UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The Differential Modulatory Effects of Potassium Supplementation on Blood Pressure, Vascular Reactivity, Glomerular Filtration Rates, and Oxidative Stress in Different Experimental Hypertensive Models

Nwokocha, Chukwuemeka R; Palacios, Javier; Reid, Melissa Kaydeen; Nunes, Nikolai Javier; Gray, Wesley; McGrowder, Donovan; Orie, Nelson N; (2025) The Differential Modulatory Effects of Potassium Supplementation on Blood Pressure, Vascular Reactivity, Glomerular Filtration Rates, and Oxidative Stress in Different Experimental Hypertensive Models. Nutrients , 17 (11) , Article 1865. 10.3390/nu17111865. Green open access

[thumbnail of Nwokocha et al nutrients-17-01865.pdf]
Preview
Text
Nwokocha et al nutrients-17-01865.pdf - Published Version

Download (786kB) | Preview

Abstract

High-sodium/low-potassium in the modern diet, potassium excretion, and sodium retention have all been implicated in hypertension. Objectives: This study investigated the differential effects of potassium (K⁺) supplementation on blood pressure, renal function, and oxidative stress in two experimental hypertensive rat models: L-NAME-induced (nitric oxide synthase inhibitor-induced hypertension presenting with reduced NO bioavailability, endothelial dysfunction, vasoconstriction) and DOCA-salt-induced hypertension (deoxycorticosterone acetate + salt mimics volume-dependent hypertension of hypermineralocorticoidism, low renin, high sodium retention and severe cardiac fibrosis and oxidative stress). Methods: Male Sprague Dawley rats were treated with L-NAME or DOCA-salt, with or without 0.75% KCl dietary supplementation for eight weeks. Blood pressure, vascular reactivity, serum electrolytes, renal function markers, and malondialdehyde (MDA) levels were evaluated. Results: Potassium supplementation significantly reduced (20%) mean arterial pressure and (80%) oxidative stress markers in the L-NAME model but not in the DOCA-salt model. In both hypertensive models, K⁺ reduced (15%) vascular contractile response to phenylephrine, though it did not improve acetylcholine-induced vasodilation. Notably, K⁺ supplementation improved glomerular filtration rate (eGFR), sodium–potassium ratio, and renal biomarkers (urea and creatinine) in the L-NAME model, suggesting nephroprotection. However, in the DOCA-salt group, these markers either remained unchanged or worsened. Conclusions: These findings indicate that the antihypertensive and renoprotective effects of potassium are model-specific and depend on the underlying pathophysiological mechanisms, such as nitric oxide bioavailability and mineralocorticoid sensitivity. Dietary potassium may be more effective in patients with endothelial dysfunction-dominant hypertensive subtypes compared with volume-dependent hypertension and may call for K⁺ supplementation studies to be stratified by hypertension subtype.

Type: Article
Title: The Differential Modulatory Effects of Potassium Supplementation on Blood Pressure, Vascular Reactivity, Glomerular Filtration Rates, and Oxidative Stress in Different Experimental Hypertensive Models
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/nu17111865
Publisher version: https://doi.org/10.3390/nu17111865
Language: English
Additional information: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Keywords: Potassium supplementation; L-NAME model of hypertension; DOCA-salt model of hypertension; vascular reactivity; electrolyte balance; nutrition
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10209492
Downloads since deposit
1Download
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item