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Abstract— This paper addresses the challenges of view con-
straints in image-based visual servoing systems for tracking
dynamic targets. The unknown trajectory of moving targets
poses significant challenges to tracking systems, particularly
when targets move outside the camera’s field of view or
encounter occlusions, potentially leading to ineffective control
signals and safety risks. To address these issues, this paper
proposes a safety-critical predictive control methodology based
on robust control barrier functions. First, a predictive controller
is designed to achieve rapid and unbiased tracking while
reducing computational load. Then, a non-linear optimization
problem is formulated by combining robust control barrier
functions. Finally, simulation experiments validate the proposed
approach. The results demonstrate that the method not only
exhibits favorable dynamic performance in disturbance-free
environments but also maintains effectiveness under interfer-
ence conditions. The solution effectively addresses visual servo
target visibility issues, significantly enhances computational
efficiency, and demonstrates promising potential for engineering
applications.

I. INTRODUCTION

Visual servoing, as a technology achieving precise control
through visual feedback in dynamic environments, plays an
indispensable role in robotic control due to its accuracy and
flexibility [1], [2]. According to implementation paradigms,
visual servoing systems are generally classified into three cat-
egories [3]: position-based visual servoing (PBVS), image-
based visual servoing (IBVS), and hybrid approaches. IBVS
specifically utilizes geometric features on the image plane
(e.g., points, lines, or line segments) to design controllers
through the image Jacobian matrix, typically employing
proportional control schemes [4]. This methodology demon-
strates strong robustness against camera calibration errors
and model inaccuracies while maintaining high control pre-
cision, as it eliminates the need for calibrating the relative
pose between end-effectors and target objects [5].

A critical challenge in visual servoing emerges when
targets move outside the camera’s field of view (FOV) or
experience occlusion, potentially leading to control signal
interruptions and safety hazards [6], [7]. Model predictive
control (MPC) has gained prominence in visual servoing
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applications due to its constraint-handling capability and pre-
dictive optimization of control sequences [8], [9]. However,
dynamic target tracking introduces multiple disturbances
including target motion uncertainty, sensor noise, and model
discrepancies, which significantly degrade tracking perfor-
mance [10]. Robust MPC variants have been developed to
enhance disturbance rejection in uncalibrated visual servoing
systems operating under constrained environments [10], [11].
Nevertheless, the inherent computational complexity of MPC
implementations may compromise real-time responsiveness,
limiting their practical deployment. The MPC approach ad-
dresses this issue through offline prediction model optimiza-
tion via successive Taylor expansions, effectively reducing
computational overhead [12]. However, its inability to handle
constraint satisfaction imposes practical limitations.

Recent advancements in control barrier function (CBF)
theory have established it as a powerful framework for
addressing nonlinear system constraints [13]. The principal
strength of CBF lies in its compatibility with conventional
feedback controllers or control Lyapunov functions through
quadratic programming formulations, enabling simultaneous
preservation of system safety and control performance. Ap-
plications in visual servoing have emerged, such as the
integration of MPC with CBF to prevent target occlusion
[14], [15]. Nevertheless, standard CBF implementations re-
quire precise model knowledge, presenting challenges when
applied to disturbance-affected systems [16].

Building upon these foundations, this paper proposes a
safe IBVS control framework incorporating robust control
barrier functions. The methodology comprises three key
innovations: First, a nominal predictive controller is designed
for precise dynamic target tracking. Second, a disturbance
observer-integrated robust CBF is developed to guarantee
instantaneous safety under perturbed conditions. Finally, an
optimization framework synergistically combines the nom-
inal controller with the robust CBF, achieving balanced
consideration of tracking performance and safety constraints.
This integrated approach provides an efficient and reliable
solution for dynamic target visual servoing applications.

II. MATHEMATICAL MODEL AND CONTROL OBJECTIVE
A. Visual Servoing Kinematic Modeling

Consider a robotic system composed of a six-degree-
of-freedom (6-DOF) manipulator, equipped with a camera
mounted at its end-effector. The camera coordinate frame
Z. is defined such that the Z-axis aligns with the optical
axis, and its origin coincides with the principal point of the
image sensor.



Let P; = [X;,Y;,Z]7, i=1,...,m, denote a set of m static
3D points represented in the camera frame. Their correspond-
ing 2D image projections are given by s; = [u;,v;]7, and are

computed as
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where A denotes the camera’s focal length in pixels.

The camera’s spatial velocity is defined as v, = (v¢, @¢),
with v¢ and @¢ representing translational and angular veloc-
ities, respectively. The time derivative of the image feature
coordinates s; is related to the camera motion through

§i= LS,- Ve )

where L, is the interaction matrix associated with the i-th
feature, describing how image motion is induced by camera
velocity. Its analytical form is given by
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where Z; is the depth of the i-th point in frame .#.. The ma-
trix Ly, can be decomposed into components for translational
and rotational velocities as
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Define the tracking error

el (1), el (1),...,eL(1)]", where

ei(t):Si(t)—Sdi, i:1727"'am (5)

and s;, denotes the desired 2D image coordinates of the i-th
feature point.

B. Control Barrier Function

Control barrier functions (CBFs) provide a systematic
and mathematically rigorous mechanism for encoding safety
constraints into nonlinear control systems. These functions
enable the construction of forward-invariant sets, ensuring
that once the system’s state enters a designated safe set, it
remains within that set for all future time.

Consider a general class of control-affine nonlinear sys-
tems described by the following dynamical equation:

x= Fx) + g, ©)

where x € R" denotes the system state vector, u € R™
represents the control input, and the mappings f: R" — R”
and g: R" x R” — R™™ are assumed to be locally Lipschitz
continuous over R”. This structure is commonly encountered
in many robotic and control applications due to its generality
and analytical tractability.

To formulate safety constraints, let us define a contin-
uously differentiable scalar function A(x) : R" — R, which

characterizes a desired safe region in the state space. Specif-
ically, the safe set € C R" associated with /(x) is constructed
as:
€ ={xeR":h(x) >0},
0% = {x e R": h(x) =0}, (7)
Int(%¢) = {x € R": h(x) > 0},

where % denotes the set of all states satisfying the safety
criterion, d% its boundary, and Int(%) its interior.

Definition 1: Let € be defined as the zero-superlevel set
of a continuously differentiable function A(x) : R" — R, as
specified in (7). The function h(x) is said to be a control
barrier function for the control-affine system (6) on the set
€ if, for all x € €, the following condition holds:

sup [Lgh(x) + Loh(x)u] > —oi(h(x)), (8)
ucR™m
where Lyh(x) and Lgh(x) denote the Lie derivatives of A(x)
along the vector fields f(x) and g(x), respectively, and « :
R — R is a class-#" function ensuring constraint regularity.
Lemma 1: Suppose that h(x) qualifies as a control barrier
function for the system (6). If there exists a control policy
u=m(x) € % such that, for every state x € R", the following
inequality is satisfied:

Lyh(x) + Loh(x)7(x) > —ot(h(x)), )

then the set ¢ = {x € R" : h(x) > 0} is forward invariant
under the closed-loop system governed by u = m(x). That is,
if the initial condition x(0) € €, the state trajectory x(¢) will
remain within & for all future time ¢ > 0, thereby guaran-
teeing the satisfaction of the specified safety constraint.

C. Control Objective

Considering tracking a dynamic target, the IBVS system
can be formulated as

=L, {VC N vs,} (10)
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where v§ is the velocity of the point expressed in the camera
frame. Given that the motion trajectories of the feature points
are unknown and challenging to measure, this motion is
modeled as unknown disturbance, which can be estimated by
disturbance observer. The dynamics of the multiple feature

points § = [s1,...,5,] € R*" can be expressed as
§=Lyv.+d a1
where Ly = [LSTI,...,LSTW]T € R?™6 s the overall image

Jacobian matrix.
For system (11), this paper aims to design a secure
controller to meet the following dual objectives:

1) Under the influence of disturbances, the system can ac-
curately follow the reference feature positions, thereby
achieving excellent dynamic tracking performance;

2) When the system is subjected to disturbances, the
target is strictly maintained within the allowable field
of view while achieving occlusion avoidance, to guar-
antee safe and reliable system operation.



III. NOMINAL PREDICTIVE CONTROLLER DESIGN
A. Disturbance Observer Design

To ensure that the system can accurately track the given
reference feature points under the influence of disturbances
and guarantee safe operation of the system, it is crucial to
estimate disturbances in the system quickly and accurately.
To address this challenge, this paper constructs a disturbance
observer [17], which is specifically described as

I
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where z; is the estimates of d and k; (i =0,1) are positive
gain coefficients.

B. Nominal Predictive Controller Design

Based on the disturbance estimation information obtained
from the disturbance observer, the steady-state signals of the
IBVS system are constructed as

Vd:Lj_(S‘dle). (13)

Define the system errors as e; = s —s; and e, = v, —
v:.To ensure optimal tracking performance, the following
performance index is defined as

T
ug:%%|ma+mﬁm (14)
where T is the prediction horizon. The performance index
J(t) quantifies the tracking error over the prediction horizon
and is crucial for optimizing the control input by minimizing
the accumulated error, thereby enhancing the tracking accu-
racy and stability of the system. The tracking error e;(f + 7)
over the prediction horizon (0 < 7 < T') can be approximated
using a first-order Taylor series expansion along the system
dynamics, as follows:

es(t+ 1) ~ es(t) + tLge,(1). (15)

Neglecting the disturbance estimation error and substi-
tuting (15) into equation (14), letting dJ/de, = 0 and
d%J/de? > 0, the optimal control law can be obtained as
e = —%Ljes. Therefore, the optimized velocity controller
can be obtained by

3
Viom = —ﬁLjes—&—vd. (16)

IV. SAFETY-CRITICAL PREDICTIVE CONTROLLER
DESIGN
A. Field-of-View Constraints Using CBFs

To keep the tracked object within the FOV constraints, the
image feature points must meet the following conditions:

Umi u .
{ m”’} <8 < [ ma"}, i=1,2,....n
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where Umin, Vmin and max, Vmax specify the lowest and
topmost bounds of the image plane in pixels. Control barrier
functions are constructed to address the FOV constraints:

hi(8) = Smax — S,
1 ( ) max (1 8)
hy(8) = 8 — Smin-
where $max = [umax;Vmax]T and Spin = [umin;vmin}T' Based
on (18), the IBVS system’s FOV constrained safety sets are
constructed as

Q= {scR™|h(s) >0}, i=1,2. (19)

B. Occlusion-Free Constraints Using CBFs

In the workspace, the presence of an obstacle must be
taken into account. As the camera moves, the target object
may be occluded by the obstacle. To address this, the obstacle
is modeled as a rigid sphere. The sphere is projected as a
circle within the image plane. The center of the circle and
a point in the circumference are defined as $,1 = [Uo1;Vo1]”
and S, = [U;ve2)!. Therefore, to avoid occlusion of the
target object, the control barrier functions can be defined as

h3(s) = [|s = So1||* — l|$62 — S0t ||*, (20)

and the safety set for occlusion-free states is thus defined as

Q3 = {s; € R? | h3i(s;) > 0}. 21

According to the literature [30], if the initial state of the
system §(0) satisfies s(0) € Q; := Q) N N Q3, then the
admissible control space for Lipschitz continuous controller
rendering :

ve(s) € {ve € R| Ly hi(s)ve + Lo, hi(s)d + a(hi(s)) > 0}
(22)
where g| = Lg and g, = 1. The state s(¢) will always remain
within the safe domain ;. Here, « is an extended class %z,
function.

C. Robust CBF Design

In practical applications of IBVS systems, the direct
implementation of CBF constraints is often infeasible due
to the presence of unknown disturbances. To overcome this
challenge, we propose incorporating disturbance estimation
into the constraint design. The original constraint can be
reformulated in a practical form as

A~

ve(s) € {ve € R|Lg, hi(s)ve + Lg,hi(s)d

. (23)
— Ly hi(s)(d —d) + a(hi(s)) > 0}.

From [18] can be seen that the compensation of the distur-
bance estimation error d —d is crucial for ensuring the safety
of the system under the influence of disturbances.

Defining 19 = z0 —s and 7M1 = z1 —d. According to (12)
the error dynamics of the matched disturbance observer can
be derived as follows:

. 1,
{710 = N1 — ko|no|2sign(no), 24)

111 = —klsign(no) —d.



Construct a Lyapunov function V = £, PE,, where £, =
[|770|%Sign(n0)7n1]. According to [17], if the observer gains
ko,k1 and the matrices P and Qg of the Lyapunov function
are appropriately selected, V(x) is a quadratic and strict
Lyapunov function satisfying

. _1

V() < —[no| 2&. Or&e.

By means of Bihari’s inequality, the decay of V (x) satisfys
2

r . (26)

(25)
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Moreover, the error system (24) will converge to zero in a
finite time smaller than T

<
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Since the proposed Lyapunov function is an absolutely
continuous function of 719 and 71, and it’s positive definite
and radially unbounded:

Amin (P)[|Eel 3 <V (%) < Amax (P)|Ec]13

where ||&||5 = |no| +n7? is the Euclidean norm of &,. Further
analysis leads to

(28)

t
|771(t)| < T 1 . (29)
Apin(P) g (P)
Then, the robust CBF constrains (23) for IBVS system can
be designed as

ve(s) € {ve € R|Lg hi(s)ve + Lo, hi(s)d

(30)
+a(hi(s)) = Lg,hi(s)p (1)}
where p(¢) is a piecewise function given by
1 2
%, te [0’ TY]
pt)=19 22.r) (3D
€, t € (Ty, +o0).

Based on the analysis above, it is evident that p(r) > d —d.
From Lemma 1, it can be derived that when the control input
satisfies (30), the state s(z) will always remain within the safe
domain €.

D. Safety-Critical Predictive Controller Design

To rigorously ensure system safety while maintaining
the nominal controller’s performance objectives, this paper
develops a non-linear optimization framework:

v = argmvin |V — Vaom||? (32)

st. Lg hi(8)v+ Lg, hi(s)d + a(hi(s)) > Le, hi(8)p ().

By minimizing deviations between the implemented control
input and the nominal input, and rigorously enforcing safety
conditions derived from CBFs via linear inequality con-
straints, this non-linear optimization framework establishes a
provable equilibrium between safety guarantees and control
performance.

V. SIMULATION RESULTS AND DISCUSSION

In this section, some simulations are performed to verify
the validity and performance of the proposed controller, and
the results are compared with the MPC-CBF controller. The
simulations comprise three tasks: static visual servoing with
an obstacle, dynamic visual servoing for tracking a target
object without obstacles and dynamic visual servoing for
tracking a target object with an obstacle.

A. Simulation Configuration

The simulation environment in this study is established on
the Ubuntu 20.04 operating system, integrating the Gazebo
11 physics engine and the ROS Noetic framework. A picture
of the setup is shown in Fig. 1 The official URS robotic
arm model is loaded with calibrated dynamic parameters,
including six revolute joints and associated actuator and
sensor plugins. A virtual Intel RealSense D415 camera
model is mounted on the URS end-effector to track a 0.01
m x 0.01 m ArUco marker (ID=25) placed within the
Gazebo scene. Real-time ArUco marker detection is achieved
via the ROS aruco_ros package for image processing. The
controller, developed in MATLAB/Simulink, leverages the
ROS Toolbox to enable real-time communication with ROS,
facilitating bidirectional data exchange of joint states and
control commands between the simulation and the control
system.

URS robotic arm
model

target

Sy Q 4 obstacle

Fig. 1. Simulation configuration of visual servoing.

B. Application in Static Visual Servoing Tasks

This simulation investigates the performance of con-
strained visual servoing control in static scenarios where
both the target and obstacle remain stationary. Fig. 2 presents
temporal snapshots of the camera’s FOV under the proposed
safety-critical predictive control (ScPC) during static task
execution, with subfigures (a)-(d) corresponding to initial
configuration, intermediate operational states, and converged
steady-state conditions, respectively. The simulation results
are shown in Fig. 3, the proposed controller demonstrates
faster target tracking convergence capability compared to the
MPC method, with its error convergence curve exhibiting
smoother characteristics.

Although both methods ultimately achieve comparable
steady-state accuracy, the proposed ScPC shows superior
energy efficiency during the control process. This is mani-
fested through smaller control input adjustments, effectively



avoiding the frequent abrupt changes in control magnitude
observed in the MPC approach. Both controllers success-
fully prevent target occlusion (Figs. 3(b) and (d)) via the
CBF mechanism, validating their robustness in maintaining
visibility constraints.

&
&

(a)t=0s. (b) t=0.08 s.
(c)t=043s. (d)t=25s.

Fig. 2. Camera images of ScPC under static visual servoing tasks.
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Fig. 3. Simulations results under static visual servoing tasks. (a) Tracking
error curves eg(r) of MPC-CBF. (b) Occlusion-free CBF constraints evolu-
tion A3 (s)MPC-CBF. (¢) Tracking error curves e,(r) of ScPC. (d) Occlusion-
free RCBF constraints evolution A3 (s) of ScPC.

C. Application in Dynamic Visual Servoing Tasks

This section evaluates the controller’s performance under
two dynamic scenarios where the target’s motion is prede-
fined but completely unknown to the control system. The
experiments are designed to validate the controller’s ability
to handle unmodeled target kinematics while maintaining
tracking precision and safety constraints.

Scenario A: Unobstructed Tracking with Unknown
Motion. The target maintains a constant velocity of v, =
[0,0.05,0]" m/s during the time interval ¢ € [0,3] s, with

an intentionally introduced significant initial pose deviation
between the system state and desired target configuration.
As demonstrated in Fig. 4, comparative results reveal that
the conventional MPC controller exhibits persistent steady-
state errors during the disturbance phase (¢ € [0,1.5] s). In
contrast, the proposed predictive controller achieves precise
tracking at r = 1.5s.

Error (pixel)
Error (pixel)

1 2 3 4 5 6 0 1 2 3 4 5 6
Time (s) Time (s)
(a) (b)

Fig. 4. Simulations results under dynamic visual servoing tasks without
obstacle. (a) Tracking error curves e;(t) of MPC-CBF. (b) Tracking error
curves e(t) of ScPC.

Scenario B: Occlusion-Prone Navigation with Time-
Varying Disturbances. Under identical kinematic parame-
ters but with ideal initial state alignment, a spherical obstacle
(0.01m radius) induces feature loss during target motion.
As shown in Fig. 5, the MPC-CBF method suffers control
interruption at ¢ = 0.08s due to partial occlusion of the
ArUco marker and subsequent feature point loss. In contrast,
the proposed methodology maintains operational continuity.

295

®a

(b) t=10.08 s.

(a)t=0s.

Fig. 5. Camera images of MPC-CBF under dynaic visual servoing tasks
with obstacle.

The efficacy of the ScPC method is demonstrated in
Fig. 6(a) reveals the error convergence trajectory, and
Fig. 6(b) illustrates the temporal evolution of the RCBF
constraint /3(s), which maintains s3(s) > 0 throughout the
operation. In particular, the obstacle exits the camera’s field
of view at t =0.98s, allowing full recovery of visual features
while preserving safety guarantees.

Fig. 7 provides multitemporal visual evidence of the
controller’s robustness through sequential camera views. At
t = 0s, the system maintains stable initial tracking with com-
plete marker visibility. During active obstacle avoidance at
t = 0.08s, partial occlusion is successfully managed without
feature loss. The obstacle fully exits the FOV by t = 0.98s,
enabling immediate recovery of tracking accuracy, which
stabilizes to steady state performance by t = 1.68s.
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(a)t=0s. (b) t=0.08s.

(d)t=2s.

(c)t=0.43s.

Fig. 7. Camera images of ScPC under dynamic visual servoing tasks with
obstacle.

VI. CONCLUSION

This paper has presented a safety-critical predictive control
framework for IBVS systems operating in dynamic environ-
ments with visibility constraints. By integrating RCBFs with
generalized predictive control, the proposed methodology
has addressed two critical challenges in visual servoing:
(1) the accurate tracking of targets with unknown motion
under disturbances, and (2) guaranteed visibility maintenance
during occlusion events. The key innovations have been
in the development of a nonlinear optimization framework
that systematically reconciles control performance objectives
with safety constraints through disturbance-adaptive barrier
functions.

Future work will focus on extending the framework to
multi-obstacle environments and validating performance on
physical robotic platforms. Additional research directions
include integration with learning-based perception systems
and investigation of distributed implementation strategies for
collaborative robotic tasks.
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