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Take home message 

Physiological variability measures significantly differ between stable and exacerbating 

groups of chronic obstructive pulmonary disease. This can be used to build 

exacerbation detection algorithms in the future leading to improved patient outcomes. 

 on June 8, 2025 by guest. Please see licensing information on first page for reuse rights. https://publications.ersnet.orgDownloaded from 



ABSTRACT 

Rationale:  

Earlier identification and treatment of chronic obstructive pulmonary disease 

exacerbations leads to improved clinical outcomes. Wearable technology has the 

ability to measure physiological signal variability which is likely to be different in states 

of stability and exacerbation.  

Objectives 

To analyse signals including heart rate, respiratory rate and airflow, from a novel small 

wearable device, AcuPebble RE100 and compare differences in a group of stable and 

exacerbating participants.  

Methods: 

Groups of stable and exacerbating adult participants with chronic obstructive 

pulmonary disease were asked to wear AcuPebble RE100, which records 

physiological signals including heart rate, respiratory rate and airflow. Linear and non-

linear variability analysis was conducted on each of these time-series to detect 

differences between groups. 

Results 

A total of 51 participants (33 stable and 18 exacerbating) were analysed. Stable 

participants used the device for a median (IQR) of 18 nights (10 – 26). The 

exacerbating participants had significantly higher heart rate variability measures and 

a significantly lower heart rate complexity measure compared to stable participants. 

Respiratory rate variability and complexity were significantly increased in the 

exacerbating participants. Detrended fluctuation analysis demonstrated two-cross 

over points in both populations, with the exacerbating participants demonstrating a 

significantly lower median α3 (0.50 (0.47 – 0.56) vs. 0.69 (0.65 – 0.79), p <0.001) 

compared to the stable population. 

Conclusion 

We have shown that significant differences exist in heart rate, respiratory rate and 

airflow variability measures between stable and exacerbating groups of chronic 
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obstructive pulmonary disease. This will help build exacerbation detection algorithms 

in the future. 

INTRODUCTION 

Earlier identification and treatment of chronic obstructive pulmonary disease (COPD) 

exacerbations are likely to lead to improved patient morbidity and mortality whist 

resulting in cost savings due to reduced healthcare utilisation and absenteeism. (1, 2) 

Changes in physiological signals such as heart rate and oxygen saturation have 

shown promise in this area, but simple linear analysis of these static signals has had 

limited clinical utility and failed to show a difference compared to symptom monitoring 

alone. (3, 4) 

Wearable technology has the potential to objectively measure continuous 

physiological signals which are likely to change from stable to exacerbating phases 

and highlight earlier, potentially subtle changes prior to symptom changes. A recent 

systematic review looking at the role of wearables to detect COPD exacerbations, 

found two prior studies that have shown a high positive predictive value (above 90%) 

in detecting an exacerbation. However, due to high attrition rates, one of these studies 

only included 13 participants in their analysis, (5) and the other used a composite score 

relying on several parameters including environmental sensors which are costly and 

difficult to replicate in real world settings. (6) Moreover, continuous measurement of 

physiological signals generates many datapoints, meaning novel analysis methods 

are needed to better understand this data. Prior work looking at oxygen saturation 

signal variability in a small number of COPD patients has shown promise in this area, 

but further work in this field is necessary.  (7) 

The first step in creating an accurate system to detect physiological changes 

suggesting the start of an exacerbation, is to use a simple device that measures 

common physiological signals and identifies key differences between the stable and 

exacerbating phases of COPD. Therefore, the main objective of our work as to analyse 

signals including heart rate (HR), respiratory rate (RR) and airflow, from a novel small 

wearable device, AcuPebble RE100 and compare differences in a group of stable and 

exacerbating participants. This objective is important as it guides the identification of 

exacerbation event signatures using a simple device, which is crucial for the 

development of future patient monitoring systems aimed at early detection. 
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METHODS 

This prospective cross-sectional study received ethical approval from the Health 

Research Authority in England (IRAS 247489; REC reference 19/NI/0194). The study 

was also prospectively registered with clinicaltrials.gov (NCT04495062) 

Inclusion/exclusion criteria 

Adult participants with a diagnosis of COPD, made with an exposure history of more 

than a 10-pack year smoking history and spirometry showing a post-bronchodilator 

forced expiratory volume to vital capacity ratio of less than 0.7 were included in the 

study. Participants were excluded if they were not fluent in English, had an allergy to 

the wearable adhesive dressing, had an impairment meaning they would not manage 

to use the technology on their own, had an implantable device, had a known diagnosis 

of concurrent sleep disordered breathing or needed ventilatory support. Participants 

were split into two groups: stable COPD participants, recruited from outpatient clinics 

with no increase in their usual respiratory symptom burden at the time of consent; and 

exacerbating COPD participants recruited from their hospital admission. COPD 

exacerbations were defined as per the GOLD guidelines, (an increase in breathless 

and/or cough and sputum production that has worsened in less than 14 days). (8) We 

only included exacerbations that led to a hospital admission, defined as severe by the 

GOLD guidelines. We also included only participants that were admitted specifically 

for a COPD exacerbation. 

Wearable device 

The wearable device used for this study was AcuPebble RE100. Under the scope of 

this study, AcuPebble was not used as a medical device, but as an acoustic monitor 

to acquire signals, for which it is CE marked. AcuPebble RE100 is a small circular 

device with a diameter of 2.9cm which attaches to the neck via a disposable medical 

grade adhesive. It records physiological acoustic signals and algorithms convert these 

sounds into respiratory rate (breath per minute (bpm)) recorded every two seconds, 

heart rate (beats per minute (bpm)) recorded every two seconds and airflow 

(normalised volt) recorded every 0.1 seconds.  

Study protocol 
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Following informed consent, baseline data including demographics, smoking history, 

spirometry results, past medical, social and drug history was collected for both groups. 

Participants also completed two validated questionnaires: the modified Medical 

Research Council (mMRC) breathlessness score (9) and the COPD airway 

assessment tool (CAAT). (10) Participants were shown how to use the AcuPebble 

RE100 which connected via Bluetooth to a mobile phone. The stable COPD group 

were asked to use AcuPebble RE100 whilst they slept at night for up to 30 days; whilst 

the exacerbating group were given the device within 48 hours of admission to hospital, 

and asked to wear the device continuously until discharge, and following discharge 

nocturnally for up to 28 days. For the main analysis we compared readings between 

stable COPD participants and hospitalised exacerbating participants, with data 

capture in the first 48 hours of their admission.   

Analysis methodology 

When comparing readings between patients, a fixed time-series duration was 

necessary to avoid bias. A six-hour nocturnal time window was used for both 

exacerbating and stable patients (supplementary material). The average across all 

nocturnal stable COPD recordings was used to compare with the average initial 

nocturnal recordings (within 48 hours of admission) from the exacerbating group. We 

also looked at the nocturnal recordings five days post discharge for the exacerbating 

group. Recordings shorter than six hours duration were not included in the final 

analysis. Data recordings that had ≥ 15% of missing data in any of the time series 

were also not included in the final analysis.  

For analysis of the heart rate (HR) and respiratory rate (RR) time series, linear and 

non-linear analysis methods were used. Linear measurements included the mean HR 

and mean RR as well as SDNN (the standard deviation of the inter-beat interval of 

successive heart beats (ms)), cSDNN (the SDNN corrected for mean HR), and SDBB 

(the standard deviation of the breath-to-breath interval (ms)). 

Non-linear measurements included Poincare plot indices (SD1 and SD2) and sample 

entropy (SE). SD1 is a measure of short-term variability and for heart rate usually 

reflects the effect of respiratory on the cardiac cycle, whereas SD2 is a measure of 

longer-term variability. (11, 12) Sample entropy is a measure of the amount of 

information in a physiological signal, reflecting the engagement of physiological 
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control. Higher sample entropy measures indicate a more engaged system with 

increased information processing and increased complexity. (13) Multi-scale entropy 

(MSE) of both the HR and RR were also computed. MSE is an extension of sample 

entropy while ‘zooming out’ and is representative of information processing at lower 

resolution. (14) 

Given the high resolution of airflow data available, detrended fluctuation analysis 

(DFA) was used. DFA is an analytic method that provides useful information on the 

relationship between different segments of a physiological time-series at different 

scales of a recorded signal. (15, 16) Preliminary analysis showed the DFA curve had 

two cross-over points, and this meant there was a short-term, intermediate term and 

long-term scaling exponent, α1, α2 and α3 respectively 

All the analysis was computed using well known methods previously described in the 

literature, using freely available coding algorithms in MATLAB processing software. 

For SE calculations, settings of m at 2 and r at 0.2 were used, and MSE was calculated 

over ten scales.  

A summary of the calculated measures can be found in Table 1. Further information 

can also be found in the supplementary material. 

For the stable COPD population, we assessed correlations between the time series 

measures (Table 1) and FEV1, CAAT score and mMRC. For the exacerbating 

population we assessed correlations between the time series measures (Table 1) and 

the admission National Early Warning Score 2 (NEWS2),  (17) the c-reactive protein 

and the Rome COPD exacerbation severity classification. (1) 

We assessed usability and acceptability of AcuPebble RE100 via a standardised 

feedback questionnaire.  

To give some context we have also included data from a historical non-COPD group 

in the results section. The methodology for this historical group can be found in the 

Supplement. 

Statistical analysis 

All statistical analysis was conducted using the software Statistical Package for the 

Social Sciences (SPSS version 29). Baseline demographics between groups was 
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compared using Chi squared tests for ordinal and categorical data. Continuous data 

were checked for normality and analysed using the independent t-test for parametric 

data or the Mann-Whitney U test for non-parametric data. MSE analysis at varying 

scales was compared using a two-way ANOVA. A p-value of ≤ 0.05 was considered to 

be statistically significant.  

RESULTS 

200 participants were screened, of which 114 met eligibility criteria, and 59 were 

consented for the study, 36 with stable COPD and 23 undergoing an exacerbation. 

Due to short recordings and subsequent ineligibility, a total of 33 stable COPD 

participants and 18 exacerbating participants were analysed (51 in total). The study 

flow diagram is illustrated in Figure 1. There were no significant differences in 

participant demographics between groups (Table 2) except that the participants 

undergoing an exacerbation had a significantly lower median (IQR) body mass index 

compared to the stable population, (18.9 kg.m2 (17.7 – 24.5) vs. 27.1 kg.m2 (21.0 – 

31.8), p = 0.002). The exacerbating population had significantly more severe COPD 

with worse historic lung function and an increased CAAT score at the time of 

recruitment (Table 3).  

Stable COPD participants used the device for a median (IQR) of 18 nights (10 – 26) 

and for a median (IQR) of 8.3 hours (6.8 – 9.8) per night. Therefore, overall, there was 

a total of 338/519 (65%) nocturnal HR recordings, 492/519 (95%) RR recordings and 

345/519 (66%) airflow recordings available from 33 stable COPD participants. 

Exacerbating COPD participants’ first valid nocturnal recording within 48 hours of 

admission was used to compare to the stable COPD population. Following deletion of 

missing time-series data, 9/18 (505) HR recordings, 18/18 (100%) RR recordings and 

12/18 (67%) airflow recordings were available.  

Stable vs. exacerbating participants 

The mean HR and RR were numerically higher in the exacerbating participants 

compared to the stable participants. For the heart rate time series, the exacerbating 

population had significantly higher variability measures with a median cSDNN (268ms 

(207 – 315) vs 179ms (162 – 246), p = 0.006), median SD1HR (12ms (8 – 15) vs 8ms 

(7 – 10), p = 0.04), median SD2HR (90ms (79 – 130) vs. 75ms (67 – 96), p = 0.037), 

but had a significantly lower complexity measure with a median SE HR (0.1258 
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(0.1044 – 0.1568) vs. 0.1607 (0.1355 – 0.1981), p = 0.015) compared to the stable 

population. (Table 4) 

For the respiratory rate time-series, the exacerbating population had a significantly 

higher variability and complexity measures with a median SDBB (629ms (515 – 1126) 

vs. 525ms (398 – 665) p = 0.024), median SD1RR (134ms (96 – 169) vs. 92ms (76 – 

109ms), p = 0.037) and median SD2RR (876ms (722 – 1584) vs. 767ms (558 – 936), 

p = 0.025) compared to the stable population. (Table 3) 

For the airflow time-series, both populations demonstrated two cross-over points in 

the detrended fluctuation analysis which were at similar time points leading to three 

scaling exponents. (Figure S1) The exacerbating population had a significantly lower 

median alpha 1 (1.63 (1.61 – 1.65) vs. 1.66 (1.63 – 1.67), p = 0.005) and median alpha 

3 (0.50 (0.47 – 0.56) vs. 0.69 (0.65 – 0.79), p <0.001) compared to the stable 

population. (Table 3) 

Multiscale entropy (MSE) analysis of both HR and RR showed that the sample entropy 

significantly increased as the scale increased for both the stable and exacerbating 

groups. A two-way ANOVA test showed a significant reduction in HR MSE [Fgroup (1,20) 

= 17.895, p<0.001, Fscale(9,20) = 38.37, p<0.001] ] in the exacerbating group compared 

to the stable group, irrespective of scale. While there was a significant increase in the 

RR MSE [Fgroup (1,20) = 40.703, p<0.001, Fscale(9,20) = 51.434, p<0.001] ] in the 

exacerbating group compared to the stable group. (Figures 2 and 3) 

For the stable COPD group, there were no significant correlations between FEV1, 

CAAT score, mMRC score and any of the time-series variability measures. In the 

exacerbating group, there was no significant correlations found between any of the 

time-series variability measures and the admission National Early Warning Score 2 

(NEWS2), the c-reactive protein or the Rome COPD exacerbation severity 

classification. 

Exacerbating participants: admission vs. post-discharge 

For the exacerbating group, nocturnal data five days post discharge data was available 

in 9/18 (50%) of participants. Given small numbers, statistical analysis with Friedman’s 

test was not computed. At five days post discharge, the mean HR was largely 

unchanged, but the variability measures (cSDNN, SD1HR and SD2HR) trended 
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downwards, while sample entropy of HR increased. While the mean RR was also 

largely unchanged, the other variability measures all decreased at five days post 

discharge compared to admission values. This is illustrated in Figures S4 and S5 

(supplementary material). Airflow measures alpha 1 and alpha 2 decreased from 

admission to post discharge, while alpha 3 increased. This is illustrated in Figure S6 

(supplementary material).  

For HR, multiscale entropy increased five days post discharge at all scales (Figure 

S7). For RR, multiscale entropy decreased five days post discharge at all scales 

(Figure S8).  

Usability of AcuPebble in the stable COPD population was obtained from 24/33 (73%) 

of participants with the majority (16/24) finding attaching the sensor very easy. Most 

participants (17/24) found the sensor comfortable to wear and in 20/24 the sensor 

stayed in place for the duration of the night. Usability feedback was obtained from 8/18 

participants in the exacerbating group. All participants found the sensor at least 

moderately easy to put on with 75% finding it comfortable. Only one participant 

developed a rash around the site of the device, however, this disappeared through the 

day.  

The results from our historical non-COPD group, using a similar device can be seen 

in the supplement (pp 16-20). The non-COPD group were younger and less comorbid. 

No significant differences were found in the heart rate and respiratory rate variability 

measures between the non-COPD group and stable COPD group. There was a 

significant difference in airflow variability measures with alpha 2 being significant lower 

in the non-COPD group vs. stable COPD participants (0.2367 (0.2070 – 0.2661) vs. 

0.2805 (0.2600 – 0.3077), p<0.05). HR multiscale entropy was higher in the non-

COPD group compared to the stable and exacerbating COPD groups whilst RR 

multiscale entropy was lower in the non-COPD groups compared to both COPD 

groups.  

DISCUSSION 

This prospective observational study has shown that significant differences exist in HR 

and RR variability measures between stable COPD participants and those undergoing 

an exacerbation. The differences are summarised in Figure 4. 
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Heart rate variability (HRV), measured by cSDNN, SD1 and SD2, was significantly 

increased in participants undergoing an exacerbation compared to the stable 

population. These findings are similar to previously published data by Kabbach et al 

(2017), who used 10-minute daytime recordings comparing COPD exacerbators to 

stable participants. They also found increased HR variability measures (increased 

SDNN, SD1 and SD2) in the exacerbating group. (18) Another study also found similar 

results using spectral analyses, assessing the HR variability using frequency domains, 

showing increased variability in the exacerbating population. (19)  We did not find a 

statistically significant increase in mean HR in the exacerbating participants, which 

was 3bpm higher compared to the stable population. Previous work has suggested 

that day time HR typically rises by about 7bpm at exacerbation.  (20) The nocturnal 

measurements used in this study show a smaller change. 

Heart rate is controlled by the autonomous nervous system (ANS) with a complex 

interplay between the parasympathetic nervous system (PNS) and the sympathetic 

nervous system (SNS). The PNS primarily impacts beat-to-beat variability, (21) and 

this is reflected in short term measures of HRV like SD1 HR. We found that SD1HR 

significantly increased in the exacerbating population, suggestive of increased short-

term variability. This is likely to be due to increased respiratory sinus arrhythmia and 

possibly increased PNS activation. In humans, airway tone is thought to be mainly 

vagally controlled (22) and during an exacerbation, the increased bronchoconstriction, 

airway narrowing and increased vagal activity in the airway, may translate into 

increased PNS activity.  (18) 

Global ANS activity is reflected in longer term measures of HRV like cSDNN and SD2 

HR. (21) We found that these longer-term measures were significantly higher in the 

exacerbating group vs. stable group, (cSDNN 268ms (207 – 315) vs 179ms (162 – 

246), p = 0.006) suggestive of increased ANS activation, which is likely to be due to 

both increased PNS activity as described above, but probable also increased SNS 

activity due to the use of beta-agonists and infective / inflammatory elements that play 

a role in the exacerbation.  

It is important to note, that while in health a higher HR variability is linked to better 

prognosis, this is unlikely to be the case in this situation, as increased variability relates 

to a stretched and heightened ANS and worse outcomes. (18) 
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Sample entropy quantifies the degree of irregularity vs. regularity in a time-series and 

measures complexity and structural richness of the signal. Low values, suggest 

decreased complexity, more regularity and less system engagement. It takes into 

account the multiple regulatory systems affecting a particular time-series. (23-25). SE 

HR is significantly lower in participants undergoing an exacerbation, suggesting 

increased regularity and less complexity. Multi-scale entropy further defines the 

richness / complexity of the time-series by considering the multiple timescales that 

exist in physiological systems. MSE analysis of HR for both groups increased, 

confirming that HR is a complex time-series. (26, 27) (14) Participants with an 

exacerbation had decreased MSE HR at all time-scales. Prior work has shown lower 

sample entropy of HR in septic patients, (28) cirrhotic patients (12) and that HR MSE 

is an independent predictor of death in patients hospitalised for trauma. (29) A 

reduction in entropy describes a reduction in system coupling, a less engaged system 

and one that cannot adapt to added stressors. (30, 31) 

Respiratory rate can be affected by a myriad of different signalling pathways and a 

voluntary component differs in the awake and sleep state. Our work is novel, with no 

prior study investigating RR variability in participants undergoing a COPD 

exacerbation. The mean RR rose in the exacerbating population by a similar level 

compared to previous work. (20) 

RR variability measures (SDBB, SD1RR, SD2RR) were significantly higher in 

participants having an exacerbation. MSE analysis of RR showed that sample entropy 

was also significantly higher in the exacerbating group compared to stable 

participants. Furthermore, the difference was more apparent at higher scales, 

suggesting that the increased signal complexity was more apparent when longer-term 

timescales were considered. This is useful in clinical practice as it suggests that 

wearables with a lower resolution (e.g., one sample every 10 or 20 seconds) can still 

provide valuable information. This increased variability and complexity can be 

explained in a few ways. Participants undergoing an exacerbation are more hypoxic, 

leading to metabolic imbalances and increased respiratory rate, coupling and 

engagement. During a COPD exacerbation there is greater skeletal muscle 

dysfunction (32) and increased hyperinflation, (33) meaning reduced efficacy of both 

the inspiratory muscles and diaphragm. This leads to a fall in minute ventilation, and 

increased engagement from the respiratory system with increased complexity.  
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No prior study has looked at nocturnal airflow in this population. We have shown that 

COPD participants have two cross-over points in DFA analysis and three exponents 

(α1, α2 and α3). This indicates the scaling exponent (alpha) differs for different range 

of scales. While there was no clinically relevant difference in α1 and α2, at longer 

scales (above 30 seconds), exacerbators had a significantly lower α3 value compared 

to stable participants (median (IQR) 0.5000 (0.4676 – 05578) vs. 0.6931 (0.6509 – 

0.7931), p<0.001). This suggests that while stable COPD participants demonstrate 

long-range power law dynamics and positive autocorrelation at longer scales (whereby 

higher airflow is followed by higher airflow and vice versa), the exacerbating population 

have an α3 of 0.5, which is suggestive of white noise and completely random 

fluctuation. This is likely explained by increased upper and lower airway inflammation 

as well as bronchoconstriction, oedema and increased mucous production. This can 

lead to expiratory flow limitation, narrow airway calibre and increased turbulence of 

flow. (33) 

Of note, for all the physiological time-series, there was a trend towards ‘normality’ or 

stable COPD participant values in the exacerbating participants by day five post 

discharge. This is important as it suggests that in the recovery phase of COPD, the 

variability measures return to baseline.  

There are strengths and limitations to consider to this work. Participants were 

representative of a moderate – severe COPD population and were symptomatic, with 

most participants already on triple inhaled therapy. There were no significant 

differences in age, gender, smoking history and medical comorbidities between the 

groups. The exacerbation cohort had significantly worse historic lung function with a 

reduced FEV1, FVC and TLCO and a higher CAAT symptom score on admission.  

While we used the median nocturnal time as the start point of our analysis for the 

exacerbating population, no sleep diaries were given to patients. Therefore, we may 

have captured some data while COPD exacerbators were awake. This could lead to 

some bias, as there is evidence to suggest HR and RR variability differs during sleep 

compared to wakefulness. Second there was a degree of artefact in the HR and airflow 

recordings, meaning a small sample size and therefore a high type 2 (beta) error. 

Third, the patients admitted to hospital may have started their actual exacerbation at 

different times. In future studies, a retrospective symptom diary would be useful to 

pinpoint the exact start of their symptom onset. Fourth, data capture both preceding 
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the exacerbation and post exacerbation would have been useful to map the 

exacerbation trajectory. Fifth, both BMI and lung function can potentially influence the 

autonomic tone, thus impacting variability analysis. However, given the small numbers, 

multivariable analysis could not be performed. Moreover, from the stable group, no 

correlations were seen between any of the time-series parameters and FEV1. This 

suggests that differences in lung function between stable and exacerbating states are 

unlikely to have contributed to the differences seen. 

Overall, we have shown that continuous measurements of HR, RR and airflow through 

wearable technology is feasible, and acceptable to patients during states of stability 

and exacerbation. There are clear differences in time-series variability and complexity 

measurements between the stable and exacerbating COPD populations (Figure 4). 

Therefore, understanding and integrating variability measures into clinical practice is 

important to be able to build exacerbation detection algorithms in the future. Future 

work needs to focus on identifying the point(s) at which variability measures change 

in a patients’ exacerbation journey and whether this can be picked up objectively prior 

to symptoms. This will help build algorithms in the future such that treatment can be 

started earlier and thus avoid severe sequalae.  Signal changes will also be useful for 

monitoring recovery and identifying those at risk of recurrent exacerbation and re-

admission. 

The role of continuous physiological measurement, whilst in its infancy, has great 

potential to change the detection and management of exacerbations, leading to 

improved patient outcomes in the future. 
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Table 1 

Measure Definition 

Heart rate measures 

Mean heart rate (mean 

HR) (bpm) 

The average heart rate 

SDNN (ms) The standard deviation of the inter-beat interval of 

successive heart beats 

cSDNN (ms) The SDNN corrected for the mean HR 

SD1 HR (ms) A measure of short-term HR variability 

SD2 HR (ms) A measure of longer-term HR variability 

SE HR A measure of signal HR complexity and richness 

MSE HR Multi-scale entropy analysis of HR. This looks at signal 

complexity when the data is ‘zoomed out’ at different 

scales 

Respiratory rate measures 

Mean respiratory rate 

(mean RR) bpm 

The average respiratory rate 

SDBB (ms) The standard deviation of the inter-breath interval of 

successive breaths 

SD1 RR A measure of short-term RR variability 

SD2 RR A measure of longer-term RR variability 

SE RR A measure of RR signal complexity and richness 

MSE RR Multi-scale entropy analysis of RR. This looks at signal 

complexity when the data is ‘zoomed out’ at different 

scales 

Detrended Fluctuation analysis measures 

Alpha 1 Short term scaling exponent (roughly 3 seconds) 

Alpha 2 Medium term scaling exponent (roughly 30 seconds) 

Alpha 3 Longer term scaling exponent (more than 30 seconds) 
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Table 2: Baseline characteristics of stable vs. exacerbating participants  

Baseline 

characteristic 

Stable COPD 

 (n = 33) 

Exacerbating COPD (n 

= 18) 

p value* 

Male (%) 20 (61) 10 (56) 0.73 

Female (%) 13 (39) 8 (44) 0.73 

Age (years) (mean ± 

SD) 

67 ± 10 64 ± 9 0.46 

Body Mass Index 

(kg.m2) 

(median (IQR)) 

27.1 

(21.0 – 31.8) 

18.9  

(17.7 – 24.5) 

0.002 

Current smoker (%) 6 (18) 7 (39) 0.11 

Ex-smoker (%) 27 (82)  11 (61) 0.11 

Pack year history 

(median (IQR)) 

47  

(25 – 64) 

43 

(40 – 50) 

0.97 

Mobility (%) 

• Independent 

• Uses a stick 

• Uses a frame 

 

• 20 (61) 

• 11 (33) 

• 2 (6) 

 

• 13 (72) 

• 4 (22) 

• 1 (6) 

0.69 

Independent with 

regards to activities of 

daily living (%) 

31 (94) 18 (100) 0.29 

Medical Comorbidities (%) 

Alpha-1 Antitrypsin 4 (12) 0 0.12 

Atrial fibrillation 3 (9) 0 0.19 

Cerebrovascular 

disease 

0 0 - 

Hypercholesterolaemia 9 (27) 5 (28) 0.97 

Hypertension 11 (33) 5 (28) 0.68 

Ischaemic heart 

disease 

5 (15) 2 (11) 0.69 

Oxygen therapy 2 (6) 1 (6) 0.94 

Peripheral vascular 

disease 

1 (3) 0 0.46 

Type 2 diabetes 

mellitus 

5 (15) 1 (6) 0.31 
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Table 3: Pulmonary function tests, baseline symptom severity assessment scores and 

relevant medication of stable vs. exacerbating participants 

Characteristic Stable group Exacerbating group p value 

Pulmonary function tests* (mean ± SD) 

FEV1 (L) 1.35 ± 0.64 0.91 ± 3.22 0.008 

FEV1 %predicted 48.96 ± 20.00 32.31 ± 10.14 0.002 

FVC (L) 3.27 ± 1.06 2.42 ± 0.68 0.004 

FVC %predicted 91.31 ± 25.67 70.00 ± 19.97 0.005 

FEV1/FVC ratio  0.41 ± 0.12 0.38 ± 0.11 0.47 

TLCO 

(mmol/min/kPa) 

4.11 ± 2.34 2.46 ± 0.63 0.023 

TLCO %predicted 48.60 ± 22.82 33.21 ± 10.78 0.029 

KCO 

(mmol/min/kPa) 

0.86 ± 0.35 0.65 ± 0.18 0.06 

KCO %predicted 61.88 ± 25.52 48.72 ± 16.02 0.10 

Symptom assessment questionnaires (median (IQR)) 

mMRC 

breathlessness 

score 

3 (2 – 3) 3 

(2.5 – 4)  

0.25 

COPD and Airways 

Assessment Test 

(CAAT) score 

20 (14 – 25.25) 27 

(22.5 – 32.25) 

0.004 

COPD Severity Assessment (GOLD) (%) 

GOLD A 2 (6) 0 0.003 

GOLD B 20 (61) 3 (17) 0.003 

GOLD E 11 (33) 15 (83) 0.003 

Respiratory Medication (%) 

SABA 33 (100) 18 (100) - 

LABA/ICS 0 1 (6) 0.17 

LAMA alone 0  1 (6) 0.17 

LABA/LAMA** 10 (30) 1 (6) 0.040 

LABA/LAMA/ICS** 21 (64) 15 (83) 0.14 

*All participants had lung function within 3 years of the study. In some cases, the lung function 
post study start was taken as it was closest.  
**Included patients on various combinations, but receiving all the medicationICS inhaled 
corticosteroids, LABA long acting beta agonist, LAMA long acting muscarinic antagonist, SABA 
short acting beta agonist 
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Table 4: Differences in physiological signals comparing the stable COPD group with 

the exacerbating group. 

Physiological 

variability 

measure 

Stable COPD groups Exacerbating COPD Group p-value 

 

Heart Rate (HR) measures (n = 31 vs. 9) 

Mean HR 

(bpm) 

71.04 

(64.55 – 75.10) 

74.22 

(67.42 – 82.31) 

0.35 

cSDNN (ms) 179.40 

(162.14 – 245.83) 

268.41 

(206.67 – 314.90) 

0.006 

SD1HR (ms) 7.80 

(6.52 – 10.40) 

12.06 

(7.76 – 14.51) 

0.040 

SD2HR (ms) 74.76 

(66.68 – 95.67) 

90.18 

(78.62 – 130.15) 

0.037 

SEHR 0.1607 

(0.1355 – 0.1981) 

0.1258 

(0.1044 – 0.1568) 

0.015 

Respiratory Rate measures (RR) (n = 32 vs. 18) 

Mean RR 

(bpm) 

16.86 

(15.13 – 18.87) 

18.58 

(15.27 – 20.50) 

0.30 

SDBB (ms) 525.41 

(398.08 – 665.35) 

628.68 

(514.90 – 1126.30) 

0.024 

SD1RR (ms) 91.97 

(75.97 – 108.82) 

133.61 

(95.52 – 168.53) 

0.037 

SD2RR (ms) 737.48 

(558.01 – 936.16) 

875.93 

(722.42 – 1584.36) 

0.025 

SERR 0.1078 

(0.0743 – 0.1377) 

0.1378 

(0.0982 – 0.1916) 

0.09 

Airflow analysis (detrended fluctuation analysis) (n = 29 vs. 12) 

Alpha 1 1.6607 

(1.6341 – 1.6730) 

1.6294 

(1.6055 – 1.6452) 

0.005 

Alpha 2 0.2805 

(0.2600 – 0.3077) 

0.2968 

(0.2779 – 0.3110) 

0.13 

Alpha 3 0.6931 

(0.6509 – 0.7931) 

0.5000 

(0.4676 – 0.5578) 

<0.001 

Median (IQR) shown. Mann Whitney U-test performed comparing stable COPD and 

exacerbating COPD population. 
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FIGURE LEGENDS 

Figure 1: Study flow diagram 

Figure 2: Heart rate multiscale entropy (MSE) comparing stable COPD participants 

and exacerbating participants 

Figure 3: Respiratory rate multiscale entropy (MSE) comparing stable COPD 

participants and exacerbating participants 

Figure 4: Variability analysis summary 
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1. METHODOLOGY SUPPLEMENT 
 

1.1 Wearable device 
The wearable device used for this was AcuPebble RE100. Under the scope of this 

study, AcuPebble was not used as a medical device, but as an acoustic monitor to 

acquire signals, for which it is CE marked. AcuPebble RE100 is a small circular 

device and can be seen in Figure S1. 

Figure S1: AcuPebble 

 

Reproduced with permission from Acurable Ltd 

 

AcuPebble RE100 attaches to the base of the neck to record various physiological 

acoustic signals including sounds generated from patient’s respiratory and cardiac 

functions. These are then wirelessly transferred to a mobile device and uploaded to a 

GDPR compliant cloud. 

Subsequent algorithms convert these sounds into three main physiological signals: 

1. Respiratory rate (breaths per minute) measured every two seconds and 

validation work with Bland Altman plots have shown a RR bias of -0.215 

breaths per minute (LOA between -5.747 to 5.316 breaths per minute). 

(Unpublished) 

2. Heart rate (beats per minute) measured every two seconds and the root 

mean squared error (RMSE) of the heart rate, with the 50-120 beats per minute 

range is 3.62 beats per minute. (1) 

3. Airflow (normalised volt (V)) with a recording every 0.1seconds, giving 100 

recordings every second.    
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1.2 Nocturnal time-window 

There are limited data on nocturnal physiological variability analysis and currently no 

gold standard duration of analysis is recommended in the COPD population. However, 

previous work on heart rate variability has described long term (24 hours), short-term 

(5 minutes) and ultra-short-term (<5min) analysis, which are not interchangeable. It 

has also been recognised that longer term analysis will enable better representation 

of the overall response. (2) Therefore, when comparing nocturnal readings from 

several patients, a fixed time-series duration is necessary to avoid bias and improve 

comparability. Six hours was felt to adequately represent all the stages of sleep and 

give more than enough data points (10,800) to conduct physiological variability 

analysis. Studies with less than six hours of recording were deemed too short and 

excluded from the analysis. When patients had more than six hours of recording, only 

the first six hours were analysed (excluding the first 10minutes), so that the same time-

series duration was used in all patients. If a time-series had ≥ 15% of data missing, 

this was excluded from the analysis.  

The exacerbating group had recordings available throughout their stay (both day and 

night), however, for comparability, we chose to only use the nocturnal recording 

portion. To reduce bias, the median start time of all the stable valid six-hour nocturnal 

recordings was calculated and used as the start time for the exacerbating population. 

This was to ensure a similar time and duration of the recording, thus increasing 

comparability. The first valid nocturnal recording within 48 hours was used to compare 

with the stable group.  

1.3 Linear analysis measures – heart rate and respiratory rate 

The heart rate and respiratory rate was measured every two seconds by AcuPebble 

RE 100. For the duration of six hours, 10,800 data points were available to analyse. 

Given the large number of data points available for analysis, to deal with missing 

data, the data was first cleaned to remove potential artefact: 

• Heart rate (HR) – any measurement below 40 beats per minute, was assumed 

to be inaccurate data capture, and this measurement was changed to the 

median HR.  
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• Respiratory rate (RR) – any measurement below eight breaths per minute was 

assumed to be inaccurate data capture, and this measurement was changed 

to the median RR. 

The percentage of artefact for each trace was noted and if any recording had ≥15% of 

aberrant data, that study was not included in the final analysis. For included studies 

the following measurements were calculated. 

The mean HR and RR was calculated. Successive R waves on an electrocardiogram 

(ECG) are denoted as the R-R interval. This is the interval between two successive 

heart beats.  With the HR measurements the R-R interval (ms) was calculated by the 

following equation (3): 

𝑅 − 𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
60,000

𝐻𝑅
 

With the RR measurements the breath-to-breath interval (B-B) (ms) was calculated by 

the following equation: 

𝐵 − 𝐵 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  
60,000

𝑅𝑅
 

Using both the R-R interval and B-B interval, the standard deviation of these intervals 

was calculated giving linear time-domain measure for each (SDNN and SDBB 

respectively).  

Monfredi et al showed that the R-R interval (for HR) has an inverse non-linear 

relationship with HR and therefore ideally the SDNN should be corrected for the mean 

HR to reduce bias and improve reliability. This value (cSDNN) is shown in their 

equation below: (4)  

 

Therefore, for the HR data the cSDNN was also calculated. No such correction exists 

for the RR time series.  
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1.4 Non-linear analysis measures – heart rate and respiratory rate 

For all non-linear analyses the calculated R-R and B-B intervals was used, rather 

than the original HR and RR time-series, as this is conventional methodology in the 

literature. 

1.4.1 Poincare plots 

A Poincare plot is a graphical representation (scatter graph) of the correlation between 

two consecutive data points in a time-series. For example, between two consecutive 

R-R intervals (R-Rn and R-Rn+1). This is illustrated in Figure S2. An ellipse is 

subsequently fitted to the line of identity (the line where the x-value and y-values are 

equal). Two values are then calculated from this plot. SD1 is the standard deviation of 

the points perpendicular to the line of identify and SD2 is the standard deviation along 

the line of identify. SD1 represents shorter term fluctuations (beat-to-beat), while SD2 

represents longer term fluctuations in the time series. (5, 6)  

Figure S2 Poincare plot example (reproduced with permission from Mani et al  (6)) 
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1.4.2 Sample entropy 

Sample entropy measures the probability that sequences of a certain length (m) in a 

time-series is repeated at a later point, with a certain degree of tolerance (r). Tolerance 

(r) is akin to a confidence interval. Additionally, it measures whether this pattern of 

sequences of length m, remain similar when the next sample (m+1) is included in the 

sequence. Putting it simply SE quantifies the degree of irregularity vs. regularity in a 

time series. (7-9) Low values of SE suggest a greater degree of regularity and less 

complexity compared to higher values. SE, as a measure of complexity, will account 

for the interference from multiple regulatory systems affecting a time-series. (10-12) 

SE usually has no units ascribed to it 

1.4.3 Multi-scale entropy 

Multiscale entropy (MSE) is used to further define the richness of a time-series by 

taking into account the multiple scales that exist in physiological systems. It relies on 

calculating sample entropy over a range of different scales. The data is coarse grained 

or zoomed out. This concept is illustrated in Figure S3. 

Figure S3 Multiscale entropy analysis.  (Adapted from (13)) 
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For SE calculations I used settings of m at 2 and r at 0.2. These values of m and r are 

widely used in the existing literature and are accepted as the standard.  

Multi-scale entropy (MSE) was also calculated for both HR and RR using well 

described and freely available coding algorithms in MATLAB processing software. For 

this analysis, MSE was used over ten scales with m at 2 and r at 0.2.  

1.5 Detrended fluctuation analysis: airflow data 

The airflow data had a high resolution of 100Hz, meaning that there were 100 data 

points every second. Using the same six-hour window this gave us 2,160,000 data 

points. The data was initially cleaned to remove potential artefact. If there was a 30 

second apnoea (determined by 3000 data points where the airflow was 0, this was 

deemed to be artefact and thus deleted. 

Many physiological time-series have no characteristic length scale, exhibit long-range 

power-law correlations, are self-affine and are non-stationary. DFA accurately 

quantifies long-range power law correlations of a non-stationary time series, providing 

a quantitative parameter, known as the scaling exponent (α) which is akin to the fractal 

dimension. (14, 15) 

While the mathematics is complicated, DFA looks at the time-series at various scales, 

de-trends the data, by subtracting the local trend at each scale, and then calculates 

the fluctuation at each scale. The fluctuation is akin to the standard deviation. This 

computation is repeated several times and at different scales to provide a relationship 

between the fluctuation and the scale. This is plotted in a double logarithmic axis and 

the exponent of the straight line is α. The values of α have various meanings: (15) 

• α = 0.5 indicates white noise and completely random fluctuation 

• 0.5 > α < 1.0 indicates positive autocorrelation, whereby, using heart rate, as 

an example one large inter-beat interval is followed by another large inter-beat 

interval. 

• α < 0.5 indicates anti-correlation, whereby for example one large inter-beat 

interval is followed by a short inter-beat interval. 

It is important to note, that in physiological time-series the scaling component is not 

always constant (independent of scale) and therefore crossovers often exist. This 
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means the scaling component (α) differs for different ranges of scales. This is usually 

due to a change in the correlation properties of the signal at different time scales. (16) 

Previous studies have shown that both oxygen saturation and heart rate (15) DFA 

graphs have one ‘cross-over’ point. Initial analysis of our airflow data showed two 

‘cross-over’ points suggesting a short-term, intermediate term and long-term scaling 

exponent, α1, α2 and α3 respectively. These were calculated separately by visually 

inspecting the DFA graph and identifying the cross-over point manually. The first three 

airflow recordings for the first five patients (total of 15 recordings) were all inspected 

manually and found to have similar cross-over points. Two cross-over were also seen 

in preliminary analysis of the exacerbation COPD population and the points were the 

same as the stable population, allowing for direct comparison. 

It is useful to note, that the first cross over point at a scale of 2.52114 is equivalent to 

Log10(332) and means that we are looking at the data at a scale of roughly 3 seconds 

(as we have 100 data points every second). Therefore, α1 is a short-term scaling 

exponent. The second cross-over point at a scale of 3.49941 is equivalent to 

Log10(3158) and means that we are looking at the data at a scale of roughly 31 

seconds, therefore α2 is an intermediate scaling exponent and there after α3 is a 

longer scale scaling exponent. 

An example of DFA analysis of a single night from a stable COPD participant and an 

exacerbating participant demonstrating the 2 cross-over points can be seen in Figure 

S3. 
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Figure S3: Detrended fluctuation analysis of a single night from a stable COPD 

participant and an exacerbating participant 

  

Exacerbating patients represented by red circles and stable by blue circles. The dotted 
vertical lines represent the cross-over points 
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2. Exacerbating participants: admission vs. 5-days post 

discharge 
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Figure S4: Heart rate variability measures at admission, discharge and 5-days post discharge 

 

Circles represent the mean value and error bars represent the standard error. 
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Figure S5: Respiratory rate variability measures at admission, discharge and 5-days post discharge  

 

Circles represent the mean value and error bars represent the standard error. 
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Figure S6: Airflow measures at admission, discharge and 5-days post discharge  

 

 

Circles represent the mean value and error bars represent the standard error. 
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Figure S7: Multi-scale entropy analysis of heart rate time-series at admission, discharge and 5-days post discharge 
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Figure S8: Multi-scale entropy analysis of respiratory rate time-series at admission, discharge and 5-days post discharge. 
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3. Historical non-COPD group 
 

Given the novel findings of this work, as a point of reference for the reader, we include 

some data from a historical non-COPD group. We have data on a historical cohort of 

patients without COPD who used AcuPebble SA100, a similar device to AcuPebble 

RE100 which works in the same way. This data was part of a previous study by our 

group validating AcuPebble SA100 for sleep apnoea diagnostics. (17) Patients with a 

normal sleep study and therefore no sleep apnoea were defined as having an 

apnoea/hypopnoea index of <5events/hr. Their heart rate, respiratory rate and airflow 

time-series data was extracted and analysed using the same algorithms and 

methodology described above. As for the stable patients, a six-hour nocturnal 

recording was used (excluding the first 10-minutes) giving the same number of data 

points. 

The results presented below show the baseline characteristics of the non-COPD, the 

physiological signal variability measures and the multiscale entropy measurements for 

the non-COPD group, in context with stable and exacerbating participants.  
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Table S1: Baseline characteristics of non-COPD group vs. stable vs. exacerbating 

participants. 

Baseline 

characteristic 

Non-COPD 

group 

 (n = 51)  

Stable COPD 

 (n = 33) 

Exacerbating 

COPD (n = 18) 

p value* 

Male (%) 29 (57)  20 (61) 10 (56) 0.73 

Female (%) 22 (43)  13 (39) 8 (44) 0.73 

Age (years) (mean ± 

SD) 

38 ± 11  67 ± 10 64 ± 9 0.46 

Body Mass Index 

(kg.m2) 

(median (IQR)) 

25.2  

(23.5 – 28.9) 

 

27.1 

(21.0 – 31.8) 

18.9  

(17.7 – 24.5) 

0.002 

Current smoker (%) 8 (15) 6 (18) 7 (39) 0.11 

Ex-smoker (%) 12 (24) 27 (82)  11 (61) 0.11 

Pack year history 

(median (IQR)) 

- 47  

(25 – 64) 

43 

(40 – 50) 

0.97 

Mobility (%) 

• Independent 

• Uses a stick 

• Uses a frame 

-  

• 20 (61) 

• 11 (33) 

• 2 (6) 

 

• 13 (72) 

• 4 (22) 

• 1 (6) 

0.69 

Independent with 

regards to activities of 

daily living (%) 

- 31 (94) 18 (100) 0.29 

Medical Co-morbidities (%) 

Alpha-1 Antitrypsin 0 4 (12) 0 0.12 

Atrial fibrillation 0 3 (9) 0 0.19 

Cerebrovascular 

disease 

0 0 0 - 

Hypercholesterolaemia 1 (2) 9 (27) 5 (28) 0.97 

Hypertension 5 (10) 11 (33) 5 (28) 0.68 

Ischaemic heart 

disease 

1 (2) 5 (15) 2 (11) 0.69 

Oxygen therapy 0 2 (6) 1 (6) 0.94 

Peripheral vascular 

disease 

0 1 (3) 0 0.46 

Type 2 diabetes 

mellitus 

1 (2) 5 (15) 1 (6) 0.31 

*p value represents differences between stable COPD and exacerbating COPD 

participants 
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Table S2: Differences in physiological signals comparing non-COPD group vs. stable 

COPD group vs. exacerbating group. 

Physiological 

variability 

measure 

Non-COPD group Stable COPD 

group 

Exacerbating 

COPD group 

p-valueb 

 

Heart Rate (HR) measures (n = 31 vs. 9) 

Mean HR 

(bpm) 

65.48a  

(60.83 – 70.03)  

71.04 

(64.55 – 75.10) 

74.22 

(67.42 – 82.31) 

0.35 

cSDNN (ms) 189.43  

(147.92 – 244.59)  

179.40 

(162.14 – 245.83) 

268.41 

(206.67 – 314.90) 

0.006 

SD1HR (ms) 8.90  

(6.92 – 10.38) 

7.80 

(6.52 – 10.40) 

12.06 

(7.76 – 14.51) 

0.040 

SD2HR (ms) 87.61  

(65.73 – 115.35)  

74.76 

(66.68 – 95.67) 

90.18 

(78.62 – 130.15) 

0.037 

SEHR 0.1872  

(0.1273 – 0.2307)  

0.1607 

(0.1355 – 0.1981) 

0.1258 

(0.1044 – 0.1568) 

0.015 

Respiratory Rate measures (RR) (n = 32 vs. 18) 

Mean RR 

(bpm) 

15.67a  

(14.26 – 17.00)  

16.86 

(15.13 – 18.87) 

18.58 

(15.27 – 20.50) 

0.30 

SDBB (ms) 478.98  

(349.30 – 654.93)  

525.41 

(398.08 – 665.35) 

628.68 

(514.90 – 1126.30) 

0.024 

SD1RR (ms) 88.93  

(69.59 – 126.41)  

91.97 

(75.97 – 108.82) 

133.61 

(95.52 – 168.53) 

0.037 

SD2RR (ms) 672.144  

(488.23 – 916.01) 

737.48 

(558.01 – 936.16) 

875.93 

(722.42 – 1584.36) 

0.025 

SERR 0.0906  

(0.0533 – 0.1347)  

0.1078 

(0.0743 – 0.1377) 

0.1378 

(0.0982 – 0.1916) 

0.09 

Airflow analysis (detrended fluctuation analysis) (n = 29 vs. 12) 

Alpha 1 1.6751a  

(1.6601 – 1.6820)  

1.6607 

(1.6341 – 1.6730) 

1.6294 

(1.6055 – 1.6452) 

0.005 

Alpha 2 0.2367a  

(0.2070 – 0.2661)  

0.2805 

(0.2600 – 0.3077) 

0.2968 

(0.2779 – 0.3110) 

0.13 

Alpha 3 0.7191  

(0.6608 – 0.7762)  

0.6931 

(0.6509 – 0.7931) 

0.5000 

(0.4676 – 0.5578) 

<0.001 

Median (IQR) shown. arepresents significant differences between the healthy 

population and stable COPD. bMann Whitney U-test performed comparing stable 

COPD and exacerbating COPD population. 
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Figure S9: Heart rate multiscale entropy (MSE) comparing non-COPD group, stable 

COPD participants and exacerbating participants.  
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Figure S10: Respiratory rate multiscale entropy (MSE) comparing non-COPD group, 

stable COPD participants and exacerbating participants. 
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