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1 | INTRODUCTION

Moderate-to-large earthquake events can adversely impact
vulnerable urban environments, often resulting in signifi-
cant disruptions to social and economic activities. Affected
households may subsequently decide to relocate (e.g., Binder
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Abstract

Devastating earthquakes can cause affected households to relocate. Postearthquake
relocation disrupts impacted households’ social ties and, in some instances, their
access to affordable services. Simulation-based approaches that model postearthquake
relocation decision-making can be valuable tools for supporting the development of
related disaster risk reduction (DRR) policies. Yet, existing versions of these mod-
els focus particularly on housing-related factors, which are not the sole driver of
postearthquake relocation. We integrate data-driven approaches and local data to
account for postearthquake household relocation decision-making within an existing
simulation-based framework for policy-related risk-sensitive decision support on future
urban development. We use household survey data related to the 2015 Gorkha earth-
quakes in Nepal to develop a random forest model that estimates the postearthquake
relocation inclination of disaster-affected households. The developed model holisti-
cally captures various context-specific factors important to postearthquake household
relocation decision-making. We leverage the framework to quantitatively assess the
effectiveness of various DRR policies in reducing positive postearthquake relocation
inclination, with an explicit focus on low-income households. We demonstrate it using
“Tomorrowville,” a hypothetical expanding urban extent that reflects important social
and physical characteristics of Kathmandu, Nepal. Our analyses suggest that the pro-
vision of livelihood assistance funds is more successful when it comes to mitigating
positive postearthquake relocation inclination than hard policies focused on strength-
ening buildings (at least in the context of the examined case study). They also suggest
viable pro-poor pathways for mitigating disaster relocation impacts without the need to
create potentially politically sensitive income-based restrictions on policy remits.
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etal., 2015), as observed following major past seismic events,
for example, the moment magnitude (M) 6.9 Loma Pri-
eta, California, USA, earthquake (Schwab et al., 1998), the
MS8.0 Wenchuan, China, earthquake (Ge et al., 2010), and
the M7.8 and M7.3 Gorkha, Nepal, earthquakes (He et al.,
2018; Wilson et al., 2016). Postdisaster relocation often
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causes emotional instability, distress, depression, trauma,
and other psychological effects among those who relocate
(Bier, 2017; Kili¢ et al., 2006; Makwana, 2019). It also has
long-lasting impacts on the social ties of relocated house-
holds and, in some instances, can deprive them of access
to affordable housing, employment, healthcare, and edu-
cation for years and even decades after relocation (Badri
et al., 2006). Furthermore, earthquake disasters have histori-
cally led to disproportionate relocations of socioeconomically
vulnerable households, for example, female-headed house-
holds, the elderly, racial and ethnic minorities, and the urban
poor (Bier, 2017; Hunter, 2005; Morrow-Jones & Morrow-
Jones, 1991; Myers et al., 2008). Inequities are further
exacerbated by the additional relocation-induced implica-
tions and vulnerabilities that result. Therefore, stakeholders
(e.g., urban planners, recovery planners, and emergency
response authorities) must devise strategic disaster risk reduc-
tion (DRR) policies for mitigating positive postearthquake
relocation decision-making.

Simulation-based modeling approaches that capture
postearthquake relocation decision-making are useful tools
that complement empirical studies in supporting the design
of such DRR policies (e.g., Costa & Baker, 2022; Moradi &
Nejat, 2020). For instance, Miles and Chang (2011) devel-
oped the ResilUS computational model based on fragility
models and Markov chains to simulate community-based
postdisaster housing recovery. ResilUS models households’
decisions to leave or stay accounting for factors predom-
inantly related to housing reconstruction (e.g., the debt
incurred from housing repairs and the availability of tempo-
rary housing until housing repairs are finished). Nejat and
Damnjanovic (2012) proposed an agent-based model using
game theory to predict homeowners’ decision-making (i.e.,
stay and repair or sell and leave) based on their neighbor-
hood’s average reconstruction value and the predicted future
reconstruction value. Moradi and Nejat (2020) presented the
RecovUS spatial agent-based model to simulate households’
decision-making (e.g., stay and repair, stay and wait for
repairs, and sell and leave) accounting for various factors,
for example, income, race, education, residential building
damage, financial assistance, restoration of community assets
and infrastructure, and neighbors’ repair progress. House-
holds are assumed to stay and repair if they have abundant
financial resources to cover repair costs. Costa, Haukass,
et al. (2022) proposed an agent-based model for assessing
temporary displacement and permanent relocation decision-
making of households that centers on aspects related to
the immediate built environment, for example, availability
of water and electricity, neighborhood conditions, housing
repair progress, neighbors’ decisions, and socioeconomic
factors. Costa, Wang, et al. (2022a) further integrated place
attachment (classified as “low” if both neighborhood and
housing satisfaction are below a certain threshold) into the
assessment of households’ decisions to stay and repair or
relocate. Low-income households, renters, and those occu-
pying old buildings were identified as most likely to have

low place attachment and, therefore, most prone to relocation
(at least within the context of the San Francisco, California,
USA, case study considered).

Thus, most existing simulation-based models for
postearthquake household relocation decision-making focus
mainly on housing-related factors, including but not limited
to the duration and costs of housing repairs, whether or not
the household can afford these costs, and the availability and
affordability of temporary housing while their home is under
repair. This means that the models either neglect or do not
give adequate attention to alternative factors that can moti-
vate or discourage households from relocating, for example,
earthquake-induced livelihood impact. Many of these models
have not been validated with empirical data or are only par-
tially calibrated using highly aggregated relocation patterns
observed after past earthquake events (Costa, Haukass, et al.,
2022; Costa, Wang, et al., 2022a; Miles & Chang, 2011;
Nejat & Damnjanovic, 2012). Therefore, further research
is needed to improve the understanding and modeling of
postearthquake household relocation decision-making.

We aim to address this challenge using a data-driven
modeling approach that integrates a holistic range of context-
specific factors to estimate postearthquake household reloca-
tion decision-making. Data-driven approaches (e.g., logistic
regression, random forest, and regression kriging) have been
previously used in the literature to develop models for assess-
ing (Costa, Wang, et al., 2022b; Loos et al., 2023; Nejat &
Ghosh, 2016; Nejat et al., 2020; Rosenheim et al., 2021)
or identifying factors related to (Binder et al., 2015; Myers
et al., 2008; Zhang & Peacock, 2009) households’ postdisas-
ter behaviors as well as to track business recovery (Costa &
Baker, 2021) and to estimate postearthquake damage (Loos
et al., 2020). However, these studies either (1) did not explic-
itly focus on relocation; or (2) considered data at more
aggregated resolution (i.e., neighborhood- or county-level)
than individual households; (3) predominantly centered on
the aftermath of wind-hazard events (e.g., hurricane) rather
than (potentially more devastating) earthquake disasters; and
(4) developed models specifically targeted at high-income
locations that may not reflect Global South contexts. The pro-
posed data-driven model, which overcomes these limitations,
is integrated into an existing framework for policy-related
risk-sensitive decision support on future urban development
(Wang et al., 2023). The resulting enhanced framework can
then be used to quantify the effectiveness of various DRR
policies in mitigating households’ decisions to relocate after
an earthquake, with an explicit focus on the extent to which
low-income households are impacted. We use Nepali house-
hold survey data related to the 2015 M7.8 and M7.3 Gorkha
earthquakes to develop the required data-driven model. We
leverage the model to demonstrate the enhanced frame-
work using the “Tomorrowville” virtual urban testbed, which
closely reflects important physical and social characteristics
of Kathmandu.

We structure this paper as follows. We introduce the
enhanced simulation-based framework in Section 2. We
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FIGURE 1
decisions to relocate after an earthquake.

describe the data-driven model developed for the case study
in Section 3, present the case-study application in Section 4,
and provide results in Section 5. Finally, we offer some
concluding remarks in Section 6.

2 | PROPOSED SIMULATION-BASED
FRAMEWORK

We advance the existing framework proposed in Wang et al.
(2023) to explicitly account for postearthquake household
relocation decision-making, as shown in Figure 1. The orig-
inal Wang et al. (2023) framework leveraged the Tomorrow’s
Cities Decision Support Environment (Cremen et al., 2023)
and facilitated the development of compulsory household-
level financial soft policies (e.g., insurance, tax relief)
for reducing disaster risk in expanding urban areas. The
enhanced framework encompasses seven modules: (1) Policy
Bundles; (2) Urban Planning; (3) Local Data; (4) Seismic

Simulation-based framework for quantitatively assessing the effectiveness of disaster risk reduction (DRR) policies in mitigating household

Hazard; (5) Physical Infrastructure Impact; (6) Social
Impact; and (7) Computed Impact Metrics. (1), (2), (4),
(5), (6), and (7) are modified versions of modules within the
original framework. The characterisation of postearthquake
household relocation decision-making is facilitated by the
new Local Data module and its accompanying Data-driven
Model.

Stakeholders first design DRR policies (in the Policy Bun-
dles module) and apply these policies to a (conditional)
urban plan associated with a specific time instance (in the
Urban Planning module), both of which collectively pro-
duce a Visioning Scenario. A Visioning Scenario represents
an urban system at a snapshot in time. While this could be
the current version of the urban system, it is intended for
the framework to be used in a forward-looking manner. The
information stored in the Visioning Scenario and Local Data
informs the calculations of modules (4) to (6), which col-
lectively comprise the Computational Model. Modules (4)
to (6) produce seismic hazard calculations, physical infras-
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tructure impacts, and social impacts, respectively. The Local
Data module provides relevant context-specific information
on household relocation decision-making. This information
informs the development of a Data-driven Model, which is
used within the Social Impact module to estimate whether
households decide to relocate or stay. These estimations are
then translated into a Poverty Bias Indicator (PBI), which
measures the extent to which low-income households dispro-
portionately decide in favor of relocation. Each iteration of
the framework produces an assessment of impacts for one
specific Visioning Scenario. The optimal Visioning Sce-
nario is the one that produces the lowest PBI. We use
Monte Carlo sampling to capture uncertainties within mod-
ules (4) to (6), in line with Cremen et al. (2022). Most
modules introduced in Wang et al. (2023) are only briefly
discussed. Described in detail are the newly introduced
Local Data module and the accompanying Data-driven
Model, the enriched Social Impact module, and the Com-
puted Impact Metrics that depend on the Social Impact
module.

2.1 | Brief description of some modules in
the original framework

The Urban Planning module contains an urban plan that
provides detailed information on land use, buildings, house-
holds, and individuals associated with a specific urban area
at a prescribed time (possibly in the future, Mentese et al.,
2023). Within the context of the proposed enhanced frame-
work, the Policy Bundles module encompasses one or more
DRR policies that broadly aim at mitigating decisions to relo-
cate after an earthquake. These policies could be “soft” (e.g.,
postearthquake livelihood assistance funds) as well as “hard”
(e.g., upgrading of existing infrastructure facilities to higher
building codes). For this particular study, the Seismic Haz-
ard module stores the seismic source and rupture features of a
specific earthquake event (scenario). It estimates the resulting
ground-motion intensity measures (IMs) at the locations of
exposed assets (e.g., buildings), that is, ground-motion fields
(GMFs). The Physical Infrastructure Impact module uses
the GMF outputs from the Seismic Hazard module in com-
bination with fragility models to estimate physical damage
to buildings. This damage is represented as a discrete dam-
age state (DS). The reader is referred to Sections 2.1 to 2.4 in
Wang et al. (2023) for more details on these modules.

2.2 | Local Data

We integrate Local Data to allow for context-specific
people-centered characterization of postearthquake house-
hold relocation decision-making. The Local Data module
includes information (e.g., household relocation survey data,
government reports, and social media information, which
may have been gathered from previous community-driven
research/interaction) on how various locally-relevant factors

(e.g., socioeconomic features) relate to household relocation
decisions. This knowledge is then used to calibrate a predic-
tive Data-driven Model for relocation decision-making.

2.2.1 | Data-driven Model

The Data-driven Model estimates postearthquake household
relocation decisions. The postearthquake relocation decision
for the hhth household in the jth Monte Carlo sample, 1, ;, is
binary. /;,; = 1 means the hhth household decides to relo-
cate and Ip;,; = 0 indicates otherwise. It is developed by
applying statistical learning methods (e.g., logistic regres-
sion, random forests) to the Local Data. The Data-driven
Model is therefore inherently context-specific, enabling a
more accurate characterization of postearthquake household
relocation decision-making compared to generic, heuristic
models.

2.3 | Social Impact

The Social Impact module uses outputs from the Physical
Infrastructure Impact module and leverages the Data-
driven Model to capture the postearthquake relocation
decision-making of each household (1}, ;), considering the
policies that feature within the Policy Bundles module.
This module further computes collective relocation decisions
made by households across different income groups (I ;). I
for the jth Monte Carlo sample is computed as

2 I,
L==-", e

Ny

where x refers to low- (low), middle- (mid), high- (high), or
all- (all) income groups, Iy, ; . is the hhth household reloca-
tion decision associated with income group x, and n, is the
total number of households within income group x.

24 | Computed Impact Metrics

The Computed Impact Metrics module translates the I, ;
outputs from the Social Impact module into a single-valued
PBIj, which measures the extent to which low-income house-
holds disproportionately decide in favor of relocation. That is

I low,j 1

PBI; = 2)

L

A negative value of PBI; implies that the policies within the
Policy Bundles module (and thus the associated Visioning
Scenario) are pro-poor, that is, the specific earthquake sce-
nario considered does not result in a disproportionate number
of decisions to relocate among low-income households. See
Section 2.6 in Wang et al. (2023) for more details on PBI.
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FIGURE 2 The timeline of the Independent Impacts and Recovery Monitoring (IRM) project, a 5-year longitudinal study conducted by The Asia
Foundation. IRM was designed to systematically monitor disaster-induced social impacts, recovery patterns, and disaster-affected households’ evolving needs
after two devastating earthquakes struck Nepal in April (M7.8) and May (M7.8) 2015. The fourth-round data, containing 3300 complete responses, are used in

this case study.

3 | DEVELOPMENT OF A DATA-DRIVEN
MODEL

We demonstrate the Local Data module by developing a
Data-driven Model to characterize the relocation inclination
of Nepali households after the 2015 M7.8 and M7.3 Gorkha
earthquakes. The model estimates relocation inclination (i.e.,
willingness to relocate) as a proxy for a more definitive relo-
cation decision, due to the constraints of the data set adopted
as Local Data (see Section 3.1). This data set comprises
household-level survey data related to the 2015 Gorkha earth-
quakes, which were collected in the 11 districts most affected
by these events outside of the Kathmandu Valley. We note
the model is developed specifically for households in Kath-
mandu, and should not be used outside this remit without
further context-specific investigations (to gather local data).

3.1 | Description of Local Data
The Local Data data set is derived from the results of
the Independent Impacts and Recovery Monitoring (IRM)
project, a longitudinal study conducted by The Asia Foun-
dation to systematically monitor disaster-induced social
impacts, recovery patterns, and disaster-affected households’
evolving needs after two devastating earthquakes struck
Nepal in April (M7.8) and May (M7.3) 2015 (The Asia
Foundation, 2019). The IRM project team revisited the same
disaster-affected households and asked them similar ques-
tions over a S-year duration following the disaster (see
Figure 2), collecting recovery evidence that goes beyond
conventional one-off postdisaster damage and needs assess-
ments. Questions included, for instance, “to what extent was
your livelihood affected by the earthquake?”, “do you or any-
one else in your household plan to migrate in the next 12
months?” (which captures household relocation inclination),
“how satisfied are you with the electricity?”, “approxi-
mately how much damage has the earthquake caused to your
house?”, “how much of the NPR 300,000 grant (from the
National Reconstruction Authority) have you received at this
point?”, and “what is your household’s source of income?”
In this study, we adopt the fourth-round survey data
(collected in April 2017; The Asia Foundation, 2017)—as
opposed to previous survey rounds conducted during the

emergency response (The Asia Foundation, 2015) and the
early recovery phase (The Asia Foundation, 2016a, 2016b)
when temporary displacement was the dominant migration
pattern (The Asia Foundation, 2016b)—to focus on long-term
household relocation inclination. We do not adopt the fifth-
round survey data (collected between September and October
2019; The Asia Foundation, 2019) because any household
relocation inclination observed at that point was not likely
to be associated with the earthquakes in question given that
“[t]he economy recovered in three years, 90% of people were
back in their homes after four years, and ...infrastructure
and non-domestic constructions took five years to rebuild and
repair” (Platt et al., 2020).

The fourth-round survey data include information on the
respondent (e.g., age, income, gender, profession, broad eth-
nicity group, and educational attainment) as well as their
household-level characteristics (e.g., household size, annual
household income). The survey data contain responses from
4854 households. Excluding households with “unknown” res-
idential damage or “unknown” status of access to government
funding leads to a total of 3300 complete responses (sam-
ples), which are used to develop the model. Among these
responses, only 154 households are deemed to have had an
inclination to relocate.

3.2 | Selection of preliminary predictors

We first select a set of preliminary household-level predictors
to include in the Data-driven Model, based on an extensive
literature review of relocation following historical disruptive
events (e.g., Badri et al., 2006; Comerio, 2014; Fussell et al.,
2010; Ge et al., 2010; He et al., 2018; Henry, 2013; Myers
et al., 2008; Peacock et al., 2014, etc.) including the 2015
Gorkha earthquakes, and broader studies on resilience and
social vulnerability (e.g., Cutter et al., 2010, 2003, etc.).

The review identifies numerous factors influencing house-
hold relocation decision-making (and therefore likely to
be related to relocation inclination). These factors vary in
prominence across different contexts (Henry, 2013; Paul
et al., 2024), highlighting the importance of using bespoke
models for characterizing household relocation decision-
making. Paul et al. (2024) grouped these factors into four
broad categories: housing matters, financial aspects, social
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TABLE 1 Preliminary household-level predictors considered for inclusion in the case study Data-driven Model. These predictors span the four
categories of factors related to household relocation decision-making identified by Paul et al. (2024).

Category

Predictor

Description

Literature

Housing matters

Financial aspects

Social and
community aspects

Household
demographics

Residential damage

Access to
government funding

Livelihood impact

Place satisfaction

Household income
group

Gender of the
household head

Age of the
household head

Household size

Whether the residence was damaged by the
earthquakes. Possible categorical values: O
(not damaged) and 1 (damaged).

Whether the household has received a
reconstruction grant from the National
Reconstruction Authority of Nepal. Possible
categorical values: O (not received) and 1
(received).

Whether the livelihood of the household was
impacted by the earthquakes. Possible
categorical values: 0 (not impacted) and 1
(impacted).

Whether the household is currently satisfied
with its electricity and drinking water supply,
schools, medical facilities, and roads. Possible
categorical values: O (not satisfied) and 1
(satisfied).

Possible categorical values: 1 (monthly
income lower than 20,000 Rs, i.e., low
income), 2 (monthly income between 20,000
and 40,000 Rs, i.e., middle income), and 3
(monthly income above 40,000 Rs, i.e., high
income).

Possible categorical values: 1 (female) and 2
(male).

Possible integer values: integers greater than
18.

The number of individuals within the
household. Possible integer values: positive
integers.

Costa, Haukass, et al. (2022); Myers
et al. (2008); Fussell et al. (2010);
Peacock et al. (2014)

Comerio (2014); Alisjahbana et al.
(2022); Kotani et al. (2020); Hamideh
and Sen (2022)

Bolin and Bolton (1983); Wang et al.
(2015); Henry (2013); Zhang and
Peacock (2009); Cong et al. (2018);
Comerio (2014); He et al. (2018)

Lu (1998); Tan (2016); Costa, Wang,
et al. (2022a); Speare (1974)

Ardayfio-Schandorf (2012); Addo
(2013, 2016); Cutter et al. (2003);
Myers et al. (2008); Morrow-Jones and
Morrow-Jones (1991)

Cutter et al. (2003); Myers et al. (2008);
Morrow-Jones and Morrow-Jones
(1991)

Anton and Lawrence (2014); Nejat and
Ghosh (2016); Clark et al. (2017);
Speare (1974); Cutter et al. (2003)

Cutter et al. (2003); Durage et al.
(2014); Xu et al. (2017)

and community aspects, and demographics. Housing mat-
ters include housing (residential) damage, housing type (e.g.,
single-family or multifamily), tenure time, or hometown sta-
tus (which is also used by Nejat & Ghosh, 2016, as a proxy
for place attachment). Financial aspects include property
damage losses, whether the property is insured, and avail-
ability of external financial assistance such as government
aids, grants, and loans (Alisjahbana et al., 2022). Social and
community aspects include family and relationships, liveli-
hood, neighborhood damage level, place satisfaction, and so
forth. Demographics include housing tenure (i.e., renters or
owners), income, age, gender, race and ethnicity, educational
attainment, and so forth.

The eight initial (household-level) predictors selected are
residential damage, access to government funding (from
the National Reconstruction Authority of Nepal), livelihood
impact, place satisfaction, household income group, gen-
der of the household head, age of the household head, and
household size. Table 1 provides descriptions of these prelim-
inary predictors and examples of literature that support their
inclusion in the model.

Residential damage is often highlighted as an important
factor in households’ postdisaster relocation decision-making
(e.g., Costa, Haukass, et al., 2022; Fussell et al., 2010; Myers
et al., 2008; Peacock et al., 2014). For instance, Myers
et al. (2008) analyzed county-level data from the US Cen-
sus Bureau and found that disaster-hit regions with more
severe housing damage experienced greater out-migration
after Hurricanes Katrina and Rita.

Funding for housing repairs is essential to postdisaster
recovery (Comerio, 2014). After a major disaster, govern-
ment funds may be released to help affected households
repair damaged (or build new) residences (Alisjahbana
et al., 2022; Comerio, 2014; Hamideh & Sen, 2022; Kotani
et al., 2020). In the absence of sufficient funding for
housing repairs, housing abandonment and, therefore, house-
hold relocation (Zhang, 2012) frequently occurs. Relocation
decision-making is also tied to livelihood loss (e.g., Bolin
& Bolton, 1983; Cong et al.,, 2018; He et al., 2018;
Henry, 2013; Wang et al., 2015; Zhang & Peacock, 2009),
which can be as important a factor as housing damage
(Comerio, 2014).
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Place satisfaction is the gratification felt when desires and
aspirations for residence and neighborhood conditions are
met (Lu, 1998; Tan, 2016). Households with low place satis-
faction are more likely to relocate as they are more reluctant
to take on debt and stay in temporary housing for prolonged
periods to wait for housing repairs to finish (Costa, Wang,
et al., 2022a).

Age of the household head plays a role in household
relocation decision-making because of its close association
with place attachment. Older people often have higher place
attachment than younger people because they have had more
time to create deeper bonds with their neighborhood and
region through various social ties (e.g., Anton & Lawrence,
2014; Clark et al., 2017; Nejat & Ghosh, 2016; Speare, 1974).
People with high place attachment show reluctance to move
away from places to which they are attached after a disas-
ter (e.g., Anton & Lawrence, 2014; De Koning & Filatova,
2020; Johnson et al., 2020). For example, some households
whose homes were destroyed by the 2015 Gorkha earth-
quakes stayed on their original land rather than relocating
because of their emotional attachment to ancestral homes
(The Asia Foundation, 2019).

Household income group, gender of the household head,
and household size (as well as the age of the household
head) relate to social vulnerability (Cutter et al., 2003).
Morrow-Jones and Morrow-Jones (1991) analyzed national-
level disaster-induced migration data and found that socially
vulnerable groups, such as female-headed households, are
more likely to relocate after a disaster. Similar findings are
provided by Myers et al. (2008) in the context of Hurri-
canes Katrina and Rita. In general, households in low-income
communities exhibit low or very little residential mobility
(e.g., Ardayfio-Schandorf, 2012; Addo, 2013, 2016). Durage
et al. (2014) found that large households (consisting of
more than two persons) are more concerned and aware of
disasters and are more prompt in making positive deci-
sions on disaster-related mobility, for example, preemptive
evacuation or postdisaster relocation.

A multitude of factors other than those included in
our Data-driven Model can influence household relocation
decision-making. However, the eight predictors we consider
span all four categories of factors influencing household
relocation decision-making identified by Paul et al. (2024).
Furthermore, they are often observed to be some of the
most influential considerations related to postdisaster relo-
cation decisions (see fig. 5 in Paul et al., 2024). They are
therefore deemed to capture the complexity of household
decision-making as adequately as possible, especially consid-
ering the (computational) challenges associated with adding
more predictors to a data-driven model (e.g., overfitting, low
interpretability; Hastie et al., 2009).

3.3 | Data preparation

The information required to characterize the predictors is
then obtained from the IRM survey data. Positive relo-
cation inclination is assigned to households that report at

least one member currently planning to migrate in their
responses to question D22. Residential damage is obtained
from responses to question B1l. Gender of the household
head, age of the household head, and household size are
obtained from responses to demographic questions (not num-
bered), assuming that the survey respondent is the household
head. This assumption is justified, given that the survey
respondent eligibility criteria stipulate that the respondent
“plays an important role in the decision-making process in the
family.” We assume the earthquakes impacted the livelihoods
of households who indicated that their jobs were “completely
affected” or “somewhat affected” (for question C2). Data on
access to government funding are obtained from responses to
question F14. For place satisfaction, we assume households
who indicated for question E2 that they were ‘“somewhat
dissatisfied” or “dissatisfied” with electricity, water, schools,
medical facilities, or motorable roads are not satisfied. House-
hold income group information is obtained by merging the
income brackets reported by respondents for question A9
as follows: a low-income household has a monthly income
lower than 20,000 Rs, a middle-income household has a
monthly income between 20,000 Rs and 40,000 Rs, whereas
a high-income household has a monthly income above 40,000
Rs. These income groupings are determined based on the
average monthly Nepali household income of 30,121 Rs
(27,511 Rs for rural households and 32,336 Rs for urban
households; Nepal in Data, 2018).

3.4 | Model development

The Data-driven Model is a random forest model (see
Figure 1). We now present details on the development of this
model, including the treatment of data, the structuring of the
model, the selection of final predictors (Sandri & Zuccolotto,
2008), and model validation.

34.1 | Data treatment

The data are split into training subsets, validation subsets, and
a test set, according to the procedure shown in Figure 3. A
stratified random sampling technique (Reitermanova et al.,
2010) is first used to split the full data set (3300 samples)
into a combined training and validation set (85%), and a
test set (15%), such that each set contains the same propor-
tion of households with a positive inclination to relocate.
We then randomly split the combined training and valida-
tion set into training (70%) and validation (15%) subsets
1000 times, such that each subset maintains the same propor-
tion of households with positive relocation as the combined
one.

3.4.2 | Oversampling

The majority (95.5%) of data samples are not associated with
a positive inclination to relocate, which renders the data set
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FIGURE 3 A brief snapshot of the modeling development process. The full data set is transformed into balanced training subsets, balanced validation

subsets, and a test set. The balanced training and validation subsets are used to perform predictor selection and tune hyperparameters of the random forest

model. The test data are reserved for assessing model performance.

imbalanced (He & Garcia, 2009). A model fit to (and val-
idated using) imbalanced output data is biased toward the
majority outcome. Moreover, a very small portion (2.6%)
of data samples are associated with no residential damage,
meaning this information may be overlooked in the model
training phase. To mitigate these issues, we use oversampling
(He & Garcia, 2009) to resample each of the training and vali-
dation subsets and obtain balanced subsets (Gao et al., 2021).
We apply a two-stage oversampling procedure to the train-
ing subsets. The first resampling stage involves oversampling
from samples with no residential damage, which increases
their presence within the training subsets by 20 times. The
size of each modified training subset varies according to the
number of samples with no residential damage in the original
training subset. We then apply oversampling to the modified
training subsets to obtain 1000 sets of balanced training sub-
sets in which 50% of samples are associated with positive
relocation inclination. We apply oversampling only once to

the validation subsets to obtain balanced versions in which
50% of samples are associated with positive relocation incli-
nation. (The first oversampling process is only required for
a balanced model fit, and is therefore not applied to the
validation subsets).

343 | Model structure

The Data-driven Model is a random forest model (Breiman,
2001). This type of model is suitable for estimating
postearthquake household relocation inclinations for two rea-
sons: (1) it does not require any assumption to be made
on the probability distributions of data; and (2) as a tree-
based method, it can naturally handle both categorical and
continuous data (Breiman, 2001). The model’s outcome is
the probability of each household having positive inclination
to relocate.
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FIGURE 6 The distribution of the area under the curve (AUC) for the
test data receiver operating characteristic (ROC) curves. The red dashed line
represents the mean AUC value obtained (= 0.714).

344 | Selection of final predictors

We pretune two hyperparameters of the random forest model
(i.e., the number of trees to grow and the number of predic-
tors randomly sampled as candidate predictors at each split),
using a grid search on the 1000 balanced training and val-
idation subsets. We then use the mean bias-corrected Gini
importance (GI) measure (Sandri & Zuccolotto, 2008) to
identify predictors for the final model that consistently have
predictive power (i.e., have a greater GI than random noise,
which follows a uniform distribution between 0 and 1) across
the 1000 training subsets, in line with Loos et al. (2023).

Mean bias-corrected GI, GI x;» Is given by

R
A 1
GIXi = E ’ ; (GIX,-,I’ - GINoise,r)a 3)

where R = 1000 is the number of models fit using random
forest, Gly, , is the GI associated with predictor X; in the rth
model fit to the rth balanced training subset, and Gly,;s,,, is
the GI associated with random noise in the rth model. A posi-
tive value of GI x, indicates that the associated predictor X; has
a stronger predictive power compared to random noise, and
the higher GI x, 18, the more predictive power X; possesses.

Figure 4 provides the distribution of Gly, , as well as ij,-
for each candidate predictor. Residential damage, age of the
household head, household size, and household income group
have relatively higher GI x, values than the rest. All eight pre-
dictors have some predictor power in the random forest model
(i.e., their associated Gixi values are positive), so are selected
for inclusion in the final model.

GI is known to be biased in favor of predictors with
many possible split points (e.g., categorical predictors with
many possible categories, continuous predictors, and inte-
ger predictors; Nembrini et al., 2018), which feature in this
case. Therefore, using a binary noise (which has much fewer

possible split points than a uniform noise) could lead to a
different set of predictors with positive G7xl~~ Moreover, the
performance of a statistical learning model can be signifi-
cantly affected by its hyperparameters (Hastie et al., 2009).
To understand the effects of the noise type and hyperparam-
eters of the random forest model on the selection of final
predictors, we repeat the final predictor selection process for
random forest models fit using default (rather than pretuned)
hyperparameters and a binary random noise (0 or 1). GI x, val-
ues associated with the untuned models are lower than those
of Figure 4 (and some are close to zero), highlighting the
importance of pretuning hyperparameters during the predic-
tor selection process. We also find Gl - values for binary
noise to be lower than those obtained for uniform noise. The
fact that all predictors would therefore have even larger Gin_
tuned values in the presence of binary noise supports their
inclusion in the final model.

3.4.5 | Tuning hyperparameters

We refit the model on the 1000 balanced training subsets
using the eight predictors (excluding the noise) and tune
the two hyperparameters by maximizing the average area
under the curve (AUC) of the receiver operating character-
istic (ROC) curve for the corresponding validation subsets
(Huang & Ling, 2005). Once the optimal set of hyperpa-
rameters is identified, we refit the model on a balanced
version of the combined training and validation set, which we
obtain using the two-stage oversampling technique described
in Section 3.4.2.

3.4.6 | Model validation

We evaluate the performance of the refit model by calculating
the AUC of ROC curves for the heldout test data. The test data
represent hypothetical future data, so can be used to measure
the refit model’s “true” predictive power. Figure 6 shows the
distribution of AUC values obtained for the test data across
1000 simulations in which slightly different random forest
models are fit (due to randomness at each node split) using the
same set of hyperparameters. The mean, maximum, and min-
imum AUC values obtained for the test set are 0.714, 0.741,
and 0.677, respectively. Previous studies have considered an
AUC value of 0.7 to indicate fair or moderate discrimina-
tive ability (e.g., Coroller et al., 2016; den Boer et al., 2005;
Ferreira et al., 2022; Lee, 2014; Marcou & Rognan, 2007;
Metz, 1986; Phillips et al., 2008; Suthar et al., 2013; Wang
et al., 2022; Zhan & Chen, 2021). Therefore, we consider
the performance of our model to be satisfactory, especially
considering the limited number of samples with positive relo-
cation inclination in the full data set. The final step involves
using the two-stage oversampling technique described in Sec-
tion 3.4.2 on the full data set (see Figure 3) and refitting the
Data-driven model on the balanced version of this data set
using the optimal set of hyperparameters.
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The left panel shows the buildings projected to be present in Tomorrowville in 50 years, as well as the associated land use polygons

(TV50_total). TV50_total includes 8713 residential buildings and 1443 nonresidential buildings. Ground-motion fields (GMFs) are simulated on a 200 m X
200 m grid (marked in red) across Tomorrowville polygons. The right panel shows the hypothetical M7.0 earthquake scenario considered for this case study.
The underlying seismic source is a vertical strike-slip fault that ruptures 24 km, as shown in red.

4 | CASE-STUDY DESCRIPTION

We leverage the enhanced simulation-based framework to
investigate the effect of different disaster policies on mitigat-
ing postearthquake relocation inclination across households
in the 11 districts most affected by the 2015 Gorkha earth-
quakes outside of the Kathmandu Valley, Nepal, using the
Data-driven Model developed in Section 3. We adopt the
Tomorrowville expanding virtual urban testbed as our case-
study region (Mentese et al., 2023), which was largely
developed based on data from the Kathmandu Valley,
recognizing the effectiveness of virtual testbeds as neu-
tral spaces for testing community resilience analysis tools
(Amin Enderami et al., 2022).

4.1 | Urban Planning

We use the TV50_total version of Tomorrowville, which
includes 4810 existing buildings in today’s Tomorrowville
(TVO) and 5346 new buildings anticipated to be built in
50 years (TV50_b2) as a result of rapid urban expansion,
shown in the left panel of Figure 7. TV50_total contains 8713
residential buildings and 1443 nonresidential (e.g., commer-
cial, industrial, agricultural, and mix-use) buildings. These
buildings consist of 11 construction types; new buildings to
be built in TV50_b2 are, on average, much stronger and
more ductile than existing buildings in TVO (see Gentile

et al., 2022; Wang et al., 2023, for more details). There are
three types of residential polygons (low-, middle-, and high-
income; see the left panel of Figure 7). Households within
the same polygon all belong to the same income group.
TV50_total includes 6766, 3059, and 7985 low-income,
middle-income, and high-income households, respectively.
See Section 3.1 in Wang et al. (2023) for more details on
TVS50_total.

4.2 | Policy Bundles

We consider four DRR policies for mitigating postearthquake
household relocation inclination in TV50_total (see Table 2).
Policy #1, which provides livelihood assistance funds to
households in which at least one member is made unem-
ployed by an earthquake event, is a “soft”” (and compensatory)
policy. We assume that this policy eradicates the effect of
livelihood impact on household relocation inclination. The
other policies, which involve upgrading the most vulnerable
TVO workplace and residential buildings to higher building
codes, are “hard” (and corrective). Policy #4 is income-based
(i.e., targets only low-income households) and is designed
to explicitly facilitate pro-poor outcomes. Policies #2, #3,
and #4 demand intensive resources to improve the seismic
vulnerability of 745, 2666, and 2248 buildings, respectively.
Note that relevant buildings that act as both workplaces and
residences are upgraded across policies #2 to #4.
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of TV50_total buildings across the 500 sets of ground-motion fields (GMFs) generated for the considered M7.0 earthquake scenario. The top left panel shows
the results for the original TV50_total building portfolio, and the top right panel, bottom left panel, and bottom right panel show the results for policies #2, #3,

and #4, respectively (see Section 4.2 for details).

4.3 | Seismic Hazard

We consider a fictitious M7.0 earthquake scenario on a
hypothetical vertical strike-slip fault through Tomorrowville
(shown on the right panel of Figure 7), given the synthetic
nature of the case-study testbed. We use the ground-motion
model in Campbell and Bozorgnia (2014) and the spatial
and cross-IM correlation model in Markhvida et al. (2018)

to simulate spatial cross-correlated GMFs across a 200 m X
200 m grid of Tomorrowville (as shown on the left panel
of Figure 7). We use Monte Carlo sampling to simulate
500 sets of GMFs for different IMs required by the con-
sidered fragility models (see tab. 5 in Wang et al., 2023).
Five hundred simulations are deemed appropriate, as this
number produces stable social impact assessment results
(see Section 5 for details). Ground-motion IM values for
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TABLE 2  Policies considered for this case study. “RC” refers to
reinforced concrete.

Policy Type Description

#1 Soft & Provides livelihood assistance funds to
compensatory  households in which at least one member is
made unemployed by an earthquake
#2 Hard & Replaces non-RC workplace buildings (745
corrective buildings in total) with high-code RC
buildings
#3 Hard & Replaces non-RC residential buildings (2666
corrective buildings in total) with high-code RC
buildings
#4 Hard & Replaces non-RC low-income residential
corrective buildings (2248 buildings in total) with

high-code RC buildings

each building are taken to be those simulated at the nearest
grid point.

4.4 | Physical Infrastructure Impact

We use fragility models associated with each building type
to compute the DS of each building, conditional on the sim-
ulated IM values (outputs of the Seismic Hazard module).
See Gentile et al. (2022) for details on the fragility mod-
els associated with Tomorrowville’s buildings. The exact
fragility models used are influenced by the three hard policies
included in the Policy Bundles module.

The DS damage classification of the fragility models is
translated to a binary residential damage classification to
comply with the required input format of the Data-Driven
Model. DS =0 (“no damage”) is mapped to Residential
damage = 0, representing “not damaged.” DS =1 (“slight
damage”), DS = 2 (“moderate damage”), DS = 3 (“extensive
damage”), and DS = 4 (“complete damage”) are mapped to

Residential damage = 1, representing “damaged” (FEMA,
2022).

4.5 | Social Impact

The Social Impact module uses information from the Phys-
ical Infrastructure Impact module (i.e., the DS of each
building and the converted residential damage classification),
the Urban Planning module (e.g., the workplace buildings
where employed individuals work, the age and gender of
the household head, household income group, and household
size), and the Policy Bundles module (i.e., how constituent
policies affect the earthquake-induced household-level liveli-
hood impact and residential building DS of each household)
to quantify earthquake-induced household-level livelihood
impact and the availability of government funding.

We assume that workplace buildings with at least exten-
sive damage (DS > 3) cannot function, so the livelihoods
of individuals working in these buildings are impacted. A
household’s livelihood is deemed to be impacted if the liveli-
hoods of one or more of its employed members are impacted.
We assume households with complete or extensive damage
(DS > 3) to their residences will be provided with gov-
ernment funding. This assumption is consistent with the
eligibility criteria for the reconstruction grant by the National
Reconstruction Authority of Nepal after the 2015 Gorkha
earthquakes (Amnesty International, 2017).

We randomly assign low place satisfaction to 40.7%
high-income, 39.9% middle-income, and 34.6% low-income
households, in line with the respective proportions of each
income group associated with low place satisfaction in the
household survey data used (see Section 3.1 for details). Note
that the relatively higher place satisfaction of low-income
households is consistent with observations in the literature.
For example, Adriaanse (2007) found that low-income house-
holds are usually associated with low residential mobility
(e.g., Ardayfio-Schandorf, 2012; Addo, 2013). They build
up habitual routines over time and become psychologically
fused with their residences, thereby having positive place
satisfaction (Addo, 2016).

This module finally leverages the Data-driven Model to
compute the probability of having a positive relocation incli-
nation for each TV50_total household across each GMF (i.e.,
Monte Carlo sample). We use a different random threshold
value between O and 1 to translate this probability into a
binary outcome (f;;,; = 0 or I, ; = 1) for each Monte Carlo
sample; I, ; = 1 is assigned if the probability exceeds the
threshold value and vice versa.

5 | RESULTS

Figure 8 displays the DSs of Tomorrowville buildings
averaged across the 500 sets of GMFs generated for the
considered M7.0 earthquake scenario and four building port-
folios: the original TV50_total building portfolio (top left
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FIGURE 11 Empirical cumulative distribution functions (CDFs) of

PBI; under policies #1 to #4 (and no policy) across the 500 sets of
ground-motion fields (GMFs).

panel) and three upgraded building portfolios associated with
policies #2 (top right panel), #3 (bottom left panel), and #4
(bottom right panel), respectively. The majority of buildings
to be replaced under policy #3 are in the low-income poly-
gons. This explains why the policy noticeably reduces the
positive difference between the average DSs of buildings in
the low-income polygons and those in the middle- and high-
income polygons. The results for policy #4 are a combination
of the top left and the bottom left panels of Figure 8, that is,
residential buildings in low-income polygons are assigned the
corresponding values shown in the bottom left panel, and all
other buildings are assigned the corresponding values shown
in the top left panel.

Figure 9 displays box plots showing the proportions of
low-, middle-, and high-income households with positive
relocation inclinations (i.e., I, ; in Equation 1) under policies
#1 to #4 (and no policy), for each jth GMF. All four con-
sidered policies mitigate positive postearthquake relocation

inclination of low-income households (as expected). Policy
#1 (soft and compensatory) is the most effective in miti-
gating positive postearthquake relocation inclination across
all income groups. Hard policy #2 outperforms hard policy
#3 in mitigating positive postearthquake relocation inclina-
tion. Moreover, policy #2 (which involves upgrading 745
buildings) requires much fewer engineering resources than
policy #3 (which involves upgrading 2666 buildings) (see
Section 3.2). Policy #4, which is a subset of policy#3, leads
to the smallest reduction in the number of households with
positive relocation inclination.

Figure 10 shows for all policies (and no policy) the empir-
ical cumulative distribution functions (CDFs) of /,;; (left
panel) and [y, ; (right panel), across the 500 sets of gen-
erated GMFs. Policies #1 and #2 are more effective than
policies #3 and #4, both for all income groups and the low-
income one specifically. This highlights that in the context of
Tomorrowville (and the underlying Local Data), earthquake-
induced household-level impact on livelihood (related to
policies #1 and #2) has a larger marginal impact on house-
hold postearthquake relocation inclination than the combined
effects of government funding (determined based on residen-
tial DS) and residential damage (related to policies #3 and
#4). Note that due to the binary classification of residential
damage and the large extent of damage induced by the con-
sidered M7.0 earthquake scenario, there are only minimal
changes in residential damage values across different poli-
cies. This means that policies #3 and #4 predominantly affect
the access to government funding predictor only.

Figure 11 shows for all policies (and no policy) the empiri-
cal CDFs of PBI; across the 500 sets of generated GMFs. All
policies lead to some reduction in PBI;. Policy #4 is consis-
tently the most pro-poor (i.e., it has the largest number of
negative PBI; values) among those considered in this case
study. This is expected given the low-income remit of policy
#4. Policy #1, a soft and compensatory policy that does not
differentiate based on income, is associated with a negative
PBI; for 343 GMFs (69% of Monte Carlo samples), making
it the second most pro-poor policy among those considered.
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6 | CONCLUSIONS AND FUTURE WORK

We present a new approach for assessing the effectiveness
of DRR policies in mitigating positive postearthquake house-
hold relocation decision-making. The approach involves
enriching an existing framework that integrates social and
physical considerations for risk-informed policy design
(Wang et al., 2023) with local data and an accompa-
nying data-driven model for estimating context-specific
postearthquake household relocation decision-making.

We develop a random forest data-driven model using
Nepali household survey data collected in the wake of
the 2015 M7.8 and M7.3 Gorkha earthquakes, to assess
postearthquake relocation inclinations of local households.
This model accounts for various household-level factors
related to postearthquake household relocation decision-
making, that is, residential damage, access to government
funding, livelihood impact, place satisfaction, household
income group, gender of the household head, age of the
household head, and household size. In light of the gen-
eral lack of (data-driven) models focusing on household
relocation inclination (or decision-making), the model devel-
oped here serves as a novel risk-sensitive planning tool
that provokes discussion on a complex multidisciplinary
social phenomenon.

We demonstrate the enhanced framework and the data-
driven model developed by assessing the effects of multiple
DRR policies for an expanding virtual urban testbed Tomor-
rowville, which is largely informed by data from the Kath-
mandu Valley, Nepal. We particularly focus on the extent to
which the policies mitigate positive postearthquake relocation
inclination among low-income households. The case study
reveals that a soft policy of postdisaster livelihood assistance
provision for all households impacted by earthquake-induced
unemployment (policy #1) is more effective in mitigat-
ing positive postearthquake relocation inclination than hard
policies centered on the seismic strengthening of physical
infrastructure (policies #2, #3, and #4). This emphasizes the
fact that hard strategies, consisting of resource-intensive engi-
neering interventions, might not always be the most effective
seismic risk reduction solution for urban areas exposed to
seismic hazard. We also find that policy #1 is pro-poor overall
(i.e., has a negative mean PBI; value), despite providing assis-
tance to households of all income groups. While this finding
is limited to the case study’s specific context, it suggests
that opportunities exist for designing pro-poor DRR policies
without the need to explicitly account for income thresholds,
which can be politically sensitive (Lyon & Sepulveda, 2009).

Our framework is explicitly forward-looking, that is, it
quantifies earthquake risks of urban communities account-
ing for uncertain future development in yet-to-be urbanized
regions. Many of these regions (e.g., the Kathmandu Val-
ley, Nepal) are experiencing rapid expansion and population
growth, which could significantly intensify natural-hazard
exposure and vulnerability in the absence of risk-sensitive
planning tools and policies like those proposed here (Mesta
et al., 2022, 2023). A forward-looking perspective is par-

ticularly important for designing DRR policies related to
postearthquake household relocation decision-making; our
framework can help to prevent relocation-related accumula-
tion of vulnerabilities from the outset and address the root
causes of exacerbating inequalities in the wake of a future
earthquake disaster.

While we focus on postearthquake household reloca-
tion in this study, our framework is sufficiently flexible
to be extended to account for other context-specific social
impacts of earthquake disasters. For example, we could
leverage the framework to provide a holistic characteriza-
tion of postearthquake business interruption. In this case,
data on how local business people make recovery decisions
after a historic earthquake event could be used to develop
a data-driven model for characterizing business interruption.
The model may depend on building and transportation net-
work downtime, as well as resilience tactics that businesses
can employ to hasten recovery (Cremen et al., 2020), for
instance.
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