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 A B S T R A C T

Multimodal machine learning with missing modalities is an increasingly relevant challenge arising in various 
applications such as healthcare. This paper extends the current research into missing modalities to the low-data 
regime, i.e., a downstream task has both missing modalities and limited sample size issues. This problem setting 
is particularly challenging and also practical as it is often expensive to get full-modality data and sufficient 
annotated training samples. We propose to use retrieval-augmented in-context learning to address these two 
crucial issues by unleashing the potential of a transformer’s in-context learning ability. Diverging from existing 
methods, which primarily belong to the parametric paradigm and often require sufficient training samples, 
our work exploits the value of the available full-modality data, offering a novel perspective on resolving 
the challenge. The proposed data-dependent framework exhibits a higher degree of sample efficiency and is 
empirically demonstrated to enhance the classification model’s performance on both full- and missing-modality 
data in the low-data regime across various multimodal learning tasks. When only 1% of the training data are 
available, our proposed ICL-CA method outperforms the best baseline by 5.9%, 5.9%, 5.3% and 10.8% on 
four datasets across various missing states. Notably, our method also reduces the performance gap between 
full-modality and missing-modality data compared with the baseline. Code is available1.
1. Introduction

Humankind leverages multimodal data to make intelligent deci-
sions, such as vision, language and sound [1]. Consequently, mul-
timodal machine learning (ML) has emerged as a pivotal learning 
paradigm in the ML research community, aiming to improve the qual-
ity of decision-making by using multimodal data in various fields, 
e.g., ML-assisted healthcare [2–4] and malicious content detection [5]. 
However, a major challenge in the application of multimodal ML is the 
missing-modality issue [6–9], where some data samples do not have 
complete modalities due to challenges in the data collection process. 
For instance, in medical applications, some modalities, such as X-ray 
images [10], are more expensive and/or time-consuming to obtain 
than others, e.g., Electronic Health Records (EHRs) [11]. Therefore, a 
multimodality dataset with the missing-modality issue contains samples 
with complete modalities, i.e., full-modality data, and also samples with 
incomplete modalities, i.e., missing-modality data.
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Existing research on tackling the missing-modality challenge has 
two pathways. Before the advent of multimodal transformer [12,13], 
multimodal learning relies on explicit information fusion with features, 
the output of modality-dependent backbones. Thus, some research 
work [14] proposes to learn a parametric model to infer missing 
modalities. In the era of multimodal transformers, the modality fusion 
starts from the input layer as a single transformer can handle various 
input formats, such as vision, language and sound [15]. A recent 
work [16] proposes the missing aware prompt (MAP) to learn the 
maximum likelihood estimation for missing modalities at the token 
level. However, there are two limitations in existing research. Firstly, 
it is frequently assumed that the sample size during training is ade-
quate so a parametric model can be learned to estimate the missing 
modalities [14,16], but the sample size is not always sufficient in 
the real-world [17]. Secondly, there is a notable absence of analysis
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Fig. 1. The overview of the proposed method. (a) Assuming that each sample contains data with 2 modalities 𝑥𝑚1
𝑖  and 𝑥𝑚2

𝑖 , we get the feature 𝐻𝑖 = (𝐻𝑖
𝑚1 ,𝐻𝑖

𝑚2 , 𝑐𝑙𝑠𝑖) of the sample 
by using a pre-trained multimodal transformer, note that 𝑥𝑚1

𝑖  or 𝑥𝑚2
𝑖  may be missed. (b) We use the 𝑐𝑙𝑠 token to calculate the cosine similarity between the current sample and 

all full-modality training samples, and then retrieve the most similar 𝑄 samples. (c) We input the pooled feature of the current sample 𝐻̃𝑖 and neighbor samples 𝐻̃𝑁𝑁
𝑖  into the 

ICL module to predict the label 𝑦̂𝑖. Note that only the ICL module requires to be trained and the others are frozen. The retrieval-augmented operation is the same for both the 
training and inference processes. Note that the words ‘missing modality’ and ‘incomplete modality’, ‘full modality’ and ‘complete modality’ are used interchangeably.
concerning the performance disparity between missing- and full-
modality data on multimodal learning.

To further our understanding of the missing-modality challenge in 
the low-data regime, our paper analyzes the performance of missing- 
and full-modality data separately in various tasks and training sample 
sizes. There are two major observations and hypotheses in this paper: 
(1) The performance of existing methods drops significantly in the low-
data regime, and the potential of limited data needs to be more fully 
exploited. (2) Different tasks depend on full- and missing modality data 
to different degrees. For low-complexity tasks, the model mainly learns 
from missing-modality data [18,19], leading to higher performance on 
missing-modality data compared with full-modality ones. In contrast, 
the model performs worse on missing-modality data compared with 
full-modality ones in high-complexity tasks. Therefore, we should not 
only focus on reconstructing/improving missing-modality data. See Fig. 
2 for the empirical evidence. Motivated by our empirical observation, 
we propose a data-dependent approach based on retrieval-augmented 
in-context learning (ICL) [20,21], to reduce the performance drop of 
multimodal learning with missing modality in the low-data regime. The 
proposed method exploits the value of available data and adaptively 
enhances both missing- and full-modality samples by using the neigh-
boring full-modality samples, as Fig.  1 shows. The core logic of our 
method involves three key steps: First, we extract multimodal features 
from input samples using a pre-trained multimodal transformer, such 
as ViLT [13] accommodating cases where modalities may be missing. 
Second, we retrieve contextually similar full-modality samples from the 
training set based on cosine similarity computed using the classification 
head embeddings. Lastly, we employ an in-context learning module that 
leverages cross-attention or next-token prediction mechanisms to inte-
grate retrieved contextual features with the current sample’s features. 
This enables the model to implicitly infer missing modality informa-
tion or refine existing modalities for improved prediction accuracy. 
Consequently, the ICL module demonstrates improved performance on 
both missing- and full-modality data across hard and easy tasks, while 
concurrently diminishing the performance disparity between the two 
data types. Our experiments validate the effectiveness of the proposed 
ICL method on various datasets with extensive experiments, see Fig.  2 
and Section 4.2. Our main contributions are three-fold:

1. We investigate the data scarcity issue in missing-modality tasks 
and unveil the drawback of the existing parametric approach 
in the low-data regime, as its effectiveness often relies on a 
sufficient sample size. Our empirical study also reveals that 
the model should adaptively focus on two types of data as 
dependence on missing-modality data is not necessarily worse 
than that of full-modality ones.

2. We propose a novel data-dependent in-context learning method 
to improve the sample efficiency and benefit the learning of 
both missing- and full-modality data, where the nearest neighbor 
2 
information of full-modality data is exploited. To the best of our 
knowledge, our work is among the first to use in-context learning 
to address the challenge of missing modality in the low-data 
regime.

3. Our experiment demonstrates the effectiveness of the proposed 
ICL method on four datasets, including both medical and vision-
language multimodal learning tasks. The performance gain on 
four datasets over the best baseline in the low-data regime are 
5.9%, 5.9%, 5.3% and 10.8%.

The paper is organized as follows. Section 2 gives an overview of 
related research. Section 3 first introduces our empirical observation 
about the performance gap and learning process difference between 
missing- and full-modality data, and then elaborates on the proposed 
method. Section 4 shows the experiment results and the analysis. 
Finally, Section 5 summarizes this paper, its limitations and future 
directions.

2. Related work

Missing Modalities in Multimodal Learning. Multimodal models usu-
ally assume that the input samples have complete modalities. However, 
the problem of missing modalities exists in various applications. In ML 
for healthcare, combining EHR and X-ray as input excels in mortality 
prediction and phenotype classification task [23], but some patients do 
not have the time or financial support for X-rays. In ML with vision-
language data, a model may not receive image input from the user 
as a result of network/format issues [16]. The model fails to perform 
as expected in these situations [9,25]. Consequently, much work has 
been devoted to improving the robustness of multimodal models un-
der modal absence. [26] optimizes a joint generative-discriminative 
objective for multimodal data and labels which contain the infor-
mation required for generating data for missed modality. In [14], 
multimodal learning with severely missing modalities (SMIL) is de-
signed to reconstruct the missing modalities using modality priors and 
Bayesian Meta-Learning. [16] introduced two types of missing-aware 
prompts that can be seamlessly integrated into multimodal transform-
ers. [9] proposes a unified strategy based on multi-task optimization 
to deal with missing modalities in the transformer-based multimodal 
model. [2] employs an implicit approach based on Wasserstein dis-
tance to achieve the optimal alignment of different modalities which 
improves the robustness to input noise and missing modalities of the 
multimodal Transformer. In [27], the proposed modal complemen-
tary recovering paradigm strategically integrates both complementary 
graph-based recovery and topological low-rank adaptation mechanisms 
to enhance the effectiveness and reliability of incomplete multimodal 
learning. In much of the existing work, the parametric approach is 
adopted, which learns a model to handle samples with missing modali-
ties and only uses that model to infer the missed modalities during the 
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Fig. 2. (a) The learning curve of ICL-CA (ours) and Missing-Aware Prompt (MAP) [16] on the Food-101 dataset in the low data regime. (b) The learning curve of two methods 
on the MedFuse-I dataset. The subsampling ratio is set to be 0.01. The difference in the learning steps is due to early stopping. F means full-modality, 𝑚1 means text/EHR and 
𝑚2 means image/X-ray. During each training process, we calculate the metric of missing- and full-modality samples separately and refer to them as ‘-full’ and ‘-miss’. (c) The 
performance of the best baseline MAP and our ICL-CA on four multimodality datasets with the missing-modality issue. The 𝑦-axis shows the dataset name and missing status. The 
𝑥-axis is metrics for each dataset, AUROC for MedFuse-I, MedFuse-P and HatefulMemes, and accuracy for Food-101. On each dataset, we compute the metric for test data with full 
and missing modalities separately and show the results in dark and light color. The legend means (Method, Full/Missed-Modality). When the task complexity is low, e.g., binary 
classification tasks like HatefulMemes [22] and MedFuse-I [23], the performance of full-modality data lags behind that of missing-modality data, as fitting the training data does 
not need full-modality information. When the task complexity is high, e.g., a multi-classification task like Food-101 (101 classes) [24], the full-modality performance surpasses 
that of the missing-modality, as the task requires all modalities to adequately model the training data. Our ICL is significantly better than MAP on four datasets in four cases as 
the table below shows. See more details in Section 4.
test stage. Its drawback is that learning such a model requires sufficient 
training data so the parametric approach cannot perform well when the 
sample size is low, see Section 4.2. In contrast, our paper uses the semi-
parametric approach to deal with the missing-modality issues. In our 
approach, we enhance the current data by retrieving similar samples 
during both the training and inference phases. This strategy emphasizes 
the quality of the samples, thereby reducing reliance on sample size.
Data scarcity in transfer Learning. Multimodal learning based on pre-
training and fine-tuning has become popular [28–32]. The performance 
of the pre-trained model on the target task is highly dependent on 
the size of the fine-tuning dataset, which is particularly problematic in 
certain scenarios. For example, scarce positive samples are recorded for 
some rare diseases [33], or, a small amount of text data is available for 
some low-resource language tasks [34]. Many existing works focus on 
facilitating transfer learning under low-data situations. [35] proposes to 
select features from all layers of the source model to train a classifica-
tion head for the target domain, which matches performance obtained 
with fine-tuning on average while reducing training and storage costs. 
Similarly, [36] introduces the algorithm for the large-scale pre-trained 
models during low-data fine-tuning, which adaptively selects a more 
promising subnetwork to perform staging updates based on gradients 
of back-propagation. From the data perspective, [37] proposes a novel 
selection strategy to select a subset from pre-training data to help im-
prove the generalization on the target task. Likewise, the prototypical 
fine-tuning approach is proposed in [38], which automatically learns an 
inductive bias to improve predictive performance for varying data sizes, 
especially low-resource settings. In contrast, we explore the application 
of a data-centric approach within the domain of multimodal learning, 
specifically addressing scenarios involving missing modalities and data 
scarcity. Our work demonstrates the effectiveness of the data-centric 
approach in this novel domain.
In-context learning (ICL). ICL has emerged as a potent transfer learn-
ing approach in natural language processing (NLP), where large lan-
guage models (LLMs) leverage context augmented with a few examples 
to make predictions, circumventing the need for parameter updates 
typical in supervised learning [39]. Demonstrating versatility, LLMs 
apply ICL to perform complex tasks, including mathematical reason-
ing and commonsense answering [40]. The success of ICL in NLP 
has recently spurred its adoption in diverse modalities, such as vi-
sual [41–44], speech [45,46], and multimodal domains [47–51]. In 
the work of [52], a vision encoder trained on aligned image-caption 
3 
data represents images as sequences of continuous embeddings. This 
approach, using a frozen language model, surprisingly adapts to new 
tasks through ICL conditioning. Similarly, Flamingo [47], trained on 
extensive multimodal web corpora, showcases few-shot learning capa-
bilities via ICL. Our paper specifically targets scenarios characterized 
by missing modalities and limited data, aiming to harness contextual 
features from full-modality samples. To the best of our knowledge, our 
work is among the first to use in-context learning to address such a 
challenge, offering a novel perspective on improving sample efficiency 
and reducing the performance gap between missing- and full-modality.

3. Proposed method

We first describe the problem definition and then the existing base-
line to handle the missing-modality issue. Our empirical observation 
and the proposed method are elaborated on later.

3.1. Problem setting

We consider the multimodal learning problem with a dataset  con-
taining multimodal input samples,  can be the training/validation/
testing dataset. For notation simplicity, we assume there are two modal-
ities in the dataset, i.e.,  = {𝑥𝑚1

𝑖 , 𝑥𝑚2
𝑖 , 𝑦𝑖}𝑁𝑖=1 where the label 𝑦𝑖 ∈

{1,… , 𝐾}, but note that our framework can handle any number of 
modalities in principal. It is assumed that some samples have missing 
data for a particular modality. For example, some patients do not have 
the time or financial support for X-rays, and some images from food 
reviews failed to upload due to network/format issues. More impor-
tantly, we assume that the training set size 𝑁 is limited as a result of the 
complicated data collection process [11] and expensive human-expert 
annotations [53]. The prevalence of missing modalities and limited 
data within our problem context is a common occurrence in critical 
domains, such as medical data analysis, thus requiring immediate 
resolution [54,55].

3.2. Empirical observations in the low-data regime

Fig.  2-a1 and b1 show the learning curve of the strong baseline MAP 
on two datasets with missing modalities. A discernible divergence is 
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evident in the training curve of full versus missing modalities in the 
two tasks. For a relatively straightforward task, i.e., MedFuse-I (binary 
classification task), the training AUROC of full-modality data is lower 
than that of missing-modality data in many learning steps. In contrast, 
for the more complex Food-101 dataset (a multi-classification task with 
101 classes), the trend is reversed, where the full-modality data have 
better performance. This observation implies that whether missing-
modality data are harder to learn than full-modality data depends 
on the task complexity. Note that although a similar observation is 
shown in [19], our work contributes by unveiling this phenomenon in 
the training of a multimodal transformer model, instead of the joint 
encoder training in [19]. This insight leads us to conjecture that only 
focusing on reconstructing information for the missing modalities is not an 
optimal solution, as the missing-modality data are not necessarily more 
difficult to learn than full-modality data. Consequently, we propose 
an ICL-based approach, where each sample, regardless of its modal-
ity completeness, adaptively benefits from its fusion with neighbor 
full-modality samples. The benefit of ICL is demonstrated in the ICL 
learning curve of Fig.  2-a2 and b2, where the generalization of both 
data types is improved.

3.3. Borrowing treasures from your neighbors: A semi-parametric approach

Unlike parametric methods, we adaptively augment full- and
missing-modality samples through in-context learning by a limited 
number of parameters, which fully exploits the value of available data.
The proposed Borrowing Treasures from Your Neighbors method.
In-context learning enables LLMs to perform tasks by conditioning an 
input prompt with exemplar examples without the need for parameter 
optimization. Drawing inspiration from it, we introduce the method 
titled Borrowing Treasures from Your Neighbors. This approach lever-
ages similar data with full modalities to improve the performance on 
data containing full and missing modalities, aiming to alleviate the 
challenges posed by missing modalities and data scarcity. The reason 
why we only retrieve full-modality training data is that the missing-
modality data need a reference of full modalities to implicitly infer 
the missed modalities, and the full-modality features can be fused with 
other full-modality ones to improve the generalization. Table  5 shows 
the strength of only using full-modality neighbors compared with using 
all training data and only missing-modality data.

As shown in Fig.  1, for each sample {𝑥𝑚1
𝑖 , 𝑥𝑚2

𝑖 , 𝑦𝑖
}

, the pre-trained 
multimodal transformer 𝑓𝜃X  infers the feature 𝐻𝑖 including features 
for 𝑥𝑚1

𝑖 , 𝑥𝑚2
𝑖  and a CLS feature 𝑐𝑙𝑠𝑖 by 𝐻𝑖 = {𝐻𝑖

𝑚1 ,𝐻𝑖
𝑚2 , 𝑐𝑙𝑠𝑖} =

𝑓𝜃X (𝑥
𝑚1
𝑖 , 𝑥𝑚2

𝑖 ),𝐻𝑖
𝑚1 ∈ R𝐿1×𝑑 ,𝐻𝑖

𝑚2 ∈ R𝐿2×𝑑 , 𝑐𝑙𝑠𝑖 ∈ R1×𝑑 , where 𝐿1 and 
𝐿2 are the number of tokens of embedded 𝑥𝑚1

𝑖  and 𝑥𝑚2
𝑖 , respectively. 

𝑑 is the embedding dimension. Based on the extracted features, the 
most common approach is to directly train a classifier 𝑓𝜃c  to predict 
the labels 𝑦̂𝑖 = 𝑓𝜃c (𝐻𝑖

𝑚1 ,𝐻𝑖
𝑚2 , 𝑐𝑙𝑠𝑖). When there is missing-modality 

data, we follow MAP [16] to use default tokens to fill those missing 
tokens, see Section 4 for details. Then we retrieve the most similar 
𝑄 samples 𝐻𝑖

𝑁𝑁 = {𝐻𝑚1
𝑖,𝑞 ,𝐻

𝑚2
𝑖,𝑞 , 𝑐𝑙𝑠𝑖,𝑞}

𝑄
𝑞=1 from the training samples 

with full modalities, where the features are arranged in descending 
order according to the similarity. The similarity is determined by cosine 
similarity and calculated with the 𝑐𝑙𝑠 tokens in our implementation. 
Finally, we design the ICL module to predict labels from the mean-
pooled feature 𝐻̃𝑖 of the current sample and the mean-pooled retrieved
context 𝐻̃𝑁𝑁

𝑖 .

3.4. In-context module design

Our proposed method does not update/add any parameters in the 
pre-train multimodal model. During the training phase, we freeze all 
the parameters 𝑓𝜃X  of the multimodal transformer (including the input 
embedding layers). We only update the parameters of the ICL module.

Next, we introduce the details of the ICL module. Transformer-
based structures are shown to be capable of in-context learning [39,56]. 
4 
Inspired by them, we compare two configurations of ICL based on 
transformer: ICL by cross-attention and ICL by next-token prediction. 
For ease of explanation, we assume that 𝑁 = 2 and use blocks with 
different colors to represent tokens for different modalities.
ICL by cross attention (ICL-CA). One approach to perform ICL is 
to update the current sample’s feature using the cross attention with 
nearest neighbor (NN) samples as keys, as Fig.  3(a) shows. The cross 
attention function 𝑓𝜃CA  is trained to minimize the classification loss 
using the classification token, i.e., 
̂𝑐𝑙𝑠𝑖 = 𝑓𝜃CA (𝐻̃𝑖, 𝐻̃

𝑁𝑁
𝑖 ),𝓁(𝑖)

CA = 𝓁cls( ̂𝑐𝑙𝑠𝑖, 𝑦𝑖), (1)

where 𝓁cls means a classification loss such as cross-entropy and 𝓁(𝑖)
CA

is the loss value for the 𝑖th sample by ICL-CA method. In the cross 
attention module, the sample interacts with the tokens from similar 
full-modality samples, and thus implicitly infers missing modalities for 
missing-modality samples or refines the features for full-modality ones. 
We give more details of ICL-CA in Section 4.1.
ICL by next-token prediction (ICL-NTP). Another way to apply ICL is 
to implement the next-token prediction by transformer decoder, which 
is shown in Fig.  3(b). Write the input of the transformer decoder 
[𝐻̃𝑁𝑁

𝑖 ; 𝐻̃𝑖] as

[ℎ(1)𝑖,1 ,… , ℎ(𝑇 )𝑖,1 , 𝑐𝑙𝑠𝑖,1;… ;ℎ(1)𝑖,𝑄,… , ℎ(𝑇 )𝑖,𝑄 , 𝑐𝑙𝑠𝑖,𝑄; (2)

ℎ(1)𝑖,𝑄+1,… , ℎ(𝑇 )𝑖,𝑄+1, 𝑐𝑙𝑠𝑖,𝑄+1],

where ℎ(𝑡)𝑖,𝑞 , 𝑞 ∈ {1,… , 𝑄 + 1}, 𝑡 ∈ {1,… , 𝑇 } is the 𝑡th token of the 𝑞th 
neighbor (the 𝑄 + 1th neighbor is the current sample itself). 𝑐𝑙𝑠𝑖,𝑞 , 𝑞 ∈
{1,… , 𝑄+1} is the 𝑐𝑙𝑠 token of the 𝑞th neighbor. The decoder function 
𝑓𝜃(NTP)  is trained to predict the next token in an auto-regressive way, 
i.e.,

ℎ̂(𝑡)𝑖,𝑞∕ ̂𝑐𝑙𝑠(𝑡)𝑖,𝑞 = 𝑓𝜃NTP (ℎ
(1)
𝑖,1 ,… , ℎ(𝑡−1)𝑖,𝑞 ), (3)

𝓁(𝑖)
NTP = 𝜆NTP

𝑄+1
∑

𝑞=1

𝑇
∑

𝑡=1
(ℎ̂(𝑡)𝑖,𝑞 − ℎ(𝑡)𝑖,𝑞)

2 +
𝑄+1
∑

𝑞=1
𝓁cls( ̂𝑐𝑙𝑠𝑖,𝑞 , 𝑦𝑖,𝑞), (4)

where 𝜆NTP = 0.1 is an adjustable hyperparameter to introduce the 
loss of feature reconstruction. 𝑦𝑖,𝑞 is the label of the 𝑞th neighbor. 
𝓁(𝑖)
NTP is the loss value for the 𝑖th sample by ICL-NTP method. While 
̂𝑐𝑙𝑠𝑖,𝑄+1 is used to predict 𝑦̂𝑖, we incorporate other tokens (ℎ’s) in the 
loss computation to improve the prediction ability of ICL-NTP. This 
approach ensures that the outcomes of prior predictions continuously 
inform the subsequent token prediction, compelling the current sample 
to assimilate the rich context provided by its neighbors, i.e., each 
prediction is learned from the accumulation of preceding ones. The 
detailed settings are described in Section 4.1. Note that the reason why 
we explore different ICL configurations is to provide a comprehensive 
understanding of the in-context learning in our problem setting.

4. Experiment

We first introduce the experimental settings and then present the 
experimental results of our methods and baselines on four datasets, 
demonstrating the effectiveness of our method in missing modality and 
low-data tasks.

4.1. Experimental setting

Datasets. We follow existing works using two-modality datasets for a 
standard comparison [16]. Specifically, we use two real-word medical 
multimodal datasets containing EHR and X-ray images, i.e., MedFuse-
In-hospital mortality (MedFuse-I) [23] and MedFuse-Phenotype
(MedFuse-P) [23], and two general vision-language datasets (Hateful 
Memes [22]) and UPMC Food-101 [24] in our experiment. The details 
of each dataset are in Appendix  A. 
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Fig. 3. The illustration of two ICL approaches. (a) ICL by cross attention. (b) ICL by next-token prediction. The yellow and green tokens denote features of two different modalities 
and the blue token is the 𝑐𝑙𝑠 token.
Baseline. We compare our method with the five strong baselines to 
tackle the missing-modality issue in multimodal transformers. These 
baselines are divided into two categories according to the range of 
fine-tuned parameters.

1. Full-parameter fine-tuning. Two methods are involved with full-
parameter fine-tuning.

• Traditional full-parameter fine-tuning (FT-A) [57]. All pa-
rameters of the pre-trained model are fine-tuned on the 
target dataset.

• Wasserstein modality alignment (WMA) [2]. WMA im-
plicitly employs Wasserstein distance for optimal modal-
ity alignment, enhancing the multimodal Transformer’s 
robustness to input noise and missing modalities.

2. Partial-parameter fine-tuning. Three baselines are involved with 
partial-parameter fine-tuning.

• Traditional partial-parameter fine-tuning (FT-C) [58]. Only 
the classifier of the pre-trained model is fine-tuned on the 
target dataset which is equivalent to removing the ICL 
module from our proposed method. This practice is widely 
adopted in transfer learning to balance performance and 
computational complexity.

• Missing-aware prompts (MAP) [16]. In this method, empty 
prompt tokens are initialized to enable cross-layer inter-
actions to learn effective instructions. Only prompt to-
kens and final classification layer parameters are updated 
during training.

• Modal complementary recovering (MCR) [27]. MCR strate-
gically integrates both complementary graph-based recov-
ery and topological low-rank adaptation mechanisms to en-
hance the effectiveness and reliability of incomplete mul-
timodal learning.

Since our proposed method does not involve fine-tuning the pre-trained 
model, we mainly compare it with the partial-parameter fine-tuning 
baselines.

Metrics. We set evaluation metrics based on the specific task type 
associated with each dataset. For binary classification tasks (MedFuse-I 
and Hateful Memes) and multi-label classification task (MedFuse-P), we 
adopt AUROC following [16,23]. For the multi-class classification task 
(Food-101), accuracy is chosen following [16]. All of these metrics are 
larger to represent better performance.
Input data processing. Please see the details of input data processing 
in Appendix  A.
Pretrained Multimodal Transformer. We use the pre-trained multi-
modal transformer, ViLT [13], to extract features following [16]. Please 
see the details of the pretrained multimodal transformer for different 
tasks in Appendix  A.
ICL module settings. We use a 2-layer transformer and 4 context 
samples. We choose the loss function of the ICL module according to 
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the task type. Specifically, for binary classification tasks (MedFuse-I 
andHateful Memes) and multi-label classification task (MedFuse-P), we 
select binary cross-entropy loss by following [16,23]. For the multi-
class classification task (Food-101), we use cross-entropy loss by fol-
lowing [16]. Please see the details of ICL module settings in Appendix 
A.

Setting of Missing Modalities. For real-world datasets MedFuse-I 
and MedFuse-P, both of them have missing modalities during data 
collection: 74% and 82% of patients have missing X-rays, respectively 
(we keep this missing status instead of artificially creating new missing 
settings in all experiments to simulate real-world application scenarios). 
For the other three tasks, we extend the setting in [16] and design 
six missing statuses to comprehensively evaluate all methods: (1) 30% 
samples have complete modalities and 70% samples are missing im-
ages, (2) 30% samples have complete modalities and 70% samples are 
missing texts, (3) 30% samples have complete modalities, 35% samples 
are missing images and 35% samples are missing texts, (4) 50% samples 
have complete modalities and 50% samples are missing images, (5) 
50% samples have complete modalities and 50% samples are missing 
texts and (6) 50% samples have complete modalities, 25% samples are 
missing images and 25% samples are missing texts.
Subsampling. We subsample a full dataset to simulate a low-data 
downstream task. For medical data, we subsample the training dataset 
to 0.01, 0.02, 0.04, 0.1, 0.2, 0.4. For the other two tasks, we subsample 
the training dataset to 0.01, 0.02, 0.04, 0.1. Note that subsampling 
operation is only performed on training set and we use the same test 
sets for all experiments.  To ensure a fair comparison, we maintain 
the missing status during subsampling. For each downsampling setting, 
we randomly sample five times to conduct experiments and report the 
mean value as the final result. We use 𝑟𝑠𝑢𝑏 to refer to the subsampling 
ratio in the later content.

4.2. Main results

Table  1 presents quantitative results across a range of scenarios, 
where the target dataset’s downsampling ratio 𝑟𝑠𝑢𝑏 is 1%. See Appendix 
B for the performance of all downsampling ratios. From Table  1, 
Appendix  B, we draw the following observations. (1) Across various 
datasets and scenarios of missing data, a consistent trend emerges: 
With sufficient target dataset size (notably for 𝑟𝑠𝑢𝑏 > 0.1), WMA 
and FT-A exhibit superior performance, attributed to the update of 
all parameters in the target domain. WMA consistently demonstrates 
superior performance, which we attribute to its use of grid search 
to determine the optimal degree of modality alignment, effectively 
mitigating the impact of missing modalities. MAP and MCR follow 
closely, achieving competitive results by updating fewer parameters. 
In contrast, when the target data is limited, our proposed ICL method, 
particularly ICL-CA, demonstrates remarkable efficacy (especially for 
𝑟𝑠𝑢𝑏 ≤ 0.1), surpassing most baseline approaches, even full-parameters 
fine-tuning results. This trend intensifies as 𝑟𝑠𝑢𝑏 decreases. In addition, 
we notice that MAP is superior to MCR in almost all experiments, so 
we mainly compare ICL with MAP later. (2) We separately calculate the 
performance of the samples with complete modality versus the samples 
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Table 1
Quantitative results on the MedFuse-I, MedFuse-P, Food-101, and HatefulMemes datasets under various modality-missing scenarios (here we show the result at 𝑟𝑠𝑢𝑏 = 0.01, see 
Appendix  B for all sample sizes.) The bold number indicates the best performance. F means full-modality, 𝑚1 means text/EHR and 𝑚2 means image/X-ray. In this scenario, our 
proposed ICL-CA method outperforms the best partial-parameter fine-tuning method MAP by 5.9%, 5.9%, 5.3%,10.8% on four datasets (we calculate the improvement of AUROC 
for Medfuse-I and Medfuse-P, and the average improvement for other two datasets under all missing setting).
 Datasets Missing state Metric ICL-CA ICL-NTP WMA FT-A FT-C MAP MCR  
 MedFuse-I 26% F, 74% 𝑚1 AUROC 0.750 0.737 0.722 0.719 0.702 0.691 0.683  
 MedFuse-P 18% F, 82% 𝑚1 AUROC 0.577 0.556 0.533 0.524 0.512 0.518 0.512  
 HatefulMemes 30% F, 70% 𝑚2

30% F, 70% 𝑚1
30% F, 35% 𝑚2, 35% 𝑚1
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚2, 25% 𝑚1

AUROC 0.576
0.577
0.593
0.602
0.611
0.623

0.565
0.576
0.583
0.591
0.609
0.618

0.542
0.552
0.546
0.571
0.592
0.605

0.537
0.548
0.539
0.568
0.581
0.595

0.542
0.540
0.532
0.579
0.574
0.587

0.528
0.531
0.529
0.552
0.558
0.567

0.519
0.527
0.518
0.547
0.555
0.554

 

 Food-101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚2, 35% 𝑚1
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚2, 25% 𝑚1

Accuracy 0.312
0.342
0.332
0.351
0.388
0.363

0.317
0.327
0.321
0.357
0.369
0.362

0.261
0.279
0.265
0.294
0.314
0.319

0.250
0.265
0.256
0.291
0.313
0.308

0.222
0.243
0.229
0.273
0.283
0.279

0.222
0.247
0.231
0.279
0.287
0.282

0.212
0.225
0.219
0.253
0.279
0.260

 

Fig. 4. The performance of MAP and ICL-CA on MedFuse-I and MedFuse-P when using different training set sizes. Our proposed ICL method is highly competitive under low data 
cases (𝑟𝑠𝑢𝑏 from 0.01 to 0.1). Crucially, our approach enhances the performance in both full- and missing-modalities, outperforming the best baseline MAP.
with incomplete modality in each experiment, displayed in Figs.  4 and
5 (due to limited space, we only show the results of ICL with the 
best partial-parameter fine-tuning baseline MAP. For meeting status, 
we show the results of the first three settings). A notable performance 
difference is observed between complete and missing modalities across 
tasks. In simpler binary classification tasks, such as MedFuse-I and 
HatefulMemes, the performance with full-modality information falls 
behind that achieved with missing modalities, indicating that complete 
modality data is not always necessary for fitting the training data. In 
contrast, for more complex tasks, such as the multi-label classification 
in MedFuse-P and the multi-class classification in Food-101, the full-
modality data exhibit dominant performance. Our ICL method shows 
remarkable adaptability under these varying conditions. Furthermore, 
we observe that ICL reduces almost all the performance gap between 
the two modalities, as detailed in Table  2.

4.3. Ablation study

Performance on task with 3 modalities. We conduct an experiment 
on the MOSEI dataset [59]. We selected Mean Absolute Error (MAE) 
as the metric, where smaller values indicate better performance. 𝑚1, 
𝑚2, and 𝑚3 refer to the text, vision, and audio modalities, respectively. 
We set the missing rate for each modality to 70% and 𝑟𝑠𝑢𝑏 < 0.1. We 
compare ICL-CA with the best full-parameter fine-tuning baseline WMA 
and the best partial-parameter fine-tuning baseline MAP. The results in 
3 demonstrate the superiority of our proposed ICL-CA method.
6 
ICL by Masked Feature Modeling (ICL-MF). We explore the efficacy 
of ICL by employing masked feature modeling with a transformer 
encoder. In this approach, we randomly mask a certain number of the 
input tokens with the mask tensor (𝑐𝑙𝑠𝑖 is forced to be masked) and 
calculate the loss separately. For feature tokens 𝐻 , we calculate the 
MSE loss between the reconstructed token and the original token. For 
𝑐𝑙𝑠 tokens, we train a classifier and compute the loss of the output of 
the classifier concerning the ground-truth labels. The results of these 
experiments are in Table  4. We compare the performance of ICL-
MF against ICL-CA, ICL-NTP and MAP. This comparison is conducted 
across four distinct dataset settings: MedFuse-I, MedFuse-P, Food-101 
(comprising 30% F and 70% 𝑚1), and HatefulMemes (with the same 
missing state as Food-101). Additionally, we evaluate them under two 
subsampling scenarios, specifically at 𝑟𝑠𝑢𝑏 of 0.01 and 0.1.

Table  4, reveals that ICL-MF either underperforms or marginally 
surpasses ICL-NTP and has a clear gap with ICL-CA across all tested 
settings. It is speculated that this outcome stems from the intrinsic 
nature of ICL-MF’s use of self-attention, which treats each token uni-
formly. This approach differs from the mechanism employed in cross 
attention and next-token prediction, which inherently distinguishes 
between current and similar samples. However, it is noteworthy that 
ICL-MF demonstrates a significant performance advantage over the 
MAP approach.
The Impact of the Number of Neighbors 𝑄. We examine the influence 
of the number of neighbors on our ICL-CA, as depicted in Fig.  6a. 
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Fig. 5. The performance of MAP and ICL-CA on HatefulMemes and Food-101 when using different training set sizes. The performance of our ICL-CA is much better than that of 
best baseline MAP in the low-data regime (𝑟𝑠𝑢𝑏 from 0.01 to 0.1).
Table 2
The relative performance gap between missing-modality and full-modality data on four datasets and all missing states under 𝑟𝑠𝑢𝑏 = 0.01. Bold number indicates the best performance. 
In most of the settings, our proposed ICL-CA shows smaller relative gap compared to the baseline MAP. ICL-CA’s averaged relative performance gap (18.6%) is lower than that of 
MAP (24.4%). 
 Dataset Missing state Metric ICL-CA MAP

 Missing 
modality

Full
modality

Relative
gap (%)

Missing 
modality

Full
modality

Relative
gap (%)

 

 Medfuse-I 26% F, 74% 𝑚1 AUROC 0.769 0.689 11.6 0.719 0.632 13.8  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.563 0.579 2.8 0.507 0.531 4.7  
 Hateful
Memes

30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

AUROC 0.577
0.591
0.569
0.588
0.623
0.615

0.578
0.572
0.646
0.619
0.600
0.636

0.2
3.3
13.5
5.3 
3.8 
3.4

0.521
0.576
0.505
0.520
0.573
0.517

0.551
0.513
0.570
0.579
0.531
0.584

5.8
12.3
12.9
11.3
7.9
13.0

 

 Food101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2
50% F, 50% 𝑚2
350% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

Accuracy 0.298
0.311
0.264
0.320
0.357
0.297

0.344
0.414
0.435
0.393
0.442
0.465

15.4
33.1
64.8
22.8
23.8
56.6

0.215
0.229
0.152
0.232
0.234
0.188

0.240
0.290
0.251
0.282
0.335
0.360

11.6
26.6
65.1
21.6
43.2
91.5

 

 Average 18.6 24.4  
Table 3
Performance of ICL-CA, WMA and MAP on MOSEI dataset under 𝑟𝑠𝑢𝑏 < 0.1. MAE is the metric, where smaller values indicate better
performance.
 Method Missing rate 𝑟𝑠𝑢𝑏 = 0.01 𝑟𝑠𝑢𝑏 = 0.02 𝑟𝑠𝑢𝑏 = 0.04  
 ICL-CA 70% 𝑚1 missed 

70% 𝑚2 missed
70% 𝑚3 missed

1.001
0.985
1.016

0.837
0.834 
0.865

0.829
0.827 
0.857

 

 WMA 70% 𝑚1 missed 
70% 𝑚2 missed
70% 𝑚3 missed

1.063
0.990
1.096

0.892
0.876
0.899

0.851
0.847 
0.872

 

 MAP 70% 𝑚1 missed 
70% 𝑚2 missed
70% 𝑚3 missed

1.128
1.058
1.224

1.113 
1.003 
1.159

0.998
0.972 
1.068

 

In this analysis, we vary the number of neighbors (1, 2, 4, 8, 16) 
and observed their effects on two datasets, MedFuse-I and Food-101, 
under 𝑟𝑠𝑢𝑏 of 0.1 and 0.01. Our findings indicate a marked performance 
improvement when the number of neighbors is increased from 1 to 4 in 
all experiments. However, further increases in the number of neighbors 
do not sustain this upward trend in performance. Therefore, we use 
𝑄 = 4 in our experiment to strike a balance between computational 
efficiency and efficacy.
7 
The Effect of Pooled Feature Length 𝑇 . We assess the impact of 
varying pooled feature lengths (the number of pooled feature tokens in 
each sample) on our ICL-CA, as illustrated in Fig.  6b. Pooled features of 
greater length can provide more comprehensive feature information but 
concurrently increase computational demands. We test pooled feature 
lengths of 0, 4, 8, 16, and 32 under 𝑟𝑠𝑢𝑏 of 0.01 and 0.1 in the MedFuse-
I and Food-101 datasets. A pooled feature length of 0 implies reliance 
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Table 4
Comparison of ICL-CA, ICL-NTP, ICL-MF and MAP under different datasets. The bold number indicates the best performance.
 Datasets Metric 𝑟𝑠𝑢𝑏 = 0.01 𝑟𝑠𝑢𝑏 = 0.1

 ICL-CA ICL-NTP ICL-MF MAP ICL-CA ICL-NTP ICL-MF MAP  
 MedFuse-I AUROC 0.750 0.737 0.733 0.691 0.793 0.789 0.791 0.788 
 MedFuse-P AUROC 0.577 0.556 0.543 0.518 0.619 0.612 0.613 0.614 
 HatefulMemes
30% F, 70% 𝑚1

AUROC 0.577 0.576 0.561 0.531 0.617 0.612 0.608 0.586 

 Food-101
30% F, 70% 𝑚1

Accuracy 0.342 0.327 0.326 0.247 0.625 0.619 0.564 0.489 
Fig. 6. Comparison of the effect of the number of neighbors and the pooled feature length in the ICL-CA model. (a) Comparison of the effect of the number of neighbors. (b) 
Comparison of the effect of pooled feature length. We suggest setting the number of neighbors to 4 and the pooled feature length to 8.
Table 5
Performance of ICL-CA by different groups for retrieving neighboring samples under 𝑟𝑠𝑢𝑏 = 0.01. NN-all, NN-full and NN-miss refer to using all 
training data, full-modality data and missing-modality ones respectively, in the retrieval process. 
 Datasets Missing state Metric NN-all NN-full NN-miss  
 MedFuse-I 26% F, 74% 𝑚1 AUROC 0.732 0.750 0.721  
 MedFuse-P 18% F, 82% 𝑚1 AUROC 0.553 0.577 0.542  
 Hateful-
Memes

30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚2, 35% 𝑚1

AUROC 0.549
0.569
0.575

0.576
0.577
0.593

0.523
0.553
0.566

 

 Food-101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚2, 35% 𝑚1

Accuracy 0.294
0.346
0.266

0.312
0.342
0.281

0.265
0.311
0.247

 

solely on the 𝑐𝑙𝑠 token from all samples for ICL. A substantial increase 
in performance is observed when the pooled feature length is increased 
from 0 to 8. When the pooled feature length exceeds 8, the gain in 
performance becomes negligible. Thus, we set the pooled feature length 
to 8 in this paper.
Groups for retrieving neighboring samples. We compare different 
groups of samples in training datasets for retrieving neighboring sam-
ples, i,e. all the samples, full-modality samples and missing-modality 
samples. We select the ICL-CA method under 𝑟𝑠𝑢𝑏 = 0.01 and three 
missing settings for this experiment, as shown in Table  5. It shows that 
employing samples with full modality as the retrieval group yields su-
perior results. This observation indicates that our proposed ICL method 
can effectively utilize the context provided by the full-modality sam-
ples. In addition, using full-modality samples as neighbors enhances 
computational efficiency due to the reduced sample size of neighbors.
Inference Time.  One major concern for the retrieval-based approach 
is the inference latency. We test the inference time of ICL-CA and MAP 
on MedFuse-I. We set the batch size to 1 and record the inference time 
for 100 batches. The average inference time of ICL-CA is 34.41 ms 
with a std of 4.52 ms. In contrast, MAP has a mean inference time 
of 40.59 ms and a std of 5.40 ms. The difference in inference time is 
because MAP has a larger number of tokens (missing-aware prompts) 
in the transformer.

5. Conclusion

This paper investigates a pivotal challenge in multimodal learning: 
missing modalities in the low-data regime. Our analysis examines 
the learning process of both full and missing modalities across tasks 
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of various complexity. Stemming from our findings, we introduce a 
semi-parametric, retrieval-augmented in-context learning framework to 
address the challenges. This approach is designed to condition each 
sample with neighboring full-modality data. The effectiveness of our 
method is corroborated across diverse datasets, including medical and 
vision-language prediction tasks. Remarkably, our approach achieves 
an average performance boost of 5.9%, 5.9%, 5.3% and 10.8% on four 
datasets over the best baseline in the low-data regime. Furthermore, 
it effectively narrows the performance disparity caused by modality 
absence.
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Appendix A. Experimental settings

Details of Input data processing. For MedFuse-I, we use linear embed-
ding to map EHR to token embeddings and the number of embedded 
EHR tokens is 48. The number of tokens from X-ray image patches is 
144. For MedFuse-P, the token numbers are 96 and 96 for EHR and 
X-rays. The maximum length of text inputs is 512 for the Food-101 
task and 128 for Hateful Memes, and the image processing of the input 
images is the same as [16].
Details of Pretrained Multimodal Transformer.We use the pre-
trained multimodal transformer, ViLT [13], to extract features fol-
lowing [16]. For medical data, we use a pre-trained ViLT model and 
fine-tune all model parameters on one dataset and then use the fine-
tuned model on the other dataset. The reason is that there is a huge 
gap between the pre-training data, i.e., images and texts, and the 
downstream data, i.e., EHR and X-ray. Thus, fine-tuning all model 
parameters helps the model to adapt to the medical data. For the Food-
101 task and Hateful Memes, we directly use the ViLT model since there 
is no such domain gap as in the medical data. For medical datasets, 
we initialize two kinds of empty tokens and update them in the fine-
tuning phase, and then use these tokens on another dataset to represent 
the missing modality. For Food-101 and HatefulMemes datasets, if the 
image is missing, we create an image with all pixel values equal to one 
as dummy input, and if the text is missing, we use an empty string as 
dummy input by following [16].
Details of ICL module settings.We use a 2-layer transformer and 
4 context samples. For computational efficiency, we pool the feature 
tokens 𝐻 from ViLT before the input into ICL. The number of pooled 
tokens is 8. Before the training/testing process, we saved the features 
inferred by the pretrained multimodal transformer for all full-modality 
samples in the training set. Then, for each input sample, we first obtain 
its features by the pretrained multi-modal transformer and only use the 
𝑐𝑙𝑠 token to retrieve neighbors through the saved features. Finally, the 
9 
features of the current sample with its neighbors are input into the ICL 
module for classification. Note that we only use full-modality training 
data during the NN search so the computational cost is much less than 
using all training data.
Details of datasets. The details of each dataset are as follows:
∙ MedFuse-In-hospital mortality (MedFuse-I) [23]. This dataset contains 
EHR and X-ray data for each patient. The target of this binary classifi-
cation task is to predict in-hospital mortality after the first 48 h spent in 
the ICU. The EHR is time-series data with 17 clinical variables, among 
which five are categorical and 12 are continuous. Each EHR is paired 
with the last chest X-ray image collected during the ICU stay. The 
numbers of the samples in the training/val/testing dataset are 18845, 
2138 and 5243.
∙ MedFuse-Phenotype (MedFuse-P) [23] This dataset has the same data 
types as in MedFuse-I. The difference is that this dataset has a larger 
sample size and the task is multi-label classification to predict whether 
a set of 25 chronic, mixed, and acute care conditions are assigned 
to a patient in a given ICU stay. The numbers of the samples in the 
training/val/testing dataset are 42628, 4802 and 11914.
∙ Hateful Memes [22]. This is a binary classification task. The dataset 
represents a challenging blend of visual and textual content, specifically 
designed to tackle the detection of harmful content online. The dataset 
comprises meme images that are often used in social media contexts, 
containing layers of nuances in meaning that combine text and imagery. 
The numbers of the samples in the training/val/testing dataset are 
8500, 500 and 1000.
∙ UPMC Food-101 [24]. This dataset contains the noisy text–image 
paired data for 101 kinds of food. The target is to predict the type of 
food, which is a multi-classification task. The numbers of the samples 
in the training/val/testing dataset are 61127, 6588 and 25250.

Appendix B. More experimental results

The performance of our method and baselines on all test sam-
ples. The main paper presents the performance on full-modality and 
missing-modality test samples separately in the figures. Here we give 
the performance of our method and baselines on all test samples as 
in [16]. Table  B.6 presents quantitative results of all test samples across 
all datasets, methods, and missing states under 𝑟𝑠𝑢𝑏 ≥ 0.1. Table  B.7 
presents the results under 𝑟 < 0.1.
𝑠𝑢𝑏
Table B.6
Quantitative results of the whole test set on the Medfuse-I, Medfuse-P, Food101, and HatefulMemes datasets with different missing rates under various modality-missing scenarios 
under 𝑟𝑠𝑢𝑏 ≥ 0.1. Bold number indicates the best performance. With sufficient target dataset size (notably for 𝑟𝑠𝑢𝑏 > 0.1), FT-A and WMA exhibits superior performance, attributed to 
the update of all parameters in the target domain. MAP and MCR follows closely, achieving competitive results by updating fewer parameters. FT-C, on the other hand, performs 
the worst at all moments, due to the limited number of updated parameters.
 𝑟𝑠𝑢𝑏 Datasets Missing state Metric ICL-CA ICL-NTP WMA FT-A FT-C MAP MCR  
 

0.1

Medfuse-I 26% F, 74% 𝑚1 AUROC 0.793 0.789 0.792 0.790 0.771 0.788 0.779  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.619 0.612 0.627 0.621 0.600 0.614 0.603  
 Hateful

Memes
30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

AUROC 0.607
0.617
0.618
0.645
0.658
0.671

0.598
0.612
0.618
0.643
0.654
0.666

0.606
0.615
0.617
0.642
0.652
0.670

0.601
0.609
0.614
0.635
0.646
0.654

0.577
0.575
0.579
0.588
0.603
0.620

0.585
0.586
0.599
0.607
0.634
0.638

0.583
0.579
0.588
0.599
0.609
0.626

 

 Food101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

Accuracy 0.595
0.625
0.607
0.618
0.629
0.621

0.576
0.619
0.602
0.596
0.627
0.614

0.570
0.610
0.597
0.584
0.608
0.600

0.562
0.603
0.588
0.580
0.600
0.592

0.417
0.450
0.434
0.442
0.471
0.459

0.463
0.489
0.476
0.491
0.533
0.520

0.438
0.473
0.452
0.455
0.482
0.476

 

 0.2 Medfuse-I 26% F, 74% 𝑚1 AUROC 0.802 0.792 0.839 0.832 0.782 0.801 0.788  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.634 0.630 0.708 0.698 0.616 0.632 0.620  
 0.4 Medfuse-I 26% F, 74% 𝑚1 AUROC 0.810 0.806 0.845 0.840 0.793 0.815 0.799  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.655 0.647 0.729 0.720 0.623 0.652 0.625  
 1.0 Medfuse-I 26% F, 74% 𝑚1 AUROC 0.820 0.819 0.855 0.850 0.804 0.838 0.810  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.663 0.660 0.735 0.727 0.630 0.668 0.642  
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Table B.7
Quantitative results of the whole test set on the Medfuse-I, Medfuse-P, Food101, and HatefulMemes datasets with different missing rates under various modality-missing scenarios. 
Bold number indicates the best performance. When the target data is limited, our proposed ICL method, particularly ICL-CA, demonstrates remarkable efficacy (especially for 
𝑟𝑠𝑢𝑏 < 0.1), surpassing most baseline approaches. This trend intensifies as 𝑟𝑠𝑢𝑏 decreases. 
 𝑟𝑠𝑢𝑏 Datasets Missing state Metric ICL-CA ICL-NTP WMA FT-A FT-C MAP MCR  
 

0.01

Medfuse-I 26% F, 74% 𝑚1 AUROC 0.750 0.737 0.722 0.719 0.702 0.691 0.683  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.577 0.556 0.533 0.524 0.512 0.518 0.512  
 Hateful

Memes
30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2,
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

AUROC 0.576
0.577
0.593
0.602
0.611
0.623

0.565
0.576
0.583
0.591
0.609
0.618

0.542
0.552
0.546
0.571
0.592
0.605

0.537
0.548
0.539
0.568
0.581
0.595

0.542
0.540
0.532
0.579
0.574
0.587

0.528
0.531
0.529
0.552
0.558
0.567

0.519
0.527
0.518
0.547
0.555
0.554

 

 Food101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2,
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

Accuracy 0.312
0.342
0.332
0.351
0.388
0.363

0.317
0.327
0.321
0.357
0.369
0.362

0.261
0.279
0.265
0.294
0.314
0.319

0.250
0.265
0.256
0.291
0.313
0.308

0.222
0.243
0.229
0.273
0.283
0.279

0.222
0.247
0.231
0.279
0.287
0.282

0.212
0.225
0.219
0.253
0.279
0.260

 

 

0.02

Medfuse-I 26% F, 74% 𝑚1 AUROC 0.761 0.764 0.758 0.754 0.728 0.722 0.720  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.584 0.577 0.559 0.553 0.547 0.540 0.529  
 Hateful

Memes
30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2,
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

AUROC 0.590
0.593
0.602
0.622
0.631
0.642

0.581
0.587
0.603
0.613
0.623
0.630

0.563
0.577
0.579
0.596
0.611
0.619

0.550
0.570
0.564
0.582
0.605
0.611

0.545
0.556
0.549
0.568
0.589
0.595

0.549
0.557
0.548
0.573
0.591
0.592

0.545
0.548
0.544
0.576
0.583
0.587

 

 Food101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2,
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

Accuracy 0.397
0.412
0.406
0.430
0.447
0.440

0.373
0.399
0.381
0.416
0.422
0.421

0.363
0.374
0.372
0.398
0.415
0.403

0.352
0.368
0.358
0.381
0.399
0.390

0.287
0.310
0.303
0.331
0.352
0.344

0.302
0.295
0.299
0.346
0.363
0.453

0.281
0.286
0.283
0.335
0.356
0.347

 

 

0.04

Medfuse-I 26% F, 74% 𝑚1 AUROC 0.778 0.777 0.792 0.787 0.752 0.767 0.755  
 Medfuse-P 18% F, 82% 𝑚1 AUROC 0.597 0.588 0.585 0.581 0.556 0.562 0.560  
 Hateful

Memes
30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2,
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

AUROC 0.595
0.600
0.610
0.630
0.643
0.651

0.591
0.585
0.607
0.621
0.630
0.645

0.585
0.580
0.588
0.607
0.622
0.629

0.583
0.577
0.579
0.595
0.615
0.624

0.561
0.559
0.562
0.572
0.597
0.613

0.558
0.567
0.574
0.581
0.599
0.619

0.543
0.560
0.568
0.579
0.588
0.598

 

 Food101 30% F, 70% 𝑚2
30% F, 70% 𝑚1
30% F, 35% 𝑚1, 35% 𝑚2,
50% F, 50% 𝑚2
50% F, 50% 𝑚1
50% F, 25% 𝑚1, 25% 𝑚2

Accuracy 0.494
0.508
0.499
0.527
0.538
0.535

0.464
0.489
0.470
0.506
0.526
0.515

0.457
0.470
0.466
0.496
0.509
0.500

0.448
0.458
0.455
0.490
0.503
0.497

0.352
0.391
0.383
0.380
0.402
0.392

0.397
0.405
0.408
0.437
0.458
0.444

0.382
0.399
0.400
0.411
0.430
0.427

 

Data availability

The code link is given in the paper.
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