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Abstract. Mean field Game (MFG) Partial Differential Inclusions (PDI) are generalizations of
the system of Partial Differential Equations (PDE) of Lasry and Lions to situations where players
in the game may have possibly nonunique optimal controls, and the resulting Hamiltonian is not
required to be differentiable. We study second-order MFG PDI with convex, Lipschitz continuous,
but possibly nondifferentiable, Hamiltonians, and their approximation by systems of classical MFG
PDE with regularized Hamiltonians. Under very broad conditions on the problem data, we show
that, up to subsequences, the solutions of the regularized problems converge to solutions of the
MFG PDI. In particular, we show the convergence of the value functions in the H1-norm and of
the densities in Lq-norms. Under stronger hypotheses on the problem data, we also show rates of
convergence between the solutions of the original and regularized problems, without requiring any
higher regularity of the solutions. We give concrete examples that demonstrate the sharpness of
several aspects of the analysis.

Key words. mean field games, Hamilton--Jacobi--Bellman equations, nondifferentiable Hamilto-
nians, partial differential inclusions, regularization, convergence analysis
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1. Introduction. Mean Field Games (MFG), which were introduced by Lasry
and Lions [17, 18, 19] and independently by Huang, Caines and Malham\'e [14], model
the Nash equilibria of dynamic games of optimal control in which there are a large
number of players. MFG encompass a wide range of models for handling various
situations, yet for simplicity we concentrate here on a standard model of MFG [19],
where the players have identical stochastic dynamics with idiosyncratic noise which
are independent of the density, and where the controls enter only in deterministic
drift terms and in part of the running of the costs. Under suitable assumptions, the
equilibria are described by the solutions of a system of partial differential equations
(PDE) that consists of a Hamilton--Jacobi--Bellman (HJB) equation, for the value
function of the optimal control problem faced by each player, and a Kolmogorov--
Fokker--Planck (KFP) equation, for the distribution of the players across the state
space of the game. There is wide literature on mean field games; we refer the reader
to [13, 12, 11, 1] for extensive reviews on the theory and applications of these systems.

In many applications, the underlying optimal control problem can give rise to
nonuniqueness of the optimal controls, when expressed in feedback form. This is
closely related to the fact that, in general, the Hamiltonian of the corresponding HJB
equation can be nondifferentiable with respect to the derivatives of the value function.
As a result, such situations fall outside the scope of many existing works on MFG,

\ast Received by the editors August 20, 2024; accepted for publication (in revised form) June 17,
2025; published electronically September 10, 2025.

https://doi.org/10.1137/24M1686401
Funding: The work of the first author was supported by The Royal Society Career Development

Fellowship. The work of the second author was supported by the Engineering and Physical Sciences
Research Council (grant EP/Y008758/1).

\dagger Department of Mathematical Sciences, Durham University, Stockton, Road, DH1 3LE Durham,
UK (yohance.a.osborne@durham.ac.uk).

\ddagger Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
(i.smears@ucl.ac.uk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

5189

D
ow

nl
oa

de
d 

09
/1

1/
25

 to
 1

44
.8

2.
11

4.
22

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/24M1686401
mailto:yohance.a.osborne@durham.ac.uk
mailto:i.smears@ucl.ac.uk


5190 YOHANCE A. P. OSBORNE AND IAIN SMEARS

where differentiability of the Hamiltonian is often assumed. We stress that this is
no mere technical issue, since the Nash equilibria can assume a more complicated
structure in the more general case of nondifferentiable Hamiltonians and nonunique
optimal controls. This is because even for symmetric games, Nash equilibria are not
necessarily symmetric, so there can be situations where it is necessary for the players
at a given state to make distinct choices of optimal controls from each other in order
to maintain an equilibrium. As a result of the possibly more complex structure of
the Nash equilibria, it is natural to expect that there can be substantial qualitative
differences between the cases of differentiable and nondifferentiable Hamiltonians,
which is something that we will demonstrate in this work.

One approach to formulating MFG that allows for these more complicated Nash
equilibria comes from the probabilistic literature [16], where one explicitly seeks the
player distribution over the product space of the states and controls, instead of the
state-space only. Although conceptually instructive, we are, however, ultimately in-
terested in the practical solution of MFG, which requires formulations of the problem
that are well-suited for numerical discretization. It is, therefore, strongly preferable to
avoid the cost of discretizing functions over the higher dimensional state-control space,
which might be computationally intractable in many cases. This motivates the search
for other formulations of the MFG that keep the same dimensionality of the original
PDE system of Lasry and Lions. There are a handful of works on MFG systems with
nondifferentiable Hamiltonians in the PDE literature. In [20] Mazanti and Santambro-
gio introduced a model of deterministicminimal time MFG with congestion, where the
Hamiltonian takes the form H(x,p,m) =\scrK (x,m)| p| for (x,p,m)\in \Omega \times \BbbR d\times \scrP (\Omega ). Us-
ing the structure of the underlying deterministic optimal control problem, they show
that \nabla u \not = 0 on the support of m, thus avoiding the point of nondifferentiability of
H. Extensions of this work were then considered in [9, 3, 2] for MFG of minimal-time
type in different modelling contexts. The possible nonuniqueness of classical solutions
for nondifferentiable Hamiltonians was studied in [7], where again the gradient of the
value function avoids the points of nondifferentiability of the Hamiltonian. Recently,
Ducasse, Mazanti, and Santambrogio considered in [8] a second-order minimal-time
MFG system with a Hamiltonian taking the form H(p,m) =\scrK (m)| p| , where the ad-
vective term in the continuity equation for m is required to satisfy the optimality
conditions related to the Pontryagin maximum principle, but is otherwise possibly
nonunique.

In order to handle general nondifferentiable Hamiltonians, we proposed in [21, 22,
23, 24] to generalize the MFG system of Lasry and Lions to a system where the KFP
equation is relaxed to a Partial Differential Inclusion (PDI) where the coefficient
of the advective term is an element of the subdifferential of the Hamiltonian. In
particular, we showed that this notion of solution includes that of [8] as a special
case, at least in terms of the dependence of the Hamiltonian with respect to the
gradient of the value function; see [22, Remark 3.2]. The existence and uniqueness
of solutions of the resulting MFG PDI system, along with the convergence of their
numerical approximations, was then shown under suitable hypotheses for steady-state
problems in [21, 22, 23] and for time-dependent problems in [21, 24].

1.1. MFG partial differential inclusions and heuristic derivation. Let us
now consider a heuristic derivation of a MFG PDI system, which will help to motivate
it and to give some intuition as to how it describes the Nash equilibria in the case of
possibly nonunique optimal controls. For instance, we can consider a system of the
form
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REGULARIZATION OF MEAN FIELD GAME PDI 5191

 - \partial tu - \nu \Delta u+H(t, x,\nabla u) = F [m](t, x) in (0, T )\times \Omega ,(1.1a)

\partial tm - \nu \Delta m\in div (m\partial pH(t, x,\nabla u)) in (0, T )\times \Omega ,(1.1b)

which models a generic single-population MFG in a state space \Omega \subset \BbbR d, d \in \BbbN , over
a finite time horizon (0, T ). Here u : (0, T )\times \Omega \rightarrow \BbbR denotes the value function of the
underlying optimal control problem, and m : (0, T )\times \Omega \rightarrow \BbbR denotes the density of the
player distribution. To fix ideas, we shall restrict our attention to the case where \Omega is a
bounded domain, in which case the system (1.1) is accompanied by suitable boundary
conditions for m and u on \partial \Omega . Moreover, the system is coupled with suitable initial
and final time conditions for m and u, respectively. We refer the reader to [24] for
more details on boundary and initial/final time conditions. The coupling term F [m]
denotes the component of the running cost that is allowed to depend on m, possibly
in some nonlocal manner. The Hamiltonian H : (0, T )\times \Omega \times \BbbR d \ni (t, x, p) \mapsto \rightarrow H(t, x, p)
is a real-valued function that is convex with respect to the gradient variable p \in \BbbR d,
and the set-valued map \partial pH : (0, T )\times \Omega \times \BbbR d \rightrightarrows \BbbR d denotes the partial subdifferential
of H with respect to p, which is defined by

\partial pH(t, x, p) :=
\Bigl\{ 
\~b\in \BbbR d :H(t, x, q)\geq H(t, x, p) +\~b \cdot (q - p) \forall q \in \BbbR d

\Bigr\} 
.(1.2)

Note that (1.1) coincides with a classical MFG PDE system whenever H is differen-
tiable with respect to p, since then the subdifferential \partial pH is a singleton set containing
only the partial derivative of H with respect to p.

The system (1.1) can be derived on a heuristic level as follows. We suppose that
the players' dynamics are given by a controlled stochastic process of the form

dXt = - b(t,Xt, \alpha t)dt+
\surd 
2\nu dBt,(1.3)

where b : [0, T ]\times \Omega \times \scrA \rightarrow \BbbR d denotes the negative controlled drift, with each player
choosing a control \alpha t in the control set \scrA at time t \in (0, T ). Note that we use here
the convention of a minus sign in the drift term in (1.3) because it helps to simplify
the notation below; this explains why we refer to b as the negative controlled drift.
We will assume in the following that \scrA is a compact metric space and the data b
and f are uniformly continuous with respect to their arguments. Also here \nu > 0
is a constant and Bt denotes the standard d-dimensional Brownian motion. Also,
we assume that the process Xt is either absorbed or reflected at the boundary \partial \Omega ,
which leads to either Dirichlet or Neumann boundary conditions for the MFG system,
although the details are not necessary for the immediate discussion. If we suppose
that the objective functional of the optimal control problem is in separable form,
i.e., the running cost increment per unit time is of the form f(t,Xt, \alpha t)+F [m](t,Xt),
then the Hamiltonian H is defined by

H(t, x, p) := sup
\alpha \in \scrA 

\{ b(t, x,\alpha ) \cdot p - f(t, x,\alpha )\} \forall (t, x, p)\in (0, T )\times \Omega \times \BbbR d.(1.4)

Then, at a Nash equilibrium, the value function u solves the HJB equation (1.1a), and
we suppose momentarily that u is sufficiently regular. Under the above hypotheses
on \scrA and the data b and f , the supremum in (1.4) is achieved. Then, the players at
a given state x \in \Omega and time t \in (0, T ) make a choice of feedback control from the
maximizing set \Lambda (t, x,\nabla u(t, x)), where the set-valued map \Lambda is defined by

\Lambda (t, x, p) := argmax
\alpha \in \scrA 

[b(t, x,\alpha ) \cdot p - f(t, x,\alpha )] \forall (t, x, p)\in (0, T )\times \Omega \times \BbbR d.(1.5)
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5192 YOHANCE A. P. OSBORNE AND IAIN SMEARS

As explained above, the maximizing set (1.5) is not always a singleton, so it is possible
for the players at (t, x) to make distinct choices of controls from each other. To model
this, we suppose that the players' positions and choices of control can be described
by a flow of measures \{ Mt\} t\in [0,T ] on \Omega \times \scrA that satisfies the KFP equation\int T

0

\int 
\Omega \times \scrA 

\bigl( 
 - \partial t\phi (t, x) - \nu \Delta \phi (t, x) + b(t, x,\alpha ) \cdot \nabla \phi (t, x)

\bigr) 
Mt(dx,d\alpha )dt= 0(1.6)

for all smooth compactly-supported test functions \phi on (0, T )\times \Omega . In order to connect
the flow of measures \{ Mt\} t\in (0,T ) with the players' choices of controls, we consider the
formal disintegration of measures

Mt(dx,d\alpha ) = \rho t,x(d\alpha )mt(dx) \forall t\in [0, T ],(1.7)

where mt(dx) =
\int 
\scrA Mt(dx,d\alpha ) is the measure on \Omega obtained by projection of Mt on

\Omega , and where \rho t,x \in \scrP (\scrA ) is the probability measure on \scrA representing the choices of
controls for the players at (t, x). At a Nash equilibrium, the players at (t, x) choose
controls from the feedback control set \Lambda (t, x,\nabla u(t, x)), and thus we require that

supp \rho t,x \subset \Lambda (t, x,\nabla u(t, x)) \forall (t, x)\in (0, T )\times \Omega ,(1.8)

where supp\rho t,x denotes the support of the measure \rho t,x.
We now show how to obtain the differential inclusion (1.1b). If the flow of

measures \{ mt\} t is sufficiently regular to admit a sufficiently smooth density, i.e., if
mt(dx) =m(t, x)dx with dx denoting the Lebesgue measure, then by using (1.7), Fu-
bini's theorem, and the fact that \rho t,x is a probability measure on \scrA , we obtain from
(1.6) the KFP equation for the density m of the form\int T

0

\int 
\Omega 

\bigl( 
 - \partial t\phi  - \nu \Delta \phi +\~b\ast \cdot \nabla \phi 

\bigr) 
mdxdt= 0 \forall \phi \in C\infty 

0 ((0, T )\times \Omega ),(1.9)

\~b\ast (t, x) :=

\int 
\scrA 
b(t, x,\alpha )\rho t,x(d\alpha ) \forall (t, x)\in (0, T )\times \Omega .(1.10)

In other words, the density m satisfies a KFP equation with a (negative) drift term
\~b\ast which represents a weighted average of the (negative) drifts that result from the
players' choices. Recalling the hypothesis that \scrA is a compact metric space and
the data b and f are continuous, the optimality condition (1.8) and the fact that
\rho t,x \in \scrP (\scrA ) then imply that

\~b\ast (t, x)\in conv\{ b(t, x,\alpha ) : \alpha \in \Lambda (t, x,\nabla u(t, x))\} \forall (t, x)\in (0, T )\times \Omega .(1.11)

It is known from Convex Analysis that the convex hull of the set of optimal (negative)
drifts is precisely the subdifferential of the Hamiltonian with respect to p:

conv\{ b(t, x,\alpha ) : \alpha \in \Lambda (t, x, p)\} = \partial pH(t, x, p) \forall (t, x, p)\in (0, T )\times \Omega \times \BbbR d;(1.12)

see, for instance, [21, Lemma 3.4.1] for an elementary proof of (1.12) involving only
Caratheodory's theorem and the hyperplane separation theorem. Therefore, (1.11) is
equivalent to \~b\ast (t, x)\in \partial pH(t, x,\nabla u(t, x)) for all (t, x). Ifm is regular enough to recast
the KFP equation (1.9) into strong form, we then obtain the differential inclusion
(1.1b) as initially claimed. Although the arguments in the paragraphs above are only
heuristic, they nonetheless help to give some insight into the meaning of the MFG
PDI, and its connection to the structure of the underlying Nash equilibria.
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REGULARIZATION OF MEAN FIELD GAME PDI 5193

1.2. Contributions of this work. In addition to the heuristic derivation above,
we show in this work how the PDI system generalizes the original PDE system to the
case of nondifferentiable Hamiltonians. More precisely, we show that the MFG PDI
system can also be understood as the limit of sequences of the MFG PDE systems with
regularized Hamiltonians. The idea of approximating the MFG PDI by regularized
PDE systems is also motivated by numerical computations, since it paves the way to
approximating the solutions of the resulting discretized PDI in [22, 24] by existing
solvers for nonlinear equations. To be more concrete, let us consider for simplicity as
a model problem the stationary MFG PDI system

 - \nu \Delta u+H(x,\nabla u) = F [m] in \Omega ,

 - \nu \Delta m - G(x)\in div (m\partial pH(x,\nabla u)) in \Omega ,

u= 0 and m= 0, on \partial \Omega ,

(1.13)

where \nu > 0 is a constant, where the Hamiltonian H is convex and Lipschitz contin-
uous w.r.t. p, but not necessarily differentiable. We specify the assumptions on the
coupling term F and the source term G in section 2 below. Note that the case of
Dirichlet boundary conditions in (1.13) corresponds to models of infinite horizon con-
trol, where the players exit the game when they reach the boundary \Omega . We assume
that the Dirichlet conditions on u and m are homogeneous for simplicity, yet note
that the inhomogeneous case is usually reduced to the homogeneous one by suitable
transformation of the problem. The source/sink term G represents the source/sink of
new players into the game.

We study the approximation of (1.13) by regularized problems of the form

 - \nu \Delta u\lambda +H\lambda (x,\nabla u\lambda ) = F [m\lambda ] in \Omega ,

 - \nu \Delta m\lambda  - div

\biggl( 
m\lambda 

\partial H\lambda 

\partial p
(x,\nabla u\lambda )

\biggr) 
=G(x) in \Omega ,

u\lambda = 0 and m\lambda = 0 on \partial \Omega ,

(1.14)

where \{ H\lambda \} \lambda \in (0,1] is a family of regularized Hamiltonians that are convex and C1

w.r.t. p and that converges uniformly to H as the regularization parameter \lambda \rightarrow 0.
Precise assumptions on the regularizations are given in section 3.2.1 below, which
include many well-known choices such as Moreau--Yosida regularization and mollifi-
cation, cf. (3.7) and (3.11) below. Under some mild conditions on the data F and
G, the existence of weak solutions in H1

0 of (1.13) and of (1.14) is already known (cf.
[21, 22, 23]) with the uniqueness result for strictly monotone couplings from Lasry and
Lions [19] extending also to the PDI case. Note that we choose to focus our analy-
sis on the setting of weak solutions in H1

0 , since it is the most relevant for numerical
methods; c.f. [22, 25]. One could also consider other analytical settings; however, note
that solutions of the MFG PDI (1.13) can have rather limited regularity, in general, as
a result of the nondifferentiability of H; see [22, section 3.3].

Our first main result, in Theorem 4.1 below, shows that solutions of the regular-
ized problems (1.14) converge, up to subsequences and in suitable norms, to a weak
solution of the PDI system (1.13). This makes precise the sense in which MFG PDI
generalize MFG PDE when relaxing the differentiability assumption on the Hamil-
tonian, and one can also consider this result as an alternative proof of the existence of
weak solutions to MFG PDI. We further demonstrate the sharpness of the conclusions
in Theorem 4.1 through various examples in section 8.

Our second main result, in Theorem 4.6 below, shows that if stronger quantitative
assumptions are placed on the data, including a strong monotonicity condition on F ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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5194 YOHANCE A. P. OSBORNE AND IAIN SMEARS

thus ensuring that the MFG PDI has a unique solution, then we can prove a rate of
convergence for the differences u - u\lambda and m - m\lambda in terms of error between H and
H\lambda of the form

\| m - m\lambda \| \scrX + \| u - u\lambda \| H1(\Omega ) \leq C\omega (\lambda )
1
2 ,(1.15)

for all \lambda sufficiently small, where the constant C is independent of \lambda , where \omega (\lambda )
is a maximum-norm upper bound for the difference in the Hamiltonians (cf. (3.5)
below), and where \scrX is the space on which F is defined. In particular, the bound
(1.15) does not assume any higher regularity assumption on the solution (u,m) of
(1.13). The bound (1.15) is particularly relevant for numerical computations since
one must balance the errors that stem from different sources, including discretization,
regularization, iteration, etc. The application of (1.15) to numerical methods will be
the subject of ongoing and future work; cf. [26].

This paper is organized as follows. In section 2 we establish the notation and
introduce the hypotheses on the model data. Section 3 introduces the MFG PDI
and its regularization. We state the main results in section 4. Preliminary results
are established in section 5, which we use in section 6 to prove Theorem 4.1 and
Corollary 4.5. We prove Theorem 4.6 on convergence rates in section 7. Examples
that demonstrate the sharpness of our conclusions are given in section 8.

2. Setting and notation. We denote \BbbN := \{ 1,2,3, . . .\} . For a Lebesgue mea-
surable set A \subset \BbbR d, d \in \BbbN , let \| \cdot \| L2(A) denote the standard L2-norm for scalar- and
vector-valued functions on A. For d\in \BbbN , the d-dimensional open ball of radius r and
center x0 \in \BbbR d is denoted by Br(x0). Let \Omega be a bounded, open connected subset
of \BbbR d with Lipschitz boundary \partial \Omega . Let the diffusion \nu > 0 be constant, and let
G \in H - 1(\Omega ) be given. Let (\scrX ,\| \cdot \| \scrX ) be a real Banach space such that H1

0 (\Omega ) is
embedded continuously and compactly in \scrX . We suppose that F : \scrX \rightarrow H - 1(\Omega ) is a
continuous operator that satisfies

\| F [w]\| H - 1(\Omega ) \leq CF (\| w\| \scrX + 1) \forall w \in \scrX ,(2.1)

where CF \geq 0 is a constant. We introduce the following set of hypotheses on the source
term G and coupling operator F that will be occasionally used in the subsequent
analysis.

(H1) G\in H - 1(\Omega ) is nonnegative in the sense of distributions, i.e., \langle G,\phi \rangle H - 1\times H1
0
\geq 

0 for all functions \phi \in H1
0 (\Omega ) that are nonnegative a.e. in \Omega .

(H2) F is strictly monotone on H1
0 (\Omega ), which is to say

\langle F [m1] - F [m2],m1  - m2\rangle H - 1\times H1
0
\leq 0 =\Rightarrow m1 =m2,(2.2)

whenever m1, m2 \in H1
0 (\Omega ).

(H3) F is strongly monotone on H1
0 (\Omega ) w.r.t. to the norm \| \cdot \| \scrX , in the sense that

there exists a constant cF > 0 such that

\langle F [m1] - F [m2],m1  - m2\rangle H - 1\times H1
0
\geq cF \| m1  - m2\| 2\scrX (2.3)

for all m1, m2 \in H1
0 (\Omega ).

(H4) F is Lipschitz continuous:

\| F [m1] - F [m2]\| H - 1(\Omega ) \leq LF \| m1  - m2\| \scrX \forall m1,m2 \in \scrX (2.4)

for some constant LF \geq 0.
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REGULARIZATION OF MEAN FIELD GAME PDI 5195

Note that in the subsequent results, we do not always require all of the hypothe-
ses (H1), (H2), (H3), and (H4); therefore, we will specify which hypotheses are needed
in each case. We also stress that in hypotheses (H2) and (H3), the monotonicity con-
dition is only required for arguments of F in the smaller space H1

0 (\Omega ), and not the
whole space \scrX , so the duality pairings in (2.2) and (2.3) are well-defined. We refer
the reader to [22, section 2] for some concrete examples of coupling operators that
satisfy these conditions in the case \scrX =L2(\Omega ).

Motivated by the underlying optimal control problem, we suppose that the Hamil-
tonian H appearing in (1.13) is defined by

H(x,p) := sup
\alpha \in \scrA 

\{ b(x,\alpha ) \cdot p - f(x,\alpha )\} \forall (x,p)\in \Omega \times \BbbR d,(2.5)

where b and f are uniformly continuous on \Omega \times \scrA with \scrA a compact metric space. It
follows that the Hamiltonian H is Lipschitz continuous and satisfies

| H(x,p) - H(x, q)| \leq LH | p - q| \forall (x,p, q)\in \Omega \times \BbbR d \times \BbbR d,(2.6)

with some constant LH . For instance, one can take LH := \| b\| C(\Omega \times \scrA ;\BbbR d). We deduce
from (2.6) that there exists a constant CH \geq 0 such that

| H(x,p)| \leq CH(| p| + 1) \forall (x,p)\in \Omega \times \BbbR d.(2.7)

It is clear from (2.6) that the mapping v \mapsto \rightarrow H(\cdot ,\nabla v) is Lipschitz continuous from
H1(\Omega ) into L2(\Omega ). We will often abbreviate this composition by writing instead
H[\nabla v] :=H(\cdot ,\nabla v) a.e. in \Omega .

Given arbitrary sets A and B, an operator \scrM that maps each point x \in A to a
subset of B is called a set-valued map from A to B, and we write \scrM : A\rightrightarrows B. For
the Hamiltonian given by (2.5) its pointwise subdifferential with respect to p is the
set-valued map \partial pH : \Omega \times \BbbR d \rightrightarrows \BbbR d defined by

\partial pH(x,p) :=
\Bigl\{ 
\~b\in \BbbR d :H(x, q)\geq H(x,p) +\~b \cdot (q - p) \forall q \in \BbbR d

\Bigr\} 
.(2.8)

Note that \partial pH(x,p) is nonempty for all x\in \Omega and p\in \BbbR d because H is real-valued and
convex in p for each fixed x \in \Omega . Note also that the subdifferential \partial pH is uniformly
bounded since (2.6) implies that for all (x,p)\in \Omega \times \BbbR d, the set \partial pH(x,p) is contained
in the closed ball of radius LH = \| b\| C(\Omega \times \scrA ;\BbbR d) centered at the origin.

We now define a set-valued mapping for measurable selections of the subdifferen-
tial composed with the gradients of weakly differentiable functions. Given a function
v \in W 1,1(\Omega ), we say that a real-valued vector field \~b : \Omega \rightarrow \BbbR d is a measurable selection
of \partial pH(\cdot ,\nabla v) if \~b is Lebesgue measurable and \~b(x) \in \partial pH(x,\nabla v(x)) for a.e. x \in \Omega .
The uniform boundedness of the subdifferential sets implies that any measurable se-
lection \~b of \partial pH(\cdot ,\nabla v) must belong to L\infty (\Omega ;\BbbR d). Therefore, given v \in W 1,1(\Omega ) we
can consider the set of all measurable selections of \partial pH(\cdot ,\nabla v), which gives rise to a
set-valued mapping from W 1,1(\Omega ) to subsets of L\infty (\Omega ;\BbbR d).

Definition 2.1 (see [22]). Let H be the function given by (2.5). We define the
set-valued map DpH : W 1,1(\Omega )\rightrightarrows L\infty (\Omega ;\BbbR d) by

DpH[v] :=
\Bigl\{ 
\~b\in L\infty (\Omega ;\BbbR d) : \~b(x)\in \partial pH(x,\nabla v(x)) for a.e. x\in \Omega 

\Bigr\} 
.

In [22, Lemma 4.3] it was shown that DpH[v] is a nonempty subset of L\infty (\Omega ;\BbbR d)
for each v in W 1,1(\Omega ).
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5196 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Notation for inequalities. In order to avoid the proliferation of generic constants,
in the following, we write a\lesssim b for real numbers a and b if a\leq Cb for some constant C
that may depend on the problem data appearing below, but is otherwise independent
of the regularization parameter \lambda appearing in (1.14). Throughout this work we will
regularly specify the particular dependencies of the hidden constants.

3. Weak formulation of MFG PDI and of its regularizations.

3.1. Weak formulation of the MFG PDI. We recall the definition of a weak
solution of the MFG PDI (1.13) that was introduced in [22].

Definition 3.1 (weak solution of MFG PDI (1.13)). A pair (u,m) \in H1
0 (\Omega )\times 

H1
0 (\Omega ) is a weak solution of (1.13) if there exists a \~b\ast \in DpH[u] such that

\int 
\Omega 

\nu \nabla u \cdot \nabla \psi +H[\nabla u]\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ),(3.1a) \int 

\Omega 

\nu \nabla m \cdot \nabla \phi +m\~b\ast \cdot \nabla \phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).(3.1b)

Remark 3.2. The above definition of weak solution only requires the existence of
a suitable transport vector field \~b\ast \in DpH[u], but its uniqueness is not required in
general. We refer the reader to [21, section 3.3] for several examples showing that \~b\ast 
might be unique in some cases, but not in others.

Under the above hypotheses on the data, we have the following result on the
existence and uniqueness of solutions.

Theorem 3.3 (existence and uniqueness of weak solutions). Let \nu > 0 be con-
stant, and let G \in H - 1(\Omega ). Let H be the function given by (2.5), and let F : \scrX \rightarrow 
H - 1(\Omega ) be a continuous operator satisfying (2.1). Then, there exists a weak solution
(u,m) \in H1

0 (\Omega ) \times H1
0 (\Omega ) of (1.13) in the sense of Definition 3.1. In addition, if G

satisfies (H1) and if F satisfies (H2), then there is at most one weak solution of (1.13)
in the sense of Definition 3.1.

The proof of Theorem 3.3 follows the same argument as in [21, Theorem 3.2.1]
(see also [22, 23]), and is based on an application of Kakutani's fixed point theorem.
For completeness, we include the proof of Theorem 3.3 in section 5.1.

Example 3.1 (nonuniqueness of solutions for nonmonotone F ). In Theorem 3.3,
uniqueness of solutions is shown under the additional conditions (H1) and (H2),
which, respectively, require that G is nonnegative and that F is strictly monotone. If
these assumptions are relaxed, then, in general, uniqueness of solutions may fail, even
for differentiable Hamiltonians; see, for instance, [7] for some examples of nonunique-
ness of solutions for some time-dependent MFG systems. Here we give a short orig-
inal example of nonuniqueness of solutions for the steady-state MFG system with
homogeneous Dirichlet boundary conditions, when F is not required to satisfy (H2)
for a Hamiltonian H that is C1 with respect to p. For this example, suppose that
\Omega = ( - 1,1) \subset \BbbR , and let the Hamiltonian H : \Omega \times \BbbR \rightarrow \BbbR be any function satisfying
the condition that H(x,p) = 1

2p
2 for all p\in [ - 1,1] and all x\in \Omega ; in particular, we can

take H to be convex, globally Lipschitz, and C1 with respect to p. Let the pairs of
functions (ui,mi), i\in \{ 1,2\} , be defined by
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REGULARIZATION OF MEAN FIELD GAME PDI 5197

u1(x) :=
1 - x2

2
, m1(x) := 1 - e

x2 - 1
2 \forall x\in [ - 1,1],(3.2a)

u2(x) :=
x2  - 1

2
, m2(x) := e

1 - x2

2  - 1 \forall x\in [ - 1,1].(3.2b)

Note then that the ui and mi, i \in \{ 1,2\} , are smooth functions in \Omega satisfying homo-
geneous Dirichlet conditions on \partial \Omega . Note also that | u\prime i(x)| = | x| \leq 1 for all x \in \Omega , for

each i \in \{ 1,2\} , so that H(x,u\prime i(x)) =
| x| 2
2 and \partial H

\partial p (x,u
\prime 
i(x)) = u\prime i(x) for all x \in \Omega , for

i\in \{ 1,2\} . Then, let G\equiv 1 in \Omega , and note that G satisfies (H1). Define F by

F [m](x) :=

\biggl( 
x2

2
+ 1

\biggr) \| m - m2\| L2(\Omega )

\| m1  - m2\| L2(\Omega )
+

\biggl( 
x2

2
 - 1

\biggr) \| m - m1\| L2(\Omega )

\| m2  - m1\| L2(\Omega )
.(3.3)

Observe that F is Lipschitz continuous from \scrX = L2(\Omega ) to H - 1(\Omega ) and thus sat-
isfies (2.1). However, it is clear that F does not satisfy the strict monotonicity
condition (H2). It is then straightforward to check that (u1,m1) and (u2,m2) are
both distinct classical solutions of the MFG system  - u\prime \prime + H(x,u\prime ) = F [m] and
 - m\prime \prime  - (m\partial H

\partial p (x,u
\prime ))\prime =G in \Omega along with homogeneous Dirichlet conditions for both

u and m on \partial \Omega . This illustrates the possibility of nonuniqueness of solutions in the
general case when (H2) is not satisfied.

3.2. Regularized problems.

3.2.1. A family of regularized Hamiltonians. In order to analyze the regu-
larized problems (1.14) in a unified way for a variety of different choices of regulariza-
tions, we consider a family of regularized Hamiltonians \{ H\lambda \} \lambda \in (0,1] that satisfies the
following hypotheses:

(H5) \{ H\lambda \} \lambda \in (0,1] is a family of real-valued functions on \Omega \times \BbbR d for which there
exists a continuous function \omega : [0,1]\rightarrow [0,\infty ) satisfying \omega (0) = 0 such that,
for each \lambda \in (0,1]:
\bullet H\lambda is continuous on \Omega \times \BbbR d and

| H\lambda (x,p) - H\lambda (x, q)| \leq LH | p - q| \forall (x,p, q)\in \Omega \times \BbbR d \times \BbbR d,(3.4)

\bullet for each x\in \Omega , the map \BbbR d \ni p \mapsto \rightarrow H\lambda (x,p) is convex;
\bullet the partial derivative \partial H\lambda 

\partial p : \Omega \times \BbbR d \rightarrow \BbbR d exists and is continuous;
\bullet H\lambda satisfies the following inequality:

| H\lambda (x,p) - H(x,p)| \leq \omega (\lambda ) \forall (x,p)\in \Omega \times \BbbR d.(3.5)

Note that in (3.4) we are supposing that there is a uniform Lipschitz constant LH for
the original Hamiltonian H and the family of regularizations \{ H\lambda \} \lambda \in (0,1]. Further-
more, the bounds (3.4) and (3.5) imply that, for all \lambda \in (0,1],

| H\lambda (x,p)| \leq | H(x,0)| + sup
\sigma \in [0,1]

\omega (\sigma ) +LH | p| \leq \widetilde CH (| p| + 1) \forall (x,p)\in \Omega \times \BbbR d(3.6)

for some constant \widetilde CH \geq 0 independent of \lambda \in (0,1]. Note also that the restriction of
\lambda to the interval (0,1] is not essential, e.g., it can be replaced by some more general
bounded sets for which 0 is a limit point.
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5198 YOHANCE A. P. OSBORNE AND IAIN SMEARS

3.2.2. Examples of families of regularized Hamiltonians. In this subsec-
tion, we illustrate several possible choices of regularizations that satisfy (H5).

Example 3.2. As a first example, we consider the Moreau--Yosida regularization
of the Hamiltonian (2.5) with respect to p. For each \lambda \in (0,1], let H\lambda : \Omega \times \BbbR d \rightarrow \BbbR 
denote the Moreau--Yosida regularization of H w.r.t. p defined by

H\lambda (x,p) := inf
q\in \BbbR d

\biggl\{ 
H(x, q) +

1

2\lambda 
| q - p| 2

\biggr\} 
.(3.7)

The following lemma shows that Moreau--Yosida regularization leads to a family of
Hamiltonians that satisfies (H5).

Lemma 3.4 (Moreau--Yosida regularization). For each \lambda \in (0,1], let H\lambda be defined
by (3.7). Then the family \{ H\lambda \} \lambda \in (0,1] satisfies (H5). In particular, the bound (3.4)

holds with same Lipschitz constant as in (2.6) and (3.5) holds with \omega (\lambda ) =
L2

H\lambda 
2 , i.e.,

sup
(x,p)\in \Omega \times \BbbR d

| H\lambda (x,p) - H(x,p)| \leq L2
H\lambda 

2
.(3.8)

Proof. The result is essentially already well-known (see, for instance, [4, Theorem
5.2, p.76] or [6, Theorem 6.5.7]), so we shall only point out a few details. It is well-
known that, for each (x,p)\in \Omega \times \BbbR d, the infimum in (3.7) is attained at a unique point
J\lambda (x,p) \in \BbbR d, and that H\lambda is convex and continuously differentiable with respect to
p, with partial derivative

\partial H\lambda 

\partial p
(x,p) =

p - J\lambda (x,p)

\lambda 
\in \partial pH (x,J\lambda (x,p)) \forall (x,p)\in \Omega \times \BbbR d;(3.9)

see, e.g., [4, eq. (55), p. 76]. The continuity of the partial derivative \partial H\lambda 

\partial p over \Omega \times \BbbR d

can also be shown using the above hypotheses on H and using the uniqueness of
J\lambda (x,p) for each (x,p). Since the subdifferential set \partial pH(x, q) is contained in the
closed ball of radius LH for any q \in \BbbR d, this implies that sup(x,p)\in \Omega \times \BbbR d | \partial H\lambda 

\partial p (x,p)| \leq 
LH and thus that (3.4) holds with the same Lipschitz constant LH . To prove (3.8),
first note that H\lambda (x,p)\leq H(x,p) follows immediately from the definition. Also (2.6)
implies that

0\leq H(x,p) - H\lambda (x,p) =H(x,p) - H(x,J(x,p)) - | p - J(x,p)| 2

2\lambda 
(3.10)

\leq LH | p - J(x,p)|  - | p - J(x,p)| 2

2\lambda 
\leq L2

H\lambda 

2
,

where the final inequality above follows from Young's inequality. This proves (3.8).

In general, if H\lambda is defined by Moreau--Yosida regularization (3.7), then H\lambda is
C1-regular with respect to p, but H\lambda is not necessarily C2-regular. To see this, it is
enough to consider the example H(x,p) = | p| , p \in \BbbR d. In some cases, it is of interest
to consider other choices of regularization that can yield higher regularity such as
mollification, which we consider below.

Example 3.3. As a further example, we consider the mollification of the Hamil-
tonian w.r.t. p. Let \rho \in Cr(\BbbR d), where r \in \BbbN \cup \{ \infty \} , denote a nonnegative function
with compact support in the unit ball B1(0), that satisfies

\int 
\BbbR d \rho (q)dq = 1. Given

\lambda > 0, let \rho \lambda \in Cr
0(\BbbR d) be the function given by \rho \lambda (q) := \lambda  - d\rho (q/\lambda ), q \in \BbbR d, so that
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REGULARIZATION OF MEAN FIELD GAME PDI 5199\int 
\BbbR d \rho \lambda (q)dq= 1. Given \lambda > 0, let H\lambda : \Omega \times \BbbR d \rightarrow \BbbR denote the mollification of H w.r.t.
p defined by

H\lambda (x,p) :=

\int 
\BbbR d

H(x, q)\rho \lambda (p - q)dq.(3.11)

Lemma 3.5 shows that this regularization satisfies (H5).

Lemma 3.5 (mollification-based regularization). For each \lambda \in (0,1], let H\lambda be
defined by (3.11). Then, the family \{ H\lambda \} \lambda \in (0,1] satisfies (H5). In particular, the
bound (3.4) holds with same Lipschitz constant as in (2.6) and (3.5) holds with \omega (\lambda ) =
C\rho LH\lambda , i.e.,

sup
(x,p)\in \Omega \times \BbbR d

| H\lambda (x,p) - H(x,p)| \leq C\rho LH\lambda ,(3.12)

where C\rho :=
\int 
B1(0)

| q| \rho (q)dq, and H\lambda is Cr-regular w.r.t. p.

The proof of this result is based on elementary properties of convolution and so
it omitted. Lemma 3.5 shows that mollification can have the advantage of producing
smoother regularized Hamiltonians than Moreau--Yosida regularization in some cases.

In addition to the examples above, one can consider various alternatives or im-
provements, which might be useful for some practical applications. For instance, in
cases where the regularity of the function p \mapsto \rightarrow H(x,p) might depend on x\in \Omega , then it
might be useful in applications to adapt the regularization to the point x\in \Omega , e.g., one
can consider H\lambda (x,p) :=

\int 
\BbbR d H(x, q)\rho \sigma (x)(p - q)dq, where \sigma (x)\in (0, \lambda ] is some chosen

function that controls the local regularization for x\in \Omega .

3.2.3. Weak formulation of regularized problems. The following definition
states the notion of weak solution for the regularized problems (1.14)

Definition 3.6 (weak solution of regularized MFG system). Assume (H5). For
each \lambda \in (0,1], a pair (u\lambda ,m\lambda )\in H1

0 (\Omega )\times H1
0 (\Omega ) is a weak solution of the regularized

MFG system (1.14) if\int 
\Omega 

\nu \nabla u\lambda \cdot \nabla \psi +H\lambda [\nabla u\lambda ]\psi dx=\langle F [m\lambda ],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ),(3.13a) \int 

\Omega 

\nu \nabla m\lambda \cdot \nabla \phi +m\lambda 
\partial H\lambda 

\partial p
[\nabla u\lambda ] \cdot \nabla \phi dx= \langle G,\phi \rangle H - 1\times H1

0
\forall \phi \in H1

0 (\Omega ).(3.13b)

Note that when considering the regularized problems (1.14), the notions of weak
solutions from Definitions 3.1 and 3.6 coincide. This is because there holds DpH\lambda [v] =
\{ \partial H\lambda 

\partial p (\cdot ,\nabla v)\} for all v \in W 1,1(\Omega ), sinceH\lambda is differentiable with respect to the gradient
variable.

Remark 3.7 (existence and uniqueness of weak solutions of regularized system
(1.14)). Assuming (H5), we can show that the statement of Theorem 3.3 can be
transposed over to the regularized problems (1.14), under the same assumptions on
the data F and G. This is simply because Theorem 3.3 can be applied also to the
regularized problems, and the notions of weak solution from Definitions 3.1 and 3.6
coincide, as explained above. Thus, there exists at least one weak solution of (1.14) in
the above sense, and uniqueness also holds under hypotheses (H1) and (H2). However,
Example 3.1 illustrates how uniqueness of solutions of the regularized problems can
also fail, in general, without the additional hypotheses (H1) and (H2).
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5200 YOHANCE A. P. OSBORNE AND IAIN SMEARS

4. Main results.

4.1. Basic convergence. The first main result shows that, up to subsequences,
solutions of the regularized problems (1.14) converge to solutions of the PDI (1.13).

Theorem 4.1 (convergence of solutions of the regularized problems). Assume
(H5). Suppose that \{ \lambda j\} j\in \BbbN \subset (0,1] is a sequence of real numbers converging to zero,
and, for each j \in \BbbN , let (u\lambda j

,m\lambda j
) denote a weak solution of the regularized problem

(1.14) with \lambda = \lambda j \in (0,1]. Then, the sequences \{ u\lambda j\} j\in \BbbN , \{ m\lambda j\} j\in \BbbN are uniformly
bounded in H1

0 (\Omega ). Moreover, there exists a subsequence of \{ (u\lambda j ,m\lambda j )\} j\in \BbbN (to which
we pass without change of notation) and a weak solution (u,m) of (1.13) such that

u\lambda j \rightarrow u in H1
0 (\Omega ), m\lambda j \rightharpoonup m in H1

0 (\Omega ),

m\lambda j \rightarrow m in \scrX , m\lambda j \rightarrow m in Lq(\Omega ),
(4.1)

as j\rightarrow \infty , for any q \in [1,2\ast ), where 2\ast :=\infty if d= 2 and 2\ast := 2d
d - 2 if d\geq 3, and for

any q \in [1,\infty ] if d= 1.

Theorem 4.1 implies that limit points, in the sense of (4.1), of weak solutions of
the regularized MFG PDE are weak solutions of the MFG PDI (1.13). This makes
precise the sense in which MFG PDI generalize the well-known MFG PDE when
relaxing the differentiability condition on the Hamiltonian. Another immediate im-
plication of Theorem 4.1 is that, given an arbitrary neighborhood (e.g., in the strong
topology on H1

0 (\Omega )\times \scrX ) of the set of all weak solutions of the MFG PDI (1.13), then
for all \lambda sufficiently small, all weak solutions of the regularized problem (1.14) are
contained in the given neighborhood. This is easily shown by supposing the claim to
be false, i.e., there would exist a sequence of solutions (u\lambda j ,m\lambda j )j\in \BbbN of the regularized
problems, with \lambda j \rightarrow 0 as j\rightarrow \infty , that are not contained in the neighborhood, which
contradicts the existence of a subsequence that converges to a solution of (1.13) as
shown by Theorem 4.1.

Remark 4.2 (nonuniqueness of solutions and convergence of subsequences). We
emphasize that Theorem 4.1 does not require the assumptions (H1) and (H2). There-
fore, in general, the solutions of the original and regularized problems are not nec-
essarily unique; cf. Example 3.1 above. This is why convergence of the solutions of
regularized problems is only shown up to subsequences. When solutions of the MFG
PDI are nonunique, it is possible that different subsequences of solutions of the regu-
larized problems may converge to different solutions of the MFG PDI; see the example
of section 8.2 below.

Remark 4.3 (convergence of entire sequence for uniquely solvable MFG PDI). If
(1.13) has a unique weak solution, then the convergence in Theorem 4.1 holds for the
entire sequence. As shown in Theorem 3.3, this includes the case whereG satisfies (H1)
and F satisfies (H2).

Remark 4.4 (nonconvergence in the H1-norm for density function approxima-
tions). The convergence in (4.1) only states weak convergence in H1

0 of m\lambda j to m.
This is sharp, in general, since it is not always possible to have strong convergence
of the density function approximations in the H1-norm. We give an explicit example
in section 8.1 to show this. However, if one assumes some precompactness of the

sequence \{ \partial H\lambda j

\partial p [\nabla u\lambda j
]\} j\in \BbbN , then we can recover strong convergence of the gradients

of the densities; see Corollary 4.5 below.
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REGULARIZATION OF MEAN FIELD GAME PDI 5201

Corollary 4.5 (strong H1
0 -precompactness for density approximations). In ad-

dition to the hypotheses of Theorem 4.1, suppose that \{ \partial H\lambda j

\partial p [\nabla u\lambda j
]\} j\in \BbbN is precompact

in L1(\Omega ;\BbbR d). Then, \{ m\lambda j
\} j\in \BbbN is precompact in H1

0 (\Omega ).

The proofs of Theorem 4.1 and Corollary 4.5 are given in section 6.

4.2. Rates of convergence. In the event that F is strongly monotone, i.e.
satisfies (H3), and G satisfies (H1), we obtain a rate of convergence for the weak
solutions of the regularized problem (1.14) to the unique weak solution of the MFG
PDI (1.13). The rate of convergence that we derive in this setting is independent of
the regularity of the weak solution of the MFG PDI (3.1).

Theorem 4.6 (rate of convergence of solutions to regularized problems). Assume
the hypotheses (H1), (H3), (H4), and (H5). Let (u,m) and (u\lambda ,m\lambda ), \lambda \in (0,1], be the
respective unique solutions of (3.1) and (3.13). Then

\| u - u\lambda \| H1(\Omega ) + \| m - m\lambda \| \scrX \lesssim \omega (\lambda )
1
2 ,(4.2)

for all \lambda sufficiently small, where the hidden constant depends only on \Omega , \nu , d, LH ,
LF , \| G\| H - 1(\Omega ), sup\sigma \in [0,1] \omega (\sigma ), and cF .

The proof of Theorem 4.6 is given in section 7. We emphasize that there is no
assumption of higher regularity of the solution (u,m) in Theorem 4.6, which is impor-
tant given that it is known from examples that (u,m) may have limited smoothness;
cf. [22, section 3.3]. For instance, in the case of Moreau--Yosida regularization (cf.
(3.7)), or mollification-based regularization (cf. (3.12)), Theorem 4.6 implies a rate of
convergence of order 1

2 with respect to \lambda . The bound (4.2) will play an important role
in future work on the design and analysis of numerical methods for solving the MFG
PDI system, since it allows one to approximate the solution by that of a regularized
problem, with some quantitative control on the error.

5. Preliminary results and proof of Theorem 3.3. We start by gathering
some preparatory lemmas. The following lemma is from [22, Lemma 4.3], and shows
that the set-valued map DpH has nonempty images in L\infty (\Omega ;\BbbR d) that are uniformly
bounded in the closed ball of radius LH .

Lemma 5.1 (see [22]). The set-valued map DpH :W 1,1(\Omega )\rightrightarrows L\infty (\Omega ;\BbbR d) possesses
nonempty images and we have the bound

sup
v\in W 1,1(\Omega )

sup
\~b\in DpH[v]

\| \~b\| L\infty (\Omega ;\BbbR d) \leq LH .(5.1)

The next lemma is from [22, Lemma 4.4], where it is shown that DpH has closed
graph when L\infty (\Omega ;\BbbR d) is equipped with its weak-\ast topology.

Lemma 5.2 (see [22]). Let H be the function given by (2.5). Suppose \{ vj\} j\in \BbbN \subset 
H1(\Omega ), \{ \~bj\} j\in \BbbN \subset L\infty (\Omega ;\BbbR d) are sequences such that \~bj \in DpH[vj ] for all j \in \BbbN . If
vj \rightarrow v in H1(\Omega ) and \~bj \rightharpoonup 

\ast \~b in L\infty (\Omega ;\BbbR d) as j\rightarrow \infty , then \~b\in DpH[v].

The following lemma relates the partial derivatives of H\lambda with the subdifferential
ofH when considering compositions with gradients of functions that form a convergent
sequence in H1.

Lemma 5.3. Assume (H5) holds. Let \{ \lambda j\} j\in \BbbN \subset (0,1] be a sequence that converges
to 0 as j \rightarrow \infty , and let \{ vj\} j\in \BbbN \subset H1(\Omega ) be a sequence of functions in H1(\Omega ) that
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5202 YOHANCE A. P. OSBORNE AND IAIN SMEARS

converges to a limit v \in H1(\Omega ). Then, there exists a subsequence of \{ \partial H\lambda j

\partial p [\nabla vj ]\} j\in \BbbN 

that is weakly-\ast convergent in L\infty (\Omega ;\BbbR d) to a limit \~b\ast \in DpH[v].

Proof. For each q \in \BbbR d, and each j \in \BbbN , we define the function \omega j,q : \Omega \rightarrow \BbbR given
by

\omega j,q(x) :=H\lambda j
(x, q) - H\lambda j

(x,\nabla vj(x)) - 
\partial H\lambda j

\partial p
(x,\nabla vj(x)) \cdot (q - \nabla vj(x)), x\in \Omega .

(5.2)

By hypothesis (H5), for each j \in \BbbN and x\in \Omega the function \BbbR d \ni p \mapsto \rightarrow H\lambda j (x,p) is con-

vex, and the partial derivative
\partial H\lambda j

\partial p : \Omega \times \BbbR d \rightarrow \BbbR d exists and is continuous. Therefore,
the function \omega j,q \geq 0 a.e. in \Omega for all j \in \BbbN . Moreover, since H\lambda j

satisfies the Lipschitz

condition (3.4), we have that
\partial H\lambda j

\partial p (\cdot ,\nabla vj)\in L\infty (\Omega ;\BbbR d) with \| \partial H\lambda j

\partial p (\cdot ,\nabla vj)\| L\infty (\Omega ;\BbbR d) \leq 
LH . It then follows from the definition of \omega j,q that \omega j,q \in L2(\Omega ) for all j \in \BbbN . Since
L1(\Omega ;\BbbR d) is separable, the closed ball in L\infty (\Omega ;\BbbR d) is weak-\ast sequentially compact.
Therefore, we may pass to a subsequence (without change of notation) such that
\partial H\lambda j

\partial p (\cdot ,\nabla vj)\rightharpoonup \ast \~b\ast in L\infty (\Omega ;\BbbR d) as j\rightarrow \infty for some \~b\ast \in L\infty (\Omega ;\BbbR d). The bound (3.5)

in (H5), together with the strong convergence of \{ vj\} j\in \BbbN to v in H1(\Omega ), allow us to de-
duce that \omega j,q converges weakly in L2(\Omega ) to the function \omega q \in L2(\Omega ) that is defined by

\omega q(x) :=H(x, q) - H(x,\nabla v(x)) - \~b\ast (x) \cdot (q - \nabla v(x)), x\in \Omega .(5.3)

Mazur's theorem then implies that \omega q \geq 0 a.e. in \Omega , for each q \in \BbbR d, since \omega q,j \rightharpoonup \omega q

in L2(\Omega ) as j\rightarrow \infty , with each \omega q,j nonnegative a.e. in \Omega . Since q \in \BbbR d was arbitrary
and since \BbbR d is separable, after possibly excising a set of measure zero, we conclude
that, for a.e. x\in \Omega ,

H(x, q) - H(x,\nabla v(x)) - \~b\ast (x) \cdot (q - \nabla v(x))\geq 0 \forall q \in \BbbR d.(5.4)

This implies that \~b\ast \in DpH[v] and concludes the proof.

Let \scrG (LH) denote the set of all operators L :H1
0 (\Omega )\rightarrow H - 1(\Omega ) of the form

\langle Lu,v\rangle H - 1\times H1
0
=

\int 
\Omega 

\nu \nabla u \cdot \nabla v+\~b \cdot \nabla uv dx,(5.5)

where \~b : \Omega \rightarrow \BbbR d is some vector field satisfying \| \~b\| L\infty (\Omega ;\BbbR d) \leq LH . In addition, given
an operator L \in \scrG (LH), we define L\ast :H1

0 (\Omega )\rightarrow H - 1(\Omega ), the formal adjoint of L, by
\langle L\ast w,v\rangle H - 1\times H1

0
:= \langle Lv,w\rangle H - 1\times H1

0
for all w,v \in H1

0 (\Omega ). In the analysis we will use
the following uniform invertibility result which is an application of [22, Lemma 4.5].

Lemma 5.4. For every operator L\in \scrG (LH), both L and L\ast are boundedly invert-
ible as mappings from H1

0 (\Omega ) to H
 - 1(\Omega ), and there exists a constant C \star > 0 depending

on only \Omega , d, \nu , and LH such that

sup
L\in \scrG (LH)

max

\biggl\{ \bigm\| \bigm\| L - 1
\bigm\| \bigm\| 
\scrL (H - 1(\Omega ),H1

0 (\Omega )) ,
\bigm\| \bigm\| \bigm\| L\ast  - 1

\bigm\| \bigm\| \bigm\| 
\scrL (H - 1(\Omega ),H1

0 (\Omega ))

\biggr\} 
\leq C \star .(5.6)

We note the fact that each operator from L\in \scrG (LH) and its adjoint L\ast are both
invertible follows from the Fredholm Alternative and the Weak Maximum Principle
(WMP). Importantly, each L\in \scrG (LH) satisfies the conditions of the Weak Maximum
Principle [10, Theorem 8.1], which implies also the Comparison Principle for the
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REGULARIZATION OF MEAN FIELD GAME PDI 5203

adjoint operator L\ast , so that L\ast v \geq 0 in the sense of distributions in H - 1(\Omega ) implies
v\geq 0 a.e. in \Omega .

We now state the following well-posedness result for the HJB equation and its
regularizations. To express this as succinctly as possible, let us define H0 :=H where
H is the Hamiltonian defined in (2.5), so that we may then extend the family of
Hamiltonians considered to the set \{ H\lambda \} \lambda \in [0,1].

Lemma 5.5 (well-posedness of the regularized HJB equation). Assume (H5).
Then, for each \lambda \in [0,1] and each \widetilde m\in \scrX , there exists a unique u\lambda \in H1

0 (\Omega ) such that\int 
\Omega 

\nu \nabla u\lambda \cdot \nabla \psi +H\lambda [\nabla u\lambda ]\psi dx= \langle F [\widetilde m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).(5.7)

In addition,

\| u\lambda \| H1(\Omega )\lesssim \| \widetilde m\| \scrX + \| f\| C(\Omega \times \scrA ) + \omega (\lambda ) + 1,(5.8)

where the hidden constant depends only \Omega , \nu , LH and CF . Moreover, the solution
u\lambda depends continuously on \widetilde m, i.e., if \{ \widetilde mj\} j\in \BbbN \subset \scrX is such that \widetilde mj \rightarrow \widetilde m in \scrX as
j\rightarrow \infty , then the corresponding sequence of solutions \{ u\lambda ,j\} j\in \BbbN \subset H1

0 (\Omega ) of (5.7) with
data \widetilde mj converges in H1

0 (\Omega ) to the unique solution u\lambda of (5.7) with datum \widetilde m.

Note that the only assumptions on F required by Lemma 5.5 is that F should be
continuous from \scrX to H - 1(\Omega ) and satisfy the growth condition (2.1). Observe also
that for the case \lambda = 0, Lemma 5.5 provides a statement of well-posedness for the
unregularized HJB equation\int 

\Omega 

\nu \nabla u \cdot \nabla \psi +H[\nabla u]\psi dx= \langle F [\widetilde m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ),(5.9)

and moreover, the term \omega (\lambda ) in the bound (5.8) then vanishes as a result of the
hypothesis \omega (0) = 0. Lemma 5.5 is essentially already well-known, and is a small
generalization of [22, Lemma 4.6]. Since its proof is standard by now, we shall omit
it here for brevity; see [22, Appendix A] for further details.

5.1. Proof of Theorem 3.3. The existence of a weak solution of the MFG PDI
(1.13) can be shown using Kakutani's fixed point theorem. It follows the ideas in
[21, Theorem 3.2.1]; see also [21, 23, 8]. We start by recalling Kakutani's fixed point
theorem for set-valued maps on locally convex spaces; see, for instance, [30, Chapter
9, Theorem 9.B].

Theorem 5.6 (Kakutani's fixed point theorem). Suppose the following:
1. \scrB is a nonempty, compact, convex set in a locally convex space \scrY ;
2. \scrV :\scrB \rightrightarrows \scrB is a set-valued map such that \scrV [\~b] is nonempty, closed, and convex

for all \~b\in \scrB ; and
3. \scrV is upper semicontinuous.

Then \scrV has a fixed point: there exists a \~b\in \scrB such that \~b\in \scrV [\~b].
Proof of Theorem 3.3. Recall that the Lipschitz constant of the Hamiltonian is

LH given in (2.6). We equip the space \scrY := L\infty (\Omega ;\BbbR d) with its weak-\ast topology,
noting that it is then a locally convex topological vector space. Let \scrB denote the ball

\scrB :=
\Bigl\{ 
\~b\in L\infty (\Omega ;\BbbR d) : \| \~b\| L\infty (\Omega ;\BbbR d) \leq LH

\Bigr\} 
.(5.10)

We note that \scrB is nonempty, closed in the weak-\ast topology, and convex. Since
L1(\Omega ;\BbbR d) is separable, the weak-\ast topology on \scrB is metrizable [27, Chap. 15]. More-
over, Helly's theorem implies that \scrB is compact.
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5204 YOHANCE A. P. OSBORNE AND IAIN SMEARS

Let M : \scrB \rightarrow H1
0 (\Omega ) be the map defined as follows: for each \~b \in \scrB , let M [\~b] in

H1
0 (\Omega ) be the unique solution of\int 

\Omega 

\nu \nabla M [\~b] \cdot \nabla \phi +M [\~b]\~b \cdot \nabla \phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).(5.11)

The mapM is well-defined thanks to Lemma 5.4. Next, let U :\scrX \rightarrow H1
0 (\Omega ) be the map

defined as follows: for each \widetilde m\in \scrX , let U [\widetilde m]\in H1
0 (\Omega ) denote the unique solution of\int 

\Omega 

\nu \nabla U [\widetilde m] \cdot \nabla \psi +H(x,\nabla U [\widetilde m])\psi dx= \langle F [\widetilde m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).(5.12)

The map U is well-defined by Lemma 5.5.
Now, we define the set-valued map \scrV : \scrB \rightrightarrows L\infty (\Omega ;\BbbR d) as follows: for each \~b \in \scrB ,

let

\scrV [\~b] :=DpH
\bigl[ 
U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] \bigr] 
.(5.13)

Note that in taking the composition of U with M , we are implicitly using the con-
tinuous embedding of H1

0 (\Omega ) into \scrX . The existence of a weak solution of the MFG
PDI (1.13) in the sense of Definition 3.1 is equivalent to showing the existence of a
fixed point of \scrV , i.e., that there exists a \~b\ast \in \scrB such that \~b\ast \in \scrV [\~b\ast ]. Indeed, if \~b\ast \in \scrB 
satisfies \~b\ast \in \scrV [\~b\ast ], then a solution pair (u,m) of the weak formulation (3.1) of (1.13)
is given by m :=M [\~b\ast ] and u :=U [m] with \~b\ast \in DpH[u], while the converse is obvious.

We now check that \scrV satisfies all the conditions of Kakutani's fixed point theorem.
First, Lemma 5.1 implies that \scrV [\~b] \subset \scrB for each \~b \in \scrB , so \scrV : \scrB \rightrightarrows \scrB . Moreover, for
every \~b\in \scrB , the set \scrV [\~b] is nonempty and convex. Indeed, for each \~b\in \scrB the set \scrV [\~b] is
nonempty by Lemma 5.1. The fact that \scrV has convex images is an elementary conse-
quence of the fact that \partial pH has convex images. Indeed, let b1, b2 \in \scrV [\~b] and \theta \in [0,1]
be given. It follows from the definition of the inclusions bj \in \scrV [\~b] =DpH

\bigl[ 
U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] \bigr] 

for j \in \{ 1,2\} and the subdifferential \partial pH that, for a.e. x\in \Omega ,

H(x, q)\geq H(x,\nabla U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] 
(x)) + bj(x) \cdot (q - \nabla U

\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] 
(x)) \forall q \in \BbbR d, j \in \{ 1,2\} 

from which we see that

H(x, q)\geq H(x,\nabla U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] 
(x))+(\theta b1(x)+(1 - \theta )b2(x)) \cdot (q - \nabla U

\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] 
(x)) \forall q \in \BbbR d.

This shows that \theta b1+(1 - \theta )b2 \in \scrV [\~b], so \scrV [\~b] is convex as claimed. Furthermore, \scrV [\~b]
is closed for all \~b\in \scrB . Indeed, since \scrB is metrizable and \scrV [\~b]\subset \scrB , to show that \scrV [\~b] is
closed it suffices to show that any sequence \{ bj\} j\in \BbbN \subset \scrV [\~b] with bj \rightharpoonup \ast b in L\infty (\Omega ;\BbbR d)
as j \rightarrow \infty satisfies b \in \scrV [\~b] = DpH

\bigl[ 
U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] \bigr] 

. But, given such a sequence \{ bj\} j\in \BbbN ,

one can consider the constant sequence \{ vj\} j\in \BbbN in H1(\Omega ) defined by vj := U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] 

in H1(\Omega ) for j \in \BbbN , and then apply Lemma 5.2 to deduce the required inclusion
b\in DpH

\bigl[ 
U
\bigl[ 
M

\bigl[ 
\~b
\bigr] \bigr] \bigr] 

= \scrV [\~b], so \scrV [\~b] is closed.
It remains only to verify that \scrV is upper semicontinuous. To this end, it suffices

to prove that the graph of \scrV is closed; cf. [5, Chap. 1, Corollary 1, p. 42]. Let \scrW 
denote the graph of \scrV , which is defined by

\scrW :=
\Bigl\{ 
(\~b, b)\in \scrB \times \scrB : b\in \scrV [\~b]

\Bigr\} 
.(5.14)

Since \scrB is metrizable, to show that the graph \scrW is a closed it is enough to show that
whenever a sequence \{ (\~bi, bi)\} i\in \BbbN \subset \scrW converges weakly-\ast in \scrB \times \scrB to a point (\~b, b)
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REGULARIZATION OF MEAN FIELD GAME PDI 5205

as i\rightarrow \infty , then (\~b, b) \in \scrW , which is equivalent to b \in \scrV [\~b]. Let us then suppose that
we are given a sequence \{ (\~bi, bi)\} i\in \BbbN \subset \scrW that converges weakly-\ast in \scrB \times \scrB to a point
(\~b, b) as i\rightarrow \infty . To begin, we claim that M [\~bi]\rightarrow M [\~b] in \scrX as i\rightarrow \infty . Indeed, since
\{ \~bi\} i\in \BbbN \subset \scrB , for each i\in \BbbN we apply Lemma 5.4 to obtain the uniform bound

sup
i\in \BbbN 

\| M [\~bi]\| H1(\Omega ) \lesssim \| G\| H - 1(\Omega ).(5.15)

We deduce from this that any given subsequence \{ M [\~bij ]\} j\in \BbbN is bounded uni-
formly inH1

0 (\Omega ). The Rellich--Kondrachov compactness theorem and the compactness
of the embedding of H1

0 (\Omega ) into \scrX then imply that there exists a further subsequence
\{ M [\~bijk ]\} k\in \BbbN and a m\in H1

0 (\Omega ) such that theM [\~bijk ] converge to m weakly in H1
0 (\Omega ),

strongly in L2(\Omega ), and also strongly in \scrX , as k \rightarrow \infty . By L\infty -weak-\ast \times L2-strong
convergence, we also have that M [\~bijk ]

\~bijk \rightharpoonup m\~b in L2(\Omega ;\BbbR d) as k\rightarrow \infty . Passing to

the limit in the KFP equation (5.11) satisfied by M [\~bijk ] for k \in \BbbN , we deduce that m
satisfies \int 

\Omega 

\nu \nabla m \cdot \nabla \phi +m\~b \cdot \nabla \phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).(5.16)

But by definition of M [\~b] in (5.11), we see that m=M [\~b] in H1
0 (\Omega ). The uniqueness

of the limit then implies that the entire sequence \{ M [\~bi]\} i\in \BbbN satisfies M [\~bi] \rightarrow M [\~b]
in \scrX as i \rightarrow \infty . Lemma 5.5 implies that U [M [\~bi]] \rightarrow U [M [\~b]] in H1

0 (\Omega ) as i \rightarrow \infty .
By hypothesis, bi \in \scrV [\~bi] = DpH[U [M [\~bi]]] for i \in \BbbN and bi \rightharpoonup 

\ast b in L\infty (\Omega ;\BbbR d) as
i \rightarrow \infty . We conclude from Lemma 5.2 that b \in DpH[U [M [\~b]]], i.e., b \in \scrV [\~b]. We
have, therefore, shown that the graph \scrW is closed, so \scrV is upper semicontinuous.

We have thus shown that the map \scrV :\scrB \rightrightarrows \scrB satisfies the conditions of Kakutani's
fixed-point theorem, so \scrV admits a fixed point and, therefore, there exists a weak
solution of the MFG PDI (1.13) in the sense of Definition 3.1.

Assuming, in addition, that F satisfies (H2) and G satisfies (H1), the uniqueness
of a weak solution of the MFG PDI (1.13) in the sense of Definition 3.1 follows from
the same argument used in the proof of [22, Theorem 3.4]. This argument carries
through thanks to the convexity of the Hamiltonian H w.r.t. p, together with the
nonnegativity ofG as a distribution inH - 1(\Omega ) and the Comparison Principle ensuring
that the density m is nonnegative almost everywhere.

6. Proofs of Theorem 4.1 and Corollary 4.5.

6.1. Proof of Theorem 4.1. Let \{ (u\lambda j
,m\lambda j

)\} j\in \BbbN denote a sequence defined as
follows: for each j \in \BbbN , let (u\lambda j ,m\lambda j ) denote a weak solution of the regularized problem
(1.14) with \lambda = \lambda j \in (0,1]. Thanks to Lemma 5.4, the resulting sequence \{ m\lambda j\} j\in \BbbN 
is uniformly bounded in the H1-norm. Since \lambda j \rightarrow 0 as j \rightarrow \infty and the embedding
H1

0 (\Omega )\subset \scrX is continuous, the bound (5.8) and the definition of the resulting sequence
\{ u\lambda j

\} j\in \BbbN imply that \{ u\lambda j
\} j\in \BbbN is uniformly bounded in the H1-norm. We may pass

to subsequences, without change of notation, that satisfy as j\rightarrow \infty ,

m\lambda j
\rightharpoonup m in H1

0 (\Omega ), m\lambda j
\rightarrow m in Lq(\Omega ),(6.1)

u\lambda j
\rightharpoonup u in H1

0 (\Omega ), u\lambda j
\rightarrow u in Lq(\Omega ),(6.2)

for some m,u \in H1
0 (\Omega ), for any q \in [1,2\ast ), where 2\ast := \infty if d = 2 and 2\ast := 2d

d - 2 if
d\geq 3, and for any q \in [1,\infty ] if d= 1. Since the embedding H1

0 (\Omega )\subset \scrX is also compact,
we may pass to a further subsequence (without change of notation) such that
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5206 YOHANCE A. P. OSBORNE AND IAIN SMEARS

m\lambda j \rightarrow m in \scrX (6.3)

as j\rightarrow \infty .
The boundedness of \{ u\lambda j

\} j\in \BbbN in H1
0 (\Omega ), together with the linear growth of the

Hamiltonian H\lambda j =H\lambda j (\cdot , p) (see (3.6)), imply that the sequence \{ H\lambda j [\nabla u\lambda j ]\} j\in \BbbN is
uniformly bounded in L2(\Omega ). Therefore, there exists g \in L2(\Omega ) such that, by passing
to a subsequence without change of notation, we have

H\lambda j [\nabla u\lambda j ]\rightharpoonup g in L2(\Omega )(6.4)

as j \rightarrow \infty . The continuity of F : \scrX \rightarrow H - 1(\Omega ) and the convergence (6.3) imply that
F [m\lambda j

] \rightarrow F [m] in H - 1(\Omega ) as j \rightarrow \infty . This convergence, together with (6.2) and
(6.4), allows us pass to the limit j \rightarrow \infty in the regularized HJB equation (3.13a) to
find that \int 

\Omega 

\nu \nabla u \cdot \nabla v+ gv dx= \langle F [m], v\rangle H - 1\times H1
0

\forall v \in H1
0 (\Omega ).(6.5)

We conclude that u\lambda j \rightarrow u in H1
0 (\Omega ) as j\rightarrow \infty . Indeed, for each j \in \BbbN , by testing

(3.13a) with u\lambda j
, we see that

lim
j\rightarrow \infty 

\| \nabla u\lambda j\| 2L2(\Omega ) = lim
j\rightarrow \infty 

\nu  - 1

\biggl[ 
\langle F [m\lambda j ], u\lambda j \rangle H - 1\times H1

0
 - 
\int 
\Omega 

H\lambda j [\nabla u\lambda j ]u\lambda jdx

\biggr] 
(6.6)

= \nu  - 1

\biggl[ 
\langle F [m], u\rangle H - 1\times H1

0
 - 
\int 
\Omega 

gudx

\biggr] 
= \| \nabla u\| 2L2(\Omega ),

where the final identity above follows from (6.5) with test function v = u. It then
follows from (6.2) and (6.6) that the convergence of u\lambda j

\rightarrow u is also strong in H1
0 (\Omega )

as j\rightarrow \infty .
Next, it follows from (2.6), (3.5), and from (6.4) that g = H[\nabla u] in \Omega and thus

(6.5) implies that u solves\int 
\Omega 

\nu \nabla u \cdot \nabla \psi +H[\nabla u]\psi dx= \langle F [m],\psi \rangle H - 1\times H1
0

\forall \psi \in H1
0 (\Omega ).(6.7)

Next, we deduce from Lemma 5.3 that we can pass to a subsequence (without

change of notation) such that
\partial H\lambda j

\partial p [\nabla u\lambda j
]\rightharpoonup \ast \~b\ast in L\infty (\Omega ;\BbbR d), as j \rightarrow \infty , for some

\~b\ast \in DpH[u]. We then use (6.1) to pass to the limit in (3.13b) to obtain\int 
\Omega 

\nu \nabla m \cdot \nabla \phi +m\~b\ast \cdot \nabla \phi dx= \langle G,\phi \rangle H - 1\times H1
0

\forall \phi \in H1
0 (\Omega ).(6.8)

This shows that the pair (u,m) solves (3.1) and, moreover, that, up to a subsequence,
we have (4.1).

6.2. Proof of Corollary 4.5. Following the proof of Theorem 4.1 above, we
consider a subsequence (to which we pass without change of notation) such that
the (u\lambda j

,m\lambda j
) converge to a solution (u,m) of (3.1) in the sense of (4.1) and that

\~bj \rightharpoonup 
\ast \~b\ast in L\infty (\Omega ;\BbbR d) as j\rightarrow \infty , where \~bj :=

\partial H\lambda j

\partial p [\nabla u\lambda j
] and \~b\ast \in DpH[u]. Also, by

hypothesis, the sequence \{ \~bj\} j\in \BbbN is precompact in L1(\Omega ;\BbbR d), so after possibly passing
to a further subsequence, we may assume without loss of generality that \~bj \rightarrow \~b\ast in
L1(\Omega ;\BbbR d) as j \rightarrow \infty . Since | \Omega | d < \infty , we deduce from the dominated convergence
theorem that \~bj \rightarrow \~b\ast in Ls(\Omega ;\BbbR d) for any s \in [1,\infty ) as j \rightarrow \infty . Let r \in (2,2\ast ) be
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REGULARIZATION OF MEAN FIELD GAME PDI 5207

given, where 2\ast := \infty if d \in \{ 1,2\} and 2\ast := 2d
d - 2 if d \geq 3. The Sobolev embedding

theorem shows that m \in Lr(\Omega ). Therefore, if we set s := 2r
r - 2 , we deduce from the

triangle inequality and H\"older's inequality that

lim
j\rightarrow \infty 

\| m\lambda j
\~bj  - m\~b\ast \| L2(\Omega ;\BbbR d)(6.9)

\leq lim
j\rightarrow \infty 

\surd 
2
\Bigl( 
LH\| m\lambda j  - m\| L2(\Omega ) + \| m\| Lr(\Omega )\| \~bj  - \~b\ast \| Ls(\Omega ;\BbbR d)

\Bigr) 
= 0.

This shows that m\lambda j
\~bj \rightarrow m\~b\ast in L2(\Omega ;\BbbR d) along a subsequence as j\rightarrow \infty . Therefore,

after testing (3.13b) with m\lambda j
and passing to the limit, we obtain

lim
j\rightarrow \infty 

\| \nabla m\lambda j\| 2L2(\Omega ;\BbbR d) = \nu  - 1 lim
j\rightarrow \infty 

\biggl( 
\langle G,m\lambda j \rangle H - 1\times H1

0
 - 
\int 
\Omega 

m\lambda j
\~bj \cdot \nabla m\lambda jdx

\biggr) 
= \nu  - 1

\biggl( 
\langle G,m\rangle H - 1\times H1

0
 - 
\int 
\Omega 

m\~b\ast \cdot \nabla mdx

\biggr) 
= \| \nabla m\| 2L2(\Omega ;\BbbR d),

(6.10)

where the last equality follows from (3.1b) tested with m. This shows that \nabla m\lambda j \rightarrow 
\nabla m in L2(\Omega ;\BbbR d) and thus m\lambda j

\rightarrow m in H1
0 (\Omega ) as j\rightarrow \infty .

7. Proof of Theorem 4.6.

7.1. Preliminary results. To begin, we introduce the pointwise maximizing set
corresponding to the Hamiltonian (2.5). Define the set-valued map \Lambda : \Omega \times \BbbR d \rightrightarrows \scrA 
via

\Lambda (x,p) := argmax
\alpha \in \scrA 

\{ b(x,\alpha ) \cdot p - f(x,\alpha )\} .(7.1)

Following [22], we associate with given v \in W 1,1(\Omega ) the set \Lambda [v] of Lebesgue measur-
able functions \alpha \ast : \Omega \rightarrow \scrA that satisfy \alpha \ast (x)\in \Lambda (x,\nabla v(x)) for a.e. x\in \Omega .We will refer
to each element of \Lambda [v] as a measurable selection of \Lambda (\cdot ,\nabla v(\cdot )). It is known that \Lambda [v]
is nonempty for all v \in W 1,1(\Omega ), a result which ultimately rests upon the Kuratowski--
Ryll--Nardzewski theorem [15] on measurable selections; see also [28, Appendix B] for
a detailed proof.

We will make use of the following semismoothness result for the Hamiltonians,
which was first shown in [29, Theorem 13] already for the more general case of fully
nonlinear second order HJB operators.

Lemma 7.1. Let v \in H1(\Omega ) be given. For each \epsilon > 0, there exists a R > 0,
depending only on v, \epsilon , \Omega , and H, such that

sup
\alpha \in \Lambda [w]

\| H[\nabla w] - H[\nabla v] - b(\cdot , \alpha ) \cdot \nabla (w - v)\| H - 1(\Omega ) \leq \epsilon \| v - w\| H1(\Omega ),(7.2)

whenever w \in H1(\Omega ) satisfies \| v - w\| H1(\Omega ) \leq R.

Proof. Following the analysis of [29, Theorem 13] adapted to the current context,
it is known that, for every s\in [1,2) and for every v \in H1(\Omega ), we have

lim
\| e\| H1(\Omega )\rightarrow 0

sup
\alpha \in \Lambda [v+e]

1

\| e\| H1(\Omega )
\| H[\nabla (v+ e)] - H[\nabla v] - b(\cdot , \alpha ) \cdot \nabla e\| Ls(\Omega ) = 0.(7.3)

The proof of (7.3) follows the same ideas as in [29, Theorem 13], with the difference
that [29] treats the case of fully nonlinear second-order HJB operators in spaces of
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5208 YOHANCE A. P. OSBORNE AND IAIN SMEARS

functions with piecewise second-order Sobolev regularity; whereas (7.3) considers the
first-order Sobolev space H1 since the Hamiltonian here depends only on the gradient
of the functions and not on the second derivatives. Note also that the proof of (7.3)
uses mainly the boundedness of \Omega , the compactness of the control set \scrA , and the
continuity of the data b and f . We then obtain (7.2) by taking w= v+ e and noting
that there exists some s \in [1,2) such that Ls(\Omega ) is continously embedded in H - 1(\Omega )
by the Sobolev embedding theorem.

Remark 7.2. We emphasize that the semismoothness of H shown in Lemma 7.1 is
strictly weaker than differentiability of H. The key difference is that in (7.2), we have
\alpha \in \Lambda [w], instead of \Lambda [v]. In fact, the simple example H(x,p) = sup\alpha \in \scrA \{ \alpha \cdot p\} = | p| ,
where \scrA =B1(0)\subset \BbbR d, shows that we cannot replace \Lambda [w] by \Lambda [v] in (7.2), in general.

The semismoothness of the Hamiltonian enables us to show the following bound
between the value functions of the original and regularized problems.

Lemma 7.3. Assume the hypotheses (H1), (H3), (H4), and (H5). Let (u,m)
and (u\lambda ,m\lambda ) be the respective unique solutions of (3.1) and (3.13). Then, for all \lambda 
sufficiently small, we have

\| u - u\lambda \| H1(\Omega ) \lesssim \| m - m\lambda \| \scrX + \omega (\lambda ),(7.4)

where the hidden constant depends only on \Omega , \nu , d, LH , and LF .

Proof. For each \lambda \in (0,1], choose an arbitrary \alpha \lambda \in \Lambda [u\lambda ], and define the operator
L\lambda :H1(\Omega )\rightarrow H - 1(\Omega ) by

\langle L\lambda w,v\rangle H - 1\times H1
0
:=

\int 
\Omega 

\nu \nabla w \cdot \nabla v+ b(x,\alpha \lambda ) \cdot \nabla wvdx \forall w,v \in H1(\Omega ).(7.5)

Recalling the definition of the set of operators \scrG (LH), it is clear that L\lambda \in \scrG (LH)
since it is of the form (5.5) and \| b(\cdot , \alpha \lambda )\| L\infty (\Omega ;\BbbR d) \leq \| b\| C(\Omega \times \scrA ;\BbbR d) \leq LH . We then
obtain from (3.1a) and (3.13a) that

\langle L\lambda (u\lambda  - u),\psi \rangle H - 1\times H1
0
= \langle F [m\lambda ] - F [m],\psi \rangle H - 1\times H1

0
+

\int 
\Omega 

(H[\nabla u\lambda ] - H\lambda [\nabla u\lambda ])\psi dx

(7.6)

 - 
\int 
\Omega 

(H[\nabla u\lambda ] - H[\nabla u] - b(\cdot , \alpha \lambda ) \cdot \nabla (u\lambda  - u))\psi dx.

Using Lemma 5.4, we deduce that

\| u - u\lambda \| H1(\Omega ) \leq C\ast 
\bigl( 
\| F [m] - F [m\lambda ]\| H - 1(\Omega ) + \| H\lambda [\nabla u\lambda ] - H[\nabla u\lambda ]\| L2(\Omega )(7.7)

+\| H[\nabla u] - H[\nabla u\lambda ] - b(\cdot , \alpha \lambda ) \cdot \nabla (u - u\lambda )\| H - 1(\Omega )

\bigr) 
,

where C\ast > 0 depends on only \Omega , \nu , d, and LH . Theorem 4.1, in particular the strong
convergence u\lambda \rightarrow u in H1

0 (\Omega ) as \lambda \rightarrow 0, and Lemma 7.1 together imply that, for all
\lambda sufficiently small,

\| H[\nabla u\lambda ] - H[\nabla u] - b(\cdot , \alpha \lambda ) \cdot \nabla (u\lambda  - u)\| H - 1(\Omega ) \leq 
1

2C\ast 
\| u - u\lambda \| H1(\Omega ),(7.8)

where C\ast is the constant from (7.7). After combining (7.7) with the hypothesis (H4)
and with (3.5), and with (7.8), we see that

\| u - u\lambda \| H1(\Omega ) \lesssim \| F [m] - F [m\lambda ]\| H - 1(\Omega ) + \| H[\nabla u\lambda ] - H\lambda [\nabla u\lambda ]\| L2(\Omega )

\lesssim \| m - m\lambda \| \scrX + \omega (\lambda )
(7.9)
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REGULARIZATION OF MEAN FIELD GAME PDI 5209

for all \lambda sufficiently small. The hidden constant in the above bound depends only on
\Omega , \nu , d, and LH and LF . This completes the proof of (7.4).

Lemma 7.4. Assume the hypotheses (H1), (H3), (H4), and (H5). Let (u,m) and
(u\lambda ,m\lambda ), \lambda \in (0,1], be the respective unique solutions of (3.1) and (3.13). Then, for
all \lambda \in (0,1],

\| m - m\lambda \| \scrX \lesssim \| G\| 
1
2

H - 1(\Omega )\omega (\lambda )
1
2 ,(7.10)

where the hidden constant depends only on cF , d, \nu , LH , and \Omega .

Proof. Fix \lambda \in (0,1]. Test both (3.1a) and (3.13a) with \psi =m - m\lambda and subtract
the resulting equations to obtain

\langle F [m] - F [m\lambda ],m - m\lambda \rangle H - 1\times H1
0

=

\int 
\Omega 

\nu \nabla (u - u\lambda ) \cdot \nabla (m - m\lambda ) +m(H[\nabla u] - H\lambda [\nabla u\lambda ])dx

+

\int 
\Omega 

m\lambda (H\lambda [\nabla u\lambda ] - H[\nabla u])dx.

(7.11)

Then, test both (3.1b) and (3.13b) with \phi = u  - u\lambda , and subtract the resulting
equations to get

\int 
\Omega 

\nu \nabla (u - u\lambda ) \cdot \nabla (m - m\lambda ) +mb\ast \cdot \nabla (u - u\lambda ) +m\lambda 
\partial H\lambda 

\partial p
[\nabla u\lambda ] \cdot \nabla (u\lambda  - u)dx= 0.

(7.12)

We then subtract (7.12) from (7.11) to thus obtain

\langle F [m] - F [m\lambda ],m - m\lambda \rangle H - 1\times H1
0

=

\int 
\Omega 

m\lambda 

\biggl( 
H\lambda [\nabla u\lambda ] - H[\nabla u] + \partial H\lambda 

\partial p
[\nabla u\lambda ] \cdot \nabla (u - u\lambda )

\biggr) 
dx

+

\int 
\Omega 

m (H[\nabla u] - H\lambda [\nabla u\lambda ] + b\ast \cdot \nabla (u\lambda  - u))dx.

(7.13)

Notice that the hypothesis (H1) on G, together with the Weak Maximum Principle
and the Comparison Principle, implies that m and m\lambda are both nonnegative a.e. in
\Omega . From this fact, together with the convexity of H\lambda w.r.t. p and the definition of
the inclusion \~b\ast \in DpH[u], we deduce that\int 

\Omega 

m\lambda 

\biggl( 
H\lambda [\nabla u\lambda ] - H[\nabla u] + \partial H\lambda 

\partial p
[\nabla u\lambda ] \cdot \nabla (u - u\lambda )

\biggr) 
dx

\leq 
\int 
\Omega 

m\lambda (H\lambda [\nabla u] - H[\nabla u])dx,
(7.14)

and \int 
\Omega 

m (H[\nabla u] - H\lambda [\nabla u\lambda ] + b\ast \cdot \nabla (u\lambda  - u))dx\leq 
\int 
\Omega 

m(H[\nabla u\lambda ] - H\lambda [\nabla u\lambda ])dx.

Consequently,

\langle F [m] - F [m\lambda ],m - m\lambda \rangle H - 1\times H1
0
\leq 
\int 
\Omega 

m\lambda (H\lambda [\nabla u] - H[\nabla u])dx

+

\int 
\Omega 

m(H[\nabla u\lambda ] - H\lambda [\nabla u\lambda ])dx.
(7.15)
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5210 YOHANCE A. P. OSBORNE AND IAIN SMEARS

We then combine (7.15) with the strong monotonicity of F (H3), the uniform bound
| H\lambda  - H| \leq \omega (\lambda ) of (3.5), and the Cauchy--Schwarz inequality to obtain

\| m - m\lambda \| 2\scrX \leq c - 1
F \langle F [m] - F [m\lambda ],m - m\lambda \rangle H - 1\times H1

0
\lesssim 
\bigl( 
\| m\lambda \| L2(\Omega ) + \| m\| L2(\Omega )

\bigr) 
\omega (\lambda ),

(7.16)

where the hidden constant depends only on cF and \Omega . Using Lemma 5.4, we de-
duce that \| m\| L2(\Omega )\lesssim \| G\| H - 1(\Omega ) and that \| m\lambda \| L2(\Omega ) \lesssim \| G\| H - 1(\Omega ) from the KFP
equations, respectively satisfied by m and m\lambda . Therefore,

\| m - m\lambda \| 2\scrX \lesssim \| G\| H - 1(\Omega )\omega (\lambda ),(7.17)

where the hidden constant depends only on \Omega , d, \nu , cF , and LH . This completes the
proof as \lambda \in (0,1] was arbitrary.

The proof of Theorem 4.6 is now straightforward.

Proof of Theorem 4.6. The result is immediate by combining the conclusions of
Lemmas 7.3 and 7.4, i.e.,

\| u - u\lambda \| H1(\Omega ) + \| m - m\lambda \| \scrX \lesssim \| m - m\lambda \| \scrX + \omega (\lambda )\lesssim \omega (\lambda )
1
2 ,(7.18)

where we have used the trivial bound \omega (\lambda )\leq C\omega \omega (\lambda )
1
2 where C\omega := sup\sigma \in [0,1] \omega (\sigma )

1
2 .

Note that the constant in (7.18) depends only on \Omega , d, \nu , LH , LF , cF , \| G\| H - 1(\Omega ), and
also sup\sigma \in [0,1] \omega (\sigma ).

8. Examples. In this section, we show the sharpness of the conclusions of the
analysis above with respect to several aspects. Recall that Theorem 4.1 shows the
weak convergence in H1 of subsequences of the densities of the regularized problems
to a density of the MFG PDI. Also, Corollary 4.5 gives strong convergence in H1

under an additional hypothesis. To show that such an additional hypothesis cannot
be removed in general, in section 8.1 below we give an example where the density
function approximations given by the regularized problems do not converge strongly
in the H1-norm. Theorem 4.1 is sharp in this regard.

In the second example, given in section 8.2, we consider a situation where each
regularized problem has a unique solution pair (u\lambda j ,m\lambda j ), yet by taking different
subsequences, we arrive at different solutions of the MFG PDI. Thus the convergence
along subsequences shown in Theorem 4.1 cannot be improved to convergence of the
whole sequence, even in cases where each regularized problem has a unique solution.

8.1. Density function approximations may not converge strongly in
the \bfitH 1-norm. We now present an example where the densities of the regularized
problems do not converge strongly in the H1-norm. This shows that, for the general
class of regularized Hamiltonians satisying (H5), the weak convergence in the H1-
norm of \{ m\lambda j

\} j\in \BbbN given in Theorem 4.1 is sharp, in general. The key features of the
example are summarized in the following proposition.

Proposition 8.1. Let \Omega =(0,1)\subset \BbbR , and let H : \Omega \times \BbbR \rightarrow \BbbR be given by H(x,p) =
sup\alpha \in [ - 1,1]\{ x\alpha p\} = x| p| for all (x,p) \in \Omega \times \BbbR . Set F \equiv 0 on L2(\Omega ), and let G \equiv 1 \in 
L2(\Omega )\subset H - 1(\Omega ). There exists a m\in H1

0 (\Omega ) and a family of regularizations \{ H\lambda j
\} j\in \BbbN 

satisfying (H5), with \lambda j \rightarrow 0 as j\rightarrow \infty , such that
\bullet (0,m)\in H1

0 (\Omega )\times H1
0 (\Omega ) is a solution of (3.1) with m \not = 0 in H1

0 (\Omega ),
\bullet m\lambda j \rightharpoonup m in H1

0 (\Omega ) as j\rightarrow \infty , and

lim
j\rightarrow \infty 

\| m\lambda j  - m\| H1(\Omega ) > 0.(8.1)
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REGULARIZATION OF MEAN FIELD GAME PDI 5211

Proof. In this setting one can show that the Moreau--Yosida regularization of H,
for each \lambda \in (0,1], is given by

\scrH \lambda (x,p) =

\left\{     
x| p|  - \lambda x2

2
if | p| \geq \lambda x,

| p| 2

2\lambda 
if | p| \leq \lambda x

and
\partial \scrH \lambda 

\partial p
(x,p) =

\Biggl\{ 
sgn(p)x if | p| \geq \lambda x,
p

\lambda 
if | p| \leq \lambda x

(8.2)

for (x,p)\in [0,1]\times \BbbR . For each \lambda \in (0,1], let H\lambda be defined by

H\lambda (x,p) :=\scrH \lambda 

\bigl( 
x,p - x cos

\bigl( 
x\lambda  - 1

\bigr) 
\lambda 
\bigr) 
 - x2 cos2(x\lambda  - 1)\lambda 

2
\forall (x,p)\in [0,1]\times \BbbR .(8.3)

It is straightforward to use Lemma 3.4 to check that the assumption (H5) is satisfied
by \{ H\lambda \} \lambda \in (0,1]. In particular, it is found that | H\lambda (x,p) - H(x,p)| \leq 2\lambda for all p\in \BbbR d.
Note that H\lambda (x,0) = 0 for all x \in [0,1]. It also follows immediately from (8.2) and
(8.3) that

\partial H\lambda 

\partial p
(x,0) =

\partial \scrH \lambda 

\partial p

\bigl( 
x, - x cos

\bigl( 
x\lambda  - 1

\bigr) 
\lambda 
\bigr) 
= - x cos

\bigl( 
x\lambda  - 1

\bigr) 
\forall x\in (0,1).

Now consider the sequence \{ \lambda j\} j\in \BbbN given by \lambda j := 1/j, j \in \BbbN . Then, for each j \in \BbbN ,
the regularized problem (3.13) admits a unique solution (u\lambda j

,m\lambda j
)\in H1

0 (\Omega )\times H1
0 (\Omega )

where u\lambda j
= 0 a.e. in \Omega and m\lambda j

is the unique solution of\int 
\Omega 

\nu \partial xm\lambda j\partial x\phi +m\lambda j bj\partial x\phi dx=

\int 
\Omega 

\phi dx \forall \phi \in H1
0 (\Omega ),(8.4)

where bj :=
\partial H\lambda j

\partial p [\partial xu\lambda j ] =
\partial H\lambda j

\partial p (x,0) = - x cos(jx) for all x\in (0,1). The solution m\lambda j

can be computed explicitly, in particular

m\lambda j
(x) =

1

\nu \gamma j(x)
\int 
\Omega 
\gamma j(s)ds

\biggl( \int 
\Omega 

s\gamma j(s)ds

\int x

0

\gamma j(s)ds - 
\int x

0

s\gamma j(s)ds

\int 
\Omega 

\gamma j(s)ds

\biggr) 
,

(8.5)

for x\in [0,1], where \gamma j(s) := exp( - (j\nu ) - 1x sin(jx) - (j2\nu ) - 1 cos(jx)) for s\in [0,1].
Lemma 5.4 shows that the sequence \{ m\lambda j

\} j\in \BbbN is uniformly bounded in H1
0 (\Omega ).

The Riemann--Lebesgue lemma shows that the entire sequence \{ m\lambda j\} j\in \BbbN converges
weakly to m\in H1

0 (\Omega ) which is the unique solution of\int 
\Omega 

\nu \partial xm\partial x\phi dx=

\int 
\Omega 

\phi dx \forall \phi \in H1
0 (\Omega ),(8.6)

with m given explicitly by

m(x) =
1

2\nu 
x(1 - x) \forall x\in [0,1].(8.7)

Furthermore, we also have m\lambda j
\rightarrow m in L\infty (\Omega ) as j\rightarrow \infty .

We now prove that \{ m\lambda j
\} j\in \BbbN does not converge strongly to m in the H1-norm

by direct calculation. Notice that, for each j \in \BbbN , (8.4) implies that

\partial xm\lambda j
= \nu  - 1x cos(jx)m\lambda j

 - \nu  - 1(x+ cj),(8.8)
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where cj :=  - (
\int 
\Omega 
\gamma j(s)ds)

 - 1
\int 
\Omega 
s\gamma j(s)ds \in \BbbR . It is clear that \gamma j converges uniformly

to the constant function 1 on [0,1] as j\rightarrow \infty . Therefore, cj \rightarrow  - 1
2 as j\rightarrow \infty , and

\partial x(m\lambda j  - m)(x) = \nu  - 1x cos(jx)m\lambda j (x) - \nu  - 1

\biggl( 
cj +

1

2

\biggr) 
\forall x\in [0,1].(8.9)

We then get

\int 
\Omega 

| \partial x(m\lambda j
 - m)| 2dx

= \nu  - 2

\int 
\Omega 

x2 cos2(jx)m2
\lambda j
dx - 2\nu  - 2

\biggl( 
cj +

1

2

\biggr) \int 
\Omega 

x cos(jx)m\lambda j
dx+ \nu  - 2

\biggl( 
cj +

1

2

\biggr) 2

=
1

2\nu 2

\int 
\Omega 

x2m2
\lambda j
dx+

1

2\nu 2

\int 
\Omega 

x2 cos(2jx)(m2
\lambda j

 - m2)dx+
1

2\nu 2

\int 
\Omega 

x2 cos(2jx)m2dx

 - 2\nu  - 2

\biggl( 
cj +

1

2

\biggr) \int 
\Omega 

x cos(jx)m\lambda j
dx+ \nu  - 2

\biggl( 
cj +

1

2

\biggr) 2

.

(8.10)

The convergences m\lambda j \rightarrow m in L\infty (\Omega ) and cj \rightarrow  - 1/2 as j \rightarrow \infty , together with the
Riemann--Lebesgue Lemma, imply that

lim
j\rightarrow \infty 

\int 
\Omega 

| \partial x(m\lambda j
 - m)| 2dx=

\int 
\Omega 

x2

2\nu 2
m2dx> 0.(8.11)

This shows (8.1) and thus the sequence m\lambda j does not have any subsequence that
converges strongly to m in the H1-norm.

Remark 8.2. Considering the proof above, it is easy to show that the whole

sequence
\partial H\lambda j

\partial p [\partial xu\lambda j ] = - x cos(jx) does not satisfy the precompactness hypothesis of
Corollary 4.5.

The conclusion here is that Theorem 4.1 is sharp, in general, with regards to the
weak convergence of the densities in H1, and that strong convergence is only possible
under some additional hypotheses, such as in Corollary 4.5.

8.2. A sequence of regularized problems with two subsequences that
converge strongly to different solutions. We now give an example where each
regularized problem has a unique solution, yet different subsequences of the solutions
of the regularized problems converge to different solutions of the MFG PDI. This shows
that in Theorem 4.1, we generally cannot expect convergence for the whole sequence
to a unique limit, even when each regularized problem has a unique solution.

Proposition 8.3. Let \Omega \subset \BbbR d, d \in \BbbN , denote a bounded domain with Lipschitz
boundary, and let H : \Omega \times \BbbR d \rightarrow \BbbR be given by H(x,p) = sup

\alpha \in B1(0)
\{ \alpha \cdot p\} = | p| for

all (x,p) \in \Omega \times \BbbR d. Set F \equiv 0 on L2(\Omega ), and let G \equiv 1 \in L2(\Omega ) \subset H - 1(\Omega ). There
exists a family \{ H\lambda j

\} j\in \BbbN satisfying (H5), with \lambda j \rightarrow 0 as j \rightarrow \infty , and two distinct
m1, m2 \in H1

0 (\Omega ), m1 \not =m2, such that
\bullet the pairs (0,m1), (0,m2)\in H1

0 (\Omega )\times H1
0 (\Omega ) are both solutions of (3.1);

\bullet for each j \in \BbbN , the regularized problem (3.13) with \lambda = \lambda j has a unique
solution (u\lambda j ,m\lambda j )\in H1

0 (\Omega )\times H1
0 (\Omega );

\bullet we have

m\lambda 2k+1
=m1, m\lambda 2k

=m2 \forall k \in \BbbN .(8.12)

Note that it is a trivial consequence of (8.12) that m\lambda 2k+1
\rightarrow m1 and m\lambda 2k

\rightarrow m2

as k\rightarrow \infty , in any norm.
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Proof. It is clear that the unique solution u of the HJB equation (3.1a) is simply
u = 0 in \Omega in the case where F \equiv 0 and H(x,p) = | p| . Hence, the set of solutions
to the weak MFG PDI (3.1) is a nonsingleton set that consists of all pairs (u,m)
where u = 0 a.e. in \Omega and m \in H1

0 (\Omega ) solves the KFP equation (3.1b) for some
\~b\ast \in DpH[u] = \{ b \in L\infty (\Omega ;\BbbR d) : \| b\| L\infty (\Omega ;\BbbR d) \leq LH\} . Let m1 and m2 denote the
corresponding densities for the constant vector fields b1 = (1,0, . . . ,0) \in DpH[u] and
b2 = ( - 1,0, . . . ,0)\in DpH[u].

Let \scrH \lambda , \lambda \in (0,1], denote the Moreau--Yosida regularization of H(x,p) = | p| ,
which is given by

\scrH \lambda (x,p) =

\left\{   | p|  - \lambda 
2 if | p| \geq \lambda ,

| p| 2

2\lambda 
if | p| \leq \lambda 

and
\partial \scrH \lambda 

\partial p
(p) =

\Biggl\{ 
| p|  - 1p if | p| \geq \lambda ,
p

\lambda 
if | p| \leq \lambda .

(8.13)

Consider the family of regularized Hamiltonians \{ H\lambda \} \lambda \in (0,1] defined by

H\lambda (x,p) :=\scrH \lambda (p - q\lambda ) - 
cos2(\lambda  - 1)\lambda 

2
\forall (x,p)\in \Omega \times \BbbR d,(8.14)

where q\lambda := (cos(\lambda  - 1)\lambda ,0,0, . . . ,0)\in \BbbR d for each \lambda \in (0,1]. It is straightforward to use
Lemma 3.4 to check that the assumption (H5) is satisfied by \{ H\lambda \} \lambda \in (0,1]. Indeed, the
Lipschitz continuity, convexity, and continuous differentiability of H\lambda with respect to
p all follow immediately from Lemma 3.4. Furthermore, the triangle inequality and
Lipschitz continuity (2.6), noting that LH = 1 in this example, imply that, for any
p\in \BbbR d,

| H\lambda (x,p) - H(x,p)| \leq | \scrH \lambda (x,p - q\lambda ) - H(x,p - q\lambda )| + | q\lambda | +
\lambda 

2
\leq 2\lambda ,(8.15)

where we have used the bound (3.8) and | q\lambda | \leq \lambda . Observe that H\lambda (x,0) = 0 for all
\lambda \in (0,1). Now, take the sequence \{ \lambda j\} j\in \BbbN given by \lambda j := 1/(\pi j), j \in \BbbN . Then, by
considering the regularized problem (3.13) with \lambda = \lambda j for j \in \BbbN , it is clear that the
unique solution of the regularized HJB equation (3.13a) is u\lambda j

= 0 in \Omega . Hence m\lambda j
is

the unique solution of (3.13b) where the advective vector field
\partial H\lambda j

\partial p [\nabla u\lambda j
] is given by

\partial H\lambda j

\partial p
[\nabla u\lambda j

] =
\partial \scrH \lambda j

\partial p
( - q\lambda j

) = (( - 1)j+1,0,0, . . . ,0)\in \BbbR d \forall j \in \BbbN .(8.16)

It is then clear that
\partial H\lambda j

\partial p [\nabla u\lambda j
] equals b1 for all odd j and equals b2 for all even j.

This implies (8.12).
To conclude, we now show that m1 \not = m2 in H1

0 (\Omega ). Suppose for contradic-
tion that m1 = m2 =: m in H1

0 (\Omega ). We then obtain that
\int 
\Omega 
m(b1  - b2) \cdot \nabla \phi dx =

0 \Leftarrow \Rightarrow 
\int 
\Omega 
m\partial x1

\phi dx = 0 for all \phi \in H1
0 (\Omega ). This then implies that \partial x1

m = 0 a.e. in
\Omega . But, since \Omega is bounded and m \in H1

0 (\Omega ), the Poincar\'e inequality \| m\| L2(\Omega ) \leq 
C\Omega \| \partial x1

m\| L2(\Omega ) implies that m= 0 in L2(\Omega ), which gives m1 =m2 =m= 0 in H1
0 (\Omega ).

But this contradicts (3.1b) where the r.h.s. is nonzero with G\equiv 1\in L2(\Omega )\subset H - 1(\Omega ).
Hence we see that m1 \not =m2 in H1

0 (\Omega ).

Remark 8.4. A further perspective on Proposition 8.3 is that, in general, a single
choice of regularizing sequence might not be sufficient to approximate all solutions
of the PDI. Thus, in applications to problems with nonunique solutions, it may be
necessary in some cases to consider multiple different regularizations to approximate
different solutions of the PDI.
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Remark 8.5. Let us relate this example to the discussion in section 1. Observe
that the case F \equiv 0 and H(x,p) = sup

\alpha \in B1(0)
\{ \alpha \cdot p\} = | p| (where b \equiv \alpha and f \equiv 0)

corresponds to a model of a MFG where the underlying control problem of the players
is quite degenerate, since the players' cost is independent of both the controls and the
population distribution. The players are thus entirely decoupled from one another
and are free to choose among infinitely many optimal controls, so it is natural that
there should be infinitely many solutions of the PDI. This is in stark contrast with
the regularized problems, where the differentiability of the regularized Hamiltonian
implies the uniqueness of the optimal drift (cf. with (1.12)), and thus fixes the play-
ers' dynamics. This gives a concrete illustration of some essential differences in the
structure of the Nash equilibria between MFG with differentiable Hamiltonians and
those with nondifferentiable Hamiltonians.
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