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ARTICLE INFO ABSTRACT

Handling editor: C Selmi Juvenile Idiopathic Arthritis (JIA) is an autoimmune condition characterised by flares of joint inflammation.
However, no reliable biomarker exists to predict the erratic disease course. Normally, regulatory T cells (Tregs)

Keywords: maintain tolerance, with altered Tregs associated with autoimmunity. Treg signatures have shown promise in

R.egulatory T cells monitoring other conditions, therefore a Treg gene/protein signature could offer novel biomarker potential for

?;i?;ﬁ:eirdio thic arthritis predicting disease activity in JIA.

nanoString P Machine learning on our nanoString Treg 48-gene signature on peripheral blood (PB) Tregs generated a model

to distinguish active JIA (active joint count, AJC>1) Tregs from healthy controls (HC, AUC = 0.9875 on test
data). Biomarker scores from this model successfully differentiated inactive (AJC = 0) from active JIA PB Tregs.
Moreover, scores correlated with clinical activity scores (cJADAS), and discriminated subclinical disease (AJC =
0, cJADAS>0.5) from remission (cJADAS<O0.5).

To investigate altered protein expression as a surrogate measure for Treg fitness in JIA, we utilised spectral
flow cytometry and unbiased clustering analysis. Three Treg clusters were of interest in active JIA PB, including
TIGIThighCD2264ighCD2510y Teff-like Tregs, CD39-TNFR2-Heliospigh, and a 4-1BBiowTIGITiowID2intermediate Treg
cluster predominated in inactive JIA PB (AJC = 0). The ratio of these Treg clusters correlated to cJADAS, and
higher ratios could potentially predict inactive individuals that flared by 9-month follow-up.

Thus, we demonstrate altered Treg signatures and subsets as an important factor, and useful biomarker, for
disease progression versus remission in JIA, revealing genes and proteins contributing to Treg fitness. Ultimately,
PB Treg fitness measures could serve as routine biomarkers to guide disease and treatment management to
sustain remission in JIA.

Spectral flow cytometry

Abbreviations: aHC, Adult healthy control; AJC, Active Joint Count; ANA, Anti-nuclear antibody; AUC, Area under curve; cJADAS, clinical Juvenile Arthritis
Disease Activity Score; CTLA4, cytotoxic T lymphocyte-associated antigen 4; FDR, False discovery rate; FVD, Fixable viability dye; GARP, Glycoprotein A repetitions
predominant; GITR, Glucocorticoid-induced tumour necrosis factor receptor-related protein; HLA-DR, Human Leukocyte Antigen DR isotype; IL-2, Interleukin-2; JIA,
Juvenile Idiopathic Arthritis; LAP, latent-associated peptide; LOOCV, Leave one out cross validation; MC, Mononuclear cell; MTX, Methotrexate; NSAID, Non-ste-
roidal anti-inflammatory drug; PB, Peripheral blood; PBMC, Peripheral blood mononuclear cells; PCA, Principal component analysis; PD-1, programmed death 1;
PHC, Paediatric healthy control; QC, Quality control; RF, Rheumatoid factor; ROC, Receiver operating characteristic; Sens, Sensitivity; SF, Synovial fluid; SFMC,
Synovial fluid mononuclear Cells; Spec, Specificity; T1D, Type 1 diabetes; Tconv, Conventional T cell; Teff, Effector T cell; TIGIT, T cell immunoglobulin and ITIM
domain; TNF, Tumour necrosis factor; TNFR2, Tumour necrosis factor receptor 2; Treg, Regulatory T cell; TSDR, Treg specific demethylated region; VAS, visual
analogue scale.
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1. Introduction

Juvenile Idiopathic Arthritis (JIA) is the most common rheumatic
autoimmune condition with childhood onset. Persistent, uncontrolled
inflammatory flares of joints lead to pain, reduced quality of life, and
disability [1]. Targeted biologics, such as TNF-a blockade, and more
general immunosuppression by corticosteroids and methotrexate (MTX)
have improved disease management, yet 30-50 % of patients do not
achieve adequate responses [1,2]. Furthermore, these therapeutics can
often cause severe side effects [3] and with no clear guidelines on when
to withdraw safely, patients may remain on medication for longer than
necessary due to a high risk of flare [4]. Treatment decisions are often
based on clinician’s experience and preference, with limited objective
quantifiable markers to measure disease activity [1,4]. Predicting flares,
monitoring response to treatment, and identifying true remission from
subclinical disease therefore remain key challenges in JIA to achieve
sustained remission [1,5].

Clinically applicable biomarkers are valuable tools in governing
treatment decisions and measuring clinical outcomes. Routinely
measured biomarkers in JIA include autoantibody/rheumatoid factor
(RF), determining subtypes of polyarticular JIA, and anti-nuclear anti-
body (ANA) which associates with increased risk of developing uveitis
[5]. However, these markers are utilised for classifying disease subcat-
egory and risks of co-morbidities, rather than monitoring disease pro-
gression and predicting flares. Cellular ratios, gene expression profiling,
and proteome analysis of synovial fluid mononuclear cells (SFMCs) have
been suggested to identify JIA individuals likely to progress into a more
severe category of disease activity to extended oligoarticular JIA [6,7].
However, SFMCs are only present and accessible during an active in-
flammatory flare of the joint, and therefore are not a viable source to
measure subclinical disease. In blood, an RNA signature of 99 genes was
able to segregate JIA patients which achieved remission on metho-
trexate from non-responders, using blood samples prior to treatment
commencing [8]. However, large genetic signatures and complex tech-
niques are not suitable for a standardised, clinically-applicable
biomarker [5]. Increased serum concentrations of pro-inflammatory
calcium-binding S100 proteins, such as S100A8/A9 and S100A12,
have predicted response to methotrexate and anti-TNF therapy [9-11]
and can assist with assessing the risk of flare and guide timing of MTX
withdrawal in clinical remission [12,13]. Although now adopted in
some clinical centres as subclinical inflammatory markers to assist
therapeutic decisions in JIA, these S100 proteins have shown more ef-
ficacy in monitoring systemic disease [14], can lack biomarker speci-
ficity by misclassifying a large percentage of patients [10], and are not
yet standardised. Therefore, no reliable, validated biomarker in JIA
currently exists to predict the erratic disease course, determine which
individuals are at risk of imminent flares, or when to taper medication
off safely once sustained remission is achieved.

Regulatory T cells (Tregs) are key in the control of immune ho-
meostasis and usually prevent inappropriate inflammation through
maintaining tolerance. When Tregs fail to control effector cells, auto-
immunity, such as JIA, can arise. Tregs have therefore been investigated
for their therapeutic potential in several other autoimmune conditions
[15]. Treg dysfunction is also a hallmark of JIA [1,16,17], yet immune
regulation has yet to be targeted or monitored for therapeutic benefit in
JIA. CD4+Foxp3+ Treg changes at the site of inflammation in JIA have
been well described, with enrichment in synovial fluid (SF) and large
heterogeneity [18-20], suggesting that the presence of specific Treg
subsets, with unique co-receptor combination, likely have different
functions. Interestingly, SF Tregs retain hypomethylation of the TSDR
(Treg specific demethylated region), showing commitment to the Treg
fate [21] and increased numbers may associate with less extensive dis-
ease [22]. However, several genetic risk alleles in JIA are in loci asso-
ciated with Treg function [16], with synovial Tregs suggested to exhibit
a pro-inflammatory effector phenotype, loss of IL-2 sensitivity and
questioned in vitro suppressive capacity [17,18,21,23-27].
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Investigations into altered Treg phenotype in the blood between inactive
and active JIA are more limited in non-systemic JIA.

Treg abundance and Treg markers have been investigated as pre-
dictive biomarkers for disease manifestations, therapeutic response, and
prognosis, in cancers [28], cardiovascular disease [29,30] and autoim-
munity [17,31,32]. Although large gene signatures are impractical for
standard clinical use, nanoString technology requires comparatively few
cells from a sample (~5000 cells), with no RNA purification, no
amplification bias and high replicability [17,33,34]. A nanoString
signature as a biomarker would therefore be feasible for clinical use,
having already been approved clinical use for cancer prognosis [35].

We have previously developed a nanoString RNA Treg signature,
incorporating genes which reflect Treg function, genes consistently
expressed by healthy Tregs, with so far undefined functions, and
effector-linked genes, thus discriminating Tregs from conventional T
cells (Tconv) regardless of activation state [31]. On purified Tregs, the
Treg signature assesses intrinsic Treg changes [31,32], thus infers
functionality of Tregs. Indeed, this signature sensitively and specifically
identified children and adults with new onset type 1 diabetes (T1D) from
healthy controls, as well as predicting responders to biologic treatment
in T1D patients and disease trajectory [31,32]. With genetic similarities
to T1D, including key genes involved in Treg functions [36,37], here we
further investigate our Treg signature in oligoarticular and RF- poly-
articular JIA, incorporating 11 additional genes of pathways previously
linked to JIA and/or autoimmunity (48 gene Treg signature Plus, Sup-
plementary Table S1), and utilise high dimensional spectral flow
cytometry data to assess Treg fitness profile at protein level.

We explore the biomarker potential of Treg signatures in differenti-
ating inactive from active JIA blood, identifying subclinical disease, and
predicting disease progression. Gene/protein signatures examined here
could therefore provide a surrogate measure of Treg fitness, by moni-
toring changes in Tregs through mRNA and protein as reflective mea-
sures for in vivo Treg fitness in the periphery in JIA. It may therefore be
possible to identify disruption to the immunoregulatory balance prior to
cellular infiltration and inflammation of the joint. Therefore, thera-
peutic preventatives can be introduced earlier to sustain remission, or
medication withdrawn safely when remission is indicated.

2. Methods
2.1. Sample collection, processing and demographics

Peripheral blood (PB) was collected via venepuncture from paedi-
atric (<16 years old) healthy individuals (pHC, n = 5), adult (>18 years
old) healthy volunteers (aHC, n = 26) and a cohort of individuals with
diagnosed rheumatoid factor negative (RF-) polyarticular or oli-
goarticular Juvenile idiopathic arthritis (JIA, n = 59). Synovial fluid (SF,
n = 29) was also collected from unmatched JIA patients via joint aspi-
ration prior to therapeutic intra-articular joint injection. PB and SF was
processed as soon as possible for mononuclear cell (MC) isolation via
density gradient centrifugation and cryopreservation. Hyaluronidase (1
pL/mL) was additionally added to diluted SF samples, incubated for 30
min at 37 °C, prior to centrifugation.

For JIA patients, available data which was assessed clinically was
extracted from study databases or fully anonymised clinical records at
time of sample, including disease duration, medication, and clinical
Juvenile Arthritis Disease Activity Score (cJADAS), which encompasses
active joint count (AJC,/10), physician’s global assessment (/10) and
patient/parent global assessment (/10) [38] for PB samples. Inactive JIA
was classified as no active joints (AJC = 0) at time of sample, with in-
dividuals with active JIA classified as having one or more active joints
(AJC>1), via clinical assessment. Table 1 displays sample demographics
and clinical characteristics of this cohort.
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Table 1
Sample demographics and clinical characteristics of JIA cohort groups.
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pHC PB aHC PB JIA SF JIA PB activity JIA PB inactive JIA PB active
unknown
Number of samples:
Total individuals, n 5 26 29 12 17 30
nanoString MC, n 5 (passed QC = 20 (passed QC = 29 (passed QC = 12 (passed QC = 12) 17 (passed QC = 30 (passed QC =
5) 20) 28) 17) 30)
nanoString Treg, n (CD4'CD25hiCD127low 5 (passed QC = 26 (passed QC = 26 (passed QC = 11 (passed QC = 10) 17 (passed QC = 30 (passed QC =
sorted) 3) 24) 26) 16) 28)
spectral flow cytometry Treg, n (CD4+Foxp3+ N/A N/A N/A N/A 17 28
gated)
Demographics:
Gender, %female* 80.0 50.0* 87.0% 83.3 88.2 63.3
Age at sample in years, mean (range)* 8.8 (6-14) 29 (22-43)* 10.8 (3-16)* 8.3 (3-16) 9.6 (2-16) 5.7 (1-16)
Ethnicity, %Caucasian® unknown® 75.0° 73.7° 83.8° 82.4 63.3
JIA subtype:
%polyarticular RF- N/A N/A 27.6 0.0 64.7 20.0
%oligoarticular N/A N/A 72.4 100 35.3 80.0
Disease duration:
Months since diagnosis at time of sample, mean ~ N/A N/A 94.9% (19-158) 35.0* (16-68) 47.1* (3-125) 31.0 (2-105)
(range)A
Medication at time of sample:
Methotrexate, n” N/A N/A Yes = 4V Yes =1V Yes =11 Yes = 15
No =11V No = 6" No=6 No =15
Steroids, n¥’ N/A N/A Yes = 3V Yes =1V Yes = 10 Yes = 13
No =12V No = 6" No =7 No =17
Biologics, n¥ N/A N/A Yes =1V Yes = 0V Yes =1 Yes =3
No = 14V No =7V No =16 No = 27
Clinical assessment at time of sample:
AJC, mean (range) N/A N/A N/A unknown AllO 2 (1-5)
cJADAS, mean (range)t N/A N/A N/A unknown 1.8 (0-8.6)t 7.7 (1.6-17.3)t

PB = peripheral blood; SF = synovial fluid from the inflamed joint; n = number of samples; QC = quality control; RF- = rheumatoid factor negative; AJC=Active joint

count; cJADAS = clinical Juvenile Arthritis Activity Score; MC = mononuclear cells.

N/A = not assessed; unknown = no data recorded/available.

*Missing data for n = 10 aHC PB, n = 6 JIA SF; omissing data for n = 5 pHC PB, n = 10 aHC PB, n = 6 JIA SF, n = 6 JIA PB activity unknown; Amissing data for n = 10
JIA SF, n = 9 JIA PB activity unknown, n = 1 JIA PB inactive, Vmissing data for n = 14 JIA SF, n = 5 JIA PB activity unknown; {missing data for n = 2 JIA PB inactive, n

= 4 JIA PB active.

2.2. Treg isolation and lysate preparation

A minimum of 5 x 10* cells were kept for mononuclear cell lysis from
PBMC and SFMC samples before CD4+ T cells enrichment via magnetic
negative selection (EasySep™, StemCell Technologies). Tregs were then
sorted from CD4+ T cells on live (FVD-) CD4+CD25pg,CD127)6y. Purity
checks were performed on a subset of sorted Tregs, staining intracellu-
larly for Foxp3 (Foxp3/transcription factor staining buffer, eBio-
science™). Sorted Tregs were lysed, along with mononuclear cell
samples, using RNeasy Lysis Buffer (Buffer RLT) with 1 % 2-Mercaptoe-
thanol at 1pL/5000 cells. Lysed samples were stored at —80 °C until
nanoString assessment.

2.3. nanoString

mRNA gene expression was measured for 48 genes from Treg and MC
samples using nanoString’s nCounter XT assay, using our custom human
Treg signature Plus CodeSet (nanoString, CodeSet name Hu_TregsPlus
(Pesenacker), Supplementary Table S1). Cell lysates were hybridised
according to standard protocol, with Reporter CodeSet and Capture
ProbeSet, for 18 h at 65 °C before loading onto the Prep station with
cartridge and reagent. Loaded cartridges were then transferred to the
nCounter Pro digital analyser for mRNA count readouts. A pool of all 48
oligonucleotides at six different concentrations (0 fM-50 fM) was addi-
tionally run in triplicate for standard curve and future batch correction,
with a 50 fM standard included in each cartridge as a control reference.
nanoString data is available on Gene Expression Omnibus (GEO Acces-
sion: GSE289068 https://www.ncbi.nlm.nih.gov/geo/).

2.4. QC and normalisation

Quality control (QC) was performed on nanoString mRNA count data
using the R package NanoString quality control dashboard (NACHO)
[39], visualising QC parameters (average counts, binding density, me-
dian counts) and expression of control genes. Positive control normal-
isation and total sum normalisation was performed, to a normalisation
factor of 5000 counts, with zero counts remaining as zero even after
transformation (R scripts are available at GitHub PesenackerLab: Pes
enacker_Tregsig_nanostring normalisation.R). Samples which failed QC
metrics, positive control normalisation or total sum normalisation were
flagged and removed from further analysis. Data was then logs--
transformed for input into the biomarker pipeline (R scripts are avail-
able at GitHub PesenackerLab: Pesenacker Tregsig biomarker d
iscovery_pipeline.R).

2.5. Biomarker discovery pipeline

For biomarker discovery, genes with detectable counts (>0) in fewer
than 30 % of samples across all groups were removed from further
analysis to minimise effects driven by outliers (genes removed in each
biomarker discovery pipeline shown in Supplementary Table S2). In this
study, biomarker discovery by elastic net regression was utilised to
generate models to differentiate:

1) adult HC PB Tregs vs JIA SF Tregs (SF Treg signature model, input of
42 genes)

2) adult HC PB Tregs vs active (AJC>1) JIA PB Tregs (Treg signature
model, input of 37 genes)

3) adult HC PBMCs vs active (AJC>1) JIA PBMCs (PBMC Treg signature
model, input of 45 genes)


https://www.ncbi.nlm.nih.gov/geo/
https://github.com/PesenackerLab/Attrill-2024-Treg-JIA-biomarker-/blob/main/Pesenacker_Tregsig_nanostring_normalisation.R
https://github.com/PesenackerLab/Attrill-2024-Treg-JIA-biomarker-/blob/main/Pesenacker_Tregsig_nanostring_normalisation.R
https://github.com/PesenackerLab/Attrill-2024-Treg-JIA-biomarker-/blob/main/Pesenacker_Tregsig_biomarker_discovery_pipeline.R
https://github.com/PesenackerLab/Attrill-2024-Treg-JIA-biomarker-/blob/main/Pesenacker_Tregsig_biomarker_discovery_pipeline.R
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Data from each group were randomly split into similarly sized train
and test sets. Leave one out cross validation (LOOCV) on the train
dataset was used to determine optimal regularisation parameters of the
elastic net model (alpha and lambda values, Supplementary Table S2)
that maximize model accuracy. The importance of different genes was
determined in model selection, ranked by frequency of each gene used to
differentiate groups in each iteration (importance as %). Gene co-
efficients not equal to O in the final model were determined
(Supplementary Table S2). Biomarker scores were generated from test
datasets using fitted models, and classification performance was
assessed via the area under the receiver operating characteristic curve
(ROC AUCQ), as well as sensitivity and specificity at a cutoff score value as
specified. Separate test sets, including inactive (AJC = 0) JIA PB and
paediatric HC, were additionally used for further validation of the
biomarker scores. Details of generated models are provided in Supple-
mentary Table S2.

2.6. mRNA expression data visualisation

Principal component analysis (PCA) with normalised, logo-trans-
formed data for all 48 genes was conducted via R. Broad Institute public
server (Morpheus, https://software.broadinstitute.org/morpheus) was
used to generate heat maps of mean mRNA counts of each group of genes
in the final model, using Pearson correlation coefficient to cluster closely
related gene expression across groups.

2.7. Flow cytometry and clustering analysis

Treg data (live (FVD-) CD3+CD4+Foxp3+) for active (AJC>1, n =
28) and inactive (AJC = 0, n = 17) JIA PB samples were extracted from
the 37-parameter spectral flow cytometry dataset of Attrill et al. [19],
FLOWRepository ID FR-FCM-Z6VC. Unbiased clustering analysis via
PhenoGraph was performed on Tregs across 20 markers (CD45RA,
HLA-DR, CD161, GARP, CD69, LAP, Ki67, CD71, CTLA4, PD-1, CD226,
TIGIT, CD39, TNFR2, Helios, GITR, 4-1BB, CD25, CD96, ID2) using the R
package Spectre [40], allowing additional data integration, dimen-
sionality reduction and visualisation. Gating was performed on exported
FCS files on FlowJo v10 (BD Biosciences) post-clustering to identify Treg
populations and marker expression.

2.8. Statistical analysis

Statistical analysis and data presentation was performed on Graph-
pad Prism v10.0.3 and R. Mann-Whitney test was performed when
comparing two groups, and one-way ANOVA with Kruskal-Wallis mul-
tiple comparisons post-hoc test conducted for three or more group
comparisons. Adjusted p-values for multiple comparisons were deter-
mined using false discovery rate (FDR). P values < 0.05 were considered
significant. Error bars represent standard error of the mean (SEM).

2.9. Study approval

This research was conducted under the informed consent of parents/
carers with age-appropriate assent for those under 16 years old, and
informed consent for those participants over 16 years according to the
Declaration of Helsinki in accordance with the approval of following
research ethics committees: NHS London - Bloomsbury/Harrow
Research Ethics Committee REC references JIAP-95RU04, CHARMS-05/
Q0508/95 studies (Wedderburn) and REC11/L0O/0330 (Ciurtin), UCL
research Ethics 14017/001 and 14017/002 (Pesenacker).

3. Results
Here we focus on the most common subtypes of JIA: oligoarticular

(persistent and extended) and RF negative polyarticular JIA, as they are
largely similar in genetic and immune profile [41,42], and utilise active
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joints as a main classifying criterion of disease activity. To assess
biomarker potential of Treg fitness signatures in JIA, mononuclear cells
(MGs) and Tregs (purity sorted CD4+4-CD25p;g,CD127)4y,) were isolated
from peripheral blood (PBMC n = 59, Treg n = 54 post data QC) and
unmatched synovial fluid (SFMC n = 28, SF Treg n = 26 post data QC) of
active joints from individuals with JIA. PBMCs and Tregs from adult
healthy controls (aHC, PBMC n = 20, Treg n = 24 post data QC) and
paediatric healthy controls (pHC, PBMC n = 5, Treg n = 3 post data QC)
were additionally included as separate groups.

3.1. 48 gene Treg signature can discriminate PB Tregs from
unfractionated cells and SF Tregs

Multivariate principal component analysis (PCA) was performed on
normalised, logo-transformed Treg signature Plus (Supplementary
Table S1) nCounter data from Tregs and unfractionated cells of all
groups (Fig. 1). The first two principal components (PC) represented
62.4 % of the total variance of the eight sample groups. As expected,
PC1, explaining 47.6 % of the variance, categorically separated Tregs
from unfractionated cells from the same sample group (Fig. 1),
demonstrating the Treg-specific combination of genes in the signature.
Tregs and MCs from SF additionally clustered discretely from those from
PB, represented by PC2, explaining 14.8 % of the variance (Fig. 1).
Whilst PBMCs from aHC, pHC, and individuals with JIA had overlapping
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clusters in PC2, PB Tregs showed greater divergence between these
groups (Fig. 1). Interestingly, JIA PB Tregs, taken together from clini-
cally active and inactive JIA patients, defined by active joint count
(AJC>1 and AJC = O respectively at time of sample), spanned the largest
range in PC2 of all groups (Fig. 1).

PB Tregs could therefore be effectively discriminated from unfrac-
tionated cells and Tregs from the inflamed joint using our 48 Treg
signature Plus gene set. This further emphasises possible altered func-
tional properties of synovial Tregs at the site of inflammation in JIA
[18-20], and large variability in PC2 of JIA PB Tregs suggests possible
heterogeneity in the blood.

To further investigate the variance found in PC2, and whether
changes in Treg fitness at the site of active inflammation in JIA are re-
flected by altered Treg signature in PB, we utilised machine learning to
develop models to predict active disease from sorted Treg gene signa-
tures. Genes which had no detected counts for more than 70 % of all
samples across all groups were removed from further analysis and
samples were split randomly into similarly sized train and test sets. As
pHC PB samples were limited, aHC PB Tregs were used in training sets
for healthy controls, with pHC PB Tregs ran in separate test sets for age-
matched validation.

Model derived from training data set (42/42 genes selected):

| | | I
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3.2. Synovial Tregs have an altered RNA signature which is not reflected
in the periphery of active disease

Firstly, an elastic net regression on training sets generated a model
from 42 normalised, scaled mRNA counts from the Treg signature
(Fig. 2) producing SF Treg signature scores for separate test data sets
which perfectly distinguished aHC PB Tregs from JIA SF Tregs (AUC =
1.000, Sens = 1.000, Spec = 1.00, p < 0.0001, Fig. 2B), aligning with
previous findings of functionally distinct Tregs in the inflamed envi-
ronment [18-20]. Genes with the greatest coefficient weighting in the
model (Fig. 2A-Supplementary Table S2, £ indicating coefficient posi-
tively or negatively influencing signature score model) included in-
flammatory cytokine receptor IL1R1, genes important for translational
processes (EIF3S6, involved in translation initiation; HNRPA1 in
pre-mRNA processing and transport, and RPL23A, a ribosomal protein),
and key Treg-associated genes CTLA4 (CD152), FOXP3, TIGIT, and
TNFRSF1B (TNFR2/CD120b) (Fig. 2A). This suggests a translational
reprogramming of synovial Tregs in the inflamed environment and
altered expression of key markers involved in Treg fitness.

To determine whether this specific SF Treg signature could be re-
flected in the periphery of active JIA, we ran the same model on a test set
of JIA PB Tregs from individuals with one or more actively inflamed
joints (AJC>1, n = 28) at the time of sample, and from clinically inactive
(no active joints, AJC = 0, n = 16). Generated SF Treg signature scores
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therefore reflected the probability of a sample being classified as most
similar to SF Tregs (SF Treg signature score = 1) or PB Tregs from aHC
(Treg SF signature score = 0). In accordance with the PCA analysis
(Fig. 1), both inactive and active JIA PB SF Treg signature scores were
significantly different from JIA SF Tregs (p = 0.0077 and p < 0.0001
respectively) and aHC Tregs (p = 0.0016 and p = 0.0096 respectively)
(Fig. 2C). However, no difference was found in SF Treg signature scores
between inactive and active JIA PB Tregs (p > 0.9999, Fig. 2C).

We therefore conclude that SF-derived Treg signatures are not viable
biomarkers in distinguishing active from inactive JIA in blood due to
significant adaptions SF Tregs undergo within the inflamed joint.

3.3. Blood Treg-derived signature scores can distinguish active from
inactive JIA and identify subclinical disease activity

Next, we focused on blood-derived models to differentiate disease
activity in JIA. As the number of inactive JIA PB samples acquired were
too limited to allow for train and test set splits, we trained a model to
distinguish aHC PB Tregs from active (AJC>1) JIA PB Tregs (Fig. 3).
Optimal elastic net regularisation parameters were chosen by leave one
out cross-validation in the training set, leading to a final model incor-
porating 23 out of 37 genes (Fig. 3A-Supplementary Table S2) which
successfully differentiated the separate test set aHC PB Tregs from active
JIA PB Tregs (AUC = 0.9875, p < 0.0001) with perfect specificity
(1.000) and high sensitivity (0.9375), at a Treg signature score cut off of
0.5 (Fig. 3B). The top genes of most importance in biomarker discovery
pipeline, such as ZNF532, TNFRSF9 (CD137/4-1BB), and IL7R (CD127),
are likely to be age-related, as demonstrated in the mean expression
between groups (Fig. 3D, Supplementary Fig. S1). Nonetheless, Tregs
from paediatric HC (pHC) PB input as a separate test set were still
significantly different in signature scores to test set active JIA PB (p =
0.0144, AUC = 0.9375, sens = 0.9375, spec = 0.6667 at cut off 0.5,
Fig. 3C), suggesting that although age may be a factor, most genes
governing this model are disease-dependent. Key genes in the model
which distinguished Tregs of individuals with active JIA from healthy
controls included: ZC2HC1A (C80ORF70), CSF2RB, UFC1, CD96v2,
TNFRSF1B (CD120b/TNFR2), STAM, HNRPA1, TRIB1, CTLA4 (CD152),
HPGD, and TNFAIP3 (A20) (Fig. 3A-D, + indicating coefficient posi-
tively or negatively influencing signature score model, see Supplemen-
tary Fig. S1/S2 for expression levels).

The co-receptor isoform CD96 variant 2 (CD96v2) mRNA had the
greatest trend on mRNA count alone, decreasing in PB Tregs from pa-
tients with active joint inflammation (inactive 4.243 + 0.32 vs active
3.278 + 0.30, FDR adjusted p = 0.092, Supplementary Fig. S2). CD96
competes with TIGIT and CD226 for ligand CD155, with CD96v2
showing higher binding capacity compared to variant 1 isoform [43].
However, the role of CD96 in Treg fitness remains unclear. No gene
showed a statistical significant difference in singular expression between
active and inactive PB Tregs after false discovery rate (FDR) adjustment
of p values (Supplementary Fig. S2). We therefore investigated the use of
Treg signature scores, which encompasses multiple possible gene
expression changes, to distinguish between active and inactive disease.
Using our PB Treg model, with a Treg signature score (0-1) representing
the probability of a sample being from an individual with active JIA
(AJC>1, with 1 representing most like active JIA, O like aHC Tregs),
additional test data from inactive (AJC = 0) JIA PB Tregs generated
scores in a range between aHC PB Tregs and active JIA PB Tregs
(Fig. 3E). Inactive JIA PB Tregs differentiated significantly from active
JIA (mean + SEM inactive 0.4623 + 0.063 vs active 0.7919 + 0.043, p
= 0.0029, Fig. 3E), with no overall significant difference from aHC PB
Tregs (0.2101 + 0.027, p = 0.2330, Fig. 3E). Treg-derived biomarker
scores were therefore successful in identifying active disease in the
blood of JIA individuals.

To examine the large range of scores from inactive JIA PB Treg
samples, we explored additional measures of disease activity. cJADAS
incorporates AJC with clinician and patient/parent global assessments
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of disease activity [38]. A clinically useful biomarker would need to
reflect the level of disease activity beyond active joint count, and current
biomarkers such as S100 proteins do not correlate with cJADAS
(Supplementary Fig. S3). Stratifying Treg signature scores of all JIA PB
test samples by cJADAS displayed a positive correlation below a cJADAS
of 10 (p < 0.0001, r? = 0.5071, Fig. 3F, Supplementary Fig. S4A),
suggesting increased disease activity from low to moderate relates to
changes in overall Treg fitness signatures in the blood. Conversely, high
disease activity (cJADAS>10) is likely driven by more than changes in
Treg fitness, such as overt inflammation.

Subclinical disease activity, involving symptoms other than inflamed
joints such as pain and fatigue, are often noted by patient/parent visual
assessment, and difficult to assess objectively in clinic [44]. Thus, we
further subcategorised the inactive (AJC = 0) cohort into remission
(cJADAS<0.5) and potential subclinical disease through other recog-
nised symptoms (cJADAS>0.5), which were significantly different in
Treg signature scores (mean + SEM for inactive cJADAS<0.5 0.2848 +
0.075 vs inactive ¢cJADAS>0.5 0.6389 + 0.051, p = 0.0111, Fig. 3G).
Samples without active joint inflammation but with subclinical disease
activity were therefore closer to those with active joint flares by Treg
signature scores.

With the same cut off of 0.5, defined by aHC vs active JIA PB test set,
the Treg signature scores generated from this blood Treg-derived model
objectively distinguished remission from subclinical disease activity
without active joint inflammation in JIA (AUC = 0.8980) with high
sensitivity (0.8571) and specificity (0.8571, Fig. 3G). Therefore, the
Treg signature score may provide an objective biomarker measure to
support disease management by indicating subclinical disease activity.

We previously found that in T1D, a PBMC-derived Treg signature
could differentiate between T1D and healthy controls [31,32]. While
elastic net regression analysis of 45 genes on unfractionated PBMCs
generated a model (Supplementary Table S2) to differentiate aHC
PBMC:s from active JIA PBMCs (AUC = 1.000 in test sets, Supplementary
Figs. S5A-C), a test set of inactive JIA PBMCs (AJC = 0), had no
distinction from active JIA (AJC>1), nor subclinical disease activity
(AJC = 0, cJADAS>0.5) from remission (Supplementary Fig. S5D). This
therefore suggests that there is more of an intrinsic change in Treg
fitness signature in active and subclinical disease rather than an overall
immunoregulatory imbalance.

We therefore propose a blood Treg-derived model capable of suc-
cessfully and objectively identifying active and subclinical disease in
JIA, recognising Treg fitness signatures as an important biomarker and
factor in disease progression and sustained remission.

3.4. Blood Treg subsets are altered between inactive and active JIA

To investigate whether altered Treg fitness signatures in blood of
active JIA could also be assessed by protein expression, we utilised
spectral flow cytometry data [19] and initial unbiased analysis. Many of
the genes in the Treg signature could not be assessed for transcribed
protein expression by flow cytometry due to inaccessibility or lack of
commercial antibody available. However, we have previously devel-
oped a 37-parameter spectral panel for comprehensive assessment of
cellular composition and phenotype of mononuclear cells, including 14
markers from our Treg signature Plus, which we analysed on PBMCs
from individuals with JIA [19]. Taking this data for 20 markers asso-
ciated with Treg function and activation, we performed PhenoGraph
cluster analysis [40] on gated live CD3+CD4+Foxp3+ JIA PB Tregs,
which identified 14 different Treg clusters. When separating data from
individuals with clinically active JIA (AJC>1, n = 28) and inactive JIA
(AJC =0, n = 17 Fig. 4A and B) the majority of clusters were present at
similar frequency in both disease activity groups (Supplementary
Fig. S6). To ascertain biological relevance and feasibility of converting
cluster frequencies into clinically-applicable flow cytometry, limited in
parameters and gating approaches, we explored the phenotype and
potential manual gating strategies of 6 clusters showing trends in
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Fig. 3. PB-derived Treg signature successfully differentiates active from inactive JIA, correlates to disease activity and identifies subclinical disease. Treg
signature Plus mRNA counts by nanoString were normalised, log2-transformed, and split into 50/50 train and test sets before scaling. Utilising our biomarker
discovery pipeline, optimum parameters were chosen by elastic net regression on 37 Treg signature Plus genes with leave one out cross validation (LOOCV) for best
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positive or negative coefficient of the indicated gene in the final model. B) Treg signature score of test set, with 0 being most like aHC PB and 1 being most like active
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differentiating paediatric healthy control blood (pHC PB) Tregs from active JIA PB Tregs test sets, with AUC, sensitivity and specificity at cut off 0.5. D) Repre-
sentative heatmap of the mean mRNA counts of 23 genes used in model across aHC, pHC, active JIA and inactive (AJC = 0) JIA PB Tregs, clustered by Pearson
correlation coefficient with Z-score of expression levels across rows. E) Inactive JIA PB Tregs ran as test dataset on this model, with test aHC and active JIA PB Treg
signature scores displayed. Clinical Juvenile Arthritis Disease Activity Score (cJADAS) indicated for inactive JIA. Cut-off of 0.5 displayed. F) Linear correlation (+95
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joint count; AUC = area under curve; Sens = sensitivity; Spec = specificity.
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differences between active and inactive JIA (Supplementary Fig. S6).

Cluster 4, enriched more in active JIA PB (FDR adjusted p = 0.1454),
comprised a classic memory Treg subset, being TIGIT+CD45RA- but
varied expression of CD25, CD39, CD226 and TNFR2 (Supplementary
Fig. S7A). No clear manual gating strategy could be found that did not
also include other Treg clusters, thus cluster 4 was disregarded from the
subsequent analysis. Upon closer investigation, it was also noted that
cluster 11, more enriched in inactive JIA PB (FDR adjusted p = 0.1454),
was driven mainly by just four samples and the expression profile
highlighted the limited events in cluster 11 likely included auto-
fluorescence (Supplementary Fig. S7B) and hence also disregarded.

Of interest, cluster 2 was significantly enriched in active JIA PB Tregs
(mean + SEM of CD4+Foxp3-+ Tregs, inactive 5.59 + 1.9 % vs active
10.71 + 1.4 %, FDR adjusted p = 0.0357, Supplementary Fig. S6),
defined by ID2,,,CD45RA+ naive Tregs (Fig. 4C). Cluster 5 (inactive
9.99 + 2.1 % vs active 15.24 + 1.65 %, FDR adjusted p = 0.1454,
Supplementary ~ Fig.  S6) with gated TNFR2-CD39-Helio-
ShighCD45RA 16 CD25pign expression (cluster 5, Fig. 4D), likely repre-
sents a resting or possibly latent Treg population, with TNFR2 and CD39
implicated in good regulatory function [45-47]. The Teff-like Treg
cluster 9 was of particular interest, defined as TIGIT4+CD226-+CD25;4,y,
(cluster 9, inactive 1.19 4 0.18 % vs active 2.10 + 0.27 %, FDR adjusted
p = 0.1454,Supplementary Figure S6, Fig. 4E), since the co-expression of
TIGIT and CD226 has been identified as a Treg characteristic in the
inflamed JIA joint [19]. Moreover, whilst TIGIT has been associated
with improved inhibitory mechanisms by Tregs [48], there has been
more conflicting evidence on the role of CD226 expression on Tregs
[49-51]. Additionally, with CD25 an integral marker for Treg function,
lower expression on this cluster may result in altered Treg fitness [52].

Treg cluster 12 was statistically significantly predominant in the
blood of clinically inactive individuals (12.49 + 3.7 % vs active 3.48 +
1.4 %, FDR adjusted p = 0.0098, Supplementary Fig. S6). This Treg
cluster was identified to be ID2ijtermediate4-1BB-TIGIT}oy (cluster 12,
Fig. 4F), suggesting a potentially resting Treg subset that lacked
expression of proliferation marker Ki67 and other key Treg activation
markers (Supplementary Fig. S8). The role of intermediate levels of ID2
in cluster 12 in Treg maintenance and plasticity is not clear [53,54].

3.5. Treg cluster ratios correlate with disease activity in JIA and can
possibly predict flares

To investigate the possibility of a potential flow cytometry-based
clinically applicable biomarker across populations, we investigated a

A
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ratio of frequencies of the clusters identified. Overall, inactive disease,
defined by no active joints, could be distinguished from active disease
(AJC>1) by the ratio of identified ‘active’ Treg clusters to that of the
Treg cluster associated with inactive disease (frequency of clusters (2 +
5+9):12, Fig. 5A). It is important to note statistical testing on the Treg
cluster ratio was not performed as previous statistical tests of separate
individual clusters had been taken into account when choosing cluster
ratio parameters. Interestingly, this Treg cluster ratio correlated with
disease activity (r> = 0.4123, p = 0.0002, Fig. 5B), and is capable of
classifying inactive disease (AJC = 0, mean + SEM 6.30 + 2.4) from low
disease activity (AJC>1, 1<cJADAS<5, 34.9 + 9.9, p = 0.0142) and
moderate disease activity (AJC>1, 5<cJADAS<10, 66.93 + 9.7, p <
0.0001), as well as low disease activity from moderate (p = 0.0164,
Supplementary Fig. S4B). High disease activity (AJC>1, cJADAS>10,
62.26 + 25.5), however, did not correlate with Treg cluster ratios,
instead appearing to split into two populations (Supplementary Fig. S4B,
right axis), similar to that seen in Treg gene signature scores
(Supplementary Fig. S4A). This suggests Treg phenotype changes are
particularly important in low-moderate disease activity range and may
be critical for maintaining inactive disease and achieving full remission
in JIA. By assessing multiple clusters using clinically applicable 12-
parameter flow cytometry we will likely generate a more robust
biomarker. While cluster frequency ratio using traditional, clinically-
applicable flow cytometry and gating as a biomarker will require vali-
dation in a separate patient cohort, analysis of the Treg cluster ratio and
its correlation in this cohort by cJADAS was encouraging.

Moreover, analysis of measured disease activity at clinical follow up
(active/limited joint count 3-9 months after sample was taken) indicates
potential predictive power of Treg cluster ratio, with samples with low
Treg clusters ratios maintaining remission, distinguished from in-
dividuals with higher ratios which went on to flare or with altered ac-
tivity through limited joints (p = 0.0056, Fig. 5C). Although only a small
number of samples had sufficient follow-up data in this cross-sectional
study, the ratio of Treg cluster frequency could possibly represent a
useful biomarker for disease activity to predict flares or indicate full
remission, and thus ultimately guide treatment decisions.

3.6. Methotrexate does not affect JIA biomarker potential of Treg fitness
measures but alters Treg subsets in blood

We next investigated how medication may affect JIA Treg fitness

derived biomarkers using Treg signature scores by mRNA levels and
Treg subsets (Treg cluster ratios). Methotrexate (MTX) is widely

C Inactive JIA PB at time of sample

200 — 150 r?=0.4123 40— **
=0.0002
A o P o o
2 150 b . s
£ M 2 100+ o £ 307
o A s .. 5
° © ©
o | o o
'g 50 ﬁ '0‘__’ S 10 & .
o)
o——éxb—m—_ / , oL codses :
Inactive  Active 10 Remission Active/limited
JIA PB Tregs cJADAS joints

at 3-9 month follow up

Fig. 5. PB Treg cell ratios reflect disease activity and can possibly predict flares in JIA. Ratio of Treg subsets identified by spectral flow cytometry unbiased
clustering and classical gating strategies in Fig. 4. A) Treg cluster ratio of combined Treg clusters [(clusters 2+5+9)/cluster 12] between active (AJC>1) and inactive
JIA (AJC = 0) PB Tregs. B) Linear regression with 95 % confidence interval of Treg cluster ratio across clinical Juvenile Arthritis Disease Activity Score (cJADAS).
Samples from active JIA with >10 cJADAS not displayed. C) Treg cluster ratio of inactive samples (AJC = 0) at time of sample, classified by disease activity 3-9
months after original sample, where clinical follow-up data was available. Remission without active or limited joints vs presence of active/limited joints recorded at
next clinical assessment. Significance determined by Mann-Whitney test (C). **p < 0.01, PB = peripheral blood; JIA = Juvenile Idiopathic Arthritis; AJC = active

joint count.
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regarded as a first-choice therapeutic for oligo and RF- polyarticular JIA
when non-steroidal anti-inflammatory drugs (NSAIDs) are insufficient
[55]. To measure the impact MTX has on PB Treg signature scores, and
to confirm the difference found between disease activity groups was not
due to medication, we divided active and inactive cohorts further into
those on MTX at time of sample (MTX) and those not (no MTX, a mix of
treatment naive and those on additional medication). MTX did not
significantly alter Treg signature scores within either inactive (AJC = 0)
or active (AJC>1) cohorts (Fig. 6A, Supplementary Figs. SOA-B), and
the distinction between inactive and active patients was still prominent
regardless of MTX status (all p < 0.05, Fig. 6A, Supplementary
Figs. S9A-B). While limited sample numbers from individuals on MTX
passed QC for Treg gene signature, these data may suggest that the Treg
gene signature is less impacted by this therapy and more of an indication
of the overall Treg fitness state and subclinical disease activity at a
certain timepoint. For Treg subsets defined by protein expression, the
Treg cluster ratio (frequency of clusters (2+5+9):12, Figs. 4 and 5) was
also still capable of differentiating inactive from active JIA PB on or off
MTX through direct independent comparison (no MTX p = 0.0016, MTX
p =0.0184, Supplementary Figure S9C, Fig. 6B). However, a statistically
significant reduction in Treg cluster ratio was found in patients on MTX
within both inactive and active groups (inactive no MTX mean + SEM
14.7 + 6.4 vs inactive MTX 3.4 £ 1.5, p = 0.0380; active no MTX 79.03
+13.1 vs active MTX 34.84 + 12.37, p = 0.0102 pairwise comparison in
Supplementary Figure S9D, Fig. 6B). Corticosteroid treatment appeared
to decrease cluster ratio even further compared with MTX alone (data
not shown), however, this cohort did not include enough patients on
corticosteroid monotherapy to draw any conclusions on corticosteroid
effect on Treg subpopulations.

Therefore, unlike previous studies in JIA which suggested MTX does
not alter Treg phenotype and function by individual marker expression
[56], we propose that MTX may alter specific Treg cluster frequencies
towards those reflected in remission, and thus its therapeutic benefit
may partially be through changes to Treg fitness. Importantly, the
biomarker potential of Treg cluster ratio and Treg signature scores was
maintained regardless of MTX status, and thus presents a feasible pos-
sibility for clinical translation to guide disease management and treat-
ment decisions.
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4. Discussion

The importance of Tregs in maintaining tolerance has been well
recognised, with various therapeutic approaches now targeting Tregs in
an attempt to restore immune homeostasis in autoimmunity [15]. In the
childhood-onset autoimmune condition JIA, Treg dysfunction has been
suggested as a key element of disease pathogenesis, and progression,
which is largely unpredictable [1,16,17]. Here, we investigated the role
of Treg fitness signatures in governing disease activity of JIA and its
biomarker potential, through the expression of Treg signature genes and
proteins that likely correspond to overall functionality.

We implicate Treg fitness signatures to be integrally linked to
maintaining JIA remission, utilising mRNA levels of our Treg signature
and protein expression with altered Treg subsets. The PB Treg-derived
model using our nanoString Treg signature Plus, generated to differen-
tiate healthy controls (HC) from individuals with active JIA, successfully
discriminated inactive disease from active, with Treg signature scores of
individuals with inactive JIA aligning closer to healthy controls.
Importantly, we divided data into training sets to generate models and
assessed performance using test data sets which had no influence on
training of the model. Further interrogation of the expression of 23
genes governing this model suggests a possible shift towards a more
effector-like signature in JIA Tregs, with expression of genes usually
upregulated in Tregs compared to effector T cells, such as TRIBI,
CSF2RB, ZC2HC1A, HPGD and STAM [31,57], represented more in a HC
Treg signature than JIA PB Tregs. The lower expression of these genes in
Tregs from across the JIA cohort compared to HC could therefore
possibly correspond to diminished regulatory function, with hydrox-
yprostaglandin dehydrogenase (HPGD) identified as an important
tissue-dependent suppressive mechanism of Tregs [58], and CSF2RB
(CD131) associated with higher FOXP3 expression [59]. However, the
access to healthy age-matched controls in this study was limited and
additional assessments are required to reveal possible functional out-
comes of these Treg signature changes in JIA. Although it was the cu-
mulative differential expression of slight alterations in genes which
successfully distinguished active from inactive disease (defined by AJC),
CD96 variant 2 (CD96v2) showed the greatest trend in absolute mRNA
count alone, decreasing in active JIA PB Tregs. Interestingly, CD96high

PB Treg cell populations
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Fig. 6. Biomarker potential of Treg fitness measures of disease activity in JIA are unaffected by methotrexate but PB Treg cluster ratio is reduced. Treg
fitness measures derived from mRNA nanoString analysis biomarker discovery pipeline (A) or cluster ratios identified via spectral flow cytometry (B). A) Treg
signature scores of JIA PB Treg test sets on (MTX) or off (no MTX) methotrexate at time of sample, determined from 23 gene Treg signature model with 0 being most
similar to HC PB Treg and 1 being most similar to active (AJC>1) JIA PB Treg; Inactive JIA classified as AJC = 0. B) Treg cluster ratios [(clusters 2+5+9)/cluster 12]
for active (AJC>1) and inactive (AJC = 0) JIA PB samples grouped by methotrexate status (off (no MTX) and on methotrexate (MTX). Throughout, individual data
points with mean + SEM displayed. Significance determined by one-way ANOVA with Tukey’s multiple comparison post-hoc test with *p < 0.05, **p < 0.01, ****p
< 0.0001, statistical comparisons classed as not significant not displayed. PB = peripheral blood; JIA = Juvenile Idiopathic Arthritis; AJC = active joint count; MTX

= methotrexate.
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T cell clusters have also been shown to decrease in the blood of in-
dividuals with lupus compared to healthy controls [60]. Sharing the
ligand CD155 with the co-stimulatory CD226 and co-inhibitory TIGIT,
there has been conflicting evidence on the role of CD96 [61,62]. How-
ever, CD96v2 has a higher binding capacity for CD155 than CD96v1
[43], and thus might be more potent functionally. The possible prefer-
ential expression of CD96v2 on inactive JIA Tregs, with CD96v1
expression unchanged between inactive and active, could therefore alter
functional outcomes of this important co-receptor axis in Tregs.

Interestingly, TIGIT and CD226 protein expression defined an
effector-like Treg subset predominant more in active JIA PB (cluster 9,
TIGIT4+CD226-+CD25)4y), similar to that seen in the inflamed joint [19].
TIGIT is an important co-inhibitory receptor on Tregs, yet the effect of
CD226, a co-stimulatory marker, on Treg function has been questioned
[49,50]. Additionally, CD25 is crucial for Treg function and lower
expression on this cluster may result in reduced proliferation and sup-
pressive capabilities [52]. CD25),,Foxp3+ Tregs have also been pro-
posed as a marker for terminal differentiation into unresponsive Tregs in
autoimmunity, failing to regulate overt effector T cell responses [63].
Further investigation of this TIGIT4+CD226+CD25),, cluster seen in
active JIA, and the impact of the co-receptor balance in orchestrating
Treg fitness, is therefore needed.

From the other three Treg clusters that were identified to potentially
differ between inactive and active JIA blood, ID2 was an important
distinguishing marker. 1D2,,,CD45RA+ was identified as an ‘active’
Treg cluster, whereas the subsets that was most significantly associated
with inactive JIA was ID2iptermediate4-1BB-TIGIT)ow. ID2 is a DNA-
binding inhibitor important in T cell maturity and differentiation. In
mice, ID2 has been implicated in promoting Treg plasticity into Th17-
like effector phenotypes [53], whilst ID2 depletion has also shown in-
flammatory disease development through lack of Treg maintenance
[54]. While exact functions of ID2 in Tregs are still unclear, intermediate
expression levels of ID2, as found in Treg cluster 12 associated with
inactive JIA, could be key in maintaining remission. We therefore pro-
pose a possible change to overall Treg fitness in the blood of active JIA,
reflected in our Treg gene signature and altered protein expression.
Whether these measurements reflect early Treg response to joint
inflammation in the periphery or a driver of active disease remains to be
clarified. Further investigation into how the identified genes and pro-
teins influence remission or active disease could present novel thera-
peutic targets in JIA to sustain remission.

cJADAS is a compound measure of JIA disease activity by including
visual global assessment of physicians and patients/parents [38]. Both
RNA Treg signature scores and Treg cluster ratios (Treg subsets) posi-
tively correlated to cJADAS. We therefore offer a quantifiable and
objective measure of JIA disease activity that may aid disease manage-
ment and which may discriminate low or subclinical levels of disease,
for which there is currently no clinically available biomarker. Notably,
high disease activity (cJADAS>10) no longer associated with either Treg
signature score or Treg cluster ratio, suggesting that severe disease is
governed by more than changes in Treg fitness, with overt inflammation
likely playing an overriding role at high disease activity. Thus, a possible
treatment strategy of first dampening overt inflammation before
enhancing Treg fitness could improve outcomes and achieve remission
in more children and young people with JIA. One in four patients also
receive high patient/parent global visual analogue scale (VAS) scores,
despite no active joints and low physician VAS, resulting in higher
cJADAS in otherwise clinically inactive individuals [44]. Patient/parent
VAS is often driven by persistence of morning stiffness, fatigue, and pain,
even without clinically apparent inflamed joints [1,44], likely contrib-
uted to by subclinical disease activity which is difficult to measure. Here,
we were able to quantify subclinical disease by Treg signature scores and
distinguish subclinical disease (AJC = 0, cJADAS>0.5) from a strict
remission cut off (AJC = 0, cJADAS<O0.5) in otherwise clinically inactive
individuals, thus Treg signature scores could present an objective
lab-based measurement to indicate subclinical disease activity and aid
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disease management. Clinical assessment alone can miss early signs of
synovitis in over a third of cases presumed to be inactive [4] and
therefore a biological measure to measure subclinical disease activity
and/or predict flares would aid treatment decisions to sustain remission.
Our Treg cluster ratios showed biomarker potential in predicting flar-
es/limited joints by the next follow up appointment in children/young
people that were inactive at time of sample. The predictive capability of
Treg signature scores could not be assessed due to limited clinical follow
up data for samples analysed by nanoString post-QC. To validate the
predictive power of Treg fitness signature derived measures in JIA, a
longitudinal cohort with clinical follow-up data will be needed.
Combining gene- and protein-based Treg fitness signature measures may
further enhance predictive/selective biomarker potential and should be
investigated on a larger validation cohort with fully paired Treg gene
signature and Treg cluster data.

Methotrexate (MTX) is a widely used first-line medication for oligo-
and RF- polyarticular JIA [55] and thus, it is important that any
biomarker to guide clinical practice can perform regardless of medica-
tion status. The biomarker potential in measuring disease activity by
Treg signature scores and Treg cluster ratios remained effective inde-
pendent of MTX status. Moreover, there has been various attempts to
measure and predict responders to MTX in JIA [8-11,64], yet the effect
on immune responses is still not fully understood. Despite previous
suggestion that MTX does not alter Treg phenotype and function in JIA
[56], here, whilst MTX had no effect on Treg signature scores, in-
dividuals on MTX at time of sampling showed reduced Treg cluster ra-
tios. This may suggest that MTX, although possibly not altering
expression of singular Treg markers or the core Treg gene signature
affects specific Treg subsets found in the blood, that could only be
discovered by high dimensional analysis of Treg phenotypes. Similar
studies in rheumatoid arthritis have also suggested that MTX can restore
suppressive functions of Tregs [65,66]. Therefore, functional investi-
gation of the identified Treg clusters associated with active and inactive
disease and those affected by MTX is warranted and may lead new
insight into MTX mechanism in autoimmunity. Similarly, assessing the
effects on Treg clusters by other therapeutics not assessed in this cohort
may provide novel insights into treatment response mechanisms. Treg
gene signature scores were not significantly affected by MTX, suggesting
that the generated model is more a measure of the overall Treg fitness
state and useful in identifying subclinical disease. Therefore, Treg
cluster ratios may be more useful in potentially classifying response to
treatment and could be adapted as a treatment response biomarker to
indicate when remission has been achieved.

5. Conclusion

We therefore propose Treg fitness-based biomarkers in JIA, through
PB Treg signature scores and Treg cluster ratios that can objectively
measure, and potentially predict, JIA disease activity. Changes in Treg
fitness measures in active/subclinical disease may reflect “unfit” Tregs
or early, but detectable, changes in Tregs in response to autoimmune
inflammation, before clinical symptoms appear. With further prospec-
tive and longitudinal validation, Treg fitness-derived biomarkers could
become objective clinical tests, showing promise to translate to a valu-
able tool in clinical practice, requiring only a small blood sample.
Monitoring Treg fitness signatures could therefore guide treatment de-
cisions, prevent flares through earlier therapeutic intervention and
identify who can safely withdraw from medication without risking an
imminent flare. Moreover, Treg-derived biomarkers could also be useful
across other autoimmune conditions and thus may have a wider impact
on managing autoimmunity and more people achieving long-lasting
remission.
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