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1 | INTRODUCTION

Roberto Mayor

Abstract

In textbook illustrations of migrating cells, actomyosin contractility is typically
depicted as the contraction force necessary for cell body retraction. This dogma has
been transformed by the molecular clutch model, which acknowledges that actomyosin
traction forces also generate and transmit biomechanical signals at the leading edge,
enabling cells to sense and shape their migratory path in mechanically complex envi-
ronments. To fulfill these complementary functions, the actomyosin system assembles
a gradient of contractile energy along the front-rear axis of migratory cells. Here, we
highlight the hierarchic assembly and self-regulatory network structure of the acto-
myosin system and explain how the kinetics of different nonmuscle myosin Il (NM 1)
paralogs synergize during contractile force generation. Our aim is to emphasize how
protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally
integrated during different modes of migration, including chemotaxis and durotaxis.
Finally, we hypothesize how different NM Il paralogs might tune aspects of migration
in vivo, highlighting future research directions.

KEYWORDS
actomyosin, cell migration, chemotaxis, durotaxis, intracellular force generation, mechanotrans-
duction, nonmuscle myosin I

In textbooks, single-cell migration is typically depicted in four con-

secutive steps (Figure 1A): (i) polarization via protrusive actin activity

Contractile force generation is a prerequisite for cell migration and
thus of fundamental importance for embryonic development, wound
healing, and homeostasis of adult tissues. ! In nonmuscle tissues, intra-
cellular forces are generated by nonmuscle myosin motorproteins of
the class Il (NM I1). Three different NM Il paralogs have evolved in
vertebrates, each exhibiting specific kinetic features that differentially
affect actomyosin force generation.[23] Using actin fibers as a sub-
strate, these NM I motors generate forces in the pN range.l*! Although
tiny compared to sarcomeric counterparts, such forces play an integral

role in the coherent locomotion of single cells and collectives.[>~?]

at the leading edge, (ii) leading edge adhesion to the extracellular
matrix (ECM) via focal adhesions (FA), (iii) contraction of the cell body,
and (iv) cell body retraction upon focal detachment at the cell rear.
This depiction of locomotion is usually described as mesenchymal cell
migration and captures the main events during the migratory cycle
of most adherent cell types. However, beyond this simple depiction,
coherent locomotion with persistence in speed and direction requires
the spatiotemporal integration of protrusion formation, cell adhesion,
and actomyosin contraction.l20-1¢] Seminal ideas about how this inte-

gration could work on the mechanistic level were formulated already
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FIGURE 1 Actomyosin contractility during mesenchymal cell migration. (A) Classic scheme of a migrating mesenchymal cell, consisting of four
consecutive steps: (i) protrusion formation at the leading edge, (ii) leading edge adhesion, (iii) contraction of the cell body, and (iv) cell body
retraction upon focal adhesion (FA) detachment at the cell rear. (B) Contractile energy is transmitted to substrate traction via FA, in accordance
with the molecular clutch model. During cellular locomotion, traction forces on the substrate emerge at the leading edge and trailing edge of the
cell, with the contractile energy being directed to the cell center each, allowing to pull the cell forward while retracting the rear upon FA
detachment. (C) To direct traction forces to the cell center, actomyosin filaments move centripetally with the retrograde flow with their growth
being spatially primed in retrograde direction. Due to spatially restricted biochemical signaling and intermolecular attraction between nonmuscle
myosin Il (NM I1) molecules, actomyosin eventually accumulate in the cell center. (D) Reciprocal feedback between extracellular matrix (ECM)
elasticity and actomyosin contractility during cell migration. Actomyosin stress fiber (SF) are physically connected to the ECM meshwork via FA,
and a positive correlation between actomyosin bundling and ECM fiber elasticity exists. Stiffer ECM substrates increase force transmission,
leading to stronger actomyosin assembly, FA growth, and faster cell spreading. (E) Fluorescent micrographs, showing that fibroblasts form longer
and more bundled SFs on stiff (2 MPa) versus soft (5 kPa) substrates. Modified with permission from Ref. [21]

more than 35 years ago.'”] With the introduction of compliant
cell culture substrates and the development of traction force
microscopy,[18-201 these ideas also became experimentally acces-
sible and the first “molecular clutch” model postulated that FA link
F-actin to the ECM substrate and mechanically resist NM [I-driven
retrograde actin flow to allow net protrusion extension.1°]

Since then, many studies followed up on these pioneering experi-
ments and it became increasingly clear that actomyosin contractility

itself is an essential component to integrate the protrusive, adhesive,

and contractile machineries.[1012-141622] For 3 cell to move direc-
tional, traction forces on the substrate emerge behind the leading edge
and along the trailing edge, with the contractile energy being directed
to the cell center each, allowing to pull the cell forward while retracting
the rear upon FA detachment (Figure 1B). Consequently, actomyosin
contractility not only accumulates at the cell center to facilitate cell
body retraction, but also exerts considerable traction forces on the cell
front.!16:22] To facilitate coherent locomotion, actomyosin contractility

behind the leading edge generates dynamic, fluctuating “tugging” trac-
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tion forces on the substrate, while contractility in the center and rear
generates steady “holding” traction forces, allowing cell body shorten-
ing rather than extension.[23] This pattern of traction force generation
enables cells to sense the mechanical properties of the ECM[24-281 g,
depending on the ECM’s mechanical properties, subsequently steer
the cell body or remodel the migratory path.[29-33] Therefore, acto-
myosin contractility plays an integral role throughout all the steps of
the migratory cycle, including active mechanosensing.[2¢]

In this review, we will highlight how the actomyosin system assem-
bles into a steady gradient of contractile energy along the front-rear
axis of migratory cells, exhibiting explorative forces at the front and
stable forces at the rear that allow coherent cellular locomotion and
highly flexible cell body steering at the same time. We will explain
the hierarchic assembly and self-regulatory network structure of the
actomyosin system and emphasize how the kinetics of different NM
Il paralogs synergistically tune the contractile output!34-3?] along the
front-rear axis of migrating cells, especially during chemotaxis and
durotaxis. Our goal is to illustrate a conceptual basis that will deepen
our understanding of how actomyosin forces shape morphogenetic
movements in development, homeostasis, and disease. To this end, we
hypothesize how expression ratios of the three different NM Il paralogs
might tune aspects of migration in vivo, illustrating possible directions

for future research.

2 | MAIN

2.1 | Assembly of actomyosin filaments and
distribution of traction forces in migrating cells

To adapt to the continuous changes in cell shape during migra-
tion, the actomyosin cytoskeleton undergoes continuous assembly-
disassembly cycles. As several comprehensive reviews describe the
molecular pathways and structural hierarchies of actomyosin assem-
bly in detail [23940-44] we will only highlight key aspects here
(Text Box 1).

In polarized mesenchymal cells with a defined front-rear axis, NM
Il molecules nucleate new filaments along the lamella region, right
behind the leading edge.l14454¢] Depending on the lifetime of indi-
vidual NM Il motors in the filamentous state, these pioneer filaments
grow and travel with the retrograde actin flow centripetally through
the cell body, until they accumulate in the cell center, where they
eventually disassemble (Figure 1C). It should be noted that processive
anterograde movement of some NM Il filaments was also demon-
strated recently,[47] however, combined biochemical and biomechan-
ical signals lead to spatially primed growth of actomyosin filaments
in retrograde direction.*®] The best-known biochemical example is
the mutual inhibition of Rac1 and RhoA.[“?-51] While Rac1 is active
at the leading edge of polarized mesenchymal cells and favors pro-
trusive actin polymerization, RhoA is active in the cell center and
rear, and promotes actomyosin activation.[>2>3] Thus, NM Il activa-
tion is reinforced towards the cell center rather than the leading

edge. Biomechanically, NM Il filament formation is also reinforced with

Box 1: Hierarchical NM Il self-assembly into higher-
ordered structures

The assembly of actomyosin structures follows a hierarchic
sequence of events. The basic molecular unit comprises a
hexamer consisting of two nonmuscle myosin Il heavy chains
(NMHC 1), two essential light chains (ELC), and two regula-
tory light chains (RLC). While the NMHC Il determines the
kinetic properties of the NM Il hexamer, ELC and RLC fulfill
stabilizing and regulatory functions. Three different NMHC
Il paralogs, termed NMHC [IA, NMHC IIB, and NMHC IIC,
are encoded by the genes Myh9, Myh10, and Myh14, respec-
tively. Moreover, several RLC and ELC paralogs exist, but it is
not known if there is any isoform-specificity to a given NMHC
1121 NM 11 hexamers exist in an assembly-incompetent (10S)
and assembly-competent (6S) conformation.[6961] Reliev-
ing the autoinhibitory 10S conformation occurs through
phosphorylation of the RLCs at Ser19, with the most promi-
nent kinases being the CaZ*/Calmodulin-dependent myosin
light chain kinase (MLCK) and the Rho-associated kinase
(ROCK). While MLCK directly acts on RLC phosphorylation,
the function of ROCK is two-fold: Phosphorylating RLCs
and inhibiting Myosin light chain phosphatase (MLCP).[6?]
Up to 30 NM Il hexamers assemble into NM |l minifila-
ments (named for their small size compared to the sarcom-
ere counterpart) via parallel and anti-parallel electrostatic
interactions between their coiled-coil domains.[43] New fil-
aments can either assemble de novo or nucleate from pre-
existing filaments.[46455456] An additional higher-ordered
NM 1l structure was recently described, comprising several
minifilaments that concatenate into parallel filament stacks
through molecular co-attraction of NM Il filaments.[56:57.55]
The precise function of these stacks remains to be solved,
as well as if similar structures exist in vivo. In contrast to
the assembly, comparably less is known about filament dis-
assembly, but it was suggested that the disassembly of NM
Il hexamers could be regulated in an isoform-specific fashion
by phosphorylating the NMHC Il tail regions.[2:43.64.65]

increasing distance from the leading edge. Individual NM Il molecules
preferentially fuse with existing clusters rather than forming filaments
de novo,[455455] and new filaments can nucleate from pre-existing
ones.[4656571 Additionally, the cross-linking properties of the NM |
motors reinforce F-actin bundling, creating new binding sites for addi-
tional NM Il filaments.[455458] Together, these strategies lead to a
gradual increase in actomyosin filament abundance along the front-
rear axis of migrating cells, with NM Il clusters being small right behind
the leading edge but growing towards the cell center (Figure 1C). Con-
sequently, contractility also gradually increases and peak forces are

reached in the cell center.[>?]
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2.2 | From intracellular contractility to
extracellular traction forces via molecular clutches

The centripetal actomyosin flow is an intrinsic feature of cells, influ-
encing the magnitude of cell contraction in the respective subcellular
regions of the actomyosin cortex. For cellular locomotion, however,
cellular contraction forces need to be transmitted into traction forces
on the ECM substrate. Cells generate these traction forces via bun-
dled actomyosin cables, termed stress fibers (SF), that either form de
novo via two distinct pathways, (66! or assemble from the actin cortex
in an actomyosin-dependent fashion.[°8] SFs are directly or indirectly
connected to FA16667] which in turn bind to the extracellular ECM
(Figure 1C). During cell migration, traction forces emerge behind the
leading edge and along the trailing edge, with the contractile energy
being directed to the cell center each, allowing to pull the cell forward
while retracting the rear upon FA detachment (Figure 1B). The amount
of traction force transmitted to the ECM depends on the number and
kinetic properties of NM |l motors, the distribution of actin bundles,
the amount and distribution of FA, and the stiffness as well as ligand
density of the ECM.[1516:68] Thjs interdependence has been described
in the generalized framework of the “molecular clutch” modell15.16.68]
and was reviewed in detail in several comprehensive articles.[6:67]

Aiming to explain the rate of force transmission from the actomyosin
cytoskeleton to the ECM, the molecular clutch model assumes a load-
ing rate, which is defined as the speed by which forces build up in the
engaged clutch. The clutches are represented by FA, while the speed
of the retrograde actomyosin flow depends on the number and kinetic
properties of NM Il motors that pull versus the resistance that these
motors experience from the ECM. The classic model predicts an opti-
mal ECM stiffness and ECM ligand density at which force transmission
and subsequent migration velocity are maximal.l?>] Assuming an iden-
tical number of NM Il motors pulling with the same velocity on a FA,
the retrograde actomyosin flow will be high, if stiffness and/or ligand
density of the ECM (i.e. the resistance) are low, and vice versa.l1°]
In terms of cell migration, this means that if the resistance from the
ECM is very low, less actomyosin contraction will be transmitted to
the ECM and the amount of traction force is also very low (Figure 1D).
Consequently, the cell “slips”, rather than translocating the cell body
into a distinct direction. On very rigid substrates in contrast, engage-
ment of a high number of clutches should lead to repeated cycles
of force buildup and release due to clutch breakage, rendering the
cell immobile. This latter model prediction, however, becomes compli-
cated by the positive reinforcement of FA maturation and migration
velocity that can be experimentally observed on stiff substrates or sub-
strates with high ligand density, if actomyosin concentration increases
accordingly.[10:16:26.68.70.71] Consequently, stiff ECM substrates or sub-
strates with high ligand density often cause high migration velocities
due to stronger actomyosin assembly, FA maturation, and increased
force transmission (Figure 1D,E).

In a very simplistic view, the above-described scenarios can explain
cell migration by an asymmetric distribution of FA along the cell axis,
allowing actomyosin contraction to be translated into asymmetric sub-
strate traction. If more clutches are engaged behind the leading edge,

overall traction forces at the front will win over the rear, allowing to
translocate the cell body into a distinct direction. In addition, however,
coherent locomotion requires to continuously convert dynamic “tug-
ging” traction at the front into stable “slipping” traction at the rear. At
the leading edge, FA and traction forces need to remain short-lived,
allowing to probe, explore, and react to variations in guidance cues
like the ECM’s mechanical properties.[2¢] Once a new cycle of lead-
ing edge extension and cell adhesion starts, FA and traction forces that
were previously located at the very front now move towards the cell
center and consequently need to be stabilized, to maintain constant
tension on the cell body. As the contractile actin cortex and the SFs are
directly or indirectly interconnected,°8¢7] this guarantees rapid cell
body recoil upon FA detachment. While the force quantity that acts on
the clutch is tuned by the retrograde flow and accumulation of acto-
myosin in the rear, the force quality is additionally regulated via the
expression of up to three different NM Il paralogs, each with specific

kinetic features to modulate the contractile output.

2.3 | Modulation of contractile force generation by
different NM Il paralogs

In vertebrates, the genes Myh9, Myh10, and Myh14 encode for three
different NM Il paralogs NMHC IIA, NMHC |1B, and NMHC lIC, respec-
tively. Together with their RLCs and ELCs, the NMHC IIs form the
holoenzymes NM IIA, NM [IB, and NM IIC (Box 1). Individual cells usu-
ally express two or even all three paralogs simultaneously, however, in
different ratios to each other. In most cases, NM IlA is the highest abun-
dant paralog, followed by NM [1B.[37.7273] Moreover, although large
fractions of the individual NM Il paralogs overlap and co-localize intra-
cellularly, each paralog has a distinct localization pattern and impact on
the contractile force generation, affecting the cellular morphology, SF,
and FA architecture (Box 2 with Figure 2).

To tune the contractile load during cell migration, especially NM 1A
and B have been shown to be of critical importance. More precisely,
both paralogs synergize to achieve a transition from tugging to holding
contractility along the front-rear axis of migrating cells. Evidence for
this can be found in the kinetic features, subcellular distribution, and

functional synergy of NM IIA and NM [1B.[34-39.74]

24 | Complementary traction force generation by
NM IIA and B during cell migration

Although NM IIA and B share 80% amino acid sequence identity,!”?!
they possess different mechanoenzymatic features. Kinetically, NM I1A
propels actin filaments significantly faster than NM IIB, while the duty
ratio (the time during the enzymatic cycle where myosin heads are
stably bound to actin) is significantly higher for NM 11B.[48081] These
features make NM [IA more suitable to produce rapid contractility and
NM IIB prone to bear tension on longer timescales. Strikingly, in polar-
ized migrating cells, NM IIA and B segregate into distinct subcellular

localization patterns along the front-rear axis. While NM 1A is
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(https://doi.org/10.7554/eLife.71888).

homogeneously distributed throughout the cell body, NM IIB is grad-
ually enriched towards the cell rear!3882-84] (Figure 3A). Connecting
this pattern with the distribution of contraction forces along the front-
rear axis of migrating cells suggests that NM lIA-enriched filaments
generate dynamic but short-lived traction forces behind the leading
edge, while NM [IB-enriched filaments form stable and long-lived trac-
tion forces in the cell rear. In line with this, local pulsatile contractions
are an intrinsic feature of NM 1IA but not NM [IB,[85] while NM 1IB
is more mechanosensitive, influencing the period and amplitude of
NM IlA-induced contractions in a catch bond manner through elastic
stabilization.[387486]

Given this functional synergy, it is not surprising that super-
resolution microscopy revealed the co-assembly of NM IIA and B
into heterotypic filaments,[3436] with their formation following akin
principles of an excitable and self-limiting system(87-92] (Figure 3B).
Excitable systems are defined by two criteria: a fast excitation that
reflects a local activating stimulus and a delayed inhibition that globally
suppresses the activator. Due to higher abundance and favored elec-
trostatic interaction, NM [IA preferentially nucleates into “pioneer”
filaments, while it is more likely for NM lIB to co-assemble in preformed
NM 1A filaments!34:38.63.72] (Figure 3C). NM IIB co-assembles with a
delay but subsequently blocks the incorporation of additional NM IIA
molecules, preventing contractile overshoots! 3845541 (Figure 3B). The
contractile kinetics of heterotypic filaments shift with the ratio of the
paralogs, either towards fast but weak if more NM IIA is present, or
slow but strong if more NM IIB is present (Figure 3D). This way, NM

IIA and NM IIB create a synergistic gradient of contractility in migrat-

ing cells. NM IIA is the “first responder” that initiates dynamic and fast
contractile forces behind the leading edge, while NM [IB consolidates
these pre-initiated contraction forces with increasing distance from
the leading edge.

In migrating cells, this pattern of complementary force generation
enables the transition from tugging to holding traction forces along the
front-rear axis, integrating polarization, FA maturation, and cell body
contraction/retraction via a hierarchic self-sorting mechanism. In the
following, we discuss how this enables coherent cellular locomotion
during chemotaxis and durotaxis, as the best characterized examples.
However, similar mechanisms likely operate in haptotaxis, ratchetaxis,
and possibly electrotaxis, although these modes are comparably less
well studied.

2.5 | Cell polarization, FA stability, and cell body
translocation during chemotaxis

During chemotaxis, initial symmetry breaking, cell polarization, and
directionality are established by detecting a local source of chemoat-
tractant in the extracellular space.[?3] While the signal detection
is achieved in an actomyosin-independent fashion, in most cases
either through G-protein coupled receptors!?4! or receptor tyrosine
kinases,!?°] synergistic force generation by NM IIA and B integrates
leading edge protrusion, FA formation, maintenance of front-rear cell
polarity, cell contraction, and rear retraction, leading to coherent

motion with persistence in speed and direction.! 1]
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Box 2: Expression and impact of NM Il paralogs on the
cellular phenotype

NM 1IA is homogeneously distributed throughout the cell
body and its depletion of NM IIA has the most drastic impact
(Figure 2A). Available methods are barely sensitive enough
to measure remaining traction forces in most NM [IA-KO
cells, 3574751 showing that NM 1A is the initiator and main
contributor of contractile energy. Consequently, NM A defi-
cient cells are characterized by aberrant cell morphology, loss
of bundled actin SF, and lack of mature FAl1335.39.7275-77]
(Figure 2A). Instead, the protrusive area is often increased,
and cells form several protrusions in different directions.
None of the observed effects can be rescued by overexpress-
ing NM 1IB or NM 11C,[35:38.74] |inking these phenotypes to
the loss of NM 11A’s specific features rather than the overall
reduction of NM Il concentration.

While NM 1IB mainly accumulates in the cell center and
rear of polarized cells, its depletion has only a subtle
impact on the cellular phenotype, SF, and FA structures
(Figure 2B), and the magnitude of traction force generation is
not reduced.!357475] However, although initiation of traction
forces remains unaffected in NM [IB-KO cells, differences
in the spatiotemporal dynamics emergel’4] and these can
impact the balance between front and rear traction forces in
migrating cells, as explained in detail in the following chapter.
Knowledge about the impact of NM IIC on contractile force
generation is sparse. In U20S cells, depletion of NM IIC has
no obvious impact on polarization, SF and FA assembly, or
traction force generation!”4! (Figure 2C). Moreover, although
NM [IC is homogeneously distributed throughout the cell
body, filaments are less strictly localized to SF than its par-
alogs, possibly reflecting localization in the actin cortex.[78] It
should be noted that NM IIC is by far the least abundant par-
alog in U205 cells!72] and these findings should be confirmed
in cells expressing high levels of NM IIC.

In combination with the retrograde actin flow, the described prin-
ciple of synergistic NM [IA/B activity ensures the continuous polar-
ization of the actomyosin cytoskeleton!33] (Figure 4A). NM I1IA not
only propels actin filaments much faster, but it also possesses a higher
turnover (assembly/disassembly kinetics of monomers into filaments)
than NM 11B.L797] New NM IIA filaments arise along the lamella, right
behind the actomyosin-free zone of the leading edge (Figure 4B). How-
ever, the lifetime of individual NM [IA molecules in filaments is short
and as some disassemble, they may, although less likely, be replaced
by a NM [IB molecule. If a NM IIB molecule takes the place, it will stay
bound in the filament for a longer time due to lower turnover!388384]

(Figure 4B). With progressing distance from the leading edge, the fila-

ments are gradually enriched in NM [IB, as it moves with the retrograde
flow towards the cell center!3>98] (Figure 4A).

This self-sorting allows the emergence of self-limiting subcellular
pulses and propagating waves of cell contractions,8>8%91] enabling
cells to maintain their shape and explore their surrounding at the same
time.l202435] NM 11A is always more abundant at the front and con-
tractions are pulsatile and short-lived,[85! allowing to quickly adjust
the cell body to changing extracellular conditions (Figure 4C). NM |IB
rich filaments rather generate steady and elastic pulling forces, cre-
ating a stable cell rear, which maintains its shape. As the rear part is
under more load due to the load-bearing capacities of NM |IB, a quick
recoil of the cell body is guaranteed, once detached from the substrate
(Figure 4C).

A similar principle also accounts for FA. Newly formed FA arise
along the leading edge, where they promote Rac1 signaling, leading
to protrusive activity. Simultaneously, NM IIA forms filaments along
the leading edge that are incorporated in newly formed SF, which con-
nect to nascent FA, promoting their maturation in a force-dependent
manner.!7%l Upon progressive incorporation of NM 1IB, FA gets stabi-
lized, do not turnover, and do not signal to Rac1 anymore.[8499] Instead,
they remain during cell body translocation and move centripetally
to create a stable rear that is devoid of protrusive signaling!??!
(Figure 4C).

Exploiting this system, cell polarity can be steadily maintained over
long distances. Without NM IIA, cells initially polarize after plating
but cannot coherently translocate due to lacking force generation and
deficient tail retraction, as suggested by long retraction fibers that
remain as remnants of the cell rear (Figure 4D). Numerous nascent
FA form but do not mature, leading to increased protrusive activity
at the cell margin.[99] In NM 11A-KO cells, the direction of protrusion
formation is changed repeatedly, and cells form independent protru-
sions in various directions! 19 (Figure 4D). In the absence of NM IIB,
cells show increased speed due to rapid force production by NM [IA
but lose directionality, as no stable cell rear is created. Although FA
mature, they are not stabilized on longer time scales and still signal
to Rac1l, leading to the spontaneous generation of protrusions at the
trailing edge (Figure 4E).[%?] Thus, NM 1IB knockdown cells show an
increased posterior region and spontaneously protrude and reverse
direction.[100]

Compared to the extensive knowledge about the intersection of
actomyosin contractility and FA maturation during protrusion stabi-
lization, much less is known about the intersection of actomyosin
contractility and FA disassembly during the rear retraction phase. Con-
sidering the continuous self-sorting and polarized distribution of NM
I1A/B along the front-rear axis, it is a interesting question, if this gra-
dient of contractile energy not only leads to a biased maturation of
FA at the leading edge, but also primes FA disassembly at the cell
rear. A possible mechanism comprises feedback between actomyosin
and membrane tension. Lower membrane tension in the cell rear leads
to the formation of caveolae, which enhance RhoA signaling, leading
to rapid retraction.[1°1] NM [1IB-KO cells were shown to possess a
overall higher actin cortex tension compared to WT cells.[3774] Given

the gradual enrichment of NM [IB at the rear of migrating cells, it
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FIGURE 3 Induction and consolidation of actomyosin forces by NM IIA and NM 1IB. (A) Immunofluorescent micrograph, showing the
segregation of NM IIA and NM 1B into distinct subcellular localization patterns along the front-rear axis of a polarized U20S cell. NM [1A is
homogeneously distributed throughout the cell body, while NM IIB is gradually enriched towards the cell rear. Originally published under the
Creative Commons Attribution-Non Commercial 4.0 International Public License (CC BY-NC 4.0) (https://doi.org/10.1016/j.ejch.2022.151213).
(B) Network structure of an excitable and self-limiting NM [IA/B system, consisting of a fast local activator (NM [IA) that amplifies its own activity
and a delayed inhibitor (NM IIB) that suppresses the activator with a temporal delay. The dynamics of NM IIB can be further tuned by mechanical
feedback, e.g., via the elasticity in the ECM. (C) The co-assembly of the heterotypic actomyosin system follows a hierarchical order, relying on the
paralog-specific kinetic properties. NM IIA preferentially assembles due to higher molar abundancy and favored electrostatic interactions. NM [IB

is more likely to co-assemble into preformed NM IIA filaments, but it stays longer bound in the filament and its lifetime can be increased by
mechanical feedback. The role of NM [IC remains unclear in this context. (D) The ratio of NM IIA to NM IIB in heterotypic filaments tunes the
overall contractile output, either becoming more dynamic but weak or stable but slow. ECM, extracellular matrix; NM Il, nonmuscle myosin Il.

seems therefore plausible that localized NM |IB accumulation pro-
motes cortex softening, leading to lower membrane tension at the
cell rear (Figure 4A). Future research might follow up on this direc-
tion, dissecting the intersection of NM IIB, membrane tension, and
the disassembly of FA. For example, activation of CaZ*-sensitive pro-
teins like ST00A11 was recently suggested to mediate FA disassembly
in a Piezo1- and actomyosin-dependent manner.!102] Elevated RhoA
signaling, mediated by low membrane tension, might promote stretch-
activation of Piezol ion channels and Ca2+ influx at the cell rear,
favoring FA disassembly via localized activation of SI00A11.
Altogether, a precise interplay between actomyosin contraction and
FA dynamics arises due to the self-sorting of contractile NM [IA/B
bundles along the cell axis, allowing maximal migration velocity while

simultaneously preserving cell body integrity and polarization.! 1035

2.6 | FA tugging and mechanosensing during
durotaxis

In the above-described scenario, the sorting of NM IIA and B is cell
autonomous and uncoupled from extracellular cues, once symme-
try is broken by a chemotactic guidance cue. In vivo, however, cells
adhere and migrate in a complex ECM, where heterogeneities in ECM
fiber stiffness or topography can be interpreted as mechanical guid-
ance cues.!124-28] Moreover, depending on the mechanical properties,
cells may (re-)polarize or remodel their migratory path.[29-33] |n these
cases, actomyosin forces are required to actively sense the mechanical
properties of the ECM.

Most of the actomyosin-related work in this regard has focused on

durotaxis, where cells follow stiffness gradients, typically towards the
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FIGURE 4 Nonmuscle myosin Il (NM I1) self-sorting regulates polarization and migration during chemotaxis and durotaxis. (A) Self-sorting of
heterotypic NM Il filaments in migrating cells arises from a combination of hierarchic NM Il assembly and retrograde actin flow. The cell front is
enriched with NM IIA, while the rear is enriched with NM [IB. (B) The underlying mechanism of this self-sorting relies on the assembly and

turnover kinetics of NM 1A and NM |IB. NM 1A preferentially assembles but also detaches faster than NM 11B. NM 1B preferentially co-assembles

but stays longer bound and consequently accumulates at the rear, as it travels with the retrograde actin flow over longer distances. (C) The NM

I1A-rich cell front generates dynamic and pulsatile contractions, allowing rapid cell shape adjustments to changing extracellular conditions. Tugging

focal adhesion (FA) connected to NM I1A-rich actomyosin bundles locally probe the substrate rigidity during durotaxis and more likely promote
Rac1 signaling due to higher turnover. NM IIB rich filaments generate steady pulling forces, establishing a stable cell rear. Progressive

incorporation of NM [IB stabilizes FA, preventing Rac1 signaling and FA tugging. The elastic capacities of NM |IB guarantee a quick cell body recoil

upon FA detachment from the substrate. (D) In absence of NM IIA, cells initially polarize but fail to translocate due to lacking force generation.

Increased protrusive activity is present at the cell margin, as nascent adhesions do not mature. (E) In absence of NM |IB, rapid force production by

NM 1A is sufficient to translocate the cell body. However, the cell lacks a stable rear, leading to ectopic protrusion formation via excessive Rac1

signaling and FA tugging, ultimately reducing cell directionality. (F) Schematic of FA tugging during Durotaxis. Softer substrate regions promote FA
tugging, while stiffer substrate regions reciprocally stabilize FA and prevent tugging, possibly facilitated by increased NM IIB incorporation.

regions of higher stiffness,[103-105] a5 these stiffness regimes allow
cells to exert the highest traction forces due to adhesion reinforce-
ment, as described above.[1¢] It should be noted that “negative” duro-
taxis and polarization of axonal growth cones towards softer regions

have been reported as well,[106-109] however, the molecular mecha-

nism is comparably well investigated in these cases.[103110.111] Ope
possible scenario is that cells, which lack the described FA reinforce-
ment on stiff substrates, migrate towards softer regions to experience
intermediate substrate rigidities that allow them to exert maximal trac-

tion force, in accordance with the predicted stiffness optimum in the
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classic molecular clutch model.[19¢] In any of these cases, however, it is
believed that the level of actomyosin contractility downstream of FA,
is crucial for sensing these differences in substrate rigidity.[2°] More-
over, it is likely that actomyosin forces might play essential roles during
substrate sensing in other migration modii as well.[112] Nevertheless,
we will focus on “positive” durotaxis in the following, given that the
actomyosin-related mechanisms are best described for this mode.

During durotaxis, the same differential polarization of NM [IA/B
is observed and like during chemotaxis, NM IIA possesses the key
upstream role in force generation, while polarized NM IIB localiza-
tion at the rear is necessary for directionality, by stabilizing cell
polarity!24112] (Figure 4C-F). Strikingly, even mild reductions of NM
11B levels significantly reduce durotaxis efficiency and overexpression
reduces durotactic efficiency as well, whereas overexpressing NM I1A
has no effect.[24] This shows that i) the less abundant paralog NM
1B is equally important for durotaxis than the main force genera-
tor NM IIA, and ii) a tight regulation of the expression ratio between
NM 1IA and B is necessary for optimal durotactic efficiency. The sig-
nificance of NM IIB in mesenchymal durotaxis is further highlighted
by its absence in many amoeboid cells,!*13] which primarily migrate
without FA engagement and therefore don’t use the classic mecha-
nism for durotaxis.[114115] Unlike mesenchymal cells, amoeboid cells
navigate through ECM meshworks by squeezing along paths of least
resistance rather than sensing and remodeling the ECM.[116] As the
sole force generator, NM IIA enhances the viscosity of the actomyosin
cytoskeleton,!”4] which is a necessary feature when squeezing the cell
body through narrow pores. Since NM |IB rather promotes a viscoelas-
tic behavior, it seems dispensable for amoeboid migration,!?15] but
crucial for FA-dependent durotaxis.

The self-sorting of NM IIA/B enables the system to be receptive
and reactive at the same time, favoring a picture in which both, local
substrate sensing and polarization reinforcement for migratory persis-
tence, happens simultaneously. How this is facilitated on a molecular
scale is ongoing research, but strong hints point again towards a
precisely regulated balance of FA-mediated adhesion and actomyosin-
generated traction.[25] It was shown that cells use FA to locally probe
their underlying substrate by applying fluctuating tugging actomyosin
forcesl2¢! (Figure 4C). However, only a fraction of FA showed this tug-
ging behavior, and stiff substrates generally favored the stabilization
of the FA/abolished force fluctuations. Therefore, a positive feedback
loop between substrate stiffness and NM [IB co-assembly might exist
(Figure 4F). FA dynamically sample the substrate rigidity via oscillat-
ing force patterns, which is an intrinsic feature of NM IIA but not
NM 11B.[8%] Upon attachment to stiff substrate regions, the mechan-
ical feedback from the substrate is stronger, possibly reinforcing the
NM 1IB catch bond that subsequently stabilizes FA and increases
the adhesion strength.[%1 Conformingly, locally self-amplifying acto-
myosin force patterns emerge from an excitable system in response to
matrix elasticity,[89] and NM 11B accumulation is mechanosensitive and
dependent on its motor activity.[38:8¢]

An interesting research direction comprises the recent finding that
amoeboid cells can also undergo durotaxis, even in the absence of

FA.[114.115] As it was suggested that this specific type of durotaxis does

not require NM 1B but still relies on retrograde actomyosin flow and
rear contraction, 2151 it will be interesting to delineate the mechanism,
by which amoeboid cells translate stiffness differences into retrograde
actomyosin flow, in the absence of FA.

Additionally, it was shown that FA-dependent durotaxis only
emerges on certain ECM conditions. While fibronectin promotes duro-
taxis, laminin does not.!117.118] |n contrast to laminin, fibronectin
fibrils can be stretched significantly and expose cryptic binding sites
upon fibril extension.!119120] Thijs suggests that FA-dependent duro-
taxis depends not only on the elastic nature of the actomyosin
cytoskeleton, but also requires an elastic counterpart in the ECM.
Mechanistically, actomyosin pulling forces that are transmitted to
the ECM via FA expose synergistic binding sites for integrins on
fibronectin fibrils.[3132] The result of this is two-fold, i) cell adhesion
is reinforced on tensed (and thus stiffer) fibronectin fibrils, and ii)
tension on the ECM fibrils locally increases, reinforcing their align-
ment, clustering, and the formation of prestrain along the migratory
path.[29:30.33121-123] These findings open exciting avenues for future
research, exploring the possibility that cells not only follow pre-defined
gradients of stiffness, but also self-generate such mechanical gradi-
ents for follower cells, while migrating.[33124.125] Se|f-generation of
gradients has recently been acknowledged for durotacticl’?4l and
haptotactict33] gradients, and at least in one case relies mechanisti-
cally on actomyosin forces.I33] Strikingly, also in these cases, the less
abundant NM 1IB might be equally important to NM IIA. NM IB-
KO fibroblasts translocate Collagen | fibers significantly slower than
WT cells,[?23] and ECM remodeling is altered in NM |IB-deficient
tissues.226] |t will be interesting to see if NM Il paralogs are differen-
tially involved in self-generating mechanical gradients.

2.7 | Force modulation by NM Il paralogs during
migration in vivo: Should I stay, or should | go?

While the previous sections highlight the vast mechanoreciprocity
between NM Il paralogs, FA, and the ECM, as observed during migra-
tion in vitro,l127] it was always acknowledged that in vitro culture
conditions only poorly reflect the complexity in vivo. While a reduction
in complexity is necessary to unravel the molecular details of novel dis-
coveries, the reciprocal experiment, that is, to investigate if predictions
from in vitro experiments also hold true in vivo, might open avenues for
novel ideas and new ways of thinking about problems. When monitor-
ing the impact of the NM Il paralogs on contractile force generation in
vivo, novel ideas might evolve and lead to hypothesis that can be tested
in molecular detail in vitro. In this last chapter, we want to briefly high-
light possible future perspectives for research on the plasticity of the
actomyosin system, especially regarding the expression and interaction
of different NM Il paralogs in vivo.

An interesting aspect concerns the expression ratio and relative
abundance of the various NM Il paralogs in the respective tissues.
NM I1A and NM 1B are considered ubiquitously expressed from early
development on, but NM 1A is predominantly expressed, outnumber-

ing NM 1IB and NM 1IC by far in most cases (except for some neuronal
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tissue, increased expression of NM |I1B might correlate with extracellular matrix (ECM) fiber alignment and self-generation of mechanical gradients

during 3D invasion in vivo.

tissues, where NM 1B is more abundant).l”27379] This is in line with
the role of NM IIA as the canonical initiator and generator of con-
tractile forces. In striking contrast, however, expression of NM IIC is
not only absent during embryonic development until E11.5 in mice,l”?!
its expression pattern is also more restricted,!’?] with the highest
expression found in epithelial tissues.

In contrast to mesenchymal cells, epithelial cells of physiologi-
cally healthy tissues do not migrate as individual cells but collectively
as a coherent sheet.[128-130] Often, polarized epithelial cells even
reside statically in the tissue, forming a coherent epithelium.!31]
For epithelial cells to become individually motile, they first need to
undergo large-scale changes in their adhesive and contractile appa-
ratus, a process usually described as epithelial-mesenchymal tran-
sition (EMT).[130.132-134] \Wijth onset of EMT, epithelial cells delam-
inate by breaking down E-Cadherin mediated adherens junctions,
re-polarizing from apico-basal to front-rear, and acquiring an invasive
phenotype.[134] Strikingly, Beach and colleagues proposed that akin

to the switch from E-Cadherin to N-Cadherin expression during EMT,
an NM Il paralog switch from NM IIA/C to NM 1IA/B occurs down-
stream of TGF-g signaling in murine mammary glands( 3] (Figure 5).
They show that NM 1IC is expressed in luminal epithelial cells, while
NM [1B is expressed in more contractile myoepithelial cells.[13¢] More-
over, induction of EMT in mammary gland epithelial cells in vitro leads
to the same NM Il paralog switch, and upon induction of NM |IB
expression/downregulation of NM |IC via the EMT program, these cells
become more individually invasive and migratory.[13°]

These findings suggest that, in striking contrast to the synergis-
tic activity of NM IIA/B during mesenchymal cell migration, increased
expression of NM [IC maybe rather correlates with the opposite and
favors a jammed state in which cell remain static in an epithelium with
apico-basal polarity (Figure 5). In many cell types and tissues, one NM
Il paralog is significantly less abundant, and while NM 11A is usually the
most abundant, expression of NM 1B and NM IIC are often inversely

proportional to each other.[73791 Moreover, NM IIB is more abundant
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in mesenchymal tissues and essential for nuclear translocation during
3D invasion,! 1371 while NM IIC is higher expressed in static tissues with
epithelial characteristics.[7379.135] NM 1IC is enriched along the apical
side of mouse epithelial’?] and along the sarcomeric belt in the Organ
of corti,1238] and it limits the length of epithelial brush border microvilli
by counteracting actin polymerization in the villus tip.”8] Strikingly,
pharmacological activation of NM IIC decreases cancer dissemination
and metastasis formation, while reinforcing the formation of sarcom-
eric actin belts,[139:140] 3 structural feature of jammed epithelial tissues
with strong cell-cell adhesions.

How is it regulated on the mechanistic scale, that the combination
of two NM Il motor paralogs (A/B) leads to a contractile output which
favors migration and invasion of single cells, while the combined con-
tractile output of two others (A/C) blocks invasion and favors a static
phenotype? In contrast to NM II1A and B, we still lack a detailed under-
standing of how NM IIC is involved in contractile force generation
on the subcellular scale, and how it interacts with its paralogs. NM
I1C differs structurally and kinetically from its paralogs, sharing only
64% amino acid identity.7?! Ultrastructural analysis showed that NM
IIA and NM 1IB minifilaments each consist of 28-30 hexamers, while
NM [IC minifilaments only contain around 14. Since actin-crosslinking
properties depend on both, duty ratio and the number of myosin heads,
NM 1IC has a much lower power to cross-link actin than NM [IA and
NM 11B.[241] This makes NM IIC neither suitable for rapid actin translo-
cation, nor for stable actin cross-linking, pointing towards diverging
functions fromits paralogs. Moreover, NM IIC filaments are less strictly
localized along SF than its paralogs in U20S cells. The small size and
rather diffuse localization could suggest that NM IIC is capable of
binding to dense actin meshworks along the circumferential actin belt
of epithelial cells, possibly reflecting the suggested function in main-
taining apico-basal polarity.!”8] As heterotypic NM IIA/C filaments
were reported as well,[34] NM IIC could mechanistically serve as a
mechanosensitive dampener of NM [1A-induced contractility,74] facil-
itating tensional homeostasis and structural integrity in mechanically
loaded and stressed epithelial tissues.[142.143]

Importantly, however, it should be noted that NM [IB is also involved
in adherens junction biogenesis in many epithelia and co-localizes with
NM IIC in some epithelial tissues.[3%7379.144] Thjs suggests that there
might be a certain plasticity, rather than a complete switch of NM
Il paralog expression, akin to the suggestion that E-Cadherin is not
completely switched off during EMT, but rather that the ratio of E- to
N-Cadherin is shifted towards the latter.[133] EMT basically consists of
three consecutive steps: (i) reduction of cell-cell adhesion, (ii) reduc-
tion of apico-basal polarity, and (iii) acquisition of front-rear polarity
and cell motility. While the simplistic view is that these steps hap-
pen sequentially, growing evidence suggests that they could take place
simultaneously.!?33] The ratio between NM lIA, B, and C could shape
the balance between cell-cell adhesion and cell motility during EMT,
with NM 11A/B being more important to control cell motility, while NM
I1A/C could control cell-cell junctional dynamics. This might be of spe-
cific interest during collective cell migration. For example, if all three
paralogs are expressed simultaneously, the ratio between NM [IB and

NM 1IC could control the level of cohesiveness in a migrating cluster.

Box 3: Glossary of terms

Actin cortex: A contractile layer of actin mesh that is attached
to the inner side of the plasma membrane.

Catch bond: A noncovalent bond whose dissociation lifetime
increases upon applying mechanical load.

Chemotaxis: Migration along gradients of soluble chemoat-
tractants.

Contraction forces: Actomyosin forces are generated in the
actin cortex and actin bundles that basically minimize the cell
surface via the generation of isometric tension to the middle.
Durotaxis: Migration along stiffness gradients in the ECM or
adjacent cell sheets.

Electrotaxis: Migration along an electric field. Sometimes
also referred to as Galvanotaxis.

Focal adhesion: Adhesive structure consisting of transmem-
brane integrin receptors and adaptor proteins that link the
actomyosin cytoskeleton to the extracellular matrix-binding
integrins.

Haptotaxis: Migration along gradients of bound chemoat-
tractants.

Ratchetaxis: Migration along gradients of adhesive
molecules, as present on certain ECM fibers topographies.
Retraction forces: Forces to retract the cell body asymmet-
rically, usually describe the shortening of the cell rear during
migration.

Stress fiber: Contractile actomyosin bundle that is connected
to focal adhesions on one or both ends.

Traction forces: Actomyosin contraction forces that are
transmitted to the extracellular environment (the ECM or
neighboring cells), via the connection of actomyosin bundles

to cell adhesions.

Future research focusing on physiological tissue models that express
different ratios of the three NM Il paralogs might reveal in which sce-
narios NM [IC is crucial, and how it interferes with its paralogs to

modulate junction formation and cell motility on the mechanistic scale.

3 | CONCLUSION

With the advent of mechanobiology, it has been revealed that the func-
tions of actomyosin contractility in terms of cell migration cover way
more than just cell body translocation. Extensive synergistic and pos-
sibly also antagonistic feedback loops between the different NM Il
paralogs and their upstream regulators converge in precisely tuned
waves of actomyosin assembly and contraction, allowing cells to sense
their physical environment, remodel their ECM, maintain their polarity,
and translocate their cell body simultaneously. The next steps should

be to transfer this knowledge to higher-ordered systems, trying to
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derive a system-level understanding of how actomyosin contractility
is coordinated and synchronized in collective and supracellular migra-
tion in vivo.[94132.145.146] This includes the synergistic activities of NM
1A and NM 1B during the invasion, ECM remodeling, and gradient for-
mation, but also possible diverging functions of NM IIC in tensional
homeostasis and maintenance of epithelial apico-basal polarity. Addi-
tional in vivo migration modii such as amoeboid migration of immune
cells, and the regulation of migratory plasticityl”! (i.e. mesenchymal-

[147,1481) have not been covered here in detail, but

e'[7,113]

amoeboid transition
are also of high interest due to their physiological relevanc

Today, methods and toolboxes necessary to tackle these questions
in vivo are largely established. Improvements in imaging techniques
enable better resolution, optogenetics, and laser ablation allow to
spatiotemporally control or disturb actomyosin with unprecedented
precision,! 7] methods to monitor force generation in situ have been
established,! 1491501 and gene editing via the CRISPR-Cas toolbox
allows much more refined ways to manipulate the contractile machin-
ery, beyond the problems and caveats of lethal loss-of-function studies.
Thus, it will be exciting to see the field shifting from single cells in vitro

to tissues and multicellular assemblies ex vivo and in vivo.
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