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Abstract—The article investigates the speed regulation of
permanent magnet synchronous motor (PMSM) systems. Exist-
ing control methods of the non-cascade structure suffer from
the drawbacks of unsatisfactory anti-disturbance performance
and slow convergence rate when the system is affected by
disturbances, especially unmatched disturbances. Meanwhile, the
requirements of current constraint and fast dynamics cannot
be effectively balanced in the single-loop structure of speed
and current using traditional control methods such as the PID
controller. Because large transient currents induced by fast
dynamics may damage the hardware of the system. Therefore,
a current-constrained finite-time control approach is proposed.
Specifically, a robust finite-time control scheme is developed with
the assistance of the improved finite-time observer technique. The
proposed method is capable of actively suppressing both matched
and unmatched disturbances in non-cascade control systems.
Simultaneously, an effective penalty mechanism is established to
incorporate a specific gain function into the designed controller.
This approach restricts the q-axis current to a predefined safe
range without solving an optimization problem. Finally, compar-
ative experiment results indicate that the newly proposed finite-
time control method outperforms the baseline control methods
in terms of disturbance rejection, convergence rate, and current
constraint.

Note to Practitioners—This paper addresses practical chal-
lenges in controlling permanent magnet synchronous motor
(PMSM) systems, such as ensuring robust disturbance rejection
while limiting transient currents to protect the hardware. Tradi-
tional methods often fail to balance fast dynamics with current
constraints, leading to inefficiencies and potential damage. To
tackle these issues, the proposed finite-time control approach
introduces a practical solution that achieves robust disturbance
rejection while ensuring that transient currents remain within
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safe operational limits. The use of an improved finite-time
observer allows for real-time estimation of system disturbances,
while the novel penalty mechanism restricts the g-axis current,
preventing hardware damage. This method is particularly suited
for applications in robotics, electric vehicles, and automated
manufacturing, where precise speed regulation and reliability
are crucial.

Index Terms—Current constraint, finite-time control, perma-
nent magnet synchronous motor, unmatched disturbance.

I. INTRODUCTION

N recent years, permanent magnet synchronous motor

(PMSM) has aroused tremendous attention due to its fine
properties of high torque/power density and torque-to-inertia
ratio [1]. As a result, PMSM finds its applications in various
fields like aerospace [2], robotics [3], and electric vehicles
[4], [5]. In these applications, achieving superior speed regu-
lation performance is of great importance to ensure efficient
and reliable operation. Conventionally, the speed regulation
of PMSM is achieved through a cascade control structure
where the fast inner loop controls the current while the slow
outer loop regulates the speed. Recent studies have shown
that a non-cascade control structure is more effective and
straightforward in regulating the speed when the difference
between control periods of the two loops is minimal [6]—
[10]. In comparison with cascaded systems, non-cascaded
systems are distinguished by a simpler structure and easier-to-
adjust parameters. Moreover, non-cascaded systems are less
susceptible to the effects of “trial-and-error” parameter tuning
methods [11]. In this context, designing an adequate non-
cascade control scheme is the focus of this paper.

It is worth noting that the control performance of PMSM
systems is normally deteriorated by various disturbances,
especially unmatched disturbances [12]. To address the distur-
bances, many scholars concentrate on observer techniques and
observer-based robust control strategies [13]-[19]. Observers
are commonly used to construct unmeasured states and distur-
bances of a system, and then the estimates can be utilized by
feed-forward compensations such that proper anti-disturbance
performance can be attained. Several elegant observers have
been presented in the literature to estimate disturbance, such
as extended state observer [20], [21], generalized proportional
integral observer [22], and finite-time disturbance observer
(FDO) [14], [17], [23]. In particular, the FDO has the advan-
tages of finite-time convergence and insensitivity to pertur-
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bations [24]. Although finite-time convergence is guaranteed
by the power functions of estimation errors, the FDO cannot
provide faster convergence than their linear counterparts when
the estimation errors are relatively large.

From the viewpoint of feedback control, it should be pointed
out that systems with finite-time stability can achieve a faster
convergence rate near the equilibrium point and stronger
disturbance rejection ability than systems with asymptotic
stability [25]. Hence, finite-time control schemes have been
proposed in [25]-[27] and are widely applied in various
control systems [28]-[33]. To further consider the distur-
bances of systems, several observer-based finite-time control
approaches have been suggested in [14], [16], [17]. However,
the finite-time stability of a system with disturbances may not
be guaranteed by these observer-based finite-time controllers.
Another shortcoming is that these observer-based approaches,
while effective in suppressing disturbances, have difficulty in
dealing with overcurrent problems of PMSM systems.

Although PMSM control systems can achieve promising
dynamic performance, this capability usually comes at the
cost of large transient currents that may pose a risk of
damaging the motor or drive. Traditional non-cascade control
schemes, such as PID controllers, are not capable of ensuring
that the g-axis current is restricted within a safe range [7],
[34]. The reason lies in the fact that these methods often
limit the transient current by choosing conservative feedback
gains, leading to reduced control performance. In the field
of modern control, common solutions used to research the
current constraint problem are model predictive control [9],
[35], [36] and barrier Lyapunov function-based backstepping
control [37], [38]. The model predictive control methods build
a rational mechanism combining optimization and feedback,
where control actions as a suboptimal solution are obtained by
solving an optimization problem with the constraints [9], [39].
However, this method has high computational complexity,
depends on accurate models, and is sensitive to modeling
disturbances. The barrier Lyapunov functions (BLF) , such as
tan-type function [37] and log-type function [38], are used
to replace the traditional quadratic Lyapunov candidate in
each step of the backstepping method, and the constraints are
then satisfied step-by-step with the controller design. However,
BLF-based methods can be challenging to implement because
they require virtual controllers to meet specific feasibility
conditions to fulfill predefined constrained regions [40].

Recently, an improved PID controller for PMSM systems
has been designed in [6], where the current constraint is solved
by constructing a gain function. It inherits from the BLF-based
backstepping the idea that establishes a penalty mechanism in
control action to steer the current back when it approaches the
predefined barrier. This gain function-based method has also
been applied in several constrained plants, such as the Buck
converters subject to inductor current constraints [41] and iner-
tially stabilized platforms subject to output constraints [42]. It
is important to note that the improved PID control proposed in
[6] is a passive disturbance suppression method and thereby its
control performance may encounter a large degradation when
faced with disturbances, especially unmatched disturbances.

According to the above observations, the primary motivation

underlying this study is the recognition that the existing
non-cascade methods cannot simultaneously cope with the
convergence rate, unmatched disturbance rejection, and current
constraint of the PMSM systems [6], [7], [14]. In this regard,
this paper proposes a robust finite-time control scheme with
several novelties. The contributions of our work are set out
below:

1) Two modified FDOs (MFDOs) by augmenting linear
terms into classical observers [14] are designed to im-
prove the convergence rate in the case of large estimation
errors. To the best of the authors’ knowledge, it is the
first time that the observers with a hybrid structure are
designed and evaluated for PMSM systems.

2) Based on MFDOs, leveraging the fast and accurate
estimations as a foundation, a robust finite-time con-
troller is developed to provide the systems with a faster
convergence rate and enhanced anti-disturbance ability
in comparison to asymptotic controllers. It can actively
attenuate disturbances, including both unknown external
loads, parameter uncertainties and variations.

3) A specific gain function is incorporated into the con-
troller to establish an effective penalty mechanism,
which can achieve current constraints without solving
the optimal control problem, thereby offering a simple
and efficient solution.

4) The theoretical analysis provides a robust foundation for
the feasibility and reliability of the proposed method,
demonstrating the finite-time stability of the closed-loop
system and the efficacy of the current constraint.

The rest of this article is organized as follows: Preliminaries
are given in Sec. II. The main results are detailed in Sec. III.
Experimental tests are conducted in Sec. IV. A brief conclu-
sion is presented in Sec. V.

Notations: |x]® = |z|*sign(xz) with sign(-) the standard
sign function, and then d|z]®/dz = alz|*~!; S*) denotes
k-th time derivative of S(t). In this article, arguments for
functions may be omitted when the context is sufficiently clear.

II. PRELIMINARIES
A. Relevant Lemmas

Consider system
& = h(z),h(0) =0,2(0) = zg,x € R", (1)

where h is a continuous function.

Definition 1 (Finite-time stability [25]): System (1) is finite-
time stable if it is Lyapunov stable and finite-time conver-
gent. The finite-time convergence indicates that there exists a
bounded setting time T'(x() such that for any solution x(-)
with initial condition xq, lim;_,p(5,) x(t) = 0 and x(t) = 0
for t > T'(xo).

Definition 2 (Homogeneity [27]): Consider vector field
h(z) = (hi(x), -+, hy(x))T. If for all £ > 0, there exist con-

stants r; > 0,4 = 1,--- ,n, such that h;(e"z1, - ,e™x,) =
ektrip;(x), Ve € R™ with K > —min{r;,i = 1,---,n},
then h(z) is homogeneous of degree K regarding dilation

(Tla e 7Tn)-
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Lemma 1 [43]: The following system is finite-time stable:

o = 1 — An|20] T — 0,20,
n—1

1 =22 — Ap—1l21 —Eo| * — On_1(z1 — o),

. . 1 .
Tpno1=Tp — M1 L$n71 - mn72—| 2= 01(337%1 - fn—2),

in = *AOSign(xn - i’n—l) - O'O(-:Cn - S.Cn—l) 7p(t)/La
@2

where L > 0, x; (i = 0,---,n) is the scalar variable; \;
and o; are appropriate constants; p(t) is a perturbation that
satisfies |p(t)| < L.

Lemma 2 [26]: Considering the system

& = h(x)+g(x),h(0)=0,9(0) =0,z € R"*, (3)

where h(x) is homogeneous of degree K < 0 regarding
dilation (rq,---,7,). Suppose * = 0 is a asymptotically
stable equilibrium of system & = h(x). Equilibrium = 0
of system (3) is a finite-time stable if for all ¢ # 0,
lim. 0 g;(e™ @y, - ,e™mxy,) /et =0i=1,-- ,n.
Lemma 3 [44]: The following cascaded time-varying system

&y = fi(t,x) + fio(t, x1, 22), @
Ty = fo(t, x2),
is finite-time stable if 1) Subsystems #; = f;(¢,z1) and
9 = fo(t,xo) are finite-time stable; 2) For any fixed and

bounded x5, there exists a positive definite and radially
unbounded finite-time bounded function V'(¢,z;) satisfying

V(t,z1) < IV (t,x1) + I, where Iy and I are positive
constants.

B. Problem Statement

The dynamic model of a surface-mounted PMSM in the
d — q reference frame can be expressed as follows [45]:

. 1 . .
iq zz(—de + npLwig + ug),
1

i.q :E(—Riq —npLwiqg — npdrw + ug), 5

1
w :j(—Bw + 1.57’Lp(j)f’iq — TL),

where w is the angular velocity; 17, is the load torque; 1), is the
number of pole pairs; B is the viscous frictional coefficient;
¢ and J are the rotor flux linkage and inertia, respectively;
R and L are the stator resistance and inductance, respectively;
14, ¢, Uq, and u, are the stator currents and voltages of the
d— and g—axes, respectively. Suppose that the controller of
iq loop works well and steers ¢4 to zero. By lumping both
external disturbances and unknown uncertainties [15], system
(5) can be obtained as follows:

*

. u
W =Kyig+ &, ig= L +&, (6)

Lo
where uy is the controller output; K; = 1.5np¢s/J is the
torque constant; L is the nominal value of L; §&; = —Bw/J —

T1/J; & = —Rig/L—npdyw/L+ (ug/L—uy/Lo) —npwig.
It is noted that &;, the unmatched disturbance of system (6),

enters the system via a different channel from control input
uj;. In addition, &5 is called the matched disturbance [15].

This paper aims to design a control signal u; such that
speed w can converge to its reference w, in finite time, while
the g-axis current is constrained to a predefined safe barrier
C, i.e., the current satisfies: |i4| < C.

Herein, the following assumptions are listed.

Assumption 1: For system (6): 1) &1(t) and &»(¢t) are m-
th and p-th differentiable, respectively; 2) ém) and Eép ) have
Lipschitz constants L1 and Lo, respectively; 3) The unmatched
disturbance is bounded by |&; (t)] < KC.

Remark 1: It is worth noting that the hypotheses regarding
disturbances presented in Assumption 1: 1)-2) are general
and has been previously used in, for example, [14] and
[46]. Furthermore, the hypothesis regarding the bound of
disturbance &;(t) in Assumption 1: 3) is rational since the
mismatch disturbance &; (¢) affects the g-axis current through a
channel that is separate from the control input and may violate
the current constraint, it is reasonable to assume that &;(t)
is constrained by the S-related range to meet the constraint
requirements [7].

III. MAIN RESULTS

In this section, two MFDOs are first presented to estimate
the matched and unmatched disturbances, respectively. Then,
a current-constrained finite-time controller is developed.

A. Observer Design

Although the classic FDO developed in [14] can obtain the
exact estimations in a finite time, its convergence rate is rather
slow in the case of large estimation errors. Inspired by the prior
work in [43], we propose two MFDOs to estimate unmatched
disturbance &; and matched disturbance &5, respectively. They
are given as follows:

U;} = Ktiq + vg,
11 =00 =1, ,m—1,81m 1= Un,
1 - R .
Vo = =T Ly [0 — w] ™ — €, (0 — w) + 1,0,
1. m—i
V; = = T L7 (1m0 — v | AT
—€m—i(&1i—1 — vi—1) + &1,
Um = —70L1Sign(§1,m—1 - Um—l) - 60(51,m—1 - Um—l)»
“ @)
7?(1 =1 + Ho,
Lg
Eoj-1=pj, 7 =1, p— 1,86 p 1= pip,
1 .2 A . -
o = =YL [ig —ig |77 —ep(ig — ig) + 2,0
- . _p—j
i == Yp—i L3 7 [a,501 — pj—1 P

—ep—j(25-1 — pj—1) + &2y,
tp = —voLosign(§a,p—1 — pip—1) — €0(E2,p—1 — Np71)7(8)
where W, 51,1'71, and él,m,l are the estimated values of w,
y_l), and f%m_l), respectively; %q, &.5—1, and &y p_; are




IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. XX, NO. XX 4

the estimated values of i, ééj Y and §§p -, respectively;
Tos 2 Tm > 0, €0, ,€m, Yo, ,Yp > 0, and €o,--- , &
are the coefficients to be selected. Combining (6), (7), and (8),
one obtains

1
. _ mA1 T
210 =211 — TmL{" 210 ™ — €m21,0,
21,5 =21,i41 — Tm—ilq l21,6 — £1,i-1 ] 7
1, )

- 6777,71’('2:1,71 - 2}1,2’71)71. = 17 e, M=

Z1,m = — ToL181g0(21,m — 21,m—1)

- 6O(Zl,m - le,mfl) - glm)v

1
. _ L _pP_
29,0 = 22,1 — Vp+1L3T | 2201 PFT — €pt122,0,

. o e . %
Zoj =22,j41 — Vp1—j L3 (a5 — Fo o | PT
; o 10
- 5p+1—j(22,j - Z2,j71)>‘7 =1,---,p—1, (10)
Zop € —y1Losign(zap — 22,5 1)

—e1(z2p — Z2p-1) — ép)‘

where 210 =W —w; z1,; = él,j—l - Y“”; Z1,m = élA,m—l -
(m=1), Zo0 =g —ig; 22,5 = 2,51 —Eéjil); zap =82 p-1—
are the estimation errors.

Remark 2: It can be seen from (9) and (10) that, these
two observers have the hybrid structure combing linear terms
and nonlinear terms. In the case of large estimation errors,
the linear terms impose the exponential convergence that
ensures the errors converge to the neighborhood around zero
with high speed. In the case of small estimation errors, the
nonlinear terms can make the error converges to zero in
finite time. Therefore, this hybrid structure can avoid the
slow convergence of the conventional FDOs (when parameters
€,t = 0,---,m and 5,57 = 0,---,p are all set to zero,
MFDOs (7) and (8) become the FDOs) and linear disturbance
observers (LDOs) (when parameters 7;,¢7 = 0,---,m and
vj,J = 0,---,pare all set to zero, MFDOs (7) and (8) become
the LDOs). It should be noted that this is the first time that
MFDOs (7) and (8) are designed and evaluated for PMSM
systems.

to-1)
128

B. Controller Design

With the estimates provided by MFDOs (7) and (8), the
velocity tracking error and an auxiliary variable are denoted
as 1 = w, —w and xo = —Kyig — &1 o, Tespectively, where

w, is the reference velocity. By recalling (6), we have
T1 =T2 + 211,
.1 2 1¥1 an
T2 = — Ktuq/LO — Ki&o — v,

Then, a robust finite-time controller is designed as
wh =(ki|x1]% + ko |22 — Kiboo — v1)Lo/Ky,  (12)

where 0 < a3 < 1, ag = 201 /(1 4+ «1); k1 and ko are the
controller gains.

To handle the current constraint problem, a gain function
method is introduced into controller (12), and then a robust
current-constrained finite-time controller is designed as

’U,Z :(*KtEQ,O — V1 =+ kl Ll’ﬂal —+ [kg

_ (13)
+ ks F(zo, M, M)]|x2]1%?) Lo/ Ky,

=0
. @ ud Inverse |Uay =
_Wr g Park |ug|SVPWM [ I
Transform] | (— Inverter
CCFTC (13)
. .
‘ ; Park - Clark
tq Transform,*8 [Transform,
MFDO (7) ‘
*‘ Y Encoder
3 J ]—9 Data
$2.0 MEDO (8) 0 6, w

Fig. 1: Block diagram of the suggested PMSM control strategy.

where
- s M2

14
+(fo2)2 (14)

is the designed gain function with M = —K;C — 51,0, M =
K.C— 51,07 and k3 is the penalty gain. It can be deduced that
—C <ig(t) < C <= M(t) < ea(t) < M(2).

For simplicity, we denote klg = ko + k3 F (22, M, M). By
introducing such a gain function, the controller has a large
feedback item related to current i, when it approaches the
constraint barrier +C, resulting in a reactive control action to
reduce ¢,. The block diagram of the suggested control scheme
is illustrated in Fig. 1.

Remark 3: In comparison to existing non-cascade control
methods [6], [7], and [14], the novelties of the proposed
control method are threefold. First, it incorporates disturbance
estimates offered by the constructed MFDOs to actively at-
tenuate not only matched but also unmatched disturbances,
enhancing the robustness of the PMSM system. Second, it
attains finite-time stability of the closed-loop system by using
the designed controller, ensuring a fast convergence rate of the
system. Third, it constrains g-axis current in a predefined range
by using a specific gain function, improving the hardware
safety of the system.

Remark 4: By fusing the MFDO and CCFTC methods,
the recommended method addresses three key issues in the
speed control system of non-cascaded permanent magnet syn-
chronous motors: limited time convergence, noise suppression
and current constraints. The fast and accurate disturbance
estimation achieved by the observer enables the constrained
finite-time controller to execute robust and safe control actions,
which allows the controller to achieve hardware protection
without sacrificing dynamic performance. It is worth noting
that although one could replace the quadratic term by a higher-
order-even power in Equation (14) without affecting the formal
proof, such a substitution would make the gain grow even more
steeply. In practical applications, the implementation of control
signals at discrete time intervals causes the system state to rise
more steeply, which in turn causes excessive oscillation of the
system state. Hence, quadratic growth strikes a better balance
between theoretical rigor and practical robustness.
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C. Stability Analysis

Theorem 1: Error systems (9) and (10) are finite-time stable
if 7, €, v;, and ¢, for i = 0,--- ,mand j = 0,--- ,p, are
appropriatly chosen and Assumption 1 is satisfied.

Proof: Define y; = Zlﬁi/Ll and w; = ZQJ/LQ. Systems (9)
and (10) are equivalent to

yO =Y — Tm LyO—I m+l — €mYo,
m—1

U1 =Y2— Tm—11¥1 — Y| ™ —€m—1(¥1 —Yo);

. . 1 .
Yn—-1=Ym — 71 Lym—l - ym—2—| 2 — 61(yWL—1 - ym—2)7

(m)
. ) ) . 13
Um = —T0S1€0(Ym — Um—-1) — €0(Yn — Ym—1) — 2—

1 )
5)

. _p_
Wy = w1 — Yplwo| T — gpwo,
w1 = W2 — Yp-1 LU/1 - U/OW po—= Epfl(wl - wo)»

. . 1 .

Wy—1 = wp — Y1 [Wp—1 — Wp—2]2 —e1(wp—1 — Wp-2),
(p)

&

2

(16)
According to Lemma 1, systems (15) and (16) are finite-time
stable. Then error systems (9) and (10) are finite-time stable
based on the definition of y; and w;. The proof of Theorem 1
is thus accomplished.

’Li]p = —’yosign(wp — U'}pfl) — Eo(wp — U'}pfl) —

Theorem 2: The current constraint |¢;] < C holds all the
time and the equilibrium of system (11) is finite-time stable, if
1) Assumption 1 holds, 2) initial state z2(0) € (M (0), M(0)),
ie., i4(0) € (—=C,C), and 3) finite-time controller (13) is

employed.

Proof: Three steps make up the procedure: the first two
steps prove the finite-time stability of the closed-loop PMSM
system, and the last step guarantees the satisfaction of the
current constraint.

Step A (Finite-Time Boundedness of System States): Let’s
start by defining a domain ¥ = {(x1,22) r; €
(=00, +00), 22 € (M(t), M(t))}. Substituting controller (13)
to system (11) yields

iy =29 + 211,80 = Kyzoq — ki [21]% — ko222, (17)

It can be verified from (14) that inequality 0 < ké <
+0o0 holds in Y. Define a finite-time bounded function [44]
Vi(zy,x2) = %(xf + 22), then

Vi =xxe + 21211 — k|21 @0 — k?/g|172\a2+1 + Kywozo 1.
(18)

Notice that [p|? < 1+ ¢|p| < 1+ |p| for ¢ € (0,1). With this

inequality in mind, it follows

Vi <laa] o] + |21 [2101] + Falza | |wo| + Kilaa||z2,1]
<aﬁ +ax w427,
-2 2

2 2
Ty + 254

2

ki, o, /1 Kio 5 2t k| Ki2dy
<(14+ 22 S kel 2 ; .
_(+2)x1+(2+ 1+2)x2+(2+2+ 5

§I‘1V1 + FQ.

+ k(1 + |z ) |[z2]| + K

)

(19)

2
where Iy = max{2(1 + Y23 + K+ B0)) To = 22 +
% + Kt;“ . I'y is clearly a bounded constant. According to the
finite-time stability of systems (9) and (10), estimation errors
21,1 and zp 1 converge to zero in a finite time, which indicates
that 21,1, 22,1, and so I's are bounded. It is deduced based on
(19) and the definition of V; that system states x1 and xo will
not escape to infinity in the finite-time convergent process of
the disturbance estimation.

Step B (Finite-time Stability of the closed-loop System):

After estimate errors 211 and 291 converge to zero in the
finite time, system (17) becomes

Ty = —ky [21]% — ky|22]°2. (20)

x‘l =T2,
A Lyapunov function for system (20) is defined as Vo =
ki [y [s]*ds + 3, and
Vy =k [21]% @a + wa(—ka [21] = ka|2]°?) (21)
= — kylao|®2t! <0

Based on LaSalle’s invariant principle, system (20) is asymp-
totic stable in Y. Now we denote system (20) as

& = h(z) +g(x),
h(x) =[hi(z), ho(a)]"
(22, —k1|21]%" — (k2 + 2k3)[22]*2])7,
g [91(), g2(2)]" = [0, [2k3 — k3 F ()] LMVQ}T(D

x
(z)
with & = [z, 72]7 is the state vector. It can be concluded
according to Definition 2 that, with respect to the dilation
(r1,72) = (1, (1 + 1)/2), system & = h(x) has a homo-
geneity degree of KK = (ay —1)/2 < 0. It is also derived that
g(0) =0, lim. 0 g1(e" 21,6 25) /™ =0, and

[2]4)3 — ]fg}-(')]f:‘ar“‘m |_.T2—|a2

g2(eMwy, e x9)

gl—r% ghtre - ;I—E% gh+ra
= |_:L‘2-| 2 [2]€3 — kg liI% .F(Ehxg,ﬁ, M)}
e—

=0.
Based on Lemma 2, it can be inferred that system (20) is
finite-time stable. Consider the closed-loop system:
System (17),
System (9),
System (10).
With the stability of systems (20), (9), and (10), Lemma 3

leads to the conclusion that closed-loop system (23) is finite-
time stable.

(23)
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Step C (Satisfaction of Current Constraint |i,;| < C): Recall
the differential equation of xs:

i‘g(t) :C(xg,t) = Kt22,1(t) — kK I_J)1(7f)-‘a1 — [k‘g + k3 x

M (t) M2 (t) o
( (3(1) — a0 720
(24)

(M(t) — 22(t))?
Based on Definition 1 and the above proof of Step A and Step
B, we know that x1(¢), z2(t), and 221 () are both bounded in
Y. By considering Assumption 1, it can be derived from (24)
that for any fixed time 77 > 0,

lim

g <($2, t) = —00,
(w2,t)—(M(T1),T1)

. (25)
lim ¢(xa,t) = 400.

(w2,t)—=(M(T1),T1)

It can be observed from (25) that there exist a function P(t)
that satisfies 0 < P(t) < M(t) and a function P(t) that satis-
fies M (t) < P(t) < 0 such that, 1) ©3(t) < 0 when z2(t) €
[P(t), M(t)), and 2) i@2(t) > 0 when z2(t) € (M(t), P(t)].
Therefore, dynamic domain [P(t), P(t)] is an attractor for
state xo. Based on the continuity of solution z5(t) of system

(17) with initial state z2(0) € [P(0), P(0)] C (M (0), M(0)),

it is conclusive that x2(t) € [P(t), P(t)] C (M(t), M(t))

holds, i.e., current constraint i,(t) € (—C, C) holds. ]

In order to summarize the advantages of the proposed
method over prior similar methods, the comparisons of the
concerned aspects are provided in TABLE I, which indicates
that the designed control method has the merit of simultane-
ously achieving the finite-time stability, attenuation of matched
and unmatched disturbances, and current constraint of the
system.

IV. EXPERIMENT RESULTS

To verify the superiority of the proposed control method,
experiments are conducted on a real-time PMSM platform
shown in Fig. 2. The motor control experimental platform
utilised in this study is based on a TMS320F28335 digital
signal processor and a DRV8305 three-phase motor drive. The
platform incorporates a pair of Teknic three-phase motors. One
motor serves as the controlled PMSM for evaluation of the
controller, while the other motor provides the designed load
condition during testing. The specification of the investigated
PMSM is shown in TABLE II, which can be also referenced
in [21]. The following test conditions are used in all the
experiments. First of all, the tested controllers are performed
using the platform, where the control frequency is set to 10
kHz. In addition, reference speed w, is set to 1600 rpm, the
constraint of g-axis current is 5 A, meaning that C' = 5 in
gain function (14), and the input saturations of u, and ug are
12 V. Moreover, for the test of the robustness of the PMSM
control systems, load torque 77, is varied from 0 N-m to 0.25
N-m at 2 s in each experiment [47].

A. Efficacy of the proposed method

To validate the proposed current constraint method, we
tested four control schemes as follows: MFDO-based current-
constrained finite-time control (MFDO+CCFTC) method,

Fig. 2: Experiment platform.

1600 - =
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1200 - | Y
& 7 1600
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Current 4,(A)
[\S] w
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e

MFDO+CCFTC scheme
MFDO+FTC scheme with high-gain
MFDO+FTC scheme with low-gain |
77777 MFDO+CCLC scheme
-- MFDO+LC scheme
I
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Control input u,(V)
=
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Time(s)

Fig. 3: System responses under MFDO+CCFTC scheme,

MFDO+FTC scheme with high-gain, MFDO+FTC scheme

with low-gain, MFDO+CCLC scheme, and MFDO+LC

scheme: motor speed w, current 7,, and control input u;‘.

which combines current constraint finite-time controller (13)
with gain function F(-) and MFDOs (7) and (8); MFDO-
based finite-time control (MFDO+FTC) method, which com-
bines finite-time controller (12) with MFDOs (7) and
(8); MFDO-based current-constrained linear control control
(MFDO+CCLC) method, which combines current constraint
linear control (when parameters oy = ao = 1 in controller
(13) , CCFTC (13) become the CCLC) with gain function
F(-) and MFDOs (7) and (8); MFDO-based linear control
(MFDO+LC) method, which combines linear controller with
MFDOs (7) and (8). For the MFDO+CCFTC method, the
parameters are chosen as: {L1, 7o, T1, T2, €0, €1, €2, L2, Yo,
Y1, €05 €15 ]{il, kg, k‘3, Oél} = {95, 1.1, 1.5, 2, 30, 60, 80, 957
1.1, 1.5, 30, 60, 13000, 200, 0.5, 0.6}. As for the MFDO+FTC
method, two group parameters are selected. In the first group,
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TABLE 1
Comparisons with prior similar methods
Criterion Convergence Matched and unmatched Current
Method time disturbance rejection constraint

Nonsingular terminal Finite-time

sliding mode control [14]

(Finite-time stability)

Finite-time disturbance X
estimation and compensation

Constraint state
feedback control [9]

Infinity

(Asymptotical stability)

Passive integral action

Current-constrained
control [6]

Infinity

(Asymptotical stability)

Passive integral action

Disturbance observer-based
current-constrained control [7]

Infinity

(Asymptotical stability)

estimation and compensation

The proposed control Finite-time

(Finite-time stability)

Improved finite-time disturbance

v

v

Asymptotical disturbance 4

A ; v
estimation and compensation

TABLE II
Key parameters of the investigated PMSM
Parameter Values Unit
Rated power 0.426 kW
Rated torque 0.273 N-m

Rated current 7.1 A

Rated speed 1500 rpm
Stator resistance 0.72 Q
Stator inductance 0.4 mH
Motor inertia 7.06 x 1074 kg:m?
Flux linkage 0.0064 wb
Number of poles 4 -
1600 — —
— /| . 1600 . pppirpatiAmmmRa
& 1200 ff 1300 R
NaX 1 v r
E] /| 1000 / \ /
o 800 1580 1 i 1
8 | y o
g 500 L ,
D400 . 1560 AN 1
0 0.1 02 03 04 05 2 2.1 22 2.3
0 s s ; ‘ ‘ s ‘
0 0.5 1 1.5 2 25 3 35 4
=<
=
g
=
O
8
S .
~ s
E /"
= ;
=}
=
K] 7
E
= MFDO+CCFTC scheme |
OO FDO+CCFTC scheme
— — — LDO+CCFTC scheme
0 0.5 1 1.5 2 2.5 3 35 4
Time(s)
Fig. 4: System responses under MFDO+CCFTC

FDO+CCFTC and LDO+CCFTC schemes: motor speed
w, current ¢4, and control input uj;.
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Fig. 5: System responses under MFDO+CCFTC scheme with
different k3: motor speed, current 74, and control input uz.

controller gain %, is set relatively high (k1 = 10000) in order
to achieve fast transient performance, while in the other group,
controller gain k; is set relatively low (k1 = 4500) to meet the
current constraint. As for the MFDO+CCLC and MFDO+LC
method, controller gain k; is set relatively low (k; = 3000)
to meet the current constraint. Other parameters in the two
groups are identical to those in the MFDO+CCFTC method.

Fig. 3 displays response profiles of w, ig, and u; under
different controllers. It indicates that both the MFDO+CCFTC
and high-gain MFDO+FTC strategies achieve similar tran-
sient responses with faster convergence rates than the low-
gain MFDO+FTC , MFDO+CCLC and MFDO+LC strategy.
The speed overshoots under the MFDO+CCFTC, high-gain
MFDO+FTC, and low-gain MFDO+FTC strategies are 8 rpm,
25 rpm, and 13 rpm, respectively. The speed setting times
under the MFDO+CCFTC , MFDO+CCLC and MFDO+LC
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Fig. 7: System responses under the present MFDO+CCFTC
scheme: unmatched disrurbance estimation §; o and matched
disturbance estimation &3 o.

strategies are 0.206 s, 0.395 s and 0.310 s, respectively. All
four controllers exhibit strong robustness against the sud-
den load disturbance at 2 s, with a speed drop within 10
rpm. Importantly, the maximum transient current under the
MFDO+CCFTC scheme is less than the predefined barrier
of 5 A, whereas it fails to achieve this fine property under

the high-gain MFDO+FTC scheme and MFDO+LC scheme.
Although current 4, under the low-gain MFDO+FTC scheme
and MFDO+CCLC scheme also meets this constraint, its
dynamic performance and anti-disturbance ability exhibit a
large degradation. In summary, the results shown in Fig. 3
demonstrate the efficacy and superiority of the proposed
current-constrained method.

To verify the superiority of the proposed MFDOs, we tested
three control schemes as follows. The first scheme is the
MFDO+CCFTC method mentioned earlier and its parame-
ters are tuned the same as before. The second scheme is
the FDO+CCFTC, where the coefficients €g, €1, €2,€0,€1 are
set to zero in comparison to the MFDO+CCFTC method.
The third scheme is the LDO+CCFTC, where the coeffi-
cients 7o, Ty, T2,%0,7y1 are set to zero in comparison to the
MFDO+CCFTC and LDO+CCFTC method. Fig. 4 shows
response profiles of w, 44, and u; under these three controllers.
It can be seen that the MFDO+CCFTC scheme outperforms
the FDO+CCFTC and LDO+CCFTC scheme in terms of
dynamic performance, with speed overshoots of 8 rpm, 20 rpm
and 47 rpm, respectively. Regarding disturbance rejection per-
formance, MFDO+CCFTC method and FDO+CCFTC method
exhibit promising performance, with a speed drop within 6
rpm. However, the speed drop of the LDO+CCFTC scheme
reached 41 rpm, thus indicating that the LDO+CCFTC scheme
is significantly less effective than the MFDO+CCFTC scheme
and FDO+CCFTC scheme in terms of suppressing distur-
bance. These results suggest that the proposed MFDO+CCFTC
method has certain advantages in estimating and suppressing
disturbances. As a result, better dynamic performance is also
attained by the presented MFDO+CCFTC scheme.

To illustrate the effect of the penalty gain k3 on the transient
current, Fig. 5 gives system responses under MFDO+CCFTC
with different values of k3 while all other parameters remain
the same as before. It can be observed that the smaller the
ks, the better the dynamic performance and the higher the
maximum transient current, while the current constraint is
always maintained. Therefore, both the dynamic performance
and the transient current should be considered to adjust ks.

B. Comparison with existing methods

To further confirm the superiority of the proposed
MFDO+CCFTC scheme, we will compare it with the nonsin-
gular terminal sliding mode control (NTSMC) scheme [14]
and the PI control scheme The PI controller is expressed
as: u; = kpxr1 + k; fo x1(7)dr, where k, and k; are the

q
controller gains. The NTSM controller is expressed as [14]:

ugy —L0§2 0~ *(Ur + b1t xQ — Ky5— K| s]%), where

s=x1+ 4 ﬁ x2 ; the designed constants 5; > 0and 0 < 0 < 1,
positive odd integers p and ¢, and controller gains K; and
K5 are used. To ensure fairness, NTSMC uses the same
disturbance estimations as the MFDO+CCFTC scheme, which
are provided by MFDOs (7) and (8).

The parameters of the MFDO+CCFTC scheme, in this
case, are still as originally given. The proportional gain
k, and integral gain k; of the PI controller are set to
0.15 and 1.5, respectively. As for the NTSMC scheme, the
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parameters are chosen as follows: {f1,0,p,q, K1, K2} =
{2000, 0.6, 5, 3, 5000, 5000}

The response profiles of w, 44, and “Z under the three
controllers (MFDO+CCFTC, NTSMC, and PI control) are
depicted in Fig. 6. It is evident from this figure that all three
controllers obtain similar dynamic performance. The speed
overshoots of the PMSM under MFDO+CCFTC, NTSMC, and
PI control methods are 8 rpm, 7 rpm, and 10 rpm, respectively.
The curves of the g-axis current reveal that maximum transient
currents under the NTSMC and PI control methods exceed the
limit of 5 A, registering at 10.33 A and 13.00 A respectively,
while the MFDO+CCFTC strategy yields a maximum transient
current of 4.69 A, which is well within the constrained range.
Regarding the anti-disturbance test, it can be clearly seen that
the MFDO+CCFTC and NTSMC strategies both achieve fine
performance, while the speed under the PI control strategy
suffers a large deterioration. Specifically, the speed drop
under the MFDO+CCFTC, NTSMC, and PI control methods
are 4 rpm, 7 rpm, and 30 rpm respectively. These results
indicate that the proposed MFDO+CCFTC method exhibits
superior performance in resisting unmatched load disturbance
compared to the NTSMC and PI control methods.

It is noted from system model (6) that, the matched and
unmatched disturbance £; and & can occur not only when
the load is changed, but also when the PMSM is affected by
parameter uncertainties. To show this and verify the effective-
ness of the MFDOs in the proposed strategy, the response
curves of the unmatched disturbance estimation 5170 and the
matched disturbance estimation 5270 are presented in Fig. 7.
The estimations in this figure are incorporated into controller
(13) for disturbance compensation, thereby enhancing the
ability of the PMSM system to reject the unmatched and
matched disturbances, as also illustrated in Fig. 3-Fig. 6.

The experiment results shown in Fig. 3-Fig. 7 have demon-
strated the effectiveness and superiority of the proposed
MFDO+CCFTC method. Utilizing these results, related con-
trol performance indices of the different schemes, including
overshoot (OS), setting time (ST), peak current (PC), and
speed drop (SD) under the load variation, are calculated and
listed in TABLE III. It can be concluded that the proposed
approach delivers promising dynamic performance and anti-
disturbance behavior while ensuring that the current is con-
strained within the predefined range.

TABLE III

Performance indices of the tested schemes
Performance OS(rpm) ST(s) PC(A) SD(rpm)
MFDO+CCFTC 8 0.206  4.686 4
MFDO+FTC(high gain) | 25 0.185 5.792 6
MFDO+FTC(low gain) 13 0.273  4.604 8
MFDO+CCLC 0 0.395 4.551 8
MFDO+LC 2 0.310 5.524 7
FDO+CCFTC 20 0.262  4.246 6
LDO+CCFTC 47 0475 4565 41
PI 10 0.166 13.000 30
NTSMC 7 0.188 10.330 7

Remark 5: 1t’s worth noting that the recommended control
approach is relatively simple to follow and implement and is
also accompanied by a rigorous analysis in Section III.C to

guarantee its feasibility. Firstly, the resulting controller (13)
follows a common state-feedback form used in finite-time
control, which makes it handily understandable. Secondly,
unlike many methods requiring optimal control over a finite
horizon, our scheme directly incorporates gain function (14)
into controller (13), simplifying implementation and reducing
the computational effort. Thirdly, observers (7) and (8) can
be simplified by properly choosing orders m and p according
to the nature of the unmatched and matched disturbances &;
and &;. Therefore, the scheme is compatible with various
microprocessors, as demonstrated with the TMS320F28335
DSP at a 10 kHz control frequency in the experiments.

V. CONCLUSION

In this paper, the current-constrained finite-time control
scheme for PMSM systems subject to unmatched and matched
disturbances has been investigated via a non-cascade structure.
By combining the estimates attained from the MFDOs, the
gain function, and the finite-time control, a robust current-
constrained finite-time control scheme, which can actively
suppress the disturbances and restrict the g-axis current within
the preset range, has been designed. In view of the strong
robustness against the unmatched disturbance and the satis-
faction of the current constraint, this work may be attractive
for engineering applications. It should be noted that the recom-
mended control method requires high-performance controller
hardware for practical application and can be directly applied
to other similar systems, such as induction motors and switch
reluctance motors. A promising avenue for future research
involves extending the recommended control method to the
domain of adaptive control.
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