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A B S T R A C T

This review paper explores the contribution of the stable isotope analysis of mammalian bones and teeth to the 
study of palaeoclimate, palaeoenvironment, and palaeoecology. These skeletal remains, composed of both 
organic and inorganic materials, preserve isotopic signals that reflect an organism’s dietary habits and other 
behaviours, as well as environmental, and climatic conditions during an animal’s lifetime. Here, we discuss how 
carbon, nitrogen, sulfur, oxygen, hydrogen, strontium, and zinc isotopes in bones and teeth have been used to 
reconstruct past changes in temperature, precipitation, aridity, permafrost, vegetation, seasonality, and animal 
diet and mobility. We identify areas where understanding is limited and suggest avenues for future research. 
Additionally, we highlight how information from different isotopes and tissues can be integrated with archae
ological findings to assess the impact of environmental shifts on animal behaviour and ecosystems, offering a 
deeper understanding of human-animal interactions throughout (pre)history. Ultimately, stable isotopes in bones 
and teeth serve as more than just palaeo-proxies; they offer insights into human and non-anthropogenic impacts 
on ecosystems, and help establish baselines for contemporary conservation, ecosystem restoration and rewilding 
policies and practices.

1. Introduction

Mammal bones and teeth are skeletal hard tissues that are chemically 
resistant to decomposition. Under favourable conditions, they can pre
serve for long periods of time, often thousands (or even millions) of 
years. On a fundamental level, the suite of faunal species within the 
skeletal fossil record can provide broad environmental information. 
Species have different environmental tolerances; thus, the presence and 
absence of ’warm’ or ’cold’ adapted species in the fossil record can 
inform on the local conditions and past shifts in mammal biogeography 
(e.g. Schreve, 1998). However, the study of isotopes in faunal remains 
found in palaeontological contexts (isotope palaeontology) can provide 
us with more direct, empirical insights into the climates and environ
ments of the past. This can yield information about the behaviours of 
those animals, and therefore illuminate their palaeoecology. With 
mammals often being central to human subsistence, the accumulated 
vertebrate fossil record at archaeological sites also represents the pro
curement strategies, decisions and behaviours of past human groups. 

Thus, the isotopic analysis of bones and teeth found at archaeological 
sites (isotope zooarchaeology) also represents a powerful means of 
accessing information about environmental conditions contemporary to 
the human activities that produced these remains and at a geographical 
scale relevant to the human experience - a rare trait for palae
oenvironmental archives. While bones and teeth rarely provide any kind 
of continuous record over time, data from these materials can be com
bined with additional chronological parameters from site stratigraphy or 
radiometric dating which can enable longer, integrated time sequences 
to be created. These local records, directly linked to the period of human 
activity, can be placed in the context of regional and global records.

Mammal bones and teeth, although complex materials, are well 
defined through metabolic processes, with their isotopic composition 
being directly determined by what the animal eats or drinks and the 
biological processes that occur within the mammal (Hedges et al., 
2006). The link to climate is a broad one, with the isotopic composition 
of an animal’s tissues influenced by both the animal’s dietary choices 
and by the isotopic composition of the biosphere at the locality occupied 
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by the animal (e.g., the ‘baselines’ of local plants or drinking water 
isotopic values). Compared to the plants and water sources, animal 
skeletal remains have the advantage of biologically averaging local and 
temporal variations during the period of tissue formation, providing a 
less noisy signal (Hedges et al., 2004). Isotope analysis of skeletal re
mains can focus on either the inorganic mineral (bioapatite) or organic 
(protein) components of palaeofaunas. Inorganic bioapatite makes up 
~60 % of bone, ~95 % of enamel, ~70 % of dentine, and ~56 % of 
antler (Nanci and Ten Cate, 2008; Nowicka et al., 2006). Bioapatite 
differs from pure mineralogical apatite in that it contains many other 
substituted ions, such as carbonate which can exchange with the phos
phate group, fluoride which can exchange with OH− , or Sr2+ which can 
exchange with Ca2+ (Hedges et al., 2006). Enamel bioapatite has a 
well-developed crystalline lattice with extensive ionic substitutions, 
whereas bone and dentine bioapatites have fewer ionic substitutions, 
and their crystallites are smaller and more distorted (Driessens, 1980; 
Fernandes et al., 2023). Enamel bioapatite is generally considered to be 
more resistant to diagenesis than bone and dentine bioapatite due to its 
crystalline structure, the orientation and size of the crystallites, its 
density/lack of porosity and very low organic content (Lee-Thorp, 2008; 
Sponheimer and Lee-Thorp, 2006). Organics (primarily collagen type I) 
make up ~20–30 % of bone and dentine, and ~44 % of antler (Ambrose, 
1990; Kendall et al., 2018; Nanci and Ten Cate, 2008; Nowicka et al., 
2006; Trotter and Hixon, 1974; van Klinken, 1999). Collagen molecules 
are made from a triple helix—three strings of amino acid chains twisting 
around each other. The molecules are organised into structured micro
fibres, which serve as a matrix for the deposition of bioapatite. Preser
vation of collagen is dependent on a combination of burial environment 
conditions (temperature, soil moisture, pH, etc) and time, with cooler 
temperate conditions generally resulting in better preservation than hot 
and arid conditions. The collagen is largely protected from microbial 
and chemical attack so long as the matrix remains unaltered (Collins 
et al., 2002). Isotope analysis of collagen has been undertaken on 
specimens >300,000 years old (Jones et al., 2001; Kuitems et al., 2015). 
However, the material extracted from archaeological bone or dentine is 
rarely unaltered and so some authors use the term ‘collagen’ when 
referring to diagenetically altered extracted degraded archaeological 
material (Brock et al., 2013; DeNiro and Weiner, 1988). Indeed, 
although commonly used extraction protocols normally result in the 
inclusion of other minor protein components in extracts, even from 
modern bones, the term ‘collagen’ is widely used to refer to extracts from 
bulk protein from modern or archaeological bones.

While some isotopes can be analysed in both the organic and inor
ganic components of skeletal remains, their isotopic compositions are 
often not equivalent due to different processes involved in the formation 
of the different materials, different tissue structures, and their differ
ential resistance to diagenesis. Furthermore, different skeletal tissues 
form over different periods in an animal’s time-of-life, with some 
remodelling continuously after initial formation while others remain 
largely biologically inert after growth and mineralisation. Bone grows 
relatively slowly and continues to remodel throughout an individual’s 
life. As a result, the isotopic composition of bone likely reflects a long- 
term average of the body’s isotopic pool. However, certain bones, 
such as ribs, have faster turnover rates and may, therefore represent a 
more recent period before death (<5 years). In contrast, bones with a 
slow turnover rate, like femurs, may represent a significantly longer 
period before death (>10 years) (Cox and Sealy, 1997; Fahy et al., 2017; 
Hedges et al., 2007). Different teeth develop at different ages of life and 
grow over a finite time frame. Tooth development advances from the 
crown to the root and dental tissues do not remodel after formation. 
Thus, teeth record and preserve time series of isotopic variations in the 
mammal over the period of the tooth formation. Bulk samples of enamel 
or dentine spanning the entire length of the tooth growth axis provide an 
averaged representation of isotopic inputs throughout the formation 
period (Fricke and O’Neil, 1996; Reade et al., 2015; Sharp and Cerling, 
1998), minus any portions of the tooth lost to wear, which can be 

common in ungulates in particular. Serial sampling enables time series 
of isotopic variations to be constructed, providing high resolution in
formation potentially at a subannual scale over multiple years 
(depending on the formation time of the tooth in question). Tooth 
enamel formation occurs in two main stages: initial formation of a more 
organic-rich tissue matrix, and subsequent full mineralisation in the 
maturation stage. During the process of enamel maturation, the organic 
matrix is gradually replaced with inorganic minerals, with 75 % of the 
total mineral content added during this stage (Passey and Cerling, 2002; 
Tafforeau et al., 2007). Once the enamel is fully mineralised, it does not 
remodel (Dean, 1987). The progressive and extended process of min
eralisation can result in a time-averaging of temporal signals, which 
serves to dampen the isotopic variation seen in the tooth compared to 
known values of ingested food and/or water (Passey and Cerling, 2002). 
This is especially the case because enamel maturation does not neces
sarily follow the same geometry or match the discrete increments of 
initial deposition, making it impossible to sample true biological in
crements corresponding to particular times of enamel formation 
(Balasse, 2002; Green et al., 2017; Zazzo et al., 2005). Like enamel, 
dentine forms incrementally, with a collagenous organic matrix being 
deposited then mineralised, but mineralisation is generally more 
instantaneous than in enamel (Kahle et al., 2018; Nanci, 2003). Primary 
dentine does not remodel, thus, as for enamel, a time series of isotopic 
variations is recorded in its increments across the period of tooth for
mation and mineralisation. For the purposes of palaeoenvironmental 
reconstruction and in palaeoecological studies, research tends to focus 
on mammals with high-crowned teeth such as horses and bovids (e.g. 
Balasse et al., 2012; Reade et al., 2015; Britton et al., 2019; Pederzani 
et al., 2024b; 2021a). Although their crowns are elongated, maximising 
time-series information, the dentine in high-crowned teeth grows at an 
angle to the vertical axis (Díez-Canseco and Tornero, 2024; Hillson, 
2005). This presents challenges when trying to isolate dentine in
crements during a sequential sampling, however, certain sampling 
methodologies can reduce, but not eliminate, the damping and 
time-averaging of the temporal isotope signal from dentine 
(Díez-Canseco and Tornero, 2024). Depending on the species, tooth 
selected and periodicity of tooth growth, single teeth from high-crowned 
taxa may be sufficient to provide isotopic data spanning a year or several 
years. However, isotopic data from low-crowned species may represent 
a more restricted period of growth and several teeth may be required 
from the same specimen to reconstruct an annual isotopic input profile 
(e.g. with red deer and reindeer/caribou, Britton et al., 2009; Stevens 
et al., 2011). Antlers, such as those found on red deer and reindeer, grow 
very rapidly over a few months, do not remodel and are shed annually. 
Thus their isotopic composition reflects the body’s isotopic pool over a 
short time period and will be seasonally biased (Royer and Somerville, 
2023; Schwartz-Narbonne et al., 2021; Stevens and O’Connell, 2016). As 
with teeth, serial sampling of antler enables a time series of isotopic 
variations to be constructed, potentially providing information about 
the animal’s movement, diet and water intake and ontogenetic variation 
in metabolism (Armaroli et al., 2024; Stevens and O’Connell, 2016). The 
timing of bone and tooth development may differ slightly between 
biological sexes for some species, but behavioural differences are more 
likely to result in greater isotopic differences between males and fe
males. Sexual dimorphism is much greater for some species when it 
comes to the timing of antler growth, e.g. reindeer (Espmark, 1971; 
Høymork and Reimers, 1999), which will result in a different seasonal 
bias in their isotope values.

When conducting isotope analysis of mammal skeletal remains for 
palaeoclimatic, palaeoenvironmental, and palaeoecological re
constructions, it is important to carefully select the tissue type and 
material that will yield the necessary isotope information to address the 
research question. Whilst climatic and environmental parameters in
fluence the isotope composition of herbivores, omnivores and carni
vores, herbivores are most often favoured for palaeoclimatic and 
palaeoenvironmental reconstruction studies. The reasons for this are 
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twofold. Firstly, herbivore isotopic composition more directly tracks 
either the impact of climatic and environmental changes via plants, or 
herbivore behavioural responses to these changes, while carnivore and 
omnivore isotopic composition tracks these influences on herbivores one 
step removed. Secondly, the additional, and potentially complicating 
factor of variations in trophic level enrichment in carnivore diets are 
avoided. For these reasons, we will focus our discussion largely on 
herbivores rather than carnivores and omnivores, and have not included 
details of trophic reconstruction in this review. However, we note that 
some have argued that carnivores may be better proxies than herbivores 
for palaeoenvironmental reconstruction as they integrate the isotopic 
variation seen at lower trophic levels (Luyt and Sealy, 2023). Further
more, one should be aware that faunal isotope data provides information 
at different scales depending on the size of the animal, its typical 
home-range size (i.e. its spatial ecology), and its lifespan (although these 
factors may also, in themselves, become the focus of research efforts 
using isotopes). It is also imperative to consider the typical ecological 
niche and physiology of a taxon: for example, in studies that utilise 
oxygen or hydrogen, it is important to understand whether a species is 
likely to be an obligate drinker, or to gain all its water from its food. 
However, in order to infer differences in climatic and environmental 
conditions based on mammal isotope signatures, it is also necessary to 
consider not only the factors that influence their isotope values, but the 
extent to which these values vary within a specific taxon at a single 
location. Detecting small-scale climatic/environmental changes is only 
possible when the variances between samples are low (Ugan and Col
train, 2011) or studies must take into account a large inter-individual 
variability. Additionally, one must consider the potential influence of 
diagenesis on the isotopic integrity of the material being analysed. Here 
we outline the contribution that isotope analyses of carbon (δ13C), ni
trogen (δ15N), sulfur (δ34S), oxygen (δ18O), hydrogen (δ2H), strontium 
(87/86Sr), and zinc (δ66Zn) of faunal remains can make to palaeoclimate, 
palaeoenvironment and palaeoecology studies in the terrestrial 
biosphere.

2. Carbon isotopes

Carbon isotope analysis has been the backbone of isotope archae
ology/palaeontology for nearly 50 years (van der Merwe and Vogel, 
1978; Vogel, 1978; Vogel and Van Der Merwe, 1977). There are two 
stable isotopes of carbon (13C and 12C), and the ratio of 13C to 12C 
(commonly expressed as δ13C) has been extensively measured in skeletal 
remains. Carbon isotopes can be measured in the organic phase (bone or 
dentine collagen) and mineral phase (bone or enamel bioapatite) of 
mammal skeletal remains. Although collagen δ13C can be preserved for 
many thousands of years (Britton et al., 2012; Flower et al., 2021; Jones 
et al., 2001; Stevens and Reade, 2021), it is necessary to ensure the 
isotopic compositions measured are representative of in vivo carbon 
isotope composition. The isotopic integrity of collagen is routinely 
assessed using the molar C:N ratios, collagen yield, and percentage of C 
and N as quality control criteria based on the elemental composition of 
modern mammalian collagen (Ambrose, 1990; DeNiro, 1985; Guiry and 
Szpak, 2021). The mineral phase of bone and enamel bioapatite also 
undergo diagenetic alteration, but the extent of this alteration varies 
significantly between these different tissues (and the moieties analysed) 
due to differences in the structure of the material and conditions of 
burial. For example, bone is highly susceptible to post mortem diagenetic 
alteration of its carbonate δ13C composition, while enamel is more 
resistant (Kohn and Cerling, 2002; Lee-Thorp and van der Merwe, 1991; 
Wang and Cerling, 1994). As a result, enamel can potentially preserve 
the original carbonate δ13C composition even after hundreds of millions 
of years (Lee-Thorp, 2002; Macfadden and Cerling, 1996). While a range 
of techniques have been suggested for assessing the extent of post mortem 
diagenetic alteration and the isotopic integrity of bone bioapatite δ13C 
values, there are no agreed quality control criteria (see methodological 
discussions in Beasley et al., 2024; Chesson et al., 2021; Dal Sasso et al., 

2018; Fernandes et al., 2023; Garvie-Lok et al., 2004; Person et al., 1995; 
Schoeninger, 1982; Shipman et al., 1984; Smith et al., 2007). Many 
researchers have therefore avoided working on bone bioapatite δ13C, 
favouring enamel instead, although some still argue valuable insights 
can be gained from bone bioapatite δ13C (Clementz et al., 2009; Lee-
Thorp, 2008; Lee-Thorp and Sponheimer, 2003).

Carbon isotopes in mammals analysed in either the mineral or 
organic phase reflect the δ13C of the diet consumed, but isotopic frac
tionation occurs between diet and different tissues due to their forma
tion processes, nutrient routing, and their different biochemical 
compositions. Thus bone collagen and bone/enamel carbon δ13C values 
are not directly interchangeable (Ambrose and Norr, 1993; Codron 
et al., 2018; Krueger and Sullivan, 1984; Lee-Thorp et al., 1989). Due to 
protein routing within the mammalian body, collagen δ13C primarily 
reflects the δ13C of dietary protein (Ambrose and Norr, 1993; Tieszen 
and Fagre, 1993; Fernandes et al., 2012), with dietary protein contrib
uting at least three fifths of carbon atoms from intact amino acids 
(Froehle et al., 2010). However other dietary macronutrients may also 
affect collagen carbon, such as fats and carbohydrates (Froehle et al., 
2010). The offset between diet and collagen δ13C is around 5 ‰ (Krueger 
and Sullivan, 1984; Lee-Thorp et al., 1989; van der Merwe and Vogel, 
1978). Mammalian δ13C values also show a small ~1–~2 ‰ increase 
with trophic level in tissue to tissue comparisons, but this can vary with 
species, tissue type, age, growth rate and food quality (Bocherens and 
Drucker, 2003; Caut et al., 2008, 2009; Krajcarz et al., 2018). Bone 
mineral and enamel δ13C reflects the entire diet’s δ13C composition, 
which includes carbohydrates, lipids, and proteins. This is because it is 
precipitated in isotopic equilibrium with blood bicarbonate (Ambrose 
and Norr, 1993; Jim et al., 2006; Krueger and Sullivan, 1984; Passey 
et al., 2005b; Tieszen and Fagre, 1993; Tejada-Lara et al., 2018). The 
diet to carbonate δ13C offset is thought to range between +10 ‰ and 
+14 ‰, with variation caused by body mass and dietary physiology 
(Ambrose and Norr, 1993; Cerling and Harris, 1999; Krueger and Sul
livan, 1984; Lee-Thorp et al., 1989; Passey et al., 2005b).

Bone and tooth δ13C values reflect climatic and environmental con
ditions as mammal δ13C is determined by diet, which ultimately reflects 
the photosynthetic pathway of plants at the base of the food chain, along 
with the broader environmental and climatic parameters that influence 
photosynthesis and plant growth. The two main photosynthetic path
ways result in substantially different plant δ13C values. C3 plants (e.g. 
trees, shrubs, herbs, and temperate grasses) utilise the Calvin–Benson 
cycle directly for carbon dioxide fixation, and this process strongly 
discriminates against 13C, resulting in plant δ13C values of ~ − 37 ‰ to 
− 20 ‰ (Farquhar, 1983; Kohn, 2010; O’Leary, 1988). In C4 plants 
(including tropical grasses and many sedges), which fix carbon through 
the Hatch Slack cycle, there is less discrimination against 13C, resulting 
in plant δ13C values of ~ − 16 ‰ to − 10 ‰ (Farquhar, 1983; O’Leary, 
1988). Variation in C4 plant δ13C is partially linked to the leakiness of 
carbon from bundle sheath cells (Cernusak et al., 2013). Plants following 
the crassulacean acid metabolism (CAM), mostly succulents and bro
meliads, occupy an intermediate position in carbon isotope space 
(Farquhar, 1983; Kohn, 2010; O’Leary, 1988). The C3 pathway, used by 
the majority of plants, is prevalent in relatively cooler and humid en
vironments. The C4 plants pathway, used by a minority of plants, is 
prevalent in higher temperature and relatively arid environments, and 
evolved 24–35 million years ago million years ago (Sage, 2004). C4 
plants commonly occur in warm tropical environments and were largely 
absent from Europe until the introduction of C4 crops such as millet 
during the Holocene. CAM plants are uncommon, and primarily found in 
arid and semi-arid regions.

As plants get their carbon from atmospheric CO2 this exerts a sub
stantial control on plant δ13C. Both the concentration of atmospheric 
CO2 and its δ13C have changed over time. For example, during the last 
glacial maximum (~20,000 years ago) the atmospheric CO2 concen
tration was 160–200 ppm, rising to 275 ppm by the start of the Holocene 
(~10,000 years ago (Polley et al., 1993)). Along with lower CO2 
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concentration during the last glacial period, atmospheric CO2 δ13C 
ranged between ~ − 7 ‰ and − 6.4 ‰ (Eggleston et al., 2016). Since the 
start of the industrial revolution, atmospheric CO2 concentration has 
risen from ~280 ppm to ~425 ppm at the time of preparing this chapter 
(April 2024), and the δ13C of the atmospheric CO2 has shifted from ~ 
− 6.5 ‰ to ~ − 8.4 ‰ due to the release of 13C depleted CO2 into the 
atmosphere from organic sources (i.e., fossil fuel combustion, also 
referred to as the ‘The Suess Effect’) (Francey et al., 1999; Friedli et al., 
1986; Graven et al., 2020; Keeling, 1979). As with the application of 
most methods that use proxies, the interpretation of bone and tooth δ13C 
values are based on our understanding of the relationship between cli
matic and environmental parameters and faunal δ13C today, and 
therefore many studies seek to compare archaeological or palae
ontological faunal δ13C values with those of modern populations. 
Therefore, where such comparisons are made it is necessary to apply a 
correction for the Suess Effect (Bump et al., 2007; Dombrosky, 2020; 
Long et al., 2005).

As well as having different δ13C due to their distinct photosynthetic 
pathways, the tissue δ13C of both C3 and C4 plants is influenced by 
environmental and climatic parameters. The wider range of plant δ13C in 
C3 plants suggests that they are more susceptible to environmental in
fluences than C4 plants (O’Leary, 1988). Water availability, latitude, 
altitude, light intensity and salinity have all been shown to influence C4 
plant δ13C, although the relationship in not always simple or linear (An 
et al., 2015; Bowman et al., 1989; Buchmann et al., 1996; Ghannoum 
et al., 2002; Kromdijk et al., 2008; Lightfoot et al., 2020; Ubierna et al., 
2013; Wang et al., 2008; Weiguo et al., 2005). For C3 plants, positive 
correlations have been observed between plant δ13C and factors such as 
light availability, nutrient levels, salinity, and water use efficiency, 
while a negative correlation is typically seen with water availability 
(Dawson et al., 2002; Diefendorf et al., 2010; Heaton, 1999; Hill et al., 
1996; Kohn, 2010; Marshall et al., 2007; O’leary, 1995; Sparks and 
Ehleringer, 1997; van Groenigen and van Kessel, 2002; Yakir and Israeli, 
1995). While there are both positive and negative correlations with 
temperature, on a global scale, plant δ13C tends to show a stronger 
dependence on mean annual precipitation (MAP), with a nonlinear in
crease in δ13C values with decreasing MAP (Diefendorf et al., 2010; 
Kohn, 2010). Variations in δ13C within and between plant species can be 
linked to genetic variation, which leads to different responses to the 
same environmental conditions (Handley et al., 1999; Schleser, 1995; 
Heaton, 1999).

At a local scale other factors can be dominant. For example, CO2 
partial pressure and temperature collectively can lead to a positive 
correlation between plant δ13C and altitude (e.g. Körner et al., 1991), 
although plant δ13C does not appear to vary with atmospheric CO2 
concentrations over geological time periods (Arens et al., 2000). High 
salinity and the associated water stress can influence C3 plant δ13C 
values with a positive correlation observed in both halophytic (‘salt-
loving’) and non-halophytic plants (e.g. Guy et al., 1986a, 1986b, 1980; 
Poss et al., 2000; van Groenigen and van Kessel, 2002). In dense forests 
the ‘canopy effect’ can result in ground level plant δ13C values 2–5‰ 
lower than those in open environment or leaves growing at the top of the 
canopy (e.g. Sonesson et al., 1992; van der Merwe and Medina, 1991, 
1989; Vogel, 1978). This is the result of a combination of factors that 
come together under closed forest canopies. There is limited mixing 
between atmospheric and forest air CO2 and the isotopically light CO2 
released by decomposing organic matter becomes trapped under the 
canopy, causing vertical stratification of the forest air δ13C values. 
Limited light, nutrients, and water availability, combined with the 
intake of respired CO2, further contribute to the depletion of 
ground-level plant δ13C values (see discussions in Broadmeadow et al., 
1992; Brooks et al., 1997; Buchmann et al., 1997; Schleser and Jaya
sekera, 1985). The canopy effect is most pronounced in dense forest 
areas and less significant in open canopy woodlands and at the forest 
edge, and has been observed in temperate, boreal and tropical forests 
(Bonafini et al., 2013; Drucker et al., 2008; van der Merwe and Medina, 

1989). Low carbon isotope values in animals are commonly interpreted 
as evidence of them living in woodland settings (Drucker et al., 2008; 
Bonzani et al., 2024; Gillis et al., 2022; Guiry et al., 2021b; Makarewicz, 
2023), however low carbon isotope values are not always observed for 
animals that are thought to have spent signficant amounts of time in 
woodlands (Bonafini et al., 2013; Stevens et al., 2006). This can be due 
to their feeding strategies and excursion of woodland animals onto 
cultivated land.

In addition to environmental variability, intra-species and intra- 
plant differences are apparent in δ13C as well as predictable physiolog
ical differences between plant functional types. The δ13C of different C3 
plant organs (leaves, seeds, and branches) can vary by approximately 
1–2 ‰ due to various factors. These include the difference in the δ13C 
composition of the carbohydrates, lipids, and proteins from which they 
are formed, as well as physiological parameters such as leaf size, 
thickness, stomatal density, branch length, and growth rate. The time of 
year that they grow and the seasonal environmental conditions also play 
a role in these variations (see Heaton, 1999 for a review). Additionally, 
C3 plant δ13C values have been found to increase with age (Donovan and 
Ehleringer, 1992). Typical natural intra-species δ13C variability for C3 
plants sampled at the same time and from the same area is approxi
mately 0.8 ‰–1.5 ‰ (Heaton, 1999). In tundra and boreal environ
ments, there is a predictable pattern of δ13C values among different plant 
species in the same geographical area. Generally, shrub species have 
lower values compared to herbs (graminoids and forbs), however, there 
are instances where they overlap and do not differ significantly 
(Kristensen et al., 2011; Munizzi, 2017). Lichen consistently has higher 
δ13C values than C3 plants in the same ecosystem (Ben-David et al., 
2001; Maguas and Brugnoli, 1996; Park and Epstein, 1960).

Bone and tooth δ13C values have been frequently used to investigate 
past palaeoenvironmental and palaeoclimatic conditions (Arppe et al., 
2011; Bocherens et al., 1996; Ecker et al., 2018; Forbes et al., 2010; 
Lee-Thorp et al., 2007; Lee-Thorp and Beaumont, 1995; Prideaux et al., 
2007; Quade et al., 1992; Sealy et al., 2020; Stevens et al., 2014; Stevens 
and Hedges, 2004; Szabó et al., 2022; Wang et al., 1994), and faunal 
palaeobaselines may be useful for present day conservation efforts (e.g. 
Bocherens et al., 2015; Shaikh et al., 2025). The δ13C values of grazers 
and mixed feeders (that both graze and browse) have been employed to 
explore the past distribution of C3 and C4 plants (Lee Thorp and Merwe, 
1987; Quade et al., 1992). The former provides information on the 
distribution of C3 and C4 grasses, while the latter acts as a proxy for the 
proportion of C3 and C4 plants in the overall flora. Consequently, these 
palaeoenvironmental reconstructions offer valuable insights into past 
climatic conditions, as the distribution of C3 and C4 plants is primarily 
influenced by temperature and summer rainfall, but also atmospheric 
CO2 concentration (Cerling et al., 1997; Connin et al., 1998; Smith et al., 
2002). For browsers (and grazers in C3 ecosystems) bone and tooth δ13C 
reflect the degree of vegetation openness and water stress, with species 
specific variations linked to individual dietary selection (where δ13C 
values differ between plant communities within an ecosystem) (Passey 
et al., 2005b).

A study on Southeast Asian mammals that spans the Quaternary 
period nicely exemplifies how mammal δ13C can be used to reconstruct 
past environmental change (Louys and Roberts, 2020). The mammal 
δ13C results indicate that the forests of the Early Pleistocene gave way to 
savannahs by the Middle Pleistocene, which then retreated by the Late 
Pleistocene and had completely disappeared by the Holocene, during 
which time the savannah was replaced by highly stratified 
closed-canopy rainforest (Fig. 1). These paleoenvironmental re
constructions also provide critical information about palaeoclimate in 
the region as past changes in the vegetation patterns are linked to 
temperature and precipitation which are governed by the position of the 
intertropical convergence zone and its impact on the East Asian and the 
Australian–Indonesian monsoons. Thus the palaeoenvironmental and 
palaeoclimate reconstructions provide critical context for understanding 
hominin and mammalian migrations and extinctions.
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A further example is that of reindeer collagen δ13C during the Late 
Pleistocene and early Holocene. The δ13C results indicate reindeer 
consumption of lichen changed over time and this is inferred to reflect 
changes in lichen availability linked to changing climates and/or hu
midity levels both during the Late Pleistocene (Britton et al., 2023b) and 
between the late Pleistocene and early Holocene (Drucker et al., 2011b). 
When making palaeoenvironmental/palaeoclimatic inferences from 
mammal δ13C values it is, however, important to remember that mul
tiple parameters could individually or collectively result in the observed 
δ13C variation, and not to assume a single climatic parameter is the 
driving variable. Interpretation of temporal trends in δ13C of western 
European mammal bone collagen during the late Pleistocene/Holocene 
transition exemplifies this issue. A shift of c. two or three ‰ lower δ13C 

values has been observed in western European horse, roe deer, red deer, 
and aurochs/cattle (Drucker et al., 2003a,b, 2008, 2011b; Drucker and 
Célérier, 2001; Hedges et al., 2004, 2006; Hofman-Kamińska et al., 
2018; McCormack et al., 2021; Richards and Hedges, 2003; Rosengren 
and Magnell, 2024; Stevens, 2004; Stevens and Hedges, 2004). The 
canopy effect is most frequently cited as the driving parameter behind 
the δ13C trends in western Europe (Drucker et al., 2003a,b; Noe-Nygaard 
et al., 2005) as in modern European contexts the percentage of forest 
cover has been shown to correlate with faunal δ13C (Drucker et al., 2008; 
Sykut et al., 2021) (although this is not always the case: see Bonafini 
et al., 2013). However, early investigations favoured a global factor, 
such as a change in atmospheric CO2 partial pressure and atmospheric 
δ13C as the driving parameter, as the temporal trends observed in early 

Fig. 1. (Data plotted from Louys and Roberts, 2020, SI). Distribution of δ13C values across geological sub-epochs and epochs. Green bars, herbivores; blue bars, 
omnivores; red bars, carnivores. Shaded boxes represent the division between forests (consumers of 100 % C3 resources) and grasslands (consumers of 100 % C4 
resources). All large-herbivore δ13C values from enamel (δ13Cenamel) were adjusted by − 14 ‰; omnivores, rodents, pigs and primates were adjusted by − 11 ‰; 
Carnivora by − 9 ‰; δ13C values from hair or horn (δ13Chair/horn) were adjusted by − 3.1 ‰; samples from after AD 1930 were adjusted by 1.6 ‰. VPDB, Vienna 
PeeDee Belemnite.

Fig. 2. (Replotted from Stevens et al., 2014, SI). Box plots of 426 red deer δ13C results from El Miron Spain and collated from other areas of Europe divided into time 
units that are contemporary with the cultural units seen at El Mirón, Northern Spain.
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data sets were similar across species and regions (Richards and Hedges, 
2003; Stevens, 2004; Stevens and Hedges, 2004). Other studies have 
argued that increased water availability is also a possible driving 
parameter (Hedges et al., 2006). As more data sets have become avail
able, it is now evident that temporal δ13C trends can vary between 
species (Lynch et al., 2008; Noe-Nygaard et al., 2005) and within a 
species across different regions (Drucker et al., 2011b; Stevens et al., 
2014). A study of red deer bone collagen δ13C from the Late Pleistocene 
and early Holocene compares data from El Mirón in Spain with pub
lished data from other European regions and provides some clarity on 
this issue (Stevens et al., 2014) (see Fig. 2). With the transition to the 
Holocene, a shift to lower deer δ13C values is seen across Western 
Europe, from the UK in the north to Spain in the south. This supports the 
view that changes in δ13C are linked to variations in atmospheric CO2 
levels and increased water availability. However, the magnitude of the 
shift in deer δ13C varies between regions. Regions suspected of experi
encing forest development exhibit lower δ13C values, which suggests the 
influence of the canopy effect. Consequently, the shift in red deer δ13C 
during the last deglaciation is the cumulative result of both global (see 
Hare et al., 2018) and local factors (the canopy effect, see Drucker et al., 
2011b) playing a role. Studies can be bolstered by ensuring multiple 
species (e.g., of ungulates) are analysed from the same levels at the same 
sites, ensuring that diachronic ‘baseline’ trends can be differentiated 
from ecological ‘behavioural’ trends, where species may vary their niche 
feeding habits in response to climatic change in different ways, leading 
to variable inter-species trends (Britton et al., 2023b). A final point to 
remember is that there is no single faunal δ13C value that demarcates an 
animal living in an open habitat from a forest environment. While a 
preindustrial collagen δ13C value of − 22.5 ‰ has been suggested as a 
landmark for suspecting a habitat in dense forest (Drucker et al., 2003a), 
it cannot always be universally applied. Factors such as location (e.g., 
altitude) and time-specific conditions (e.g., atmospheric CO2) need to be 
considered when determining what faunal δ13C value would indicate a 
forest dweller in each scenario.

3. Nitrogen isotopes

The vast majority of studies measure nitrogen isotopes in the organic 
phase (collagen) of bones, dentine and antler. Only a handful of studies 
have targeted nitrogen isotopes in fossil enamel (Leichliter et al., 2023) 
due to the limited amount of nitrogen in enamel, the complexities of 
extracting it for analysis, and the difficulty in confirming whether 
isotope ratios are representative of in vivo values and that the material 
has not been contaminated in the burial environment or during the 
extraction process. Nitrogen isotope values in bone and dentine collagen 
are almost entirely derived from dietary protein, and have a relatively 
simple relationship with its δ15N, with consumers’ δ15N values typically 
being elevated c. 3–4 ‰ over diet, although some studies suggest the 
enrichment can be from +1.5 ‰ to 6 ‰ (Ambrose, 2002; Caut et al., 
2009; Deniro and Epstein, 1981; Minagawa and Wada, 1984; Schoe
ninger and DeNiro, 1984; Bocherens and Drucker, 2003). Thus “trophic 
level enrichment" between diet and body results in an overall increase in 
nitrogen isotopic values as the food chain is ascended (O’Connell et al., 
2012). Despite decades of research in this area and its clear success as a 
dietary indicator, the mechanism resulting in δ15N trophic enrichment 
remains poorly characterised (O’Connell et al., 2012). Tissue-to-tissue 
trophic level enrichment is thought to be largely the result of the dif
ferential loss of the lighter isotope (14N) during excretion within an 
organism, however a variety of factors are known to influence the extent 
of this enrichment. For example, the amount of dietary protein 
consumed is a determining factor in the 15N-enrichment from diet to 
tissue. Lower levels of dietary protein can result in decreased diet-tissue 
offsets and potentially lower tissue δ15N values (Sponheimer et al., 
2003a,b). Conversely, calorie restriction can lead to elevated tissue δ15N 
values through utilisation of endogenous proteins during periods of 
reduced caloric intake (Fuller et al., 2005; Gutierrez et al., 2024; Mekota 

et al., 2006). Other physiological factors such as pregnancy, lactation, 
growth, and digestive physiology have also been found to impact 
15N-enrichment (e.g. Fuller et al., 2005, 2004; Mekota et al., 2006). 
Tissues formed during nursing may also have a higher δ15N than that of 
the mother due to the trophic level effect (Fogel, 1989; Fuller et al., 
2006). Differences in dietary selection and mobility behaviours among 
different animal species, populations, and individuals contribute to 
additional variations in the faunal δ15N data (Reade et al., 2023), which 
can also simply reflect seasonal ‘baseline’ variations at any one location 
(e.g. Zazzo et al., 2015).

Beyond seasonal variations, and concerning the relationship be
tween mammal nitrogen isotopes and climate, there are clinal patterns 
that can be observed at a global scale. Animals from hot and dry envi
ronments tend to have higher nitrogen isotope values compared to those 
at the same trophic level in cooler and wetter environments (Ambrose, 
1991; Gröcke et al., 1997; Hartman, 2011; Heaton et al., 1986; Murphy 
and Bowman, 2006; Pate and Anson, 2008; Sealy et al., 1987). Many 
studies have suggested that these patterns are a result of the physio
logical response of animals to heat, water, and/or nutritional stress 
(Ambrose, 2002; Ambrose and DeNiro, 1986; Bada et al., 1989; Cormie 
and Schwarcz, 1996; Del Rio and Wolf, 2005; Hobson et al., 1993; 
Schoeninger et al., 1997; Sealy, 1986; Sponheimer et al., 2003a,b; Steele 
and Daniel, 1978; Vanderklift and Ponsard, 2003). Others, however, 
argue that higher faunal δ15N values in arid environments are due to 
elevated plant δ15N values being passed on to animals (Heaton, 1987; 
Pate et al., 1998; Schwarcz et al., 1999). A study specifically examining 
this issue confirmed that the isotopic composition of the diet is the 
primary factor determining mammal δ15N values (Hartman, 2011). 
Therefore, the relationship between faunal δ15N and environmental 
conditions is mediated by the climate’s influence on the nitrogen isotope 
signatures of soil and plants, which are subsequently transferred up the 
food chain.

Plant δ15N values range from at least ~ − 15 ‰ to ~ +33 ‰ (Craine 
et al., 2009, 2015; Santana-Sagredo et al., 2021) and are influenced by 
various factors (see Craine et al., 2015 for recent review). Leguminous 
plants have a symbiotic relationship with bacteria that attach to their 
roots, enabling them to directly acquire nitrogen (N2) from the atmo
sphere. In contrast, non-leguminous plants, which make up the majority 
of plants, cannot utilise atmospheric nitrogen directly. Instead, they 
primarily rely on soil inorganic nitrogen sources such as ammonium 
(NH4

+) and nitrate (NO3
− ). When inorganic nitrogen is limited, plants 

may turn to organic nitrogen as an alternative. The nitrogen isotopic 
composition of a plant is determined by the type of nitrogen it obtains, 
whether it is taken up directly from the soil or through symbiotic mi
crobes, and whether the nitrogen is assimilated in the roots or shoots 
(Craine et al., 2015; Szpak, 2014). Furthermore, the allocation of ni
trogen to different plant parts, such as leaves, stems, or fruit, also affects 
the plant’s nitrogen isotopic composition. While nitrogen cycling is very 
complex, broad isotopic patterns linked to climate are seen in soil and 
plant δ15N values. On a global and continental scale, there are strong 
relationships between plant δ15N and temperature and precipitation. 
Foliar δ15N increases as mean annual precipitation (MAP) decreases and 
mean annual temperature (MAT) increases, but this latter pattern only 
holds true for ecosystems with MAT > − 0.5 ◦C (Amundson et al., 2003; 
Craine et al., 2009, 2015; Handley et al., 1999). These relationships are 
also evident at smaller spatial scales, where there are significant varia
tions in altitude and local topography (Liu et al., 2010; Männel et al., 
2007). In addition, salinity impacts plant δ15N with higher values 
observed where plants grow in high salinity soils (Heaton, 1987; van 
Groenigen and van Kessel, 2002; Virginia and Delwiche, 1982) due to 
increased ammonia volatilisation and plants taking up more 
15N-enriched ammonium (van Groenigen and van Kessel, 2002). It has 
been argued that the relationships between climate and plant δ15N are 
linked to the openness of the nitrogen cycle (however see Craine et al., 
2015 for further discussion). In hot and arid environments, the nitrogen 
cycle is generally open, with more extensive mineral leaching, 
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denitrification, and ammonia volatilisation. These processes have large 
fractionations resulting in 15N enrichment of soils and elevated plants 
δ15N (Austin and Vitousek, 1998; Handley et al., 1999). In cold, wet 
environments the soil nitrogen cycle is more closed with fewer losses 
from the system and the soil contains relatively limited mineral nitrogen 
because most of the nitrogen is bound within dead organic matter (Read, 
1991). As a result, plants primarily obtain nitrogen directly from dead 
organic matter, leading to the cycling of nitrogen between live and dead 
organic pools. Consequently, plant and soil organic matter’s δ15N values 
are lower because less 14N is lost from the cycle through leaching, 
denitrification, and ammonia volatilisation (Austin and Vitousek, 1998; 
Handley et al., 1999; Peñuelas et al., 1999). In environments with 
limited nitrogen availability, plant species can coexist by competitively 
partitioning the nitrogen pool and utilising different nitrogen sources in 
the soil. As a result, plants exhibit different δ15N values (Nadelhoffer 
et al., 1996). Additionally, in cold ecosystems, a higher number of plants 
have symbiotic mycorrhizae due to limited nitrogen availability 
(Michelsen et al., 1998). These mycorrhizal associations lead to lower 
plant δ15N values, with certain types of mycorrhizal associations having 
a greater impact than others (Craine et al., 2009). Graminoids that do 
not have symbionts usually have higher δ15N values compared to 
co-existing shrubs and trees which rely on mycorrhizae for nitrogen 
acquisition (Drucker, 2022).

It is important to note that the relationship between climatic/envi
ronmental parameters and plant δ15N may often be decoupled from its 
natural state due to anthropogenic activity. A wide range of agricultural 
practices, such as the use of animal fertilisers, burning of vegetation or 
shifting cultivation, tillage, grazing intensity/stocking rate, and irriga
tion have been shown to impact soil and plant δ15N and these effects are 
passed on to the animals (see Bogaard et al., 2007; Szpak, 2014). Such 
anthropogenic signals can be useful markers of human activities and 
their effects on past ecosystems.

Significant temporal variations in faunal δ15N values have been 
observed on long timescales (103–105 years) (Bocherens et al., 2014; 
Britton et al., 2023b; Drucker et al., 2003a,b, 2011a; Fox-Dobbs et al., 
2008; Hedges et al., 2004, 2006; Mann et al., 2013; Rabanus-Wallace 
et al., 2017; Reade et al., 2020b, 2021, 2023, 2021; Richards et al., 2017; 
Richards and Hedges, 2003; Stevens, 2004; Stevens et al., 2008, 2009a, 
2009b, 2014, 2021; Stevens and Hedges, 2004). It has been argued that 
variations in faunal δ15N reflect changes in baseline (soil and plant) δ15N 
values due to climatic and environmental factors. Some temporal 
changes in δ15N have been noted in specific regions (to date, but future 
studies may show these patterns to be more widespread). For example 
the δ15N of herbivores and carnivores in southwest France shift to higher 
values at around ~42,000 cal BP, then return to lower δ15N values ~35, 
000 cal BP), and are thought to reflect increasing followed by decreasing 
aridity (Bocherens et al., 2014). Other temporal changes have been 
observed in different species across mid and high latitude environments. 
These include regional responses to broad-scale climatic excursions, 
such as Heinrich Events (Britton et al., 2023b). The most notable of these 
is the large decrease toward the end of the last glacial to very low values 
around 17,000 to 14,000 years BP followed by a rapid increase in δ15N 
during the Late Glacial period. In recent years this trend has been 
referred to as the Late Glacial Nitrogen Excursion (LGNE) (Drucker et al., 
2003a,b, 2011a; Mann et al., 2013; Rabanus-Wallace et al., 2017; Reade 
et al., 2020b, 2021, 2023; Richards and Hedges, 2003; Stevens et al., 
2008; Stevens and Hedges, 2004; Stevens, 2004) (Fig. 3). As more data 
on the δ15N of late Pleistocene herbivores has been collected, it has 
become increasingly clear that there are spatial and temporal asyn
chronicities in the LGNE (Rabanus-Wallace et al., 2017; Reade et al., 
2023; Schwartz-Narbonne et al., 2019). Additionally, there are signifi
cant differences in species specific trends in δ15N (Drucker, 2022; Reade 
et al., 2023; Schwartz-Narbonne et al., 2019; Stevens, 2004). Recent 
studies have applied an isoscape approach to model changes in spatial 
gradients of δ15N in late Pleistocene Europe and explore how this relates 
to climate (Fig. 4) (Reade et al., 2023). Whilst a range of parameters 

have been suggested as the drivers of the LGNE excursion, the general 
consensus is that the observed trends (lowest δ15N values seen in 
northern latitudes after, rather than during, the Last Glacial Maximum) 
are most likely related to changes in landscape moisture (particularly 
from increased input of meltwater from ice sheets and thawing perma
frost) and soil activity linked to changes in permafrost intensity that 
occurred after the Last Glacial Maximum (Drucker et al., 2011b, 2012; 
Reade et al., 2020b, 2023; Stevens, 2004; Stevens et al., 2008).

As with carbon, interpretations of archaeological/palaeontological 
animal δ15N values are potentially flawed as researchers too often as
sume a single climate or anthropogenic parameter is the driving vari
able, neglecting other possible parameters that could be contributing to 
the observed trend. With such a range of climatic (temperature, pre
cipitation), environmental (topography, geology, salinity, permafrost 
conditions, soil hydrology, forest development) and anthropogenic 
(manuring, burning) parameters potentially influencing faunal δ15N and 
the complexities of the relationship between climate and the nitrogen 
cycle it is very tricky to move climatic interpretations of faunal δ15N 
values beyond qualitative statements of cooler, warmer, wetter, more 
arid to more quantitative interpretations. More extensive meta-analyses 
of modern faunal δ15N values may help further understanding in this 
area, and provide information on deconvoluting climate linked δ15N 
changes. When it comes to the past, trends in faunal δ15N values may be 
the result of multiple factors impacting the nitrogen cycling. Further
more, archaeological and palaeontological faunal δ15N values are best 
interpreted alongside other climate proxies (including other isotopic 
proxies), which may help elucidate the driving parameter and assist with 
the interpretation, although there is always the danger of circularity 
with this approach. As with other isotopic or proxy approaches, the need 
and importance of sound chronological frameworks is at the fore when 
trying to relate variations in palaeo- or archaeo-faunal isotopes to 
environmental drivers.

Fig. 3. δ15N of 252 radiocarbon dated horse bone and tooth collagen from late 
Pleistocene Europe. (Data plotted from Reade et al., 2023). Circles are indi
vidual data points, line is 10 point running mean of data. Trend shows the LGNE 
after the Last Glacial Maximum.
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Fig. 4. (From Reade et al., 2023) δ15N isoscape prediction surfaces for Europe based on herbivore collagen δ15N values (Alces, Bos/Bison, Capra, Capreolus, Cervus 
elaphus, Coelodonta, Equus, Megaloceros, Rangifer, Rupicapra, Saiga). Isoscapes model changes in spatial gradients of δ15N in late Pleistocene Europe and explore how 
this relates to climate. Best performing model incorporating climatic fixed effect(s) is shown for each time bin.
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4. Sulfur isotopes

Sulfur isotope analysis of skeletal remains focuses on the ratios of 32S 
to 32S (expressed as δ34S) in organic phase sulfur, typically measured on 
extracted collagen from bones, dentine and antlers. The collagen in these 
materials is predominantly type 1 collagen, in which sulfur is only 
present in organic form in the amino acid methionine. Sulfur is also 
present in the mineral phase (bioapatite) in the form of sulfate (SO4

2− ) 
substituting for the phosphate group (PO4

3− ) (McArthur, 1978; Michener 
and Lajtha, 2007). However, very few studies have focused on the 
mineral phase due to the technical complexities of measuring the iso
topes (Doubleday et al., 2018; Goedert et al., 2016).

To date, sulfur isotopes in mammal bones and teeth have mainly 
been used for studying past diet and mobility. δ34S has been employed to 
investigate the consumption of marine and freshwater resources (e.g. 
(Craig et al., 2006; Drucker et al., 2018; Guiry and Szpak, 2020; Nehlich 
et al., 2010; Privat et al., 2007; Richards et al., 2001; Szpak and Buckley, 
2020), the movements of humans and animals (Ebert et al., 2021; Guiry 
et al., 2015; Madgwick et al., 2019a, 2023, 2019b; Richards, 2023), 
variations in range use by different species in the same region (Britton 
et al., 2023a; Reade et al., 2021; Wiβing et al., 2019), and potential 
changes in the hunting range used by humans and/or the spatial 
palaeoecology of prey species over time (Jones et al., 2019). Most 
studies have interpreted animal and human δ34S values as reflecting one 
or more sources of bioavailable δ34S, but assume the sources are isoto
pically static and not influenced by changing environmental parameters. 
Recent studies have, however, shown faunal sulfur isotopes in the same 
species can vary through time at the same location (e.g. Drucker et al., 
2011a, 2012; Reade et al., 2021, 2020b) and therefore, provide useful 
information on palaeoclimate and palaeoenvironment because they are 
derived from plants or other animals and not only reflect bioavailable 
δ34S baselines but also the processes which alter them (Lamb et al., 
2023; Stevens et al., 2025).The primary source of terrestrial sulfur is 
geological, derived from mineral weathering of parent bedrock both as 
sulfate (SO4

2− ) and as the reduced form sulfide (S2− ) as well as elemental 
sulfur (S0). Geological sulfur has a very wide range of δ34S values 
reflecting the interplay of isotopic fractionation from microbial sulfur 
cycling in ocean sediments with fluctuations in sea level and other 
environmental factors over millennia (Nehlich, 2015). There are broadly 
two categories of geological sulfur deposits which feed the bioavailable 
sulfur pool for plants and animals to take up: those that reflect the δ34S 
of ocean water sulfate at the time of deposition (marine evaporites, with 
δ34S values c. 10 ‰ to 30 ‰ e.g. Claypool et al., 1980; Kampschulte and 
Strauss, 2004), and those that were formed from microbial sulfide pro
duction in marine and continental environments (geological pyrites with 
usually negative δ34S values fractionating up to 72 ‰ e.g. Pasquier et al., 
2021).

Sulfur carrying geological and/or palaeoenvironmental signals in 
δ34S is incorporated into collagen via the uptake of sulfate by plants. A 
proportion of this sulfate is used by plants to make the amino acid 
methionine, a component of plant protein, with the rest incorporated 
into other amino acids including cysteine, used for metabolic processes, 
or stored in cell vacuoles. Methionine is an essential amino acid for 
mammals and has to be acquired through diet, thus herbivores can only 
acquire methionine by eating plants (Nimni et al., 2007). The majority 
of this methionine is used by herbivores to form protein in tissues 
including collagen and muscle, with a smaller proportion utilised to 
synthesise other amino acids and in metabolic processes. Methionine is 
the dominant form of sulfur incorporated into type 1 collagen, thus 
sulfur in collagen from bones, dentine and antlers largely reflects dietary 
intake rather than internal synthesis (Anné et al., 2019). Through the 
uptake pathway, bioavailable sulfur from the environment is fixed in 
plant protein within methionine, taken up by herbivores, and can be 
passed on to carnivores via ingestion of herbivore tissues. Where 
freshwater or marine fish and shellfish comprise a significant source of 
dietary protein, this can alter mammal collagen δ34S. Therefore, 

palaeoenvironmental signals are best focused on herbivores. With 
respect to δ34S, herbivore bone collagen δ34S is expected to reflect the 
geological and palaeoenvironmental conditions in which food plants 
were growing. This is supported by: i) observations that bulk plant δ34S 
reflects the δ34S of bioavailable sulfate in the soil in which the plant 
grows (Nehlich, 2015; Tcherkez and Tea, 2013); ii) the fact that there is 
a zero to small trophic level effect associated with the uptake of sulfur in 
dietary protein (e.g. c. ± 0.5 ± 2.4 ‰, (Krajcarz et al., 2019; Nehlich, 
2015; Raoult et al., 2024); and iii), the assumption that the δ34S of plant 
methionine closely matches bulk plant material δ34S. Controlled feeding 
studies broadly support this, indicating a small offset between 
plant-based feed δ34S and collagen δ34S (Tanz and Schmidt, 2010; Webb 
et al., 2017).

As is the case with archaeological/palaeontological bones and teeth 
for other stable isotope analyses, collagen samples for sulfur isotope 
analysis must be screened to rule out post-deposition diagenetic sulfur 
contamination, which may be caused by protein degradation and 
contamination with exogenous sulfur (Bocherens et al., 2011). This is 
carried out by examining carbon to sulfur and nitrogen to sulfur mass 
ratios (Nehlich and Richards, 2009), taking into account the possibility 
of variation in these ratios across species (Bocherens et al., 2011).

Although plant (and animal) δ34S values reflect geological sulfur 
there is not always a direct correlation. This is because not all of the 
sulfur in bedrock is accessible to plants, and due to the fact that 
biogeochemical sulfur cycling in surface deposits can modify δ34S 
values. Different geological units weather at different rates when 
exposed as a result of differences in their chemistry. This means that 
sulfur from one rock type may dominate the overlying soil even though 
another sulfur bearing rock is also present below the soil. Changes in the 
rates of bedrock mineral weathering due to variations in soil hydrology 
linked to changes in climate can influence bioavailable δ34S. Enhanced 
geological weathering caused by ice-sheet or glacial flow in moun
tainous regions can also result in the transport of δ34S from weathered 
mountain geology over long distances in meltwater drainage (Hindshaw 
et al., 2016). A further source of sulfur entering the soils (and passed on 
to plants) is the atmosphere (via dry or wet deposition of SO4

2− aerosols 
and minor biogenic sources of gaseous sulfur in various forms). Sea 
spray can transport sulfur particles from the ocean to coastal areas, 
resulting in some coastal soil δ34S values that closely resemble those 
found in the ocean (Wadleigh et al., 1994). This sea-spray effect most 
greatly influences terrestrial δ34S values within c. 30 km of the coast 
(Guiry and Szpak, 2020; Nehlich, 2015), although this depends on 
prevailing weather patterns, and smaller amounts of marine sulfate can 
be deposited farther inland (Bataille et al., 2021; Zazzo et al., 2011). 
Saline intrusion, the process by which seawater replaces groundwater in 
aquifers in coastal regions, can increase the extent of the marine δ34S 
influence, especially in deltaic regions and around larger estuaries 
(Eslami et al., 2021), and is affected by changing sea levels. Past sea level 
change has undoubtedly impacted terrestrial bioavailable δ34S as re
gions became less or more coastal, changing the geography of the coastal 
δ34S signal. For example, during the Last Glacial Maximum sea levels 
were about 130 m lower than today, which not only changed the loca
tion of palaeo-shorelines, but exposed land surfaces which became new 
potential sources of sulfate through weathering, aeolian sediment 
transportation and deposition (Lambeck et al., 2014; Stevens et al., 
2025).

Bioavailable δ34S can also be affected by volcanic eruptions that 
create sulfur bearing dust which travels long distances in the atmosphere 
to be deposited on soils, weathered, and taken up by plants and animals. 
Volcanic derived sulfur has δ34S values linked to the eruption type and 
the material produced (e.g. 4.1 ± 0.5 ‰, Jongebloed et al., 2023). Past 
climate change has been linked to increased volcanic activity and inputs 
of volcanic sulfur to the atmosphere, which occurred when surface load 
pressure decreased due to the melting of glacial ice (Lin et al., 2022). 
Changes in global wind patterns also affected bioavailable δ34S via 
deposition of loess which contained sulfur from volcanic dust as well as 
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from geological weathering from wide geographical areas (Rousseau 
and Hatté, 2021; Ryskov et al., 2007; Schaffernicht et al., 2020). During 
glacial periods loess deposition was extensive across large areas of the 
world (Lehmkuhl et al., 2021), and thus it is an important potential 
driver of changes in bioavailable δ34S over time.

A ubiquitous process that strongly affects the bioavailable δ34S taken 
up by plants and animals is contemporaneous microbial sulfur cycling. 
Heterotrophic dissimilatory sulfate reduction to sulfide (DSR) is a 
pathway for the microbial oxidation (respiration) of organic carbon in 
anaerobic sediments and soils. DSR can cause large isotopic fraction
ation (average c. 28 ‰ (Canfield, 2001) which has been found to vary 
with the ratio of sulfate to organic carbon as well as differences in 
temperature and microbial strain (Canfield et al., 2006; Mitchell et al., 
2009; Sim et al., 2023). Typically isotopic fractionation associated with 
DSR produces sulfide which is isotopically lighter than the sulfate sub
strate from which it is formed, while the residual sulfate substrate be
comes isotopically heavier as it is used up by DSR. Most plants primarily 
take up sulfate and cannot access sulfide unless it is re-oxidised by a 
different microbial community back to form sulfate, when oxygen 
returns to the soil or sediment. Thus, it is the complete 
reduction-oxidation of inorganic sulfur by two distinct microbial com
munities requiring contrasting environmental parameters which forms 
bioavailable sulfate with lowered δ34S values. For sulfate reduction to 
proceed, strongly reducing conditions must develop in soils and sedi
ments which contain sufficient organic carbon as a bacterial substrate. 
These conditions usually occur after prolonged soil waterlogging, for 
example in wetlands, marshes, and bogs, and on inundated floodplains. 
In such environments this process has been shown to result in extremely 
low sedimentary δ34S values typically − 30 ‰ to − 25 ‰ and occasionally 
as low as − 70 ‰ (Fry et al., 1982; Krouse, 1989; Pasquier et al., 2021; 
Peterson and Fry, 1987). Some plants are adapted to indirect sulfide 
uptake via oxygen loss from roots which facilitates microbial sulfide 
oxidation to sulfate in otherwise anaerobic environments, and thus can 
incorporate highly 34S-depleted sulfate in sediments where DSR is 
active, without the necessity for the sediment as a whole to switch to 
aerobic conditions (Carlson and Forrest, 1982; Guiry et al., 2022; Lamers 
et al., 2013). In addition, in saltmarsh environments, which are hotspots 
of DSR, low δ34S values have been found in plants despite the fact that 
sediments are inundated twice daily with seawater with δ34S c. 20 ‰ (e. 
g. Carlson and Forrest, 1982; Guiry et al., 2022; Lamers et al., 2013). 
Low archaeological/palaeontological δ34S collagen values can poten
tially indicate wetlands, marshes, bogs, saltmarshes, or inundated 
floodplain landscapes in the palaeoenvironment through the transfer of 
the DSR-oxidation sulfur cycling signal to plants and animals (Guiry 
et al., 2021a, 2022; Lamb et al., 2023; Stevens et al., 2022; Carlson and 
Forrest, 1982; Lamers et al., 201). Past changes in climate affected the 
storage and distribution of freshwater across terrestrial hydrological 
reservoirs, sometimes raising groundwater levels and leading to the 
development of new rivers, lakes, saltmarshes and other wetland envi
ronments which potentially can be tracked through archaeological 
faunal δ34S values.

Permafrost environments interact uniquely with the microbial sulfur 
cycle. These environments lock away moisture, sulfur and organic car
bon, and limit microbial cycling in the soil. Sulfur is added to the 
permafrost surface from atmospheric deposition and aeolian dust. Dur
ing seasonal thawing and freezing of the active layer, plants grow and 
die, and over time, organic matter accumulates due to the suppression of 
microbial decomposition in cold temperatures (Herndon et al., 2020). 
When the active layer thaws, a lack of vertical drainage caused by the 
frozen subsurface forces water laterally, such that minor differences in 
topography create a patchwork of aerobic-anaerobic gradients, sup
porting both DSR and sulfide oxidation (Herndon et al., 2020). Plants 
which flourish on the active layer during seasonal thawing may incor
porate sulfate bearing this signal in δ34S, and pass on the lower δ34S 
values to animals (Stevens et al., 2025). Some of the sulfide produced by 
DSR is stored in frozen deposits as the permafrost aggrades. Past 

permafrost thaw due to warming global temperatures will have led to 
permafrost degradation and a deepening of the active layer, returning 
large quantities of sulfide with lowered δ34S sequestered in surface 
sediments to microbially active organic carbon rich soil. When 
oxygenated conditions developed, this sulfide would have been oxidised 
to create high concentration bioavailable sulfate with lowered δ34S 
(Herndon et al., 2020; Kemeny et al., 2023), to be taken up by plants and 
animals.

As is the case with nitrogen, significant temporal variations in faunal 
δ34S values have been observed over long timescales. A high-magnitude 
excursion in faunal δ34S, termed the Late Pleniglacial Sulfur Excursion 
(LPSE), has been observed in some areas of Eurasia between approxi
mately 30 and 15 kyr BP (Stevens et al., 2025). This period corresponds 
to the latter part of the last ice age and covers much of Marine Isotope 
Stage 2 (MIS 2, c. 29–11.7 kyr BP), including the Last Glacial Maximum 
(LGM, c. 26.5–19 kyr BP). In some regions the magnitude of the LPSE is 
up to ~35 ‰. The LPSE is particularly pronounced in regions where 
there is good temporal coverage within a discrete geographic area, such 
as in Britain and Belgium, and is also evident in other regions, such as 
central Europe north of the Alps (Stevens et al., 2025)(Fig. 5). However, 
the limited temporal and spatial coverage of data currently make it 
impossible to determine whether the LPSE is time transgressive across 
the region in which it is observed. The LPSE occurs in multiple species 
with differing dietary niches and mobility behaviours. At present, the 
LPSE is argued to be primarily driven by changing permafrost condi
tions, especially permafrost thaw during the transition from Pleniglacial 
to Late Glacial ~15,000 year before present (yr BP), which would have 
liberated sequestered sedimentary sulfide for oxidation and plant uptake 
into the food chain, although loess transportation is also thought to have 
played a role. However further research is needed in this area to fully 
understand the mechanism driving and the temporal and spatial extent 
of the LPSE. Given that temporal variations are seen in faunal δ15N and 
δ34S in the late Pleistocene, further research would help us understand 
connections between climate, nitrogen and sulfur cycling at this time.

Extensive evidence that bioavailable δ34S is dynamic and influenced 
by climatic and environmental parameters over a range of spatial scales, 
necessitates an incorporation of this knowledge into studies of human 
and animal past mobility and spatial ecology. In order for interpretation 
of δ34S results to be optimised, there is a need for contemporaneous 
bioavailable δ34S baselines maps to be developed. Critically, the sulfur 
isotopic composition of bones and teeth via plant uptake provides an 
archive of the environmental conditions in which the plants grew and 
animals lived, integrating signals from geology, the changing climate 
and environmental processes, as well as the biogeography of the indi
vidual animal. When used in conjunction with other palae
oenvironmental proxies, collagen δ34S is a powerful, and, as yet, 
underexplored tool for investigating past environments.

5. Oxygen isotopes

Oxygen has three naturally occurring stable isotopes (18O, 17O, 16O), 
of which 16O is the most (99.755 %) and 17O (0.039 %) the least 
abundant (Rundel et al., 1989). In stable isotope applications in earth 
and biological sciences, including archaeology, the ratio between 16O 
and 18O (expressed as δ18O) is most commonly analysed (Pederzani and 
Britton, 2019). More recently, novel analyses of other isotope ratios 
including triple oxygen isotope analysis and clumped isotope analysis 
(Δ47) have been increasing in prominence, but are still in the early stages 
of development and much less prevalent than δ18O analyses (Bergmann 
et al., 2018; Feng et al., 2024).

Oxygen isotope analyses are usually conducted on the mineral bio
apatite phase of skeletal remains, where oxygen is present in the phos
phate (~65 %), carbonate (~4–5 %), and hydroxyl (<2 %) groups 
(Driessens, 1980; Klimuszko et al., 2018). Analyses of collagen oxygen 
δ18O is also possible, but not common as collagen. Oxygen can exchange 
with reagent oxygen during sample processing and with atmospheric 
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oxygen during sample storage, and quantifying the amount of exchange 
is difficult (Kirsanow et al., 2008; von Holstein et al., 2018). Within the 
mineral phase, the phosphate moiety exhibits the highest resistance to 
post-depositional alteration of the isotopic signal, followed by the car
bonate moiety, while the hydroxyl group is not normally analysed due to 
low abundance and preservation potential (Wang and Cerling, 1994; 
Zazzo et al., 2004). For both the phosphate and carbonate groups tooth 
enamel is generally the preferred analytical substrate due to its greater 
diagenetic resistance and bone bioapatite δ18O measurements of the 
carbonate group are commonly considered to be potentially unreliable 
(Koch et al., 1997; Kohn et al., 1999). Bone and tooth dentine mineral 
δ18O measurements of the phosphate group on the other hand have been 
shown to preserve biogenic ratios in some studies, usually on materials 
of Holocene age (Britton et al., 2015) or from exceptional preservation 
conditions such as permafrost (Fisher and Fox, 1998). Generally, δ18O 
measurements of the carbonate moiety of tooth enamel is most 
commonly used due to lower analytical cost and ease of sample prepa
ration compared to phosphate, although phosphate is most often 
preferred in deeper time applications or in applications where δ18O data 
are being used for palaeoclimate reconstructions (Pederzani and Britton, 
2019; Stevens and Reade, 2021).

Oxygen isotope applications using skeletal materials in the palae
osciences range across a wide variety of topics, chiefly among them 
studies of past temperatures and hydroclimatic changes, animal move
ment and spatial ecology, and terrestrial animal drinking behaviour. 
Bioapatite δ18O in animal skeletal remains reflects δ18O of body water, 

which is in turn driven by the isotopic composition and mass balance of 
oxygen-bearing inputs (drinking water, water in food, structural oxygen 
in food, inhaled oxygen) and outputs (exhaled carbon dioxide and water 
vapour, excreted water) (Bryant and Froelich, 1995; Kohn, 1996). 
Among these, consumed water through drinking or contained in food is 
the most important driver of animal body water δ18O (Bryant and 
Froelich, 1995; Kohn, 1996). Bioapatite δ18O values are in equilibrium 
with those of body water, and thus reflect these inputs as well (Daux 
et al., 2008; Iacumin et al., 1996; Luz et al., 1984). Metabolic processes 
and associated isotopic fractionation transform δ18O values until their 
final expression in bioapatite, with strong influences of body (and 
therefore bioapatite precipitation), temperature, and metabolic rate. 
However, due to the constant body temperature of mammals, these 
metabolic processes are usually expressed as a constant species-specific 
offset (Kohn, 1996). In this way bioapatite δ18O of terrestrial mammals 
reflects underlying oxygen isotope systematics of surface and plant 
water consumed by these animals, and changes therein. Depending on 
the drinking behaviour of the animal, inputs from drinking water or 
from water contained in food vary in importance for determining bio
apatite δ18O, with drinking water being the dominant influence in large 
obligate-drinking animals consuming large quantities of liquid water via 
drinking (Bryant and Froelich, 1995; Kohn, 1996). Animals that drink 
little, irregularly, or not at all (non-obligates), more strongly reflect δ18O 
patterns in water contained in their food such as that of plant water or 
the body water of prey animals (Levin et al., 2006; Pietsch et al., 2011).

Underlying oxygen isotopic patterns that can thus be reflected in 

Fig. 5. (Adapted from Stevens et al., 2025): δ34S values of radiocarbon dated herbivores from Central Europe (46.5N–54N, 6E to 21E) (Panel b) and Northwest 
Europe (50N–60N, 10E to 6W) (Panel c) for the five most abundant taxa in both regions (Cervus elaphus, Coelodonta antiquitatis, Equus sp., Mammuthus primigenius 
and Rangifer tarandus). Panel A shows the Greenland ice-core oxygen isotope record, a proxy for global temperature (Andersen et al., 2004). Shaded blue area 
indicates approximate duration of the Last Glacial Maximum. The dashed blue line indicates the approximate timing when continuous permafrost development began 
to develop (c. 30 kyr BP) and and the dashed purple line the timing of widespread thaw (c.15 kyr BP) in western Eurasia. The Late Pleniglacial Sulfur Excursion 
(LPSE) is seen as move to lower δ34S values between c. 30 and 15 kyr BP followed by a return to higher δ34S values.
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mammal bioapatite δ18O are therefore tied to the large-scale systematics 
of the hydro- and biospheres. Important to consider are, in particular, 
surface water isotope systematics, plant water δ18O, prey body water, 
and in the case of humans, culinary and cultural transformations of 
liquids and foods (Brettell et al., 2012; Royer et al., 2017; Tuross et al., 
2008 Pederzani and Britton, 2019). Oxygen isotope systematics in the 
water cycle follow predictable effects related to moisture transport and 
climatic conditions, due to isotopic fractionation involved in evapora
tion and condensation processes (Dansgaard, 1964; Gat, 2010; Rozanski 
et al., 2013). Therefore, δ18O values of precipitation (δ18Oprecip) show 
both geospatial and climatic patterns with latitude, altitude, distance 
from the coast, rainfall amount, temperature, and aridity being impor
tant drivers (Craig, 1961; Dansgaard, 1964). Spatial effects are pre
dominantly rooted in preferential rain-out of isotopically heavy 
(relatively 18O enriched) water as water masses move away from the 
equator, traverse land, and ascend up orographic slopes, leading to 
progressively lower δ18Oprecip values at higher latitude, further away 
from the coast and at higher elevation (Dansgaard, 1964; Ara
guás-Araguás et al., 2000; Gonfiantini et al., 2001; Yurtsever, 1975). 
Within a single location δ18Oprecip further varies by climatic conditions 
during precipitation events and the source of moisture. In the tropics the 
dominant climatic effect on δ18Oprecip is rainfall amount (the ‘amount 
effect’), while temperature most strongly drives δ18Oprecip in mid to high 
latitudes (Dansgaard, 1964; Gonfiantini et al., 2001; Yurtsever, 1975). 
Typically, high amounts of rainfall will cause lower δ18Oprecip values, 
while temperature-dominated oxygen isotope systems exhibit high 
δ18Oprecip values during high temperature conditions (Dansgaard, 1964; 
Rozanski et al., 2013; Bowen, 2008). These effects are expressed on both 
seasonal (sub-annual) and longer timescales (Müller et al., 2017; Stre
letskiy et al., 2015; Stumpp et al., 2014). Moisture source effects can 
strongly affect δ18Oprecip especially in locations where weather systems 
can originate from very distinct source areas and follow specific atmo
spheric circulation configurations, as is for instance the case in many 
subtropical rainfall regimes such as the Asia summer monsoon (e.g. 
Aggarwal, 2004). Many water bodies such as rivers, streams, lakes or 
groundwater broadly represent meteoric water inputs, but water trans
port, mixing, residence times, and evaporation can further modulate 
δ18O of surface water bodies (Gat, 2010). Both climatic and geospatial 
δ18O effects are commonly exploited to elucidate past climates and help 
assess animal spatial ecology.

For the study of past climates, oxygen isotope analyses of terrestrial 
mammal remains have several key advantages, despite not yielding the 
type of long-term continuous palaeoclimate data generated from proxies 
such as ice cores or marine cores. In contrast to these more dominant 
palaeoclimate archives, terrestrial mammal δ18O data offers rare in
sights into terrestrial climatic conditions and can be used to generate 
climatic information in much closer connection with archaeological sites 
as faunal remains form a common part of the archaeological record 
(Pederzani et al., 2021a; Reade et al., 2020a). This is a crucial advantage 
for studying human-climate interactions and stable isotope analyses of 
animal teeth have played an important role in elucidating the role of 
climate in human evolutionary history. Especially in later human evo
lution in the Middle and Upper Palaeolithic (coinciding approximately 
with MIS 7-3, ~300-12 ka BP) the archaeological record includes a large 
number of anthropogenic faunal remain assemblages from 
well-stratified, in-situ hominin habitation sites. Mammal skeletal re
mains in these sites are often largely accumulated by human action and 
therefore exhibit a direct contextual connection with phases of human 
activity. At the same time, the temporal resolution of oxygen isotope 
data from mammal teeth is commonly annual or sub-annual and, on the 
level of the individual specimen, these data undergo significantly less 
time-averaging than most geologically accumulated palae
oenvironmental archives (although palimpsest effects on an assemblage 
level are important to consider). Faunal δ18O data thus offer a unique 
window into climatic conditions that can be much more directly con
nected with evidence of human behaviour and ecology. This is especially 

important for studying Palaeolithic human evolution because chrono
metric dating uncertainty in these contexts is almost always prohibi
tively large - commonly at least double the length of stadial-interstadial 
cycles - for making robust correlations with distant palaeoclimate ar
chives. Due to the connection with times of human activity and high 
temporal resolution, faunal δ18O data can diverge substantially from 
palaeoclimatic inferences based on naturally accumulated and more 
highly time-averaged archives (Fig. 6) (Pederzani et al., 2021a; Pryor 
et al., 2013; Reade et al., 2016, 2020a).

For these reasons, zooarchaeological oxygen isotope studies can be of 
particular value and, indeed, have led to important novel insights into 
the climatic preferences and tolerances of Pleistocene hominins. For 
example, oxygen isotope data from anthropogenically accumulated 
horse teeth at some of the earliest occurrences of Homo sapiens in Europe 
have shown that these already occurred in very cold subarctic climates - 
contrary to established models of H. sapiens expansions being predicated 
on warm climate phases (Pederzani et al., 2024; 2021b) (Fig. 7A–C) In 
this way, oxygen isotope data from faunal remains could show that cold 
climate resilience appeared earlier in our evolutionary history than 
previously thought, with most previous data relying on lower-resolution 
comparisons between the absolute dates of archaeological deposits and 
spatially distant climate archives such as the NGRIP ice cores. In some 
cases, faunal δ18O can also yield results that diverge from local but 
geologically derived environmental archives due to the different accu
mulation and time-averaging characteristics. Examples of this can be 
found with faunal isotope data indicating both colder (e.g. Reiss et al., 
2024), or warmer climatic conditions during hominin presence than 
previously inferred from more time-averaged geologically-derived ar
chives (e.g. Pederzani et al., 2021a). In the case of the late Neanderthal 
site of La Ferrassie, France, a divergence between warm-climate evi
dence in faunal stable isotope data with naturally accumulated sedi
mentary indicators of cold climatic conditions has been used to argue 
that Neanderthal occupations of the site predominantly took place in 
punctuated interstadial warm phases of MIS 4 and 3 (Pederzani et al., 
2021a). Indeed, faunal oxygen isotope data from late Neanderthal sites 
often seem to indicate occupations predominantly coinciding with 
ameliorated and stable environmental conditions (Britton et al., 2019, 
2023a; Carvalho et al., 2022; Pederzani et al., 2021a, 2023). The 
number of sites examined this way remains small, so overarching con
clusions about hominin climatic niches should be regarded as pre
liminary. However, these examples illustrate the unique utility of 
oxygen isotope palaeoclimatology applied to zooarchaeological 
assemblages.

To be able to robustly capitalise on these unique palaeoclimatic ar
chives it is, however, paramount to consider and account for the chal
lenges in interpreting oxygen isotope variation in mammalian skeletal 
remains, particularly in a quantitative way. As with other isotopic sys
tems discussed above, oxygen isotope variation is influenced by multiple 
and sometimes interconnected effects that are both climatic and non- 
climatic in nature (Pederzani and Britton, 2019). Isolating a single ef
fect of interest - i.e. temperature change - from this complex multicausal 
web of effects can be extremely challenging and full isolation is usually 
impossible. Acknowledging this, certain design choices can be made and 
checks conducted with independent lines of evidence to minimise po
tential pitfalls stemming from equifinality. For palaeoclimatic in
terpretations, geographical setting of the study area is the first important 
aspect to consider as this will dictate both the dominant climatic effect 
on δ18Oprecip (rainfall amount vs temperature) and the complexity of the 
hydroclimatic setting in terms of atmospheric circulation. For palae
otemperature estimations from faunal δ18O, studies should be set in mid 
to high latitude areas and regions where moisture transport systems are 
as stable through the time of interest as possible. For example, these 
prerequisites are arguably sufficiently well fulfilled for studies of Pleis
tocene Europe and northern Asia (see Pederzani et al., 2024). In tropical 
or subtropical regions atmospheric circulation systems can be much 
more variable, and δ18Oprecip values - and therefore faunal oxygen 
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isotope values - are more representative of hydroclimatic changes (e.g. 
Green et al., 2022) or changes in aridity in moisture-limited systems (e. 
g. Blumenthal et al., 2017; Reade et al., 2016). For each study using 
faunal oxygen isotopes as a palaeoclimatic indicator it is, furthermore, 
paramount to consider to which extent locally available drinking water 
sources are likely to be representative of isotopic effects in meteoric 
water. In this context it is particularly important to consider water 
transport by large rivers as well as time averaging or lags introduced by 
large water bodies or snowpacks and glaciers (Gat, 2010). The role of 
evaporation from rivers and lakes should be considered as well. Due to 
strong mixing effects, water bodies with long residence times (large 
rivers, large lakes, groundwater) exhibit little or no seasonal δ18O 
variation (Gonfiantini, 1986; Halder et al., 2015; Kortelainen and Karhu, 
2004). A pronounced seasonal signal in δ18O data from sequentially 
sampled faunal enamel can therefore be used to indicate a negligible 
contribution of such water sources to animal drinking water throughout 
the year. However, a thorough discussion of such hydrological charac
teristics should be conducted on a case-by-case basis for each oxygen 
isotope palaeoclimate study. In addition to ensuring that surface waters 
predominantly represent isotopic changes in meteoric water, palae
oclimate studies using faunal δ18O need to ensure that enamel δ18O 
values closely represent those of liquid drinking water. This is normally 
achieved by choosing large-bodied mammals with high drinking re
quirements as study taxa. Due to these requirements and a preference for 
high-crowned teeth for sequential sampling, large herbivores are most 
commonly targeted with typical examples including large bovids, 
equids, suids, rhinoceros, and proboscideans (Pederzani and Britton, 
2019; Reade et al., 2016; Sharma et al., 2004; Szabó et al., 2017; Uno 

et al., 2020; Zazzo et al., 2005). In cases where aridity is a climate 
variability of interest, combinations of obligate drinking and 
non-obligate drinking species can reveal changes in evaporation regimes 
while controlling for baseline hydroclimatic variability in δ18Oprecip 
(Levin et al., 2006). Underlying oxygen isotope differences between 
surface waters and plant waters also mean that comparing δ18O values 
across different herbivore species may illuminate their feeding and 
drinking behaviour, and thus uncover ecological niches and relation
ships. Applications have particularly focused on differences between 
grazers and browsers (e.g. Asevedo et al., 2021; Sealy et al., 2020; 
Sponheimer and Lee-Thorp, 1999), and frugivory and feeding height in 
rainforest canopies (Carter and Bradbury, 2016; Fannin and McGraw, 
2020). In cases where palaeotemperature is estimated it is critical to 
quantify and propagate errors when converting biomineral δ18O to 
drinking water δ18O and to temperatures (Pryor et al., 2014).

Oxygen stable isotope applications to this material often aim to take 
advantage of the incremental formation and lack of remodelling in tooth 
enamel to extract sub-annually resolved oxygen isotope time series 
through sequential sampling along the growth axis. Reconstructing 
summer and winter temperatures can be of particular interest, as both 
rainfall and temperature seasonality have strong impacts on vegetation 
and the seasonal availability of resources (Kwiecien et al., 2022). 
However, due to the complex and non-linear process of enamel forma
tion and mineralisation described in earlier sections, the extraction of 
faithful seasonal environmental information from sequential δ18Oenamel 
data presents a non-trivial challenge. Time averaging of the oxygen 
isotope signal from extended phases of mineralisation and from the 
sampling procedure introduces a damping of the seasonal amplitude in 

Fig. 6. (From Pederzani, 2020): Schematic of how oxygen isotopes of archaeological faunal material provide direct, minimally time averaged evidence of climatic 
conditions during site use. Due to strong short-term climatic shifts, these can differ substantially from the broad climatic average that can be assigned to an 
assemblage based on correlating chronometric dates with more distant climate archives such as the NGRIP record.
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Fig. 7. (Adapted from Pederzani et al. 2024): Multi-isotope (oxygen, nitrogen, carbon and zinc) analyses of directly dated equid teeth show changes in climate and 
environment through the Upper Palaeolithic sequence of Ranis, Germany. Oxygen isotope data points represent δ18O summer peak, winter trough and annual means 
of individual annual cycles represented in sinusoidal δ18O time series obtained from sequentially sampled tooth enamel. Vertical error bars = measurement un
certainty, horizontal error bars indicate the 95 % calibrated age range of direct radiocarbon dates. One individual has been marked with an asterisk as it has been 
excluded from climatic interpretations because 87Sr/86Sr and δ66Zn seasonal amplitudes are high enough that a seasonal movement cannot be completely excluded. 
Collagen analysed for δ13C and δ15N was obtained from tooth dentine for all 1932–1938 samples and from adhering mandible bone for the two 2016–2022 samples 
marked by triangle shapes. Oxygen isotope values are low values throughout the sequence and indicate a temperature decline from ~48 ka cal. BP to a temperature 
minimum at ~45–43 ka cal. BP. This minimum coincides with high δ15N and δ66Zn values, suggesting a hypergrazer niche of equids in open steppe environments or 
very dry soil conditions similarly indicative of an open environment. This is supported by high δ13C values consistent with a steppe or tundra biome.
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the measured δ18Oenamel data compared to the original signal present in 
drinking water. A number of different sampling and modelling ap
proaches have been developed to minimise this damping effect or esti
mate and computationally account for it (e.g. Blumenthal et al., 2019, 
2014; Green et al., 2018; Passey et al., 2005a; Passey and Cerling, 2002). 
Some recent modelling approaches and high resolution analytical ap
proaches have been shown to be very effective in recovering more 
faithful approximations of environmental oxygen isotope variation from 
enamel data (Green et al., 2018, 2022). However, the detailed enamel 
formation information for this work is not widely available for many 
species of interest and most seasonal oxygen isotope climate re
constructions remain less precise than mean annual inferences. It is 
important, however, that - due to differential dental wear, and thus 
enamel loss - the timing and periodicity of tooth formation is also 
considered in studies using ‘bulk’ samples of tooth enamel for the pur
poses of reconstructing mean annual temperatures (Britton et al., 2019).

Due to the spatial variation in δ18Oprecip, palaeoclimatic re
constructions using mammalian skeletal remains need to ensure that 
sampled animals did not undergo long-distance migrations, as that 
would lead to a confounding of potentially opposing isotopic trends 
related to climate and geography. Independent evidence on spatial 
ecology from other isotope systems such as strontium (see section 6) is 
usually the best approach to confirm this. In this context it is particularly 
important to note that many mammal species have changed their 
migratory behaviour plastically throughout their evolutionary history 
(e.g. Bonhof and Pryor, 2022; Britton et al., 2011; O’Brien et al., 2024), 
making independent and contemporary evidence of spatial ecology a 
key to obtaining robust oxygen-isotope-based climatic reconstructions.

Precisely due to these geospatial effects in the oxygen isotope system, 
oxygen stable isotope analysis of mammalian skeletal remains is also an 
important tool for reconstructing animal movements and spatial ecology 
in their own right. Due to the relatively low geospatial rate-of-change of 
δ18O in precipitation, studies of animal movement using δ18O alone face 
challenges of low spatial resolution and equifinality with non-spatial 
δ18O effects (Hodgkins et al., 2020). Oxygen-only studies of animal 
movement often focus on vertical movement, where larger isotopic 
gradients can be expected (Lazzerini et al., 2021). Therefore, δ18O is 
most effectively paired with other geolocation proxies (such as sulfur, 
strontium or lead isotopes) to both identify migratory behaviour and to 
potentially identify likely areas that animals may have moved through, 
often on a seasonal basis. Oxygen isotope analysis may also be a useful 
means of seasonally anchoring these other isotopic proxies in intra-tooth 
studies of archaeo- or palaeo-faunal mobility (e.g. Barakat et al., 2023). 
Many of these studies of seasonal animal movement have made impor
tant contributions in highlighting the plasticity of mammal spatial 
ecology with implications for climate change adaptability and conser
vation of large herbivores.

6. Hydrogen isotopes

Hydrogen has two naturally occurring stable isotopes, which, unlike 
isotopes of other elements, have their own names: protium (1H) and 
deuterium (2H, D). The ratio of 2H to 1H (δ2H) can be measured in the 
organic phase (bone or dentine ’collagen’) and mineral phase (bone or 
enamel bioapatite) of mammal skeletal remains. Hydrogen exists in two 
forms in enamel bioapatite, with around 70 % as OH− (c. 0.10 wt 
percent) and 30 % as HPO4

− (c. 0.04 wt percent) (Drewicz et al., 2020; 
Driessens and Verbeeck, 1990). Studies analysing enamel bioapatite δ2H 
are rare, in part due to the ease of measuring oxygen isotopes in bio
apatite, which provide similar information. Further, the complexities of 
the analytical methods involved in dealing with biases introduced by 
labile water (both exchangeable structural hydrogen and adsorbed 
water) have limited research on enamel bioapatite δ2H (Drewicz et al., 
2020; Holobinko et al., 2011). Similar analytical difficulties impact 
organic tissue δ2H analysis, but these have largely been overcome in 
recent years (Meier-Augenstein et al., 2013; Wassenaar et al., 2023). 

Around 77–81 % of hydrogen atoms in collagen are bound to carbon 
atoms and are non-exchangeable, whereas the other ~19–23 % are 
loosely bound in functional groups such as -OH, -NH2, -SH or -COOH and 
are exchangeable with labile water (Clauzel et al., 2022; Cormie et al., 
1994a; France et al., 2018; Meier-Augenstein et al., 2013; Sauer et al., 
2009; Topalov et al., 2013). Measured δ2H on the same sample of 
collagen will vary between different laboratories due to geographical 
and seasonal differences in the δ2H of ambient water vapour which is 
absorbed by the sample and may impact collagen exchangeable δ2H 
(Hobson, 2022; Meier-Augenstein et al., 2013). A range of approaches 
(e.g. comparative equilibrium) have been developed to account for 
adsorbed and exchangeable hydrogen, so that reported collagen δ2H 
values are for non-exchangeable hydrogen only, and are comparable 
between laboratories (see (Hobson, 2022) for summary). The δ2H of 
animal collagen reflects a combination of the δ2H of drinking water and 
ingested food and body water, and therefore provides different infor
mation from δ18O which also reflects oxygen taken in from air during 
metabolism (Hobson, 2022). The relative contribution of hydrogen from 
drinking water and ingested food is debated, but most studies suggest 
that the hydrogen in collagen is largely derived from diet rather than 
from water (Hobson et al., 1999; Topalov et al., 2019; Vander Zanden 
et al., 2016). In herbivores, there is a strong linear correlation between 
ingested water δ2H and collagen non-exchangeable δ2H, and as leaf and 
stem δ2H values reflect local precipitation δ2H values, herbivore 
collagen non-exchangeable δ2H can be used as a proxy for local pre
cipitation δ2H (Cormie et al., 1994a, 1994b; Reynard and Hedges, 
2008). Some studies have shown that bone collagen δ2H values reflect 
trophic levels, with δ2H increasing in increments of 10 to 30 ‰ up the 
food chain (Birchall et al., 2005; Gröcke et al., 2017; Reynard et al., 
2020; Reynard and Hedges, 2008; Topalov et al., 2013). However, there 
is some debate over whether this trophic enrichment results from the 
accumulation or exchange with ambient water at each trophic level, or 
from metabolic fractionation (Hobson, 2022).

Underlying hydrogen isotopic patterns reflected in mammal collagen 
δ2H are linked to the large-scale systematics of the hydro- and bio
spheres. Similar to oxygen isotopes, hydrogen isotopes in the hydro
logical cycle are influenced by geospatial and climatic factors, including 
latitude, altitude, distance from the coast, rainfall amount, temperature, 
aridity, and distance from the source, leading to spatial variation 
(Bowen and West, 2019). Globally, δ2H and δ18O in precipitation line
arly co-vary, defining the Global Meteoric Water Line (GMWL) (Craig, 
1961). The benefit of targeting mammal hydrogen isotopes over oxygen 
isotopes for palaeoenvironmental studies is the larger dynamic range of 
hydrogen in nature, and the fact that collagen δ2H more closely tracks 
predicted amount-weighted mean precipitation δ2H compare to δ18O 
values (Hobson, 2022; Reynard et al., 2020; Wassenaar, 2019). However 
there are potential benefits to measuring δ2H and δ18O together. 
Deuterium excess (d), which records deviation from the GMWL (defined 
as d = δ2H – 8 δ18O) varies worldwide and is affected by local aridity and 
the relative humidity of the originating air masses, and can therefore 
provide additional information beyond δ2H or δ18O alone (Pfahl and 
Sodemann, 2014). In recent years, the use of hydrogen isotopes in ani
mal ecology has grown significantly, with data being used to track the 
movements and origins of migratory animals, diet and climate (Bowen 
et al., 2005; Dunn et al., 2023; Hobson and Kardynal, 2023; Hobson and 
Wassenaar, 1996; Holopainen et al., 2024; Rodríguez-Ochoa et al., 
2024; Wassenaar and Hobson, 1998; Bearhop et al., 2003; Hobson et al., 
2004; Hobson and Wassenaar, 1996, 1996; Sharp et al., 2003; Vander 
Zanden et al., 2016, 2018). By contrast there are fewer studies which 
have analysed δ2H collagen from palaeo-contexts (Arnay-de-la-Rosa 
et al., 2010; Clauzel et al., 2022; Cormie et al., 1994b; France et al., 
2018; Gröcke et al., 2017; Leyden et al., 2006; Reynard et al., 2020; 
Reynard and Hedges, 2008; Ryan et al., 2020; Sluis et al., 2019). Even 
fewer have focused on palaeoclimate reconstruction rather than diet or 
mobility. Most notably, Leyden et al. (2006) showed that δ2H of North 
American Bison varied through the Holocene and tracked changes in 
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moisture availability and temperature. Reynard et al. (2020) showed 
that spatial variations in precipitation δ2H across the Mediterranean 
were preserved in herbivore bone collagen δ2H values. In contrast, 
Gröcke et al. (2017) saw limited differences between three sites; one in 
Belgium dating to 40-27 kyrs BP, a second in Switzerland dating to 
14–12 kyrs BP and another in France dating to 8 kyrs BP, and concluded 
that climate variability was not recorded in their mammal collagen δ2H 
values. However, this study did not have many samples of each species, 
or a temporal sequence through time in a single location. Given that 
difficulties in dealing with δ2H biases introduced by labile water have 
been largely overcome (Wassenaar et al., 2023) and that two collagen 
international standards have been recently developed (USGS88 and 
UGS89), it is likely hydrogen isotope studies of collagen from 
palaeo-contexts will increase exponentially over the next decade. The 
δ2H of both bone and dentine collagen have significant potential as 
proxies for average and seasonal palaeoclimatic conditions, either 
paired with δ18O or utilised in isolation. Intra-tooth dentine δ2H may be 
used (like oxygen) for seasonally anchoring other isotopic proxies in 
archaeo- or palaeo-faunal mobility or palaeodietary studies and to 
advance understanding of the plasticity of mammal spatial or dietary 
ecology in relation to climate change.

7. Strontium isotopes

Strontium has four naturally occurring isotopes, three of which are 
stable (84Sr, 86Sr, 88Sr). The fourth isotope, 87Sr, is radiogenic and is 
formed over time through the β-decay of 87Rb. Despite its radiogenic 
nature, archaeologists and mammalian palaeontologists generally treat 
87Sr as stable. This is because the half-life of 87Rb is 48.8 billion years but 
mammals only appeared around 250 million years ago, and hominins 
have only evolved over the past few million years. Strontium isotopes 
are typically measured in the mineral phase (bone or enamel bioapatite) 
of mammal skeletal remains as strontium substitutes for calcium in the 
bioapatite. Whilst strontium isotopes in enamel are generally resistant to 
diagenesis, it is widely accepted that the strontium isotopes in bone and 
dentine are often altered by diagenesis (Budd et al., 2000; Hoppe et al., 
2003; Nelson et al., 1986; Trickett et al., 2003), although the exception 
is calcined (burnt) bone which preserves the 87Sr/86Sr of bone in the 
years prior to death (Snoeck et al., 2015, 2018). While there have been a 
growing number of studies using the stable isotopes of strontium 
(δ88/86Sr) of bones and teeth as a trophic level indicator (Guiserix et al., 
2022; Knudson et al., 2010; Lewis et al., 2017), the vast majority of 
studies have focused on using the 87Sr/86Sr ratios of mammal remains to 
explore past mobility and migratory behaviour (see reviews: Bentley, 
2006; Bataille et al., 2020; Holt et al., 2021; Montgomery, 2010; 
Richards and Britton, 2020). The ratio of 87Sr/86Sr in mammal bones 
and teeth is directly influenced by the ratio of 87Sr/86Sr in the plants 
they consume. This ratio, in turn, is determined by the soils and water 
that the plants rely on and is ultimately connected to the underlying 
lithologies and atmospheric deposition. The relative amount of 87Sr to 
86Sr is dependent on factors such as the age of the rock, its mineral 
composition, and its original chemical content (Bentley, 2006; Capo 
et al., 1998). The spatial palaeoecology and migratory behaviour of 
mammals (including humans) have been explored through bulk and 
sequential sampling of teeth (e.g., Barakat et al., 2023; Britton et al., 
2023a, 2011; Hoppe et al., 1999; Lugli et al., 2019; Price et al., 2017; 
Wooller et al., 2021). Over the past 15 years there has been increasing 
recognition that the bioavailable 87Sr/86Sr can deviate from those of the 
underlying geology due to environmental processes. With researchers 
primarily interested in mobility and migration, there has been a drive to 
map and create isoscapes of bioavailable strontium in order to facilitate 
provenancing (Barberena et al., 2021; Bataille et al., 2018, 2020; Britton 
et al., 2020; Evans et al., 2009, 2010; Holt et al., 2021; Kootker et al., 
2016; Lugli et al., 2022; Tang and Wang, 2023; Wang and Tang, 2020; 
Wong et al., 2021). However, there is an underexploited opportunity to 
use 87Sr/86Sr of non-migratory mammals with small home ranges to 

explore changes in specific climatic/environmental conditions that 
could influence ‘baseline’ 87Sr/86Sr at a specific location. For example, 
coastal regions receive a significant atmospheric deposition of marine 
derived strontium in the form of heavy rainfall and sea-spray. This re
sults in coastal regions being saturated with a marine 87Sr/86Sr value 
(~0.7092) instead of reflecting the underlying geology. As with sulfur, 
past changes in sea level have impacted terrestrial bioavailable 87Sr/86Sr 
as regions became less or more coastal, changing the geography of the 
coastal 87Sr/86Sr signal (Evans et al., 2009; Johnson et al., 2022; 
Montgomery, 2010; Montgomery et al., 2004). The deposition of 
wind-blown sediments can result in exotic 87Sr/86Sr being introduced to 
a region. In arid environments, the contribution of wind-blown sedi
ments can fluctuate with climate and changing weather patterns (Capo 
et al., 1998; Chadwick et al., 1999; Ganor and Foner, 2001; Johnson 
et al., 2022; Yaalon, 1997). Glacial and fluvial erosion, which are 
influenced by climatic conditions, can also bring non-local 87Sr/86Sr into 
an area, altering the relationship between the underlying bedrock and 
surficial deposits (Bataille et al., 2018, 2020; Holt et al., 2021). Long 
term forestation impacts the 87Sr/86Sr isotope signature of the biosphere 
as leaf litter accumulation in the forest over time leads to soil acidity, 
which in turn leaches out the carbonate component of the soil, removing 
it as a contribution to the bioavailable 87Sr/86Sr signature (Johnson 
et al., 2022). With carefully selected tooth samples it would be possible 
to use 87Sr/86Sr isotopes of specific mammal species to study all of these 
environmental changes. However, perhaps due to the complexities in 
disentangling these influences and the circularity of needing to 
demonstrate a lack of movement in order to achieve these goals (perhaps 
using 87Sr/86Sr), current studies on past faunal 87Sr/86Sr signatures have 
primarily focused on understanding how mammal spatial ecology and 
migratory behaviour have responded to climate and environmental 
change, rather than directly investigating the climate and environ
mental change itself. Compared to other isotopes (such as carbon and 
nitrogen), there is also currently a lack of understanding as to how di
etary variation can impact the 87Sr/86Sr of different organisms living at 
the same location. The extent of carnivory (particularly of potentially 
migratory animals), the intensity of consumption of marine foods, and 
even the parts (and root depth) of plants consumed, may influence the 
87Sr/86Sr of dietary inputs of animals living on the same lithology (Blum 
et al., 2000). Ideally, prior to the more expansive application of 
87Sr/86Sr within archaeology and/or palaeoecology, these potential in
fluences would be better characterised, for example, through experi
mental controlled feeding or observational field studies.

8. Zinc isotopes

Analysis of zinc isotopes in fossil skeletal remains is a relatively new 
field of research (Jaouen and Pons, 2017). Zinc (Zn) is found in nature 
with five stable isotopes (64Zn, 66Zn, 67Zn, 68Zn, and 70Zn). Various ra
tios of these isotopes have been measured, with δ66Zn (derived from 
66Zn/64Zn) being the most frequently applied. Studies have primarily 
focused on measuring zinc in the mineral portion of bones and enamel 
(Bourgon et al., 2020, 2021; Jaouen et al., 2016). Research has shown 
that tooth enamel and enameloid bioapatite can preserve biogenic δ66Zn 
values for long periods, even in tropical conditions (Bourgon et al., 
2020; Jaouen et al., 2022; McCormack et al., 2021, 2022). This pres
ervation has been observed for tens of millions of years, dating back to 
the Miocene era (Bourgon et al., 2020; McCormack et al., 2022). How
ever, the extent to which biogenic δ66Zn values are preserved in bone is 
not well understood and dentine δ66Zn has been shown to be prone to 
diagenetic alteration (Weber et al., 2021), thus it is important to exercise 
caution when interpreting fossil bone δ66Zn values. A comparison of the 
Zn concentration and δ66Zn isotopic data has been suggested as way of 
checking biogenic preservation and the extent of diagenetic alteration, 
as zinc leaching or uptake from the burial environments may be 
expressed as a mixing line (Bourgon et al., 2020). Further research is 
needed to determine the conditions under which bone biogenic δ66Zn 
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values are preserved/altered.
Zinc isotopes in mammal bones and teeth are derived from their diet, 

as zinc is an essential trace element that serves important biological 
functions. Zinc isotopes undergo mass-dependent fractionation within 
an organism, resulting in different δ66Zn values among various body 
tissues (Balter et al., 2010; Moynier et al., 2013). Soft tissues, such as 
muscle and kidney, exhibit lower δ66Zn values than hard tissues, such as 
bone (Balter et al., 2010; Jaouen et al., 2013). When comparing 
palaeo-skeletal remains, it is necessary to consider the offset in δ66Zn 
values between different bioapatite tissues of the same individual, as 
bone and tooth dentine typically exhibit values that are, on average, 0.2 
‰ higher than those of tooth enamel. As carnivores and omnivores 
consume animal soft tissues, a trophic level effect is observed in 
mammal zinc isotopes, with δ66Zn values decreasing by approximately 
0.4 ‰ with trophic level (Jaouen et al., 2016). However, exact trophic 
level fractionation factors have not been experimentally determined. It 
should be noted that carnivores that consume both bone and soft tissues 
exhibit higher δ66Zn values than those that consume only soft tissues 
(Balter et al., 2010; Bourgon et al., 2020; Jaouen et al., 2016).

Mammal zinc isotopes have the potential to provide information on 
palaeoenvironmental conditions because they are ultimately derived 
from soils and plants, thus not only reflect the bioavailable δ66Zn 
baselines but also the processes which alter them. In soils, δ66Zn vari
ability is primarily driven by the lithology of the underlying bedrock. 
However, as with other isotopes, bioavailable δ66Zn values are also 
affected by physical, chemical, and biological processes. Bioavailable 
δ66Zn is influenced by a wide range of factors, such as hydrology, 
weathering, soil mineralogy, microbial activity, soil pH, organic matter, 
and biological activity (see Junqueira Tassiane et al., 2024 for review). 
Plant δ66Zn values differ from bioavailable δ66Zn values due to frac
tionation during uptake and transport. Heavier zinc isotopes accumulate 
in roots, giving them higher δ66Zn values, while lighter isotopes are 
transported to peripheral parts like leaves, which show lower values. 
Taller plants, such as trees and shrubs, generally exhibit low δ66Zn 
values, while shorter plants, like grasses and herbs, tend to have higher 
values. This can result in differential δ66Zn values between grazers and 
browsers, which has been observed in some ecosystems, but not all 
(Bourgon et al., 2020; Jaouen et al., 2016, 2022; Pederzani et al., 2024) 
(Fig. 7 F).

Spatial difference in herbivore bone and enamel δ66Zn have been 
reported, with tropical herbivore δ66Zn being lower than those from 
other regions (Bourgon et al., 2020, 2021; Jaouen et al., 2016, 2022), 
although the cause of this difference has yet to be explored. Temporal 
trends in faunal baseline δ66Zn have yet to be reported, however, due to 
the infancy of the application of zinc isotopes in fossil bones and teeth. 
However, δ66Zn of mix feeder herbivores could potentially be used to 
determine whether they were grazing or browsing and thus track 
changes in vegetation distribution over time (Pederzani et al., 2024). In 
theory, herbivore δ66Zn values could be used to track the clima
te/environmental processes that impact bioavailable δ66Zn baselines. 
However, much work is required to understand the relationship between 
these processes and mammal δ66Zn values in modern ecosystems before 
we can reliably use them as palaeo-proxies.

9. Conclusion

Multi-isotope analysis of bones and teeth is a powerful tool for 
reconstructing past climatic and environmental changes, and also the 
ecological behaviours of different species, offering advantages over 
single-isotope approaches. When combined, (see Pederzani et al. 2021, 
2024a for examples of multi-isotope studies (Fig. 7A–F), these analyses 
provide substantial insights into changes in climate and environmental 
conditions as well as how animals responded, revealing shifts in niche 
partitioning (e.g. Reiss et al., 2023; Britton et al., 2023b), trophic dy
namics (e.g. Yeakel et al., 2013), and spatial ecology (e.g. Heddell-St
evens et al., 2024) that inform our understanding of broader ecosystem 

changes. While we are aware of many environmental controls on the 
isotopic composition of bones and teeth, our understanding is more 
complete for carbon, nitrogen, oxygen, and strontium than for 
hydrogen, sulfur, and zinc. Analytical advances in the last decade mean 
that these latter isotopes are likely to become a focus for research in the 
coming decades. Further ground-truthing studies exploring the re
lationships between stable isotopes in bone and tooth samples and 
environmental parameters are necessary for the continued development 
of fossil faunal stable isotopes as palaeo-proxies. Furthermore, these 
should be coupled with studies that focus on how a taxon’s physiology, 
or individual’s dietary or spatial habits can influence resulting tissue 
isotopic values, and thus how ‘baseline’ changes can be disentangled 
from behavioural plasticity, which themselves may be caused by 
changes in broader environmental, climatic or ecological parameters. 
Ultimately, however, stable isotopes from bones and teeth are much 
more than just palaeo-proxies for past environments or behaviours. The 
isotopic archive offered in faunal remains provide a record natural and 
also anthropogenic change within ecosystems, and even the ecological 
responses to those changes. In this sense, these data can provide valuable 
baseline data for modern ecology, revealing the plasticity of animal 
behaviours and the interactions between those behaviour and climatic 
change. The use of the data thus goes beyond archaeological, palae
oecological or palaeontological study, but is relevant to animal conser
vation efforts in the present day and also to contemporary ecosystem 
restoration and rewilding policies and practices (e.g. Bocherens et al., 
2015; Shaikh et al., 2025).

CRediT authorship contribution statement

Rhiannon E. Stevens: Conceptualization, Visualization, Writing – 
original draft, Writing – review & editing. Sarah Pederzani: Writing – 
original draft, Writing – review & editing. Kate Britton: Writing – 
original draft, Writing – review & editing. Sarah K. Wexler: Visuali
zation, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Rhiannon stevens reports financial support was provided by Leverhulme 
Trust. Rhiannon Stevens reports financial support was provided by UK 
Research and Innovation Natural Environment Research Council. Kate 
Britton reports financial support was provided by UK Research and 
Innovation. If there are other authors, they declare that they have no 
known competing financial interests or personal relationships that could 
have appeared to influence the work reported in this paper.

Acknowledgements

The review is the outcome of discussions between the authors while 
their research was funded by: The Leverhulme Trust (RPG-2021-254: 
Stevens), The Natural Environment Research Council (NE/W000792/1: 
Stevens, Wexler), NERC (NE/X010856/1: Stevens), ERC-selected/UKRI- 
funded grant EP/Y023641/1 (Britton). We thank Daniel James for 
commenting on a draft of this paper.

Data availability

All data and/or code is contained within the submission.

References

Aggarwal, P.K., 2004. Stable isotope evidence for moisture sources in the asian summer 
monsoon under present and past climate regimes. Geophys. Res. Lett. 31. https:// 
doi.org/10.1029/2004gl019911.

Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for 
isotopic analysis. J. Archaeol. Sci. https://doi.org/10.1016/0305-4403(90)90007-r.

R.E. Stevens et al.                                                                                                                                                                                                                               Quaternary Science Reviews 357 (2025) 109320 

17 

https://doi.org/10.1029/2004gl019911
https://doi.org/10.1029/2004gl019911
https://doi.org/10.1016/0305-4403(90)90007-r


Ambrose, S.H., 1991. Effects of diet, climate and physiology on nitrogen isotope 
abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317. https://doi.org/ 
10.1016/0305-4403(91)90067-Y.

Ambrose, S.H., 2002. Controlled diet and climate experiments on nitrogen isotope tatios 
of tats. In: Ambrose, S.H., Katzenberg, M.A. (Eds.), Biogeochemical Approaches to 
Paleodietary Analysis. Springer US, Boston, MA, pp. 243–259. https://doi.org/ 
10.1007/0-306-47194-9_12.

Ambrose, S.H., DeNiro, M.J., 1986. The isotopic ecology of East African mammals. 
Oecologia 69, 395–406. https://doi.org/10.1007/BF00377062.

Ambrose, S.H., Norr, L., 1993. Experimental evidence for the relationship of the carbon 
isotope ratios of whole diet and dietary protein to those of bone collagen and 
carbonate. In: Lambert, J.B., Grupe, G. (Eds.), Prehistoric Human Bone: Archaeology 
at the Molecular Level. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–37. 
https://doi.org/10.1007/978-3-662-02894-0_1.

Amundson, R., Austin, A.T., Schuur, E.A.G., Yoo, K., Matzek, V., Kendall, C., 
Uebersax, A., Brenner, D., Baisden, W.T., 2003. Global patterns of the isotopic 
composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17. https://doi. 
org/10.1029/2002gb001903.

An, C.-B., Dong, W., Li, H., Zhang, P., Zhao, Y., Zhao, X., Yu, S.-Y., 2015. Variability of 
the stable carbon isotope ratio in modern and archaeological millets: evidence from 
northern China. J. Archaeol. Sci. 53, 316–322. https://doi.org/10.1016/j. 
jas.2014.11.001.

Andersen, K.K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., 
Chappellaz, J., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Flückiger, J., 
Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N.S., Hansson, M., 
Huber, C., Hvidberg, C.S., Johnsen, S.J., Jonsell, U., Jouzel, J., Kipfstuhl, S., 
Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., 
Motoyama, H., Narita, H., Popp, T., Rasmussen, S.O., Raynaud, D., Rothlisberger, R., 
Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J. 
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Kearney, R., Brown, S., Douka, K., Higham, T.F.G., Stevens, R.E., 2021. Magdalenian 
and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, 
Czech Republic. Archaeol. Anthropol. Sci. 13, 4. https://doi.org/10.1007/s12520- 
020-01254-4.

Reade, H., Tripp, J.A., Frémondeau, D., Sayle, K.L., Higham, T.F.G., Street, M., 
Stevens, R.E., 2023. Nitrogen palaeo-isoscapes: Changing spatial gradients of faunal 
δ15N in late Pleistocene and early Holocene Europe. PLoS One, 0268607. https://doi. 
org/10.1371/journal.pone.0268607.

Reiss, L., Mayr, C., Pasda, K., Einwögerer, T., Händel, M., Lücke, A., Maier, A., Wissel, H., 
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Stevens, R.E., Germonpré, M., Petrie, C.A., O’Connell, T.C., 2009a. Palaeoenvironmental 
and chronological investigations of the Magdalenian sites of Goyet Cave and Trou de 
Chaleux (Belgium), via stable isotope and radiocarbon analyses of horse skeletal 
remains. J. Archaeol. Sci. 36, 653–662. https://doi.org/10.1016/j.jas.2008.10.008.

Stevens, R.E., O’Connell, T.C., Hedges, R.E.M., Street, M., 2009b. Radiocarbon and stable 
isotope investigations at the Central Rhineland sites of Gönnersdorf and Andernach- 
Martinsberg, Germany. J. Hum. Evol. 57, 131–148. https://doi.org/10.1016/j. 
jhevol.2009.01.011.

Stevens, R.E., Balasse, M., O’Connell, T.C., 2011. Intra-tooth oxygen isotope variation in 
a known population of red deer: Implications for past climate and seasonality 
reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 301, 64–74. https://doi. 
org/10.1016/j.palaeo.2010.12.021.

Stevens, R.E., Hermoso-Buxán, X.L., Marín-Arroyo, A.B., Gonzalez-Morales, M.R., 
Straus, L.G., 2014. Investigation of Late Pleistocene and Early Holocene 
palaeoenvironmental change at El Mirón cave (Cantabria, Spain): Insights from 
carbon and nitrogen isotope analyses of red deer. Palaeogeogr. Palaeoclimatol. 
Palaeoecol. 414, 46–60.

Stevens, R.E., Reade, H., Tripp, J., Sayle, K.A., Walker, E.A., 2021. Changing 
environment at the Late Upper Palaeolithic site of Lynx Cave, North Wales. In: 
Saudzinski-Windheuser, S.,J.O. (Ed.), The Beef behind All Possible Pasts. The 
Tandem-Festschrift in Honour of Elaine Turner and Martin Street. Römisch- 
Germanischen Zentralmuseums, pp. 589–607.

Stevens, R.E., Reade, H., Read, D.S., Bottrell, S.H., Frémondeau, D., Wexler, S., 2022. Iso- 
Wetlands: unlocking wetland ecologies and agriculture in prehistory through sulfur 
isotopes. Archaeol. Int. 25. https://doi.org/10.14324/111.444.ai.2022.11.

Stevens, R., Reade, H., Sayle, K., Tripp, J., Frémondeau, D., Lister, A., Barnes, I., 
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