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Abstract—State estimation is crucial for mobile robot naviga-
tion, enabling tasks like motion planning and obstacle avoidance.
Global Positioning System (GPS) signals are unreliable indoors
due to obstructions, Ultra-Wideband (UWB) systems offer a
robust alternative for indoor positioning. However, traditional
IMU-UWB integration methods suffer rapid degradation in accu-
racy when low-frequency UWB measurement data is unreliable,
primarily due to their dependence on the IMU kinematic model.
In this paper, we propose an enhanced localization framework
that synergizes kinematic modeling with neural network-aided
techniques to enhance the IMU process model under GPS-denied
and low-frequency measurement conditions. By embedding the
improved model within an Unscented Kalman Filter (UKF),
our approach markedly improves both single-step and multi-
step prediction accuracy. Comparatively experimental results
using a Mecanum-wheeled mobile robot demonstrate that the
proposed system not only improves localization precision but also
enhances robustness, providing a reliable solution for indoor 2D
mobile robot navigation. The dataset and code are available at:
https://github.com/YyX-ssr/MLP-Aided-UKF

Index Terms—Neural Network, Learning Aided Modeling,
Robot Localization, UKF

I. INTRODUCTION

Recent advances in robotics have automated tasks tradition-
ally performed by humans, such as visual inspection [1], [2]. In
these systems, precise state estimation is essential for naviga-
tion and obstacle avoidance, and a variety of sensors, including
cameras, radar, LiDAR, the Global Positioning System (GPS),
and Inertial Measurement Units (IMU), support this task.
However, sensor performance often degrades due to uncertain
environmental factors. For example, although GPS provides
absolute position data, its signals are susceptible to block-
age, multipath effects, and shading, rendering it unreliable
in indoor or GPS-denied environments [3]. Similarly, while
Ultra-Wideband (UWB) is well-suited for indoor applications,
it is prone to measurement loss from interference. In contrast,
IMU-based inertial navigation systems (INS) resist external
interference and consume low power, making them ideal for
integration with UWB in indoor navigation [4], [5].
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An IMU comprises a tri-axial accelerometer and gyroscope
that continuously record the body’s acceleration and angular
velocity. Using a kinematic model, these measurements yield
estimates of attitude, velocity, and position, providing crucial
components for navigation systems. However, low-cost Micro-
Electro-Mechanical Systems (MEMS) IMUs are vulnerable to
various error sources, including bias, noise, misalignment, and
scale factor inaccuracies [6]. In conventional inertial naviga-
tion, carrier attitude is obtained by integrating angular velocity,
and position is derived by double integrating the transformed
acceleration. Even minor errors quickly accumulate during
integration, causing unbounded drift and localization failure
within seconds.

IMU data is often fused with absolute measurements using
a Kalman Filter (KF) [7]. KF is popular in state estimation,
target tracking, and navigation because of its optimality for
linear systems with Gaussian noise and its straightforward
implementation [8], [9]. Its estimation process generally com-
prises two steps: a prediction step based on the system’s
process model and an update step that refines the state using
observation data [10]. In integrated navigation systems, the
IMU’s kinematic model typically serves as the process model,
while GPS/UWB measurements are used as observations to
update and correct the predicted state. However, since the IMU
kinematic model is inherently nonlinear, nonlinear KF variants
such as the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) are generally employed for improved
accuracy [11].

An accurate process model is critical for enhancing inte-
grated navigation, particularly in situations where measure-
ment data is unreliable. Classical kinematic models, grounded
in Newtonian physics, are often undermined by real-world
IMU measurement errors, such as bias, noise, and misalign-
ment, which significantly contribute to rapid inertial navigation
drift [12]. Prior efforts to mitigate this drift have focused on
specific scenarios. For example, in pedestrian dead reckoning,
the inherent periodicity of human walking is leveraged to
detect steps and estimate stride length, thereby reducing error
accumulation [13]. Similarly, the zero-velocity update (ZUPT)
method, which detects stationary periods using an IMU on a
pedestrian’s foot, can be incorporated as observational data
into the KF framework to enhance accuracy [14]. However,
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these strategies typically depend on context-specific assump-
tions that limit their broader applicability.

More recently, machine learning has shown promise in
overcoming the limitations of conventional inertial navigation.
IONet [15] pioneered this approach by employing a Long
Short-Term Memory (LSTM) network to learn location trans-
formations from raw IMU data in polar coordinates, while
RoNIN [16] adopts architectures based on ResNet, LSTM, and
Temporal Convolutional Networks (TCN) to regress velocity.
Other studies have focused on calibrating inertial sensors
via neural networks to achieve higher measurement accuracy
[17], [18]. Additionally, some works integrate learning-based
models with the KF framework; for instance, TLIO [19] uses
neural networks to estimate both displacement and uncertainty
end-to-end for the KF update step, and in [20], a TCN is
utilized to regress an agricultural robot’s linear velocity for
incorporation into the prediction step of an EKF. Despite the
superior feature extraction capabilities of recurrent neural net-
works (e.g., LSTM and GRU) and TCNs, these approaches can
undermine the Markov assumption of the KF by introducing
cross-correlations among time-series inputs, complicating the
accurate determination of the covariance matrix.

Although learning-based modeling methods have demon-
strated potential, they suffer from poor interpretability. In this
study, we propose a hybrid modeling approach that combines
deep learning with a mechanism-based model to improve the
interpretability of the system and enhance the state prediction
capability of the IMU model. Furthermore, we incorporate
this predictive model into an Unscented Kalman Filter (UKF)
framework to improve traditional integrated navigation, where
the proposed framework is shown in Fig. 1. In light of the
Markov assumption, we opted not to employ recurrent network
architectures such as LSTM or GRU. Instead, we utilized a
Multilayer Perceptron (MLP) that regresses the changes in
linear velocity and orientation angles from the last step’s state
variables and IMU measurements.

Although learning-based modeling methods have demon-
strated potential, they suffer from limited interpretability. In
this study, we propose a hybrid modeling approach that fuses
deep learning with a kinematic-based model to improve system
transparency and enhance the state prediction capability of the
IMU process model. Furthermore, we incorporate this predic-
tive model into an Unscented Kalman Filter (UKF) framework
to advance traditional integrated navigation, as shown in Fig. 1.
In light of the Markov assumption, we opted against using
recurrent network architectures such as LSTM or GRU and
instead utilized a Multilayer Perceptron (MLP) that regresses
changes in linear velocity and orientation angles from the
previous step’s state variables and IMU measurements. Our
main contributions are summarized as follows:
(1) MLPs are employed to model variations in linear velocity

and orientation, and their output is integrated with the
traditional model to yield an enhanced process model that
enhances model predictive performance.

(2) Considering the process model’s nonlinearity, we fuse
it with UKF for integrated navigation, improving both
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Fig. 1. Framework of the proposed learning-aided state estimation

accuracy and robustness of state estimation.
(3) Using a Mecanum-wheeled robot, our method is validated

to outperform traditional models in model prediction and
indoor positioning accuracy (velocity in particular).

II. PRELIMINARIES

A. INS Error Analysis

MEMS IMU measures the acceleration a and the angular
velocity ω of the body. However, these measurements suffer
from different errors [17],

ũ = (S +N)u+ b+ η (1)

where ũ ∈ R3 and u ∈ R3 represent measurement and ground
truth of an IMU; S ∈ R3×3 is the ratio between the measure-
ment and the truth, named as scale factor; N ∈ R3×3 denotes
axis-misalignment error; b ∈ R3 is zero bias, representing
measurement of accelerometer or gyroscope when IMU is
stationary; η ∈ R3 denotes measurement noise, generally
assumed to be zero-mean Gaussian white noise.

A conventional IMU motion model typically performs pre-
dictions under the assumption that inertial sensors have been
successfully calibrated. By disregarding the aforementioned
error sources, the following motion model can be established,

Rn
b (k + 1) = Rn

b (k)R
bk
bk+1

vn(k + 1) = vn(k) + an(k)dt
pn(k + 1) = pn(k) + vn(k)dt+

1
2an(k)dt

2

(2)

where subscripts n and b denote navigation frame and body
frame, respectively, while R, v, and p represent rotation
matrix, linear velocity, and position coordinates. Rn

b represents
rotation matrix from body frame to navigation frame. Here dt
and k denote sampling time and the k-th sampling interval.
The relationship between Rbk

bk+1
, an and IMU measurements

(ω̃ and ãb) is given in Eq. (3),
Rbk

bk+1
= I + sin(σ) [σ×]

σ + (1− cos(σ)) [σ×]2

σ2

σ = ω̃(k)dt
an(k) = Rn

b (k − 1)ãb(k)− gn

(3)

In the absence of corrective measures, the error rapidly
increases as it accumulates through integration.



B. Unscented Kalman Filter

UKF employs unscented transformation to estimate the
mean and variance of a distribution after passing through a
nonlinear transformation. Unlike EKF, UKF does not require
calculating the Jacobian matrix and is capable of achieving
second-order accuracy. Therefore, it has been widely applied
to nonlinear system filtering. Suppose a nonlinear system is
given in Eq. (4), where both ηk and µk are zero-mean white
noises, with Q and R being their variance matrix, respectively.
xk, zk and uk are state vector, observation and input, while
f(·) and h(·) represent the process and measurement model.{

xk+1 = f(xk,uk,ηk) ηk ∼ N(0,Q)
zk = h(xk,µk) µk ∼ N(0,R)

(4)

Then the procedure of UKF can be summarized as follows:
1) Initialization: Considering that noises are not additive,

we construct an augmented state variable and covariance
matrix,

x
(a)
k =

 xk

ηk

µk

 ,P (a)
k = diag(P k,Q,R) (5)

Set initial values for state variable and covariance matrix as

x
(a)
0|0 =

 E(x0)
0
0

 ,P (a)
0|0 = diag (P 0,Q,R) (6)

2) Model prediction: Assuming the posterior estimates
and covariance at time k are given by x

(a)
k|k and P

(a)
k|k, the

prior state estimate and covariance at time k+1 can be ob-
tained based on unscented transformation. First, sigma points
x
(i)
k , i = 0, 1, · · · , 2n+ 1, are generated from the augmented

state estimate x
(a)
k|k and covariance matrix P

(a)
k|k through the

sampling strategy defined in (7), where (·)i−n denotes the
(i− n)-th column of the matrix inside the parentheses, and n
represents the state dimension. These 2n + 1 sigma points
are subsequently propagated through the process model to
yield transformed vectors x

(i)
k+1|k = f(x

(i)
k ,uk). The prior

estimated mean xk+1|k and covariance matrix P k+1|k are then
computed using the weighting scheme specified in (8) and the
aggregation rules outlined in (9). λ, α and β are the parameters
that need to be adjusted.

x
(i)
k =


x

(a)

k|k i = 0

x
(a)

k|k + (
√

(n+ λ)P
(a)

k|k)i
i = 1 · · ·n

x
(a)

k|k − (
√

(n+ λ)P
(a)

k|k)i−n
i = n+ 1 · · · 2n

(7)

{
ψ0
m = λ

n+λ , ψ
0
c = λ

n+λ + 1− α2 + β

ψi
m = ψi

c =
1

2(n+λ) , i ̸= 0
(8)


xk+1|k =

2n∑
i=0

ψi
mx

(i)
k+1|k

P k+1|k =
2n∑
i=0

ψi
c

[
(x

(i)
k+1|k − xk+1|k)×

(x
(i)
k+1|k − xk+1|k)

T

] (9)

3) Measurement update: Analogous to the prediction step,
the update phase initiates by generating sigma points from
the prior state estimate xk+1|k and covariance P k+1|k. These
points are propagated through the measurement model h(·) to
yield transformed observation vectors z

(i)
k+1 = h(x

(i)
k+1|k) for

i = 0, . . . , 2n. The measurement mean ẑk+1 and innovation
covariance P zz,k+1 are then computed via the weighted
summation in Eq. (9). Finally, the posterior state estimate
xk+1|k+1 and its covariance P k+1|k+1 are obtained through
Eq. (10), where the cross-covariance P xz,k+1 follows Eq.
(11).

Kk+1 = P xzP
−1
z

xk+1|k+1 = xk+1|k +Kk+1(zk+1 − ẑk+1)

P k+1|k+1 = P k+1|k −Kk+1P zK
T
k+1

(10)

P xz =

2n∑
i=0

[
ψi
c(x

(i)
k+1|k − xk+1|k)

·(ẑ(i)
k+1 − ẑk+1)

T

]
(11)

III. METHODOLOGY

A. System Description

Consider a 2D scenario as depicted in Fig. 2, where
XnOnYn represents the navigation coordinate frame and
XbObYb denotes the body-fixed coordinate frame. We sim-
plify (2) by defining the system state at the kth instant as
xk =

[
Lxk

Lyk
Vxk

Vyk
θk

]T
, where Lxk

and Lyk

are the robot’s Cartesian coordinates in the navigation frame,
θk denotes the heading angle, and Vxk

/Vyk
represents the

linear velocities in the navigation frame. The system input
vector is given by ũk =

[
ãxk

ãyk
ω̃k

]T
, containing

IMU-measured two-axis accelerations (ãxk
, ãyk

) and angular
rate (ω̃k) in the body frame. It is important to note that
the input is generally contaminated by a multitude of error
sources, including measurement noise. Our objective focuses
on developing an enhanced process model with improved
error-bound characteristics.

nY
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xL nX

bO

θ

xV

bX

bY

yV

Fig. 2. Description of the system reference frame



In this study, under the assumption that the states are fully
observable, the system model can be expressed by (12), where
I5×5 is a 5th-order identity matrix.{

xk+1 = f(xk, ũk)

zk = I5×5xk + µk

(12)

B. Learning Aided Modeling
1) Modeling: In contrast to the end-to-end approach that

directly models process dynamics in the form of xk+1 =
fnet(xk, ũk), an alternative strategy involves constructing the
model based on state increments [21], expressed as xk+1 =
xk + fnet(xk, ũk). This approach is able to enhance model’s
interpretability while simultaneously reducing the demands
on data volume. Guided by this conceptual framework, we
propose the following modeling paradigm,

xk+1 = Axk +B

 ∆V̂xk

∆V̂yk

∆θ̂k



A =


1 0 dt 0 0
0 1 0 dt 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,B =


0.5dt 0 0
0 0.5dt 0
1 0 0
0 1 0
0 0 1


[
∆V̂xk ∆V̂yk

]T
= gn1(θk, ũk),∆θ̂k = gn2(ω̃k)

(13)

The functions gn1(·) and gn2(·) represent the trainable
neural networks in our architecture, corresponding to MLP1
and MLP2 as depicted in Fig. 1. We establish a decoupled
estimation framework through disjoint modeling of transla-
tional velocity and angular displacement. This model operates
through two systematic stages: First, the translational velocity
and incremental orientation changes of the agent are derived
from the neural networks’ outputs, enabling the estimation of
instantaneous velocity, orientation angular and acceleration.
Subsequently, positional displacement is calculated based on
the kinematic model.

2) Learning Components: In this study, linear velocity and
angular variation are modeled independently using two MLPs,
MLP1 and MLP2, each with two hidden layers. MLP1 takes
four inputs, the previous time step’s angular state and IMU
measurements, and processes them through hidden layers of
256 and 512 neurons, respectively, with ReLU activations to
capture nonlinear relationships. A fully connected layer then
outputs the estimated linear velocity variation. In contrast,
MLP2 accepts a single input, the previous time step’s angular
velocity measurement, and employs hidden layers with 64 and
128 neurons, respectively.

3) Loss function: During training, mean squared error
(MSE) in (14) served as the loss function, and the model was
optimized using the Adam optimizer. To mitigate overfitting,
the dataset was partitioned into training, validation, and testing
subsets, with the model achieving the best performance on the
validation set being selected as the final model.

J =
1

Nd

Nd∑
i=1

∥∥∥∥∥
[
∆Vxi

∆Vyi
∆θi

]T
−
[
∆V̂xi

∆V̂yi
∆θ̂i

]T
∥∥∥∥∥
2

(14)

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup and Training

Data collection platform is a Mecanum-wheeled mobile
robot, as shown in Fig. 3(a). This platform is equipped with a
ZED2i camera that integrates an IMU for sensor data, while
ground-truth is obtained via a motion capture system (four
optical cameras and retro-reflection markers) and managed by
a Jetson Orin NX. The IMU operates at 200 Hz, and the motion
capture system at 100 Hz. Two trajectories, a circular and
a figure-eight, each lasting approximately 160 seconds, were
designed. The figure-eight trajectory was used for training,
with the circular trajectory split equally between validation
and testing.

Fig. 3(b) shows that during model training process, the train-
ing loss continuously decreases until convergence, whereas
the validation loss begins to rise after an initial decline,
indicating the occurrence of overfitting. Consequently, the
model exhibiting the best performance on the validation set
is selected as the final model. The predictive performance of
the finalized model for lateral velocity variations in the testing
dataset is visually demonstrated in Fig. 3(c).

ZED2i camera

Optical camera

Retro-reflective markers 

(a)

(b)

(c)
Fig. 3. (a) Experimental platform, (b) Loss variation curves and (c) Prediction
for ∆Vx on testing dataset

B. Model Prediction Capability

1) Single-step Prediction: In this section, we first validate
the testing capability of the proposed model (denoted as M1).
The conventional model shown in Eq. (2) is denoted as M2.
Table I summarizes the comparative results, and demonstrates
that the proposed M1 significantly outperforms M2 in single-
step prediction, particularly in terms of linear velocity and
angular prediction accuracy.

2) Multiple-step Prediction: Considering model prediction
is important in decision making, we further test the prediction
performance of the proposed M1 against the conventional M2.
Fig. 4 shows the error distribution when predicting the state



TABLE I
MSE OF SINGLE-STEP PREDICTION FOR M1 AND M2

Lx(mm) Ly(mm) θ(rad) Vx(mm/s) Vy(mm/s)
M1 0.0314 0.0303 3.02e-7 0.0014 0.0036
M2 0.0315 0.0305 8.69e-7 3.57 2.5328

at time step k+20 using M1 and M2. It can be observed that,
compared to M2, the proposed M1 model has a lower mean
prediction error (with the distribution center closer to zero) and
a smaller variance (indicating a narrower distribution range).

Fig. 4. Distribution of prediction errors over 20 Steps

Fig.5 illustrates the variation in the mean absolute error
and variance of predictions as the number of prediction steps
increases for both M1 and M2. It can be observed that the
growth rate of both error and variance in M1 is significantly
lower than that in M2. To better visualize the impact of state
prediction errors, we take the 100-step(0.5s) prediction as an
example and plot the results (both spatially and temporally)
in Fig.6, where each estimated point represents the predicted
value obtained in 100-step based on M1 and M2. It can be ob-
served that model M1 demonstrates a significant improvement
in prediction capability compared to M2. The improvement
in multi-step prediction accuracy of the process equation
also indirectly reflects the system’s enhanced robustness in
handling measurement information loss.

C. Navigation Performance

In this section, we integrate model M1 with the UKF
for navigation and state estimation, embedding M1 into the
prediction step of the UKF. In our experiments, we assume that
the full state is observable (which is a reasonable assumption,
as the position, velocity, and attitude of a mobile robot can be
obtained through sensors such as GPS and UWB). To simulate
UWB measurements, Gaussian white noise is added to the
ground truth from Motion Capture data, and the measurement
frequency is reduced to 50 Hz. The simulated navigation
process is as follows: when UWB data is unavailable, only
IMU data is used for prediction and when UWB data is

Fig. 5. Curve of MAE variation with prediction steps, with shaded area
representing the 95% confidence interval calculated from variance

Fig. 6. Trajectory prediction performance: each state estimation point
represents the estimated value obtained from 100-step model prediction

available, it is used to update the predicted values. The final
navigation performance is shown in Fig. 7, with quantitative
results summarized in Table II.

The lack of significant improvement in position and ori-
entation estimation accuracy may be related to the parameter
settings of the process noise covariance matrix in the UKF.
However, it can still be observed that our proposed model
significantly improves the estimation of linear velocity while
maintaining comparable accuracy in position and orientation
estimation. This improvement is crucial for tasks such as ob-
stacle avoidance and path planning where trajectory prediction
is required.

V. CONCLUSIONS

This study considers the problem of mobile robot localiza-
tion and prediction by model based approach. Considering the
limited performance of classical kinematic modeling, Neural
network aided modeling is adopted to improve the modeling



Fig. 7. Comparison of IMU/UWB integrated navigation performance under
different process models and filtering algorithms

TABLE II
MAE OF STATE ESTIMATION FOR DIFFERENT METHODS

Lx Ly θ Vx Vy

M2+EKF 34.95 36.40 0.03 24.21 25.19
M2+UKF 7.35 9.72 0.03 23.09 19.37
M1+UKF 7.89 8.41 0.03 11.48 11.61

performance, where two Multilayer Perceptron (MLP) are
learned to regresses the changes in linear velocity and orienta-
tion angles. The proposed learning-aided modeling method is
validated against the classical model by a Mecanum-wheeled
mobile platform, where low-frequency UWB measurement
(Motion Capture data added with noises) and IMU are inte-
grated in UKF framework. Comparative experimental results
demonstrate that, 1) MLP can learn the variation for better
modeling; 2) the proposed learning-aided modeling provides
enhanced single-step and multiple-step model based predic-
tion; 3) the proposed modeling integrated with UKF provides
better state filtering, particularly in linear velocity estimation,
which is crucial for navigation tasks such as obstacle avoid-
ance and motion planning. Future work will further improve
the modeling performance and consider more practical exper-
imental validation including outdoor validations.
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