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A B S T R A C T

Juvenile Idiopathic Arthritis (JIA) is an autoimmune condition characterised by flares of joint inflammation. 
However, no reliable biomarker exists to predict the erratic disease course. Normally, regulatory T cells (Tregs) 
maintain tolerance, with altered Tregs associated with autoimmunity. Treg signatures have shown promise in 
monitoring other conditions, therefore a Treg gene/protein signature could offer novel biomarker potential for 
predicting disease activity in JIA.

Machine learning on our nanoString Treg 48-gene signature on peripheral blood (PB) Tregs generated a model 
to distinguish active JIA (active joint count, AJC≥1) Tregs from healthy controls (HC, AUC = 0.9875 on test 
data). Biomarker scores from this model successfully differentiated inactive (AJC = 0) from active JIA PB Tregs. 
Moreover, scores correlated with clinical activity scores (cJADAS), and discriminated subclinical disease (AJC =
0, cJADAS≥0.5) from remission (cJADAS<0.5).

To investigate altered protein expression as a surrogate measure for Treg fitness in JIA, we utilised spectral 
flow cytometry and unbiased clustering analysis. Three Treg clusters were of interest in active JIA PB, including 
TIGIThighCD226highCD25low Teff-like Tregs, CD39-TNFR2-Helioshigh, and a 4-1BBlowTIGITlowID2intermediate Treg 
cluster predominated in inactive JIA PB (AJC = 0). The ratio of these Treg clusters correlated to cJADAS, and 
higher ratios could potentially predict inactive individuals that flared by 9-month follow-up.

Thus, we demonstrate altered Treg signatures and subsets as an important factor, and useful biomarker, for 
disease progression versus remission in JIA, revealing genes and proteins contributing to Treg fitness. Ultimately, 
PB Treg fitness measures could serve as routine biomarkers to guide disease and treatment management to 
sustain remission in JIA.

Abbreviations: aHC, Adult healthy control; AJC, Active Joint Count; ANA, Anti-nuclear antibody; AUC, Area under curve; cJADAS, clinical Juvenile Arthritis 
Disease Activity Score; CTLA4, cytotoxic T lymphocyte-associated antigen 4; FDR, False discovery rate; FVD, Fixable viability dye; GARP, Glycoprotein A repetitions 
predominant; GITR, Glucocorticoid-induced tumour necrosis factor receptor-related protein; HLA-DR, Human Leukocyte Antigen DR isotype; IL-2, Interleukin-2; JIA, 
Juvenile Idiopathic Arthritis; LAP, latent-associated peptide; LOOCV, Leave one out cross validation; MC, Mononuclear cell; MTX, Methotrexate; NSAID, Non-ste
roidal anti-inflammatory drug; PB, Peripheral blood; PBMC, Peripheral blood mononuclear cells; PCA, Principal component analysis; PD-1, programmed death 1; 
pHC, Paediatric healthy control; QC, Quality control; RF, Rheumatoid factor; ROC, Receiver operating characteristic; Sens, Sensitivity; SF, Synovial fluid; SFMC, 
Synovial fluid mononuclear Cells; Spec, Specificity; T1D, Type 1 diabetes; Tconv, Conventional T cell; Teff, Effector T cell; TIGIT, T cell immunoglobulin and ITIM 
domain; TNF, Tumour necrosis factor; TNFR2, Tumour necrosis factor receptor 2; Treg, Regulatory T cell; TSDR, Treg specific demethylated region; VAS, visual 
analogue scale.
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1. Introduction

Juvenile Idiopathic Arthritis (JIA) is the most common rheumatic 
autoimmune condition with childhood onset. Persistent, uncontrolled 
inflammatory flares of joints lead to pain, reduced quality of life, and 
disability [1]. Targeted biologics, such as TNF-α blockade, and more 
general immunosuppression by corticosteroids and methotrexate (MTX) 
have improved disease management, yet 30–50 % of patients do not 
achieve adequate responses [1,2]. Furthermore, these therapeutics can 
often cause severe side effects [3] and with no clear guidelines on when 
to withdraw safely, patients may remain on medication for longer than 
necessary due to a high risk of flare [4]. Treatment decisions are often 
based on clinician’s experience and preference, with limited objective 
quantifiable markers to measure disease activity [1,4]. Predicting flares, 
monitoring response to treatment, and identifying true remission from 
subclinical disease therefore remain key challenges in JIA to achieve 
sustained remission [1,5].

Clinically applicable biomarkers are valuable tools in governing 
treatment decisions and measuring clinical outcomes. Routinely 
measured biomarkers in JIA include autoantibody/rheumatoid factor 
(RF), determining subtypes of polyarticular JIA, and anti-nuclear anti
body (ANA) which associates with increased risk of developing uveitis 
[5]. However, these markers are utilised for classifying disease subcat
egory and risks of co-morbidities, rather than monitoring disease pro
gression and predicting flares. Cellular ratios, gene expression profiling, 
and proteome analysis of synovial fluid mononuclear cells (SFMCs) have 
been suggested to identify JIA individuals likely to progress into a more 
severe category of disease activity to extended oligoarticular JIA [6,7]. 
However, SFMCs are only present and accessible during an active in
flammatory flare of the joint, and therefore are not a viable source to 
measure subclinical disease. In blood, an RNA signature of 99 genes was 
able to segregate JIA patients which achieved remission on metho
trexate from non-responders, using blood samples prior to treatment 
commencing [8]. However, large genetic signatures and complex tech
niques are not suitable for a standardised, clinically-applicable 
biomarker [5]. Increased serum concentrations of pro-inflammatory 
calcium-binding S100 proteins, such as S100A8/A9 and S100A12, 
have predicted response to methotrexate and anti-TNF therapy [9–11] 
and can assist with assessing the risk of flare and guide timing of MTX 
withdrawal in clinical remission [12,13]. Although now adopted in 
some clinical centres as subclinical inflammatory markers to assist 
therapeutic decisions in JIA, these S100 proteins have shown more ef
ficacy in monitoring systemic disease [14], can lack biomarker speci
ficity by misclassifying a large percentage of patients [10], and are not 
yet standardised. Therefore, no reliable, validated biomarker in JIA 
currently exists to predict the erratic disease course, determine which 
individuals are at risk of imminent flares, or when to taper medication 
off safely once sustained remission is achieved.

Regulatory T cells (Tregs) are key in the control of immune ho
meostasis and usually prevent inappropriate inflammation through 
maintaining tolerance. When Tregs fail to control effector cells, auto
immunity, such as JIA, can arise. Tregs have therefore been investigated 
for their therapeutic potential in several other autoimmune conditions 
[15]. Treg dysfunction is also a hallmark of JIA [1,16,17], yet immune 
regulation has yet to be targeted or monitored for therapeutic benefit in 
JIA. CD4+Foxp3+ Treg changes at the site of inflammation in JIA have 
been well described, with enrichment in synovial fluid (SF) and large 
heterogeneity [18–20], suggesting that the presence of specific Treg 
subsets, with unique co-receptor combination, likely have different 
functions. Interestingly, SF Tregs retain hypomethylation of the TSDR 
(Treg specific demethylated region), showing commitment to the Treg 
fate [21] and increased numbers may associate with less extensive dis
ease [22]. However, several genetic risk alleles in JIA are in loci asso
ciated with Treg function [16], with synovial Tregs suggested to exhibit 
a pro-inflammatory effector phenotype, loss of IL-2 sensitivity and 
questioned in vitro suppressive capacity [17,18,21,23–27]. 

Investigations into altered Treg phenotype in the blood between inactive 
and active JIA are more limited in non-systemic JIA.

Treg abundance and Treg markers have been investigated as pre
dictive biomarkers for disease manifestations, therapeutic response, and 
prognosis, in cancers [28], cardiovascular disease [29,30] and autoim
munity [17,31,32]. Although large gene signatures are impractical for 
standard clinical use, nanoString technology requires comparatively few 
cells from a sample (~5000 cells), with no RNA purification, no 
amplification bias and high replicability [17,33,34]. A nanoString 
signature as a biomarker would therefore be feasible for clinical use, 
having already been approved clinical use for cancer prognosis [35].

We have previously developed a nanoString RNA Treg signature, 
incorporating genes which reflect Treg function, genes consistently 
expressed by healthy Tregs, with so far undefined functions, and 
effector-linked genes, thus discriminating Tregs from conventional T 
cells (Tconv) regardless of activation state [31]. On purified Tregs, the 
Treg signature assesses intrinsic Treg changes [31,32], thus infers 
functionality of Tregs. Indeed, this signature sensitively and specifically 
identified children and adults with new onset type 1 diabetes (T1D) from 
healthy controls, as well as predicting responders to biologic treatment 
in T1D patients and disease trajectory [31,32]. With genetic similarities 
to T1D, including key genes involved in Treg functions [36,37], here we 
further investigate our Treg signature in oligoarticular and RF- poly
articular JIA, incorporating 11 additional genes of pathways previously 
linked to JIA and/or autoimmunity (48 gene Treg signature Plus, Sup
plementary Table S1), and utilise high dimensional spectral flow 
cytometry data to assess Treg fitness profile at protein level.

We explore the biomarker potential of Treg signatures in differenti
ating inactive from active JIA blood, identifying subclinical disease, and 
predicting disease progression. Gene/protein signatures examined here 
could therefore provide a surrogate measure of Treg fitness, by moni
toring changes in Tregs through mRNA and protein as reflective mea
sures for in vivo Treg fitness in the periphery in JIA. It may therefore be 
possible to identify disruption to the immunoregulatory balance prior to 
cellular infiltration and inflammation of the joint. Therefore, thera
peutic preventatives can be introduced earlier to sustain remission, or 
medication withdrawn safely when remission is indicated.

2. Methods

2.1. Sample collection, processing and demographics

Peripheral blood (PB) was collected via venepuncture from paedi
atric (<16 years old) healthy individuals (pHC, n = 5), adult (≥18 years 
old) healthy volunteers (aHC, n = 26) and a cohort of individuals with 
diagnosed rheumatoid factor negative (RF-) polyarticular or oli
goarticular Juvenile idiopathic arthritis (JIA, n = 59). Synovial fluid (SF, 
n = 29) was also collected from unmatched JIA patients via joint aspi
ration prior to therapeutic intra-articular joint injection. PB and SF was 
processed as soon as possible for mononuclear cell (MC) isolation via 
density gradient centrifugation and cryopreservation. Hyaluronidase (1 
μL/mL) was additionally added to diluted SF samples, incubated for 30 
min at 37 ◦C, prior to centrifugation.

For JIA patients, available data which was assessed clinically was 
extracted from study databases or fully anonymised clinical records at 
time of sample, including disease duration, medication, and clinical 
Juvenile Arthritis Disease Activity Score (cJADAS), which encompasses 
active joint count (AJC,/10), physician’s global assessment (/10) and 
patient/parent global assessment (/10) [38] for PB samples. Inactive JIA 
was classified as no active joints (AJC = 0) at time of sample, with in
dividuals with active JIA classified as having one or more active joints 
(AJC≥1), via clinical assessment. Table 1 displays sample demographics 
and clinical characteristics of this cohort.

M.H. Attrill et al.                                                                                                                                                                                                                               Journal of Autoimmunity 152 (2025) 103379 

2 



2.2. Treg isolation and lysate preparation

A minimum of 5 × 104 cells were kept for mononuclear cell lysis from 
PBMC and SFMC samples before CD4+ T cells enrichment via magnetic 
negative selection (EasySep™, StemCell Technologies). Tregs were then 
sorted from CD4+ T cells on live (FVD-) CD4+CD25highCD127low. Purity 
checks were performed on a subset of sorted Tregs, staining intracellu
larly for Foxp3 (Foxp3/transcription factor staining buffer, eBio
science™). Sorted Tregs were lysed, along with mononuclear cell 
samples, using RNeasy Lysis Buffer (Buffer RLT) with 1 % 2-Mercaptoe
thanol at 1μL/5000 cells. Lysed samples were stored at − 80 ◦C until 
nanoString assessment.

2.3. nanoString

mRNA gene expression was measured for 48 genes from Treg and MC 
samples using nanoString’s nCounter XT assay, using our custom human 
Treg signature Plus CodeSet (nanoString, CodeSet name Hu_TregsPlus 
(Pesenacker), Supplementary Table S1). Cell lysates were hybridised 
according to standard protocol, with Reporter CodeSet and Capture 
ProbeSet, for 18 h at 65 ◦C before loading onto the Prep station with 
cartridge and reagent. Loaded cartridges were then transferred to the 
nCounter Pro digital analyser for mRNA count readouts. A pool of all 48 
oligonucleotides at six different concentrations (0 fM-50 fM) was addi
tionally run in triplicate for standard curve and future batch correction, 
with a 50 fM standard included in each cartridge as a control reference. 
nanoString data is available on Gene Expression Omnibus (GEO Acces
sion: GSE289068 https://www.ncbi.nlm.nih.gov/geo/).

2.4. QC and normalisation

Quality control (QC) was performed on nanoString mRNA count data 
using the R package NanoString quality control dashboard (NACHO) 
[39], visualising QC parameters (average counts, binding density, me
dian counts) and expression of control genes. Positive control normal
isation and total sum normalisation was performed, to a normalisation 
factor of 5000 counts, with zero counts remaining as zero even after 
transformation (R scripts are available at GitHub PesenackerLab: Pes 
enacker_Tregsig_nanostring_normalisation.R). Samples which failed QC 
metrics, positive control normalisation or total sum normalisation were 
flagged and removed from further analysis. Data was then log2-
transformed for input into the biomarker pipeline (R scripts are avail
able at GitHub PesenackerLab: Pesenacker_Tregsig_biomarker_d 
iscovery_pipeline.R).

2.5. Biomarker discovery pipeline

For biomarker discovery, genes with detectable counts (>0) in fewer 
than 30 % of samples across all groups were removed from further 
analysis to minimise effects driven by outliers (genes removed in each 
biomarker discovery pipeline shown in Supplementary Table S2). In this 
study, biomarker discovery by elastic net regression was utilised to 
generate models to differentiate: 

1) adult HC PB Tregs vs JIA SF Tregs (SF Treg signature model, input of 
42 genes)

2) adult HC PB Tregs vs active (AJC≥1) JIA PB Tregs (Treg signature 
model, input of 37 genes)

3) adult HC PBMCs vs active (AJC≥1) JIA PBMCs (PBMC Treg signature 
model, input of 45 genes)

Table 1 
Sample demographics and clinical characteristics of JIA cohort groups.

pHC PB aHC PB JIA SF JIA PB activity 
unknown

JIA PB inactive JIA PB active

Number of samples:
Total individuals, n 5 26 29 12 17 30
nanoString MC, n 5 (passed QC =

5)
20 (passed QC =
20)

29 (passed QC =
28)

12 (passed QC = 12) 17 (passed QC =
17)

30 (passed QC =
30)

nanoString Treg, n (CD4+CD25hiCD127low 
sorted)

5 (passed QC =
3)

26 (passed QC =
24)

26 (passed QC =
26)

11 (passed QC = 10) 17 (passed QC =
16)

30 (passed QC =
28)

spectral flow cytometry Treg, n (CD4+Foxp3+
gated)

N/A N/A N/A N/A 17 28

Demographics:
Gender, %female* 80.0 50.0* 87.0* 83.3 88.2 63.3
Age at sample in years, mean (range)* 8.8 (6–14) 29 (22–43)* 10.8 (3–16)* 8.3 (3–16) 9.6 (2–16) 5.7 (1–16)
Ethnicity, %Caucasian⋄ unknown⋄ 75.0⋄ 73.7⋄ 83.8⋄ 82.4 63.3
JIA subtype:
%polyarticular RF- N/A N/A 27.6 0.0 64.7 20.0
%oligoarticular N/A N/A 72.4 100 35.3 80.0
Disease duration:
Months since diagnosis at time of sample, mean 

(range)Δ
N/A N/A 94.9Δ (19–158) 35.0Δ (16–68) 47.1Δ (3–125) 31.0 (2–105)

Medication at time of sample:
Methotrexate, n∇ N/A N/A Yes = 4∇

No = 11∇

Yes = 1∇

No = 6∇

Yes = 11 
No = 6

Yes = 15 
No = 15

Steroids, n∇ N/A N/A Yes = 3∇

No = 12∇

Yes = 1∇

No = 6∇

Yes = 10 
No = 7

Yes = 13 
No = 17

Biologics, n∇ N/A N/A Yes = 1∇

No = 14∇

Yes = 0∇

No = 7∇

Yes = 1 
No = 16

Yes = 3 
No = 27

Clinical assessment at time of sample:
AJC, mean (range) N/A N/A N/A unknown All 0 2 (1–5)
cJADAS, mean (range)† N/A N/A N/A unknown 1.8 (0–8.6)† 7.7 (1.6–17.3)†

PB = peripheral blood; SF = synovial fluid from the inflamed joint; n = number of samples; QC = quality control; RF- = rheumatoid factor negative; AJC=Active joint 
count; cJADAS = clinical Juvenile Arthritis Activity Score; MC = mononuclear cells.
N/A = not assessed; unknown = no data recorded/available.
*Missing data for n = 10 aHC PB, n = 6 JIA SF; ⋄missing data for n = 5 pHC PB, n = 10 aHC PB, n = 6 JIA SF, n = 6 JIA PB activity unknown; Δmissing data for n = 10 
JIA SF, n = 9 JIA PB activity unknown, n = 1 JIA PB inactive,∇missing data for n = 14 JIA SF, n = 5 JIA PB activity unknown; †missing data for n = 2 JIA PB inactive, n 
= 4 JIA PB active.
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Data from each group were randomly split into similarly sized train 
and test sets. Leave one out cross validation (LOOCV) on the train 
dataset was used to determine optimal regularisation parameters of the 
elastic net model (alpha and lambda values, Supplementary Table S2) 
that maximize model accuracy. The importance of different genes was 
determined in model selection, ranked by frequency of each gene used to 
differentiate groups in each iteration (importance as %). Gene co
efficients not equal to 0 in the final model were determined 
(Supplementary Table S2). Biomarker scores were generated from test 
datasets using fitted models, and classification performance was 
assessed via the area under the receiver operating characteristic curve 
(ROC AUC), as well as sensitivity and specificity at a cutoff score value as 
specified. Separate test sets, including inactive (AJC = 0) JIA PB and 
paediatric HC, were additionally used for further validation of the 
biomarker scores. Details of generated models are provided in Supple
mentary Table S2.

2.6. mRNA expression data visualisation

Principal component analysis (PCA) with normalised, log2-trans
formed data for all 48 genes was conducted via R. Broad Institute public 
server (Morpheus, https://software.broadinstitute.org/morpheus) was 
used to generate heat maps of mean mRNA counts of each group of genes 
in the final model, using Pearson correlation coefficient to cluster closely 
related gene expression across groups.

2.7. Flow cytometry and clustering analysis

Treg data (live (FVD-) CD3+CD4+Foxp3+) for active (AJC≥1, n =
28) and inactive (AJC = 0, n = 17) JIA PB samples were extracted from 
the 37-parameter spectral flow cytometry dataset of Attrill et al. [19], 
FLOWRepository ID FR-FCM-Z6VC. Unbiased clustering analysis via 
PhenoGraph was performed on Tregs across 20 markers (CD45RA, 
HLA-DR, CD161, GARP, CD69, LAP, Ki67, CD71, CTLA4, PD-1, CD226, 
TIGIT, CD39, TNFR2, Helios, GITR, 4-1BB, CD25, CD96, ID2) using the R 
package Spectre [40], allowing additional data integration, dimen
sionality reduction and visualisation. Gating was performed on exported 
FCS files on FlowJo v10 (BD Biosciences) post-clustering to identify Treg 
populations and marker expression.

2.8. Statistical analysis

Statistical analysis and data presentation was performed on Graph
pad Prism v10.0.3 and R. Mann-Whitney test was performed when 
comparing two groups, and one-way ANOVA with Kruskal-Wallis mul
tiple comparisons post-hoc test conducted for three or more group 
comparisons. Adjusted p-values for multiple comparisons were deter
mined using false discovery rate (FDR). P values < 0.05 were considered 
significant. Error bars represent standard error of the mean (SEM).

2.9. Study approval

This research was conducted under the informed consent of parents/ 
carers with age-appropriate assent for those under 16 years old, and 
informed consent for those participants over 16 years according to the 
Declaration of Helsinki in accordance with the approval of following 
research ethics committees: NHS London – Bloomsbury/Harrow 
Research Ethics Committee REC references JIAP-95RU04, CHARMS-05/ 
Q0508/95 studies (Wedderburn) and REC11/LO/0330 (Ciurtin), UCL 
research Ethics 14017/001 and 14017/002 (Pesenacker).

3. Results

Here we focus on the most common subtypes of JIA: oligoarticular 
(persistent and extended) and RF negative polyarticular JIA, as they are 
largely similar in genetic and immune profile [41,42], and utilise active 

joints as a main classifying criterion of disease activity. To assess 
biomarker potential of Treg fitness signatures in JIA, mononuclear cells 
(MCs) and Tregs (purity sorted CD4+CD25highCD127low) were isolated 
from peripheral blood (PBMC n = 59, Treg n = 54 post data QC) and 
unmatched synovial fluid (SFMC n = 28, SF Treg n = 26 post data QC) of 
active joints from individuals with JIA. PBMCs and Tregs from adult 
healthy controls (aHC, PBMC n = 20, Treg n = 24 post data QC) and 
paediatric healthy controls (pHC, PBMC n = 5, Treg n = 3 post data QC) 
were additionally included as separate groups.

3.1. 48 gene Treg signature can discriminate PB Tregs from 
unfractionated cells and SF Tregs

Multivariate principal component analysis (PCA) was performed on 
normalised, log2-transformed Treg signature Plus (Supplementary 
Table S1) nCounter data from Tregs and unfractionated cells of all 
groups (Fig. 1). The first two principal components (PC) represented 
62.4 % of the total variance of the eight sample groups. As expected, 
PC1, explaining 47.6 % of the variance, categorically separated Tregs 
from unfractionated cells from the same sample group (Fig. 1), 
demonstrating the Treg-specific combination of genes in the signature. 
Tregs and MCs from SF additionally clustered discretely from those from 
PB, represented by PC2, explaining 14.8 % of the variance (Fig. 1). 
Whilst PBMCs from aHC, pHC, and individuals with JIA had overlapping 

Fig. 1. Principal component analysis (PCA) of Tregs and unfractionated 
cells in HC and JIA using 48 gene Treg signature. PCA performed on nor
malised log2-transformed nanoString data (mRNA count) for 48 Treg signature 
Plus genes. First two principal components, explaining 62.4 % of total variance 
displayed with corresponding percentage. Circles represent normalised data 
points with ellipse at 0.8 confidence interval. Tregs (sorted CD4+CD25highC
D127low) and unfractionated cells were paired where available. aHC = adult 
healthy control; pHC = paediatric healthy control; JIA = Juvenile Idiopathic 
Arthritis; PB = peripheral blood; SF = synovial fluid; MC = mononuclear cell.
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clusters in PC2, PB Tregs showed greater divergence between these 
groups (Fig. 1). Interestingly, JIA PB Tregs, taken together from clini
cally active and inactive JIA patients, defined by active joint count 
(AJC≥1 and AJC = 0 respectively at time of sample), spanned the largest 
range in PC2 of all groups (Fig. 1).

PB Tregs could therefore be effectively discriminated from unfrac
tionated cells and Tregs from the inflamed joint using our 48 Treg 
signature Plus gene set. This further emphasises possible altered func
tional properties of synovial Tregs at the site of inflammation in JIA 
[18–20], and large variability in PC2 of JIA PB Tregs suggests possible 
heterogeneity in the blood.

To further investigate the variance found in PC2, and whether 
changes in Treg fitness at the site of active inflammation in JIA are re
flected by altered Treg signature in PB, we utilised machine learning to 
develop models to predict active disease from sorted Treg gene signa
tures. Genes which had no detected counts for more than 70 % of all 
samples across all groups were removed from further analysis and 
samples were split randomly into similarly sized train and test sets. As 
pHC PB samples were limited, aHC PB Tregs were used in training sets 
for healthy controls, with pHC PB Tregs ran in separate test sets for age- 
matched validation.

3.2. Synovial Tregs have an altered RNA signature which is not reflected 
in the periphery of active disease

Firstly, an elastic net regression on training sets generated a model 
from 42 normalised, scaled mRNA counts from the Treg signature 
(Fig. 2) producing SF Treg signature scores for separate test data sets 
which perfectly distinguished aHC PB Tregs from JIA SF Tregs (AUC =
1.000, Sens = 1.000, Spec = 1.00, p < 0.0001, Fig. 2B), aligning with 
previous findings of functionally distinct Tregs in the inflamed envi
ronment [18–20]. Genes with the greatest coefficient weighting in the 
model (Fig. 2A–Supplementary Table S2, ± indicating coefficient posi
tively or negatively influencing signature score model) included in
flammatory cytokine receptor IL1R1, genes important for translational 
processes (EIF3S6, involved in translation initiation; HNRPA1 in 
pre-mRNA processing and transport, and RPL23A, a ribosomal protein), 
and key Treg-associated genes CTLA4 (CD152), FOXP3, TIGIT, and 
TNFRSF1B (TNFR2/CD120b) (Fig. 2A). This suggests a translational 
reprogramming of synovial Tregs in the inflamed environment and 
altered expression of key markers involved in Treg fitness.

To determine whether this specific SF Treg signature could be re
flected in the periphery of active JIA, we ran the same model on a test set 
of JIA PB Tregs from individuals with one or more actively inflamed 
joints (AJC≥1, n = 28) at the time of sample, and from clinically inactive 
(no active joints, AJC = 0, n = 16). Generated SF Treg signature scores 

Fig. 2. SF Treg signature scores can distinguish blood from synovial Tregs but does not relate to disease activity in peripheral blood of JIA. Treg signature 
Plus mRNA counts by nanoString were normalised, log2-transformed, and split into 50/50 train and test sets before scaling. Utilising our biomarker discovery 
pipeline, optimum parameters were chosen by elastic net regression on 42 Treg signature genes with leave one out cross validation (LOOCV) for best accuracy in 
classifying Tregs (sorted CD4+CD25highCD127low) from adult healthy control PB (aHC, signature score assigned towards 0) and JIA SF (signature score assigned 
towards 1). A) Importance of the 42 genes in model selection in the training set, ranked by frequency of each gene used to differentiate groups in each iteration 
(importance as %). ± represents the positive or negative coefficient of the indicated gene in the final model. B) SF Treg signature score of test set, with 0 being most 
like aHC PB and 1 being most like JIA SF from the model derived through biomarker discovery pipeline. AUC, sensitivity, and specificity shown at cut off 0.4290. C) 
Inactive JIA (AJC = 0) PB Tregs and active (AJC≥1) JIA PB Tregs ran as additional test dataset on this model, with test SF and aHC SF Treg signature scores 
displayed. For B-C, Mean ± SEM displayed, with individual points; cut offs for Sens/Spec calculation displayed by dotted line; Significance determined by Mann- 
Whitney test (B), and one-way ANOVA with Kruskal-Wallis multiple comparisons post-hoc test (C) with **p < 0.01, ****p < 0.0001, ns = not significant. PB =
peripheral blood; SF = synovial fluid; JIA = Juvenile Idiopathic Arthritis; AJC = active joint count; AUC = area under curve; Sens = sensitivity; Spec = specificity.
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therefore reflected the probability of a sample being classified as most 
similar to SF Tregs (SF Treg signature score = 1) or PB Tregs from aHC 
(Treg SF signature score = 0). In accordance with the PCA analysis 
(Fig. 1), both inactive and active JIA PB SF Treg signature scores were 
significantly different from JIA SF Tregs (p = 0.0077 and p < 0.0001 
respectively) and aHC Tregs (p = 0.0016 and p = 0.0096 respectively) 
(Fig. 2C). However, no difference was found in SF Treg signature scores 
between inactive and active JIA PB Tregs (p > 0.9999, Fig. 2C).

We therefore conclude that SF-derived Treg signatures are not viable 
biomarkers in distinguishing active from inactive JIA in blood due to 
significant adaptions SF Tregs undergo within the inflamed joint.

3.3. Blood Treg-derived signature scores can distinguish active from 
inactive JIA and identify subclinical disease activity

Next, we focused on blood-derived models to differentiate disease 
activity in JIA. As the number of inactive JIA PB samples acquired were 
too limited to allow for train and test set splits, we trained a model to 
distinguish aHC PB Tregs from active (AJC≥1) JIA PB Tregs (Fig. 3). 
Optimal elastic net regularisation parameters were chosen by leave one 
out cross-validation in the training set, leading to a final model incor
porating 23 out of 37 genes (Fig. 3A–Supplementary Table S2) which 
successfully differentiated the separate test set aHC PB Tregs from active 
JIA PB Tregs (AUC = 0.9875, p < 0.0001) with perfect specificity 
(1.000) and high sensitivity (0.9375), at a Treg signature score cut off of 
0.5 (Fig. 3B). The top genes of most importance in biomarker discovery 
pipeline, such as ZNF532, TNFRSF9 (CD137/4-1BB), and IL7R (CD127), 
are likely to be age-related, as demonstrated in the mean expression 
between groups (Fig. 3D, Supplementary Fig. S1). Nonetheless, Tregs 
from paediatric HC (pHC) PB input as a separate test set were still 
significantly different in signature scores to test set active JIA PB (p =
0.0144, AUC = 0.9375, sens = 0.9375, spec = 0.6667 at cut off 0.5, 
Fig. 3C), suggesting that although age may be a factor, most genes 
governing this model are disease-dependent. Key genes in the model 
which distinguished Tregs of individuals with active JIA from healthy 
controls included: ZC2HC1A (C8ORF70), CSF2RB, UFC1, CD96v2, 
TNFRSF1B (CD120b/TNFR2), STAM, HNRPA1, TRIB1, CTLA4 (CD152), 
HPGD, and TNFAIP3 (A20) (Fig. 3A–D, ± indicating coefficient posi
tively or negatively influencing signature score model, see Supplemen
tary Fig. S1/S2 for expression levels).

The co-receptor isoform CD96 variant 2 (CD96v2) mRNA had the 
greatest trend on mRNA count alone, decreasing in PB Tregs from pa
tients with active joint inflammation (inactive 4.243 ± 0.32 vs active 
3.278 ± 0.30, FDR adjusted p = 0.092, Supplementary Fig. S2). CD96 
competes with TIGIT and CD226 for ligand CD155, with CD96v2 
showing higher binding capacity compared to variant 1 isoform [43]. 
However, the role of CD96 in Treg fitness remains unclear. No gene 
showed a statistical significant difference in singular expression between 
active and inactive PB Tregs after false discovery rate (FDR) adjustment 
of p values (Supplementary Fig. S2). We therefore investigated the use of 
Treg signature scores, which encompasses multiple possible gene 
expression changes, to distinguish between active and inactive disease. 
Using our PB Treg model, with a Treg signature score (0–1) representing 
the probability of a sample being from an individual with active JIA 
(AJC≥1, with 1 representing most like active JIA, 0 like aHC Tregs), 
additional test data from inactive (AJC = 0) JIA PB Tregs generated 
scores in a range between aHC PB Tregs and active JIA PB Tregs 
(Fig. 3E). Inactive JIA PB Tregs differentiated significantly from active 
JIA (mean ± SEM inactive 0.4623 ± 0.063 vs active 0.7919 ± 0.043, p 
= 0.0029, Fig. 3E), with no overall significant difference from aHC PB 
Tregs (0.2101 ± 0.027, p = 0.2330, Fig. 3E). Treg-derived biomarker 
scores were therefore successful in identifying active disease in the 
blood of JIA individuals.

To examine the large range of scores from inactive JIA PB Treg 
samples, we explored additional measures of disease activity. cJADAS 
incorporates AJC with clinician and patient/parent global assessments 

of disease activity [38]. A clinically useful biomarker would need to 
reflect the level of disease activity beyond active joint count, and current 
biomarkers such as S100 proteins do not correlate with cJADAS 
(Supplementary Fig. S3). Stratifying Treg signature scores of all JIA PB 
test samples by cJADAS displayed a positive correlation below a cJADAS 
of 10 (p < 0.0001, r2 = 0.5071, Fig. 3F, Supplementary Fig. S4A), 
suggesting increased disease activity from low to moderate relates to 
changes in overall Treg fitness signatures in the blood. Conversely, high 
disease activity (cJADAS≥10) is likely driven by more than changes in 
Treg fitness, such as overt inflammation.

Subclinical disease activity, involving symptoms other than inflamed 
joints such as pain and fatigue, are often noted by patient/parent visual 
assessment, and difficult to assess objectively in clinic [44]. Thus, we 
further subcategorised the inactive (AJC = 0) cohort into remission 
(cJADAS<0.5) and potential subclinical disease through other recog
nised symptoms (cJADAS≥0.5), which were significantly different in 
Treg signature scores (mean ± SEM for inactive cJADAS<0.5 0.2848 ±
0.075 vs inactive cJADAS≥0.5 0.6389 ± 0.051, p = 0.0111, Fig. 3G). 
Samples without active joint inflammation but with subclinical disease 
activity were therefore closer to those with active joint flares by Treg 
signature scores.

With the same cut off of 0.5, defined by aHC vs active JIA PB test set, 
the Treg signature scores generated from this blood Treg-derived model 
objectively distinguished remission from subclinical disease activity 
without active joint inflammation in JIA (AUC = 0.8980) with high 
sensitivity (0.8571) and specificity (0.8571, Fig. 3G). Therefore, the 
Treg signature score may provide an objective biomarker measure to 
support disease management by indicating subclinical disease activity.

We previously found that in T1D, a PBMC-derived Treg signature 
could differentiate between T1D and healthy controls [31,32]. While 
elastic net regression analysis of 45 genes on unfractionated PBMCs 
generated a model (Supplementary Table S2) to differentiate aHC 
PBMCs from active JIA PBMCs (AUC = 1.000 in test sets, Supplementary 
Figs. S5A–C), a test set of inactive JIA PBMCs (AJC = 0), had no 
distinction from active JIA (AJC≥1), nor subclinical disease activity 
(AJC = 0, cJADAS≥0.5) from remission (Supplementary Fig. S5D). This 
therefore suggests that there is more of an intrinsic change in Treg 
fitness signature in active and subclinical disease rather than an overall 
immunoregulatory imbalance.

We therefore propose a blood Treg-derived model capable of suc
cessfully and objectively identifying active and subclinical disease in 
JIA, recognising Treg fitness signatures as an important biomarker and 
factor in disease progression and sustained remission.

3.4. Blood Treg subsets are altered between inactive and active JIA

To investigate whether altered Treg fitness signatures in blood of 
active JIA could also be assessed by protein expression, we utilised 
spectral flow cytometry data [19] and initial unbiased analysis. Many of 
the genes in the Treg signature could not be assessed for transcribed 
protein expression by flow cytometry due to inaccessibility or lack of 
commercial antibody available. However, we have previously devel
oped a 37-parameter spectral panel for comprehensive assessment of 
cellular composition and phenotype of mononuclear cells, including 14 
markers from our Treg signature Plus, which we analysed on PBMCs 
from individuals with JIA [19]. Taking this data for 20 markers asso
ciated with Treg function and activation, we performed PhenoGraph 
cluster analysis [40] on gated live CD3+CD4+Foxp3+ JIA PB Tregs, 
which identified 14 different Treg clusters. When separating data from 
individuals with clinically active JIA (AJC≥1, n = 28) and inactive JIA 
(AJC = 0, n = 17 Fig. 4A and B) the majority of clusters were present at 
similar frequency in both disease activity groups (Supplementary 
Fig. S6). To ascertain biological relevance and feasibility of converting 
cluster frequencies into clinically-applicable flow cytometry, limited in 
parameters and gating approaches, we explored the phenotype and 
potential manual gating strategies of 6 clusters showing trends in 
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Fig. 3. PB-derived Treg signature successfully differentiates active from inactive JIA, correlates to disease activity and identifies subclinical disease. Treg 
signature Plus mRNA counts by nanoString were normalised, log2-transformed, and split into 50/50 train and test sets before scaling. Utilising our biomarker 
discovery pipeline, optimum parameters were chosen by elastic net regression on 37 Treg signature Plus genes with leave one out cross validation (LOOCV) for best 
accuracy in classifying Tregs (sorted CD4+CD25highCD127low) from adult healthy control PB (aHC, signature score assigned towards 0) and active (AJC≥1) JIA PB 
(signature score assigned towards 1). A) Importance of the 23 genes selected in model selection in the training set, ranked by frequency of each gene used to 
differentiate groups in each iteration (importance as %). Genes with 0 % importance and not selected for use in final model are not displayed. ± represents the 
positive or negative coefficient of the indicated gene in the final model. B) Treg signature score of test set, with 0 being most like aHC PB and 1 being most like active 
JIA PB from model derived through biomarker discovery pipeline. AUC, sensitivity, and specificity shown at cut off 0.5. C) Validation of this Treg signature model 
differentiating paediatric healthy control blood (pHC PB) Tregs from active JIA PB Tregs test sets, with AUC, sensitivity and specificity at cut off 0.5. D) Repre
sentative heatmap of the mean mRNA counts of 23 genes used in model across aHC, pHC, active JIA and inactive (AJC = 0) JIA PB Tregs, clustered by Pearson 
correlation coefficient with Z-score of expression levels across rows. E) Inactive JIA PB Tregs ran as test dataset on this model, with test aHC and active JIA PB Treg 
signature scores displayed. Clinical Juvenile Arthritis Disease Activity Score (cJADAS) indicated for inactive JIA. Cut-off of 0.5 displayed. F) Linear correlation (±95 
% confidence interval) between disease activity (via cJADAS, severe disease >10 removed) and Treg signature score of JIA PB Tregs. G) Differentiation between 
inactive JIA patients with subclinical disease activity (AJC = 0, cJADAS≥0.5) and those without (AJC = 0, cJADAS<0.5) by Treg signature score with cut-off at 0.5 
displayed. For B,C,E,G, Mean ± SEM displayed. Significance determined by Mann-Whitney test (B,C,G), and one-way ANOVA with Kruskal-Wallis multiple com
parisons post-hoc test (E) with *p < 0.05, **p < 0.01,****p < 0.0001, ns = not significant. PB = peripheral blood; JIA = Juvenile Idiopathic Arthritis; AJC = active 
joint count; AUC = area under curve; Sens = sensitivity; Spec = specificity.
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Fig. 4. Treg subsets are altered between active and inactive JIA PB. Spectral flow cytometry data analysed from Attrill et al. dataset(19). A) UMAP of 14 Treg 
clusters determined by unbiased PhenoGraph clustering of active (AJC≥1, n = 28) and inactive (AJC = 0, n = 17) PB Tregs, gated on live CD3+CD4+Foxp3+. 
Clusters which are different in frequency between active and inactive JIA PB Tregs are circled (clusters 2,5,9,12). B) Heatmap of 20 markers used for Treg clustering 
with Z-score for expression levels across columns. C-F) Representative flow plots displaying phenotypic identities of cluster 2 (C, ID2lowCD45RA+), cluster 5 (D, 
TNFR2-CD39-HelioshighCD45RAlowCD25high), cluster 9 (E, TIGIT+CD226+CD25low) and cluster 12 (F, ID2intermediate4-1BB-TIGITlow) as coloured overlays to all other 
JIA PB Treg clusters (grey). Histograms normalised to mode, and flow dot/contour plots display normalised to 100,000 events. PB = peripheral blood; JIA = Juvenile 
Idiopathic Arthritis; AJC = active joint count.
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differences between active and inactive JIA (Supplementary Fig. S6).
Cluster 4, enriched more in active JIA PB (FDR adjusted p = 0.1454), 

comprised a classic memory Treg subset, being TIGIT+CD45RA- but 
varied expression of CD25, CD39, CD226 and TNFR2 (Supplementary 
Fig. S7A). No clear manual gating strategy could be found that did not 
also include other Treg clusters, thus cluster 4 was disregarded from the 
subsequent analysis. Upon closer investigation, it was also noted that 
cluster 11, more enriched in inactive JIA PB (FDR adjusted p = 0.1454), 
was driven mainly by just four samples and the expression profile 
highlighted the limited events in cluster 11 likely included auto
fluorescence (Supplementary Fig. S7B) and hence also disregarded.

Of interest, cluster 2 was significantly enriched in active JIA PB Tregs 
(mean ± SEM of CD4+Foxp3+ Tregs, inactive 5.59 ± 1.9 % vs active 
10.71 ± 1.4 %, FDR adjusted p = 0.0357, Supplementary Fig. S6), 
defined by ID2lowCD45RA+ naïve Tregs (Fig. 4C). Cluster 5 (inactive 
9.99 ± 2.1 % vs active 15.24 ± 1.65 %, FDR adjusted p = 0.1454, 
Supplementary Fig. S6) with gated TNFR2-CD39-Helio
shighCD45RAlowCD25high expression (cluster 5, Fig. 4D), likely repre
sents a resting or possibly latent Treg population, with TNFR2 and CD39 
implicated in good regulatory function [45–47]. The Teff-like Treg 
cluster 9 was of particular interest, defined as TIGIT+CD226+CD25low 
(cluster 9, inactive 1.19 ± 0.18 % vs active 2.10 ± 0.27 %, FDR adjusted 
p = 0.1454,Supplementary Figure S6, Fig. 4E), since the co-expression of 
TIGIT and CD226 has been identified as a Treg characteristic in the 
inflamed JIA joint [19]. Moreover, whilst TIGIT has been associated 
with improved inhibitory mechanisms by Tregs [48], there has been 
more conflicting evidence on the role of CD226 expression on Tregs 
[49–51]. Additionally, with CD25 an integral marker for Treg function, 
lower expression on this cluster may result in altered Treg fitness [52].

Treg cluster 12 was statistically significantly predominant in the 
blood of clinically inactive individuals (12.49 ± 3.7 % vs active 3.48 ±
1.4 %, FDR adjusted p = 0.0098, Supplementary Fig. S6). This Treg 
cluster was identified to be ID2intermediate4-1BB-TIGITlow (cluster 12, 
Fig. 4F), suggesting a potentially resting Treg subset that lacked 
expression of proliferation marker Ki67 and other key Treg activation 
markers (Supplementary Fig. S8). The role of intermediate levels of ID2 
in cluster 12 in Treg maintenance and plasticity is not clear [53,54].

3.5. Treg cluster ratios correlate with disease activity in JIA and can 
possibly predict flares

To investigate the possibility of a potential flow cytometry-based 
clinically applicable biomarker across populations, we investigated a 

ratio of frequencies of the clusters identified. Overall, inactive disease, 
defined by no active joints, could be distinguished from active disease 
(AJC≥1) by the ratio of identified ‘active’ Treg clusters to that of the 
Treg cluster associated with inactive disease (frequency of clusters (2 +
5+9):12, Fig. 5A). It is important to note statistical testing on the Treg 
cluster ratio was not performed as previous statistical tests of separate 
individual clusters had been taken into account when choosing cluster 
ratio parameters. Interestingly, this Treg cluster ratio correlated with 
disease activity (r2 = 0.4123, p = 0.0002, Fig. 5B), and is capable of 
classifying inactive disease (AJC = 0, mean ± SEM 6.30 ± 2.4) from low 
disease activity (AJC≥1, 1≤cJADAS<5, 34.9 ± 9.9, p = 0.0142) and 
moderate disease activity (AJC≥1, 5≤cJADAS<10, 66.93 ± 9.7, p <
0.0001), as well as low disease activity from moderate (p = 0.0164, 
Supplementary Fig. S4B). High disease activity (AJC≥1, cJADAS≥10, 
62.26 ± 25.5), however, did not correlate with Treg cluster ratios, 
instead appearing to split into two populations (Supplementary Fig. S4B, 
right axis), similar to that seen in Treg gene signature scores 
(Supplementary Fig. S4A). This suggests Treg phenotype changes are 
particularly important in low-moderate disease activity range and may 
be critical for maintaining inactive disease and achieving full remission 
in JIA. By assessing multiple clusters using clinically applicable 12- 
parameter flow cytometry we will likely generate a more robust 
biomarker. While cluster frequency ratio using traditional, clinically- 
applicable flow cytometry and gating as a biomarker will require vali
dation in a separate patient cohort, analysis of the Treg cluster ratio and 
its correlation in this cohort by cJADAS was encouraging.

Moreover, analysis of measured disease activity at clinical follow up 
(active/limited joint count 3–9 months after sample was taken) indicates 
potential predictive power of Treg cluster ratio, with samples with low 
Treg clusters ratios maintaining remission, distinguished from in
dividuals with higher ratios which went on to flare or with altered ac
tivity through limited joints (p = 0.0056, Fig. 5C). Although only a small 
number of samples had sufficient follow-up data in this cross-sectional 
study, the ratio of Treg cluster frequency could possibly represent a 
useful biomarker for disease activity to predict flares or indicate full 
remission, and thus ultimately guide treatment decisions.

3.6. Methotrexate does not affect JIA biomarker potential of Treg fitness 
measures but alters Treg subsets in blood

We next investigated how medication may affect JIA Treg fitness 
derived biomarkers using Treg signature scores by mRNA levels and 
Treg subsets (Treg cluster ratios). Methotrexate (MTX) is widely 

Fig. 5. PB Treg cell ratios reflect disease activity and can possibly predict flares in JIA. Ratio of Treg subsets identified by spectral flow cytometry unbiased 
clustering and classical gating strategies in Fig. 4. A) Treg cluster ratio of combined Treg clusters [(clusters 2+5+9)/cluster 12] between active (AJC≥1) and inactive 
JIA (AJC = 0) PB Tregs. B) Linear regression with 95 % confidence interval of Treg cluster ratio across clinical Juvenile Arthritis Disease Activity Score (cJADAS). 
Samples from active JIA with ≥10 cJADAS not displayed. C) Treg cluster ratio of inactive samples (AJC = 0) at time of sample, classified by disease activity 3–9 
months after original sample, where clinical follow-up data was available. Remission without active or limited joints vs presence of active/limited joints recorded at 
next clinical assessment. Significance determined by Mann-Whitney test (C). **p < 0.01, PB = peripheral blood; JIA = Juvenile Idiopathic Arthritis; AJC = active 
joint count.
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regarded as a first-choice therapeutic for oligo and RF- polyarticular JIA 
when non-steroidal anti-inflammatory drugs (NSAIDs) are insufficient 
[55]. To measure the impact MTX has on PB Treg signature scores, and 
to confirm the difference found between disease activity groups was not 
due to medication, we divided active and inactive cohorts further into 
those on MTX at time of sample (MTX) and those not (no MTX, a mix of 
treatment naïve and those on additional medication). MTX did not 
significantly alter Treg signature scores within either inactive (AJC = 0) 
or active (AJC≥1) cohorts (Fig. 6A, Supplementary Figs. S9A–B), and 
the distinction between inactive and active patients was still prominent 
regardless of MTX status (all p < 0.05, Fig. 6A, Supplementary 
Figs. S9A–B). While limited sample numbers from individuals on MTX 
passed QC for Treg gene signature, these data may suggest that the Treg 
gene signature is less impacted by this therapy and more of an indication 
of the overall Treg fitness state and subclinical disease activity at a 
certain timepoint. For Treg subsets defined by protein expression, the 
Treg cluster ratio (frequency of clusters (2+5+9):12, Figs. 4 and 5) was 
also still capable of differentiating inactive from active JIA PB on or off 
MTX through direct independent comparison (no MTX p = 0.0016, MTX 
p = 0.0184, Supplementary Figure S9C, Fig. 6B). However, a statistically 
significant reduction in Treg cluster ratio was found in patients on MTX 
within both inactive and active groups (inactive no MTX mean ± SEM 
14.7 ± 6.4 vs inactive MTX 3.4 ± 1.5, p = 0.0380; active no MTX 79.03 
± 13.1 vs active MTX 34.84 ± 12.37, p = 0.0102 pairwise comparison in 
Supplementary Figure S9D, Fig. 6B). Corticosteroid treatment appeared 
to decrease cluster ratio even further compared with MTX alone (data 
not shown), however, this cohort did not include enough patients on 
corticosteroid monotherapy to draw any conclusions on corticosteroid 
effect on Treg subpopulations.

Therefore, unlike previous studies in JIA which suggested MTX does 
not alter Treg phenotype and function by individual marker expression 
[56], we propose that MTX may alter specific Treg cluster frequencies 
towards those reflected in remission, and thus its therapeutic benefit 
may partially be through changes to Treg fitness. Importantly, the 
biomarker potential of Treg cluster ratio and Treg signature scores was 
maintained regardless of MTX status, and thus presents a feasible pos
sibility for clinical translation to guide disease management and treat
ment decisions.

4. Discussion

The importance of Tregs in maintaining tolerance has been well 
recognised, with various therapeutic approaches now targeting Tregs in 
an attempt to restore immune homeostasis in autoimmunity [15]. In the 
childhood-onset autoimmune condition JIA, Treg dysfunction has been 
suggested as a key element of disease pathogenesis, and progression, 
which is largely unpredictable [1,16,17]. Here, we investigated the role 
of Treg fitness signatures in governing disease activity of JIA and its 
biomarker potential, through the expression of Treg signature genes and 
proteins that likely correspond to overall functionality.

We implicate Treg fitness signatures to be integrally linked to 
maintaining JIA remission, utilising mRNA levels of our Treg signature 
and protein expression with altered Treg subsets. The PB Treg-derived 
model using our nanoString Treg signature Plus, generated to differen
tiate healthy controls (HC) from individuals with active JIA, successfully 
discriminated inactive disease from active, with Treg signature scores of 
individuals with inactive JIA aligning closer to healthy controls. 
Importantly, we divided data into training sets to generate models and 
assessed performance using test data sets which had no influence on 
training of the model. Further interrogation of the expression of 23 
genes governing this model suggests a possible shift towards a more 
effector-like signature in JIA Tregs, with expression of genes usually 
upregulated in Tregs compared to effector T cells, such as TRIB1, 
CSF2RB, ZC2HC1A, HPGD and STAM [31,57], represented more in a HC 
Treg signature than JIA PB Tregs. The lower expression of these genes in 
Tregs from across the JIA cohort compared to HC could therefore 
possibly correspond to diminished regulatory function, with hydrox
yprostaglandin dehydrogenase (HPGD) identified as an important 
tissue-dependent suppressive mechanism of Tregs [58], and CSF2RB 
(CD131) associated with higher FOXP3 expression [59]. However, the 
access to healthy age-matched controls in this study was limited and 
additional assessments are required to reveal possible functional out
comes of these Treg signature changes in JIA. Although it was the cu
mulative differential expression of slight alterations in genes which 
successfully distinguished active from inactive disease (defined by AJC), 
CD96 variant 2 (CD96v2) showed the greatest trend in absolute mRNA 
count alone, decreasing in active JIA PB Tregs. Interestingly, CD96high 

Fig. 6. Biomarker potential of Treg fitness measures of disease activity in JIA are unaffected by methotrexate but PB Treg cluster ratio is reduced. Treg 
fitness measures derived from mRNA nanoString analysis biomarker discovery pipeline (A) or cluster ratios identified via spectral flow cytometry (B). A) Treg 
signature scores of JIA PB Treg test sets on (MTX) or off (no MTX) methotrexate at time of sample, determined from 23 gene Treg signature model with 0 being most 
similar to HC PB Treg and 1 being most similar to active (AJC≥1) JIA PB Treg; Inactive JIA classified as AJC = 0. B) Treg cluster ratios [(clusters 2+5+9)/cluster 12] 
for active (AJC≥1) and inactive (AJC = 0) JIA PB samples grouped by methotrexate status (off (no MTX) and on methotrexate (MTX). Throughout, individual data 
points with mean ± SEM displayed. Significance determined by one-way ANOVA with Tukey’s multiple comparison post-hoc test with *p < 0.05, **p < 0.01, ****p 
< 0.0001, statistical comparisons classed as not significant not displayed. PB = peripheral blood; JIA = Juvenile Idiopathic Arthritis; AJC = active joint count; MTX 
= methotrexate.
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T cell clusters have also been shown to decrease in the blood of in
dividuals with lupus compared to healthy controls [60]. Sharing the 
ligand CD155 with the co-stimulatory CD226 and co-inhibitory TIGIT, 
there has been conflicting evidence on the role of CD96 [61,62]. How
ever, CD96v2 has a higher binding capacity for CD155 than CD96v1 
[43], and thus might be more potent functionally. The possible prefer
ential expression of CD96v2 on inactive JIA Tregs, with CD96v1 
expression unchanged between inactive and active, could therefore alter 
functional outcomes of this important co-receptor axis in Tregs.

Interestingly, TIGIT and CD226 protein expression defined an 
effector-like Treg subset predominant more in active JIA PB (cluster 9, 
TIGIT+CD226+CD25low), similar to that seen in the inflamed joint [19]. 
TIGIT is an important co-inhibitory receptor on Tregs, yet the effect of 
CD226, a co-stimulatory marker, on Treg function has been questioned 
[49,50]. Additionally, CD25 is crucial for Treg function and lower 
expression on this cluster may result in reduced proliferation and sup
pressive capabilities [52]. CD25lowFoxp3+ Tregs have also been pro
posed as a marker for terminal differentiation into unresponsive Tregs in 
autoimmunity, failing to regulate overt effector T cell responses [63]. 
Further investigation of this TIGIT+CD226+CD25low cluster seen in 
active JIA, and the impact of the co-receptor balance in orchestrating 
Treg fitness, is therefore needed.

From the other three Treg clusters that were identified to potentially 
differ between inactive and active JIA blood, ID2 was an important 
distinguishing marker. ID2lowCD45RA+ was identified as an ‘active’ 
Treg cluster, whereas the subsets that was most significantly associated 
with inactive JIA was ID2intermediate4-1BB-TIGITlow. ID2 is a DNA- 
binding inhibitor important in T cell maturity and differentiation. In 
mice, ID2 has been implicated in promoting Treg plasticity into Th17- 
like effector phenotypes [53], whilst ID2 depletion has also shown in
flammatory disease development through lack of Treg maintenance 
[54]. While exact functions of ID2 in Tregs are still unclear, intermediate 
expression levels of ID2, as found in Treg cluster 12 associated with 
inactive JIA, could be key in maintaining remission. We therefore pro
pose a possible change to overall Treg fitness in the blood of active JIA, 
reflected in our Treg gene signature and altered protein expression. 
Whether these measurements reflect early Treg response to joint 
inflammation in the periphery or a driver of active disease remains to be 
clarified. Further investigation into how the identified genes and pro
teins influence remission or active disease could present novel thera
peutic targets in JIA to sustain remission.

cJADAS is a compound measure of JIA disease activity by including 
visual global assessment of physicians and patients/parents [38]. Both 
RNA Treg signature scores and Treg cluster ratios (Treg subsets) posi
tively correlated to cJADAS. We therefore offer a quantifiable and 
objective measure of JIA disease activity that may aid disease manage
ment and which may discriminate low or subclinical levels of disease, 
for which there is currently no clinically available biomarker. Notably, 
high disease activity (cJADAS>10) no longer associated with either Treg 
signature score or Treg cluster ratio, suggesting that severe disease is 
governed by more than changes in Treg fitness, with overt inflammation 
likely playing an overriding role at high disease activity. Thus, a possible 
treatment strategy of first dampening overt inflammation before 
enhancing Treg fitness could improve outcomes and achieve remission 
in more children and young people with JIA. One in four patients also 
receive high patient/parent global visual analogue scale (VAS) scores, 
despite no active joints and low physician VAS, resulting in higher 
cJADAS in otherwise clinically inactive individuals [44]. Patient/parent 
VAS is often driven by persistence of morning stiffness, fatigue, and pain, 
even without clinically apparent inflamed joints [1,44], likely contrib
uted to by subclinical disease activity which is difficult to measure. Here, 
we were able to quantify subclinical disease by Treg signature scores and 
distinguish subclinical disease (AJC = 0, cJADAS≥0.5) from a strict 
remission cut off (AJC = 0, cJADAS<0.5) in otherwise clinically inactive 
individuals, thus Treg signature scores could present an objective 
lab-based measurement to indicate subclinical disease activity and aid 

disease management. Clinical assessment alone can miss early signs of 
synovitis in over a third of cases presumed to be inactive [4] and 
therefore a biological measure to measure subclinical disease activity 
and/or predict flares would aid treatment decisions to sustain remission. 
Our Treg cluster ratios showed biomarker potential in predicting flar
es/limited joints by the next follow up appointment in children/young 
people that were inactive at time of sample. The predictive capability of 
Treg signature scores could not be assessed due to limited clinical follow 
up data for samples analysed by nanoString post-QC. To validate the 
predictive power of Treg fitness signature derived measures in JIA, a 
longitudinal cohort with clinical follow-up data will be needed. 
Combining gene- and protein-based Treg fitness signature measures may 
further enhance predictive/selective biomarker potential and should be 
investigated on a larger validation cohort with fully paired Treg gene 
signature and Treg cluster data.

Methotrexate (MTX) is a widely used first-line medication for oligo- 
and RF- polyarticular JIA [55] and thus, it is important that any 
biomarker to guide clinical practice can perform regardless of medica
tion status. The biomarker potential in measuring disease activity by 
Treg signature scores and Treg cluster ratios remained effective inde
pendent of MTX status. Moreover, there has been various attempts to 
measure and predict responders to MTX in JIA [8–11,64], yet the effect 
on immune responses is still not fully understood. Despite previous 
suggestion that MTX does not alter Treg phenotype and function in JIA 
[56], here, whilst MTX had no effect on Treg signature scores, in
dividuals on MTX at time of sampling showed reduced Treg cluster ra
tios. This may suggest that MTX, although possibly not altering 
expression of singular Treg markers or the core Treg gene signature 
affects specific Treg subsets found in the blood, that could only be 
discovered by high dimensional analysis of Treg phenotypes. Similar 
studies in rheumatoid arthritis have also suggested that MTX can restore 
suppressive functions of Tregs [65,66]. Therefore, functional investi
gation of the identified Treg clusters associated with active and inactive 
disease and those affected by MTX is warranted and may lead new 
insight into MTX mechanism in autoimmunity. Similarly, assessing the 
effects on Treg clusters by other therapeutics not assessed in this cohort 
may provide novel insights into treatment response mechanisms. Treg 
gene signature scores were not significantly affected by MTX, suggesting 
that the generated model is more a measure of the overall Treg fitness 
state and useful in identifying subclinical disease. Therefore, Treg 
cluster ratios may be more useful in potentially classifying response to 
treatment and could be adapted as a treatment response biomarker to 
indicate when remission has been achieved.

5. Conclusion

We therefore propose Treg fitness-based biomarkers in JIA, through 
PB Treg signature scores and Treg cluster ratios that can objectively 
measure, and potentially predict, JIA disease activity. Changes in Treg 
fitness measures in active/subclinical disease may reflect “unfit” Tregs 
or early, but detectable, changes in Tregs in response to autoimmune 
inflammation, before clinical symptoms appear. With further prospec
tive and longitudinal validation, Treg fitness-derived biomarkers could 
become objective clinical tests, showing promise to translate to a valu
able tool in clinical practice, requiring only a small blood sample. 
Monitoring Treg fitness signatures could therefore guide treatment de
cisions, prevent flares through earlier therapeutic intervention and 
identify who can safely withdraw from medication without risking an 
imminent flare. Moreover, Treg-derived biomarkers could also be useful 
across other autoimmune conditions and thus may have a wider impact 
on managing autoimmunity and more people achieving long-lasting 
remission.
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