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Abstract—This work studies a cooperative architecture for
integrated sensing and communication (ISAC) networks, incor-
porating coordinated multi-point (CoMP) transmission along
with multi-static sensing. We investigate the allocation of
antennas-to-base stations (BSs) as a means to optimize antenna
densities and explore the range between massive MIMO and
cell-free typologies, and their effects on cooperative sensing
and cooperative communication performance. Regarding sens-
ing performance, we investigate three localization methods:
angle-of-arrival (AOA)-based, time-of-flight (TOF)-based, and
a hybrid approach combining both AOA and TOF measure-
ments, to comprehensively assess their effects on ISAC network
performance. In networks with multiple ISAC nodes following
a Poisson point process, the Cramér-Rao lower bound (CRLB)
for time of flight (TOF)-based methods decreases with the
square of the logarithm of the number of nodes, for angle
of arrival (AOA)-based methods with the logarithm, and for
hybrid methods as a mix of both. In terms of communication
performance, we derive a tractable expression for the com-
munication data rate under various cooperative region sizes.
The proposed cooperative scheme shows superior performance
improvement compared to centralized or distributed antenna
allocation strategies.

I. INTRODUCTION

Integrated sensing and communication (ISAC) technolo-
gies have garnered substantial academic and industrial in-
terest [1], [2]. ISAC is recognized for its ability to leverage
unified infrastructure and waveforms to simultaneously trans-
mit information and receive echoes, thereby significantly
enhancing the efficiency of spectrum, cost, and energy [3].
While most research focuses on system-level optimizations
like waveform design and resource management within indi-
vidual base stations (BSs) [4], [5], the potential of network-
level ISAC, especially multi-cell sensing and communication
(S&C) cooperation, remains underexplored.

Network-level ISAC presents distinct advantages over
single-cell ISAC, including expanded coverage, enhanced
service quality, and more flexible performance tradeoffs [6],
[7]. Specifically, with the exploitation of the target-reflected
signals over the multistatic links, the sensing capabilities of
ISAC can be maximized through multi-static sensing con-
figurations formed by several cooperative BSs. Additionally,
advanced coordinated multi-point (CoMP) transmission and
reception techniques can be employed to enhance communi-
cation performance by connecting a single user to multiple
BSs [8]. Some early studies have explored network-level
trade-offs between sensing and communication [9], [10].

In ISAC networks, optimal antenna-to-BS allocation, rep-
resented by the number of antennas per site, plays a critical
role in maximizing the cooperative gains for both sensing and
communication, since these two functions have fundamen-
tally different requirements for their antenna configurations.
Typically, the antenna-to-BS allocation strategies fall into
two main categories: namely centralized and distributed
configurations. Centralized multiple input multiple output
(MIMO) systems reduce costs by concentrating antennas in a
single location within the service region [11]. However, this
approach is prone to high spatial channel correlation. By
contrast, distributed MIMO configurations, where antennas
are dispersed across various locations, can mitigate channel
correlation and enhance system performance by reducing
targets/users access distances [12], while its primary draw-
back is the challenge of maintaining precise synchronization
across all antennas.

Building on the previous discussions, we propose a coop-
erative ISAC scheme, as shown in Fig. 1, where multiple BSs
within the cooperative communication region cooperatively
transmit the same information data to the served user, while
another set of BSs within the cooperative sensing region col-
laborate with the objective of offering localization services
for each target. In this work, we investigate three different
target localization methods: angle-of-arrival (AOA)-based,
time-of-flight (TOF)-based, and a hybrid of AOA and TOF
based localization, to comprehensively assess the impact
of antenna-to-BS allocation on the cooperative sensing and
communication performance of ISAC networks. The main
contributions of this paper are summarized as follows:

« We propose a cooperative ISAC network that integrates
multi-static sensing with CoMP data transmission. We
derive the scaling laws of the CRLB for TOF-based, AOA-
based, and hybrid localization methods.

o We derive the effective channel gain and the Laplace trans-
form of both the useful signals and inter-cell interference
by utilizing the moment-generating functions. We establish
a tractable expression for the communication data rate of
various antenna-to-BS allocation strategies.

II. SYSTEM MODEL

A. Network Model

In this study, we utilize stochastic geometry tools to derive
the expressions of ISAC network performance and optimize
the number of antennas allocated at each BS, as shown in
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Fig. 1. Specifically, we define antenna density and BS density
as the average number of antennas per km? and the average
number of BS per km?, respectively. Then, given the transmit
antenna density )\; and receive antenna density A, assuming
each BS has a uniform linear array, the BS density to be
optimized is denoted by A\, = 1\% = ]’CI: where M; and
M, represent the number of transmit and receive antennas
per BS, respectively. It is assumed that the locations of BSs
follow a homogeneous Poisson point process (PPP) in a two-
dimensional space, denoted by ®;, = {d; = [x;,3;]T € R?},
where d; represents the location of BS .

As shown in Fig. 1, BSs inside the cooperative region
C C R2, defined by the circle with center at the target/user
and radius D, are members of the cluster for cooperative
S&C. Specifically, each user is served by multiple BSs within
the cooperative region, and these BSs transmit the same
signals by forming a non-coherent CoMP cluster. Similarly,
BSs within the cooperative region of the target collaborate to
provide localization services by forming a distributed non-
coherent multi-static radar system, with orthogonal transmis-
sion utilizing a code-division multiplexing scheme.

Each BS designs the transmit precoding for sending the
information signal s¢ to the served user, together with a dedi-
cated radar signal s¢ for the detected target. E[s¢(s¢)%] = 0,
this is consistent with the assumptions in [1]. Upon letting
si = [s,5¢]", we have E [s;sf] = I,. Then, the signal

transmitted by the ith BS is given by

x; = W;s; = wis] +w;s; (1)

1)
where w¢ and wi € CM:*1 are normalized transmit
beamforming vectors, i.e., |[w¢[|? = p¢ and |w|* = p*.
Furthermore, p® and p® respectively represent the transmit
power of the S&C signals, and W,; = [w¢, w$] € CMix2
is the transmit precoding matrix of the BS at d;. To avoid
the interference between S&C, we adopt zero-forcing (ZF)
beamforming for the sake of making the analysis tractable.

Then, the beamforming vector of the serving BS i is given by
Wi = VNVi/\/ dlag(WZHVNVI), where VNVZ = H,L (HfIHZ)71
and H; = [(h/)”,(a"(0;))"]". Here, hfl, e CM>!
denotes the communication channel spanning from BS ¢ to
the typical user, and af (6;) € C™:*1 represents the sensing
channel impinging from BS 7 to the typical target. We have
p® + p¢ = 1 with normalized transmit power.

B. Cooperative Sensing Model

We aim to explore the optimal antenna-to-BS allocation
method by examining the scaling laws of target localization
techniques that rely on AOA measurements, TOF measure-
ments, and a combination of both, respectively. The location
of a typical target is denoted as v; = [z, y¢]?. According
to Slivnyak’s theorem [13], the typical target is assumed to
be located at the origin, and its performance is evaluated as
a representative measure of the average performance across
all targets in the network, using the probability distribution
function of the distances from the BSs to this origin. Assum-
ing unbiased estimations, the CRLB serves as a benchmark
for theoretical localization accuracy in terms of the mean
squared error (MSE), which can be expressed as

var{t;} = E{|¢); — 4:|*} > CRLB, 2)
where ’lZJt = [@hgt]T represents the estimated location of
the typical target. The typical target is collaboratively sensed
by N BSs. Let us assume that the transmitted radar signals
{s¢}X, of the BSs in the cooperative sensing cluster are
approximately orthogonal for any time delay of interest [14].
The base-band equivalent of the impinging signal at receiver
J is represented as

N s g
yit) =Y od;* “all (0,)Wis; + (1),
3)
where d; = ||d;|| denotes the distance from BS i to
the origin, 8 > 2 is the pathloss exponent between the
serving BS and the typical target, ¢ denotes the radar
cross section (RCS), 7;; is the propagation delay of the
link spanning from BS ¢ to the typical target and then to
BS j, and n;(t) is the additive complex Gaussian noise
having zero mean and covariance matrix afIMr. In (3),
we have af(0;) = [1,--- /" (M=) cos(0)] " and b(6;) =
[1,---, el M=) cos0)]T  where 6; denotes the angle of
bearing for the i-th BS to the target with respect to the
horizontal axis.

b (6;)d;

(3

1) Angle Measurement Based Localization: By measuring
the AOAs of each monostatic link and bi-static link, the
target location can be estimated by maximum likelihood
estimation (MLE) [15]. For the AOA measurement of the
bi-static link from the jth BS to the target and then to the
ith BS, we have

6, ;= tan—t LY pa @)

Ty — X5 ’
In (4), nf . denotes the AOA measurement error, and nf PRad
2 2 _ 6

N (0’pi7jj’ where Pij = 72cos? 0,0, (MZ—1)Gii,; [16] and
Yij = (;’,’jd%“ . Here, G, is the transmit beamforming gain, and
Yo repreger{ts the channel power at the reference distance of 1
m. Then, the Fisher information matrix (FIM) of estimating
the parameter vector v; for the AOA-based MIMO radar
considered is equal to

2 .
2 sin“6; __ sinf; cos b;
Pl S |l ;
—Iha . i 2 72 sin 0; cos 0; cos“0; )
j=1—~i=1 djdi — g
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where [(o|? = 72M, (M? — 1) Gyop®~0/602 [17]. Given
the random location of ISAC BSs, the expected CRLB for
any unbiased estimator of the target position is given by

CRLBa = Eo, ¢, [tr (Fy')]- (6)
In (6), the expectation operation accounts for the randomness

in the locations of sensing BSs and the variability in beam
power caused by user channel fluctuations.

2) Range Measurement Based Localization: From trans-
mitter j to the target and then to receiver ¢, the term
d;; represents the corresponding distance between the jth
transmitter and the ¢th receiver, which is given by CZi]‘ =

V=2 + (i — )14/ (e — 2% + (0 — )+,
2 2 620'3

where  nf, ~ N (0,7?;) and M = SEGALE Let

a;; = cost; + cosf; and b;; = sin; + sinf;. Then, the

FIM of estimating the parameter vector t); for the TOF-

based localization method is equal to

N N 2.
a2 B8 G
Fr = (¢ Zi:l ijl d; " d; [ Gijéij

2 s y 2
where we have |(,|2 = 82" G M.B 0% [18] Here, ¢ de-

cco
notes the speed of light, B2 repressents the squared effective
bandwidth, and || is the common system gain term. Given
the random location of ISAC BSs, the expected CRLB for
any unbiased estimator of the target position is given by

CRLBg = Eg, ¢, [tr (F")] . (8)

3) Joint Angle and Range Localization: Incorporating
both AOA and TOF measurements, rather than relying solely
on one type of AOA or TOF measurement, can significantly
enhance the accuracy and reliability of our hybrid local-
ization method. Using both AOA and TOF measurements,
the expected CRLB for any unbiased estimator of the target
position is given by

CRLBy = Eg,.c, [tr ((FA n FR)’l)} .

Cl,'jb,‘j
2
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C. Cooperative Communication Model

We assume that the transmitters use non-coherent joint
transmission, where the useful signals are combined by
accumulating their powers. In this work, we employ a user-
centric clustering approach, where the BS closest to the
typical user sends collaboration requests to other BSs within
arange D of the user. The signal received at the typical user
located at the origin is then given by

2

— “IhEW, Hyw g
=) o b b Wlsl+zje{®b\¢c}di b W ;s;+n.,

(10)

where a > 2 is the pathloss exponent, h ~ CA (0,1,y,) is
the channel vector of the link between the BS at d; to the
typical user, @, is the cooperative BS set, and n. denotes
the noise. We focus on evaluating the performance of an
interference-limited network within dense cellular scenarios.
The impact of noise is disregarded in this analysis. The
evaluation is based on the signal-to-interference ratio (SIR)
at the typical user, which can be expressed as [19]

Z gi dz_ e

icd,
>
je{q)b\q)c}
where g1 = p° ’h‘f(w‘{’2 and g; = p° fhf{wff denotes the
desired signals’ effective channel gain. The average data rate
of users is given by
R, =Eg, 4,[log(1 + SIR.)].
ITI. SENSING PERFORMANCE ANALYSIS

SIR. = an

g;d;

12)

To facilitate the analysis, we assume that the number of
BSs within a range D from each target equals the average
number of BSs in the area based on the density of the PPP.

A. Angle Measurement Based Localization

In this subsection, we derive the closed-form CRLB ex-
pression under the assumption of random locations of both
the BSs and targets. To obtain a tractable CRLB expression
with N cooperating BSs, we resort to a simple yet tight
approximation. Then the following conclusion is proved.

Proposition 1: The expected CRLB can be approximated
as

16/¢,| >SN Eldi]
N BN N —B—2 —B—2"
3Zk:1 E[dk] BZMZM E[di} ’ E[dj] (f3)
Proof: To facilitate the analysis, we transform CRLB, in

(6) as

CRLBA =

N _
E9 d Zi:l f7,2d1 *
SN N N f? N 2
Zj=1 d% <Zi=1 (ngz‘zl ar <Zi:1 LTl;leifi) >

N r24-4
i= fl dz

] E— L

=1 & (Zizl 2> atat (Ki) )

where X;; = sin6;cos 91-(:0529]- — sin §; cos Hjcoszé)i.
Then, we take the expectation over the angle 6, and then
substitute the expectation of the distance, resulting in equa-
tion (13). |

Interestingly, we found that the expected CRLB in Propo-
sition 1 is only determined by the expected distance from the
BS to the typical target. Furthermore, the expected distance

from the nth closest BS to the typical target can be expressed
as E'[d,] = Tlots) \/ 3 - Then, the CRLB expression

can be further approximated as

£/ )\bﬂ'F(TL)
32|¢,| 20N i

; .
B S ((ng_l - 4) —Zﬁli“>

For 8 = 2, we further derive the scaling law of ({f?e):
localization accuracy as follows.

Theorem 1: For an infinite cooperative cluster size N and
fixed |(,|, the expected CRLB of AOA-based localization is
given by

CRLBA%

320

DT

lim CRLBj x InN =
N—o00



Proof: When 8 = 2, it follows that
32|¢a| 20N i

CRLBAA’Y B .
3)‘2773Z£[:1 k=1 ((Zi\il ifz) _21‘1\;1 i

~ In N+v+ 5% and hm SN

n=1n n=1n

. I N
S12nce i >
%, where v = 0.577, we get

2
CRLBj ~ 320

3NTO (InN 49+ 5%)
When N — oo, (16) can be derived. |
For optimal sensing performance, the transmit beamform-

ing gain can be approximated as LMJJ”J, and the BS
density can be expressed by %. Then, we have

320N
3|Ca|2D2 76NN, In N

(18)

CRLBA ~

19)
where |(,|> = tmlopiy/o2. According to (19), as the
number of BSs increases significantly, the value of CRLB 4
also increases monotonically with N.

B. Range Measurement Based Localization

In this subsection, we derive the closed-form CRLB ex-
pression of the TOF-based localization method. To facilitate
the performance analysis, the CRLB expression can be
equivalently transformed into

CRLBg = Eq>b |CT|72X

N N -8 ,—
25, by Py (1 + cos (6 — 0))) ]
N N N N _ )
Zz=1Zk=1zz‘2k2j>[(k—i)1v+ﬂ+(didjdldk) Bv?jkl

where |—Z)3~|+ = max(x,l) and Vijkl = aklbij—aijbkl. For
B = 2, we further derive the scaling law of the localization
accuracy as follows.

Theorem 2: For an infinite cooperative cluster size N and
fixed |¢r|,

(20)

2
|<r|2)‘§7r2 .
Proof: The proof follows a similar approach to that in
Theorem 1. Details are omitted due to space constraints. ll
In the term |(g|, the transmit beamforming gain can be

lim CRLBR x In’N = 1)
N—oo

approximated as {7)“%2”] Then, we have
2
CRLBRr ~ — 5 (22)
|Cr2m2 A A In* N

where [(,|2 = W According to (22), when the

number of BSs is sufficiently large, the CRLBgy value
decreases monotonically as the number of BSs N increases.
Therefore, the TOF-based localization method tends to favor
a distributed antenna allocation to achieve better sensing
results at closer distances.

C. Joint Angle and Range Localization

Under general setup, the CRLB expression can be
transformed into (23), as shown at the top of the next

page, where p;; = d2d2’ aij = \/pij [Cr| (cos6; + cosb;),

bi; = v/pij ICR] (Sln‘9 +sin b)), & = /pig [Crl 20yt

and é;; = /pij [Cr COZI_Q . To facilitate the analysis, we

- N
adopt the following approximation: {(&klbij — &i’jbkl) } s

~ ~ ~ ~ 2 2
E (Cijelk—ezkcij)} %Pz‘jpkz\CR\ ﬁ, and

- 2
E (dijélk + blkéij) } = pijpr [Cr| €Al ﬁ~
Proposition 2: The CRLB of our hybrid localization
method is given by
24

CRLBH ~ 3 3 3 .
12 |§R| )\le'2111 N+ )\b7T5 ‘§A| InN

(24)

Proof: The proof follows a similar approach to that in
Theorem 1. Details are omitted due to space constraints. ll

IV. COMMUNICATION PERFORMANCE

According to [20], for the uncorrelated variables X and
Y, it follows that:

X 1
E {log (1 + )] :/ - (1 _E {e*Z[XID E {e*'zm} dz.
Y 0 z
(25)
In (25), E [e=*I]] and E [e7*[¥)] are the Laplace trans-
forms of X and Y. Then, exploiting the BSs for cooperative
joint transmission within the range D, the expectation of data

rate can be expressed as follows:

; i 1dql|
= E|log <1+ Zlecbcg I a)]
Eje{@,\@c} gj ||daH

_ /OOO LBl e s,

z

E [log (1 + SIR.)]

(26)
where U = 3, o gir® and [ = 37,1\ 5.3 i [[dqf| = r>
In (26), I represents the interference arising from the BSs
located outside the cooperative region. The term g; denotes
the effective channel gain of the desired signal, where
gi ~ D(My —1,p°) as described in [8]. According to the
definition provided below equation (11), the distribution of
g; can be derived using the moment matching techmque [8].
Given that E[p |hH | = p° and Elp ’hH | = p°,
we obtain E[gj] =p° —l—p =1 Moreover since E[g]]

B {[hffws[*] + B | nffws] } + 28 {[ffws | [nfws || =
(p* + p°)? = 1,, the interference channel gain g; can
be approximated by a gamma-distributed random variable.
Consequently, g; ~ I'(1,1).

Based on the above discussions, the useful signal power
can be expressed by

o o] e Ty ]\/IC—Q p e 1M,
E [e ]_/O e )MrlF(Mtil)daz—(l—i—p z) .

27
Then, we derive tight bounds on the Laplace transform of the
cooperative transmission power and on the communication
interference as follows.




tr ((FA + FR)_1> -

N «—N . N N (3 _
dim1 21 (azgj + C?j) +2 e 2ojm (b?j + e?j)

2 5
N N N N ~ 7 ~ 7 ~ o~ ~ ~ \2 N N N N ~ o~ T~
D11 2okt Dih 2> [(k—i) N4+ ((az‘jblk - alk%‘) HCijlik — CikCiy) ) T Dohm1 2ot Dt (aijelk + bzkczj)

Lemma 1: The Laplace transforms of U and I are given

by
E [GJU] =exp (=7 ApHy (2p°, My — 1,0, D)),  (28)

E [e7*'] = exp (=7\Ha (2,0, D)), 29)

where H (z, K, o, D) = KzaB (H%J_ %,K—k %) +

D? (1 - (1+ xD‘a)_K) and
Hs (z,a, D) = D? ((1 + zD’O‘)_K - 1) +
Ko'B (38 1- 2K +2).  Blabo) =

Jo t* 7 (1 —¢t)°"'dt and B(a, b, c) = fal t=1(1—¢t)c~1dt are

the lower and upper incomplete Beta function, respectively.
Proof: For the Laplace transform of the interference com-

ing from the BSs outside the cooperative region, we have

£1(2) =Eayg.[exp (<237 il =B W)

(;)Eq)b H

d;€®,\0(0,D)

® exp (—271'/\1)/ (1 - (1 + zx_a)_1>xdx>
D

(C) e —1 oo
:eXp(—ﬂ)\by(l—(1+zy 2) )‘D2

— 77)\b/ %zy_% (1 + zy‘g)_Qdy).

D2

(1 —|—sziH_“>71dx ’D

(30)

In (30), (a) follows from the fact that the small-scale channel
fading is independent of the BS locations and that the
interference power imposed by each interfering BS at the
typical user is distributed as T'(1,1). To derive (b), we
harness the probability generating functional of a PPP with
density ). To elaborate, (c) comes from the variable y = 2
and the distribution integral strategies. Then, we have

—a

zr _ _ — 2 2
/ (1+u) X 1u—3du(i)3<”,1—,l(+),
0 1+ zr—e o o

(€29)

where (d) in (31) follows from the distribution integral
strategies and u = *—. Similarly, the Laplace transform of
useful signals can be derived. This completes the proof. W

Based on the Laplace transforms of U and [ in (28) and
(29), the expected data rate is formulated in Theorem 3.

Theorem 3: The communication performance is charac-
terized by

R _ 1 —exp(—m\Hy (2p¢, My — 1, a, D))

o /0 z (32)
x exp (—m\pHa (2,0, D)) dz,

(23)

where \, = \;/M;.

Proof: According to (25), by substituting the Laplace
transforms of useful signal and interference in Lemma 1 into
(26), the conditional expected spectrum efficiency is given
by

/OO /OC 1- €xXp (77{-)\le (cha Mt - 17Q7D))
o Jo z (33)
x exp (=7 ApHy (2,0, D)) fr (r) drdz,

where we have f, (r) = 2rA,re= ™" Then, by solving
the integral with respect to r, (32) can be obtained. This
completes the proof. ]
According to (32), the communication rate increases
monotonically with the increase of D, which is due to
having on average more BSs participating in cooperative
transmission, while users receive less interference.

V. SIMULATIONS

Using numerical results, we study the fundamental insights
of ISAC networks and verify the tightness of the derived
tractable expression by comparing with Monte Carlo simula-
tion results in this section. The system parameters are given
as follows: the number of transmit antennas M; = 4; the
number of receive antennas M, = 10; the transmit power
P, = 1W at each BS; |¢|?> = 1, the transmit and receive
antenna density \; = A, = 50/ km?; the frequency f¢ =
GHz; the bandwidth B € [10,100] MHz; the noise power
—100dB; pathloss coefficients « = 4 and 5 = 2.

In Fig. 2, given M; = 4 and M, = 10, and bandwidth
B = 10 MHz, the scaling law of the CRLB expressions
derived in Theorems 1, 2, and Proposition 2 are also consis-
tent with the simulation results. When the number of BSs
is small, the hybrid localization method can significantly
improve performance. This is primarily because the geo-
metric arrangement of the BSs relative to the target may
be suboptimal, leading to poor performance in localization
methods that rely solely on ranging or AOA measurements.
Fig. 2 shows that increasing the number of cooperative BSs
significantly improves accuracy when the total number of
BSs is limited. However, the performance gains become
marginal once N > 10. This is expected, as adding more
distant and randomly located BSs leads to increased signal
attenuation, offering diminishing returns compared to nearby
BSs. Additionally, hybrid localization, which combines TOF
and AOA estimation results, can greatly enhance accuracy
when the number of BSs is small.

In Fig. 3, both the transmit and receive antenna densities
are setat \; = \, = 5O/km2. The noise power is 02 = —100
dB, and the bandwidth is B = 10 MHz. Consistent with our
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Fig. 2. Localization performance scaling law
with respect to the cooperative BS number N
under the fixed number of antennas per BS.

analysis, Fig. 3 shows that the optimal allocation strategy
for TOF-based and hybrid localization methods is a fully
distributed configuration. By contrast, for AOA-based lo-
calization, the optimal allocation requires concentrating a
certain number of antennas to improve the AOA estimation
accuracy, resulting in an ideal allocation of eight BSs per
square kilometer. Fig. 4 shows that our derived tractable
expression for the communication rate closely aligns with
the Monte Carlo simulations, given an antenna density of
At = 300/km2. Fig. 4 also shows that spectral efficiency
R, initially increases with the number of antennas per BS
but then decreases. This is because the initial improvement
in communication performance from beamforming gain is
eventually outweighed by the performance loss resulting
from the increased average serving distance, which is due to
the reduced BS density. As the radius D of the cooperative
area expands, the optimal communication rate increases,
mainly due to the higher signal power and reduced interfer-
ence power. Additionally, with a larger cooperative area, the
optimal number of antennas per BS also rises to maximize
communication rates. This is because a larger area provides
more antenna resources, and adding antennas at each BS
improves beamforming gain, which helps mitigate the path
loss associated with the expanded cooperative area.

VI. CONCLUSIONS
This work proposed an innovative cooperative ISAC net-
work that combines multi-static sensing with CoMP data
transmission, incorporating advanced localization methods
that exploit both AOA and TOF measurements. Our study
demonstrates that optimal antenna-to-BS allocation, through
a balance of centralized and distributed configurations, sig-
nificantly enhances network performance by maximizing
spatial diversity and coherent processing gains. We provide
analytical insights into the scaling laws of different local-
ization techniques and establish a comprehensive framework

for evaluating communication data rates.
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