ovarian cancer?.
Alongside cell line experiments, in mouse models including breast, prostate and lung
cancer, EMT has been linked to a range of chemoresistance3?:3'. Additionally, similar
results have been observed at the patient level using bulk transcriptomics32-33, For
example, in NSCLC patients, a higher expression of EMT markers in tumour samples
was correlated with resistance to platinum-based chemotherapy?*. Furthermore,
studies in ovarian cancer patients treated with cisplatin have also shown that the
presence of EMT markers in tumour biopsies is associated with worse treatment

outcomes?®.

1.2 EMT states and links with cell plasticity
Historically, EMT has been considered a binary process, with an epithelial state
displaying the marker E-cadherin, and a mesenchymal state consisting of the loss of

E-cadherin marker and the gain of vimentin®. However, this has been challenged in
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recent years, with multiple states being observed along an EMT axis®¢. The states in
between a fully epithelial and mesenchymal state are known as hybrid (hEMT) or
partial EMT states (pEMT) (Figure 1). These states have been linked to different
properties®”. The hybrid state has been associated with increased invasive and
migration properties??2. This is likely due to the advantage of having both the
mesenchymal invasive properties, in addition to useful epithelial cell characteristics
such as adhesion to neighbouring cells. Fully developed mesenchymal cells are less
likely to revert to an epithelial state which is necessary if the cell is to form a distinct
colony®8. The number of EMT states is unknown currently, with researchers debating
as to whether it should be treated in a continuous or discrete phenotype?®®. Brown et
al. (2022) identified six stable states in breast cancer, and showed that all states had
variations in migration and invasion traits, with intermediate states EM2 and EM3

scoring the highest in mouse models.

Attempts have been made to develop mathematical models to quantify EMT dynamics
between different states. One study used Markov models to understand how
microstates and macrostates shape EMT transitions, emphasising the non-linear
effects of intermediate states?®. These findings concluded that destabilising
intermediate states could be a potential therapeutic strategy to mitigate metastasis.
Other attempts have used ordinary differential equations, such as through population
growth models, to model the intrinsic growth rates for epithelial and mesenchymal cells
and understand how EMT states related to EMT heterogeneity*'. Using these models,
the analysis highlighted the importance of considering both intrinsic cell plasticity and
population-level interactions to gain a full understanding of EMT states and tumour
heterogeneity. The findings demonstrate that epithelial and mesenchymal
subpopulations were able to influence each other’s growth through either cooperative
or suppressive effects. Importantly, the models with the best fit accounted for cell-state

transitions and population density-dependent growth.

There is great diversity in definitions for EMT, predominantly due to the varying
phenotypic manifestations across model systems. EMT is highly context dependent,
with different gene programs depending on factors such as the model system
analysed, stimuli used to promote EMT or the tissue in the body?®. For example Puram

et al. showed that partial EMT signatures are different between tumours#?, and Peixoto
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et al. showed that only around 10-30% of differentially expressed genes are shared in
EMT responses in cell line microarray data*®. Cook et al. presented similar findings,
and showed that on average only 22% of genes are shared between EMT inducers in
cell line studies®. In 2020, a group effort led by ‘the EMT International Association’
defined key terms in the field and key areas of research to focus on in the future'. The
main recommendation on the criteria to define EMT was that “EMT cannot be
assessed on the basis of one or a small number of molecular markers”!. In addition,
they suggested defining EMT status based on changes in cellular properties. They
recommend EMT to be explored beyond a traditional cell and cancer biology
approach, with a focus on collaborations with systems biologists, biophysicists and
mathematical modellers. Key unanswered questions also highlighted in the report
included the functional implications of EMT heterogeneity and understanding the
dynamic switch between E/M states in response to distinct cues from the

microenvironment.

Recently, there has been a shift in focus towards reframing epithelial-mesenchymal
transition as epithelial-mesenchymal plasticity (EMP), emphasising its dynamic and
reversible nature, rather than viewing it solely as a unidirectional transition?6. This
builds on the view of understanding cell states in terms of the Waddington landscape,
where cell states are represented as valleys in a multidimensional landscape, and
transitions between states are depicted as movements across this terrain?® (Figure
3). In this framework, cell can shift between epithelial, mesenchymal, and hybrid states
in response to intrinsic and extrinsic cues, with certain states easier to transition into

other states than others based on intrinsic properties of the state.
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Figure 3 The Waddington landscape. The Waddington landscape represents the ease that cells
transition between different cell states or types. a. Overview of The Waddington’s landscape depicting
a pluripotent cell taking different paths. b. Some cell state transitions are easier to traverse when the
barriers between states are lower, representing a shallower hill in Waddington’s landscape, whereas
other transitions are more difficult to reach, representing a steeper hill. Figure adapted from Qin et. al
(2024)#.

1.3 Capturing EMT

Traditionally, EMT has been identified by examining the expression of a handful of
well-established markers, for example, the downregulation of epithelial markers (e.g.,
E-cadherin) and the upregulation of mesenchymal markers (e.g., vimentin, N-
cadherin)**46, While these marker-based methods are straightforward, they tend to
oversimplify the complex and continuum of cell states associated with EMT. Unlike
discrete cell types, EMT states exist along a spectrum, necessitating methods that can
capture this gradual progression?®. scRNA-seq has enabled more sophisticated
methods to capture the full spectrum of cell states. For example, scoring scRNA-seq
using enrichment-based approaches, such as gene set enrichment analysis (GSEA)
to score gene sets, provide quantitative measures of state transitions*’. Additionally,
extracting distinct gene modules present in the data through dimensionality reduction,
such as non-negative Matrix Factorization (NMF), as used in ProjectR, and principal
component analysis (PCA) are often used to assess cell states*®4°. Other approaches
involve clustering cells based on scores from continuous signatures, such as Gaussian
mixture models®. Pseudotime approaches using tools like Monocle and Slingshot
have also emerged as important tools to order cells along dynamic trajectories within

scRNA-seq data, revealing the temporal progression of EMT over time5'-52,
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Recent tools have expanded on these methods further. For example, CELLSTATES,
built on the clustering approach, and developed an approach to capture cell states at
the statistically maximum resolution®. This method partitioned cells based on
statistically indistinguishable gene expression states, accounting for biological noise
present in the data. SeaCells is another approach, that works by grouping cells into
meta-cells that share similar gene expression profiles while minimizing information

loss using archetypal analysis®.

It is important to note that transcriptomic scoring of EMT can be confounded by CAF
signatures as they express many of the same markers that cancer cells undergoing
EMT express®. Approaches, such as using scRNA-seq whole transcriptome reference
mapping are important to ensure the targeting of specific tumour-related EMT

signatures.

Despite these advances, no single metric or method for defining a cell state or cell
type is universally accepted, highlighting the need for unified definitions and standards

in the field®s.

1.4 EMT and epigenetics

There is growing evidence to suggest that TME can influence the EMT state of a
cancer cell through epigenetic reprogramming, in addition to the transient effect of
influencing gene expression through signalling pathways®%. Signals such as cytokines,
hypoxia, and ECM interactions can act through a non-genetic, reversible route via
chromatin remodelling, DNA methylation, and non-coding RNAs5%6. For example,
hypoxia-induced histone modifications such as trimethylation of histone H3 at lysine 4
(H3K4me3) have been identified at promoters of EMT transcription factors such as
TWIST15. TGF-B has been shown to induce EMT epigenetically by the demethylation
of H3K27me3 in the Snail1 promoter®®. Aside from histone modifications, DNA
methyltransferases catalyse the transfer of methyl groups to cytosine residues,
primarily at CpG dinucleotides®®. This can then lead to the transcriptional repression
of epithelial genes®. Non-coding RNAs including microRNAs such as the miR-200
family acts on key EMT genes, such as ZEB1 and ZEB2%°. Additionally, the non-coding
RNAs MALAT1 and HOTAIR have been shown to promote EMT by recruiting
chromatin modifiers®6!, These epigenetic mechanisms enable cells to transition

between epithelial and mesenchymal states dynamically, enhancing the plastic nature
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of the programme. Importantly, it also allows the mesenchymal cancer cells to revert
back to an epithelial phenotype through the mesenchymal-epithelial transition

(MET)%°, enhancing colonisation at metastatic sites.

The lineage specification of the tumour cell can significantly influence the propensity
for EMP. Epithelial subtypes, while similar in function, differ in morphology,
transcriptional and chromatin landscapes, what can all influence EMP to different
extents?8. There is growing evidence that cancer cells can acquire traits by reactivating
dormant developmental programs?6:62 and EMP can be viewed as cells re-traversing
developmental paths?6. Lineage-specification of the tumour cell can occur at the
chromatin-level or the functional loss of certain lineage-specific transcription factors
genes, such as GATA3, ELF5, FOXA1, or KLF4 which can drive EMP28. For example,
the loss of GATA3, necessary for luminal epithelial cell commitment®3, can induce EMT

in breast cancer.

1.5 Genetic constraints on EMT

Although EMT is not strongly believed to be genetically determined, as it is considered
a reversible, process, accumulating evidence suggests that genetic alterations can
contribute to EMT. These genetic mechanisms can range from mutations to copy
number variations and chromosomal rearrangements and can act on the key EMT
transcription factors sites. For example, loss of p53, a well-known mutation that
promotes metastasis, can trigger an epigenetic signalling cascade acting on SNAIA1,
an important EMT transcription factor®4. ZEB1 amplification can drive EMP in prostate
cancer®®. Loss of chromosome 8p has been linked to increased invasiveness in breast
cancer®® and loss of chromosome 9p and chromosome 14q have been shown to play
an important role in metastatic clear-cell renal carcinoma®’. Additionally, amplification
of chromosome 11g1 has been shown to increase the expression of the actin-related

protein 2/3 complex, increasing motility and invasion of cancer cells®.

Chromosomal rearrangements can also act on key EMT regions of the genome. For
example, TWIST1 is located in a well-documented unstable region of the genome that
often undergoes rearrangements®. Gene fusions such as TMPRSS2-ERG has been
linked to increased EMT7C. These genomic mechanisms can also promote a hybrid
EMT phenotype. For example, hybrid EMT states have been reported to be due to

FAT1 loss, which alters the chromatin state of cells, stabilising both epithelial and
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mesenchymal traits’!. KRAS mutations have also been shown to promote both

epithelial and mesenchymal gene expression’?.

1.6 EMT and the tumour microenvironment

There is growing evidence building to suggest that a large number of interactions
between tumour cells and the microenvironment occur during EMT"3,74, The TME
consists of the surrounding cells, including immune cells and fibroblasts, the
extracellular matrix, signalling molecules, and blood vessels that interact with the
tumour. It plays a central role in the growth and invasion of the cancer cells’. A key
component of EMT in both wound healing and cancer is the remodelling of the
microenvironment. In turn, the microenvironment properties, such as the cytokines,
ECM, hypoxia and growth factors can also influence the EMT states of the cancer
cells. The TME is therefore a likely contributor to the stability and regulation of EMT

states’4.

The relationship of regions of the tumour undergoing EMT and different components
of the TME have been explored in different experimental systems®°. Key evidence
highlighting the significance of the TME emerged from studies demonstrating the
crucial role of TGF-B in promoting EMT in cell lines’8. This is a cytokine predominantly
produced by immune cells and CAFs, key players within the TME’’. Various
experiments culturing cancer cells with cells found within the TME have been shown
to promote EMT. For example, co-culturing cancer cell lines with fibroblasts’87% and
macrophages®8' with cancer cells have promoted EMT. CAFs can also induce EMT
through their roles remodelling the ECM, increasing the stiffness of the matrix8283,
which through mechano-transduction pathways can promote EMT. The links with the
TME have been further validated in xenograft models, experimental systems in which
human tissue is implanted into immunocompromised mice. These models have
confirmed certain relationships observed in cell lines. For example, breast cancer
xenografts injected with CAF signalling molecules had increased expression of EMT
markers and promoted tumour progression®. Pastushenko et al. reported shifts in the
composition of stromal cells as tumour cells transitioned to more mesenchymal states
in a genetic mouse model of skin squamous cell carcinoma. Cells in close contact with
EMT tumour cells showed significantly higher densities of CD45+ immune cells,
particularly monocytes and CD68+ macrophages, as well as increased numbers of

endothelial and lymphatic cells. Importantly to note this study identified EMT cells
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using a specific set of markers, EpCAM, CD106 (VCAM1), and CD51 (ITGAV), and

therefore may miss the complexities of different states.

Despite this knowledge, the relationship between regions of the tumour undergoing
EMT and different components of the TME is not well established in human tissue

samples.

1.7 EMT and druggable targets
A major goal is translating EMT research into the clinic, due to the strong links with
metastasis and chemoresistance®®. While most approaches remain experimental,

some have entered clinical trials.

The majority of drugs entering clinical trials are STAT3 inhibitors, targeting a
transcription factor in the signalling pathway of EMT®. DSP-0337, Danvatirsen and
OPB-111077 are some of the inhibitors targeting STAT3 that are in phase | or phase
Il clinical trials®”:88, As EMT is tightly controlled at the transcription factor level,
targeting the key transcription factors such as Snail, Twist, Slug, Zeb1, and Zeb2
would have been the more intuitive target. However, as these can have overlapping
functions, targeting them individually have not been successful in suppressing EMT®,
Drugs to target key EMT inducers, such as TGF- and TNF-a have also been
developed, most notably using small molecule inhibitors. Avadomide, a small molecule
inhibitor had success in human phase | study, and it is now in phase Il study for
advanced melanoma®. Monoclonal antibodies have also been developed to target
these inducers, such as NIS-793 which is an anti-TGF-B monoclonal antibody®'. Small
interfering RNA (siRNA) targeting EMT transcription factors have also been a focus,
and siRNAs targeting hypoxia and TGF- 3 signalling pathways have been tested in
preclinical settings®?. Epigenetic modulation has had recent focus, with DNA
methyltransferase (DNMT) inhibitors having had success at halting EMT progression

in preclinical settings®.

As the TME plays an important role governing EMT, targeting the different TME
components involved in EMT, is an emerging approach. Targeting the TME has had
overwhelming success for other key aspects of cancer progression. For example,
cancer immunotherapies, such as immune checkpoint inhibitors (ICls) and chimeric
antigen receptor (CAR) T-cell therapies have prolonged survival in a subset of cancer

types®9. CD8+ cytotoxic T-cells are critical in providing antitumour immunity, and
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tumour cells can often avoid attack by producing immunosuppressive factors, which
ICls can target®. Gaining a deeper understanding of how EMT states interact with the
TME will therefore be important in advancing this approach. TME components, such
as CAFs, can be targeted by a compound that inhibits the secretion of cytokines that
promote their activation, such as TGF-B inhibitors or PDGF receptor inhibitors®. The
extracellular matrix (ECM) can be targeted by degradation enzymes?.
Immunotherapies, are also being explored to target EMT, particularly to target the EMT

states that are linked to immunosuppressive features®.

A key challenge includes the risk that anti-EMT therapies could lead to an increase in
the mesenchymal-epithelial transition and encourage disseminated tumour cells to
colonise®. Additionally, EMT patient heterogeneity is currently poorly characterised,
and therefore, it is currently unknown whether anti-EMT therapy would benefit those
with early stage or late stage better, and those with or without certain cell
populations®. Other challenges in EMT therapeutic developments include the
development of screening tools to identify anti-EMT compounds®®. 2D in vitro studies
have been the most popular as they offer a high-throughput approach, but are limited
by the fact that they cannot model the TME effect on EMT. Therefore, 3D methods,
such as tumour-on-a-chip technology, are currently being developed to more
successfully capture the TME®. An increased understanding of which TME cells are
associated with different EMT states in patient tissue can greatly aid in the creation of

a synthetic TME for screening purposes.

1.8 Spatial biology

Multiple studies have shown that intra- tumour heterogeneity, the distinct tumour cell
populations within the same tumour, can accelerate cancer progression 100101102 |t s
therefore vital to study spatial structures in cancer to further understand intra-tumour
heterogeneity and improve therapeutic response and survival rates'®. For example,
patients can have significantly different responses to immune checkpoint inhibitors
depending on the cancer lesion within the patient'®. Additionally, spatial patterns of
immune cells can also hold prognostic value. A recent study analysing the networks of
over 1,000 LUAD and LUSC tumours constructed from H&E images showed that the
spatial patterns of tumour-infiltrating lymphocytes (TILs) on H&E images were different

between subtypes and prognostically relevant'®. Multiple additional studies that
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model tissue as cellular graphs have also identified clinically relevant features'%6:197,
Determining the spatial context of EMT is therefore critical for advancing our

understanding of how phenotypes develop, progress, and respond to treatment.

Spatial transcriptomics is a recent technique that enables us to profile gene expression
across a tissue and is an important technique to assess tumour heterogeneity'°8.
Visium, a spatial transcriptomic platform released by 10X Genomics in 2019, enables
the whole transcriptome profiling of ~1,000 tissue spots (55 um spot diameter with 100
um centre-to-centre distance) with over 10,000 transcripts per spot'®. Recent
developments on this approach have resulted in a newer technique in 2023, Visium
HD, which offers higher resolution imaging with smaller tissue spot sizes. Visium HD
has much smaller, continuous spots (around 2um) compared to the larger, spaced-out
spots of the original Visium. Xenium, also developed by 10X Genomics, represents an
approach offering sub-cellular resolution, but profiles a targeted set of transcripts
rather than the whole transcriptome''°. It is currently a very active research area, and
multiple other companies are promising improvements on resolution and throughput
in the next few years?'. Due to the high complexity of these datasets, tailored
computational methods are important for inferring conclusions'''. A large range of
methods, including spatial transcriptomic-specific normalisation''?, cellular
deconvolution'® "4 and spatially varying gene identification'’ 116 have been
developed in recent years to address the novel questions emerging from spatial

transcriptomics.

Spatial transcriptomics offers a promising avenue to confirm some of the widely
established EMT spatial relationships in human tissue. Several studies have shown
that EMT is a spatially located gene signature. For example, Takiet et al. (2021)
showed that epithelial cells at the tumour edge were significantly enriched in pathways
related to EMT in primary and metastatic head and neck cancer''”. Additionally, they
showed that pEMT cancer cells located at the leading edge of head and neck tumours
were shown to cause invasion by interacting with cancer-associated fibroblasts. EMT-
related genes were the most easily predicted in a study that attempted to predict
spatial transcriptomics in breast cancer tissue, hinting at the relevance of the spatial
context for EMT. Barkley et al. (2022) showed cells undergoing EMT correlated with
fibroblasts and endothelial cells, whilst being negatively correlated with other

malignant cells''®. This study only looked at a few key EMT markers and cell type
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markers, but it suggests the relationship between EMT and microenvironment cells
warrants further investigation. Additionally, EMT, hypoxia and inflammation were found
as the key explanatory variables for regional variations in pancreatic cancer spatial
transcriptomic data''®. Macrophages have also been linked to EMT in specific niches

within breast cancer spatial transcriptomics slides 2.

1.9 Statistical and machine learning methods to analyse spatial data

Spatial transcriptomic technologies such as Visium measure expression from multiple
cells within a single spot, and therefore cellular deconvolution to estimate the cellular
composition of spatial transcriptomic spots is usually a necessary first step in analysis.
Methods like RCTD'?!, Stereoscope'??, and Cell2Location'?® have been developed to
infer single-cell contributions to these spatial profiles. They use a range of techniques

from non-negative matrix factorisation to probabilistic modelling approaches.

A lot of method development has focused on analysing areas within the tissue
characterised by specific cellular compositions, referred to as spatial niches. These
distinct cellular interactions drive phenotypic behaviours such as differentiation,
migration, and response to external stimuli. These spatial niches could include
invasive tumour margins, immune-infiltrated regions, or hypoxic zones. To study
spatial niches, spatial clustering methods, such as SpaGCN'?*, BayesSpace'?®, and
Giotto'?6, are widely used, and have been proven to identify functional regions in
tissues. These tools cluster spatial spots based on gene expression profiles and their
physical location, identifying distinct regions. Additionally, niche methods can cluster

at the cell type label level, such as CellCharter'?7,

Many niche methods are therefore focused on detecting niches at the gene expression
or cell type level. However, methods to understand the niches of tumour regions
enriched for specific gene signatures are less well developed. In the case of EMT, this
would be understanding the different cell types associated with regions enriched for
different EMT states. Additionally, understanding how these relationships change after
altering the parameters used for niche detection are less well established. For
instance, adjusting the number of neighbouring cells or spots considered when
defining niches, or analysing gene signatures and cell types as broader spatial regions
rather than at an individual level, could influence niche characterisation. Moreover,

current approaches lack analytical methods to define and compare shorter and longer-
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range interactions between specific areas or cell populations of interest. They also do
not have extensive functionality to determine the differential spatial relationships given
two gene signatures of interest. For example, “which cells are significantly closer to

high hypoxic regions compared to low hypoxic regions?”

Another focus of method development involves identifying spatially variable genes
(SVGs), which involves genes whose expression levels vary significantly across
different spatial regions of a tissue, reflecting genes involved in cell-cell interactions,
microenvironmental heterogeneity, or tissue-specific functions. Popular methods
include SpatialDE'?8, which uses Gaussian process regression, and SPARK, which

uses a flexible non-parametric approach'?.

Graph-based abstraction of the gene expression datasets has been an emerging way
of representing spatial transcriptomic data for downstream analysis'®. It has been
used for cellular deconvolution techniques '3, inferring gene interactions'3? and
neighbourhood modelling33. Modelling cells as graphs has been around since the
early 2000s within cancer pathology, where it was shown that the graph metrics can
distinguish healthy and unhealthy inflamed cells with high accuracy'*. Recent
interesting research in the field shows that graph neural networks can model tissue-

level emergent phenotypes such as immune cell dispersion in colorectal tumours 3.

GNNs are particularly suited for representing cellular neighbourhoods as graph
structures, where nodes represent cells or spots, and edges capture their spatial
relationships. While traditional statistical and machine learning approaches treat
observations as independent, GNNs use the graph structure to model the spatial
dependencies and interactions between neighbouring cells'. Using an iterative
message-passing framework, GNNs can capture information from each node to
aggregate information from its local neighbourhood, enabling the model to learn
hierarchical representations. With additional layers it is possible to capture both local,
and global tissue organisation'®’. Graph convolutional layers, where a node’s feature
representation is updated based on its own attributes and those of its neighbours,
weighted by a learnable transformation function, is the most common approach 3,
Graph Attention Networks (GATs) are another approach, which use an attention
mechanism that assigns different importance weights to neighbouring nodes instead

of treating all neighbours equally'®. This allows GATs to learn coefficients that focus
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on the most important interactions, ensuring that the model captures the

heterogeneous effects of the cells'4.

1.10 Key challenges of spatial data

It is important that when analysing spatial transcriptomics data, approaches account
for the unique statistical properties of spatial data. A key property is spatial
autocorrelation (Figure 4) where nearby observations are more likely to be similar
than distant ones''. This violates the assumption of independence fundamental to
many standard statistical models. Therefore, the use of spatially explicit models such
as spatial autoregressive models or geostatistical kriging methods are required to

account for these dependencies.

Another aspect of spatial analysis is the modifiable areal unit problem (MAUP), which
arises when outcomes depend on the scale or boundaries of spatial aggregation'",
(Figure 4). MAUP occurs in two forms: the scale effect, where the level of spatial
resolution alters the analysis (e.g., patterns detected at a fine scale may be masked
at a coarser scale), and the zoning effect, where different ways of defining spatial
boundaries or domains lead to different results. Therefore, relationships identified as
spatially heterogeneous at one scale may appear locally homogeneous at another.
Detecting spatially variable genes or clustering spatial domains can be highly
dependent on scale and taking this into account is important to ensure biologically
meaningful insights rather than artifacts of data aggregation. Multi-resolution
frameworks are important to help reduce these effects. This has been widely explored

in geo-statistics, but the effect within spatial biology is much less explored'42-144,

Spatial heterogeneity, also referred to as spatial non-stationarity, is another key aspect
of spatial analysis'#'. It reflects the variability in relationships between variables across
different spatial regions (Figure 4). In statistical terms, this means that the parameters
of a model may vary spatially, violating assumptions of stationarity often required in
standard statistical models. Techniques such as geographically weighted regression
(GWR) or spatially varying coefficient models can be applied to explicitly model these
spatially dependent relationships'#5. This is particularly important in biological contexts
where the effects of microenvironmental influences, such as immune infiltration or

stromal cell interactions, are not uniform but context dependent.
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Many research studies in the field ignore the statistical considerations required for the
accurate analysis of spatial data, and therefore risk losing valuable spatial context.
This concern was highlighted in a recent review by Comber et al. (2024)'%5, where it
was noted that numerous spatial transcriptomic studies either cluster data without
incorporating spatial information or propose novel approaches to address issues like
spatial autocorrelation without referencing widely used geostatistical methods. For
example, the SpatialDE method for spatially variable genes does not mention Moran's
I, a widely used metric in geostatistics'?®. This highlights not only a lack of appropriate

application of spatial statistics but also potential duplication of research efforts.
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Figure 4 Key statistical properties of spatial data. From left to right, spatial autocorrelation, the
modifiable aerial unit problem and spatial heterogeneity. Adapted from Comber et al. (2024)746.

1.11EMT in Breast Cancer

Breast cancer is the most commonly diagnosed cancer in women'4” and is a leading
cause of cancer-related deaths, with over 2.3 million new cases diagnosed annually 48
Survival rates vary widely depending on tumour subtype, stage at diagnosis, and
access to medical care. Due to the advances in treatment, the five-year survival rate
for localised breast cancer is over 90%, however there is a significant drop for

metastatic disease, due to limited treatment options available'#.

Due to its prevalence, it provides a widely studied system with well-established clinical

subtypes'’. The predominant subtypes include hormone receptor positive
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(ER+/PR+), HER2-enriched, and triple-negative breast cancer (TNBC)'¥.
Additionally, there are extensive breast cancer datasets available for analysis,
including bulk transcriptomics, such as from TCGA'#° and METABRIC'%?, large scale
scRNA-seq datasets and spatial transcriptomics datasets'®. Given its extensive
characterisation and the availability of diverse datasets, breast cancer serves as a

valuable model for investigating EMT.

Additionally, in many breast cancers, well-known markers such as E-cadherin,
vimentin, and GATA3 have been linked to disease progression and response to
therapy'®".152. Moreover, breast tumours often display spatial heterogeneity, with
localised regions of hypoxia, immune cell infiltration, and stromal remodelling, factors
known to influence EMT'20, Therefore EMT-related spatial observations in this cancer
type are likely to be clinically relevant. EMT has been well characterised in breast
cancer cell lines, with the commonly used EMT inducers such as TGF-B and IL6
displaying similar effects as in other cancers, such as promoting invasiveness?’:153,
This also likely highlights the strong connection between EMT and immune cells or
fibroblasts in the TME, as these stromal components actively secrete EMT-inducing
factors. In breast cancer mouse models, EMT-like populations emerge within distinct
spatial niches, particularly at the invasive front, where tumour-stroma interactions are
most pronounced'®*. Recent studies have explored EMT in breast cancer using spatial
transcriptomics, revealing interactions with CAFs, tumour-associated macrophages
and hypoxia, though these efforts have been constrained by a limited number of slides
and a small set of EMT markers''8.120_ Distinct EMT-related states have been detected

in breast cancer, but their spatial relationships are poorly characterised 5.

1.12Knowledge gaps and aims of the thesis

Despite the considerable progress in characterising EMT and identifying intermediate
EMT states, there remains many unanswered questions. Firstly, there is a need for the
development of appropriate methods that would enable a statistically rigorous
approach to understand the relationships of EMT. For example, developing a method
to detect statistically significant regions enriched for specific EMT states, and

assessing the spatial relationships of these states. Whilst many methods detect spatial
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niches, there are fewer methods designed to flexibly analyse continuous signatures,
such as EMT, and compare the results using different spatial units. Additionally, there
are a lack of methods that can differentially compare these relationships to other
signatures, such as epithelial regions. Moreover, current approaches investigating
EMT spatially focus on a limited set of marker genes, likely overlooking the complexity
and heterogeneity of EMT. Additionally, they do not investigate different EMT states.
Whilst many studies have focused on model systems to characterise the spatial
relationships of EMT in breast cancer, studies are lacking investigating these
relationships in human tissue samples, particularly statistically principled approaches

to characterise EMT states and spatial relationships.

Another important question is how these diverse EMT states are influenced by both
intrinsic genomic factors (e.g., copy number variants, mutations) and extrinsic
microenvironmental cues (e.g., stromal cells, immune cells). Although recent studies
have highlighted the importance of spatial context, showing that tumour cells undergo
EMT in discrete niches, there is a lack of integrated methodologies that consider a full
range of TME components, and model these variables together with genomic factors.
With the wide range of models already developed in geostatistics, ecology and spatial
machine learning fields to understand spatial processes on a much larger scale, |

believe there is a gap in translating the advances in these fields in spatial biology.

1.13 Aims

1. Identify genomic and TME signals that impact EMT (Chapter 2)
i.  Understand genomic influences of EMT in bulk transcriptomics
ii. Identify EMT-TME relationships in a subset of breast spatial
transcriptomic data
2. Analyse the TME relationships at different biological scales to further
understand the relationship with EMT in breast cancer (Chapter 3)
i. Develop a pipeline to accurately capture EMT signals in spatial
transcriptomic data using a statistically principled approach
ii. Locate spatial clusters (hotspots) enriched for different EMT states and

different cellular components within the TME
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V.

Quantify the relationships between these hotspots across different
spatial scales

Compare these relationships to relationships identified using
neighbourhood enrichment

Develop the pipeline into a Python package for reusability

3. Quantify the relative influence of intrinsic (genetic) and extrinsic (TME) factors

on EMP in breast cancer (Chapter 4)

Determine which EMT phenotypes are the least predictable by intrinsic
and extrinsic factors and assess the coefficients of the models to
understand the ranking of the most important genetic and
microenvironmental factors

Compare the performance of the different models tested (graph neural
networks compared to spatial regression models)

Assess spatial heterogeneity in EMT-TME interactions by applying
geographically weighted regression (GWR) to capture intra-tumour
variability in EMT-TME relationships
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2 Chapter 2: Spatial heterogeneity of EMT

Despite extensive research on EMT, several key questions remain unanswered. One
of the key open questions is understanding the role of hybrid EMT states, including
their relationship to the TME. Additionally, much of our knowledge is based on model
systems, such as cell lines and animal models. While some animal models preserve
an intact TME, they come with significant limitations, including species-specific
differences in immune responses, stromal composition, and tumour evolution. These
models can therefore fail to fully capture the genetic and spatial heterogeneity seen in
human tumours, leaving a gap in our understanding of EMT in its native context.
Addressing these gaps is important for identifying therapeutic opportunities and

improving the ability to predict tumour progression more accurately.

In this chapter, | begin by introducing the literature (Section 2.1) and methods (Section
2.2) before using spatial transcriptomics, specifically ST2K (first generation) and
Visium, to investigate the relationships among cells undergoing EMT with other cells
in the TME (Section 2.3). Notably, when this research was initiated, EMT had not yet
been examined using spatial transcriptomics, and analysis using the Visium platform
was in its infancy. By integrating these approaches, | build a foundation for the
subsequent chapters, where more advanced spatial analyses further clarify the
relationship between EMT states with the TME.

This chapter is based on material from Tagliazucchi et al. Nature Communications

(2023), where | conducted all the spatial analyses.

2.1 Introduction

Spatial transcriptomics has significantly deepened our understanding of cancer by
revealing the spatial heterogeneity within tumours, as highlighted and reviewed in
Chapter 1.

A seminal study by Stahl et al. (2016) pioneered the field by using spatially barcoded
arrays to map whole-transcriptome data directly onto tissue sections, enabling
histology to be linked with molecular analysis. Since then, various landmark papers
have identified unique cellular niches linked with therapeutic outcomes's¢!5, For

example, Berglund et al. (2018)'%° mapped prostate cancer transcriptomes and
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uncovered discrete cellular niches with unique gene expression profiles, highlighting
the important influence of the tumour microenvironment on prostate progression.
Technological advancements, exemplified by the second-generation ST2K platform
and higher-resolution methods like 10x Genomics’ Visium, have enabled even more
precise mapping of cell interactions. In a landmark study of HER2-positive breast
cancer, Andersson et al. (2021) used ST2K combined with cellular deconvolution to
generate high-resolution maps of cell type distributions and interactions in 36 tissue
sections from eight HER2-positive breast cancer patients’®®. The analysis revealed
that the breast tumours are highly heterogeneous, with distinct spatial domains
corresponding to in situ and invasive cancer regions, immune infiltrates, and stromal

compartments.

In this chapter, | build on the growing use of spatial transcriptomics in cancer research
to explore the EMT continuum, its spatial organisation, and its interactions within the
tumour microenvironment. By detecting EMT states in spatial transcriptomics, | begin

to uncover the spatial relationships of the EMT continuum.

2.2 Methods
2.2.1 Spatial transcriptomics preprocessing

Three breast cancer patient samples were downloaded from 10x genomics

(https://support.10xgenomics.com/spatial-gene-expression/datasets). Patient 1 was

AJCC Stage Group |, ER positive, PR positive and HER2 negative. Patient 2 was
AJCC Stage Group IIA, ER positive, PR negative and Her2 positive. Patient 3 did not
have molecular details described. The analysis was conducted using data processed
through the Space Ranger Visium pipeline. Normalisation was performed using the
SCTransform R package, which applies a regularised negative binomial regression
method. EcoTyper was used to estimate the proportions of different cell types and
states for each spatial transcriptomic spot. The identified cell types included B cells,
CD4* T cells, CD8* T cells, dendritic cells, endothelial cells, epithelial cells, fibroblasts,

mast cells, monocytes/macrophages, NK cells, plasma cells, and neutrophils.

ST2K (ST second generation, 2000 spots/array) datasets (9 patients with 3-5 repeats

each) were downloaded from https://github.com/almaan/her2st. All samples had been

stained positive for HER2. The same pre-processing steps were employed as in

Andersson et al.'s8, Briefly, this consisted of using SCTransform for normalisation and
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Non-Negative Matrix Factorisation (NMF) for dimensionality reduction. The factors that
contained consistent patterns across the tissue replicates were retained for analysis.
The Stereoscope'? (v.0.2) R package was used for cell-type deconvolution. The

deconvolution data was downloaded from https://qgithub.com/almaan/her2st. The

major class consists of myeloid cells, T cells, B cells, epithelial cells, plasma cells,
endothelial cells, CAFs, and perivascular-like cells (PVL cells). The minor tier contains
finer partitioning of the maijor cell types, e.g., macrophages and CD8+ T cells. Further

description of the deconvolution method is described by the authors'?2.

The Seurat'®® R package was used for storing, manipulating and visualising the spatial

transcriptomic data.

2.2.2 Spatial gene module scores

An EMT score was computed for each spatial transcriptomic spot by adapting the
method previously used to score TCGA samples, this time leveraging scRNA-seq data
from solely breast cancer cell lines. The EMT trajectory derived from single-cell data
was mapped onto each spot, with the k-NN algorithm identifying the most similar
single-cell samples. The mean of their pseudotime values was used to determine the
EMT score. This process was performed across multiple breast cancer cell lines, and

the average pseudotime across all lines was used to calculate the final EMT score.

To categorise EMT states, the pseudotime values were divided into three intervals
corresponding to epithelial-like, hybrid-like, and mesenchymal-like states. The
SpatialFeaturePlot function from the Seurat R package was used to visualize these
scores. For correlation analysis, only spots containing epithelial cells were considered.
The STUtility'®" R package was used to compute the 12 nearest neighbours for each
epithelial spot, and cell type proportions were aggregated across these neighbouring

spots.

2.2.3 Cluster identification from spatial transcriptomics data

The spatial transcriptomic dataset was filtered to retain only epithelial, hybrid, and
mesenchymal genes. Clustering was performed using the FindClusters function in
Seurat, which grouped spatial spots based on gene expression. This was achieved by
computing k-NN and constructing a shared nearest neighbour graph. The EMT scores

were averaged within each cluster. The results were then binned into three categories:
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low, medium, and high EMT states, corresponding to epithelial (EPI), hybrid EMT
(hEMT), and mesenchymal (MES) states. The cell type enrichment scores calculated
per region were plotted using the enriched-region.py Python file

from https://github.com/almaan/her2st.

2.2.4 Inference of interaction networks

Graph-based analysis of the Visium spatial transcriptomic slides was performed using
the ScanPy'%? and SquidPy''® Python packages, which enabled graph visualization
and computation of graph metrics. The STULtility'5® package was modified to construct

spatial graphs from the ST2K spatial slides.

Deconvolved spot results were used to assign node labels, while edges were
established based on spot neighbourhood relationships. Further network analysis and

querying were conducted using NetworkX163.

2.3 Results
2.3.1 Tumour cell extrinsic hallmarks of EMT

To investigate associations with the TME, | analysed spatial transcriptomics data from
three breast cancer slides generated using the 10x Genomics Visium platform, along
with multi-region profiling of eight breast tumours using ST2K, as described by
Andersson et al.'%8. This allowed me to explore the spatial heterogeneity of EMT and
its links with other phenotypes within the tumour tissue. | used clustering to locate the
areas within the breast cancer tissue that have homogeneous patterns of expression
(see Methods) (Figure 5). | investigated the tumour microenvironment composition

within these clusters in relation to EMT states.
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Figure 5 Spatial transcriptomic clustering. a The clusters of homogeneous expression profiles within the spatial
transcriptomic spots shown for Patient 1. Each distinct cluster is represented by a unique colour, and each spot is
coloured according to the cluster. b Expression clusters visualised using UMAP dimensionality reduction. Each dot
represents a spot from the spatial transcriptomics slide and is coloured according to the cluster it was assigned to.

My analysis revealed extensive variation in EMT transformation across the tissue, with
occasional clustering of EMT states within epithelial pockets (Figure 6). The most
noticeable spatial pattern emerged in fibroblasts, which surrounded neoplastic
epithelial areas in proportion to increasing EMT state, showing the strongest
association with highly transformed tumour regions. Additionally, | identified links
between the MES state and infiltration by CD87/CD4* T cells, monocytes, and
macrophages (Figure 6c, f, i). | also found that transformed (hEMT/MES) regions

were associated with dendritic cells and polymorphonuclear leukocytes (PMNSs).
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Figure 6 Spatial Patterns of EMT a- b EMT scores and the fraction of fibroblasts are visualised across within
individual spots profiled across the tissue in a selected breast cancer slide, derived from spatial transcriptomics
data from Patient 1 of the Visium dataset. The colour gradient reflects the expression of markers of the specific cell
state (for EMT) or the fraction of cell types (for fibroblasts). ¢ Enrichment and depletion of cell types in each EMT-
based cluster from Patient 1. The plots represent the difference between the average cell type proportion value per
region, compared to a permuted spot value (calculated 10,000 times). The plot marker size corresponds to the
absolute enrichment score, and the colour represents the enrichment sign. PMN polymorphonuclear neutrophils,
PC plasma cells, NK natural killer, macrophages. d—f The same annotations as above for a breast cancer sample
from Patient 2 of the Visium dataset. g—i The same annotations as above for a breast cancer sample from Patient
3 of the Visium dataset

Expanding the analysis to a larger multi-region spatial transcriptomics dataset from
multiple patients profiled using ST2K, | found that hEMT regions uniquely associated
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with both MSC/iCAF-like and myCAF-like cells, while EPI states were linked only to
MSC/iCAF-like cells, and MES states were predominantly associated with myCAF-like
cells (Figure 7). Thus, the heterogeneity of hAEMT-CAF associations may be explained
by different subtypes of CAFs present in the context of hEMT and MES samples.
Interestingly, natural killer (NK) cells were the only cell type exclusively associated with
hEMT regions, hinting that NK cell activation strategies could be particularly effective
against tumour cells in this hybrid state. Other cell types, such as endothelial cells,
showed more variable associations across samples, and their spatial patterns aligned

less consistently with those seen in bulk tissue analyses.
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Figure 7 Spatial relationship of EMT in ST2K slides. Enrichment and depletion of cell types in EMT-based
clusters derived from multi-region spatial transcriptomics slides from the ST2K cohort. CAF cancer-associated

fibroblasts, myCAF myofibroblast CAF, DC dendritic cells, PVC perivascular cells, NKT natural killer T cells.

Beyond cell type enrichment, | inferred cell-cell interactions within the spatially profiled
slides by analysing signal co-localisation. My findings indicate that fully mesenchymal
tumour cells interact more frequently with fibroblasts, CD8*, and CD4" T cells, whereas
epithelial and hybrid EMT states showed no substantial differences in their interactions
with immune cells (Figure 8a, Figure 9a). This reinforces the idea that transformed
tumour cells interact with an immunogenic environment, which may, however, be

suppressed by CAFs.
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Figure 8 Spatial interactions of EMT in Visium. a Fraction of interactions established between tumour cells in
the three EMT macro-states and fibroblasts or T cells in the Visium dataset. b Fraction of interactions established
among cancer cells in different EMT macro-states in the Visium dataset.

| also examined how tumour cells interact with each other (Figure 8b, Figure 9b).
Interestingly, cancer cells at the extremes of EMT transformation (either epithelial or
fully mesenchymal) were more likely to interact with cells in the same state. In contrast,
hEMT cells did not exhibit a preference for interacting with cells of any EMT state,
suggesting that this hybrid phenotype may be more dynamic or more accessible from
any other state, consistent with predictions from our HMM model. Notably, these

patterns were highly similar across both Visium and ST2K datasets.
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Figure 9 Spatial interactions of EMT in ST2K slides. a Fraction of interactions established between cells in
the three EMT macro-states and fibroblasts or T cells in the ST2K dataset. b Fraction of interactions established

among cancer cells in different EMT macro-states in the ST2K dataset.

Overall, these findings highlight a heterogeneous landscape of cell states and
interactions, with both recurrent patterns and considerable spatial and patient-to-
patient variability in EMT and TME composition. This suggests that local spatial effects
play a key role in EMT progression. However, these associations may be partially
masked by the fact that my analysis focuses on early-stage tumours, where the
transition from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) is
being examined. Stronger patterns may emerge in more advanced cancers, where
hEMT or MES phenotypes are more prevalent, something not fully captured in this
dataset.

Despite the large spatial variability, the continuum of EMT transformation is clear in
spatially profiled slides, and stresses the importance of examining local effects to

better understand tumour progression and responses to treatment.

2.4 Discussion

In this chapter, | present findings that reveal distinct EMT trajectories in cancer, defined
by three macro-states. Fibroblasts and cytotoxic T cells often surrounded more
mesenchymal neoplastic areas, and more frequent interactions with these cells were
observed in this context. There was evidence for initial immune recognition as
suggested by the co-localisation of MES with CD8/CD4+ T cell signals and hEMT with
NK cell signals, which could be due to higher neoantigen presentation and subsequent

exhaustion of T cells'64.
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Cells with hybrid EMT features have been shown to give rise to daughter cells that are
either mesenchymal or epithelial and are more prone to migrate', which could
explain some of the heterogeneity observed for this state. Additionally, the hEMT state
is likely composed of multiple distinct subpopulations, as highlighted by Pastushenko

et al.?2%, Goetz et al.#? and Brown et al."55.

The spatial analysis is limited by the small sample size, and larger spatial datasets will
be required to further understand the more complex relationships established,
particularly for intermediate EMT stages which are more heterogeneous than for the
fully mesenchymal states. | analysed ST2K slides for the majority of patients, in
addition to three Visium 10X genomics slides. At the time of the analysis, ST2K spatial
transcriptomics was the more established platform, with Visium 10x Genomics
analysis in its infancy. However, Visium 10x Genomics provides higher spatial
resolution, with each spot measuring 55 pm in diameter and capturing the
transcriptomic profile of approximately 1-10 cells per spot. In contrast, ST2K has larger
spots, typically 100-150 um, which means that each spot contains a larger number of

cells per spot, reducing spatial resolution.

| was also limited in the ability to capture a broad spectrum along the EMT
transformation as the data are only sourced from early-stage cancers. Additionally,
CAFs can express similar mesenchymal markers that are also found in tumour cells
undergoing EMT which can confound EMT analysis. Whilst | only focused on scoring
tumour cells with EMT signatures to help ensure that signals were not mixed,
deconvolving the spatial transcriptomic using a reference single-cell dataset labelled

with EMT states would more accurately ensure CAF signals are not being captured.

The spatial analysis highlights the requirement for new methods to identify localised,
context-specific effects within the tissue which may not generalise throughout the
tumour. Additionally, techniques to identify spatial clustering of EMT signatures and
their interactions with other domains of TME components will be important to
understand the statistically significant relationships. Ensuring that these interactions
are assessed across multiple spatial scales will provide a more comprehensive

understanding of the relationships.

Despite these limitations, our analyses do serve as a proof of concept for the ability to

survey EMT spatially and highlights the complex microenvironmental mechanisms that
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shape EMT transformation during cancer. Intra- and inter-tumour heterogeneity are
likely to create complex EMT-TME landscapes that require more extensive datasets
and method development to fully understand. In Chapter 3 | address some of these
limitations, including the need for more robust method development to capture spatial
relationships in a statistically principled manner. Additionally, the limitations around the
sample size, number of EMT states, method to distinguish EMT tumour cells from
CAFs are addressed. | will further explore these relationships in a spatial single-cell

resolved manner in Chapter 4.
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3 Chapter 3: Multiscale spatial analysis of EMT and
the TME

As discussed in Chapter 2, | identified several significant spatial relationships between
cells undergoing EMT and their interactions with the TME. In this chapter, | will address
some of the limitations | highlighted in Chapter 2 and investigate these relationships

further.

Existing methods to interpret spatial transcriptomics focus on static units of
measurement, such as fixed spot neighbourhoods or pre-defined non-spatially aware
clustering methods, without systematically probing how modifying these units might
alter the biological inferences drawn. Additionally, they often require discrete labels
(such as cell type labels) as opposed to continuous labels (such as signature score
values) for clustering. To address these challenges, | developed SpottedPy, drawing
on geostatistical principles, to map biologically meaningful hotspots and assess spatial

interactions.

In this chapter | expand the spatial analysis on a larger dataset of Visium breast cancer
slides. | also improve the method for detecting EMT in tumour spots, to avoid potential
confounding of the EMT signal with CAFs, by using Gaussian mixture modelling to
assign states in scRNA-seq prior to deconvolution. Moreover, | expand on the number
of intermediate EMT states investigated. | begin with a literature review of current
methods, highlighting their limitations and how these gaps motivated the development
of SpottedPy (Section 3.1), before describing the methodology (Section 3.2). | then
provide an overview of the approach (Section 3.3.1), and show how SpottedPy can be
used to investigate key cancer hallmarks (Section 3.3.2). | subsequently assess the
relationship of EMT with different cell types in the TME (Section 3.3.4), before
assessing the intra- and inter-patient heterogeneity. | investigate how the relationships
change when increasing the size of the hotspots (Section 3.3.6), analyse the results
in other cancer types (Section 3.3.8) and investigate the EMT states (Section 3.3.10).

Finally, | discuss these results and the methodological approach in detail (Section 3.4).

This chapter is based on material from Withnell and Secrier. Genome Biology

(2024)'%7_ | have also used SpottedPy to explore gene signatures from a large
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language model developed to predict EMT states, the results of which can be seen
further described in Pan et al. BioRxiv (2024)'%® . | have also used SpottedPy to
spatially characterise quiescence in breast cancer, and the results are described in
detail in Celik et al. BioRxiv (2024)6°,

3.1 Introduction

Numerous studies have highlighted the important role of spatial transcriptomics for
identifying tissue domains with distinct cell composition'”?, investigating key cancer
hallmarks'”!, revealing immunosuppressive hubs'?%172 uncovering tumour ecotypes
with divergent clinical outcomes”3 or the impact of specific drugs on inhibiting tumour
progression'’4. However, isolating tissue regions specific to a biological question and
examining interactions among cell populations at an appropriate scale remain
significant challenges in these datasets. To identify biologically meaningful tissue
subregions with spatial transcriptomics, several analytical strategies rely on
unsupervised clustering of gene expression, including SpaGCN'?* and
BayesSpace'?%. Other methods, such as NeST'"5 or GASTON'6, go a step further by
incorporating nested structures or topographical metrics to reveal hierarchically

organized co-expression hotspots that mirror tissue histology.

Given that similar cells often group together'3.177  detecting statistically robust spatial
cell clusters is important for validating the accuracy of cell states, especially given the
inherent challenges of cell deconvolution methods in accurately identifying them.
CellCharter'?” builds on this idea through Gaussian mixture models to identify stable
clusters, thereby defining spatial niches that exhibit distinct shapes and cell plasticity.
In addition, more targeted clustering approaches using user-defined signatures or cell
types, implemented in Voyager'”® and Monkeybread'”®, help refine the interpretation
of cell types inferred from spatial transcriptomic deconvolution. Nevertheless, spatial
clustering of continuous signatures and flexibly exploring spatial units across multiple

scales remains a challenge.

Methods for evaluating the spatial proximity of different clusters typically rely on co-
enrichment in the immediate neighbourhood, as highlighted by approaches available
in packages such as Squidpy''®. However, there is a shortage of methods that quantify

differential spatial relationships among specific cell types or signatures (e.g., hypoxia)

50



and assess their spatial significance. Moreover, current strategies fall short in defining
and comparing both short- and long-range interactions between specific regions or
cell populations of interest. Because the spatial scale of certain cancer-related
processes, such as hypoxia, remains uncertain, relying solely on neighbourhood-
centric approaches may obscure more complex spatial interactions. In geostatistics,
this issue is known as the modifiable areal unit problem (MAUP), where observed data

patterns shift depending on the size and shape of the spatial analysis units'3. While

a growing number of methods address multi-scale analysis 116:120.126.180.181 " {h o

impact of varying spatial units has received limited attention in spatial biology'3°.
Geostatistical and ecological concepts have increasingly been applied in
histopathology to characterise and quantify the spatial organisation of tissue
features'2. For instance, Ripley’s K, a widely used geostatistical tool for detecting
random versus clustered point distributions, has been used to investigate the spatial
interactions of various TME components, such as the distribution of immune cells in
ovarian cancer'. Spatial autocorrelation metrics like Global Moran’s | have been
implemented to assess the overall clustering of different features within histopathology
datasets'®. In addition, hotspot analysis, widely used in areas like crime detection and
epidemiology, has been used to identify immune-rich regions and to stratify patients
based on breast cancer histology'®, although advanced methods to analyse hotspot
relationships remain limited. Despite the increasing use of these techniques in
histopathology, they are underutilised in spatial transcriptomics. Recently, Voyager
was developed to provide key geostatistical tools in a format readily applicable to
spatial transcriptomic data'’®. In this chapter, | build upon these geostatistical
methodologies, such as those implemented in Voyager, presenting an analytical
approach designed to investigate spatial relationships at multiple scales in 10X Visium

transcriptomic datasets.

3.2 Methods

3.2.1 Spatial transcriptomic datasets

| combined the three datasets of breasts cancer 10X Genomics Visium spatial
transcriptomic datasets into a common anndata Python format for analysis. Breast

cancer Visium slides were obtained from Barkley et al.'® (slides 0-2), from 10x
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Genomics (slides 3-5)'° and Wu et al.'® (slides 6-12). Pre-processing and
normalisation were conducted using the ScanPy (Single-Cell Analysis in Python)
package'®?. | analysed a total of 32,845 spatially profiled spots, and retained spots if
they exhibited at least 100 genes with at least 1 count in a cell, had more than 250
counts per spot and less than 20% of total counts for a cell which are mitochondrial.
Pre-processed BCC slides were obtained from Gania et al.'  PDAC slides obtained
from Ma et al.’® and CRC slides obtained from Valdeolivas et al.'® | used the

deconvolution results provided in each of the source studies.

3.2.2 Spatial data deconvolution

Due to the imperfect near-single cell resolution of current spatial transcriptomic
methods, it is important to use a method to deconvolve each spot to infer the cellular
populations enriched in each spot. | carried out cellular deconvolution using
Cell2location’?3. Cell2location decomposes the spatial count matrix into a predefined
set of reference cell signatures by modelling the spatial matrix as a negative binomial
distribution, given an unobserved gene expression level rate and gene- and batch-
specific over-dispersion. A scRNA-seq breast cancer dataset containing 100,064 cells
from 26 patients and 21 cell types from Wu et al'”® was chosen to perform the
deconvolution. Cell types in the chosen breast dataset consisted of cancer epithelial
cells (basal, cycling, Her2, LumA, LumB), naive and memory B cells, myCAF-like and
iCAF-like cancer-associated fibroblasts, perivascular-like cells (PVL), including
immature, cycling and differentiated, cycling T-cells, cycling myeloid cells, dendritic
cells (DCs), endothelial cells expressing ACKR1, CXCL12 or RGS5, endothelial
lymphatic LYVE1-expressing cells, luminal progenitors and mature luminal cells,
macrophages, monocytes, myoepithelial cells, natural killer (NK) cells, natural killer T
(NKT) cells, plasmablasts, CD4+ T cells, and CD8+ T cells. | identified EMT states
within the scRNA-seq cancer epithelial cells by scoring the cells with EPI and EMT
signatures8%:1%0 and using Gaussian mixture modelling to assign the cells to a cluster.
The optimal number of components (clusters) was determined by assessing the
silhouette scores across a range of component numbers and selected the model with
the highest score. This approach ensured an optimal balance between cluster
separation and internal cohesion, resulting in a robust method of identifying EMT

states.
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The scRNA regression model was trained with 500 epochs, and the spatial
transcriptomic model trained with 20,000 epochs. To delineate the tumour cells within
the spatial transcriptomics dataset, | used the STARCH Python package designed to
infer copy number alterations (CNAs)'9'. STARCH identifies tumour clones (setting
K=2 clones) and non-tumour spots. It confirms identification of normal spots by
clustering the first principal component into two clusters using K-means. Changing the
value of K alters the number of identified tumour clones, but the number of cells
labelled as tumour cells remains the same. This approach is based on the principle
that the direction of maximum variance in the expression data typically reflects the

division between non-cancerous and cancerous spots.

3.2.3 EMT state and hallmark signature scoring

To identify distinct EMT states, | employed data from Brown et al'®, consisting of
seven RNA-seq sequenced cell clones, derived from SUM149PT inflammatory breast
cancer cell line with 3 repeats spanning the EMT spectrum from epithelial-like (EPI),
quasi-mesenchymal (M1), fully mesenchymal (M2) and three distinct intermediates
(EM1, EM2, EM3) . | used these data to derive a weighted gene signature to represent
the EMT states. | captured EMT gene patterns from this data using non-negative
matrix factorisation (NMF) by applying the CoGAPs workflow'®2, | used ProjectR’s
implementation of Imfit R function to map the captured EMT patterns onto the spatial
transcriptomic spots®. This transfer learning approach assumes that if datasets share
common latent spaces, a feature mapping exists between them and can measure the
extent of relationships between the datasets. The final states were captured with 20
patterns and 10,000 training iterations. The number of patterns were chosen based on
capturing the discrete states with the highest accuracy. The EM1 state was not
distinguishable from the EPI state, so | merged the two states. Thus, overall | obtained
scores for one epithelial, two intermediate, a quasi-mesenchymal and a fully

mesenchymal state for each spot.

Hypoxia and angiogenesis were defined based on signatures deposited at MSigDB 193,
The proliferative signature was compiled from Nielsen at al'%. The
immunosuppression signature was compiled from Wu et al'”3 and Cui et al'®. The
checkpoint blockade response signature was compiled from Johnson et al'® and Liu

et al'¥. The exhaustion signature comprised classical exhaustion markers: CTLA4,
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PDCD1,TIGIT, LAG3, HAVCR2, EOEMT, TBX21, BTLA, CD274, PTGER4, CD244
and CD160"%8 . All these signatures were scored using scanpy.tl.score_genes function.
EMT hotspots and coldspots were identified in the BCC, CRC and PDAC slides using
the EMT hallmark signature’®3,

3.2.4 Graph construction

The SquidPy''® (Spatial Single-Cell Analysis in Python) package was used for graph
construction using sq.gr.spatial_neighbors and slide visualisation of the Visium spatial
slides. NetworkX'®3 was used for further analysis of the networks derived from the
spatial transcriptomic spots. The deconvolved spot results were used to assign node

labels. Edges were assigned based on the spot neighbours.

3.2.5 Neighbourhood enrichment analysis

| calculated neighbours for each spot by summing the deconvolution results in a ring
surrounding the spot of interest, and normalising by the number of spots assigned as

a neighbour, using the adjacency matrix of the graph to calculate the interacting cells.

Two methods were developed to assess neighbourhood enrichment. Inner outer
correlation (with the function sp.calculate _inner_outer_correlations) was calculated by
correlating signatures across a central spot of interest and the direct neighbourhood
of spots surrounding it (a ring encompassing six Visium spots), after filtering for tumour
spots only. To perform the sensitivity analysis, | increased the number of rings
surrounding a spatial transcriptomic spot (setting rings range parameter in
sp.calculate_inner_outer_correlations function) to consider as spot neighbours and
compared the change in correlation coefficient. The first ring consists of 6 spots, and
the second ring includes 18 spots (combined from the 1st and 2nd rings). Subsequent
rings follow this pattern. The number of rings selected for sensitivity analysis reflects
a balance between spatial coverage and resolution. Using a smaller number of rings
(e.g., 1, 2, 3) allows the analysis to focus on the immediate microenvironment around
the central spot, providing high resolution. As more rings are added, the spatial
coverage increases, capturing broader interactions but potentially diluting local-

specific signals. Correlations were calculated using Pearson's correlation coefficient.

An all-in-one correlation (sp.calculate_neighbourhood_correlation function) was

calculated by correlating phenotypes with cells within a spot, and then incrementally
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increasing the number of rings to correlate across progressively larger spatial units.
The functions sp.correlation_heatmap_neighbourhood and sp.plot _overall_change
plot the neighbourhood results.

3.2.6 Hotspot analysis

Hotspots were calculated using The Getis-Ord G* statistic as implemented using the
PySAL package'®, using 10 as neighbourhood size parameter by default and a p-

value of 0.05, unless otherwise stated.
The Getis-Ord G* equation is defined as follows:

G — anwwx] xz —1 Wij
’ \/ S 1w <z _y wi)?

Where Wij is the spatial weight between locationi and 7, z is the mean of the variable
of interest across all locations, s is the standard deviation of the variable of interest

across all locations and » is the total number of locations.

A high positive value at location i suggests a hotspot for the attribute, while a negative
value indicates a coldspot. The significance of G" is determined by comparing the
observed Gobs to a distribution of G* values generated under the assumption of spatial
randomness. This distribution is obtained by permuting the attribute values across
locations and recalculating G for each permutation. The p-value for a hotspot (when
G" is positive) or a coldspot (when G is negative) is then derived from this distribution.
This approach provides a non-parametric method to evaluate the significance of
spatial clusters, offering a robust measure against potential spatial randomness in the
data. The significance of G'is determined by comparing the observed Gobs to a
distribution of G values generated under the assumption of spatial randomness. This
distribution is obtained by permuting the attribute values across locations and
recalculating G for each permutation. The p-value for a hotspot (when G is positive)
or a coldspot (when G is negative) is then derived from this distribution. This approach
provides a method to evaluate the significance of spatial clusters, offering a robust

measure against potential spatial randomness in the data.
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Hotspots can be identified by calling sp.create hotspots function, and specifying in the
filter_columns parameter what region within the spatial slide to calculate the hotspot
from e.g. tumour cells. The neighbourhood parameter can be altered here
(default=10). relative_to batch parameter ensures that hotspots are calculated
separately for each slide, otherwise, they are calculated across multiple slides.
Importantly, if multiple slides are used (highly recommended for statistical power),
these should be labelled using .obs[‘batch’] within the anndata object. Additionally, the
library ID in the .uns data slot should be labelled with the .obs[*batch’] value. Hotspots
can be plotted using sp.plot_hotspots.

Hotspots and coldspots for EMT states and cell proliferation were calculated after
filtering for tumour cells as labelled by STARCH. All other hotspots (deconvolved cell
proportion data and angiogenic and hypoxia signatures) were calculated using all the

spots within the spatial transcriptomic slide.

3.2.7 Distance metrics

After calculating the hotspots and coldspots, | then assessed the distances from
hotspots of interest (EPI and EMT) to other cells types and signature hotspots and
coldspots. | used the shortest path approach to calculate distances between hotspots

as follows:

e Let H represent the set of coordinates of spots in the hypoxia hotspot.
e Let M represent the set of coordinates of spots in the mesenchymal
tumour hotspot.
e Let E represent the set of coordinates of spots in the epithelial tumour
hotspot.
For a spot m in M and a spot e in E, the shortest path to any point » in H was

determined:

dyin (m, H) = mini{dim.h))
A“"—; 1‘[

dyin (e, H) = min{d(e, h))
he H

Where d(m, h) represents the Euclidean distances from a spot m in M. After obtaining
the minimum distances for each spot in M and E | calculated the median (with the

additional functionality to choose min or mean) to provide a summary statistic that
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reflects the general proximity of each hotspot (M and E) to H. The function

sp.calculateDistances calculates this.

To then infer the impact of cellular hotspots on distance to EMT compared to EPI
hotspots, | employed Generalised Estimating Equations (GEE). This model enables
me to estimate population-average effects involving repeated measurements across
multiple spatial transcriptomic slides. The model estimates the coefficient (f5,,.s) for
the transition from reference hotspots () to primary hotspot variables (/7). A positive
Bmes Would indicate that mesenchymal hotspots are, on average, located further from
hypoxic areas compared to epithelial hotspots, while a negative value suggests a
closer proximity. sp.plot_custom_scatter, setting compare_distance_metric to min,
mean or median to compare the summary statistics for each hotspot across each slide.
Setting it to None calculates the statistical significance of all distances from each

hotspot.

The centroid approach is calculated as follows. The centroid Cr of a set of spots H
with coordinates 1 Y. is the arithmetic mean of the coordinates. This point represents

the centre of the mass of the points in the set H.

For set H :

= <ZheH T, ZheHyh>
|H| *  |H]

Similar calculations are employed for A and E. | then calculated the Euclidian distance
between the centroids.
3.2.8 Tumour perimeter calculation

Any spot was considered part of the tumour perimeter if it had more than one
neighbouring spots (nodes in the graph) that were not classified as tumour spots. A

spot s € S is considered part of the tumour perimeter, P, if:
se€P < |N(s)N(S\T)| > 1
Where S denotes the set of all spots, T denotes the set of tumour spots N(s)

represents the neighbouring spots of spot s. This approach helped me to delineate the

boundary of the tumour accurately by focusing on the transitional area where tumour
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and non-tumour spots meet (called using sp.calculate_tumour_perimeter). To quantify
the number of tumour hotspots, | calculated the number of connected components
within the graph that were labelled as hotspots. This calculation was crucial for

understanding the distribution and clustering of tumour cells.

3.2.9 Sensitivity analysis

The sensitivity analysis to evaluate the impact of varying hotspot sizes on the spatial
relationships was achieved by incrementally adjusting the neighbourhood parameter
for the Getis-Ord statistic, which directly influenced the size of identified hotspots
(sp.sensitivity _calcs). As | expanded the neighbourhood parameter, | compared the

distances between the newly defined hotspots and other existing hotspots of interest.

To assess the robustness of the spatial relationships between cell types and gene
signatures, | systematically introduced Gaussian noise into the cell type proportion
data and gene signature matrix. Gaussian noise, characterised by a mean of zero and
varying standard deviations, was added to mimic experimental and technical
variability. This approach allows me to evaluate the stability of detected EMT hotspots
under different noise conditions. | defined a range of sigma values to represent varying
levels of noise intensity. To further test the robustness of the spatial relationships, |
randomly shuffled the cell proportion data and gene signature values and assessed

how this affected downstream analysis.

3.2.10 Statistical analysis

Groups were compared using a two-sided Student’s t test. Multiple testing correction
was performed where appropriate using the Bonferroni method. Graphs were

generated using the seaborn and Matplotlib Python packages.

3.3 Results
3.3.1 Overview of SpottedPy methodology

Building on the EMT-TME results identified in Chapter 2, | have more robustly
characterised the relationships across different spatial scales; from direct cell-cell

interactions to immediate neighbourhoods to across larger modules (Figure 10).
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Figure 10 SpottedPy provides a multi-scale approach to analyse spatial transcriptomic
relationships. Overview of spatial scales captured in the SpottedPy workflow, from direct cellular

contacts to broader cellular hotspots. Figure created with BioRender.com.

Whilst neighbourhood enrichment is widely employed in the field16.126.118 the analysis
of continuous expression signatures and the influence of neighbourhood size on
spatial relationships are comparatively underexplored. Additionally, the
characterisation of the relationships of hotspots (spatial clusters) has yet to be
addressed. This necessitated novel method development and therefore | developed
SpottedPy, a Python package to allow me to probe the relationship across multiple

scales in a statistically principled manner (Figure 11).
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Figure 11 SpottedPy workflow overview. Visium spatial transcriptomic data is loaded as a pre-
processed AnnData object where there is the option to select the region of interest (ROI) within the slide
e.g., AnnData.obs column labelled with tumour cells. The default spatial analytics include: (i)
Neighbourhood enrichment: inner outer correlation, which correlates cell prevalence or signatures in
individual spots with their immediate neighbourhood, (ii) Neighbourhood enrichment: all in one
correlation, which correlates cell prevalence of signatures within a spot or spatial unit (iii) Shortest path
to hotspot, which calculates the minimum distance between each spot within a selected hotspot and
the nearest spot in other hotspots, (iv) Statistical analysis of distances, which compares distances from
a reference hotspot to another hotspot of interest, and assesses the statistical significance of the
relationships. Scale analysis allows me to compare relationships defined at different scales in both
approaches, either by increasing the number of rings included for neighbourhood enrichment or
increasing the hotspot size. The outputs for the different modules include various plots to highlight the

relationships. Figure created with BioRender.com.

The approach includes:
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Neighbourhood enrichment analysis: | develop functions to examine
correlations between cell states, populations or processes within individual spatial
transcriptomics spots and their immediate neighbourhood (Figure 11i-ii). Here, a
“neighbourhood” is defined as a ring composed of six Visium spots surrounding a
central spot, calculated by modelling the spots as a network. This method allows
me to test how a signature affects its direct neighbourhood (inner-outer correlation)

or to assess all spots within that neighbourhood collectively (all-in-one correlation).

Hotspot identification: | have implemented the Getis-Ord G* statistic to identify
spatial clusters of continuous gene signatures across spatial transcriptomic slides
(Figure 11). Users can selectively focus on particular regions of the slide when
generating hotspots. By comparing regions of high or low expression or cell-type
signatures against a null distribution, this analysis identifies the statistically
significant “hotspots” or “coldspots.” Hotspots indicate areas with a concentrated
presence of a specific cell type or signature (unlikely due to chance), while
coldspots mark areas where the target cells or signatures are notably scarce. | also
offer functionality to test whether specific gene signatures are enriched in hotspots

or coldspots.

Distance statistics: | provide functionality that measures and interprets the
distances between detected clusters (e.g. tumour and immune hotspots). The main
approach computes the shortest path to a hotspot, defined as the minimum
distance from any point within a defined hotspot to the nearest point in another
(Figure 11iii). Importantly, SpottedPy allows the user to compare distance
distributions to key hotspots, for example, finding the hotspots that are significantly
closer to mesenchymal hotspots than epithelial hotspots (or other areas that can
be considered as a reference) (Figure 11iv). SpottedPy assigns statistical
significance to these proximity measures, assessing whether observed distances
are unlikely to result from random chance. To analyse relationships across multiple
slides, | employ generalized estimating equations, allowing users to test the
minimum, mean, or median distance from each hotspot or consider every distance

from each spot within a hotspot.
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o Scale/sensitivity analysis: | provide functionality to investigate how cell-cell
relationships evolve within the tissue by varying the size of the neighbourhood or
hotspot of interest. In the neighbourhood enrichment approach, this involves
adjusting the number of concentric rings around the central spot. For the hotspot
approach, SpottedPy recalculates the Getis-Ord G* statistic with different
neighbourhood sizes, revealing clusters at multiple spatial scales. By examining
how hotspot distances change with neighbourhood size, the package sheds light
on how spatial relationships change or remain consistent at various scales. In
addition, SpottedPy enables users to explore how cluster relationships respond to
changes in the significance threshold for hotspot detection with the Getis-Ord G*

statistic.

3.3.2 Spatial transcriptomic slide annotation overview

| used the SpottedPy functionality to gain deeper insights into the interactions between
tumour cells undergoing EMT and the TME across 12 breast cancer 10x Genomics
Visium slides. These slides were integrated from Wu et al'®, Barkley et al?* and the
10x Genomics website?5. To infer individual cell types within the slides, | deconvolved
the slides using the Cell2location method'?® and a scRNA-seq reference of annotated
breast cancer cell population profiles from 123,561 cells3. In the scRNA-seq dataset,
| scored tumour cells with predefined epithelial (EPI) and epithelial-to-mesenchymal
transition (EMT) signatures (see Methods) and employed Gaussian mixture modelling

to assign a state to each tumour cell (Figure 12)'89.190,
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Figure 12 EMT state identification in the breast cancer scRNA-seq reference data prior to

deconvolution. Adapted from Wu et al.””3,

To precisely capture the tumour cells within the spatial transcriptomic data, where
expression can vary widely, | used the STARCH copy number inference tool'9!. |
validated these results by comparing them with publicly available, pathologist-

annotated slides?°%2°" (Figure 13).

a Tumour cells b Tumour cells

oo
.....
o,

spatial2

spatial1

Confirmed with pathologist annotation in

Fig. 4a in Pirrotta et al. (40) Confirmed with pathologist annotation in

Fig. 2b in Xun et al. (41)

Figure 13 Validation of tumour cell identification. a Tumour cells as estimated by STARCH for
slide 5, and the reference for the pathologist annotation confirming tumour cell estimation is provided.
b Similar to (a) but for Slide 3.

Furthermore, to explore the heterogeneity of stable EMT states during the
development and progression of breast cancer, | used the discrete EMT states recently

defined by Brown et al'®®, consisting of an epithelial phenotype, two intermediate

63



(hybrid) states (EM2 and EM3), a late intermediate quasi-mesenchymal state (M1) and
a fully mesenchymal state (M2). A summary of my spatial slide annotation workflow is

provided in Figure 14.
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Figure 14 Preprocessing workflow prior to applying SpottedPy. Adapted from Stein-O’Brien et al*?
and Khavari et al?2. EMT states were annotated both using cellular deconvolution and EMT pattern
transfer using ProjectR. SpottedPy was applied to these various methods of detecting EMT and results

compared.

3.3.3 Using SpottedPy to analyse the relationship of EMT and

associated tumour hallmarks

| first focused on understanding the relationship of EMT tumour hotspots with two
hallmarks of cancer known to be associated with EMT: hypoxia and angiogenesis.
Hypoxia, characterised by low oxygen levels, has long been recognised as a key driver
of tumourigenic processes?%. Under hypoxic conditions, tumour cells stabilise
hypoxia-inducible factors (HIFs), particularly HIF-1a, which promotes angiogenesis?%4,
the formation of new blood vessels from existing vasculature, to re-establish oxygen
supply. Hypoxia has been shown to induce EMT and confer therapy resistance?,
highlighting the importance of understanding how these relationships develop spatially
within the tissue. Such insights could facilitate the design of localised treatments that

disrupt these interactions in breast cancer.

Using SpottedPy, | delineated tumour regions in each spatial transcriptomics slide and

subsequently identified EMT hotspots within these areas, using the EMT state
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assigned through Cell2location (Figure 15a). To confirm and further explore the
emergence of other cancer hallmarks emerging in the context of EMT, | defined
hotspots for proliferative, hypoxic, and angiogenic gene signatures in the same slides
(Figure 15a). Visual inspection shows that angiogenic and hypoxic hotspots frequently
accompany EMT hotspots (Figure 15a). Quantifying hotspot distances with SpottedPy
confirms that EMT hotspots generally lie closer to angiogenic and hypoxic hotspots
compared with EPI hotspots, proliferative hotspots, or the overall tumour population
(Figure 15b-c). By contrast, proliferative hotspots are significantly nearer to EPI
hotspots (p<0.001, Figure 15c).

To determine the positioning of EMT and EPI areas within the tumour, | used
SpottedPy to estimate the tumour perimeter (Figure 15d) and calculated distances to
it. EMT hotspots reside closer to the perimeter than EPI hotspots, indicating a state
with significant interaction with the surrounding microenvironment (Figure 15e). As
expected, angiogenesis hotspots appeared nearest the tumour boundary, followed by
hypoxia hotspots (Figure 15f). The localised presence of angiogenesis near the
perimeter aligns with its role in delivering nutrients and oxygen to expanding
tumours2%. Hypoxic regions developing just beyond these angiogenic zones reflect
the fact that tumours often outgrow their vasculature, resulting in areas lacking
sufficient oxygen2%3. | found that hypoxic coldspots occur closest to the perimeter

(Figure 15f), where oxygen availability is higher.
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Figure 15 The spatial interplay between EMT progression and cancer hallmarks. a A spatial
transcriptomics slide (slide 0) highlighting from left to right: tumour spots, proliferation hotspots, EPI
hotspots, EMT hotspots, hypoxic hotspots, and angiogenic hotspots identifed by SpottedPy. The black
square indicates a representative area where the close proximity of EMT, angiogenic, and hypoxic
hotspots is depicted. b Distances from angiogenic (left) and hypoxic (right) hotspots to EMT hotspots,
EPI hotspots, proliferative hotspots, and the average tumour cell, respectively, averaged across all 12
samples (*** p< 0.001). c Differences in proximity between EMT hotspots/EPI hotspots and hypoxic,
proliferative, and angiogenic regions, summarized across the 12 slides. The dashed line represents no
difference in relative distance to EMT hotspots or EPI hotspots. The dots situated above the dashed
line indicate hallmarks that are significantly closer to EMT hotspots. The colors indicate the p-value
ranges obtained from the Student’s t-test for differences in distance to EMT hot/cold areas. d Spatial
plot depicting the tumour perimeter in red and the tumour cells in blue. e Distance from the tumour
perimeter to EMT hotspots and EPI hotspots, respectively (*** p< 0.001). f Distances from selected
hotspots to the tumour perimeter, ordered by increasing proximity, across the 12 cases. The dashed
line represents no significant difference. The colors depict p-value ranges obtained from Student’s t-

tests for differences in distance to the tumour perimeter.

In contrast, proliferative hotspots are observed farthest from the tumour edge and are
spatially distinct from EMT hotspots. This pattern corroborates studies suggesting a
proliferative epithelial core and a peripheral EMT population that enables cell migration
and intravasation?97-208 These spatial relationships were consistently observed across

all examined breast cancer slides (Figure 16).
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Figure 16 Bubble plot depicting distances between cancer hallmark signatures and TME classes and
EMT/EPI hotspots for each slide (row). Blue depicts hallmarks that are significantly closer to EPI
hotspots and red represents hallmarks that are significantly closer to EMT hotspots (Student’s t test
p<0.05), , adjusted for multiple testing using the Bonferroni correction. White indicates a non-
significant relationship. Tissue annotations, if available, are included on the right-hand side for each
sample, coloured by batch. IDC= Invasive Ductal Carcinoma. ILC= Invasive Lobular Carcinoma.

3.3.4 EMT hotspots exhibit immunosuppression and are shielded by
myCAFs and macrophages

After validating SpottedPy’s ability to capture expected spatial hallmarks of EMT in
breast cancer tissue, | expanded the analysis to examine how tumour cells
undergoing EMT interact with various immune and stromal cell types in the tumour
microenvironment. In addition to the EMT hotspots, | identified hotspots for 41
different TME cell types, encompassing lymphocyte, myeloid, and fibroblast
populations, based on the cell types as defined by Wu et al.” (Figure 17a-c). Visual
inspection of these hotspots revealed that myofibroblastic CAF (myCAF) hotspots

often co-localise with EMT hotspots (Figure 17a-c).
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Figure 17 The spatial interplay between EMT progression and the TME. a Spatial transcriptomics
plots highlighting tumour cell spots (left), the EMT gradient through these tumour spots (middle), and
EMT hotspots identified by SpottedPy (right) in slide 5. b Spatial localisation of macrophage-enriched
spots (left) and SpottedPy-deflned LAM2 APOE+macrophage hotspots (right) in slide 5.

Quantifying hotspot distances with SpottedPy confirmed that tumour EMT hotspots did
indeed lie significantly closer to myCAF hotspots (Figure 18).
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Figure 18 Distance between EMT hotspots and diferent TME cell hotspots, ranked by proximity.
Smaller, darker bubbles represent shorter distances to EMT hotspots. Results are averaged over 12

slides.

The relationship is particularly highlighted when we look at the cellular niches that are
significantly closer to EMT hotspots compared to EPI hotspots, revealing a
predominance of various CAF subtypes (Figure 19). These observations align with

existing literature, as myCAFs are known to secrete TGF-3, a well-recognised EMT

68



inducer?®®, and have been linked to ECM deposition and the suppression of antitumour

immunity210,211,212,213'
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Figure 19 Distances from various cells in the TME to EMT/EPI hotspots. The dashed line
represents no difference in proximity to either EMT hotspots or EPI hotspots. The dots situated to the
left of the dashed line indicate cell populations that are signifcantly closer to EMT hotspots, ordered by
decreasing proximity. The colors indicate the p-value ranges obtained from the GEE fit for differences
in distance to EMT hot/ EPI hot areas. Results are across 12 slides.

In addition, monocytes and tumour-associated macrophages (TAMs), such as LAM2
APOE+ macrophages and SIGLEC1+ macrophages, showed a marked likelihood to
cluster closer to EMT hotspots compared with EPI hotspots. Monocytes and the TAMs
derived from them are understood to modulate the environment of tumour cells
undergoing EMT, often by promoting immunosuppression in the TME and thereby
facilitating tumour progression and metastasis?'4. By contrast, Natural Killer (NK) cells,

NK T cells, and CD8+ T cells, immune cells capable of directly killing transformed cells,
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were among the least closely associated with EMT hotspots, suggesting a possible
mechanism of immune evasion in EMT tumour cells?'®. The T-cell subset most closely
aligned with EMT hotspots relative to EPI hotspots was the LAG3+ CD8+ T-cell
population, an exhausted population, and suggesting immune evasion in these EMT

regions?16.

Given the close relationship between EMT hotspots and potential immunosuppressive
factors, | next evaluated whether EMT hotspots are indeed immunosuppressed. |
observed significantly heightened expression of immunosuppressive and exhaustion
markers'731% in EMT hotspots compared to EPI hotspots (Figure 20). Notably
upregulated suppressive genes included FAP, which activates regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs)?2'7:218: INHBA, which shifts
macrophage polarisation to a pro-tumour state2'?; VCAN, linked to limiting T-cell
proliferation??%; and COL6A3, which is linked to increased macrophage recruitment??'.
Key immune checkpoints, B7-H3 (CD276), OX40 (TNFRSF4), and TIM3 (HAVCR2),
were also significantly upregulated (p<0.05) in the tumour slides (Figure 20). In line
with these findings, EMT hotspots exhibited elevated levels of immune exhaustion
(Figure 20c-d), supporting the idea that prolonged immune activation in EMT hotspots
results in immune cell exhaustion, which may be reversed by checkpoint blockade. To
investigate this hypothesis, | examined an interferon-gamma signature previously
associated with favourable responses to immunotherapy'®®7 (Figure 20h-i). EMT
hotspots showed notably increased expression of signature genes, including HLA-A
and HLA-C, which are often linked to the activation of immune responses???, as well
as HLA-F, known for its immunosuppressive properties??®. Enhanced expression of
interferon-gamma-associated genes, especially those involved in antigen presentation
(e.g., HLA molecules), is generally considered a positive prognostic indicator in
checkpoint blockade therapy??*. Hence, although EMT hotspots exhibit considerable
immunosuppression and T-cell exhaustion, they simultaneously retain aspects of
immune activity that could be harnessed by targeted treatments, such as checkpoint

inhibitors.
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Figure 20.a. Barplots showing signature scores of immune suppression scored within EMT hotspots
and EPI hotspots. b. Differences in the average expression of genes in the immune suppression
signature between EMT and EPI hotspots for each slide (row). Red depicts genes significantly
upregulated in EMT hotspots and blue indicates genes significantly upregulated in EPI hotspots
(Student’s t-test p<0.05, adjusted for multiple testing using the Bonferroni correction). White indicates
a non-significant relationship. ¢. Similar to (a) but for immune exhaustion. d. Similar to (b) but focusing
on the genes in the immune exhaustion signature. e. Similar to (a) but for checkpoint inhibitor response.
f. Similar to (b) but focusing on the genes within the checkpoint inhibitor response signature

At the cohort level, the association between EMT hotspots and the myCAF s5
population persisted in individual tumours, suggesting a universal pattern of EMT
transformation in breast cancer rather than a subtype-specific relationship (Figure 16).
In contrast, substantial inter-patient heterogeneity emerged for multiple cell types,
including macrophages, memory B-cells, naive B-cells, iCAFs, NK cells, NKT cells,
CD4+ T cells, and CD8+ T cells, often even within the same breast cancer subtype.
However, distances to EMT hotspots were consistent across subgroups of cells
(Figure 21), suggesting that, within individual patients, these cells share common
response patterns irrespective of the broader heterogeneity observed across the

patient cohort.
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Hierarchical clustering dendrogram of distances to EMT hotspots across slides
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Figure 21 A dendrogram illustrating the hierarchical clustering of cells based on their proximity to EMT

hotspots, as derived from the data shown in Figure 16.

3.3.5 EMT hotspots display intra- and inter-patient heterogeneity

I next sought to interrogate spatial relationships at a more granular level, and analysed
the association of EMT hotspots with other immune and stromal areas within the same
slide and across the different patient samples (Figure 22a). While cell types displaying
the strongest relationship with EMT hotspots when averaged (such as SIGLEC+ and
LAM2 APOE+ macrophages, along with CAFs) showed fairly consistent patterns
across slides, some degree of heterogeneity was still evident. For instance, in slide 4,
although seven EMT hotspots were closer to LAM2 APOE+ macrophages than the
median EPI hotspots, two were not (Figure 22a). Visual inspection of these particular
EMT hotspots, compared with LAM2 APOE+ macrophage hotspots, further highlights
this variability (Figure 13b). As anticipated, stronger associations with myCAFs and
specific macrophage subtypes were common across most EMT hotspots (Figure
22a). T-cells, although heterogeneous across patients, tended to cluster together,
reinforcing the notion that these cells share similar responses. Notably, EMT hotspots
that were closer to T-cells often showed elevated exhaustion marker expression

(Figure 22a, right panel), suggesting ongoing immune activation. | also observed that
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EMT hotspots consistently exhibited higher immunosuppressive scores than EPI
hotspots (Figure 22a). Overall, the inter-patient heterogeneity seemed to supersede

the intra-patient heterogeneity.

SpottedPy provides functionalities for examining distance distributions both within
individual slides (Figure 22c) and across multiple slides (Figure 22d). Visualising
these distributions illustrate that, although LAM2 APOE+ macrophages are generally
positioned nearer to EMT hotspots compared with EPI hotspots, there is heterogeneity
within each slide and across different slides. Overall, these results showcase the range
of hotspot analyses enabled by the SpottedPy package and the potential to uncover

useful biological insights.
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Figure 22 Inter- and intratumour heterogeneity of EMT hotspots. a Dendrogram highlighting the
proximity of EMT and EPI hotspots to TME cell types. The dendrogram is clustered according to the

distances from EMT/ EPI hotspots to regions enriched in immune/stromal cells. Red indicates that an

EMT hotspot is closer to a cell type, while blue suggests that the EPI hotspots in that slide are on
average closer. The x-axis displays individual EMT hotspots (label indicates hotspot number and slide

number). To the right of the dendrogram, distances to the tumour perimeter, suppression, and
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exhaustion signature scores are illustrated. Red indicates that the hotspot is significantly enriched in
these signatures compared to the average EPI hotspot in the slide (p< 0.05), and blue indicates EPI
hotspots are significantly enriched (p<0.05). Further to the right, individual genes associated with the
exhaustion signature are shown, with red indicating the gene expression is higher in EMT hotspots
(p<0.05) and blue indicating the gene expression is higher in EPI hotspots (p<0.05). b Slide 4 with
individual EMT hotspots labelled (left) and LAM2 APOE+ macrophage hotspots highlighted (right). ¢
Distance distributions for each EMT hotspot in slide 4 to LAM2 APOE+ macrophage hotspots. d
Distance distributions of EMT hotspots to LAM2 APOE+ macrophages across all 12 slides in the cohort

3.3.6 Sensitivity analysis of hotspots

Determining how hotspot size, governed by the number of nearest neighbours
parameter, influences spatial relationships is important for robust spatial analysis. |
systematically expanded the hotspot dimensions (Figure 23a-b) to understand the
stability and consistency of identified spatial associations. The results indicate that the
spatial interplay among EMT hotspots, hypoxia, and angiogenesis, as well as their
exclusivity with proliferative hotspots, remains as a resilient hallmark of the tumour

microenvironment.

a EMT

2 10 50

Increasing hotspot size

Figure 23. Sensitivity analysis of hotspot relationships. a EMT hotspot generation using a hotspot
neighborhood parameter of 2, 10, 50, 100, and 300, respectively. Increasingly larger neighborhoods are
highlighted in diferent colors as indicated in the legend. b Hypoxia and epithelial hotspot generation
using a hotspot neighborhood parameter of 2, 10, 50, 100, and 300, respectively

These patterns remain notably stable across different hotspot sizes (Figure 24). Cell
populations previously identified as being closest to EMT hotspots at a fixed parameter

size (myCAFs, macrophages, and monocytes) also maintained this relationship when
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the hotspot dimension changed. Conversely, relationships for cells situated farther
away were less consistent, for example, CD8+ LAG3+ T-cells no longer retained their
association at a hotspot size of 250, and naive B-cells showed multiple shifts as the

hotspot size increased (Figure 24).
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Figure 24. Sensitivity plots highlighting the distance from EMT hotspots (blue) and EPI hotspots (yellow)
to regions enriched in various cancer hallmarks and TME components as the hotspot size increases.
The distances to the average of all tumour cells are used as a reference (green). Distances are

averaged over all 12 slides.

These findings suggest that interactions with certain cells in the TME may be more
pronounced and relevant at a smaller scale. | found that proliferative hotspots were

the most consistently adjacent to EPI hotspots at various hotspot sizes. Adjusting the
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p-value threshold for Getis-Ord Gi* cluster detection yielded similar patterns (Figure

25).
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Figure 25. Sensitivity plots highlighting the distance from EMT hotspots (blue) and EPI hotspots

(orange) to various TME components as the p-value parameter using to detect statistically significant

hotspots increases. Distances are averaged over all 12 slides.

To further assess the robustness of these spatial relationships, | introduced Gaussian

noise and performed spot reshuffling, then examined whether the identified

relationships persisted (see Methods). This approach demonstrated that SpottedPy

reliably distinguishes genuine biological signals from random spatial fluctuations,

tolerating low noise levels effectively (Figure 26).
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Figure 26. Evaluating the impact of increased noise or spot shuffling on the association between
angiogenic hotspots (left) and LAM2 APOE macrophage hotspots (right) and EMT/EPI hotspots.

Although random noise generated through spot reshuffling can mimic certain aspects
of structured data (Figure 27), the resulting hotspots were significantly smaller than

those arising from genuine biological structure (Figure 28).

Shuffled signature _ Hotspot

Shuffled signature

Figure 27. Spatial plots of shuffled EMT signature (left) and hotspots produced from shuffled signature
(right) for Slide 6 (top) and Slide 7 (bottom).
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Figure 28. Frequency bar plots for neighbourhood size=10 hotspots (top) and neighbourhood size=20
hotspots (bottom), highlighting the average number of hotspots across a slide (left), total number of
spots assigned to a hotspot/slide (middle) and average number of spots/hotspot/slide (right) with
increased amounts of noise added to the EMT signature, or spot shuffling.

Crucially, the loss of specific associations among particular cell types when noise is
introduced (Figure 26) helps to reduce false positives, even in instances where

hotspots are identified?23,

3.3.7 Other distance metrics

Importantly to note, there are other approaches that can be used to calculate hotspot
distances. For instance, the “centroid to centroid” approach offers a straightforward
approximation but is inherently simplistic. As illustrated in Figure 29, hotspot size
exerts a major influence on its centroid, meaning that larger hotspots might falsely
appear farther away when measuring centroid distances, despite actually being closer
at the perimeter level. Consequently, centroid-based distance metrics can overlook
local variations that can be captured by the shortest-path approach. Applying a
centroid-based method to the breast cancer slides might therefore fail to detect more
complex spatial patterns, such as those between EMT hotspots and macrophage- or

monocyte-enriched areas.
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Figure 29. Diagram highlighting key differences between the centroid distance approach and
the shortest path distance approach. The shortest path approach captures more local variation and
therefore detects a difference between the Tcell and B-cell hotspots shown in this example (distances
shown for illustration purposes). The centroid-to-centroid approach however would be unable to
capture this.

3.3.8 Spatial EMT relationships in other cancer types

| then explored whether the spatial associations identified for EMT hotspots in breast
cancer also manifest in other cancers. | therefore examined publicly available data
from basal cell carcinoma (BCC) '8, pancreatic ductal adenocarcinoma (PDAC) 87,

and colorectal cancer (CRC)'88,

In BCC, angiogenic and hypoxic hotspots were located nearer to EMT hotspots
(Figure 30a-b). Interestingly, proliferative hotspots were also found closer to EMT
hotspots, implying significantly different relationships compared to breast cancer.
POSTNH+ fibroblasts showed significant proximity to EMT hotspots, while T-cells and
NK cells displayed no pronounced spatial relationships with EMT, mirroring

observations in breast cancer.

| then investigated these relationships in one available PDAC slide (Figure 30c),
where | found that angiogenesis and fibroblasts were spatially correlated with EMT
hotspots in a manner similar to breast cancer. In contrast, immune cells were more
often found adjacent to EMT coldspots, and there was no discernible link between

EMT hotspots and hypoxia, diverging from breast cancer patterns.
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In CRC, myofibroblasts, angiogenesis, and hypoxia showed comparable spatial
relationships to those seen in breast cancer (Figure 30d-e). Regulatory T-cells, T-
helper cells, and NK cells were however closer to EMT hotspots, suggesting enhanced

immune recognition in these regions relative to other cancer types.

Although the sample size and cell-type granularity were limited, these observations
imply that tissue-specific factors may govern how EMT interacts with immune and
stromal cells in the TME. Further investigation is warranted to illuminate these

differences.
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Figure 30. EMT hotspot analysis in other cancer types. a Distances from various cells in the TME
to EMT hot/cold regions in basal cell skin carcinoma. The dashed line represents no difference in
proximity to either EMT hotspots or EMT coldspots. The dots situated to the right of the dashed line
indicate cell populations that are significantly closer to EMT hotspots, ordered by decreasing proximity.
The colours indicate the p-value ranges obtained from the GEE model fit. b Bubble plot depicting
distances between cancer hallmark signatures and TME classes and EMT hotspots/coldspots for each
BCC slide (row). Blue depicts hallmarks that are significantly closer to EMT coldspots and red
represents hallmarks that are significantly closer to EMT hotspots (Student’s t test p<0.05), adjusted for
multiple testing using the Bonferroni correction. White indicates a non-significant relationship. ¢ Similar

o (a) for one PDAC sample. d Similar to (a) for colorectal cancer slides. e Similar to (b) for the colorectal

cancer slides.
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3.3.9 Neighbourhood enrichment analysis

The neighbourhood enrichment technique captures more localised, shorter-range
relationships with the TME. Additionally, it can assess spatial relationships of
phenotypes that would be considered scattered (states that do not occur spatially
clustered and therefore might be overlooked by a hotspot-based approach). |
experimented with two approaches, ensuring a robust analysis that is less sensitive to
the MAUP (Figure 11bi-ii). | first assessed how the spatial relationships change by
correlating phenotypes across a central tumour spot and the direct neighbourhood
surrounding it (a ring encompassing six Visium spots). | then assessed how the
phenotypes are linked within a spot and then expanding what is considered a spatial
spot. Varying the method and the number of rings in both cases enables me to assess
whether the observed hotspot relationships shift with the unit of analysis and indicates

how large of an influence the EMT regions have on surrounding spots.

My analysis highlights that angiogenesis, myCAFs, macrophages, and monocytes had
the strongest correlations with EMT cells (p<0.001) across the 12 slides (Figure 31a).
This result corroborates the spatial interactions previously identified using the hotspot
approach. By contrast, naive B-cells, T-cells, NK cells, and NKT cells showed weaker
associations, consistent with the hotspot analyses. These spatial patterns remained

stable across multiple neighbourhood sizes (Figure 31b).

The methods show broadly similar trends, suggesting the cellular relationships
observed occur both due to colocalisation in a spot as well as diffusing influence

around the spot.
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Figure 31. Neighbourhood enrichment analysis of EMT spatial dynamics. a Neighbourhood
enrichment analysis results employing all in one correlation (top) and inner outer correlation (bottom)
approaches. The squares display correlations between EMT levels within tumour cell spots and the
abundance of various cell populations within the immediate TME (surrounding spots only). Red
indicates a positive correlation, blue a negative correlation and white a non-significant correlation
(Pearson p>0.05). 1 ring is used to define the neighbourhood. **** p<0.0001, ***p<0.001, **p<0.01,
*p<0.05. b Line plots illustrating the impact of progressively expanding the number of concentric rings
- from 1 to 10 - around a Visium spot on the correlation between the EMT signature and various cells in
the TME. Each ring represents an incremental distance from the central spot and encompasses the

surrounding spatial transcriptomic spots.

3.3.10 EMT state fluctuations shape distinct immune niches within
the same tumour

Since EMT is not a binary switch but rather a spectrum of hybrid states, | sought to

investigate the spatial distribution of tumour hotspots reflective of epithelial (EPI), early

intermediate (EM2, EM3), late intermediate quasi-mesenchymal (M1), and fully

mesenchymal (M2) states using the multi-scale framework. To identify these states, |
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used Non-Negative Matrix Factorisation (NMF) via the CoGAPs workflow'®? (Figure
32a).

a Not mesenchymal EM3 M2
e Jem 0 24 A g
EPI Parental
£ £ £ °]
2 D2 - 2
o o ° 5]
E 2 H
£ £ . E &4
[T o = (9]
= £ =
© © © 4
o o o
" I3 n S 10 "5 2 s 10 15 7:‘

Sample Sample Sample

EPI ) M1 ) EM2

Py o °EP 1 1 1

EPI
- - - ° e eml
5 5 5 o
() © ® °1 e em3
H 3 3 ® epi
c c =
e e = m1
2 z g : m2
© © ©
o o o e parental

; 0 v’s 2 s 0 15 2 s 10 15
Sample Sample Sample

Figure 32. EMT state capture in spatial transcriptomics slides. a NMF patterns captured from Brown et
al’®, consisting of seven RNA-seq sequenced cell clones, with three repeats spanning the EMT
spectrum including epithelial-like (EPI), quasi-mesenchymal (M1), fully mesenchymal (M2) and three
distinct intermediates (EM1, EM2, EM3). Each circle corresponds to one cell clone from the original
dataset, and is coloured according to the assigned state. The pattern weights for each cell clone are
plotted for each pattern. The patterns that were able to separate the cell clones are annotated.

The corresponding hotspots occupied distinct spatial locations within the tissue
(Figure 33).
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Figure 33. Spatial plots highlighting the distribution of EMT state hotspots (EPI, EM2, EM3, M1 and

M2). Every row corresponds to one Visium slide.

Further visual inspection of these hotspots reveals a progressive shift in the tumour,
as highlighted in Slide 4 (Figure 34). This transformation is characterised by a
transition from EPI to the M1 state, with EM3 serving as an intermediate step. EM2
appeared more volatile in this progression, whereas M2 predominantly co-localised
with the EPI state. The experimental study by Brown et al'® had detected that M2 cell
clones gained integrin B4 (a key epithelial marker) when cultured, which might have
played a significant role in steering these cells towards adopting characteristics more
akin to an epithelial phenotype. This would possibly explain the co-localization of these

two states within the spatial transcriptomics slide.
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Figure 34. Spatial plots highlighting the distribution of EMT state hotspots (EPI, EM2, EM3, M1 and

M2). Every row corresponds to one Visium slide.

To further investigate these states, | examined their correlations with one another and
with the EMT hallmark signature (Figure 35a). The absence of positive correlations
among EPI, EM2, EM3, M1, and M2 supports the notion that they represent distinct
EMT states. The M1 state correlated strongly with the EMT hallmark signature, while
the EPI state correlated negatively, as anticipated. Spatially, the EMT hallmark
hotspots were nearest to the M1 hotspots and most distant from EPI hotspots (Figure
35b), in line with the correlation findings and confirming the hypothesised identities of

these states.
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Figure 35. a Correlation plot of EMT state scores across all spots and slides. Red indicates positive
correlation; blue indicates negative correlation. Only significant correlations (p <0.05) are shown. White
squares indicate non-significant correlations. b Bubble plot depicting the mean distance from individual
EMT state hotspots to the EMT hallmark hotspots defined in the original analysis. Smaller bubbles

represent shorter distances.

| then examined how tumour cells occupying these discrete EMT states relate to
immune and stromal components of the TME. The analysis found that the EPI state

correlated negatively with TME cells (Figure 36a), implying a phenotype that is not
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being substantially shaped by its surroundings. Interestingly, the M1 state exhibited
robust associations with many TME populations, including strong links to myCAFs,
macrophages, and monocytes. The EM3 state showed moderate but still notable
correlations, while the EM2 state displayed the weakest. This reduction in observed
cellular interactions in the EM3 and EM2 states is in line with the idea of these states
representing intermediate, more plastic states preceding the apparently more stable
M1 state. Of particular interest, M1 demonstrated proximity to NK cells, a departure
from the broader EMT hallmark signature. This suggests that, although M1 may
resemble the general EMT state in some respects, it likely represents a specialised

phenotype capable of drawing in cytotoxic immune cells.
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Figure 36. a. Neighborhood enrichment analysis depicting the association between tumour cells
occupying distinct EMT states and other cells in the immediate TME, summarized across all 12 slides.
Red indicates a signifcant positive correlation (Pearson, p <0.05) , blue a signifcant negative correlation
(p<0.05), and white a non-signifcant correlation (p>0.05). **** p < 0.0001, *** p< 0.001, **p<0.01,
*p<0.05. b. Scaled immune suppression and immunotherapy response signature [65] scores calculated
using Gene Set Enrichment Analysis (GSEA) for each EMT state hotspot and proliferative hotspot,

summarized across the 12 samples.

Moreover, the quasi-mesenchymal M1 state was enriched for markers associated with
immunosuppression and positive response to checkpoint inhibitors (Figure 36b), most
notably with OX40 (TNFRSF4), TIM3 (HAVCR2), HLA-DRA, CXCL9, and CXCL10
(Figure 37a-b). The intermediate states (EM2, EM3) appeared partially committed to
this suppressive phenotype, showing weaker yet progressively stronger associations
leading towards M1. By contrast, M2 had a unique signature, exhibiting mixed positive
and negative relationships within these gene sets. When | compared these findings to
the proliferative signature, | found that proliferative hotspots mirrored the EPI state,

suggesting that they represent a tumour phenotype not linked to immunosuppression.

88



a M2 M1 EM3 EM2 EPI Proliferative

PCDD1
CD274
PDCRILG2

e - = = =]

COL6A3 - = = =i o =1 - . - .
1SGI5 = =] =

0123456789101

@ Hotspot enriched (p<0.05)

Slide number .
@ Average of all tumour cells enriched (p<0.05)
b M2 M1 EM3 EM2 EPI Proliferative

STAT1 T ]

CCR5 J 3
e i B o " " B8 ™1
CXCL11

PRF1

GZMA

CD27:

BTLA

CD8s

1DO1

CTLAd

ICOS
POCD1

v

S - f = Irra1gEe- 7

TNFRSF18
TDO2
PVR
0123456789101 .
. Hotspot enriched (p<0.05
Slide number ® P (p )

@ Average of all tumour cells enriched (p<0.05)

Figure 37. a. Enrichment and depletion of expression for genes in the immune suppression signature
within EMT state hotspots for each slide (column). Red depicts genes signifcantly upregulated in EMT
state hotspots compared to the average of all tumour cells and blue represents genes signifcantly
downregulated in the EMT state hotspot (Student’s t-test p<0.05). White indicates a non-signifcant
relationship. P-values were adjusted for multiple testing using the Bonferroni correction. b Similar to (a),

focusing on genes in the checkpoint inhibitor response signature

Overall, the results in this Chapter highlight the changing landscape of tumour-TME
interactions during EMT progression in breast cancer, highlighting both intratumour

heterogeneity as well as universal interactions that could be exploited for therapy.

3.4 Discussion

In this chapter, | introduce SpottedPy, a Python package for identifying tumour
hotspots in spatial transcriptomics slides and examining their interactions with TME at
multiple scales. | demonstrate that the Getis-Ord G* statistic can be applied
successfully to identify cellular hotspots, yielding biologically meaningful insights into
the spatial organisation of tumour tissue within its immune and stromal context.
Although several recent studies have used variations of hotspot analysis on spatial
transcriptomic data?26.227.178 these methods generally do not provide a way to assess
the confidence level in identifying specific clusters or hotspots. By contrast, my
approach assigns a p-value to each hotspot, allowing users to adjust stringency to suit

their analytical needs. Furthermore, unlike most existing tools, SpottedPy conducts in-
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depth distance analysis between hotspots. | also extend previous hotspot-based
strategies by offering a statistically principled assessment of spatial relationships, with
the added ability to anchor hotspot detection to specific regions, such as tumour
versus non-tumour areas, to investigate TME dynamics more precisely. By calculating
and statistically comparing distances, SpottedPy generates an interpretable and
intuitive measure of spatial relationships. This approach also enables differential
spatial analysis against a reference region, a capability generally absent from other
packages. Moreover, by exploring how hotspot size affects spatial patterns and
contrasting these findings with relationships identified through neighbourhood-based
methods, SpottedPy integrates multiple layers of spatial evidence, and scale, into a

single analytical framework.

By applying SpottedPy to examine tumour plasticity phenotypes in breast cancer, |
uncover pronounced differences between tumour areas undergoing EMT and more
epithelial regions of the tumour. My findings reveal robust spatial correlations of EMT
with key cancer hallmarks, particularly hypoxia and angiogenesis, consistent with the
work of He et al'?0 in spatial transcriptomics of breast cancer, which detected these
signatures overlapping in certain niches. As tumour cells undergo EMT in response to
hypoxic stimuli, they can gain a survival advantage in nutrient-deprived conditions and
migrate towards better-oxygenated regions, potentially following angiogenic

gradients228,205,208_

| also observe a strong association between EMT and myCAFs across all analysed
slides. This aligns with previous bulk and spatial transcriptomic findings in which CAFs
appear linked to tumour cells undergoing EMT#8, and corroborates evidence showing
CAFs can induce EMT in endometrial cancer cells’? and hepatocellular carcinoma’®.
It is worth noting that CAFs share certain genetic markers with EMT signatures,
making the two difficult to distinguish, particularly in bulk tumour datasets??°. In this
work, | address that challenge by using whole transcriptome data labelled with EMT
states for deconvolution and copy number aberration detection, thereby increasing the
confidence of detecting EMT in tumour cells. However, these strategies do not
guarantee perfect discrimination between CAFs and EMT tumour cells; future
research with single-cell-resolved spatial transcriptomic platforms will help clarify this

relationship further and | will address this in Chapter 4.
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Beyond the observed relationship with myCAFs, my analyses show strong
associations of EMT with macrophages and monocytes across a range of spatial
scales. In particular, SIGLEC+ macrophages, LAM2 APOE+ macrophages, and
EGR1+ macrophages, populations akin to Mz2-like, tumour-promoting
macrophages'’3, are situated closer to EMT hotspots. These macrophages secrete
TGF-B, TNF-q, IL-6, and IL-8, well-established inducers of EMT230-231 Thijs relationship
has previously been noted in bulk transcriptomics™, in spatial studies of murine skin
carcinoma?32, and within certain breast cancer niches'?. Although CAFs and
macrophages are broadly linked to EMT in most slides, | do find instances in individual
slides where some EMT hotspots do not reflect these relationships, indicating the

possible influence of local factors beyond my current analyses.

| found heterogeneity in the interaction of EMT hotspots with other immune cells such
as NK, NKT, and T cells. While T-cells have been reported to induce EMT in breast
cancer?33234 gnd this relationship has been observed in bulk transcriptomics23® and
smaller scale spatial analyses*®23, there is also evidence of T-cell exclusion tied to
the relationship of EMT with macrophages and CAFs, fostering an immune-
suppressed nice2'32%7 My analyses highlight that EMT hotspots do feature notable
enrichment for immunosuppressive and checkpoint-therapy-associated signatures,
consistent with previous work positing EMT as an important factor in immunotherapy

strategies?120,

| also show that EMT hotspots form in discrete locations that are spatially separate
from proliferative signatures. This aligns with Jia et al.*", who used a more focused
spatial transcriptomic dataset, Tsai et al.??, who demonstrated that a departure from a
mesenchymal-like state is a prerequisite for tumour cell proliferation in mouse models,
as well as Chen et al.®¢, who identified similar trends in scRNA-seq data. Such spatial

characterisations at various scales were largely unexplored.

| observed that hybrid EMT states exhibit more heterogeneous and weaker
associations with the TME in comparison to the quasi-mesenchymal M1 state. This
may reflect the intrinsic plasticity of these transitional states3623 complicating the
ability to delineate clear relationships, but might also suggest a directed trajectory
towards an M1 state. Conversely, the M2 state had more similar distribution and TME

associations to the EPI state, which may be due to the activation of integrin B4 (a key
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epithelial marker) when cultured, a limitation mentioned in the original study which

potentially steered the state towards a more epithelial phenotype '66.

Overall, my findings point to a highly dynamic and plastic nature of tumour cells as
they engage with a complex TME. The interactions likely extend beyond a linear
framework. Hypoxia, a known inducer of both angiogenesis and EMT?3°, may initiate
a cascade that not only intensifies these processes but also draws
immunosuppressive cells like macrophages?4%?4!, further reinforcing angiogenesis
and forming a self-sustaining loop. These results provide a further understanding of
the cellular interactions and environmental factors that support tumour progression
and metastasis, highlighting opportunities for targeted interventions that disrupt this

cycle to achieve therapeutic benefit.

The consistency of spatial associations across different hotspot sizes and
neighbourhood scales adds confidence to the robustness of these observations. The
neighbourhood ring approach predominantly detects TME cells that have infiltrated the
tumour, capturing immediate tumour—immune interactions. By contrast, the hotspot
approach offers a wider perspective, incorporating longer-range spatial influences.
Statistically defining cellular hotspots enhances the reliability of observations,
particularly considering the inherent inaccuracies that can arise from identifying cell
states using deconvolution algorithms applied to non-single cell transcriptomic

datasets such as those from the Visium platform.

To my knowledge, there is no direct alternative to the SpottedPy method, given its
unique capacity to focus on user-defined continuous signatures within discrete spatial
clusters at muliple scales, conduct differential spatial relationships against a reference

region, and employ downstream analyses.

Overall, this chapter confirms expected spatial effects of EMT progression in tumours,
demonstrating that SpottedPy can capture complex associations between tumour cells
and their microenvironment. Such insights can help unveil local effects of the TME and
linked tumour cell vulnerabilities that could ultimately be exploited for therapeutic
benefit. While the analyses presented here primarily illustrate insights into breast
cancer tissue organisation, | note that SpottedPy can be applied to discern spatial
relationships in other cancer types as well as other diseases and even within healthy

tissue. For example in Pan et al. (2024)'%8, | applied SpottedPy to characterise the

92



spatial relationships of gene signatures from a large language model developed to
predict EMT states. In Celik et al. (2024)'%° | have also used SpottedPy to spatially
characterise quiescence in breast cancer. SpottedPy has been developed on spatial
transcriptomics data from the 10x Visium platform; however, it can be easily extended

to other spatially-resolved platforms.
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4 Chapter 4: Spatial predictive modelling of

epithelial to mesenchymal plasticity in cancer

In earlier chapters and in many spatial transcriptomic studies, associations between
the environment and cell types are often descriptive. These studies mainly focus on
identifying recurring niches or calculating the proximity of specific cells to other cell
states. However, a standardised, quantitative metric to measure the influence of the
spatial environment on a cell type or biological process of interest has not been widely
used. Such a metric could provide a statistically robust framework to assess the
significance of environmental factors on cellular states or behaviours. It could also
allow for direct comparisons with other variables, such as genomic features, to rank
their relative contributions and importance. In this chapter, | develop a framework for
quantifying spatial effects and comparing them to other cell intrinsic variables. This
helps us to further understand epithelial to mesenchymal plasticity and offers a method

of assessing other plastic programmes.

I will first review the literature on cell plasticity and spatial modelling and highlight the
aims of the work (Section 4.1). | will then explain the preparation of the Xenium dataset
used and the modelling approach (Section 4.2). Given the methods | will describe the
results of the GNN approach (Section 4.3.2) before highlighting the results from the
geostatistical approach (Section 4.3.3). | will discuss the results from this chapter in
Section 4.4.

4.1 Introduction and Literature Review
4.1.1 Cell Plasticity

Plasticity is the ability of a cell to change its properties without it being directly due to
its alterations in the genome**. Evolutionarily, it is an important cell trait, as it allows
cells to survive under environmental stress, playing vital roles in processes such as
wound healing?®*2. However, it is often aberrantly activated in cancer, with growing
evidence to suggest that it is a driving force in hard-to-treat cancers?*3. The ability of
the cancer cell to change state means that drugs targeted for a specific cancer state

can become redundant as the cell can change out of the original state?*3. In epithelial
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to mesenchymal plasticity (EMP), epithelial cells can for example transition to a
mesenchymal state where they evade therapy. Plasticity allows the cancer cells to
adapt to the every-changing cancer microenvironment, for example nutrient scarcity,

which otherwise would lead to cell death?44.

Cancer cell plasticity is an emerging field, with a lack of a widespread consensus on
the definition of cell plasticity?*>. Definitions range from including cell type change to
cell state change*. A cell type refers to a stable functional unit within an organism with
established biological functions, whereas a cell state is considered a more dynamic
and transient change. Most definitions emphasise that a key part of cell plasticity is
the ability of a cell to change its cell type due to external stimuli. Some definitions
stress that plasticity should be a quantifiable metric, measuring how easy a cell can
change from its steady-state identity**. A recent study understanding plasticity in lung
cancer defined plasticity “as the potential of a cell to manifest diverse future fates?46”.
The epigenetic nature of a cell and the degree of epigenetic priming was key to this

definition of cell plasticity.

Cell state changes can also be referred to as phenotypic plasticity?*’. Here, a cell’s
phenotype is defined as the features of a cell that treatments would target, for example
uncontrolled growth or immune evasion?*’. It is important to note the distinction of
phenotypic plasticity from phenotypic noise, another mechanism that can cause cells
to change state that is not directly linked to alterations in the cell’'s genome?4.
Phenotypic noise is a difference in phenotype that occurs, despite a shared genotype
and environment, from stochastic changes in transcripts. It is believed to be a more
transient change, but has been shown to affect cell phenotypes?*9-25'. This is
suggested to be an important evolutionary trait of cell types as it can ensure variability
that may confer selective advantages under different conditions?*8. This timescale
differs to methods such as chromatin modification, which would be considered a more

long-term method for plasticity as it can propagate through subclones?42.

Importantly, phenotypic plasticity and phenotypic noise can be enhanced through
genetic changes. This can occur through a mutation increasing a cell’s ability to exhibit
phenotypic noise, or increasing its likelihood to shift in response to an environmental

variable, such as within chromatin modifier genes allowing for more epigenetic
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changes?®2. This interplay between intrinsic (genetic and stochastic) and extrinsic

(environmental) factors highlights how complex it can be to define cell plasticity.

At a more fundamental level, these factors driving plasticity work by altering nucleotide
sequences, epigenetic modifications, 3D DNA structure modifications, alongside
regulatory mechanisms such as altering transcriptional machinery?%3. These can be
experimentally measured to understand plasticity. Additionally, common approaches
to assess plasticity can work on readouts of cell phenotypes using either RNA
transcripts or high throughput imaging?*8. A wide range of experimental approaches
have been developed to understand plasticity. These include assessing plasticity using
immortalised cell lines, iPSC cell lines, organoids, model organisms, mammalian
models and biopsies**. There is a trade-off between achieving greater experimental
flexibility, as seen with systems like cell lines, which often sacrifice the accuracy of the
TME representation, and maintaining the biological relevance of the TME, as in

biopsies, which come at the cost of reduced experimental flexibility.

Recently, a high-throughput screen of organoid cultures was conducted to explore
colorectal cancer cell plasticity. Colorectal cancer patient-derived organoids, with
different mutational profiles, were co-cultured with and without CAFs and
macrophages?*’. This approach showed that CAFs can enable CRC cell plasticity and
induce a slow-cycling revival stem cell fate. This in turn helps cancer cells be protected
from chemotherapy. However, it was limited by only including a subset of TME
components. A growing number of approaches have focused on genetically
engineering mouse models to carry out lineage tracing, and understand how

phenotypes link to mutations within a more complex TME?2%4,

Often these experimental approaches are combined with an approach to quantify cell
plasticity. The most common approach, although not yet widely established, correlates
cell states with phylogenetic trees. A recent approach, PATH (phylogenetic analysis of
trait heritability), draws on methods used in evolutionary biology to determine the
extent of phenotype heritability by correlating the genetic distance using a
phylogenetic tree with phenotype changes?®®. However, due to potential spatial
confounders (in many cancers similar cancer clones exist in a similar spatial location2%
) this could inaccurately attribute a state to genetic heritability, whereas in fact the

clones were located within the same part of the TME which caused the state change.
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The spatial localisation of clones is cancer specific and it has been shown that other
cancers do not have spatially located clones, for example colorectal cancer?*’. Other
similar approaches include EffectivePlasticity metric which is also based on
phylogenetic relationships to measure the distribution of transitions between cell

states?®* and hidden markov models?%’.

Additional approaches use chromatin measures to quantify plasticity?*6. For example,
predictive models have been developed to link chromatin states to specific
transcriptional phenotypes. Analysing the uncertainty in the prediction can then be
used to infer high plasticity, with low uncertainty linked to low plasticity. This is as the
model learns the relationship between the chromatin-derived features (e.g., ATAC-seq
peaks) and the specific gene expression programs that define distinct cell states.
Chromatin features mapping strongly to a single transcriptional phenotype, suggest
low plasticity or a committed cell state whereas chromatin features that are difficult to
predict suggest that they are compatible with multiple transcriptional states, indicating
high plasticity. However, it is important to note that cells can undergo plasticity through
methods beyond chromatin, such as transcriptional regulation by transcription factors
and post-transcriptional modifications (e.g., RNA editing, alternative splicing), and so

this approach likely picks up a narrow program of plasticity.

Overall, cell plasticity is a process that can act at the genetic, epigenetic, and
environmental level to enable phenotypic adaptability. Currently definitions lack the
specificity required to enable more straightforward communication of ideas about the
different aspects of plasticity. For example, breaking down plasticity into capturing
short term and longer term changes. | envisage that as the field matures, more precise

definitions will follow.

4.1.2 Cancer as an ecological model

The relationship between environment, genotype, and phenotype is fundamental to
understanding biological systems, extending beyond just cell plasticity. This
relationship can be observed in many contexts: from immune cell adaptation to human
responses to stressors like diet or climate and to species evolution. | can therefore

leverage methods and concepts used in other areas which have extensively studied
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similar relationships to enable us to model cell plasticityy, and account for

environmental factors.

In ecology, modelling the environment is key to understand where species are located,
and how they have adapted phenotypes for their niche. In recent years, increasing
analogies have been drawn between cancer cells and ecological niches, comparing
the TME to an ecosystem’®2%. An ecosystem is a natural environment where
organisms interact with other organisms in addition to non-living aspects of the
environment, such as the climate, water and soil. In cancer, this can be seen as cancer
cells interacting with other cancer cells (of the same or different phenotypes), with
other cells such as immune cells, and with other non-cellular components of the TME
such as angiogenesis, hypoxia, and chemokines”®. Additional parallels can be found
in cancer evolution, where interactions between cancer cells and the TME are thought
to drive evolutionary processes that enable adaptation and survival under harsh
conditions. This adaptability is driven by genetic variations, including oncogenic
mutations and epigenetic reprogramming, allowing cancer cells to survive within the
TME.

Species distribution models and ecological niche models have emerged as a popular
way of understanding the environment within ecology, and there are multiple different
approaches developed using statistical and machine learning methods. Species
distribution models (SDMs) focus on predicting species locations based on the
environment (with variables such as temperature and soil type used), whereas
ecological niche models (ENM) focus on understanding the underlying process and
inference of the important variables?%%-262, These methods take into account important
aspects of spatial processes, such as spatial autocorrelation, which traditional
machine learning models do not. They also typically assume presence-absence data
and therefore the parameters and distributions used are tailored to this2%°. This makes
these models valuable as a source of inspiration but not directly applicable to our
problem, which often involves continuous data (e.g., phenotype scores) or multiple
discrete categories representing distinct cellular states. Nonetheless, | can adapt the
concept of an ecological niche, viewing different TME components as the

environmental variables that define the habitat of various cellular states.
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The environment is also widely modelled by geo-scientists and economists, and a
variety of spatial regression models have been developed to understand geographical
phenomena’#52%3, These models are less statistically constrained compared to SDMs
or ENMs, and can therefore be more easily adapted to other domains?®®. These
models typically build on ordinary least squares regression (OLS), a very widely used
technique to analyse the cause and effect relationship between a response variable
and covariates. However, OLS is unsuitable for spatial data as it depends on the error
terms in the model being independent. This is typically not the case with spatial data,
due to spatial autocorrelation (observations tend to be closely related to neighbouring
observations). This led to models, such as spatial autoregressive models (SAR) and
spatial error models (SEM) that can account for spatially dependent variables by
including a spatially lagged dependent variable as an explanatory variable (SAR) or
by addressing spatial autocorrelation in the error term (SEM)?64265 These spatial
regression models have been used to understand a range of geospatial patterns such

as pollution and resource availability, and extreme weather events266-269,

However, these models typically fail to account for spatial heterogeneity, where
relationships between variables and outcomes vary across different locations. To
address this limitation, geographically weighted regression (GWR) was developed to
analyse how the influence of factors on a response variable changes across space?°.
A more recent development from GWR is multiscale geographically weighted
regression (MGWR), where each variable can operate at its own spatial scale,
recognising that spatial relationships often differ in scale?”". Importantly though, this is
a different aspect of spatial scale to the problem mentioned in Chapter 3, where scale
referred to the level of aggregation. This approach calculates an optimal spatial scale
(or bandwidth) for each variable by comparing models fitted across different spatial
ranges using metrics such as the Akaike Information Criterion (AIC)2”". Importantly,
these methods allow for a quantification of heterogeneity of the spatial processes,

rather than computing averages across the spatial landscape.

4.1.3 GeoAl to further develop statistical ecological models

Importantly, the methods described so far are fairly specific for each individual domain.
The emerging field of geospatial artificial intelligence (GeoAl) aims to enhance the

flexibility of existing geospatial statistical models, scale them to accommodate larger
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datasets, and improve their predictive capabilities?’2273. Due to the large feature space
of spatial transcriptomic data, with unique levels of information available from gene
expression to cell type information and to the importance of cell signalling networks
thus driving the need to model connections between spatial variables, GeoAl
approaches offer another useful framework for spatial modelling. GeoAl approaches
include building in spatial autocorrelation and heterogeneity-aware methods to deep
learning approaches, as well as spatial cross-validation approaches?’2. The positional
encoder graph neural network is an example of a geostatistical adaptation on graph
neural networks (GNNs). Here, the model is trained to predict local spatial
autocorrelation of the output as an additional task, enabling the model to learn more
generalisable features and predict with higher accuracy?’4. Developing deep learning
methods for spatial data without incorporating the important geostatistical properties
can lead to erroneous measures of accuracy of the model, and misidentify variables
deemed important. However, unlike the geostatistical approaches, GeoAl variable

importance is an active field of development?’2.

4.1.4 Specialised methods for capturing spatial effect

Current spatial transcriptomic methods also provide valuable tools for modelling the
environment. GNNs have been a powerful approach to analyse spatial transcriptomic
data from cell deconvolution to ligand receptor interaction analysis'32135, Spatial
Interaction Modelling using Variational Inference (SIMVI) recently built on these ideas
to identify cell intrinsic and spatially induced latent variables in spatial transcriptomic
data?’®. While SIMVI offers robust statistical guarantees for the disentanglement of
these variables, it lacks interpretability, making it difficult to attribute specific
contributions to individual cell types or intrinsic factors such as copy number

alterations.

The understanding of how a cell changes state, whether driven by cell-intrinsic or cell-
extrinsic factors, is of high importance for understanding cell plasticity and therefore
developing appropriate targeted therapies?#®. In this chapter, | will walk through our
approaches inspired by geo-statistics and GeoAl to quantify and explain cell-intrinsic
and cell-extrinsic variables involved in cell plasticity, using EMP as an example
phenotype.
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4.2 Methods
421 Overview

In this work, | investigate the EMP program as a framework to showcase our
methodological approach for quantifying cell plasticity. Utilising a graph neural network
(GNN) model, | assess the contributions of the extrinsic and intrinsic factors to cell
phenotypes. Specifically, | approximate extrinsic effects through cell type interactions
and intrinsic effects through copy number alterations. By interpreting the importance
of nodes and edges in the GNN predictions, | gain insights into the model's learning

process.

I model EMP both as discrete states and as a continuous process, integrating
geostatistical regression models to further understand EMP as a continuous

phenomenon.

4.2.2 Dataset processing
e Xenium Breast Cancer Data download and processing

A Xenium breast cancer dataset consisting of 167,780 cells and 307 genes and a
matched Visium dataset consisting of 4992 spots and 18,085 genes was obtained from
Janesick et al..'"® The sample was Stage II-B, ER +/PR -/HER2 + formalin-fixed
paraffin-embedded (FFPE) breast cancer tissue. To align to Visium data to the Xenium
data SpatialData Python package was used?’®. SpatialData uses landmark points in
the images to transform data into a common coordinate system. Cell annotations were
used as calculated in Marconato et al.?’. Additional subtype annotations as labelled
by a pathologist (incl. whether the region is invasive vs. DCIS) were used as described

in Janesick et al.'0

| used Scanpy for pre-processing, using default parameters'62. Specifically, we filtered
out genes that were in less than 5 cells, and ensured each cell had a minimum of 75
counts. For Visium | ensured the mitochondrial fraction was less than 15%, the number

of genes with larger than 500 and cells has a minimum gene fraction of 0.2.
e SCEVAN clonal calculation

To perform clonal estimation in cancer epithelial cells, | utilised the matched Visium

dataset due to its ability to estimate copy number amplification, currently not possible
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with Xenium data because of its limited gene coverage, which limits the detection of
copy number alterations. Using SCEVAN?"’, | added further evidence for the tumour
cells, which had been previously identified using Cell2location. Using SCEVAN, |
identified subclones and estimated the chromosomal regions affected by alterations
within each subclone. SCEVAN is a fast variational algorithm using multichannel
segmentation. SCEVAN does not require user provided parameters as other methods
such as inferCNV278 require, and instead automatically estimates the highly confident

normal cells based on count data to use as a baseline.
e Clonal PCA

To reduce the dimensions of the sub-clonal alteration matrix returned by SCEVAN (8
subclones and 160 altered regions) | ran principle component analysis (PCA) on the
dataset. | obtained principal components capturing the main sources of variation within
the dataset. This allowed us to derive principal components that encapsulate the key

sources of variation within the data.
e EMT annotation

| used scanpy.score_genes to score that EMT hallmark gene signature?’® on the
Xenium dataset. | ensured a high correlation between the set of EMT genes found in
Xenium and the Visium datasets to ensure the limited gene coverage found in Xenium
did not impact the gene signature scoring. To obtain states of epithelial, hybrid and
mesenchymal cancer epithelial cells | binned the EMT hallmarks score into four
quartiles, representing an epithelial state, an epithelial-hybrid state, a mesenchymal-

hybrid state and a mesenchymal state.
e EMT marker genes specific to EMT tumour cells

| performed further quality control to ensure | was not mixing myCAF signatures (which
display high enrichment of EMT genes) with the cancer epithelial cells labelled with a
MES signature. | analysed key differentiating genes in a well annotated breast cancer
atlas scRNA-seq dataset'’3. In this dataset, | filtered for only the subset of genes that
were present in Xenium. | have previously annotated this dataset with EMT states. |
used sc.tl.rank_genes_groups within the scanpy package to find the top marker genes
between the labelled mesenchymal cancer epithelial cells and CAFs. | employed

Cohen’s d score to quantify the effect size and discriminative power of each candidate
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marker. Cohen’s d measures the standardised difference between the means of two
groups, in this case, the expression levels in CAFs versus mesenchymal cancer cells
and identified the number of genes required to accurately distinguish between the cell
types. Using these genes | could then filter for mesenchymal cancer cells in the
Xenium dataset that expressed the marker genes at an abnormally high level (higher
than the 1st quartile range of LUM expression for CAFs). | had 138,780 cells after
filtering.

¢ MERFISH dataset processing

A mouse motor cortex MERFISH dataset was downloaded from Zhang et al?8%, The
data consists of 61 tissue slices and 280,000 cells. The cells were annotated using
258 genes in the original study. A total of 23 cell subclasses were identified. | used

the coordinates and cell type annotations as provided by the authors

4.2.3 GNN approach

To construct the GNN prediction approach, | adapted the widely used Graph

Convolutional Network (GCN) framework.
1 1
D — c((f))_fﬁ(f))_fH(’)W(’))

Where:

e H® js the matrix of node feature representations at layer I, with H® = X.
o HUD js the matrix of node feature representations at layer [ + 1.

e A is the adjacency matrix with added self-loops, i.e., A = A + I.

e D is the degree matrix of A.

o WO is the learnable weight matrix for layer L. o is the activation function (e.g., ReLU).

The datasets were loaded into a PyTorch Geometric dataset, where | adapted custom
classes to include various features and configurations tailored to our experiments.
These configurations included incorporating cell type and/or copy number information,
as well as modifying the training paradigm to be either inductive or transductive. On
the MERFISH dataset, | utilised a graph neural network (GNN) with three graph

convolutional layers, a learning rate of 0.01, and trained the model for 200 epochs. A
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dropout rate of 0.5 was applied to regularise the model and prevent overfitting.
Similarly, for the Xenium breast cancer dataset, | trained a GNN with the same
architectural configuration, three layers, a 0.01 learning rate, and 200 epochs, with a
dropout rate of 0.5. | also used Graph Attention Networks (GAT) but found no
difference in accuracy. The SquidPy (Spatial Single-Cell Analysis in Python)
package''® was used for graph construction using sq.gr.spatial_neighbors and

NetworkX'83 was used for further graph manipulation.

Mean squared error (MSE) loss was used for continuous training, while cross-entropy
loss was used for classification tasks involving categorical labels. This enabled the
implementation of both GNN regression and GNN classification models. | adjusted for
spatial autocorrelation by calculating the Moran’s | statistic and propagating this

backwards:
1 2
Lyoran = WZ Wij (xi - xf)
i,j

Lyoran: Moran's loss, quantifies spatial smoothness or autocorrelation.
W Total sum of all spatial weights
w;; . Spatial weight between locations i and j, based on proximity.

x; . Feature values (e.g., gene expression, model outputs) at locations i and j.

To mitigate the issue of class imbalance in the training data, | applied weighted loss

functions, ensuring balanced representation and learning across all classes:

l Ty C

fi represents the frequency of class i in the training set. w; is the initial weight assigned

to class i, and w°™dzed js the weight after normalisation. The normalisation step
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ensures that the sum of all weights Y¢_, who™alized equals the number of classes C,

maintaining balance in the loss function.

Full-graph training was conducted to use the complete structural information present.
When training | used the entire graph by masking out the other non-tumour cells before
loss back-propagation. Therefore the masked out non-tumour cells were used for loss
calculation but they did not influence the model as they were not used in the training.
This improved model training compared to a more standard approach of using

subgraphs.

GNN training can be approached using either transductive or inductive learning. In
transductive learning, node classification is performed within a single graph, where
some nodes are masked during training and used for prediction. Inductive learning, by
contrast, involves training on subsets of a graph or entirely separate graphs, aiming to
generalise the learned representations to previously unseen graphs. | reported the

results for both approaches.

Spatial cross-validation was conducted using 10 spatial splits. When using the Xenium
dataset, inductive training was conducted by dividing the slide into 10 spatial splits,
while transductive training involved randomly masking nodes, keeping 10% of the
nodes within in a test set (5,776 tumour nodes). For the MERFISH dataset, which
included 61 slides, inductive training was performed by splitting the data based on
individual samples, whereas transductive training again involved random node

masking across the entire dataset.

The models' performances were evaluated using F1 scores and ROC-AUC for

classification, and mean squared error for regression.
e GNN explanation

GNNEXxplainer was used for edge explanation. The main goal of GNNExplainer is to
find a subset of the graph that maximises the prediction probability for a given target.
This helps in understanding which parts of the input graph are most relevant to the
decision made by the GNN. GNNExplainer learns a mask over the edge features, and
uses gradient-based optimisation to update the masks. The loss function combines
the prediction loss (which ensures that the masked subgraph results in the same

prediction as the original) and a regularisation term (which controls the complexity and
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sparsity of the mask). | compared the explanations for each class to explanations

generated from random shuffled nodes to obtain a p-value for each edge explanation.

Nodes were explained using integrated gradients, an approach which assigns an
importance score to each node in a graph by measuring how adjusting that input node

feature from a baseline to its actual value changes the model's prediction:

da

; -Jl aF(x/ +a(x—x/))

Giey = (i — % ) o,
L

Where:

e | is the feature
e x is the input
e x isthe baseline

e q« is the interpolation constant to perturb features by

The definite integral is not always numerically possible so a numerical approximation

is calculated instead.

4.2.4 Spatial regression modelling

Prior to spatial regression | removed variables with high VIF and autocorrelation
scores. | tested for additive effects using the spatial random forest spatialRF R
package®®'. | did not uncover significant additive effects. Unless otherwise states, |

used models as implemented in the PySAL package'®°.

| implemented spatial error modelling (SEM) to our datasets. SEM is an extension of
linear regression that incorporates a spatially structured error term to model spatial
autocorrelation in the residuals, thereby capturing spatial dependencies that would

otherwise violate standard regression assumptions.

The basic form of the Spatial Error Model (SEM) can be expressed as:
y =XB+ AMWe+ €

Where:

e y: Represents EMT label for each observation
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X: Contains the predictors for the regression model

B: Coefficients that represent the effect of each predictor

W Spatial weights matrix (spatial relationships among observations)

A: Spatial autoregressive coefficient for the error term (Captures the strength of

the spatial dependence in the error terms)

€. Independent and identically distributed error terms; assumes a normal

distribution
e ~ N(0,0%)

| applied SEM to various subsets of the Xenium data, including between ductal
carcinoma in situ (DCIS) and invasive regions, to assess how spatial interactions

change within these regions.

Geographically weighted regression (GWR) and multi-scale geographically weighted
regression (MxGWR) were also used to further interrogate the spatial relationships.
These fit local regression models for each point, and therefore answer different
questions to a SEM model. SEM is important for understanding overall variable
importance, and variance captured. However, it may not fit the most appropriate model
for each spatial point, considering spatial heterogeneity. Comparing model fit of SEM
and GWR models allows for an assessment of how much heterogeneity is present,
and to visualise how relationships change over space. GWR and mxGWR were also
compared for spatial fit. To evaluate model performance, R? was used to measure the
proportion of variance explained, providing an indication of how well each model
predicts EMT. The Bayesian Information Criterion (BIC) was also used to assess
model complexity and fit, with lower values indicating a better balance between

goodness of fit and model complexity.

GWR is a spatial analysis method that allows for the modelling of spatially varying
relationships between dependent and independent variables by fitting a local

regression model at each point in space. The GWR equation can be represented as:

p
yi = Bo(u,vy) + z Br (wi, vi)xy + €,
k=1

Where:
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e y; is the EMT label at location i

e Bo(u;,v;) is the intercept term specific to location u;, v;

e [, (u;v;) are the local regression coefficients for the k -th explanatory variable
at location (u;, v;)

e x;, are the explanatory variables at location i

e ¢; is the error term at location i

e pis the number of explanatory variables

mxGWR extends GWR by allowing each explanatory variable to have its own spatial
bandwidth, which enables the modelling of multi-scale spatial relationships. The

mxGWR model can be represented as:

P
yi = Bo(uy,vy) + z Br (ui, vy, b)) xix + €;
k=1

Where:

e b, Unique spatial bandwidth for the k-th variable, allowing the model to adapt

to varying spatial scales

GWR applies a single bandwidth across all variables, which may not capture multi-
scale spatial processes accurately. In contrast, mxGWR, allows different bandwidths
for each explanatory variable, provides a more flexible and specific understanding of

spatial heterogeneity.

4.3 Results

In this section, | first introduce the Xenium data used as the proof of concept for our
spatial predictive modelling concept (4.3.1). | then further describe the GNN approach
for prediction and highlight the results in a well-annotated mouse brain dataset and
the Xenium breast cancer dataset (4.3.2). Finally, | demonstrate the additional insights
gained from geostatistical regression methods on the Xenium breast cancer dataset
(4.3.3).
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4.3.1 Characterising the Xenium breast cancer dataset

To analyse the intrinsic and extrinsic variables that shape EMT in breast cancer, |
integrated annotations of the dataset from various sources. First | combined major and

minor cell type annotations from a previously run cell annotation study?"® (

Figure 38). The cell types included 9 major populations: B-cells, CAFs, cancer
epithelial cells, endothelial cells, myeloid cells, normal epithelial cells, PVL cells,
plasmablasts and T-cells. The minor cell classes included cancer LumA stem cells,
macrophages, cancer basal cells, Cancer LumB cells, luminal progenitors, PVL
immature cells, mature luminal cells, cancer Her2 stem cells, myoepithelial cells,
myCAF-like cells, cancer cycling cells, monocytes, cycling myeloid cells, endothelial
lymphatic LYVE1 cells, endothelial CXCL12 cells, natural killer (NK) cells, cycling T
cells, endothelial ACKR1 cells, plasmablasts, NKT cells, CD8+ T cells, CD4+ T cells,
dendritic cells (DCs), naive B cells, memory B cells, cycling PVL cells, and PVL
differentiated cells. The cell type labels make up the extrinsic variables | am modelling.
In addition, | integrated pathologist labels''%, including ductal carcinoma in situ (DCIS)

and invasive breast cancer subtypes, as shown in Figure 39.
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Figure 38. The major cell types annotated in the Xenium slide.

109



®DCIS 1 %{&
eoCIS2  H

£®Invasive Tumof -
®Prolif. Invasive Tumor:

Figure 39. The pathologist labels describing the Xenium slide, including DCIS, invasive tumour

and proliferative invasive regions.

To approximate the intrinsic cell variables, | estimated the copy number changes
present in each cancer cell using SCEVAN?77. This tool divides the genomic regions
into bins, smoothing out noise, and uses a non-tumour cell baseline to estimate the
copy number changes. For accuracy, it identifies the copy number changes in clusters
(subclones). | identified 8 subclones in total sharing similar genomic alterations
(Figure 40a-c). These subclones display a range of copy number alterations.
Alterations found across the subclones include the 17q22-24 amplification, a common
site of amplification in breast cancer?®?, and 8q24.3 amplification which included the
MY C oncogene, often amplified in aggressive breast cancer?®3. Deletions found across
all subclones include chromosome 11913.4-g25 which contains the CCND1 gene

(cyclin D1) involved in cell cycle regulation?84,
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Figure 40. Copy number alterations present in Xenium slide. a. Genomic alterations present in each
subclone. Heatmap represents a select number of regions. b. Subclone tree determined by the copy

number alterations. c. Full heatmap highlighting genomic alterations present in each subclone.

| reduced the dimensions of the copy number alterations matrix for the subclones using
PCA. This allows us to have a smaller set of uncorrelated variables capturing different
portions of the variance in the data to use in the downstream GNN or spatial regression
analysis. Each PC captured different aspects of the variation in the copy number
alterations, with PC1 to PC7 capturing over 99% of the variation (Figure 41). The PCs
align with genomic patterns associated with breast cancer. PC1 relates to deletion of
tumour suppressor genes like BRCA2 (13913.1-q34) and amplification of oncogenes
such as CCND1 (11913.2-q13.4). PC2 highlights important regions for breast cancer
(e.g., 1p and 3qg%®5286). PC3 and PC4 mainly included oncogene amplification, such
as PIK3CA (3926.1-q26.33). PC5 and PC6 include known oncogene amplifications
(e.g., CCND1 at 11p) and significant tumour suppressor gene deletions. PC7 indicates
co-occurring amplifications and deletions, involving regions with genes like BRCA1
(17912-g21.1). Supplementary Table 1 summarises the regions associated with each
PC, and their associated amplification or deletion. The PCs manage to capture the
trends observed in the subclone evolutionary tree, for example, it is apparent when
visually inspecting the PCs, that PC1 captures chromosomal alterations found in
subclone 4 to the highest extent, and then subclone 6 (Figure 42 - Figure 43). On the

subclone tree, | see that 6 is a subclone descended from subclone 4 (Figure 40).
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Figure 41. The feature loadings for each PC. The top loadings are plotted, each corresponding to

different chromosomal regions and the variance explained for each PC (bottom centre).

A

Figure 42. The subclones annotated in the Xenium slide.
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Figure 43. PC1 plotted across the Xenium slide.

| then assessed the EMT state of the cancer epithelial cells present in the Xenium
data. To ensure that the reduced number of genes in Xenium did not compromise our
downstream analysis, | compared the EMT signature scores derived from the reduced
set of genes (20 genes that are overlapping in EMT signature and Xenium) with the
scores from the full 195-gene EMT hallmark signature in the Visium data. | observed
a strong correlation, confirming that the smaller gene panel still robustly captures the
EMT signal (Figure 44). This is in line with other research that suggests that EMT
hallmark gene signature can be captured more targeted gene panels??. | identified

four EMT states by binning the signature enrichment score into four.
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Figure 44. EMT hallmark correlation analysis. Correlation of full gene list for EMT hallmarks signature
scores in Visium breast cancer dataset compared to the limited gene list of only genes present in

Xenium scored in the Visium breast cancer dataset.

Given the shared transcriptional program between myCAFs and EMT cancer epithelial
cells??®, | wanted to confirm that the cells labelled as EMT cancer epithelial cells were
not mistakenly classified myCAFs. To do this | sought to identify uniquely expressed
genes within these cells types that can be used as reliable markers. | began by
identifying the top differentially expressed genes between myCAFs and cancer cells
with a mesenchymal phenotype in the previously labelled scRNA-seq breast cancer
dataset as described in Chapter 3 (Figure 45). | then incremently selected the top 10
differentially expressed genes (Figure 46a), and evaluated how well these genes
could differentiate CAFs from EMT tumour cells in the scRNA-seq dataset (Figure
46b). Using Cohen’s d score as the metric, | found that the top differentially expressed
gene, LUM, had a particularly strong discriminative power (Cohen’s d = —4.26),
surpassing even the separation achieved by combining the other top 2—10 genes
(Cohen’s d ranging from —3.45 to —3.62) (Figure 46b). | further confirmed the gene
expression of LUM could differentiate the myCAFs and cancer epithelial cells by
assessing the distribution across the cell type subsets, (Figure 47-Figure 48). | then
investigated LUM expression in the Xenium data and found a small proportion of cells
labelled as MES in our dataset with high LUM expression (Figure 49a). | removed
these cells (Figure 49b).
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Figure 45. Heatmap illustrating the top-ranked differentially expressed genes and their expression

profiles across myCAFs and mesenchymal tumour cellsin the annotated scRNA-seq dataset.
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Figure 46. a. Top 20 differentially expressed genes distinguishing CAFs from MES tumour cells ranked

by their z-score. b. Cohen’s d metric highlighting cluster separability between CAFs and MES tumour

cells using increasing number of marker genes.
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Figure 47. LUM expression across the major cell types in breast cancer scRNA-seq dataset.

Values represents the log2 normalised gene expression of LUM.
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Figure 48. LUM expression across the minor cell types in the breast cancer scRNA-seq dataset.

Values represents the log2 normalised gene expression of LUM.
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Figure 49. LUM expression across the Xenium annotated cancer cells and CAFs. a LUM
expression pre filtering Xenium cells. b LUM expression post filtering for the 15t quartile range for CAFs.

Values represents the log2 normalised gene expression of LUM.

Having defined the four states within the breast cancer Xenium dataset, | then
assessed their distribution across subclones and molecular subtypes (Figure 50). |
found that invasive regions had a higher proportion of MES cells, as expected due to
the link between EMT and metastasis. Interestingly, the invasive proliferative regions
contained a smaller proportion of MES cells, in line with our previous work and
extensive other research?®8-2%0 gyggesting that a proliferative state acts in opposition
to a mesenchymal state. The DCIS has a lower proportion of MES cells. However, all
regions did have all states present within them. This was the same with the subclones
as well. Interestingly, the proportion of EMT states align with their evolutionary tree.
For example, the subclones with the highest MES states are closer in origin (subclone
7 and 1) and the subclones with the highest EPI states are also closer in origin
(subclone 4 and 6). This hints at a genomic influence on EMT which | will explore in

the modelling.
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Figure 50. EMT states identified in Xenium dataset. a EMT state proportions visualised within the
Xenium dataset. b EMT state proportions across the subtypes within the Xenium dataset. ¢ EMT state

proportions across the subclones within the Xenium dataset.

117



Now, | have the fully annotated dataset (Figure 51 - Figure 52) that | can explore

further in the next sections.
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Figure 51. EMT states and CD8+ T-cell distribution in the Xenium dataset.
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Figure 52. EMT states and myCAF cell distribution in the Xenium dataset.

4.3.2 Modelling the TME and genomic influences on EMP using graph
neural networks

Rationale of GNN approach
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To assess the spatial dependence of the TME on EMT | developed a graph neural
network framework. If | cannot reliably predict EMT, then it suggests that the spatial
positioning of cancer cells as they undergo EMT does not impact the transition, or |
need to capture other levels of spatial information. | hypothesise that if the spatial
component (TME) is more important for EMT compared to the intrinsic factors
(genomic changes), it should be easier to predict the EMT status of the cells using this
information compared to just the intrinsic information (here using copy number

alterations as a proof of concept).

A GNN can capture spatial relationships between cell types in a way that other
machine learning models cannot. Unlike most spatial prediction models, which
typically rely on distance as a feature, GNNs can model the connections between
nodes (in this case, cell types) through edges, allowing for a better representation of

spatial interactions.

| can then use this framework for a more general framework of modelling which
variables are most important for cell state changes. Following up from this, | can then
suggest how “plastic” cell states are. | would hypothesise that states that cannot be
easily predicted are flexible states exhibiting plastic potential. The states that have
higher predictability are cell types likely have stable spatial relationships and specific
roles in their microenvironment. This reflects biological constraints on their function.
These may be the cells that are easier to treat, given their well-defined spatial
relationships and may have stable therapeutic targets e.g. other immune cells. On the
other hand, more plastic cells, which are harder to predict, have been shown to be

more challenging to treat due to their dynamic and less constrained naturg2°1-2%3
These can be formulated as equations:
Variables:

e S: Cell state (e.g. EMT) which can be binary or continuous
e [:Intrinsic variables e.g. copy number alterations
e E: Extrinsic variables from the TME

e S: The predicted cell state from the model

Performance metrics:
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e AUC: Calculates ability of the model to distinguish between classes by
calculating the probability that the model ranks a randomly chosen positive
instance higher than a randomly chosen negative one (used for classification
tasks)

e R2: Proportion of variance in cell state that is predictable from the independent
variables (used for regression tasks)

A cell state e.g. EMT can be modelled as a function of intrinsic variables, extrinsic

variables and randomness:

S = f(I,E,R)

i State primarily linked to genomic and TME variables, potentially indicating

genomic factors increasing cells responsive to the environment:
S=af()+Bf(E)
AUC; or R;* =~ AUCg or R;*
ii. State primarily linked to extrinsic and not driven by intrinsic factors
S =f(E)

AUCg or R;% > AUC; or R,?

iii. State primarily linked to intrinsic variables ie. genomic variables:
S=f)
AUC; or R;* > AUCg or R;*
Validation of GNN method

To illustrate the concept of capturing the spatial effect using the TME, | demonstrated
the method using a MERFISH dataset from the mouse cortex?®. This dataset includes
both cell types that exhibit spatial dependencies (their distribution is influenced by
tissue structure or interactions) and those that are more randomly distributed, lacking
strong spatial organisation and therefore offers a useful test to check the method picks

up the key differences in spatial dependencies (Figure 53).
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Figure 53. A representation of the cell types present in mouse motor cortex MERFISH slides.

The layered neuron cells, such as Layer 2/3 intratelencephalic neurons (L2/3 IT),
Layer 4/5 IT neurons (L4/5 IT), Layer 5 extratelencephalic neurons (L5 ET), Layer 5
IT neurons (L5 IT), Layer 5/6 near-projecting neurons (L5/6 NP), Layer 6
corticothalamic neurons (L6 CT), and Layer 6b neurons (L6b), have distinct spatial
organisations within the motor cortex, each with distinct roles in cortical processing.
For example, L2/L3 IT cells are involved in integrating information across cortical
layers and higher-order processing. In addition to the layered neurons, the vascular
leptomeningeal cell type (VLMC) has a distinct spatial location at the border of the
cortex (Figure 53).

Additional cells within the dataset include the GABAergic neuron class, which was
classified into five subclasses based on marker genes; Pvalb (Parvalbumin-
expressing) neurons, Sst (Somatostatin-expressing) neurons,Vip (Vasoactive
Intestinal Peptide-expressing) neurons, Sncg (Synuclein-gamma-expressing)
neurons, and Lamp5 (LAMP family member 5-expressing) neurons. In addition to the
neuronal cell classes, the dataset includes several non-neuronal cell subclasses;
astrocytes (Astro), endothelial cells (Endo), pericytes (Peri), smooth muscle cells
(SMC), microglia (Micro), perivascular macrophages (PVM), oligodendrocytes (Oligo)
and oligodendrocyte precursor cells (OPC).

I hypothesised that using the GNN prediction approach, the spatially constrained cells
should be significantly easier to predict than the other cell types. To test this, | trained

the model using the MERFISH dataset and evaluated its performance on separate
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mouse MERFISH slides, ensuring no data leakage, averaging the results over 10
distinct train-test splits. For each experiment, | masked the cell type of interest and
used it as the prediction label, while providing only the remaining cell types as input to
the model. This process was repeated for each cell type to assess the model's

predictive ability.

The known spatially constrained cells with well-defined roles do have a higher
prediction accuracy (Figure 54). L2/3 IT, L4/5 IT, L5 ET, L5 IT, L5/6NP, L6CT and
VLMC cells have an AUC above 0.85. These results are consistent regardless of the
train and test split, and align with our expectation that relative to the other cell types
these should have higher predictability. Oligodendrocyte precursor cells (OPCs) and
pericytes (peri) display the least predictive capabilities. OPCs are considered plastic
cells, as they can differentiate into oligodendrocytes depending on where myelination
is needed?®. This plasticity means that OPCs are not tied to a fixed, predefined
location; instead, they may migrate or change their function depending on the local
demands for myelination, making their spatial distribution more dynamic and less

predictable.

Pericytes were amongst the least predictable cell types, and these are also plastic,
changing their phenotype in response to many different environmental cues, such as
injury, inflammation, or changes in blood flow?%5:2%, Pericytes can differentiate into
cells such as smooth muscle cells, fibroblasts and osteoblasts and are important in
wound healing?®’. Astrocytes, and perivascular cells are also considered plastic cells,
compared to cells such as VLMC and the layered neurons, and these had lower AUC

values298-300

Plasticity in cells is inherently linked to more variability in their locations and functions,
making them harder to predict accurately in spatial models. Therefore, the pattern of
higher accuracy for more stable cell types and lower accuracy for more plastic ones

aligns with expectations.
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Figure 54. AUC range of predicted cell types in the mouse motor cortex MERFISH dataset. The
plot displays the average AUC scores across 10 different training splits, with error bars representing the

standard deviation. Layered (spatially distributed) cell types highlighted in green.

Using this model, | can analyse which cell types are most influential for each prediction
(Figure 55). Overall, the results align with biological expectations. For example, L2/L3
neurons had a significant relationship with VIP interneurons, Pvalb interneurons,
microglia and endothelial cells. These are as | would expect; Pvalb and VIP neurons
and microglia are known to regulate L2/L3 neurons, and endothelial cells are important
for maintaining the blood-brain barrier which supports L2/L3 IT neurons3'-3%3 |6 IT
neurons had a significant relationship with L6 CT neurons, which share close spatial
relationships, and Sst interneurons, which target the dendrites of L6 IT neurons3%4.305,
L6 IT Car3 neurons had a close relationship with L6 CT neurons, which are spatially
located in a shared local circuit3®. Oligodendrocytes had a significant relationship with
OPCs, which make sense as OPCs differentiate into oligodendrocytes®’. PVM
(perivascular macrophages) interacting with pericytes also make sense, are they
share a similar niche; both associated with blood vessels3%. VIP neurons and Lamp5
neurons have been found to be enriched in the superficial (layer 1 to 3 layers), and

therefore their relationship makes biological sense3%.
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Figure 55. Cell type significance for each cell type prediction using node explanations. Coloured

by p-value significance level.

| next sought to understand the edge explanations (Figure 56). Edge explanations can
identify the important node connections, highlighting the structural dependencies in
the graph. Overall, | found that the edges make biological sense. | am also likely
uncovering relationships that are unknown due to the unique method of assessing the
spatial relationships, in a more unsupervised strategy compared to more directed

methods such as niche detection and co-localisation approaches.

VIP neurons had the greatest number of interactions with L2/3 IT neurons. This aligns
with their spatial location in layer 2/33'°. For SMCs, | found edges mainly involving
VLMCs. This aligns with our biological understanding as they are both vascular-
associated cells, particular at the cortical borders3. Astrocytes had many significant
relationships when predicting PVM interactions, which makes biological sense given
their role in immune modulation; astrocytes release cytokines that directly regulate
PVM activity3'".

Endothelial cells demonstrated a broad range of interactions, highlighting their multiple
roles in vascular support and neurovascular coupling. Endothelial interactions were

particularly significant with L4/5 IT and L5 IT neurons. This is consistent with the high
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vascular density of Layer 4, which supports intense sensory input processing, and the

high metabolic demands of the large projection neurons in Layer 5312,
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Figure 56. Heatmaps displaying the significant edges for the cell type prediction. Heatmap
highlights the weighting for the significant edges.

Prediction model to understand EMT states

Having confirmed the model aligns with biological expectations, whilst potentially
offering novel insights in the MERFISH dataset, | applied the method to the Xenium
breast cancer dataset. The GNN approach was trained with either just the intrinsic
information (copy number alterations), just the extrinsic information (the TME

information) or both and the AUCs compared.

Interestingly, both genomic factors and the TME predict EMT states to a similar overall
extent (Figure 57). The mesenchymal state was the most predictable using the TME
variables, suggesting that this is the most responsive to the environment, aligning with
other research67.313314 The fact that genomic factors also were important suggest
potentially that the genomic factors influence the responsivity of the MES state to the

environment. These alterations could be selected for in MES niches, allowing these
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cells to survive. These genetic changes could provide stability to their otherwise plastic
state, making MES cells more predictable when combining genomic and TME

features.

The hybrid states are more difficult to predict (Figure 57). This suggests that they are
less locked into a state, and have heightened plastic potential. Genomic factors do not
appear to be able to predict these hybrid states, suggestive of the idea that hybrid
states are not primarily driven by intrinsic genetic alterations but rather by dynamic
interactions with the TME not captured within the cell type information or stochastic
fluctuations in cellular signalling and reliance on post-transcriptional or epigenetic
mechanisms. This aligns with the hypothesis that hybrid states exist in a more transient
and flexible state, balancing epithelial and mesenchymal characteristics, and are
influenced by a broader range of non-genetic factors, such as local cytokine

gradients®'®,
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Class H-EPI
Class H-MES
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Figure 57. AUC range of predicted cell types in Xenium breast cancer dataset. The plot displays
the average AUC scores across 10 different training splits, with error bars representing the standard
deviation for the prediction model for each EMT state using just the CNV, just the TME and including

both variables.

| then assessed the most important cells for predicting the four states (Figure 58).
Cycling T-cells and NKT cells found within the top cells for MES state suggest an
immune active state. Additionally, PVL immature cells were important, and these cells
are often found in regions of active angiogenesis and have immune suppressive

properties®'6. Myoepithelial cells may promote ECM remodelling, a hallmark of MES
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states®'”. Interestingly the MES state had the highest number of significant nodes
relating to the sub-clonal, intrinsic, information, with PC4 (which includes PIK3CA
oncogene amplification in regions 3g26.1-g26.33), PC6 which includes oncogene
amplification e.g. CCND1 at 11p, and PC7 which includes amplifications and deletions
including regions with gene like BRCA1 (17q12-g21.1).

Hybrid MES cells appear to have more immune suppressive features, with myCAFs
and macrophages forming the most important nodes. Both cell types are associated
with promoting immune-suppressed environments316318  Additionally, LYVE1+
endothelial lymphatic vessels were linked to this state, cells that have been associated
with poor outcome in breast cancer, and strongly linked to increased metastasis®'°. A
monoclonal antibody inhibiting LYVE+ has been shown to inhibit breast cancer tumour
progression®'. myCAFs, macrophages and endothelial cells have been characterised
in other EMT spatial studies'%167_ Hybrid EPI cells appear most dependent on cancer
cycling cells, suggestive of a more proliferative state. Additionally, | detected a
relationship with PVL Differentiated cells, which contribute to vascular structure and
stability®2%. LYVE1+ endothelial lymphatic cells were also important for this state, as
for hybrid MES states.

| observed that memory B-cells are most strongly associated with the EPI state. These
antigen presenting cells indicate an adaptive immune response3?'. CXCL12+ and
ACKR1+ endothelial cells are associated with chemokine signalling, and were
significant cells liked to the EPI state3?2323, These differ from the LYVE+ and RGS5+
endothelial cells, the endothelial cells linked to the hybrid states, which are linked to
metastasis facilitation, the invasive edge and hypoxia adaption3'9:324-326_pC2 and PC5
were the more important genomic variables; PC2 is linked to preservation of critical
regions (e.g., 1p and 3q), suggesting fewer genomic instabilities. PC5 also captures
fewer genomic instabilities. These relationships suggest EPI states represent stable,
well-differentiated epithelial cells interacting with immune and vascular systems to

maintain homeostasis.
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Figure 58. Cell type significance for each EMT state prediction (using the 4 state EMT model).

Coloured by p-value significance level.

| also compared these explanations to a simplified 2-state EMT model, categorising

cells into two bins based on their EMT signature scores (Figure 59). | found that the

MES state explanations overlapped with those of the MES and Hybrid-MES states in

the four-state model, including key cell types such as cycling T-cells, LYVE1+

endothelial cells, luminal progenitors, and myCAFs. Similarly, the EPI state

explanations aligned with those of the EPI state in our model, featuring endothelial

CXCL12+ cells, memory B-cells, and iCAFs. These suggest the stability of overall cell

type trends, reinforcing the accuracy of our GNN explanation approach. However, it

also shows that our four-state model provides additional granularity into the EMT

process, revealing intermediate phenotypes and their distinct interactions within the

TME.
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Figure 59. Cell type significance for each EMT state prediction (using the 2 state EMT model).

Coloured by p-value significance level.

| then assessed the significant edge relationships (Figure 60). For the EPI state,
interactions predominantly occur between epithelial subtypes, such as Lum A and
HER2. Lum A shows the highest number of significant edges, which aligns with
expectations, as it is the most epithelial-like breast cancer subtype3?’. The strong
within-epithelial interactions, particularly Lum A to Lum A, make sense biologically, as
these cells are likely located in the tumour core, less exposed to the TME. However,
some immune infiltration is observed, including interactions with DCs and
macrophages. Additionally, ACKR1+ endothelial cells form significant interactions,

aiding with immune recruitment.

The hybrid EPI state, similar to the EPI state, predominantly involved interactions with
epithelial cells. This suggests that hybrid EPI is closely related to the EPI state,
potentially representing a transitional state still located within the tumour core. The low
predictability of this state may indicate that it is a stochastic, intermediate state
emerging from EPIl. The hybrid MES state displays interactions with endothelial
LYVE1+ cells, cancer cycling cells, PVL immature cells, and myoepithelial cells. These
relationships highlight the hybrid state’s increasing exposure to the TME and its

intermediate nature between epithelial and mesenchymal traits.

The MES state has the largest number of significant edges, reflecting its proximity to
the TME and its dependence on interactions with a broader range of cell types. This

increased connectivity likely contributes to its higher predictability. Significant
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interactions include those between RGS5+ endothelial cells and cancer epithelial as
well as other endothelial cells. Additionally, mature luminal cells interact with cancer
cells and CAFs, with myCAFs forming connections across a range of epithelial cancer
cells. As expected, basal cancer epithelial cells exhibit the highest number of

interactions, consistent with their invasive and mesenchymal-like characteristics3?.

These findings demonstrate how cell to cell interactions (edge explanations) uncover

additional insights than solely focusing of individual cells (node importance).
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Figure 60. Cell type significance for each EMT state prediction using node explanations.

Coloured by p-value significance level.

The results described above are from training and testing based on separate spatial
splits; a process called inductive graph learning, which can be compared to spatial
cross-validation used in geostatistics and ecological modelling®’?2. However,
transductive learning is another common approach in graph learning, where nodes are
masked randomly within a graph (Figure 61). Within our problem setting, this can help
gain additional clues in how much information is contained in the TME and the

subclones.
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Figure 61. Different training splits used for the GNN prediction modelling task. a. Transductive
training split involves randomly masking nodes (cells) across the dataset and predicting EMT state on
the randomly masked nodes. Training and testing splits are coloured. b. Inductive training split involved

spatially splitting the slide into train and test set. Training and testing splits are coloured.

| compared these two methods and found a similar overall trend in AUCs amongst the
four EMT states, and minimal changes in AUC score (Figure 62). Inductive training as
would be expected, has a larger error bar, due to more variation within the test set,
suggesting some slight changes with spatial folds. However, the overall concordance
suggests that there are unified common trends our GNN model is picking up that can

be applied to unseen spatial regions as the inductive method of training shows.
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Figure 62. Comparison of inductive and transductive training split. AUC range of predicted cell
types in Xenium breast cancer dataset. The plot displays the average AUC scores across 10 different
training splits, with error bars representing the standard deviation for the prediction model for each EMT
state using the TME and CNV.

Prediction model to understand EMT as a continuous process

| also tested the GNN approach on a continuous EMT score. Interestingly, the TME
was much more important than the CNVs in predicting the EMT continuous score
(Figure 63). This could indicate that the continuous score captures more transient or
short-term stimuli from the TME, which aligns with the idea that EMT can be modulated
rapidly in response to environmental conditions. In contrast, clonal information, which
reflects stable, inherited genetic changes, appears to have a stronger association with
large, more permanent EMT transitions (e.g., shifting between fully epithelial and fully
mesenchymal states). These transitions may require more profound cellular
reprogramming, which aligns with the longer timescales of clonal evolution compared

to the immediate, dynamic nature of TME interactions.
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Figure 63. GNN regression performance using the different training splits and variables for
prediction. a The average R? scores across 10 different training splits, with error bars representing the
standard deviation for the continuous EMT score prediction using just the CNV, just the TME and
including both variables. b The average correlation scores across 10 different training splits, with error
bars representing the standard deviation for the continuous EMT score prediction using just the CNV,
just the TME and including both variables.

4.3.3 Modelling the TME and genomic influences on EMP using spatial

regression approaches

Rationale of spatial regression

While GNNs provide valuable insights into spatial structures by modelling the graph
structure, enhancing our ability to capture spatial information for AUC comparisons
and edge explanations, they have less statistical guarantees. For example, there are
limitations in explicitly addressing confounding factors or statistically accounting for
spatial effects and heterogeneity. Geostatistical models have been developed that can
disentangle specific spatial influences and quantify spatial variability. For instance,
spatial geostatistical regression methods can be employed to adjust for subtype-
specific information, such as basal or HER2+, enabling the identification of key cell

types and their contributions within these stratified spatial contexts.
Spatial error models (SEMs)

Spatial error models are a type of spatial regression that incorporate a spatial error
term to account for unobserved spatial heterogeneity®®. This allows us to estimate
coefficients that represent conditional dependencies while adjusting for spatial

autocorrelation.
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| observe the TME variables explaining a larger portion of the variance in the
regression model compared to clonal information, as observed in a higher R? value
(Figure 64). This is similar to the trend observed in GNN regression. myCAFs emerge
as the cell type with the greatest influence (Figure 65), an effect that persists even
after controlling for subtype-specific effects (Figure 66). Furthermore, as clonal
information remains significant when the effects of the TME are regressed out, this
suggests that the inheritance of EMT is likely an important factor, independent of
spatial colocation of similar clonal alterations. The A (spatial error) coefficient is
significant in all SEMs, highlighting the importance of accounting for spatial effects as

they are a fundamental aspect of the underlying process being modelled.
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Figure 64. R? values for the SEM model using both extrinsic and intrinsic variables (TME and

CNV), just extrinsic (TME) and just intrinsic (CNV). Error bars highlight standard deviation of the R?

value after 10 spatial splits.
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Figure 65. Spatial Error Model coefficient estimates using intrinsic and extrinsic variables,
modelling across the whole slide. Red indicates a significant coefficient. Lambda is the spatial
autoregressive coefficient for the error term (quantifies the degree of spatial dependence in the

residuals).

Additionally, by regressing out the effects of DCIS versus invasive states (Figure 66),
| find that invasive regions, as expected, are significantly closer to MES regions.
Importantly, the relationship between MES cells and myCAFs remains robust despite

these adjustments, reinforcing the biological significance of this interaction.
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Figure 66. Spatial Error Model coefficient estimates combining intrinsic, extrinsic variables in
addition to pathologist annotations of the regions within the tumour, modelling across the whole
slide. Regions include proliferative invasive, invasive and DCIS (red font). Red coefficient indicates
significance. Lambda is the spatial autoregressive coefficient for the error term (quantifies the degree

of spatial dependence in the residuals).

To further explore these relationships, | performed separate SEMs for ductal and
invasive regions (Figure 67). | found some similar trends, for example with myCAFs
being linked with a mesenchymal phenotype in both. However, importantly, these
analyses reveal some distinct relationships. For example, monocytes and
macrophages appear to be linked to EMT within the DCIS regions but not the invasive
regions. Interestingly, | find myoepithelial cells predominantly important in ductal
regions, while their importance decreases significantly in invasive regions.
Myoepithelial cells, which typically form a protective barrier in ductal regions and play
a key role in maintaining epithelial integrity, are generally absent in invasive regions32.
Their absence likely promotes tumour invasion and progression by reducing structural
constraints and enabling epithelial cells to transition into more mesenchymal-like,

migratory states3?°.
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Figure 67. Spatial Error Model coefficient estimates using extrinsic variables, modelling across

DCIS (a) and invasive regions (b) separately. Red indicates a significant coefficient. Lambda is the

spatial autoregressive coefficient for the error term (quantifies the degree of spatial dependence in the

residuals).

Itis important to note that whilst they can provide additional insights that GNNs cannot,

when comparing the overall regression metrics, our GNN regression approach

outperforms SEM (Figure 68). This is as expected given that GNNs excel at capturing

complex spatial relationships and multi-scale interactions (0.16 R? for SEM vs. 0.24

for GNN).

R-squared Value

Figure 68. Comparison of GNN and SEM model fit on Xenium using R2 value.

A comparison of Geographically Weighted Regression (GWR) and Multiscale

GWR (msGWR) modelling
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The example of the different weighting of myoepithelial cells depending on the region
highlights spatial heterogeneity (also termed spatial nonstationary). Currently, the
methods assessed so far assume that spatial relationships are uniform across
locations. However, this is not how spatial relationships typically occur. Geographically
weighted regression (GWR) is a technique that can assess the degree of spatial
heterogeneity observed in the dataset33°; for example, | can answer the question “do

the TME cells have a different effect depending on the spatial location?”

The key advantage lies in moving beyond global averages to assess local
relationships, capturing spatially varying dynamics that are important for a more
detailed analysis. Traditional GWR applies a single bandwidth (spatial scale) to all
variables, assuming that all relationships operate over the same spatial extent. This
assumption can oversimplify spatial processes, as different variables often interact at
different spatial scales. Multiscale Geographically Weighted Regression (MSGWR), a
recent advance over GWR, addresses this limitation and allows each explanatory
variable to have its own bandwidth, capturing relationships at the spatial scale most
appropriate for that variable?”!. A larger range suggests it has an influence over a
larger region within the tissue and a smaller range suggests the cell influences a
smaller region within the tissue. This therefore increases the level of information | gain
from the model. Understanding the bandwidth scale of cell type influence could help

us understand whether localised versus systemic therapeutic strategies are important.

By assessing the R? of regression with and without GWR and then with and without
multi-scale variable bandwidths, | can understand what processes are present in the
data. | find there is a large degree of spatial heterogeneity within the tissue (Figure
69a-b), as GWR increases the variance captured (R?) and lowers the Bayesian
Information Criterion (BIC) compared to SEM. Interestingly, a multiscale approach
does not offer an increased R? value, but it does lower the complexity of the model.
This is reflected in the lower BIC value, which balances goodness of fit and model
simplicity (fewer parameters) (Figure 69b). It is also reflected in the overall decreased
number of parameters required for the model (Figure 69c). Therefore, shorter
bandwidths for some variables can be equally informative, but this also can be
captured in the large range too. However, the advantage is that msGWR can tell us
the scale these cell operate at.
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Figure 69. Metric comparisons for SEM, GWR and msGWR models fit on the DCIS regions within
the Xenium slide. a. R2values for each model. b. Bayesian information criterion (BIC) values for each

model. c. Number of parameters for GWR and msGWR. SEM is not included as it does not model

spatially varying relationships.

This modelling approach confirms that myoepithelial cells have short range influence,
as suggested in the SEM modelling approach, where they had a different effect
depending on whether the tissue was in DCIS or invasive regions. It also highlighted
that myCAFs display a longer-range influence on EMT (Figure 70). myCAFs
contribute to ECM deposition and remodelling and therefore their influence over a
larger range may potentially causes widespread stiffening of the TME, promoting
EMT?33', The subtype (e.g LumB or Basal) of neighbouring tumour cells displays local
effects (small bandwidth). This smaller bandwidth suggests that the influence of the

subtype is more pronounced only in certain, confined regions (niche specific effects).
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Figure 70. msGWR variable bandwidths (spatial length scale) in model used to predict EMT
gradient in tumour cells. Bandwidth ranges relative to other variables in the msGWR model. A larger
range suggests it has an influence over a larger region within the tissue and a smaller range suggests

the cell influences a smaller region within the tissue.

The msGWR approach allows us to precisely identify and visualise the spatial
localisation of important variables, such as highlighting the heterogenous influence of
myCAFs, across the tissue slide (Figure 71). This modelling approach uncovers
significant relationships in specific regions that might otherwise be missed in global
regression models like SEM. For example, while CD8+ T-cell interactions were
insignificant in the global SEM analysis, msGWR reveals significant localised

relationships within specific regions (Figure 72).
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Figure 71. myCAF cell coefficients for SEM, GWR and msGWR visualised across the Xenium
slide (DCIS region).
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Figure 72. CD8+ T-cell coefficients for GWR and msGWR visualised across the Xenium slide.

Xenium (DCIS region) for reference show in left plot.

4.4 Discussion

Many spatial studies within cancer analyse intrinsic (genomic) or extrinsic (TME)
variables independently but do not integrate them into a unified framework that
quantifies their relative contributions, or disentangles their effects. This gap limits our
understanding of how these factors interact to drive cellular plasticity, such as EMP.
Additionally, current plasticity metrics do not seek to model the environment. | have
developed an approach to weigh these variables and regress out their shared
contributions, to approximate which factors are closely linked to observed phenotypic
changes. By addressing this challenge, we can move closer to fully understanding the
mechanisms underlying EMP and other cell plasticity phenomena. | can also use this
approach to rank states to understand how stable each cancer state is. This is useful
from a treatment perspective as unstable, less predictable states are harder to develop
drugs for. Understanding how these states could transition to more stable states could

be a promising therapeutic avenue.

The MES state is the most predictable based on both the TME and genomic factors.
This reflects its evolutionary adaptation and stability, indicating that it has been
selectively shaped to thrive in the TME. As a result, the MES state is a more
deterministic phenotype compared to others. The difference in predictability (AUC
delta) between the MES and EPI states when using TME features highlights the
plasticity of the EMT process. This delta could serve as a quantitative metric for
plasticity potential, reflecting the extent to which cellular phenotypes adapt to TME
pressures. It could suggest that CNVs are linked to an increased capacity for states to
respond to environmental factors such as the TME. However, determining the direction
of this relationship would require additional modelling or experimental validation

through perturbation studies.
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The EPI state, in contrast, appears to be less dependent on external pressures like
the TME to maintain its phenotype. As a well-differentiated, proliferative state, it
experiences less selective pressure from the environment. While CNVs may be
present, they do not significantly alter the epithelial phenotype, allowing cells to retain
their identity despite genomic variations. This aligns with the concept of the EPI state
as a baseline, default state that is less adaptable or responsive to environmental

changes'90:315,

Hybrid states, however, are the least predictable which suggests they are of a plastic
nature. These states exist in a dynamic equilibrium, highly responsive to both intrinsic
factors (e.g., stochastic gene expression, CNVs) and extrinsic cues (e.g., TME
interactions). The observed dip in predictability across the EMT spectrum highlights
the adaptive importance of plasticity. It suggests that retaining this variability in hybrid

states is crucial for enabling cells to effectively respond to environmental challenges.

The CNV information was considerably less influential in predicting EMT continuous
change compared to spatial variables. This could be due to continuous score capturing
more subtle, short-term phenotypic changes, which the TME likely can induce,
whereas the intrinsic variables, in this case the copy number alterations, may dictate

more long-term, stable changes in cellular states

Using the AUC and R? metric provides an approach for evaluating whether the model
effectively captures key spatial variables influencing cellular processes. For instance,
future analyses could compare the inclusion of additional spatial variables, such as
markers of hypoxia, to assess their impact on model performance. While cell type-
level features may provide a baseline, they inherently have an upper limit in
explanatory power. Capturing the full variables driving the EMT process likely requires
modelling multiple layers within the tissue, such as chemokine gradients, matrix
stiffness, and hypoxic gradients. | view this work as a step in building models capable
of representing the diverse factors driving processes related to cell plasticity. Other
metrics could additionally be used, for example entropy-based metrics in a similar
manner as calculated by Burdziak et al?*® would be useful for capturing additional
information returned from the GNN approach. This metric would quantify the entropy

of the probability distribution across predicted classes. A high entropy value would
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indicate greater plasticity, with probabilities distributed across multiple classes,

suggesting the cell is less committed and more flexible.

As expected, GNNs outperform spatial regression models in prediction, and they offer
valuable insights into the spatial interactions between cells, reflected in edge
importance scores. While SEM offers more interpretable coefficients and robust
statistical grounding, GNNs provide richer insights into complex spatial relationships.
However, while GNNs can model larger spatial ranges, they are constrained by over-
smoothing issues, which may be mitigated by graph transformers, a promising
direction for future modelling efforts332:333, Combining the strengths of all approaches
into one model could enhance the modelling approach going forward, for example,
heterogeneity-aware deep learning spatial models33433°, |t would also be useful to
draw on these frameworks using causal modelling approaches which help assign
causal direction to these relationships33®. In a recent extension of the SIMVI
framework, a metric has been introduced that effectively disentangles intrinsic and
spatial effects?’®. While this method does not fully achieve the goal of producing
interpretable coefficients for intrinsic and extrinsic influences, it provides a metric for
capturing their overall effects. Applying this metric to our dataset could offer additional

insights into the balance between intrinsic and extrinsic factors driving EMP.

I can confirm the relationship between myCAFs and EMT in a way that bulk
transcriptomics and Visium cannot, due to their resolution limitations. Bulk
transcriptomics averages gene expression across diverse cell types, masking cell-
type-specific mesenchymal contributions. While Visium provides spatial context, its
near-single-cell resolution still allows shared mesenchymal programs across different
cell types to confound the analysis. In contrast, our approach, using single-cell
resolved spatial transcriptomics, enables precise disentanglement of these signals,
overcoming these limitations. | further validated the CAF and mesenchymal tumour
cell annotations by identifying specific markers from a carefully annotated single-cell
RNA sequencing dataset. However, the annotations in this dataset were
computationally derived. Consequently, while these markers provide an important
additional layer of evidence, they do not represent definitive ground truth. Future
studies should aim to validate these markers using scRNA-seq data from

experimentally sorted cell types to confirm their specificity and accuracy.
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Additionally, ligand-receptor analysis would help further understand the myCAF-EMT
relationship, providing a more mechanistic understanding of the interaction, and in turn

potentially providing therapeutic targets to disrupt this interaction.

| identified four EMT states by binning the signature enrichment score into four groups.
This straightforward binning approach was used as a proof of concept to validate the
methodological framework and to provide a clear, interpretable means of
distinguishing EMT states. Earlier work in this thesis involved a more sophisticated
gaussian mixture modelling approach to define EMT states, and | envisage that future
work, should use the more advanced GMM approach, to more accurately capture EMT

states.

By framing EMT as a spatial prediction problem, our approach can also identify cells
located within a typical MES-supportive niche that have not transitioned to a MES
state. These cells are of particular interest because they defy the predicted spatial
relationships that suggest they should exhibit a MES phenotype. Understanding the
properties of these resistant cells could provide critical insights into mechanisms that
inhibit EMT.

Future research should aim to validate these findings using additional Xenium
datasets. While our study used a single Xenium dataset that captured a large spatial
range within a tumour, including DCIS and invasive regions, this came at the expense
of representing inter-patient heterogeneity. To ensure the robustness and
generalisability of our conclusions, it is important to repeat these results across
multiple independent datasets that encompass a diverse range of patient samples and
tumour microenvironments. Additionally, confirming these relationships with

experimental approaches would be highly important.

Using copy number alterations is a proof of concept for capturing the intrinsic effects
and | envisage improving the model with additional mutational information and other
intrinsic effects. Single cell spatial genomic information would be important for better
inferences of intrinsic factors. Currently, clonal information is approximated from spot
profiles at the Visium resolution, which may overlook finer clonal details and be biased
by genes that are colocalised on chromosomes within certain cell populations. To

handle the high dimensionality and multicollinearity of the CNV data, | used PCA for
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dimensionality reduction. This method transforms the data into a smaller set of
uncorrelated features that retain most of the variation. The trade-off, however, is that
each principal component represents a combination of many CNVs across different
genes, making it difficult to trace back to specific gene-level gains or losses.
Experimenting with alternative methods for dimension reduction of clonal information,
e.g. non-negative matrix factorisation, where each factor can be non-negative for
enhanced interpretability, would be important. Additionally, focusing on a targeted list
of genes derived from thorough literature review might further enhance interpretability

while mitigating issues arising from correlated features.

Finally, it would be useful to rank different plastic and non-plastic processes to
understand how they compare against each other. A useful comparison, for instance,
would be to compare EMT to other cellular plasticity programmes, such as
dedifferentiation, and compare to non-plastic processes like terminal differentiation,

where cells commit to a fixed identity.
Conclusions

In this chapter, | have explored how to quantify and interpret the contributions of cell-
intrinsic and cell-extrinsic factors to cellular phenotypes, using epithelial-to-
mesenchymal plasticity as a case study. By drawing upon concepts from geostatistics,
ecology, and GeoAl, | introduced a framework that moves beyond descriptive methods
and enables a more integrated, quantitative understanding of the TME’s role in
shaping cellular states. This approach highlights the importance of the local
environment in driving subtle, short-term phenotypic shifts, as well as the influence of
genomic alterations that contribute to more stable, long-term changes. By applying
these models, | have gained insights into how certain states, such as the
mesenchymal phenotype, are more deterministic, while hybrid states are less
predictable and thus potentially more adaptable. This potentially opens avenues for

identifying more effective therapeutic strategies.
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Supplementary Table 1: Chromosomal alterations linked to each principal component. Chromosome and

chromosomal region are annotated for each principal component, along with the direction of alteration, where

negative indicates a loss, and a positive sign indicates a gain. The rank of values are also indicated.
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5 Chapter 5: Discussion

5.1 Summary and conclusions

When | began my PhD in 2020, spatial transcriptomics was still an emerging field.
Methodological development was in its early stages, and many of the initial analytical
approaches did not fully integrate the spatial dimension of the data. For instance,
spatially aware clustering was not commonly performed, with clustering often applied
in a way that overlooked spatial context. Additionally, EMT had not yet been
characterised in human tissues using more than a handful of markers, and no studies
had systematically analysed the spatial relationships with EMT states. Spatial
transcriptomics provides a powerful approach to studying biological processes in ways
that traditional model systems cannot, by capturing cellular interactions within intact
human tissue and its native tumour microenvironment. While it is important to
recognise the limitations of snapshot-based data in providing causal or mechanistic
insights, spatial transcriptomics can complement model system findings, reinforcing

and contextualising experimental observations.

In this thesis, | focused on understanding how epithelial-to-mesenchymal plasticity
interacts with the tumour microenvironment and how genomic alterations shape these
relationships, primarily focusing on breast cancer spatial transcriptomic data. In the
initial chapters, | described how EMT can be viewed not merely as a binary process
but rather as a set of discrete states that allows tumour cells to flexibly transition
between epithelial, hybrid, and mesenchymal states (Chapters 2 and 3). | then
demonstrated that these states display unique spatial relationships with components
of the TME. Notably, | found that cells undergoing EMT often colocalise with
immunosuppressive niches containing myofibroblastic cancer-associated fibroblasts

and macrophages (Chapters 3).

A large focus has been on developing and applying new analytical tools. | developed
the SpottedPy Python package (Chapter 3), to analyse spatial hotspots of tumour and
microenvironmental features. | then used SpottedPy to assess relationships at multiple
scales, from the immediate cellular neighbourhood to broader tissue-wide clusters, to

understand both inter- and intra-tumour heterogeneity.

The package is supported by user-friendly notebooks to promote reproducibility and

to encourage the use on a wide-range of biological questions extending to other
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diseases and spatial platforms. Applying SpottedPy to Visium breast cancer datasets
highlighted associations between EMT hotspots, hypoxia and angiogenesis, as well
as links with immunosuppressive stromal and immune cell populations (Chapters 3),
substantiating the results from Chapter 2. By transferring EMT signatures representing
distinct states onto spatial transcriptomic spots (Chapter 3), | highlighted the varied
spatial relationships of different EMT states, providing insights into potential

therapeutic vulnerabilities tied to each phenotype.

Finally, in Chapter 4, | developed a predictive modelling approach to quantitatively
assess the contributions of genomic and environmental variables on EMT using a
single-cell-resolution spatial breast cancer dataset. This novel approach allows us to
move beyond descriptive methods and enables a more integrated, quantitative
understanding of the TME’s role in shaping cellular states. By drawing on geostatistical
methods and graph neural networks, | compared how well each factor, copy number

alterations or microenvironmental signals, could explain EMT states.

Overall, the approach strengthens the evidence that targeting the TME is more
important for targeting EMT as opposed to targeting the genomic factors. It highlights
the importance of the TME in inducing both subtle, short-term changes and stable,
long-term phenotypic change, whereas genomic alterations primarily contribute to
more stable, long-term changes. | have shown that the mesenchymal phenotype is
more deterministic, while hybrid states are less predictable and thus potentially more
adaptable. | suggested that EMP hybrid states may be harder to therapeutically target
due to their unpredictability.

I highlighted how Geographically Weighted Regression can reveal the degree of
spatial heterogeneity within tumours, and | found that relationships between EMT
states and particular TME populations do vary across different tissue regions. |
highlight how framing spatial relationships in this manner can help to further
understand approaches to target EMP. For example, | show how EMT relationships
change across DCIS and invasive regions within the tissue, most noticeably with
myoepithelial cells, where they are significantly associated with EMT in DCIS, and in
GWR modelling had localised effects. Therefore, this relationship would require more
localised targeting. Furthermore, | highlight how it is possible to confirm the association

between myCAFs and EMT in a way that is not possible with bulk transcriptomics and
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Visium (near-single cell resolution), where common mesenchymal programs can

confound the analysis.

Collectively, these chapters examine EMT across multiple biological resolutions, from
single-cell to spatially resolved data, and highlight that EMT is governed by heritable
genetic events and local environmental cues. | demonstrate the value of combining
geospatial statistics, GeoAl approaches, and transcriptomics to deepen our

understanding of EMP and suggest potential therapeutic insights.

5.2 Limitations + Future directions
5.2.1 Tackling EMT challenges

Whilst there are extensive studies linking EMT to metastasis and chemoresistance, it
is still a controversial process3®’. This is as some lineage-tracing experiments did not
find EMP to be an important part of dissemination, and epithelial features have been
shown to be important for migration2%-337:338  These findings lead to the focus on hybrid
EMT states, which retain some epithelial traits, whilst also retaining the migratory traits
of mesenchymal cells. | have shown that hybrid states have distinct TME interactions,
hinting at potential therapeutic options to target these states. However, | also found

that these states are the hardest to predict and are likely more transient and plastic.

Importantly, part of the controversies stem from the difficulty of correctly defining EMP.
As shown in this thesis, and other studies by Pastushenko et al.?°, Goetz et al.*° and
Brown et al.'®8, there are multiple hybrid EMT states that exist. The diversity of EMT
intermediate states is only beginning to be uncovered, and a deeper understanding of
their frequency and context is needed to clarify how these transitions occur. | used a
range of approaches to characterise EMP and cell states, from gene signature scoring,
NMF and gaussian mixture modelling. The gene signature method offers a
straightforward approach whereas the gaussian mixture modelling providing a more
complex, but more statistically sound approach. However, each method relies on
different interpretations of the data and more statistically robust frameworks should be
developed in the future. Building on frameworks such as those in CELLSTATES, a
statistically principled method to capture states at the maximum likelihood could lead
to better clarity®>. In CELLSTATES, the authors show that given the known

measurement noise structure of sScRNA-seq data, this problem is mathematically well-
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defined and they derive its unique solution from first principles. This allows for a

parameter-free approach, less subject to varying interpretations for state identification.

Additionally, given the fact that many gene programs are redundant, and other levels
of gene regulation extend beyond gene expression, identifying EMT at the
morphological and protein level is important for more accurately identifying EMP.
Enhancing the detection of EMT, for example by matched high resolution imaging with
spatial transcriptomic data would enable phenotypic changes to be detected and
linked with the transcriptomic changes. With the rise of spatial proteomics, which was
named "Method of the Year" in 2024, this would allow us to confirm EMT at a protein
level®39, Whilst some studies have shown that gene expression and protein levels do
correlate, other work has shown poor correlations with certain genes and proteins
because of post-transcriptional regulation34?. Therefore, combining these modalities
offers additional confirmation and allows us to investigate how EMT genes correlate

to actual protein expression in the cells.

Recently, new developments have enabled even more modalities (DNA, chromatin
accessibility, and histone modification) to be captured simultaneously on the same
tissue section®**'. Given that EMT is governed by epigenetic mechanisms, this multi-
levelled approach, capturing the range of epigenetic mechanisms, could capture more
accurate EMT states. While gene expression data provide snapshots of transcriptional
activity, they often fail to distinguish between transient fluctuations and stable
regulatory changes that define EMT plasticity3#2. In contrast, epigenetic modifications,
such as chromatin accessibility, histone modifications, and DNA methylation, serve as
more stable indicators of a cancer cell’s state, and therefore offers a more accurate

approach to understand EMP.

The difficulty in accurately detecting EMT also stems from the varying EMT
programmes that occur in different contexts?®, for example different tumour stages,
and different tumour sites can have different EMT programmes. Whilst | have
investigated a range of EMT signatures, it is important to deepen our understanding
of the impact of using different EMT gene signatures on the downstream analysis.
Recently, | have been involved in a collaboration developing a language model-based
prediction model to detect common EMT programmes across tissue types'68. We used

a pre-trained single-cell large language model (LLM) to develop an EMT-language
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model (EMT-LM), which was able to identify discrete EMT states within the EMT
continuum within single-cell RNA-seq data. The model was able to classify EMT states
with high accuracy (AUROC of 90%) across multiple cancer types. Further spatial
analysis of these signatures would provide valuable insights into how different EMT
programmes affect downstream spatial analysis results. In particular, it would
important to conduct extensive benchmarking of the spatial relationships of EMT
signatures using well-curated ground truth datasets that are both in situ and specific

to the cancer type under investigation.

5.2.2 Spatial transcriptomic methodological challenges

There are various limitations within the spatial transcriptomic analysis. | have
extensively studied spatial relationships in whole-transcriptome spatial data, but at a
resolution of around 10 cells per spatial spot (Chapter 2 and Chapter 3), and | studied
single-cell resolved spatial data but not at the whole transcriptome level (Chapter 4).
Therefore, future work should validate these findings on single-cell spatial whole
transcriptome emerging technologies. For example, Visium HD was released
recently343, offering single cell whole transcriptome spatial analysis. It would therefore

be valuable to repeat our analysis with a breast cancer Visium HD dataset.

A key challenge in accurately identifying EMT in non-single cell resolved spatial
transcriptomics is the overlap of mesenchymal markers between CAFs and tumour
cells undergoing EMT. Throughout this thesis, | have taken steps to mitigate this issue
to the best of my ability. For instance, when deconvolving the Visium dataset, | used
scRNA sequencing data labelled with EMT states before deconvolution, rather than
assigning EMT states to tumour cells after deconvolution. This approach allows for a
more comprehensive gene expression profile to distinguish between the cells,
improving the distinction between CAFs and tumour cells. Additionally, | validated
these findings in the Xenium single-cell resolved data, which ensures that the gene
expression signatures are attributed to individual cells. However, further validation

using larger single-cell datasets will be crucial to strengthening these results.

Furthermore, incorporating ligand-receptor signalling information into the evaluation of
spatial effects on cell populations will be important to increase the confidence in the

identified relationships. Ligand-receptor signalling can capture the functional crosstalk
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between cell populations, and can better assess whether identified spatial clusters are

biologically interconnected or merely spatially co-located without functional interaction.

| inferred genomic variables (CNVs) from the transcriptomic data alone, which may
introduce inaccuracies due to the reliance on expression data. For instance, if closely
situated genes show correlated expression changes because of a shared regulatory
process, rather than an actual copy number alteration, this would yield a false-positive
CNV signal. Therefore, integrating matched spatial transcriptomic data with spatial
genomic data would greatly enhance confidence in these inferred genomic
relationships. | used PCA to transform the high-dimensional CNV data into a smaller
set of uncorrelated features. While this retains the majority of variation in the data,
each principal component represents a combination of many CNVs across different
genes, making it difficult to trace back specific gains or losses at the gene level. This
was chosen as the approach as the CNV data has a large number of correlated
features, as many genes share similar gains/loss patterns with other genes as they
are on a similar region of the chromosome. Correlated features leads to
multicollinearity in regression, which can lead to unstable coefficients, reducing
accurate interpretation of the coefficients. When individual CNVs are used as input
features in a GNN, a highly correlated feature set also reduces the unique contribution
of individual genes, making interpretation difficult. Future work could only model a very

targeted list of genes based on extensive literature analysis to improve interpretability.

The potential to integrate spatial datasets at scale would be important to truly
understand the patient-patient heterogeneity. Additionally, combining the data with
clinical data would be an important next step. Several datasets are currently being
collected that could help us link molecular and spatial insights directly to patient
outcomes. For example a recent industry-academic partnership is using spatial
transcriptomics to profile 7,000 tumour samples with matched clinical data344. This
would then enable us to link the EMT-TME interactions with outcome and treatment

insights, with enhanced understanding of the patient-patient heterogeneity.

From each patient, we typically have one, or at most two slides. However, given that
tumour heterogeneity is a key defining property of tumours, capturing a larger spatial
area of the tumour through both across the tumour and at multiple depths would be

important. Such an approach could serve as a spatial normalisation procedure. For
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example, for each patient being studied, a sub-selection of patients can be profiled at
multiple sections across the tumour. The degree of heterogeneity within a patient
observed could then direct the study design into whether more slides are needed per
patient. 3D spatial transcriptomics, which profiles spatial transcriptomics at multiple
depths would enable us to address how accurate a single 2D slice is at representing
the spatial relationships. Morphological 3D characterisation of tissue has been well
established through fluorescence microscopy'®®. However, the molecular
characterisation in 3D of tissue is still in its infancy. A multi-plex, single-cell approach
was recently undertaken to understand 3D spatial context of lung cancer'®.
Compared with 2D approaches, analysing 3D tissue revealed previously unidentified
dendritic niches and identified the 3D extent of T-cell niches. This suggests that a 3D
approach could similarly identify novel spatial relationships between cells undergoing
EMT.

5.2.3 Spatial statistical modelling challenges

From a spatial modelling perspective, | envisage that future approaches should
incorporate causal inference techniques to help us to infer the direction of the EMT-
TME relationships identified. For instance, matching methods, which include
propensity score matching, estimate causal relationships by forming comparable
treatment and control datasets within the original dataset33¢. By creating treated and
control groups that are balanced on the relevant observed covariates, matching
methods can help approximate the conditions of a randomised experiment, even when
the data are observational rather than experimental. This can then help to understand
whether the treatment (for instance, the presence of certain immune cells) may be
causing changes in EMT, rather than reflecting coincidental correlations. Structural
Equation Models (SEM), and in particular the geo-additive SEM approach, the spatial
variant, would allow us to estimate both direct and indirect causal pathways among
multiple biological variables, while accounting for spatial confounding in both
predictors and outcomes?3#5. This could then help determine, for example, whether
immune cells initiate the EMT process or accumulate in areas where EMT is already
underway. These approaches are currently in the early stages of being adopted in

spatial transcriptomic workflows346,
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The existing methods in spatial transcriptomics currently capture gene expression and
relationships at a single time point. However, methods that could simultaneously
capture both the spatial and time dependence of RNA profiles would address a wider
range of research questions. This would also help to add directionality to many
relationships identified, increasing the likelihood of accurately identifying causal
relationships. Additionally, it would allow us to understand how much information a
single time point can capture, and how much information we lose by ignoring this
concept. TEMPOmap is a recent approach for spatiotemporally resolved

transcriptomics that could help address these questions3+7.

In modelling tissue-level relationships, it is important to capture both short and long-
range interactions. Cells within a tissue do not just influence their immediate
neighbours, but their secreted factors and signals can travel over longer distances,
affecting the behaviour of remote cells. GNNs, as used in Chapter 4, are typically
limited by the fact that they rely on message-passing schemes, which operate primarily
in localised neighbourhoods and require many layers to capture global interactions.
However, with too many layers, GNNs can suffer from the over-smoothing problem332,
which is when after multiple layers of message passing, the node representations in a
graph become very similar. Whilst in many other neural network based approaches
adding more layers increases the accuracy of the task at hand, in a GNN this can
reduce the model’s ability to distinguish among different nodes and therefore lowers
accuracy in tasks such as node classification. Transformer-based models, which use
attention-based methods, are well suited to this challenge because they use attention
mechanisms that allow them to consider relationships across the full input space342.
Therefore, they can capture longer range cellular signalling and model more complex
cellular processes. Nicheformer is a recent technique that demonstrates how
transformers can learn biologically relevant latent spaces from spatial transcriptomic
data34°. Alternative approaches to capture short and long range spatial relationships
include multi-mesh approaches, which contains nodes with different spatial

resolutions. This was recently shown to be highly successful at weather prediction3%.

5.2.4 Future methodological considerations

In spatial transcriptomics analysis, as with many other types of biological data

analysis, there is an inherent trade-off between methodological rigor and efficiency.
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The process of selecting a single approach and set of parameters often stems from
the need for clarity and ultimately, the ability to draw conclusions that progresses the
field. However, this comes at the cost of overlooking the vast landscape of possible
methodological choices, each of which could lead to slightly different, yet equally valid,
interpretations of the data. Parameter selection must happen at many different steps
of analysis, from the type of spatial transcriptomic platform to use, the number and
types of cells types to use for deconvolution, the method of choice for dimensionality

reduction approaches to whether to analyse spatial neighbours or domains.

A large focus of the thesis has been to ensure there is robust analysis of parameters.
For example, | have highlighted the importance of considering the modifiable areal unit
problem which exemplifies how shifting parameters can alter spatial interpretations,
making it clear that no single choice is inherently correct, and | have investigated
different spatial platforms to analyse the spatial relationships. Future research should
aim to standardise best practices for balancing rigor with efficiency, perhaps through
presenting findings in more interactive formats, allowing readers to explore how
parameter variations influence downstream results and biological interpretations. By
focusing on transparency, we can move towards research that acknowledges

methodological uncertainty while still enabling meaningful scientific progress.

Also, extending from these more obvious choices, there are biological conceptual
choices. Many biological processes exist on a continuum, and there are researchers
that argue even the choice of communicating about genes and cell types using
discrete concepts can overlook important biological complexities. For example, there
is research that suggests analysing and communicating about cell types instead
through a hierarchical tree approach could help more accurately represent these
biological units®'. There is also research that suggests that gene function is limited by
single ontologies and that genes should instead be treated as distributions over
cellular contexts3%2. However, often the more straight-forward concept of a gene and
cell type is important for analysing and communicating about biological systems. In a
similar manner, identifying spatial domains are useful to help us make sense of and
communicate about complex tissue organisation, even though they may overlook
important aspects of the tissue such as long-range cellular interactions. As artificial

intelligence systems become more advanced, these predefined classifications may
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become less essential, allowing for more abstract representations of biological

structures and processes.

Multi-scale tissue analysis helps us see how seemingly simple cell-to-cell interactions
can add up to complex, unpredictable behaviours, which can also be referred to as
emergent properties3%33% . |In cancer, such emergent properties can occur when
tumour cells and various elements of the TME continuously signal and adapt to one
another. These interactions can give rise to unexpected outcomes like immune
evasion, metastasis, and therapy resistance. Spatial transcriptomics offers a powerful
way to observe these interactions in situ, making it easier to appreciate how emergent
phenomena unfold. Recognising these properties is important for determining where
and how to target treatments most effectively. By focusing on tumour and TME
hotspots and their interactions, | begun to see how multiple cell types and signals
come together to drive larger-scale changes in tissue. Going forward, finding new
ways to measure and quantify emergence, using mathematical, computational, or
other approaches applied to spatial transcriptomics will be essential for understanding

cancer as a dynamic ecosystem.

5.3 Concluding remarks

This thesis has explored how the TME and intrinsic genomic factors interplay with
epithelial-mesenchymal plasticity, using spatial transcriptomic data as a key tool to
investigate these relationships. | have identified stable EMT niches that are enriched
in hypoxic and angiogenic regions and are closely associated with key
microenvironmental players such as CAFs and macrophages and | have explored
these relationships across multiple spatial scales. By drawing on geostatistical
methods and graph neural networks | developed a new method to quantify the relative
contributions of intrinsic genomic changes and extrinsic microenvironmental signals
on cell plasticity programmes. The approach highlights the importance of the TME in
inducing both subtle, short-term changes and stable, long-term phenotypic change,
whereas genomic alterations primarily contribute to more stable, long-term changes.

Overall, these findings highlight the dominant influence of the TME in shaping EMT.
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